Chapter 21

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

miliar from quantum mechanics. Here we show that the claksjeectral

determinants factor in essentially the same way as the gureoes. In the
process we 1.) learn that the classical dynamics, oncetrietashe language of
evolution operators, is much closer to quantum mechanars ithapparent in the
Newtonian, ODE formulation (linear evolution operaf®BEs, group-theoretical
spectral decompositions,.), 2.) that once the symmetry group is quotiented out,
the dynamics simplifies, and 3.) it's a triple home run: siengymbolic dynam-
ics, fewer cycles needed, much better convergence of cypknsions. Once you
master this, going back is unthinkable.

THE uriLity of discrete symmetries in reducing spectrum calculatienfai

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the caimribof a cyclep
of multiplicity m,, to a dynamical zeta function factorizes into a product oler t
d,-dimensional irreducible representatiddg of the symmetry group,

(1-tp)™ = [ [det(1- Dathp)ta)" . t,=12™.
a

wheretj is the cycle weight evaluated on the relative periodic dibg = |G| is the

order of the grouph; is the group element relating the fundamental domain cycle

p to a segment of the full space cygeandm, is the multiplicity of thep cycle.
As dynamical zeta functions have particularly simple cyolpansions, a geomet-
rical shadowing interpretation of their convergence, arffice for determination
of leading eigenvalues, we shall use them to explain theggtbeoretic factoriza-
tions; the full spectral determinants can be factorizedgiiie same techniques.
p-cycle into a cycle weight,.
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This chapter is meant to serve as a detailed guide to the datigruof dynam-
ical zeta functions and spectral determinants for systeithsdiscrete symmetries.
Familiarity with basic group-theoretic notions is assumetth the definitions
relegated to appendix H.1. We develop here the cycle expamdor factorized
determinants, and exemplify them by working two cases osjglay interestC, =
Dj, Cay = D3 symmetriesCy, = D2 x D, andCy, = D4 Symmetries are discussed
in appendix H.

21.1 Preview

As we saw in chapter 9, discrete symmetries relate classesriafdic orbits and
reduce dynamics to a fundamental domain. Such symmetngslii and im-
prove the cycle expansions in a rather beautiful way; insitas dynamics, just
as in quantum mechanics, the symmetrized subspaces caolzelfy linear op-
erators of diferent symmetries. If a linear operator commutes with thensgtry,
it can be block-diagonalized, and, as we shall now show, $seaated spectral
determinants and dynamical zeta functions factorize.

21.1.1 Reflection symmetric 1-d maps

Considerf, a map on the interval with reflection symmetif-x) = —f(x). A
simple example is the piecewise-linear sawtooth map ofdéi@u. Denote the
reflection operation biRx= —x. The symmetry of the map implies thati,} is a
trajectory, than als@Rx,} is a trajectory becaudex,.1 = Rf(xy) = f(Rx%,). The
dynamics can be restricted to a fundamental domain, in #se ¢o one half of
the original interval; every time a trajectory leaves thiteival, it can be mapped
back usingR. Furthermore, the evolution operator commutes WAthL(y, X) =

L(Ry,RX). R satisfiesR? = e and can be used to decompose the state space

into mutually orthogonal symmetric and antisymmetric pares by means of
projection operators

Pa = 5@+R.  Pan=30-R),
Ln0) = PaLX =3 (L0 + £(%.0)
Ln(0) = PRl = 5(L00 - L3 9) | (21.1)

To compute the traces of the symmetrization and antisynizaétin projec-
tion operators (21.1), we have to distinguish three kindsyofes: asymmetric cy-
clesa, symmetric cycles built by repeats of irreducible segmest&fid boundary
cyclesb. Now we show that the spectral determinant can be writtehagitod-
uct over the three kinds of cycles: det(Z) = det (1- L) det (1- L)sdet (1- L)p.
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Asymmetric cycles: A periodic orbits is not symmetric {fxa} N {Rx} = 0, where
{Xa} is the set of periodic points belonging to the cyele ThusR generates a
second orbit with the same number of points and the samdittagioperties.
Both orbits give the same contribution to the first term anaowtribution to the
second term in (21.1); as they are degenerate, the prefg@arancels. Resum-
ing as in the derivation of (19.15) we find that asymmetridtsrpield the same
contribution to the symmetric and the antisymmetric subspa

det (1— Li)rU ﬁ(l——) ta = Ii:.

