
Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

So far we have concentrated on description of the trajectory of a single initial
point. Our next task is to define and determine the size of aneighborhood
of x(t). We shall do this by assuming that the flow is locally smooth,and

describe the local geometry of the neighborhood by studyingthe flow linearized
aroundx(t). Nearby points aligned along the stable (contracting) directions re-
main in the neighborhood of the trajectoryx(t) = f t(x0); the ones to keep an eye
on are the points which leave the neighborhood along the unstable directions. As
we shall demonstrate in chapter 18, in hyperbolic systems what matters are the
expanding directions. The repercussion are far-reaching:As long as the num-
ber of unstable directions is finite, the same theory appliesto finite-dimensional
ODEs, state space volume preserving Hamiltonian flows, and dissipative, volume
contracting infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating nearx0 = x(0) with an initial
infinitesimal displacementδx(0), and letting the flow transport the displacement
δx(t) along the trajectoryx(x0, t) = f t(x0).

4.1.1 Instantaneous shear

The system of linearequations of variationsfor the displacement of the infinites-
imally close neighborx + δx follows from the flow equations (2.6) by Taylor
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expanding to linear order

ẋi + δ̇xi = vi(x+ δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacementδx is thus transported along the trajectoryx(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑

j

∂vi

∂x j
(x)

∣

∣

∣

∣

∣

∣

x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation tox(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j (x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent spaceδx ∈ TMx to every pointx ∈ M in the d-dim-
ensional state spaceM ⊂ Rd. Thestability matrix (velocity gradients matrix)

Ai j (x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow.

Example 4.1 Rössler and Lorenz flows, linearized: (continued from example 3.5) For
the Rössler (2.17) and Lorenz (2.12) flows the stability matrices are, respectively

ARoss=

















0 −1 −1
1 a 0
z 0 x− c

















, ALor =

















−σ σ 0
ρ − z −1 x

y x −b

















. (4.4)

(continued in example 4.6) click to return: ??

4.1.2 Finite time linearized flow

Taylor expanding afinite timeflow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.5)
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Figure 4.1: A local frame is transported along the
orbit and deformed by Jacobian matrix. As Jacobian
matrix is not self-adjoint, initial orthogonal frame is
mapped into a non-orthogonal one.

rgb]0,0,0x(0)

rgb]0,0,0x(t)

rgb]0,0,0Jt

rgb]0,0,0v(0)
rgb]0,0,0v(t)

one finds that the linearized neighborhood is transported by

δx(t) = Jt(x0)δx0 , Jt
i j (x0) =

∂xi(t)
∂x j

∣

∣

∣

∣

∣

∣

x=x0

. (4.6)

This Jacobian matrix is sometimes referred to as thefundamental solution matrix
or simply fundamental matrix, a name inherited from the theory of linear ODEs.
It is also sometimes called theFréchet derivativeof the nonlinear mappingf t(x).
It is often denotedD f , but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notationJ is more economical.J describes
the deformation of an infinitesimal neighborhood at finite timet in the co-moving
frame ofx(t).

As this is a deformation in the linear approximation, one canthink of it as
a deformation of an infinitesimal sphere envelopingx0 into an ellipsoid around
x(t), described by the eigenvectors and eigenvalues of the Jacobian matrix of the
linearized flow, figure 4.1. Nearby trajectories separate along theunstable direc-
tions, approach each other along thestable directions, and change their distance
along themarginal directionsat a rate slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude larger than, smaller than,
or equal 1. In the literature adjectivesneutral, indifferent, centerare often used
instead of ‘marginal,’ (attracting) stable directions aresometimes called ‘asymp-
totically stable,’ and so on.

One of the preferred directions is what one might expect, thedirection of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight timeδt: δx0 = f δt(x0) − x0 = v(x0)δt. By the semigroup
property of the flow,f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

t
dτ v(x(τ)) + f t(x0) = δt v(x(t)) + f t(x0) .

Expanding both sides off t( f δt(x0)) = f δt( f t(x0)), keeping the leading term in
δt, and using the definition of the Jacobian matrix (4.6), we observe thatJt(x0)
transports the velocity vector atx0 to the velocity vector atx(t) at timet:

v(x(t)) = Jt(x0) v(x0) . (4.7)

In nomenclature of page 77, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.
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Figure 4.2: Any two points along a periodic orbit
p are mapped into themselves after one cycle period
T, hence a longitudinal displacementδx = v(x0)δt is
mapped into itself by the cycle Jacobian matrixJp.

δ  x
x(T) = x(0)

The velocity at pointx(t) in general does not point in the same direction as the
velocity at pointx0, so this is not an eigenvalue condition forJt; the Jacobian ma-
trix computed for an arbitrary segment of an arbitrary trajectory has no invariant
meaning.

