Chapter 12

Stretch, fold, prune

1.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by dferentiable dynamical systems or equiv-
alently the action (dferentiable) of a Lie grou on a
manifold M. Here Dif(M) is the group of all dfeomor-
phisms ofM and a difeomorphism is a dierentiable map
with a differentiable inverse. (.) Our problem is to study
the global structure, i.e., all of the orbits bf.

—Stephen Smal®ifferentiable Dynamical Systems

E HAVE LEARNED that the Rossler attractor is very thin, but otherwise e r
W turn maps that we found were disquieting — figure 3.3 did npeapto
be a one-to-one map. This apparent loss of invertibilitynisifact of
projection of higher-dimensional return maps onto theivdodimensional sub-
spaces. As the choice of a lower-dimensional subspace itsaaybthe resulting
snapshots of return maps look rather arbitrary, too. Suskmhtions beg a ques-
tion: Does there exist a natural, intrinsic coordinate esystn which we should
plot a return map?

We shall argue in sect. 12.1 that the answer is yes: The s$itrtoordinates
are given by the stablenstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediatehbeidiood of the
unstable manifold. In chapter 5 we established that Floouetipliers of periodic
orbits are (local) dynamical invariants. Here we shall shioat every equilibrium
point and every periodic orbit carries with it stable andtabke manifolds which
provide topologically invarianglobal foliation of the state space. They will en-
able us to partition the state space in a dynamically inmangay, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relativetgpardering of tra-
jectories, and separates the admissible and inadmissitdearies. We illustrate
how this works on Hénon map example 12.3. Determining wisigimbol se-
guences are absent, or ‘pruned’ is a formidable problem whesved in the state
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space, 1, X2, ..., Xg] coordinates. It is equivalent to the problem of deterngnin
the location of all homoclinic tangencies, or all turningrge of the Hénon attrac-
tor. They are dense on the attractor, and show no self-gistilacture in the state
space coordinates. However, in the ‘danish pastry’ reptaten of sect. 12.3
(and the ‘pruned danish,” in American vernacular, of se2#}, the pruning prob-
lem is visualized as crisply as the New York subway map; amgriary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the petiésn tempo of the
preceding chapter. Skip most of this chapter unless youyraakd to get into
nitty-gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 268
12.1 Goin’ global: stablgunstable manifolds

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-
gles,Les méthodes nouvelles de la méchanique céleste

The Jacobian matrig! transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initrdinitesimal frame of

neighboring trajectories into a distorted frame tinfegter, as in figure 4.1.
Nearby trajectories separate exponentially along theablestirections, approach
each other along the stable directions, and creep alongangimal directions.

The fixed pointq Jacobian matrixJ(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encirclitite fixed point is

linear in the sense of sect. 4

The continuations of the span of the local stable, unstagénedirections into
global curvilinear invariant manifolds are called tstable respectivelyunstable
manifolds They consist of all points which march into the fixed pointward,
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respectively backward in time

WS = {xeM: f‘(x)—xq—>0ast—>oo}
wu {[xe M: £7(x) - x> Oast — oo} . (12.1)

Eigenvectore®) of the monodromy matrixd(x) play a special role - on them the
action of the dynamics is the linear multiplication hy (for a real eigenvector)
along 1-dimensional invariant cur\)(As'(Li"S or spiral ifout action in a 2B surface
(for a complex pair). Fot — +oo a ?inite segment orW(S), respectivelyWs,
converges to the linearized map eigenvea®, respectivelye®, where©, 8
stand respectively for ‘contracting,” ‘expanding.’” Inghsense each eigenvector
defines a (curvilinear) axis of the stable, respectivelytalle manifold.

Actual construction of these manifolds is the converse eif titefinition (12.1):
one starts with an arbitrarily small segment of a fixed poigeevector and lets
evolution stretch it into a finite segment of the associatedifold. As a periodic
pointx on cyclepis a fixed point off Tp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consideiith expanding eigen-
value, eigenvector pairA(, e)) computed fromJ = Jp(X) evaluated at a fixed
point x,

IV = AeD(x), xeMp, Ai>1. (12.2)

Take an infinitesimal eigenvectef)(x), [l (x)|| = ¢ < 1, and its returm; el (x)
after one periodp. Sprinkle the straight interval betwees pig] W(‘ﬁ) with a
large number of points®, for example equidistantly spaced on logarithmic scale
between Iz and InA; + Ine. The successive returns of these poifits(x4)),
£2To(x®), - .., fMTo(xM) trace out the d curveW within the unstable manifold.
As separations between points tend to grow exponentialigryeso often one
needs to interpolate new starting points between the mrdiees. Repeat for

- (x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting directida &n expanding one,
tracing out the curvilinear stable manifdm(si) as a continuation o).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iteratef2To(x®), £4Te(x), £6To(x¥) continues in the directioe®, every
odd one in the directiore®.

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair(Aj, Aj;1 = A} has Floguet exponents (5.9) of forth) =
1D + i, with the sign ofu®) # 0 determining whether the linear neighbor-
hood is ouf in spiralling. The orthogonal pair of real eigenvecttRee()), Im (i)}
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of :
complex eigenvalue pair of an unstable equilibriur
of plane Couette flow, a projection from a 61,506
dimensional state space ODE truncation of the (
dimensional) Navier-Stokes PDE. (J.F. Gibson,
Nov. 2005 blog entry [12.61])

spans a plane.T = 2r/w\ is the time of one turn of the spiral Reel)(x) =
IAjIReel)(x). As in the real cases above, sprinkle the straight intervabden
[£,IAle] along Reel)(x) with a large number of pointg®. The flow will now
trace out the @ invariant manifold as an oyt in spiralling strip. Two low-
dimensional examples are the unstable manifolds of therizdtew, figure 11.8 (a),
and the Rossler flow, figure 11.10 (a). For a highly non-tiéxample, see fig-
ure 12.1.