Symmetric cycles: A cycle sis reflection symmetric if operating witR on the
set of periodic points reproduces the set. The period of arstnic cycle is
always evenrfs = 2ns) and the mirror image of thes periodic point is reached by
traversing the irreducible segmesflengthng, f™(xs) = Rxs. 6(x — f"(x)) picks
up 20z contributions for every even traversal= rng, r even, and(x + f"(x)) for
every odd traversah = rng, r odd. Absorb the group-theoretic prefactor in the
Floquet multiplier by defining the stability computed foregsent of lengtims,

af"s(x)

As=—
° X

X=Xs

Restricting the integration to the infinitesimal neighbmotl M; of the s cycle,
we obtain the contribution to #£7:

'Ll - dxz“% (6(x— (%) = 5(x + f"(x)))

Ms
even odd
= ns{z5nrnsl 1/AL j:Zanmsl l/Ar
25 (ts)'
MMl 1/AL

Substituting all symmetric cyclesinto det (1- £.) and resuming we obtain:
S te
det(1- £)s= | H(lx F]
§ k=0 3

Boundary cycles:In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary of fthedamental do-
main, the fixed point at the origin. Such cycle contributesudianeously to both
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§(x— (X)) ando(x + f"(x)):
ML) - f dx2 L (60x— 17(09)  6(x+ ()
+ e >

i(s e ,_1
M2 \1-1/AL T 1+ /AL

tr tr
n . n
'r L] - Zaml L/AE 2'tr L > Z‘Sn'/\r 71 AE

Boundary orbit contributions to the factorized spectraledminants follow by
resummation:

— t - i
det(1- Lo =] | (1— A_gk] o det(-L)p=]] (1 - Az—:z"l]
b

k=0 k=0

Only the even derivatives contribute to the symmetric sabepand only the odd
ones to the antisymmetric subspace, because the orbinlitsedoundary.

Finally, the symmetry reduced spectral determinants\ioliy collecting the
above results:

= t
]—[(1— ?Eﬂ] (21.2)

We shall work out the symbolic dynamics of such reflection syatric systems in

some detail in sect. 21.5. As reflection symmetry is esdgnttze only discrete

symmetry that a map of the interval can have, this exampleptates the group-

theoretic factorization of determinants and zeta funetifmn 1-dimensional maps.

We now turn to discussion of the general case. exercise 21.1

21.2 Discrete symmetries

A dynamical system is invariant under a symmetry gr@uig {€, 0z, ...,0gg} if
the equations of motion are invariant under all symmetges G. For a map
xnr1 = f(Xy) and the evolution operataf(y, x) defined by (17.16) this means

f0 = g9
Ly, = L(gy.9¥) . (21.3)
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Bold face letters for group elements indicate a suitableesmtation on state
space. For example, if a 2-dimensional map has the symmetyy —x1, X —
—Xo, the symmetry grouf® consists of the identity and, a rotation byr around
the origin. The magf must then commute with rotations by f(RY = Cf(x),
with R given by the [2x 2] matrix

R:( o _Ol). (21.4)

R satisfiesR? = e and can be used to decompose the state space into mutually or-
thogonal symmetric and antisymmetric subspaces by megm®jefiction opera-

tors (21.1). More generally the projection operator onextirreducible subspace

of dimensiond, is given byP, = (du/IG]) 3 xo(h)h™1, wherey, (h) = tr D,(h)

are the group characters, and the transfer operagplits into a sum of inequiv-
alent irreducible subspace contributiofs tr £,,

Loy = = > xa( Ly, %) . (21.5)

do
Gl heG

The prefactod, in the above reflects the fact thatladimensional representation
occursd, times.