As the eigenvalues of finite timeJt have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter 5. However, already at this
stage we see that if the orbit is periodic,x(Tp) = x(0), at any point along cycle
p the velocityv is an eigenvector of the Jacobian matrixJp = JTp with a unit
eigenvalue,

Jp(x) v(x) = v(x) , x ∈ Mp . (4.8)

Two successive points along the cycle separated byδx0 have the same separation
after a completed periodδx(Tp) = δx0, see figure 4.2, hence eigenvalue 1.

As we started by assuming that we know the equations of motion, from (4.3)
we also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodδxi(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matrixA to Jacobian matrixJt. On the
level of differential equations the relation follows by taking the time derivative of
(4.6) and replacinġδx by (4.2)

δ̇x(t) = J̇t δx0 = Aδx(t) = AJt δx0 .

Hence thed2 matrix elements of Jacobian matrix satisfy ‘tangent linearequations,’
the linearized equations (4.1)

d
dt

Jt(x0) = A(x) Jt(x0) , x = f t(x0) , initial condition J0(x0) = 1 . (4.9)

Given a numerical routine for integrating the equations of motion, evaluation of
the Jacobian matrix requires minimal additional programming effort; one simply
extends thed-dimensional integration routine and integrates concurrently with
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f t(x0) thed2 elements ofJt(x0). The qualifier ‘simply’ is perhaps too glib. Inte-
gration will work for short finite times, but for exponentially unstable flows one
quickly runs into numerical over- and/or underflow problems, so further thought
will have to go into implementation this calculation.

So now we know how to compute Jacobian matrixJt given the stability matrix
A, at least when thed2 extra equations are not too expensive to compute. Mission
accomplished.

fast track:

chapter 7, p. 127

And yet... there are mopping up operations left to do. We persist until we de-
rive the integral formula (4.38) for the Jacobian matrix, ananalogue of the finite-
time “Green function” or “path integral” solutions of otherlinear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hencethe next section,
which might seem an embarrassment (what is a section onlinear flows doing
in a book onnonlinear dynamics?), offers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvaluesand eigenvectors,
you may prefer to fast forward here.

fast track:

sect. 4.3, p. 84

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations isM = Rd, and the equations of
motion (2.6) are written in terms of a vectorx and a constant stability matrixA as

ẋ = v(x) = Ax. (4.10)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial pointx0. If x(t) is a solution withx(0) = x0 and
y(t) another solution withy(0) = y0, then the linear combinationax(t)+ by(t) with
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a, b ∈ R is also a solution, but now starting at the pointax0 + by0. At any instant
in time, the space of solutions is ad-dimensional vector space, which means that
one can find a basis ofd linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a matrix
equation we have a scalar one, ˙x = λx , the solution is

x(t) = etλx0 . (4.11)

In order to solve thed-dimensional matrix case, it is helpful to rederive the solu-
tion (4.11) by studying what happens for a short time stepδt. If at time t = 0 the
position isx(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iteratem times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1+
t
m
λ

)m
x(0) . (4.13)

The term in parentheses acts on the initial conditionx(0) and evolves it tox(t) by
takingmsmall time stepsδt = t/m. Asm→ ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative pointx is now a vector inRd acted on by the matrixA, as in
(4.10). Denoting by1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jtx(0) , Jt = etA = lim
m→∞

(

1+
t
m

A
)m
. (4.15)

We will find this definition the exponential of a matrix helpful in the general case,
where the matrixA = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?

fast track:

sect. 4.3, p. 84
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Figure 4.3: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
so lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =























etλ(1) · · · 0
. . .

0 · · · etλ(d)























. (4.16)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.15)): exercise 4.2

Jt = etA = UetADU−1 . (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of Jt, and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appendix B. A 2-dimensional
example serves well to highlight the most important types oflinear flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues λ(1), λ(2) of A are either real, leading to a linear motion along their eigen-
vectors, x j(t) = x j(0) exp(tλ( j)), or a form a complex conjugate pair λ(1) = µ + iω , λ(2) =

µ − iω , leading to a circular or spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real λ(1) > 0, λ(2) < 0, x1 grows exponentially
with time, and x2 contracts exponentially. This behavior, called a saddle, is sketched in
figure 4.3, as are the remaining possibilities: in/out nodes, inward/outward spirals, and
the center. The magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and
in-spiral contracts into (0, 0) when the µ < 0, whereas the phase velocity ω controls its
oscillations.