The unstable manifolds of a flow adg-dimensional. Taken together with the
marginally stable direction along the flow, they are rathardhto visualize. A
more insightful visualization isféered by ¢ — 1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see alsots3.1.2). Stable,
unstable manifolds for maps are defined by

We {xeP:P”(x)—xq—>0asn—>oo]
WY = {xeP:P(x) - xg— 0asn — oo , (12.3)

whereP(X) is the @-1)-dimensional return map (3.1). In what follows, all invar
ant manifoldsW", W will be restricted to their Poincaré sections', Ws.

Example 12.1 A section at a fixed point with a complex Floquet multiplier pa ir:
(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point Xq with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector xy) and the eigenvector Im e perpendicular
to the plane. A point X is in the section P if it satisfies the condition

(Xx—xg)-Ime® = 0. (12.4)

In the neighborhood of xq the spiral out/in motion is in the {Ree®), Ime®} plane, and
thus guaranteed to be cut by the Poincaré section ¥ normal to €¥.

In general the full state space eigenvectors do not lie inilacdacé section; the
eigenvector€(l) tangent to the section are given by (5.20). Furthermorelgvimi
the linear neighborhood of fixed poirtthe trajectories return with approximate
periodicity Ty, this is not the case for the globally continued manifole), or
the first return times (3.1) fier, and thef\/(”j) restricted to the Poincaré section is
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obtained by continuing trajectories of the points from thk $tate space curve
W(“J.) to the sectiorf.

For long times the unstable manifolds wander throughoutctireected er-
godic component, and are no more informative than an erguoaliectory. For
example, the line with equitemporal knots in figure 12.1tstaut on a smoothly
curved neighborhood of the equilibrium, but after a ‘tudnil episode decays
into an attractive equilibrium point. The trick is to stopntimuing an invariant
manifold while the going is still good.

fast track:
W sect. 12.2, p. 249
Learning where to stop is a bit of a technical exercise, tadeemight prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

§
J As the flow is nonlinear, there is no ‘natural’ linear basigepresent it.
Wistful hopes like ‘POD modes, ‘Karhunen-Loeve,” and ethinear changes of
bases do not cut it. The invariant manifolds are curved, heid toordinatizations
are of necessity curvilinear, just as the maps of our globgtaut infinitely foliated
and thus much harder to chart.

Let usillustrate this by parameterizing d dlice of an unstable manifold by its
arclength. Sprinkle evenly pointst?, x@, ... x(N-D} petween the equilibrium
point x; = X9 and pointx = X™, along the # unstable manifold continuation
x® e W, of the unstablel) eigendirection (we shall omit the eigendirection

label () in what follows). Then the arclength from equilibrium poigt = x@ to
x = xN) is given by

N
= im > o P, o0 =B . w29)
k=1

For the lack of a better idea (perhaps the dynamically détemy = J7J would
be a more natural metric?) let us measure arclength in thidiurcmetric,gij =
dij» SO

N 12
s= Nlian[z (d%k))z] . (12.6)

k=1

By definition f™¥(x) e v"v(uj), so fi(x) induces a @ maps(so, 7) = S(f7%)(x)).
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Turning pointsare points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterateshef map, i.e., points at
which the manifold folds back onto itself arbitrarily shgtpFor our purposes,
approximate turning points fiice. The d curve\fvg’j) starts out linear axq, then
gently curves until —under the influence of other unstabldgliegia andor peri-
odic orbits— it folds back sharply at ‘turning points’ an@thnearly retraces itself.
This is likely to happen if there is only one unstable directias we saw in the
Rossler attractor example 11.3, but if there are sevéral;ttirning point’ might
get stretched out in the non-leading expanding directions.

The trick is to figure out a gootlase segmertb the nearest turning point
L = [0, ], and after the foldback assign &fx,t) > s, the nearest poins on
the base segment. If the stable manifold contraction isigtrthe 2nd coordinate
connectings(x, t) — scan be neglected. We saw in example 11.3 how this works.
You might, by nature and temperament, take the dark viewssR® has helpful
properties, namely insanely strong contraction along arfedsional stable direc-
tion, that are not present in real problems, such as turbelémna plane Couette
flow, and thus the lessons of chapter 11 of no use when it come=at plumb-
ing. For this reason, both of the training examples to cotme pilliards and the
Hénon map are of Hamiltonian, phase-space preserving &ypkthus as far from
being insanely contracting as possible. Yet, to a thoughgfader, they unfold
themselves as pages of a book.

