Chapter 4

Local stability

(R. Mainieri and P. Cvitanovit)

FAR We have concentrated on description of the trajectory ofiglsiinitial

point. Our next task is to define and determine the sizerwighborhood

of x(t). We shall do this by assuming that the flow is locally smoaiin
describe the local geometry of the neighborhood by studthiegflow linearized
aroundx(t). Nearby points aligned along the stable (contractingg¢ations re-
main in the neighborhood of the trajectaxft) = f'(xo); the ones to keep an eye
on are the points which leave the neighborhood along thehlestirections. As
we shall demonstrate in chapter 18, in hyperbolic systemet wiatters are the
expanding directions. The repercussion are far-reachixgylong as the num-
ber of unstable directions is finite, the same theory appidaite-dimensional
ODEs, state space volume preserving Hamiltonian flows, @sipative, volume
contracting infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

o e

As a swarm of representative points moves along, it carliesgaand distorts
neighborhoods. The deformation of an infinitesimal neighbod is best un-
derstood by considering a trajectory originating ngar= x(0) with an initial
infinitesimal displacemenix(0), and letting the flow transport the displacement
Sx(t) along the trajectory(xo, t) = (o).

4.1.1 Instantaneous shear

The system of lineagquations of variation$or the displacement of the infinites-
imally close neighborx + 6x follows from the flow equations (2.6) by Taylor
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expanding to linear order
X + 6x. = Vi(X+ 6X) =~ Vi(X) + Z a%; 5xJ

The infinitesimal displacemeni is thus transported along the trajecto(o, t),
with time variation given by

—ax.(xO, t) = Z —( X 5% (%o, 1) (4.1)

X=X(Xo,t)

As both the displacement and the trajectory depend on thalipoint xo and the
time t, we shall often abbreviate the notationx(o,t) — X(t) — X, 6%(Xo,t) —
oxi(t) — oxin what follows. Taken together, the set of equations

X =w(x), ox = ZAij(X)5Xj (4.2)
j

governs the dynamics in the tangent bundlgk) € TM obtained by adjoining
the d-dimensional tangent spaé& € T My to every pointx € M in the d-dim-
ensional state spackl c RY. The stability matrix (velocity gradients matrix)

8V, (¥)
X

Aj(X) =

(4.3)

describes the instantaneous rate of shearing of the irdimig¢ neighborhood of
X(t) by the flow.

Example 4.1 Rdéssler and Lorenz flows, linearized: (continued from example 3.5) For
the Rossler (2.17) and Lorenz (2.12) flows the stability matrices are, respectively

0O -1 -1 - o 0
ARossz[ 1 a 0 ] , ALor =[ p-z -1 X ] . (4.4)
z 0 x-c y X -b

(continued in example 4.6) click to return: ??

4.1.2 Finite time linearized flow

Taylor expanding dinite timeflow to linear order,

AN ES)
0%oj

(%0 +6%) = f(x0) + ) SXj 4, (4.5)
j
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Figure 4.1: A local frame is transported along the
orbit and deformed by Jacobian matrix. As Jacobia
matrix is not self-adjoint, initial orthogonal frame is
mapped into a non-orthogonal one.

rgb]0,0,X(t)

one finds that the linearized neighborhood is transported by

a%(t)

ox(t) = I (x0)o%0,  Jjj(x0) = ox

(4.6)
X=X0

This Jacobian matrix is sometimes referred to afuheéamental solution matrix

or simply fundamental matrixa name inherited from the theory of linear ODEs.
It is also sometimes called thi@échet derivativeof the nonlinear mappind'(x).

It is often denoted f, but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notatibis more economicalJ describes
the deformation of an infinitesimal neighborhood at finitedt in the co-moving
frame ofx(t).

As this is a deformation in the linear approximation, one tiank of it as
a deformation of an infinitesimal sphere envelopkginto an ellipsoid around
X(t), described by the eigenvectors and eigenvalues of thévidacmatrix of the
linearized flow, figure 4.1. Nearby trajectories separat@@theunstable direc-
tions approach each other along tsiable directionsand change their distance
along themarginal directionsat a rate slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude tafggn, smaller than,
or equal 1. In the literature adjectivegsutral indifferent centerare often used
instead of ‘marginal,’ (attracting) stable directions acgnetimes called ‘asymp-
totically stable,” and so on.

One of the preferred directions is what one might expectdifextion of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xp = f9%(xg) — Xo = V(Xo)dt. By the semigroup
property of the flow,ft*ot = fo%*t where

fo (x0) = f t+zllTV(X(T)) + f'(%0) = stv(x(t)) + f'(x0).