If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [dα×dα] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and work out in
detail the most important cases in appendix B, example B.3.

section 5.1.2

stability - 17nov2012 ChaosBook.org version14, Dec 31 2012

CHAPTER 4. LOCAL STABILITY 82

Figure 4.4: Qualitatively distinct types of expo-
nents of a [2×2] Jacobian matrix.
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4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbolΛk will always denote thekth eigenvalue(some-
times referred to as themultiplier) of the finite time Jacobian matrixJt. Symbol
λ(k) will be reserved for thekth stability orcharacteristicexponent, orcharacter-
istic value, with real partµ(k) and phaseω(k):

Λk = etλ(k)
= et(µ(k)+iω(k)) . (4.18)

Jt(x0) depends on the initial pointx0 and the elapsed timet. For notational brevity
we tend to omit this dependence, but in general the eigenvalues

Λ = Λk = Λk(x0, t) , λ = λ
(k)(x0, t) , ω = ω

(k)(x0, t) , · · · etc.,

depend on both the trajectory traversed and the choice of coordinates.

However, as we shall see in sect. 5.2, if the stability matrixA or the Jacobian
matrix J is computed on a flow-invariant setMp, such as an equilibriumq or a
periodic orbitp of periodTp,

Aq = A(xq) , Jp(x) = JTp(x) , x ∈ Mp , (4.19)

(x is any point on the cycle) its eigenvalues

λ
(k)
q = λ

(k)(xq) , Λp,k = Λk(x,Tp)

are flow-invariant, independent of the choice of coordinates and the initial point
in the cyclep, so we label them by theirq or p label.

We number eigenvaluesΛk in order of decreasing magnitude

|Λ1| ≥ |Λ2| ≥ . . . ≥ |Λd| . (4.20)
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Figure 4.5: The Jacobian matrixJt maps an infinitesi-
mal sphere of squared radiusδx2 at x0 into an ellipsoid
δxT JT Jδx at x(t) finite timet later, rotated and sheared
by the linearized flow Jacobian matrixJt(x0).
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Since|Λ j | = etµ( j)
, this is the same as labeling by

µ(1) ≥ µ(2) ≥ . . . ≥ µ(d) . (4.21)

In dynamics the expanding directions,|Λe| > 1, have to be taken care of first,
while the contracting directions|Λc| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

fast track:

sect. 4.3, p. 84

4.2.2 Singular value decomposition

In generalJt is neither diagonal, nor diagonalizable, nor constant along the trajec-
tory. As any matrix with real elements,Jt can be expressed in the singular value
decomposition (SVD) form

J = UDVT , (4.22)

whereD is diagonal and real, andU, V are orthogonal matrices, unique up to
permutations of rows and columns. The diagonal elementsσ1, σ2, . . ., σd of D
are called thesingular valuesof J, namely the square root of the eigenvalues of
JT J = VD2VT (or JJT = UD2UT), which is a symmetric, positive semi-definite
matrix (and thus admits only real, non-negative eigenvalues).

Singular values{σ j} arenot relatedto theJt eigenvalues{Λ j} in any simple
way. From a geometric point of view, when all singular valuesare non-zero,J
maps the unit sphere into an ellipsoid, figure 4.5: the singular values are then the
lengths of the semiaxes of this ellipsoid. Note however thatthe eigenvectors of
JT J that determine the orientation of the semiaxes are distinctfrom theJ eigen-
vectors{e( j)}, and thatJT J satisfies no semigroup property (see (4.39)) along the
flow. For this reason theJ eigenvectors{e( j)} are sometimes called ‘covariant’ or
‘covariant Lyapunov vectors’, in order to emphasize the distinction between them
and the singular value decomposition semiaxes directions.
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Eigenvectors/ eigenvalues are suited to study of iterated forms of a matrix,
such asJk or exponentials exp(tA), and are thus a natural tool for study of dynam-
ics. Singular vectors are not. They are suited to study ofJ itself, and the singular
value decomposition is convenient for numerical work (any matrix, square or rect-
angular, can be brought to this form), as a way of estimating the effective rank of
matrix J by neglecting the small singular values.

Example 4.4 Singular values and geometry of deformations: Suppose we are
in three dimensions, and J is not singular, so that the diagonal elements of D in (4.22)
satisfy σ1 ≥ σ2 ≥ σ3 > 0, and consider how J maps the unit ball S = {x ∈ R3 | x2 = 1}.
V is orthogonal (rotation/reflection), so VTS is still the unit sphere: then D maps S
onto ellipsoid S̃ = {y ∈ R3 | y2

1/σ
2
1 + y2

2/σ
2
2 + y2

3/σ
2
3 = 1} whose principal axes directions

- y coordinates - are determined by V). Finally the ellipsoid is further rotated by the
orthogonal matrix U. The local directions of stretching and their images under J are
called the right-hand and left-hand singular vectors for J and are given by the columns
in V and U respectively: it is easy to check that Jvk = σkuk, if vk, uk are the k-th columns
of V and U.

Now that we have some feeling for the qualitative behavior ofeigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformationJt for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (4.23)

The equations are linear, so we should be able to integrate them–but in order to
make sense of the answer, we derive this integral step by step.