Assign to eachd-dimensional poink € Lq a coordinates = s(X) whose value
is the Euclidean arclength (12.5) xg measured along the 1-dimensio) sec-
tion of the xq unstable manifold. Next, for a nearby poixg & Lq determine
the pointxy € Lq which minimizes the Euclidean distance %)%, and as-
sign arc length coordinate valig = (%) to X. In this way, an approximate
1-dimensional intrinsic coordinate system is built alohg tinstable manifold.
This parametrization is useful if the non—wandering setfcently thin that its
perpendicular extent can be neglected, with every poinhembn—wandering set
assigned the nearest point on the base segment

Armed with this intrinsic curvilinear coordinate paraniedtion, we are now
in a position to construct a 1-dimensional model of the dyicaron the non—
wandering set. I&; is thenth Poincaré section of a trajectory in neighborhood of
Xg, ands, is the corresponding curvilinear coordinate, tisgn = f™(s,) models
the full state space dynamiocg = %n.1. We approximatef(s,) by a smooth,
continuous 1-dimensional map: Lq — Lq by taking%, € Lq, and assigning to
fnt1 the nearest base segment pant = S(Xns1)-

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract treton page 249,
about ‘the action (dferentiable) of a Lie groug® on a manifoldM,’ time has
come to bring Smale to everyman. If you still remain mystifigdthe end of
this chapter, reading chapter 16 might help; for example Libuville operators
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0 ‘

Figure 12.2: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the tr:
jectory returns to the preceding disk is labeled 0, and
bounce which results in continuation to the third disk
is labeled 1.

form a Lie group of symplectic, or canonical transformasi@eting on the, q)
manifold.

If a flow is locally unstable but globally bounded, any opeti b&initial

points will be stretched out and then folded. An example isdin@nsional in-

vertible flow sketched in figure 11.10 which returns a Poiécarction of the flow

folded into a ‘horseshoe’ (we shall belabor this in figure4)2.We now dfer two exercise 12.1
examples of locally unstable but globally bounded flows Whieturn an initial

area stretched and folded into a ‘horseshoe,’ such thatnilial iarea is inter-

sected at most twice. We shall refer to such mappings withcet @ transverse
self-intersections at theth iteration as thence-foldingmaps.

The first example is the 3-disk game of pinball figure 11.5,clhifor suf-
ficiently separated disks (see figure 11.6), is an example aifnaplete Smale
horseshoe. We start by exploiting its symmetry to simplifyahd then partition
its state space by its stablenstable manifolds.

Example 12.2 Recoding 3-disk dynamics in binary. (continued from exam-
ple 11.2) The A = {1, 2,3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to quotient the symme-
tries of the dynamics in order to obtain a more efficient description. We do this in a
quick way here, and redo it in more detail in sect. 12.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what
is important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For the 3-
disk game of pinball there are two topologically distinct kinds of collisions, figure 12.2:
exercise 11.1
exercise 12.6
0 :  pinball returns to the disk it came from
S = { 1 pinball continues to the third disk . 12.7)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 15.1)
are admissible. exercise 11.2

It is intuitively clear that as we go backward in time (reverse the velocity vec-
tor), we also need increasingly precise specification of X = (So, Po) in order to follow a
given past itinerary. Another way to look at the survivors after two bounces is to plot
Ms,.s,, the intersection of M s, with the strips Ms,. obtained by time reversal (the ve-
locity changes sign sing — —sing). Ms,s,, figure 12.3 (a), is a ‘rectangle’ of nearby
trajectories which have arrived from disk s, and are heading for disk ;. (continued
in example 12.6)
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sin@

Figure 12.3: The 3-disk game of pinball of fig-
ure 11.5, generated by starting from disk 1, pre-
ceded by disk 2, coded in binary, as in figure 12.2.
() StripsMs ; which have survived a bounce in
the past and will survive a bounce in the future.
(b) Iteration corresponds to the decimal point shift;
for example, all points in the rectangle(1] map
into the rectangles [@0], [0.11] in one iteration.

sind

(a) -2.5 0 s 2.t (b)

The 3-disk repeller does not really look like a ‘horseshdbe ‘fold’ is cut
out of the picture by allowing the pinballs that fly betweea tlisks to fall ¢f the
table and escape. Next example captures the ‘stretch & fimidieshoe dynamics
of return maps such as Rossler’s, figure 3.2.

Example 12.3 A Hénon repeller complete horseshoe: (continued from exam-
ple 3.6) Consider 2-dimensional HEnon map exercise 3.5
(%n+1,Yne1) = (1= @ + byn, %) - (12.8)

If you start with a small ball of initial points centered around the fixed point Xo, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wj. lterated backward in time,

(Xn—ls Ynfl) = (Yn» _bil(l - a)?n - Xn)) ’ (12-9)

this small ball of initial points traces out the stable manifold WS. Their intersections
enclose the region M_, figure 12.4(a). Any point outside Wg border of M_ escapes
to infinity forward in time, while —by time reversal— any point outside W border arrives
from infinity back in paste. In this way the unstable - stable manifolds define topologi-
cally, invariant and optimal initial region M ; all orbits that stay confined for all times are
confined to M_ .

The Hénon map models qualitatively the Poincaré section return map of fig-
ure 11.10. For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in
sects. 3.3 and 29.1, for b # O it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of the
folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = —1; the
map is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 11.2. The map is quadratic, so it has 2 fixed
points xo = f(Xo), X1 = f(x1) indicated in figure 12.4 (a). For the parameter values at
hand, they are both unstable.

Iterated one step forward, the region M_ is stretched and folded into a Smale
horseshoe drawn in figure 12.4 (b). Label the two forward intersections f(M) N M by
Ms, with s € {0,1}. The horseshoe consists of the two strips Mo, M1., and the bent
segment that lies entirely outside the W line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away.
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Figure 12.4: The Henon map (12.8) far=6,b =

—1: fixed point0 with segments of its stable, unsta- '
ble manifoldsws, W¥, and fixed pointl. (a) Their
intersection bounds the regigvl. = OBCDwhich
contains the non—-wandering €@t (b) The inter-
section of the forward imagé(M ) with M con- 0.0
sists of two (future) strips\o, My, with points

BCD brought closer to fixed poir® by the sta-

ble manifold contraction. (c) The intersection of

the forward imagéd (M) with the backward back- =
ward (M) is a four-region cover af2. (d) The
intersection of the twice-folded forward horseshoe
f2(M) with backward horsesho&‘(M). (e)
The intersection of 2(M) with f-2(M) is a 16- /
region cover ofQ. lteration yields the complete 10
Smale horseshoe non-wandering €gti.e., the

union of all non-wandering points df, with ev- /
ery forward fold intersecting every backward fold.