Expanding both sides of'(f%(xp)) = fo'(f'(xo)), keeping the leading term in
t, and using the definition of the Jacobian matrix (4.6), weeolss thatJ'(xo)
transports the velocity vector & to the velocity vector ax(t) at timet:

v(X(1)) = J(x0) V(x0) - (4.7)

In nomenclature of page 77, the Jacobian matrix maps thialjnitagrangian
coordinate frame into the current, Eulerian coordinatenéa
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Figure 4.2: Any two points along a periodic orbit =

p are mapped into themselves after one cycle period ax
T, hence a longitudinal displacemeaft = v(xo)dt is
mapped into itself by the cycle Jacobian matkjx

The velocity at poinix(t) in general does not point in the same direction as the
velocity at pointxo, so this is not an eigenvalue condition fifr the Jacobian ma-
trix computed for an arbitrary segment of an arbitrary tiey has no invariant
meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter 5. Hmrealready at this
stage we see that if the orbit is periodi§T,) = x(0), at any point along cycle
p the velocityv is an eigenvector of the Jacobian matfix = JTe with a unit
eigenvalue,

Jp(X)V(X) = V(X), XeM;. (4.8)

Two successive points along the cycle separate@xpyave the same separation
after a completed periodk(Tp) = %o, see figure 4.2, hence eigenvalue 1.

As we started by assuming that we know the equations of mdtiom (4.3)
we also know stability matrixd, the instantaneous rate of shear of an infinitesimal
neighborhoodx;(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matdxto Jacobian matrixt. On the

level of differential equations the relation follows by taking the tinegivhtive of
(4.6) and replacingx by (4.2)

ox(t) = Jxg = Asx(t) = A 6xg.

Hence thel® matrix elements of Jacobian matrix satisfy ‘tangent lireguations,’
the linearized equations (4.1)

%Jt(xo) = A(X) J'(x0), x= fl(x), initial condition J%(xg) = 1. (4.9)

Given a numerical routine for integrating the equations ofion, evaluation of
the Jacobian matrix requires minimal additional prograngrdtort; one simply
extends thed-dimensional integration routine and integrates conaulyrewith
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fl(xo) the d? elements ofl'(xp). The qualifier ‘simply’ is perhaps too glib. Inte-
gration will work for short finite times, but for exponentialunstable flows one
quickly runs into numerical over- afat underflow problems, so further thought
will have to go into implementation this calculation.

So now we know how to compute Jacobian maffigiven the stability matrix
A, at least when thd? extra equations are not too expensive to compute. Mission
accomplished.

W fast track:
chapter 7, p. 127

And yet... there are mopping up operations left to do. Weigeusitil we de-
rive the integral formula (4.38) for the Jacobian matrix aaalogue of the finite-
time “Green function” or “path integral” solutions of othkmear problems.

We are interested in smooth,fidirentiable flows. If a flow is smooth, in a
suficiently small neighborhood it is essentially linear. Hetlce next section,
which might seem an embarrassment (what is a sectiolinear flows doing
in a book onnorlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalaed eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 84
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described bsalirditerential equa-
tions which can be solved explicitly, with solutions thaé gjood for all times.
The state space for linearttirential equations i81 = RY, and the equations of
motion (2.6) are written in terms of a vectwand a constant stability matri as

X =V(X) = AX. (4.10)
Solving this equation means finding the state space trajecto
X(1) = (Xa(t), %(0), - - -, Xa(V))

passing through a given initial poimg. If x(t) is a solution withx(0) = xo and
y(t) another solution witly(0) = yg, then the linear combinaticaux(t) + by(t) with
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a,b € R is also a solution, but now starting at the paing + byg. At any instant
in time, the space of solutions isdadimensional vector space, which means that
one can find a basis dflinearly independent solutions.

How do we solve the linear fierential equation (4.10)? If instead of a matrix
equation we have a scalar ones Ax, the solution is

X(t) = e'xo. (4.11)

In order to solve thel-dimensional matrix case, it is helpful to rederive the solu
tion (4.11) by studying what happens for a short time stepf at timet = 0 the
position isx(0), then

x(6t) — x(0)

= = Ax(0)., (4.12)

which we iteratentimes to obtain Euler’s formula for compounding interest
t m
X(t) ~ (1 + Eﬂ) X(0). (4.13)

The term in parentheses acts on the initial conditi@) and evolves it to(t) by
takingmsmall time stepgt = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equation (4.12):

x(6t) — x(0)

= =AX0). (4.14)

A representative poink is now a vector inRY acted on by the matri, as in
(4.10). Denoting byl the identity matrix, and repeating the steps (4.12) andj4.1
we obtain Euler’'s formula for the exponential of a matrix:

x(t) = Ix©0), I =é?= lim (1 + %A)m . (4.15)

m—oo

We will find this definition the exponential of a matrix helpfo the general case,
where the matriXA = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?
fast track:
W sect. 4.3, p. 84
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Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be

so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A9, 2@, ... A@),
the exponential is simply

Y .. 0
J=¢go = . (4.16)
o ... &

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U~YAU. Then J can also be brought to a diagonal form (insert
factors 1 = UU~! between the terms of the product (4.15)): exercise 4.2

Figure 4.3: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

e

J=eA=uehut, (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J', and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appdBdA 2-dimensional
example serves well to highlight the most important typelinefar flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues A, 1@ of A are either real, leading to a linear motion along their eigen-
vectors, x;(t) = x;(0) exp¢aV), or a form a complex conjugate pair AV = p +iw, A =
1 —iw, leading to a circular or spiral motion in the [Xy, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real AV > 0, 1@ < 0, x; grows exponentially
with time, and X, contracts exponentially. This behavior, called a saddle, is sketched in
figure 4.3, as are the remaining possibilities: in/out nodes, inward/outward spirals, and
the center. The magnitude of out-spiral |X(t)| diverges exponentially when u > 0, and
in-spiral contracts into (0, 0) when the u < 0, whereas the phase velocity w controls its
oscillations.