4.3.1 Stability of equilibria

For a start, consider the case wherex is an equilibrium point (2.8). Expanding
around the equilibrium pointxq, using the fact that the stability matrixA = A(xq)
in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.24)

we verify that the simple formula (4.15) applies also to the Jacobian matrix of an
equilibrium point,

Jt(xq) = eAt , A = A(xq) . (4.25)
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The eigenvalues and the eigenvectors of stability matrixAq evaluated at an equi-
librium point xq

Aq e( j)(xq) = λ( j)
q e( j)(xq) , (4.26)

describe the linearized neighborhood of the equilibrium point, with λ( j)
p = µ

( j)
p ±

iω( j)
p . p. 102

• If all µ( j) < 0, then the equilibrium is stable, or asink.

• If someµ( j) < 0, and otherµ( j) > 0, the equilibrium is hyperbolic, or a
saddle.

• If all µ( j) > 0, then the equilibrium is repelling, or asource.

Example 4.5 In-out spirals. Consider an equilibrium whose Floquet exponents
{λ(1), λ(2)} = {µ + iω, µ − iω} form a complex conjugate pair. The corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} →
{Ree(1), Im e(1)}. The 2-dimensional real representation,

(

µ −ω
ω µ

)

= µ

(

1 0
0 1

)

+ ω

(

0 −1
1 0

)

consists of the identity and the generator of SO(2) rotations in the {Ree(1), Im e(1)} plane.
Trajectories x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-directions)

Jt = eAqt = etµ
(

cosωt − sin ωt
sin ωt cosωt

)

, (4.27)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period T, and con-
traction/expansion radially by the multiplier Λradial, and by the multiplier Λ j along the
e( j) eigen-direction per a turn of the spiral: exercise B.1

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (4.28)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the R össler flow. (continued from ex-
ample 4.1) The Rösler system (2.17) has two equilibrium points (2.18), the innerexercise 4.4

exercise 2.8equilibrium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+). Together with their
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detailed
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point ‘−’, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
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Figure 4.6: Two trajectories of the Rössler flow initi-
ated in the neighborhood of the ‘+’ or ‘outer’ equilib-
rium point (2.18). (R. Paškauskas)
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thus serves as the attraction basin boundary. Consider now the numerical values for
eigenvalues of the two equilibria

(µ(1)
− , µ

(2)
− ± i ω(2)

− ) = (−5.686, 0.0970± i 0.9951 )
(µ(1)
+ , µ

(2)
+ ± i ω(2)

+ ) = ( 0.1929, −4.596× 10−6 ± i 5.428 )
(4.29)

Outer equilibrium: The µ(2)
+ ± i ω(2)

+ complex eigenvalue pair implies that neighborhood
of the outer equilibrium point rotates with angular period T+ ≈

∣

∣

∣2π/ω(2)
+

∣

∣

∣ = 1.1575. The
multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts in the
stable manifold plane is the excruciatingly slow multiplierΛ+2 ≈ exp(µ(2)

+ T+) = 0.9999947
per rotation. For each period the point of the stable manifold moves away along the
unstable eigen-direction by factorΛ+1 ≈ exp(µ(1)

+ T+) = 1.2497. Hence the slow spiraling
on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The µ(2)
− ± i ω(2)

− complex eigenvalue pair tells us that neighbor-
hood of the ‘−’ equilibrium point rotates with angular period T− ≈

∣

∣

∣2π/ω(2)
−

∣

∣

∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by which
a trajectory that starts near the ‘−’ equilibrium point spirals away per one rotation is
Λradial ≈ exp(µ(2)

− T−) = 1.84. The µ(1)
− eigenvalue is essentially the z expansion cor-

recting parameter c introduced in (2.16). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of Λ1 ≈ exp(µ(1)

− T−) =
10−15.6 (!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. Af-
ter one Poincaré return the interval is of order of 10−4 fermi, the furthest we will get
into subnuclear structure in this book. Of course, from the mathematical point of view,
the flow is reversible, and the Poincaré return map is invertible. (continued in exam-
ple 11.3) (R.
Paškauskas)

Example 4.7 Stability of Lorenz flow equilibria: (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

The EQ0 equilibrium stability matrix (4.4) evaluated at xEQ0 = (0, 0, 0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b. Fromremark 9.14
(4.43) it follows that all [x, y] areas shrink at rate −(σ + 1). Indeed, the [x, y] submatrix

A− =

(

−σ σ
ρ −1

)

(4.30)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+1)/2±
√

(σ − 1)2/4+ ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ( j)1
λ(i) − λ( j)

=
1

λ(i) − λ( j)

(

−σ − λ( j) σ

ρ −1− λ( j)

)

, i , j ∈ {1, 3} . (4.31)
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Figure 4.7: (a) A perspective view of the lin-
earized Lorenz flow nearEQ1 equilibrium, see fig-
ure 3.4 (a). The unstable eigenplane ofEQ1 is
spanned by Ree(1) and Ime(1). The stable eigen-
vector e(3). (b) Lorenz flow near theEQ0 equi-
librium: unstable eigenvectore(1), stable eigen-
vectorse(2), e(3). Trajectories initiated at distances
10−8 · · · 10−12, 10−13 away from thez-axis exit fi-
nite distance fromEQ0 along the (e(1),e(2)) eigen-
vectors plane. Due to the strongλ(1) expansion, the
EQ0 equilibrium is, for all practical purposes, un-
reachable, and theEQ1 → EQ0 heteroclinic con-
nection never observed in simulations such as fig-
ure 2.5. (E. Siminos; continued in figure 11.8.)