(P. Cvitanovit and Y. Matsuoka) |

(O

QD
L=

Iterated one step backwards, the region M_is again stretched and folded into
a horseshoe, figure 12.4(c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the horse-
shoe bend wander off to infinity as n — —co, and we are left with the two (past) strips
Mo, M1 . Iterating two steps forward we obtain the four strips M1, Mo1., Moo, Mio,
and iterating backwards we obtain the four strips M oo, M 01, M 11, M 10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. Iterating three steps for-
ward we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript suchpaswhich labels theM p11
future strip? The two stripéV1 o, M 1 partition the state space into two regions
labeled by the two-letter alphabégt = {0,1}. S* = .011 is thefuture itinerary
for all x € Mpo11. Likewise, for the past strips all € Ms,..s ;5. have thepast
itinerary S = s.---S.1% . Which partition we use to present pictorially the
regions that do not escape initerations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo =T(Mo), Mo =T(My).
Q, the non—-wandering set (2.2) ofl, is the union of all points whose forward

and backward trajectories remain trapped for all time, ibg the intersections
of all images and preimages &l

Q- {x ixe im (M) f-“(M,)} . (12.10)

Two important properties of the Smale horseshoe are thatsitadcomplete
binary symbolic dynamicand that it isstructurally stable

For acompleteSmale horseshoe every forward fdl{ M) intersects transver-
sally every backward fold "™(M), so a unique bi-infinite binary sequence can be

smale - 19apr2009 ChaosBook.org version14, Dec 31 2012

CHAPTER 12. STRETCH, FOLD, PRUNE 253

Figure 12.5: Kneading orientation preserving danish

pastry: mimic the horsheshoe dynamics of figure 12.6 @ ﬁ
by: (1) squash the unit square by factd®,1(2) stretch m

it by factor 2, and (3) fold the right half back over the
left half. A B

associated to every element of the non—wandering set. A gainQ is labeled
by the intersection of its past and future itineraf&() = ---s25.1%.591% - -,
where s,=s if f(x)e Ms ,se{0,1}andneZ. remark A.1

The system is said to kstructurally stablef all intersections of forward and
backward iterates off remain transverse for ficiently small perturbation$ —
f + ¢ of the flow, for example, for slight displacements of the digkthe pinball
problem, or sfiiciently small variations of the Hénon map paramegets While section 1.8
structural stability is exceedingly desirable, it is alsoeedingly rare. About this,
more later. section 25.2

12.3 Symbol plane

Consider a system for which you have succeeded in constguatcovering sym-

bolic dynamics, such as a well-separated 3-disk system. $tart moving the

disks toward each other. At some critical separation a digkstart blocking

families of trajectories traversing the other two disks. eTinder in which trajec-

tories disappear is determined by their relative ordenmgpiace; the ones closest

to the intervening disk will be pruned first. Determiningdingissible itineraries

requires that we relate the spatial ordering of trajectot@their time ordered
itineraries. exercise 12.7

So far we have rules that, given a state space partition rgenatemporally
ordered itinerary for a given trajectory. Our next task is tdonverse: given a
set of itineraries, what is thepatial ordering of corresponding points along the
trajectories? In answering this question we will be aide@heale’s visualization
of the relation between the topology of a flow and its symbdyicamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest bakersfoamation appropriate
to Hénon type mappings, yields a binary coordinatizatiballgpossible periodic
points.
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Figure 12.7: Kneading danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 12.6 (b) fig-
ure 12.4 into a unit square. Also indicated: the
fixed points0, 1 and the 2-cycle point®1,10}. In

the symbol square the dynamics maps rectangles

into rectangles by a decimal point shift.
@ 0 1 ® .00 .01 .11 .10

Figure 12.6: The dynamics maps two (past) strips
strips Mo, M into two (future) stripsMo, M;.
The corners are labeled to aid visualization. Note
that theBCGH sstrip is rotated by 180 degrees. (P.
Cvitanovic and Y. Matsuoka)

0

(e)

The symbolic dynamics of once-folding map is given by theistapastry
transformation. This generates both the longitudinal aadswerse alternating ) . . ) ) .

. - . . ] . Figure 12.8: Kneading orientation preserving
binary tree. The longitudinal coordinate is given by thechefia symbolic se- danish pastry: symbol square representation of an
quence; the transverse coordinate is given by the tail oymebolic sequence. orientation preserving once-folding map obtained
The dynamics on this space is given by symbol shift permarnativolume pre- by fattening the intersections of two forward iter-

serving with 2 expansion ang2lcontraction ates/ two backward iterates of Smale horseshoe
! ! into a unit square.