21.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler pro@i@ctg) takes the form
[Ja-to =] Ja-tam™ (21.6)
p p

The Euler product (19.15) for thB; symmetric 3-disk problem is given in
(20.35).

21.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discre~te symmetry, thm~$pa~cevl can be
completely tiled by the fundamental domahand its imagesM, bM, ... under
the action of the symmetry grop = {e, a,b, .. .},

M=> Ma= ) am.

acG acG
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In the above example (21.4) with symmetry groBp=_{e,C}, the state space
M = {X1-X2 plang can be tiled by a fundamental doma&h= {half-planex; > 0},
andCM = {half-planex; < 0}, its image under rotation by.

If the spaceM is decomposed intg tiles, a functiong(x) over M splits into
a g-dimensional vectop,(x) defined byga(x) = ¢(X) if X € Ma, ¢a(X) = 0
otherwise. Leh = ab™* conflicts with be the symmetry operation that maps the
endpoint domairMy, into the starting point domail,, and letD(h)pa, the left
regular representation, be thg} g] matrix whoseb, a-th entry equals unity if
a = hband zero otherwiseD(h)pa = dpha. Since the symmetries act on state
space as well, the operatibrenters in two guises: as g  g] matrix D(h) which
simply permutes the domain labels, and ad & fi] matrix representatioh of a
discrete symmetry operation on tletate space coordinates. For instance, in the
above example (21.4) € C, andD(h) can be either the identity or the interchange
of the two domain labels,

D(e)=(é (1)) D(C):(‘l) é) 21.7)

Note thatD(h) is a permutation matrix, mapping a tiM, into a diferent tile
Mha # Ma if h # e. Consequently onlyD(e) has diagonal elements, andith) =
gohe. However, the state space transformatfor¢ e leaves invariant sets of
boundarypoints; for example, under reflectian across a symmetry axis, the
axis itself remains invariant. The boundary periodic arttftat belong to such
pointwise invariant sets will require special care i tevaluations.

One can associate to the evolution operator (17.1§pad] matrix evolution
operator defined by

Loa(y: X) = D(MpaL(y. %) .

if X € Ma andy € My, and zero otherwise. Now we can use the invariance
condition (21.3) to move the starting poxinto the fundamental domain= aX,
L(y.X) = L(aly,%), and then use the relaticar'b = h™! to also relate the
endpointy to its image in the fundamental domalﬁ(y, %) = £(h~1,%). With

this operator which is restricted to the fundamental domihi@ global dynamics
reduces to

Loa(y,X) = D(paL(F, %) -

While the global trajectory runs over the full spade the restricted trajectory is
brought back into the fundamental domathany time it crosses into adjoining
tiles; the two trajectories are related by the symmetry atp@n h which maps the
global endpoint into its fundamental domain image.
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Now the traces (19.3) required for the evaluation of the rigkies of the
transfer operator can be evaluated on the fundamental dcataie

trL:ﬁAdXL(x,x):fMdf( 3 trD(h) L% ) (21.8)
h

The fundamental domain integrgﬂd)“( £L(h~1%, %) picks up a contribution from
every global cycle (for whichh = €), but it also picks up contributions from
shorter segments of global cycles. The permutation mBiiy guarantees by the
identity trD(h) = 0, h # e, that only those repeats of the fundamental domain
cycles p'that correspond to complete global cyclegontribute. Compare, for
example, the contributions of tHe and0 cycles of figure 12.12. ®(h).£ does

not get a contribution from th@ cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, arid(tr) = 0. In
contrasto? = e, trD(c?) = 6 insures that the repeat of the fundamental domain
fixed point tr O(h)£)2 = 6'%, gives the correct contribution to the global trace
tr£2 =3 2tp,.