(a) (b)
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EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A− λ1) = 0:

λ3 + λ2(σ + b+ 1)+ λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.32)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice σ = 10, b = 8/3, ρ = 28, we note the values of these eigenvalues for
future reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83, − 2.666, −22.83 )
EQ1 : (µ(1) ± i ω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ),

(4.33)

as well as the rotation period TEQ1 = 2π/ω(1) about EQ1, and the associated expan-
sion/contraction multipliers Λ(i) = exp(µ( j)TEQ1) per a spiral-out turn:

TEQ1 = 0.6163, (Λ(1),Λ(3)) = ( 1.060, 1.957× 10−4 ) . (4.34)

We learn that the typical turnover time scale in this problem is of order T ≈ TEQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.43), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ≈ 10−4 per
mean turnover time.

In the EQ1 neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier Λ(1) ≃ 1.06, and very strong con-
traction multiplierΛ(3) ≃ 10−4 onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface evi-
dent in the section figure 3.4.

In the xEQ0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ(3) ≃
−23 contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) ≃ 12, and the slowest
contraction rate eigenvector e(2) along the z-axis, with λ(2) ≃ −3. In this plane the strong
expansion along e(1) overwhelms the slow λ(2) ≃ −3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ0, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.4, and the empirical scarcity of trajectories close to EQ0. (continued in
example 4.9)

(E. Siminos and J. Halcrow)
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Example 4.8 Lorenz flow: Global portrait. (continued from example 4.7) As the
EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0.

How? As in the neighborhood of the EQ0 equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQ0, continue analytically to a small distance beyond EQ0, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e(1)

direction, and those to the right along −e(1). As along the e(1) direction xy > 0, the
nonlinear term in the ż equation (2.12) bends both branches of the EQ0 unstable man-
ifold Wu(EQ0) upwards. Then . . . - never mind. Best to postpone the completion of
this narrative to example 9.14, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.14)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The exponen-
tial of a constant matrix can be defined either by its Taylor series expansion, or in
terms of the Euler limit (4.15):

etA =

∞
∑

k=0

tk

k!
Ak (4.35)

= lim
m→∞

(

1+
t
m

A
)m
. (4.36)

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand, as for a dynamical system the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood
is multiplicatively deformed along the flow, and them discrete time-step approx-
imation to Jt is therefore given by a generalization of the Euler product (4.36):

Jt = lim
m→∞

1
∏

n=m

(1+ δtA(xn)) = lim
m→∞

1
∏

n=m

eδt A(xn) (4.37)

= lim
m→∞

eδt A(xn)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

whereδt = (t − t0)/m, and xn = x(t0 + nδt). Slightly perverse indexing of the
products indicates that the successive infinitesimal deformation are applied by
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multiplying from the left. The two formulas forJt agree to leading order inδt,
and them→ ∞ limit of this procedure is the integral

Jt
i j (x0) =

[

Te
∫ t
0 dτA(x(τ))

]

i j
, (4.38)

whereT stands for time-ordered integration,definedas the continuum limit of the
successive left multiplications (4.37). This integral formula for J is the main exercise 4.5

conceptual result of this chapter.

It makes evident important properties of Jacobian matrices, such as that they
are multiplicative along the flow,

Jt+t′ (x) = Jt′(x′) Jt(x), where x′ = f t(x0) , (4.39)

an immediate consequence of time-ordered product structure of (4.37). However,
in practiceJ is evaluated by integrating (4.9) along with the ODEs that define a
particular flow.

in depth:

sect. 17.4, p. 362

4.4 Neighborhood volume

section 17.4
remark 17.3

Consider a small state space volume∆V = ddx centered around the pointx0 at
time t = 0. The volume∆V′ around the pointx′ = x(t) time t later is

∆V′ =
∆V′

∆V
∆V =

∣

∣

∣

∣

∣

det
∂x′

∂x

∣

∣

∣

∣

∣

∆V =
∣

∣

∣det J(x0)t
∣

∣

∣∆V , (4.40)

so the|detJ| is the ratio of the initial and the final volumes. The determinant
detJt(x0) =

∏d
i=1Λi(x0, t) is the product of the Floquet multipliers. We shall refer

to this determinant as theJacobianof the flow. This Jacobian is easily evaluated.exercise 4.1