If eigenvalues A0 = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and work out in

detail the most important cases in appendix B, example B.3. section 5.1.2
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saddle outnode innode

Figure 4.4: Qualitatively distinct types of expo-
nents of a [ 2] Jacobian matrix.

center out spiral in spiral

X X

X X

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbal, will always denote th&th eigenvalugsome-
times referred to as thaultiplier) of the finite time Jacobian matri¥. Symbol
A® will be reserved for théth stability orcharacteristicexponent, ocharacter-
istic value with real partu® and phase)®:

Ay = ¥ = gw®+io) (4.18)

J'(xo) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general the eigessalu

A=Ak = A(x0, 1), 1= A9(x0,1), w =P (x0,1),--- etc.,

depend on both the trajectory traversed and the choice oflcates.

However, as we shall see in sect. 5.2, if the stability mairor the Jacobian
matrix J is computed on a flow-invariant sétl,, such as an equilibriung or a
periodic orbitp of periodTp,

Aq = A(Xg) , Jo(X) =3P, xe Moy, (4.19)
(xis any point on the cycle) its eigenvalues
A8 = 2M9(xg) . Apk = Ak(x Tp)

are flow-invariant, independent of the choice of coordisated the initial point
in the cyclep, so we label them by theq or p label.

We number eigenvaluesy in order of decreasing magnitude

A1l = [A2[ > ... > |Adl. (4.20)
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Figure 4.5: The Jacobian matrig' maps an infinitesi-
mal sphere of squared radigig® at x, into an ellipsoid

6x" JT Jox at x(t) finite timet later, rotated and sheared T OX/
by the linearized flow Jacobian matrik(xo). o

SincelAj| = e« this is the same as labeling by
> @ > > @ (4.21)

In dynamics the expanding directiond,.| > 1, have to be taken care of first,
while the contracting directionig\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

fast track:
W sect. 4.3, p. 84
4.2.2 Singular value decomposition

In generald! is neither diagonal, nor diagonalizable, nor constantgtbe trajec-
tory. As any matrix with real elementg! can be expressed in the singular value
decomposition (SVD) form

J=UDV', (4.22)

whereD is diagonal and real, and, V are orthogonal matrices, unique up to

permutations of rows and columns. The diagonal elements, ..., oq of D

are called thesingular valuesof J, namely the square root of the eigenvalues of
JTJ = VvD?VT (or JJ" = UD?UT), which is a symmetric, positive semi-definite

matrix (and thus admits only real, non-negative eigen&lue

Singular valuego;j} arenot relatedto the J' eigenvaluegA;} in any simple
way. From a geometric point of view, when all singular valaes non-zero,]
maps the unit sphere into an ellipsoid, figure 4.5: the sargualues are then the
lengths of the semiaxes of this ellipsoid. Note however thateigenvectors of
JTJ that determine the orientation of the semiaxes are distinot the J eigen-
vectors{el))}, and that)" J satisfies no semigroup property (see (4.39)) along the
flow. For this reason thé eigenvectorgell)} are sometimes called ‘covariant’ or
‘covariant Lyapunov vectors’, in order to emphasize théimtision between them
and the singular value decomposition semiaxes directions.
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Eigenvectorg eigenvalues are suited to study of iterated forms of a matrix
such asJ® or exponentials expd), and are thus a natural tool for study of dynam-
ics. Singular vectors are not. They are suited to studyitfelf, and the singular
value decomposition is convenient for numerical work (atnr, square or rect-
angular, can be brought to this form), as a way of estimatiegdtective rank of
matrix J by neglecting the small singular values.

Example 4.4 Singular values and geometry of deformations: Suppose we are
in three dimensions, and J is not singular, so that the diagonal elements of D in (4.22)
satisfy o1 > o > o3 > 0, and consider how J maps the unit ball S = {x € R®| x? = 1}.
V is orthogonal (rotation/reflection), so VTS is still the unit sphere: then D maps S
onto ellipsoid S = {y € R¥|y2/a2 + y5/05 + y5/0% = 1} whose principal axes directions
-y coordinates - are determined by V). Finally the ellipsoid is further rotated by the
orthogonal matrix U. The local directions of stretching and their images under J are
called the right-hand and left-hand singular vectors for J and are given by the columns
inV and U respectively: itis easy to check that Jw = oUy, if Vk, Uk are the k-th columns
ofV and U.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to timimear case.