For a better visualization of 2-dimensional non-wandesety, fatten the in- .00 .01 .11 .1C

tersection regions until they completely cover a unit squas in figure 12.7. exercise 12.2
We shall refer to such a ‘map’ of the topology of a given ‘stre& fold’ dynam- exercise 12.3 Under backward iteration the roles of 0 and 1 symbols aredhsmgedMg*
ical system as theymbol square The symbol square is a topologically accurate has the same orientation &, while M;* has the opposite orientation. We assiggercise 12.4
representation of the non-wandering set and serves asars@g for labeling its to anorientation preservingonce-folding map thepast topological coordinate
pieces. Finite memory ah steps and finite foresight ofsteps partitions the sym- 6 = 6(S") by the algorithm:
bol square inteectangleds mi1- - S0.51S - - - S, such as those of figure 12.6. In
the binary dynamics symbol square the size of such rectamgié x 27"; it cor- W, if =0
responds to a region of the dynamical state space whichiosrdii points that Wn-1 { 1-w, ifs=1" Wo = So
share common future andm past symbols. This region maps in a nontrivial way -
in the state space, but in the symbol square its dynamiczéeeeingly simple; all 5(S) = OWoW_(W.o...= Z Wy_n/2" (12.12)
of its points are mapped by the decimal point shift (11.20) "

o+ 8251509193 1) = - S25190S1- 983 » (12.11) Such formulas are best derived by solitary contemplatichefction of a folding

map, in the same way we derived the future topological coatdi(11.9).
Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The The coordinate pairs(y) associates a poink(y) in the state space Cantor
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates ac- set of figure 12.4 to a point in the symbol square of figure 1@r@serving the

tion f(Myg) = Mo. The square [01.01] gets mapped into the rectangles o[01.01] =
[10.1] = {[10.10],[10.11]}, see figure 12.4 (e). Further examples can be gleaned from

figure 12.4. 001.
101,
As the horseshoe mapping is a simple repetitive operatierexpect a simple Figure 12.9: Kneading danish pastry: symbol squaré ™1 .
relation between the symbolic dynamics labeling of the ésiiee strips, and their representation of an orientation preserving onc@1l|
relative placement. The symbol square poir(S*) with future itineraryS* are fS%'gg‘?mr:ras‘;g:’;s's”sfdﬁgﬂr;atltgrzrzg):Zfoi'?li'ssg‘z’:r‘?glo.
c_onstructed by c_;onverting th(_e sequgncsndf int_o a binary number by the algo- Also indicated: the fixed point8, 1, and the 3-cycle 110
rithm (11.9). This follows by inspection from figure 12.9. drder to understand points{011110,101}. In the symbol square the dynam-1g |
this relation between the topology of horseshoes and thgibslic dynamics, it ics maps rectangles into rectangles by a decimal poit ) [
might be helpful to backtrace to sect. 11.4 and work throughwnderstand first shift. ’000 011 110 101

the symbolic dynamics of 1-dimensional unimodal mappings.
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topological ordering. The symbol squa®@-] serves as a topologically faithful
representation of the non—-wandering set of any once-fgldiap, and aids us in
partitioning the set and ordering the partitions for any flfvthis type.

fast track:
W chapter 13, p. 268
12.4  Prune danish

Anyone know where | can get a good prune danish in
Charlotte? | mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realizetysical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a shosth is excluded by
some obstacle, such as a disk that blocks the path, or a @btéthge. In order to
enumerate orbits correctly, we needpaunethe inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so fahés straight-
forward, and sets the stage for situations that resembles the real life. A
generic once-folding map does not yield a complete horgestmme of the horse-
shoe pieces might bgruned i.e., not realized for particular parameter values of
the mapping. In 1 dimension, the criterion for whether agisgmbolic sequence
is realized by a given unimodal map is easily formulated; arbjt that strays
to the right of the value computable from theeading sequencghe orbit of
the critical point (11.13)) is pruned. This is a topologisthtement, indepen-
dent of a particular unimodal map. Our objective is to gelimrahis notion to
2-dimensional once-folding maps.

Adjust the parameters of a once-folding map so that thesattion of the
backward and forward folds is still transverse, but no lorgenplete, as in fig-
ure 12.10(a). The utility of the symbol square lies in the fhat the surviving,
admissible itineraries still maintain the same relativatig ordering as for the
complete case.

In the example of figure 12.10 the rectangles.11011.1] have been pruned,
and consequentlgnytrajectory containing blockb; = 101,b, = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). Weméo the border
of this primary pruned region as tipeuning front another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it cée visualized as a
border between admissible and inadmissible; any trajgcttiose points would
fall to the right of the front in figure 12.11 is inadmissibleg., pruned. The
pruning front is a complete description of the symbolic dyies of once-folding
maps.For now we need this only as a concrete illustrationoef pruning rules
arise.
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01.
11. 111

Figure 12.10: (a) An incomplete Smale horse- /) LU 4 Y\ [~
shoe: the inner forward fold does not intersect the 10. 10.1
outer backward fold. (b) The primary pruned re- § ”””””
gion in the symbol square and the corresponding 1 1 00.
forbidden binary blocks.

Figure 12.11:(a) Anincomplete Smale horseshoe
which illustrates (b) the monotonicity of the prun-

ing front: the thick line which delineates the left =
border of the primary pruned region is monotone &3
on each half of the symbol square. The backwar
folding in this figure and figure 12.10 is schematic

- in invertible mappings there are further miss-(
ing intersections, all obtained by the forward anc
backward iterations of the primary pruned region.

- —ioeio

-0

]

Y
it

mll\l

— 10110

In the example at hand there are total of two forbidden blddXs, 111, so
For now we concentrate on this kind of pruning because it iiqudarly clean
and simple.

fast track:
W chapter 13, p. 268
Though a useful tool, Markov partitioning is not without eitzacks. One glar-
ing shortcoming is that Markov partitions are not uniquey ahmany diferent
partitions might do the job. Th€,- andD3- equivariant systems that we discuss
next dfers a simple illustration of éierent Markov partitioning strategies for the
same dynamical system.