Take the time derivative, use theJ evolution equation (4.9) and the matrix identity
ln det J = tr ln J:

d
dt

ln∆V(t) =
d
dt

ln detJ = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) Integrate
both sides to obtain the time evolution of an infinitesimal volume

detJt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]

= exp

[∫ t

0
dτ ∂ivi(x(τ))

]

. (4.41)
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As the divergence∂ivi is a scalar quantity, the integral in the exponent (4.38) needs
no time ordering. So all we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d
∑

i=1

Aii (x(τ))

=
1
t

ln

∣

∣

∣

∣

∣

∣

∣

d
∏

i=1

Λi(x0, t)

∣

∣

∣

∣

∣

∣

∣

=

d
∑

i=1

λ(i)(x0, t) (4.42)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere,|Ai j | < M , and so is the trace

∑

i Aii . The time integral
in (4.41) grows at most linearly witht, hence∂ivi is bounded for all times, and
numerical estimates of thet → ∞ limit in (4.42) are not marred by any blowups.

Example 4.9 Lorenz flow state space contraction: (continued from exam-
ple 4.7) It follows from (4.4) and (4.42) that Lorenz flow is volume contracting,

∂ivi =

3
∑

i=1

λ(i)(x, t) = −σ − b− 1 , (4.43)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 . As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, λ(‖) = 0, and the sum of λ(i) is constant by (4.43), there is only one independent
exponent λ(i) to compute. (continued in example 4.8)

Even if we were to insist on extracting∂ivi from (4.37) by first multiplying
Jacobian matrices along the flow, and then taking the logarithm, we can avoid ex-
ponential blowups inJt by using the multiplicative structure (4.39), detJt′+t(x0) =
detJt′(x′) detJt(x0) to restart withJ0(x′) = 1 whenever the eigenvalues ofJt(x0)
start getting out of hand. In numerical evaluations of Lyapunov exponents,λi = section 17.4

lim t→∞ µ
(i)(x0, t), the sum rule (4.42) can serve as a helpful check on the accuracy

of the computation.

The divergence∂ivi characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. If∂ivi < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. If∂ivi(x) < 0 , for
all x ∈ M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state spaceM. If ∂ivi = 0, the flow
preserves state space volume and detJt = 1. A flow with this property is called
incompressible. An important class of such flows are the Hamiltonian flows
considered in sect. 7.3.

But before we can get to that, Henriette Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in terms of
the time-ordered exponential (4.38). Depending on the signs of multipliers, the
left hand side of (4.41) can be either positive or negative. But the right hand side
is an exponential of a real number, and that can only be positive. What gives? As
we shall see much later on in this text, in discussion of topological indices arising
in semiclassical quantization, this is not at all a dumb question.
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Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.
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xn

110
01

011

10

101
0

1

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
n to linear order, as in (4.5). The linearized neighborhood istransported by the
Jacobian matrix evaluated at a discrete set of timesn = 1, 2, . . .,

Mn
i j (x0) =

∂ f n
i (x)

∂x j

∣

∣

∣

∣

∣

∣

x=x0

. (4.44)

In case of a periodic orbit,f n(x) = x, we shall refer to this Jacobian matrix as
themonodromymatrix. Derivative notationMt(x0) → D f t(x0) is frequently em-
ployed in the literature. As in the continuous case, we denote byΛk thekth eigen-
valueor multiplier of the finite time Jacobian matrixMn(x0), and byµ(k) the real
part ofkth eigen-exponent

Λ± = en(µ±iω) , |Λ| = enµ .

For complex eigenvalue pairs the phaseω describes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors, with one period of rota-
tion given by

T = 2π/ω . (4.45)

Example 4.10 Stability of a 1-dimensional map: Consider the orbit {. . . , x−1, x0, x1, x2, . . .}
of a 1-dimensional map xn+1 = f (xn). Since point xn is carried into point xn+1, in study-
ing linear stability (and higher derivatives) of the map it is often convenient to deploy
a local coordinate systems za centered on the orbit points xa, together with a notation
for the map, its derivative, and, by the chain rule, the derivative of the kth iterate f k

evaluated at the point xa,

x = xa + za , fa(za) = f (xa + za)

f ′a = f ′(xa)

Λ(x0, k) = f k
a
′ = f ′a+k−1 · · · f ′a+1 f ′a , k ≥ 2 . (4.46)
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Here a is the label of point xa, and the label a+1 is a shorthand for the next point b on
the orbit of xa, xb = xa+1 = f (xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by x110 = f (x011) the next point label is b = 110.