4.3 Stability of flows N

N

How do you determine the eigenvalues of the finite time loefdanationJt for ! ‘
a general nonlinear smooth flow? The Jacobian matrix is ctedpay integrating
the equations of variations (4.2)

X(t) = f'(%0), X(X0,t) = J'(X0) 5X(Xo, 0). (4.23)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive this integral step by step

4.3.1 Stability of equilibria

For a start, consider the case wheres an equilibrium point (2.8). Expanding
around the equilibrium pointg, using the fact that the stability matrik = A(Xg)
in (4.2) is constant, and integrating,

fi(X) = g + M(X—Xg) + -+, (4.24)

we verify that the simple formula (4.15) applies also to theabian matrix of an
equilibrium point,

Jxg) =M, A=A(x). (4.25)
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The eigenvalues and the eigenvectors of stability ma#gievaluated at an equi-
librium point xq

Aq €D (xg) = 2D e (xg) , (4.26)

describe the linearized neighborhood of the equilibriurmipavith /l(,)j) = ,u(pj) +
iw(p’). p. 102

e Ifall u) < 0, then the equilibrium is stable, orsink

e If someu!) < 0, and othep!) > 0, the equilibrium is hyperbolic, or a
saddle

e Ifall 40 > 0, then the equilibrium is repelling, orsmurce

Example 4.5 In-out spirals. Consider an equilibrium whose Floquet exponents
(A, 2@y = {u + iw, u — iw) form a complex conjugate pair. The corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {1, e?} —
(ReeM, ImeM}. The 2-dimensional real representation,

(5 )ld ell 3

consists of the identity and the generator of SQO(2) rotations in the {Ree, Im eV} plane.
Trajectories x(t) = J'x(0), where (omitting €, &), . . . eigen-directions)

JtzeAqtzet”(C(.)swt ‘S'”“’t), (4.27)
Sinwt  coswt

spiral infout around (x,y) = (0, 0), see figure 4.3, with the rotation period T, and con-
traction/expansion radially by the multiplier Aradiai, @nd by the multiplier A along the
el eigen-direction per a turn of the spiral: exercise B.1

T=2nw, Avradial = e’ Aj = e (4.28)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(xy) = (0,0) is of order ~ T (and not, let us say, 1000T, or 1072T). A; multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.

Example 4.6 Stability of equilibria of the R  dssler flow. (continued from ex-
ample 4.1)  The Rosler system (2.17) has two equilibrium points (2.18), thedxmeise 4.4
equilibrium (x_,y-,z.), and the outer equilibrium point (x*,y*, z"). Together withextheise 2.8
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detailed
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point ‘=’, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
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Figure 4.6: Two trajectories of the Rossler flow initi-
ated in the neighborhood of theor ‘outer’ equilib-
rium point (2.18). (R. PaSkauskas)

thus serves as the attraction basin boundary. Consider now the numerical values for
eigenvalues of the two equilibria

WY, 1®? +i0?) = (-5686 0.0970+ i0.9951)
o @, @) 6, (4.29)
Wi, p iws’)= (01929 -4596x10° +i5.428)
Outer equilibrium: The ,u(f) +i w(f) complex eigenvalue pair implies that neighborhood
of the outer equilibrium point rotates with angular period T, = |27r/w(+2) = 1.1575 The
muiltiplier by which a trajectory that starts near the +’ equilibrium point contracts in the
stable manifold plane is the excruciatingly slow multiplier A5 ~ exp(ugz)ﬂ) =0.9999947
per rotation. For each period the point of the stable manifold moves away along the
unstable eigen-direction by factor A = expcl(f)TJr) = 1.2497 Hence the slow spiraling
on both sides of the +’ equilibrium point.

Inner equilibrium: The u(,z) + iw® complex eigenvalue pair tells us that neighbor-
hood of the ‘=’ equilibrium point rotates with angular period T_ = |2n/a)(_2)| = 6.313
slightly faster than the harmonic oscillator estimate in (2.14). The multiplier by which
a trajectory that starts near the ‘-’ equilibrium point spirals away per one rotation is
Aradial = exp(u(,z)T_) = 1.84. The u(,l) eigenvalue is essentially the z expansion cor-
recting parameter c introduced in (2.16). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of A1 ~ exp(u(,l)T,) =
10156 (,)

Suppose you start with a 1 mm interval pointing in the A1 eigen-direction. Af-
ter one Poincaré return the interval is of order of 1074 fermi, the furthest we will get
into subnuclear structure in this book. Of course, from the mathematical point of view,
the flow is reversible, and the Poincaré return map is invertible. (continued in exam-

ple 11.3) (R.
PasSkauskas)
Example 4.7 Stability of Lorenz flow equilibria: (continued from example 4.1) A

glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

The EQy equilibrium stability matrix (4.4) evaluated at Xeq, = (0,0, 0) is block-

diagonal. The z-axis is an eigenvector with a contracting eigenvalue 1® = —b. rEnsark 9.14
(4.43) it follows that all [x,y] areas shrink at rate —(o- + 1). Indeed, the [X, y] submatrix
— -0 a
A = ( o -1 ) (4.30)

has a real expanding/contracting eigenvalue pair A% = —(o-+1)/2+ /(o — 1)2/4 + po,
with the right eigenvectors €1, €3 in the [x,y] plane, given by (either) column of the
projection operator