12.5 Recoding, symmetries, tilings

X
J In chapter 9 we made a claim that if there is a symmetry of dycsmve
must use it. Here we shall show how to use it, on two concresaengles, and in
chapter 21 we shall be handsomely rewarded for our laborst, e simplest
example of equivariance, a single ‘reflecti®@y group of example 9.16.

Example 12.5 C, recoded: Assume that each orbit is uniquely labeled byeaite 9.6
infinite string {s}, s € {+,—} and that the dynamics is C,-equivariant under the + < —
interchange. Periodic orbits separate into two classes, the self-dual configurations +—,

++——, +++———, +——+—++—, - -, with multiplicity my = 1, and the pairs +, —, ++ -,
— — +, -+, with multiplicity my, = 2. For example, as there is no absolute distinction
smale - 19apr2009 ChaosBook.org version14, Dec 31 2012



CHAPTER 12. STRETCH, FOLD, PRUNE 258

Table 12.1: Correspondence between figsymmetry reduced cyclgsand the full state
space periodic orbitp, together with their multiplicitiesn,. Also listed are the two
shortest cycles (length 6) related by time reversal, biindisunderC,.

p p m
1 + 2
0 —+ 1
01 —— ++ 1
001 -+ 4+ 2
011 ——— +++ 1
0001 —+—— +—++ 1
0011 —+++ 2
0111 ———— ++++ 1
00001 —+-+- 2
00011 —+—-——— +—+++ 1
00101 —++-—— +——++ 1
00111 —+-—— +—+++ 1
01011 - —-+++ 2
01111 - ---- ++ + ++ 1
001011 —-++--—-+—-——+++ 1
001101 —-+++-—-+-———++ 1

between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.4 (a), the Floquet
multipliers satisfy A, = A_, Ay,— = A,__, and so on. exercise 21.5

The symmetry reduced labeling p; € {0,1} is related to the full state space
labeling s € {+,—} by

If s = s.1 then pi=1

If s # s then p=0 (12.13)
For example, the fixed point¥ = --- + + + +--- maps into - --111--- = 1, and so does
the fixed point=. The 2-cycle =+ = --- — + — +--- maps into fixed point---000- - - = 0,
and the 4-cycle =+ +==---— -+ + — — + +--- maps into 2-cycle ---0101--- = 01. A

list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘quotient’ theestgiace by the
symmetry, or ‘desymmetrize.” As the three disks are eqtadiyy spaced, our
game of pinball has a sixfold symmetry. For instance, théesyi2, 23, andl3 in
figure 12.12 are related to each other by rotation:By/3 or, equivalently, by a

relabeling of the disks. We exploit this symmetry by recodias in (12.7). exercise 11.1
exercise 12.6

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary sym-
bols. Here we list an arbitrary ternary itinerary, and the corresponding binary sequence:

ternary : 3121312321231323
binary : - 10101101011010 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 +— 1 +— 2 + ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space patrtitions, and are
coded by a single binary sequence. (continued in example 12.7)
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Figure 12.12: The 3-disk game of pinball with the
disk radius : center separation ratio aR1:2.5.

(a) 2-cyclesi?, 13,23, and 3-cycled23 and132
(not drawn). (b) The fundamental domain, i.e., the

small ¥6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poin@s 1. See figure 9.3

for cycle 10 and further examples.
@

exercise 12.7
exercise 14.2

Binary symbolic dynamics has two immediate advantages thesiternary
one; the prohibition of self-bounces is automatic, and thairgy utilizes the sym-
metry of the 3-disk pinball game in an elegant manner. exercise 11.2

The 3-disk game of pinball is tiled by six copies of fi@damental domaira
one-sixth slice of the full 3-disk system, with the symmedres acting as reflect-
ing mirrors, see figure 12.12 (b). Every global 3-disk tregeg has a correspond-
ing fundamental domain mirror trajectory obtained by replg every crossing
of a symmetry axis by a reflection. Depending on the symmeéitthefull state
space trajectory, a repeating binary alphabet block cooreds either to the full
periodic orbit or to a relative periodic orbit (examples ah®wn in figure 12.12
and table 12.2). A relative periodic orbit corresponds tceedqulic orbit in the
fundamental domain.

Table 12.2 lists some of the shortest binary periodic orbitgether with the
corresponding full 3-disk symbol sequences and orbit sytmese For a number
of deep reasons that will be elucidated in chapter 21, lif@igsh simpler in the
fundamental domain than in the full system, so wheneverilplessur computa-
tions will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from exam-
ple 12.6) The D3 recoding can be worked out by a glance at figure 12.12 (a) (con-
tinuation of example 9.17). For the symmetric 3-disk game of pinball the fundamental
domain is bounded by a disk segment and the two adjacent sections of the symme-
try axes that act as mirrors (see figure 12.12(b)). The three symmetry axes divide
the space into six copies of the fundamental domain. Any trajectory on the full space
can be pieced together from bounces in the fundamental domain, with symmetry axes
replaced by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation, figure 12.2: a collision of type O re-
flects the projectile to the disk it comes from (back—scatter), whereas after a collision of
type 1 projectile continues to the third disk. For example, 23 = - - - 232323 - - maps into
---000--- = 0 (and so do 12 and 13), 123= ---12312--- maps into - - - 111-- - = 1 (and
so does 132), and so forth. Such reductions for short cycles are given in table 12.2,
figure 12.12 and figure 9.7.
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Table 12.2: D3 correspondence between the binary labeled fundamentahidgmime
cyclespand the full 3-disk ternary labeled cyclpstogether with théD; transformation
that maps the end point of thecycle into the irreducible segment of thgecycle, see
example 9.1. White spaces in the above ternary sequencisepaats of the irreducible
segment; for example, the full space 12-cycle 12123131 2823ists of 1212 and its
symmetry related segments 3131, 2323. The multiplicitypalycle ism, = 6np/np.
The shortest pair of fundamental domain cycles relatedrbg tieversal (but no spatial
symmetry) are the 6-cyclé@91011 and01101.