Let p be the full orbit,g’the orbit in the fundamental domain ahg an ele-
ment of H,, the symmetry group of. Restricting the volume integrations to the
infinitesimal neighborhoods of the cyclgsand p, respectively, and performing
the standard resummations, we obtain the identity

(1-tp)™ = det (1 - D(hp)tp) . (21.9)

valid cycle by cycle in the Euler products (19.15) for det(£). Here “det” refers

to the [gx g] matrix representatio®(hg); as we shall see, this determinant can be
evaluated in terms of standard characters, and no exgjgiesentation dD(hg)

is needed. Finally, if a cyclg is invariant under the symmetry subgrotfy < G

of order hy, its weight can be written as a repetition of a fundamentahaio
cycle

ty=ty (21.10)

computed on the irreducible segment that corresponds tadafoental domain
cycle. For example, in figure 12.12 we see by inspectiontihat tg andtypz = tf.

21.3.1 Boundary orbits

Before we can turn to a presentation of the factorizatiordyomical zeta func-
tions for the dfferent symmetries we have to discuss fiac that arises for orbits
that run on a symmetry line that borders a fundamental damiirour 3-disk

example, no such orbits are possible, but they exist in athstems, such as in
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the bounded region of the Heénon-Heiles potential and inmags. For the sym-
metrical 4-disk billiard, there are in principle two kind§such orbits, one kind
bouncing back and forth between two diagonally opposedsdiskl the other kind
moving along the other axis of reflection symmetry; the tagta@sts for bounded
systems only. While there are typically very few boundatyitsy they tend to be
among the shortest orbits, and their neglect can serioegjsede the convergence
of cycle expansions, as those are dominated by the shoyiessc

While such orbits are invariant under some symmetry opmrafitheir neigh-
borhoods are not. Thiglects the Jacobian matrM, of the linearization perpen-
dicular to the orbit and thus the eigenvalues. Typicallyg. if the symmetry is
a reflection, some eigenvalues M, change sign. This means that instead of a
weight 1/det L — Mp) as for a regular orbit, boundary cycles also pick up contri-
butions of form Xdet (L - hMp), whereh is a symmetry operation that leaves the
orbit pointwise invariant; see for example sect. 21.1.1.

Consequences for the dynamical zeta function factorizatere that some-
times a boundary orbit does not contribute. A derivation afyaamical zeta
function (19.15) from a determinant like (19.9) usuallyrtavith an expansion
of the determinants of the Jacobian. The leading order tgrshsontain the prod-
uct of the expanding eigenvalues and lead to the dynamitalfaection (19.15).
Next to leading order terms contain products of expandirtgcamtracting eigen-
values and are sensitive to their signs. Clearly, the weitghin the dynamical
zeta function will then beféected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it wasgible to implement
these fects by the following simple prescription.

If an orbit is invariant under a little groupf, = {e, by,..., by}, then the cor-

responding group element in (21.9) will be replaced by agutoy. If the weights
are insensitive to the signs of the eigenvalues, then toiegtor is

1
G=td b (21.11)
i=1

In the cases that we have considered, the change of sign ntakdreinto account
by defining a sign functiomp(g) = +1, with the “-” sign if the symmetry element
g flips the neighborhood. Then (21.11) is replaced by

h
gp = % PEOLE (21.12)
i=1

We have illustrated the above in sect. 21.1.1 by working loefftill factorization
for the 1-dimensional reflection symmetric maps.
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21.4 Factorizations of dynamical zeta functions

In chapter 9 we have shown that a discrete symmetry indugeEneéeacies among
periodic orbits and decomposes periodic orbits into répas of irreducible seg-
ments; this reduction to a fundamental domain furthermeaels to a convenient
symbolic dynamics compatible with the symmetry, and, mosgtdrtantly, to a

factorization of dynamical zeta functions. This we now depefirst in a general

setting and then for specific examples.