A -1 1 (_a_w) o

200 T a0 -0 p -1-20 ) l#jeils. (43D
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(e0]
My

Figure 4.7: (a) A perspective view of the lin-
earized Lorenz flow ned Q, equilibrium, see fig-
ure 3.4(a). The unstable eigenplane B, is ‘

spanned by ReY and Ime®. The stable eigen- -1

vectore€®). (b) Lorenz flow near th&EQy equi-

librium: unstable eigenvectog?), stable eigen-

vectorse®, e, Trajectories initiated at distances . ;

108 ... 102, 10*® away from thez-axis exit fi- e?
10~

nite distance fronEQ, along the €1, &?) eigen- - 0.5

vectors plane. Due to the stron§’ expansion, the mg\—J’
NN\_J

EQ equilibrium is, for all practical purposes, un-
0™ X
| 1012
EQ  &gb

reachable, and thEQ; — EQ heteroclinic con-
(@) Im eV (b) 1078

N

nection never observed in simulations such as fig-
ure 2.5. (E. Siminos; continued in figure 11.8.)

E Q2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A — A1) = O:

B+ 22 +b+1)+ Ab(o + p) + 20b(p — 1) = 0. (4.32)

For p > 24.74, EQq 2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice o = 10,b = 8/3,p = 28, we note the values of these eigenvalues for
future reference,

EQ: (1M, 1@, 1) (1183, —2.666 -2283) (4.33)
EQ: (u®+iw® 2®) = (0.094+i1019, -1385), '

as well as the rotation period Teq, = 2_7r/a)(1) about EQq, and the associated expan-
sion/contraction multipliers A© = expuTeq,) per a spiral-out turn:

Teg = 06163, (AW, AP) =(1.060,1.957x 10°*). (4.34)

We learn that the typical turnover time scale in this problem is of order T = Tgg, = 1
(and not, let us say, 1000, or 1072). Combined with the contraction rate (4.43), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 10~* per
mean turnover time.

In the EQ neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier A® ~ 1.06, and very strong con-
traction multiplier A® ~ 10~* onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface evi-
dent in the section figure 3.4.

In the xgq, = (0,0, 0) equilibrium neighborhood the extremely strong A® =~
—23 contraction along the € direction confines the hyperbolic dynamics near EQy to
the plane spanned by the unstable eigenvector b, with A® ~ 12, and the slowest
contraction rate eigenvector €2 along the z-axis, with A® ~ —3. In this plane the strong
expansion along eV overwhelms the slow 1?) ~ -3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQy, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.4, and the empirical scarcity of trajectories close to EQy.  (continued in
example 4.9)

(E. Siminos and J. Halcrow)
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Example 4.8 Lorenz flow: Global portrait. (continued from example 4.7) As the
E Q1 unstable manifold spirals out, the strip that starts out in the section above EQ in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to E Q.

How? As in the neighborhood of the EQy equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQu, continue analytically to a small distance beyond E Qy, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e)
direction, and those to the right along —elY). As along the €V direction xy > 0, the
nonlinear term in the z equation (2.12) bends both branches of the EQy unstable man-
ifold WY(EQp) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.14, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.14)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary taajeg(t). The exponen-
tial of a constant matrix can be defined either by its Tayloieseexpansion, or in
terms of the Euler limit (4.15):

A _ k
eh = EHA (4.35)
k=0
. t M
= Jim (1+—A) . (4.36)
m—oo m

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkigtiappropriate for the
task at hand, as for a dynamical system the local rate of herlood distortion
A(X) depends on where we are along the trajectory. The linghrirgghborhood

is multiplicatively deformed along the flow, and thediscrete time-step approx-
imation to J! is therefore given by a generalization of the Euler proddc3q):

1 1
=i = i tA(X)
Jo= lim l:n[q (1+6tA() = lim r];Le‘S (4.37)
= M LA Pt ACm-1) . . . Pt ACR) HtAM)

whereét = (t—tg)/m, andx, = X(tp + nét). Slightly perverse indexing of the
products indicates that the successive infinitesimal dedtion are applied by
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multiplying from the left. The two formulas fad' agree to leading order ift,
and them — oo limit of this procedure is the integral

% (x0) = [Teb 8| (4.38)

i
whereT stands for time-ordered integratiaefinedas the continuum limit of the

successive left multiplications (4.37).  This integralnfnra for J is the main exercise 4.5
conceptual result of this chapter.

It makes evident important properties of Jacobian matrisesh as that they
are multiplicative along the flow,

JH(x) = (X)) I(x),  wherex = fi(x), (4.39)

an immediate consequence of time-ordered product steiofuit.37). However,
in practiced is evaluated by integrating (4.9) along with the ODEs thdingea
particular flow.

- in depth:
3 sect. 17.4, p. 362

4.4 Neighborhood volume

Consider a small state space voluké = d9x centered around the poing at

a ol Zl

timet = 0. The volumeAV’ around the poink’ = x(t) timet later is remark 17.3
AV’ ox
AV’ = —— AV = |det—| AV = |det J(xo)'| AV 4.40
oAV = [det=C AV = [det o)AV (4.40)

so theldet]| is the ratio of the initial and the final volumes. The deteranin

detJ'(xg) = Hﬁzl Aj(Xo, 1) is the product of the Floquet multipliers. We shall refer

to this determinant as thiacobianof the flow. This Jacobian is easily evaluateekxercise 4.1
Take the time derivative, use tleevolution equation (4.9) and the matrix identity

IndetJ =trInJ:

d d d 1.
aInAV(t) = E[lndet\] —tl’&ln\] —trj\]—trA—aiVi.