The formula for the linearization ofnth iterate of ad-dimensional map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) , x j = f j(x0) , (4.47)

in terms of single time stepsM jl = ∂ f j/∂xl follows from the chain rule for func-
tional composition,

∂

∂xi
f j( f (x)) =

d
∑

k=1

∂

∂yk
f j(y)

∣

∣

∣

∣

∣

y= f (x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.47) follows from (4.39): Jacobian matrices are multiplicative
along the flow. exercise 17.1

Example 4.11 Hénon map Jacobian matrix: For the Hénon map (3.17) the Jaco-
bian matrix for the nth iterate of the map is

Mn(x0) =
1

∏

m=n

(

−2axm b
1 0

)

, xm = f m
1 (x0, y0) . (4.48)

The determinant of the Hénon one time-step Jacobian matrix (4.48) is constant,

detM = Λ1Λ2 = −b (4.49)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:

chapter 7, p. 127

4.5.1 Stability of Poincaŕe return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P : P → P defined
in sect. 3.1 to the stability of the continuous time flow in thefull state space.

The hypersurfaceP can be specified implicitly through a functionU(x) that
is zero whenever a pointx is on the Poincaré section. A nearby pointx+ δx is in
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Figure 4.9: If x(t) intersects the Poincaré section
P at time τ, the nearbyx(t) + δx(t) trajectory inter-
sects it timeτ + δt later. As (U′ · v′δt) = −(U′ ·
J δx), the difference in arrival times is given byδt =
−(U′ · J δx)/(U′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

the hypersurfaceP if U(x + δx) = 0, and the same is true for variations around
the first return pointx′ = x(τ), so expandingU(x′) to linear order in variationδx
restricted to the Poincaré section leads to the condition

d
∑

i=1

∂U(x′)
∂xi

dx′i
dxj

∣

∣

∣

∣

∣

∣P
= 0 . (4.50)

In what followsUi = ∂ jU is the gradient ofU defined in (3.3), unprimed quantities
refer to the starting pointx = x0 ∈ P, v = v(x0), and the primed quantities to the
first return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also denote
the full state space Jacobian matrix at the first return byJ = Jτ(x0). Both the first
return x′ and the time of flight to the next Poincaré sectionτ(x) depend on the
starting pointx, so the Jacobian matrix

Ĵ(x)i j =
dx′i
dxj

∣

∣

∣

∣

∣

∣P
(4.51)

with both initial and the final variation constrained to the Poincaré section hyper-
surfaceP is related to the continuous flow Jacobian matrix by

dx′i
dxj

∣

∣

∣

∣

∣

∣P
=
∂x′i
∂x j
+

dx′i
dτ

dτ
dxj
= Ji j + v′i

dτ
dxj
.

The return time variationdτ/dx, figure 4.9, is eliminated by substituting this ex-
pression into the constraint (4.50),

0 = ∂iU
′ Ji j + (v′ · ∂U′) dτ

dxj
,

yielding the projection of the full spaced-dimensional Jacobian matrix to the
Poincaré map (d−1)-dimensional Jacobian matrix:

Ĵi j =

(

δik −
v′i ∂kU′

(v′ · ∂U′)

)

Jk j . (4.52)

Substituting (4.7) we verify that the initial velocityv(x) is a zero-eigenvector of̂J

Ĵv= 0 , (4.53)
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so the Poincaré section eliminates variations parallel tov, and Ĵ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrixA describes the shearing/compression/-
expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite timet is described by the Jacobian matrix

Jt(x0) = Te
∫ t
0

dτA(x(τ)) ,

whereT stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time-step Jacobian
matrix M along then pointsx0, x1, x2, . . ., xn−1 on the trajectory ofx0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single discrete time-step Jacobian matrix. In ChaosBook Λk de-
notes thekth eigenvalueof the finite time Jacobian matrixJt(x0), andµ(k) the real
part ofkth eigen-exponent

|Λ| = etµ , Λ± = et(µ±iω) .

For complex eigenvalue pairs the ‘angular velocity’ω describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud a finite timet later. Nearby trajectories separate exponentially along
unstable eigen-directions, approach each other along stable directions, and change
slowly (algebraically) their distance along marginal, or center directions. The Ja-
cobian matrixJt is in general neither symmetric, nor diagonalizable by a rotation,
nor do its (left or right) eigenvectors define an orthonormalcoordinate frame.
Furthermore, although the Jacobian matrices are multiplicative along the flow, in
dimensions higher than one their eigenvalues in general arenot. This lack of
multiplicativity has important repercussions for both classical and quantum dy-
namics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.2 we only sketch, and in appendix B recapitulate a few facts that
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our narrative relies on: a useful reference book is [4.1]. The basic facts are presented at
length in many textbooks. Frequently cited linear algebra references are Golub and Van
Loan [4.2], Coleman and Van Loan [4.3], and Watkins [4.4, 4.5]. The standard references
that exhaustively enumerate and explain all possible casesare Hirsch and Smale [4.6]
and Arnol’d [4.7]. A quick overview is given by Izhikevich [4.8]; for different notions of
orbit stability see Holmes and Shea-Brown [4.9]. For ChaosBook purposes, we enjoyed
the discussion in chapter 2 Meiss [4.10], chapter 1 of Perko [4.11] and chapters 3 and
5 of Glendinning [4.12] the most, and liked the discussion ofnorms, least square prob-
lems, and differences between singular value and eigenvalue decompositions in Trefethen
and Bau [4.13]. Other linear algebra references of possibleinterest are Golub and Van
Loan [4.2], Coleman and Van Loan [4.3], and Watkins [4.4, 4.5].