21.4.1 Factorizations of dynamical dynamical zeta functios

According to (21.9) and (21.10), the contribution of a degyate class of global
cycles (cyclep with multiplicity my = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cyzle ~

(1 - )9/ = det (1~ D(hp)ts) (21.13)

Let D(h) = B, d. D, (h) be the decomposition of the matrix representafih)
into thed, dimensional irreducible representatiom®f a finite groupG. Such
decompositions are block-diagonal, so the correspondingribution to the Euler
product (19.9) factorizes as

det (1- D(h)Y) = | | det (1~ Du())® . (21.14)

where now the product extends over all distidgtdimensional irreducible rep-
resentations, each contributirtfy times. For the cycle expansion purposes, it
has been convenient to emphasize that the group-theagetirization can be ef-
fected cycle by cycle, as in (21.13); but from the transfezrapor point of view,
the key observation is that the symmetry reduces the trappfrator to a block
diagonal form; this block diagonalization implies that tfenamical zeta func-
tions (19.15) factorize as

7- l_l o {l = HdEt(l— Da(hp)ts) - (21.15)
@ @ )

Determinants ofi-dimensional irreducible representations can be evaluate
using the expansion of determinants in terms of traces,

det(1+ M) = 1+trM+= ((trM)Z—trMZ)
+é((trM)3—3(trM)(trM2)+2trM3)

+"'+d_11((”"")d"”) i (21.16)
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and each factor in (21.14) can be evaluated by looking uphhbeacterg, (h) =
tr D, (h) in standard tables [21.17]. In terms of characters, we lav¢he 1-
dimensional representations

det (1- Da(N)t) = 1 - xa(h)t ,

for the 2-dimensional representations

det(1- D() = 1 xa(t+ 3 (o (0 ~ (D)) 2

and so forth.

In the fully symmetric subspacelra, (h) = 1 for all orbits; hence a straight-
forward fundamental domain computation (with no group tiieeeights) always
yields a part of the full spectrum. In practice this is the tioteresting subspec-

trum, as it contains the leading eigenvalue of the trangferator. exercise 21.2

21.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (19.3) eds in essentially the
same manner as the factorization of dynamical zeta furetotlined above. By
(21.5) and (21.8) the trace of the transfer operdisplits into the sum of inequiv-
alent irreducible subspace contributiofs tr £,,, with

tr Ly = dy Z)((,(h)f A% L% %).

heG

This leads by standard manipulations to the factorizatiofl®.9) into

F@) = ]‘[Fu(z)d{'

1 xalhp2

@ = EXp[ ZZf|det V)|
P

(21.17)

where Mz = hgMjp is the fundamental domain Jacobian. Boundary orbits re-
quire special treatment, discussed in sect. 21.3.1, wilm@kes given in the next
section as well as in the specific factorizations discusstaib

The factorizations (21.15), (21.17) are the central foamubdf this chapter.
We now work out the group theory factorizations of cycle exgians of dynam-
ical zeta functions for the cases @5 and D3 symmetries. The cases of tbe,
D4 symmetries are worked out in appendix H below.
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21.5 C, factorization

As the simplest example of implementing the above schemsidentheC, sym-
metry. For our purposes, all that we need to know here is tedt erbit or configu-
ration is uniquely labeled by an infinite strifig}, s = +, — and that the dynamics
is invariant under the- < — interchange, i.e., it i€, symmetric. TheC, sym-
metry cycles separate into two classes, the self-dual amafigns+-, + + ——,
+++ ===, + ==+ —++—, -+, with multiplicity m, = 1, and the asymmetric
configurations+, —, + + —, — — +, - --, with multiplicity m, = 2. For example,
as there is no absolute distinction between the “up” and dosvt” spins, or the

“left” or the “right” lobe, t, =t_,t,,_ =t,__, and so on. exercise 21.5

The symmetry reduced labelipg € {0, 1} is related to the standagle {+, -}
Ising spin labeling by

If s = s.1 then pi=1

If s # s-1 then pi=0 (21.18)
For example+ = --- + + + +--- maps into---111... = 1 (and so doe¥),
== —+—+--mapsinto 000 =0,=+F= = — =t ——++-
maps into---0101--- = 01, and so forth. A list of such reductions is given in
table 12.1.