(Here, as elsewhere in this book, a repeated index impliesr&iion.) Integrate
both sides to obtain the time evolution of an infinitesimdlwoe

detJ'(xo) = exp[ft thrA(X(T))] = exp[ft draivi(x(r))] . (4.412)
0 0
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As the divergencé;v; is a scalar quantity, the integral in the exponent (4.38)isee
no time ordering So all we need to do is evaluate the time average

_ o1t 8
v = lim > fo dT;Aii(X(T))
d
nAi(Xo,t)
i=1

along the trajectory. If the flow is not singular (for examplee trajectory does
not run head-on into the Coulombrilsingularity), the stability matrix elements
are bounded everywher@;;j| < M, and so is the tracg; A;j. The time integral

in (4.41) grows at most linearly with henced;v; is bounded for all times, and
numerical estimates of thte— oo limit in (4.42) are not marred by any blowups.

1
—In
t

d
= > 90,1 (4.42)
i=1

Example 4.9 Lorenz flow state space contraction: (continued from exam-
ple 4.7) It follows from (4.4) and (4.42) that Lorenz flow is volume contracting,

3
AV = Z A(xt)=-oc-b-1, (4.43)
i=1

at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —-13.66. As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, A1) = 0, and the sum of A0 s constant by (4.43), there is only one independent
exponent A9 to compute. (continued in example 4.8)

Even if we were to insist on extractingv; from (4.37) by first multiplying
Jacobian matrices along the flow, and then taking the Idgaritve can avoid ex-
ponential blowups il by using the multiplicative structure (4.39), d&t(xg) =
detJ' (x') detJ'(xo) to restart withJ°(x') = 1 whenever the eigenvalues #fxo)
start getting out of hand. In numerical evaluations of Lyapuexponentsy; = section 17.4
im0 1™ (X0, 1), the sum rule (4.42) can serve as a helpful check on the acgur
of the computation.

The divergence,;v; characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. dfv; < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. 9§ (x) < O, for
all x e M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state specelf div; = 0, the flow
preserves state space volume anddet 1. A flow with this property is called
incompressible  An important class of such flows are the Hamiltonian flows
considered in sect. 7.3.

But before we can get to that, Henriette Roux, the perfedestuand always
alert, pipes up. She does not like our definition of the Jaoolmatrix in terms of
the time-ordered exponential (4.38). Depending on thessagmultipliers, the
left hand side of (4.41) can be either positive or negativet tBe right hand side
is an exponential of a real number, and that can only be pesiWhat gives? As
we shall see much later on in this text, in discussion of togickl indices arising
in semiclassical quantization, this is not at all a dumb tjoes

stability - 17nov2012 ChaosBook.org version14, Dec 31 2012



CHAPTER 4. LOCAL STABILITY 91

Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

4.5 Stability of maps .

The transformation of an infinitesimal neighborhood of getrtory under the iter-
ation of a map follows from Taylor expanding the iterated piag at finite time
n to linear order, as in (4.5). The linearized neighborhoottaasported by the
Jacobian matrix evaluated at a discrete set of timesdl, 2,.. .,

ofn
M () =

100 = =5 (4.44)

X=Xo

In case of a periodic orbitf"(x) = x, we shall refer to this Jacobian matrix as
the monodromymatrix. Derivative notatiorM!(xy) — Df(xo) is frequently em-
ployed in the literature. As in the continuous case, we dehgiAy the kth eigen-
valueor multiplier of the finite time Jacobian matrM"(x), and byu® the real
part ofkth eigen-exponent

A, = @) IA| = ™.

For complex eigenvalue pairs the phaselescribes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors$ evie period of rota-
tion given by

T = 21/w. (4.45)

Example 4.10 Stability of a 1-dimensional map: Consider the orbit{. . ., X_1, Xo, X1, Xo, . .

of a 1-dimensional map xn+1 = f(X,). Since point X is carried into point X,.1, in study-
ing linear stability (and higher derivatives) of the map it is often convenient to deploy
a local coordinate systems z, centered on the orbit points X5, together with a notation
for the map, its derivative, and, by the chain rule, the derivative of the kth iterate fk
evaluated at the point Xa,

X = XatZ, fa(za)="f(Xa+27)
o= ()
Axo.K) = £ =1 fafl, k=2 (4.46)
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Here a is the label of point X, and the label a+ 1 is a shorthand for the next point b on
the orbit of X4, X = Xay1 = f(Xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by X110 = f(Xo11) the next point label is b = 110.