The nomenclature tends to be a bit confusing. In referring tovelocity gradients ma-
trix) A defined in (4.3) as the “stability matrix” we follow Tabor [4.14]. Goldhirsch,
Sulem, and Orszag [4.17] call in the “Hessenberg matrix.” SometimesA, which describes
the instantaneous shear of the trajectory pointx(x0, t) is referred to as the ‘Jacobian ma-
trix,’ a particularly unfortunate usage when one considerslinearized stability of an equi-
librium point (4.25). What Jacobi had in mind in his 1841 fundamental paper [4.18] on
the determinants today known as ‘jacobians’ were transformations between different co-
ordinate frames. These are dimensionless quantities, while dimensionallyAi j is 1/[time].
More unfortunate still is referring toJt = etA as an ‘evolution operator,’ which here (see
sect. 17.2) refers to something altogether different. In this book Jacobian matrixJt always
refers to (4.6), the linearized deformation after a finite timet, either for a continuous time
flow, or a discrete time mapping. Single discrete time-step JacobianM jl = ∂ f j/∂xl in
(4.47) is referred to as the ‘tangent map’ by Skokos [4.15, 4.16].

Remark 4.2 Matrix decompositions of Jacobian matrix. Though singular values de-
composition provides geometrical insights into how tangent dynamics acts, many popular
algorithms for asymptotic stability analysis (recoveringLyapunov spectrum) employ an-
other standard matrix decomposition: the QR scheme [4.1], through which a nonsingular
matrix J is (uniquely) written as a product of an orthogonal and an upper triangular matrix
J = QR. This can be thought as a Gram-Schmidt decomposition of the column vectors
of J (which are linearly independent asA is nonsingular). The geometric meaning of
QRdecomposition is that the volume of thed-dimensional parallelepiped spanned by the
column vectors ofJ has a volume coinciding with the product of the diagonal elements
of the triangular matrixR, whose role is thus pivotal in algorithms computing Lyapunov
spectra [4.21, 4.22, 4.16].

Remark 4.3 Routh-Hurwitz criterion for stability of a fixed point. For a criterion that
matrix has roots with negative real parts, see Routh-Hurwitz criterion [4.19, 4.20] on the
coefficients of the characteristic polynomial. The criterion provides a necessary condition
that a fixed point is stable, and determines the numbers of stable/unstable eigenvalues of
a fixed point.
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Exercises

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrixM,
detM , 0.

4.2. Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etAD U , AD = UAU−1 .

4.3. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of∂ivi . If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory
by the sign (and perhaps the magnitude) of∂ivi −
∂ivi .

(d) Compute numerically the average contraction rate
(4.42) along a typical trajectory on the Rössler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spaced = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

(continued in exercise 20.11)

4.4. Topology of the Rössler flow. (continuation of exer-
cise 3.1)

(a) Show that equation|det (A− λ1)| = 0 for Rössler
flow in the notation of exercise 2.8 can be written
as

λ3+λ2c (p∓−ǫ)+λ(p±/ǫ+1−c2ǫp∓)∓c
√

D = 0(4.54)

(b) Solve (4.54) for eigenvaluesλ± for each equilib-
rium as an expansion in powers ofǫ. Derive

λ−1 = −c+ ǫc/(c2 + 1)+ o(ǫ)
λ−2 = ǫc

3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1+ ǫ/[2(c2 + 1)] + o(ǫ)
λ+1 = cǫ(1− ǫ) + o(ǫ3)
λ+2 = −ǫ5c2/2+ o(ǫ6)
θ+2 =

√
1+ 1/ǫ (1+ o(ǫ))

(4.55)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
λ−1? (continued as exercise 13.10)

(R. Paškauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrixV(t) check that the time-ordered exponential

U(t) = Te
∫ t

0 dτV(τ)

may be written as

U(t) =
∞
∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmV(t1) · · ·V

and verify, by using this representation, thatU(t) satis-
fies the equation

U̇(t) = V(t)U(t),

with the initial conditionU(0) = 1.

4.6. A contracting baker’s map. Consider a contracting
(or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by

(

xn+1
yn+1

)

=

(

xn/3
2yn

)

yn ≤ 1/2

(

xn+1
yn+1

)

=

(

xn/3+ 1/2
2yn − 1

)

yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

By how much does the state space volume contract for
one iteration of the map?
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