p p 9 p p 9
0 12 o1 000001 121212131313 023
1 123 C 000011 121212313131232323 C?
01 1213 023 000101 121213 e
001 121232313 C 000111 121213212123 012
011 121323 o1z 001011 121232131323 o2
0001 12121313 023 001101 121231323213 o013
0011 121231312323 c? 001111 121231232312313123 C
0111 12132123 012 010111 121312313231232123 C?
00001 121212323231313C 011111 121321323123 013
00011 1212132323 o1z 0000001 121212123232323131318
00101 1212321213 012 0000011 12121213232323 013
00111 12123 e 0000101 12121232121213 o1z
01011 121312321231323C 0000111 1212123 e
01111 1213213123 023 e e cee
Résumé

In the preceding and this chapter we start witb-dimensional state space and
end with a 1-dimensional return map description of the dyinanThe arc-length
parametrization of the unstable manifold maintains the-1-telation of thefull
d-dimensional state space dynamics and its 1-dimensiohahrenap representa-
tion. To high accuracyo information about the flow is losly its 1-dimensional
return map description. We explain why Lorenz equilibria &eteroclinically
connected (it is not due to the symmetry), and how to genethfeeriodic orbits
of Lorenz flow up to given length. This we do, in contrast tortbst of the thesis,
without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the criticalpiand easy to
determine. In higher dimensions, the situation is not sarcleone can attempt
to determine the (fractal set of) folding points by lookirtgtteeir higher iterates
- due to the contraction along stable manifolds, the fold ¢getbe exponentially
sharper at each iterate. In practice this set is essentialtpntrollable for the
same reason the flow itself is chaotic - exponential growtbradrs. We prefer to
determine a folding point by bracketing it by longer and lengycles which can
be determined accurately using variational methods often&9, irrespective of
their period.

For a generic dynamical system a subshift of finite type istteeption rather
than the rule. Its symbolic dynamics can be arbitrarily ctaxpeven for the lo-
gistic map the grammar is finite only for special parameténes Only some
repelling sets (like our game of pinball) and a few purely meatatical constructs
(called Anosov flows) are structurally stable - for most ey of interest an
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infinitesimal perturbation of the flow destroys @ndcreates an infinity of trajec-
tories, and specification of the grammar requires detetioimaf pruning blocks
of arbitrary length. The repercussions are dramatic andteotuitive; for ex-
ample, the transport c@iicients such as the deterministidfdsion constant of

sect. 25.2 are emphaticallyot smooth functions of the system parameters. Téegtion 25.2

importance of symbolic dynamics is often under apprecjaésdve shall see in
chapters 20 and 23, the existence of a finite grammar is théatprerequisite for
construction of zeta functions with nice analyticity praes. This generic lack
of structural stability is what makes nonlinear dynamic$iarl.

The conceptually simpler finite subshift Smale horseshafigs to motivate
most of the key concepts that we shall need for time being. dfrategy is akin
to bounding a real number by a sequence of rational approxsnae converge
toward the non—wandering set under investigation by a seguef self-similar
Cantor sets. The rule that everything to one side of the pgufriont is forbid-
den is striking in its simplicity: instead of pruning a Canset embedded within
some larger Cantor set, the pruning front cleanly cuts aarapactregion in the
symbol square, and that is all - there are no additional pguniles. A ‘self-
similar’ Cantor set (in the sense in which we use the word)hisra Cantor set
equipped with asubshift of finite typsymbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules fedsitiding a finite
subsequences; s, ... s,-. Here the notations; s, . .. s,- stands fom consecutive
symbolss;1, s, ..., Sy, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topolalgfruning into
pruning rules for inadmissible sequences; those are ingiéad by constructing
transition matrices aridr graphs, see chapters 14 and 15.

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invariant
manifolds, see Abraham and Shaw [9.12]. Construction ddriant manifolds by map
iteration is described in Simo [12.34]. Fixed point stagblsstable manifolds and their
homoclinic and heteroclinic intersections can be computgdg DsTool [12.58, 12.59,
12.60]. Unstable manifold turning points were utilized &fs: [12.12, 22.2, 22.3, 12.31,
12.32, 12.33] to partition state space and prune inadniéssimbol sequences. The ar-
clength parameterized return maps were introduced by @ingenet al. [12.62], and
utilized in ref. [7] Even though no dynamical system has been studied more sbively
than the Lorenz equations, the analysis of sect. 11.2 is fiw@.desymmetrization fol-
lows Gilmore and Lettelier [9.15], but the key new idea iset@krom Christianseret
al. [12.62]: the arc-length parametrization of the unstablaifoéd maintains the 1-to-1
relation of thefull d-dimensional state space dynamics and its 1-dimensionahrenap
representation, in contrast to 1-dimensigurajectionsof the (d-1)-dimensional Poincaré
section return maps previously deployed in the literatimether words, to high accuracy
no information about the flow is lobly its 1-dimensional return map description.

Remark 12.2 Smale horseshoe. S. Smale understood clearly that the crucial ingre-
dient in the description of a chaotic flow is the topology sfibn—wandering set, and he
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provided us with the simplest visualization of such setsgrsections of Smale horse-
shoes. In retrospect, much of the material covered herelosadg be found in Smale’s
fundamental paper [1.27], but an engineer or a scientisthesorun into a chaotic time
series in his laboratory might not know that he is investigathe action (dferentiable)

of a Lie groupG on a manifoldM, and that the Lefschetz trace formula is the way to go.