The formula for the linearization afth iterate of ad-dimensional map
M (x0) = M(Xq-1) - - M(x))M(x0) . X} = fi(x0), (4.47)

in terms of single time stepldl; = df;/dx follows from the chain rule for func-
tional composition,

o=y o) S
ax ! I dyk R PRI <

If you prefer to think of a discrete time dynamics as a seqeaidoincaré sec-
tion returns, then (4.47) follows from (4.39): Jacobian mcat are multiplicative
along the flow. exercise 17.1

Example 4.11 Hénon map Jacobian matrix: For the Hénon map (3.17) the Jaco-
bian matrix for the nth iterate of the map is

1
o = [[( 75 ). = o0y, (4.48)
m=n
The determinant of the Hénon one time-step Jacobian matrix (4.48) is constant,

detM = AjA, = -b (4.49)
so in this case only one eigenvalue A; = —b/A, needs to be determined. This is not

an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

W fast track:
chapter 7, p. 127

4.5.1 Stability of Poincae return maps

o3

(R. PaSkauskas and P. Cvitanovi€)

We now relate the linear stability of the Poincaré returmpi®a £ — P defined
in sect. 3.1 to the stability of the continuous time flow in thk state space.

The hypersurfac&® can be specified implicitly through a functian(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint §x is in
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Figure 4.9: If x(t) intersects the Poincaré section
P at timer, the nearbyx(t) + 6x(t) trajectory inter-
sects it timer + 6t later. As (U’ - vét) = —(U’ -

\ et AS & Vo, Tageva
J6X), the diference in arrival times is given bt = (1)
-(U’-36%)/(U V). (O+3x(t)
X X

the hypersurfac® if U(x + §x) = 0, and the same is true for variations around
the first return poin’ = x(r), so expandindJ(x) to linear order in variatiox
restricted to the Poincaré section leads to the condition

& au(x) dx
Z (9)(5 d_)(J

=0. (4.50)
P

i=1

In what followsU; = ;U is the gradient o) defined in (3.3), unprimed quantities
refer to the starting point = xp € P, v = V(Xp), and the primed quantities to the
first return: X' = x(7), V. = v(x), U’ = U(X). For brevity we shall also denote
the full state space Jacobian matrix at the first returd byJ"(Xg). Both the first
return X’ and the time of flight to the next Poincaré sectidi) depend on the
starting pointx, so the Jacobian matrix

J(xyij = | (4.51)

de

P

with both initial and the final variation constrained to tharearé section hyper-
surfaceP is related to the continuous flow Jacobian matrix by

%

ax  dX dr dr
=—+
de

- i B, SRV i
P an dr de g * Ide

The return time variatiowlr/dx, figure 4.9, is eliminated by substituting this ex-
pression into the constraint (4.50),

ar

0=8iU’Jij +(V .aU/)dX' ,
]

yielding the projection of the full spacd-dimensional Jacobian matrix to the
Poincaré mapd-1)-dimensional Jacobian matrix:

(4.52)

A Vi oKV’
Jij = [k ki

-—J
(v - 90U
Substituting (4.7) we verify that the initial velocitfx) is a zero-eigenvector of

jv=o0, (4.53)
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so the Poincaré section eliminates variations parallel amd Jis arankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matri describes the sheariftpmpressiofa
expansion of an infinitesimal neighborhood in an infinitediime step. The
deformation after a finite timeis described by the Jacobian matrix

Ixg) = Te Jo drA(X(1) ,

whereT stands for the time-ordered integration, defined multgthely along
the trajectory. For discrete time maps this is multiplicatby time-step Jacobian
matrix M along then pointsxg, X1, X2, . .., X1 0N the trajectory okg,

M"(X0) = M(Xn-1)M(Xn-2) - - - M(x1) M(X0) ,

with M(X) the single discrete time-step Jacobian matrix. In ChaokBy, de-
notes thekth eigenvalueof the finite time Jacobian matriX(xo), andu® the real
part ofkth eigen-exponent

IA| = ¥, A, = gl=io)

For complex eigenvalue pairs the ‘angular velocitydescribes rotational motion
in the plane spanned by the real and imaginary parts of theswonding pair of
eigenvectors.

The eigenvalues and eigen-directions of the Jacobianxrdgscribe the de-
formation of an initial infinitesimal cloud of neighboringatectories into a dis-
torted cloud a finite timé later. Nearby trajectories separate exponentially along
unstable eigen-directions, approach each other alontpstaibctions, and change
slowly (algebraically) their distance along marginal, enter directions. The Ja-
cobian matrixJ is in general neither symmetric, nor diagonalizable by ation,
nor do its (left or right) eigenvectors define an orthonormabrdinate frame.
Furthermore, although the Jacobian matrices are mukiihie along the flow, in
dimensions higher than one their eigenvalues in generahatte This lack of
multiplicativity has important repercussions for bothssigal and quantum dy-
namics.