We have tried to explain the geometric picture the best wéddatthe static text for-
mat, but there is no substitute for dynamics but the dynaitse. We found Demidov’s
“Chaotic maps” [12.65] simulations of the Heénon map paitacly helpful in explaining
how horsheshoes partition the non—wandering sets.

Remark 12.3 Pruning fronts.  The ‘partition conjecture’ is due to Grassberger and
Kantz [29.3]. The notion of a pruning front and the ‘prunifignt conjecture’ was for-
mulated by Cvitanovit al. [12.12], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [12.22] and a seripaérs [12.23]-[12.27]. The
‘multimodal map approximation’ is described in the K.T. i4en thesis [12.22]. Hansen'’s
thesis is still the most accessible exposition of the prgifieory and its applications. De-
tailed studies of pruning fronts are carried out in refs.IB2?, 12.14]; ref. [29.5] is the
most detailed study carried out so far. The rigorous thedpyroning fronts has been
developed by V. Ishii [12.18, 12.19] for the Lozi map, and &.@arvalho [12.16, 12.17]
in a very general setting. Beyond the orbit pruning and ifsity of admissible un-
stable orbits, an attractor of Henon type may also own amitgfiof attractive orbits
coexisting with the strange attractor [12.20, 12.21]. Wkemheuristic arguments and
numerical evidence that the coexistence of attractivet®dnes not destroy the strange
attractofrepeller, which is also in this case described by the 2-dsiweral danish pastry
plot.
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Exercises

12.1. A Smale horseshoe. The Hénon map of example 3.6

X

1-ax +by
y X

maps the %, y] plane into itself - it was constructed

(12.15)

by Hénon [3.6] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one

sketched in figure 11.10. For definitiveness fix the pg2 3.

rameterst@=6,b = —1.

a) Draw a rectangle in thex(y) plane such that its

nth iterate by the Hénon map intersects the rectan-

gle 2'times.
b) Construct the inverse of the (12.15).

c) Iterate the rectangle back in the time; how many

intersections are there between thiorward and 12.4.

mbackward iterates of the rectangle?

d) Use the above information about the intersections

to guess thex,y) coordinates for the two fixed

points, a 2-periodic point, and points on the two
distinct 3-cycles from table 15.1. The exact peri-

odic points are computed in exercise 13.13.

12.2. Kneading Danish pastry. Write down the ky) —

(%, y) mapping that implements the baker’s map

I
cuT
—
LEFTEO /,’\{v:mwn
P )

o
o=t pi

o

o

FIG. 4. Tierative construction of the symbal plane.

12.5.

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections

exerSmale - 20nov2009

of figure 12.4 into a unit square. In the symbol sq
the dynamics maps rectangles into rectangles by ¢
imal point shift. together with the inverse mappi

Sketch a few rectangles in symbol square and the
ward and backward images. (Hint: the mapping is
much like the tent map (11.4)).

Kneading danish without flipping.  The baker’s me
of exercise 12.2 includes a flip - a map of this tyf
called an orientation reversing once-folding map.
down the &y) — (xy) mapping that implements
orientation preserving baker’s map (no flip; Jacobia
terminant= 1). Sketch and label the first few folds of
symbol square.

Orientation reversing once-folding map. By addin
areflection around the vertical axis to the horsesho
g we get the orientation reversing mgsfiown in th
second Figure abov&), andQ; are oriented ago an
Qi, so the definition of the future topological coo
natey is identical to they for the orientation preservi
horseshoe. The inverse intersecti€dg" and Q;* ar
oriented so thaQ;* is opposite toQ, while Q;* has th
same orientation aQ. Check that the past topolog
coordinates is given by

1-w, i

- f s -
Wh-1 = {Wn ifS'l 5 Wo = S

Wi_n/2"(12.16

e o

6(X) = OWoW_iW_p...=

S
m
i

Infinite symbolic dynamics. Let o be a func
tion that returns zero or one for every infinite bir
string: o : {0,1}" — {0,1}. Its value is represen
by o(e1, €2, . ..) where thee are either 0 or 1. We w
now define an operatdr that acts on observables on
space of binary strings. A functiamis an observable
it has bounded variation, that is, if

llall = supla(ey, €z, . . .)| < o

{ei}

For these functions

Tale, e,...) = a0e,e,..)00,€,e,...)
+a(l, e, €,... )01, e, e, ..
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(a) (easy) Consider a finite versidp of the operator
T

Tha(es, €. .., €1n) =
a0, e, e,....e6-1)00, €1, €,..., 1) +
a(le,e,....a1)0(l e, e,...,61).

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent. of

(b) (medium) With the operator norm induced by the
function norm, show that is a bounded operator.

(c) (hard) Show thaf™ is not trace class.

12.6. 3-disk fundamental domain cycles. (continued

References

7. 3-disk pruning.

264

in the fundamental domain, and interpret the symbols
{0, 1} by relating them to topologically distinct types of
collisions. Compare with table 12.2. Then try to sketch
the location of periodic points in the Poincaré section of
the billiard flow. The point of this exercise is that while
in the configuration space longer cycles look like a hope-
less jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space cc
ordinates which does not respect the topological organi-
zation of the flow.

(Not easy) Show that for 3-disk
game of pinball the pruning of orbits startsRt a =
2.04821419. ., figure 11.6. (K.T. Hansen)
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