Commentary

Remark 4.1 Linear flows.  The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.2 we only sketch, and in appendix B réotgie a few facts that
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our narrative relies on: a useful reference book is [4.1]e Bhsic facts are presented at
length in many textbooks. Frequently cited linear algelefarences are Golub and Van
Loan [4.2], Coleman and Van Loan [4.3], and Watkins [4.4].4The standard references
that exhaustively enumerate and explain all possible cases$lirsch and Smale [4.6]
and Arnol'd [4.7]. A quick overview is given by Izhikevich [&]; for different notions of
orbit stability see Holmes and Shea-Brown [4.9]. For ChamdBpurposes, we enjoyed
the discussion in chapter 2 Meiss [4.10], chapter 1 of Pedkbl] and chapters 3 and
5 of Glendinning [4.12] the most, and liked the discussioma@fms, least square prob-
lems, and dierences between singular value and eigenvalue deconguasiti Trefethen
and Bau [4.13]. Other linear algebra references of possilbdeest are Golub and Van
Loan [4.2], Coleman and Van Loan [4.3], and Watkins [4.4].4.5

The nomenclature tends to be a bit confusing. In referringetocity gradients ma-
trix) A defined in (4.3) as the “stability matrix” we follow Tabor 4i]. Goldhirsch,
Sulem, and Orszag [4.17] call in the “Hessenberg matrixth&imesA, which describes
the instantaneous shear of the trajectory p&img, t) is referred to as the ‘Jacobian ma-
trix,” a particularly unfortunate usage when one considieesarized stability of an equi-
librium point (4.25). What Jacobi had in mind in his 1841 fantental paper [4.18] on
the determinants today known as ‘jacobians’ were transitions between flierent co-
ordinate frames. These are dimensionless quantitiesgwhilensionallydj is 1/[time].
More unfortunate still is referring td' = €4 as an ‘evolution operator,” which here (see
sect. 17.2) refers to something altogethdiiestent. In this book Jacobian matdkalways
refers to (4.6), the linearized deformation after a finiteet, either for a continuous time
flow, or a discrete time mapping. Single discrete time-stgwBianM; = 9f;/dx in
(4.47) is referred to as the ‘tangent map’ by Skokos [4.156U4.

Remark 4.2 Matrix decompositions of Jacobian matrix. Though singular values de-
composition provides geometrical insights into how tarigigmamics acts, many popular
algorithms for asymptotic stability analysis (recoverlygpunov spectrum) employ an-
other standard matrix decomposition: the QR scheme [hddugh which a nonsingular
matrix J is (uniquely) written as a product of an orthogonal and areafiangular matrix

J = QR This can be thought as a Gram-Schmidt decomposition of dghex: vectors
of J (which are linearly independent @sis nonsingular). The geometric meaning of
QRdecomposition is that the volume of tbedimensional parallelepiped spanned by the
column vectors ofl has a volume coinciding with the product of the diagonal elets
of the triangular matribR, whose role is thus pivotal in algorithms computing Lyapuno
spectra [4.21, 4.22, 4.16].

Remark 4.3 Routh-Hurwitz criterion for stability of a fixed point.  For a criterion that
matrix has roots with negative real parts, see Routh-Huareviterion [4.19, 4.20] on the
codficients of the characteristic polynomial. The criterionypdes a necessary condition
that a fixed point is stable, and determines the numbers bleatastable eigenvalues of
a fixed point.
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Exercises

4.1. Trace-log of a matrix. Prove that

detM = elf "M

for an arbitrary nonsingular finite dimensional matkix
detM = 0.

4.2. Stability, diagonal case. Verify the relation (4.17)
J=d?=UteU, Ap=UAUT".

4.3. State space volume contraction.

(a) Compute the Rossler flow volume contraction rate4 5
at the equilibria. :

(b) Study numerically the instantaneodis; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory
by the sign (and perhaps the magnitudeyef —
6iVi-

(d) Compute numerically the average contraction rate

(4.42) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spdce 3. 4.6.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

(continued in exercise 20.11)

4.4. Topology of the Rossler flow.  (continuation of exer-
cise 3.1)

(@) Show that equatiojaet (A — A1)| = 0 for Rdssler
flow in the notation of exercise 2.8 can be written
as

(b) Solve (4.54) for eigenvaluek for each equilib-
rium as an expansion in powersefDerive
A7 = —C+€c/(c? + 1) + 0(e)
A, = eC3/[2(c* + 1)] + o(€?)

0 ;1+ /[2(c? + 1)] + o(€)
L= el roed) (4.55)
3= —-€5¢2/2 + 0(€%)

05 = V1+1/e(1+ o(e)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
A7? (continued as exercise 13.10)

(R. PaSkauskas)

. Time-ordered exponentials. Given a time dependent

matrix V(t) check that the time-ordered exponential
U(t) = Teb 4™VE)

may be written as

00 t g tm-1
m=0+0 0 0

and verify, by using this representation, tH#t) satis-
fies the equation

UM) = VOUCQ),
with the initial conditionZ/(0) = 1.

A contracting baker's map.  Consider a contracting
(or ‘dissipative’) baker’'s map, acting on a unit square
[0,1]? = [0, 1] x [0, 1], defined by

(o )=(5) =2

X1 | _ [ Xn/3+1/2
(Yn+1)_( 2yn -1 ) Yo > 1/2.

This map shrinks strips by a factor of3Lin the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

By how much does the state space volume contract for

A%+2%c(p*—€)+A(p*/e+1-c%ep™)Fc VD = 0(4.54)one iteration of the map?
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