Depending on the maximal symmetry grotfy that leaves an orbjpinvariant
(see sects. 21.2 and 21.3 as well as sect. 21.1.1), theledianis to the dynamical
zeta function factor as

A A
Hp=1{e): (L-tp)> = L-tp)(Ll-tp)
Ho={eo): (1-1) = (A-tp)(L+tp), (21.19)

For example:

Hewe =16} Q-tn)? = (1-toon)(L - toor)
Hoo=feo}: (1-t) = (1-t) (1+t), t =1

This yields two binary cycle expansions. TAgsubspace dynamical zeta function
is given by the standard binary expansion (20.7). The amtisgtric A, subspace
dynamical zeta functiodia, differs from¢a, only by a minus sign for cycles with
an odd number of 0's:

1¢n, (1 +to)(L = t2)(1 + t10)(1 — tr00)(L + t101)(L + t1000)
(1 = t2002)(1 + t1012)(1 - tr0000) (1 + tr0002)

(1 +t120020(1 — t10019)(1 — ta0100)(1 + t1012) - - -

= 1+1to—t1+ (tao — tato) — (ta0o — taoto) + (tro1 — taots)

—(t1001 — tatoor — tioto + tiotots) —...... (21.20)
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Note that the group theory factors do not destroy the curgatorrections (the
cycles and pseudo cycles are still arranged into shadovanmpmations).

If the system under consideration has a boundary ochitsgct. 21.3.1) with
group-theoretic factoh, = (e + 0)/2, the boundary orbit does not contribute to
the antisymmetric subspace

Ay Ay
boundary: (1-tp) = (1-tp)(1-0tp) (21.21)

This is the ¥¢ part of the boundary orbit factorization of sect. 21.1.1.

21.6 Ds factorization: 3-disk game of pinball

The next example, thBs; symmetry, can be worked out by a glance at figure 12.12 (a).

For the symmetric 3-disk game of pinball the fundamental @orrs bounded by
a disk segment and the two adjacent sections of the symmedsy/ that act as
mirrors (see figure 12.12 (b)). The three symmetry axes €litlié space into six
copies of the fundamental domain. Any trajectory on thedplice can be pieced
together from bounces in the fundamental domain, with symnaxes replaced
by flat mirror reflections. The binarf0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collisibtyjee 0 reflects
the projectile to the disk it comes from (back—scatter), nehe after a collision
of type 1 projectile continues to the third disk. For exampl@= - -- 232323 - -
maps into---000--- = 0 (and so ddl2 and13), 123 = ---12312:--- maps into
-+-111--- = 1 (and so doe&32), and so forth. A list of such reductions for short
cycles is given in table 12.2.

D3 has two 1-dimensional irreducible representations, syimenand anti-
symmetric under reflections, denotéd and Ay, and a pair of degenerate 2-
dimensional representations of mixed symmetry, den&edThe contribution
of an orbit with symmetnyg to the /¢ Euler product (21.14) factorizes according
to

det (1= D(M)Y) = (L - xa, (MO (1 — xa (MO (1~ xe(h)t + xa,(NP)’(21.22)

with the three factors contributing to tHgs irreducible representation&;, A,
and E, respectively, and the 3-disk dynamical zeta functiondazes into =
{AlgAZ;é. Substituting theD3 characters [21.17]

Ds |[A A E
2

e 1 1
CcCc?| 1 1 -1
oy 1 -1 0
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into (21.22), we obtain for the three classes of possiblé synmetries (indicated
in the first column)

hﬁ A]_ A2 E
e: (1-tp)® (- tp)(L - tp)(1 - 2t + t3)°
CCc?: (1-t)) (L-tp)(L - tp)(L + tg+15)°
oy (1-15)° (1 - tp)(L + tp)(1 + Otp — t3)°. (21.23)

wherec, stands for any one of the three reflections.

The Euler product (19.15) on each irreducible subspacevislfrom the fac-
torization (21.23). On the symmetrfg subspace théy, is given by the standard
binary curvature expansion (20.7). The antisymmefsicsubspace’a, differs
from £a, only by a minus sign for cycles with an odd number of 0's, angiven
in (21.20). For the mixed-symmetry subspdténhe curvature expansion is given
by

1/e (1+ 2t + 21 - Z2)(L + Ptigo + o)L - 2'12y)
(l + 24t1001 + 28@001)(1 + 25t10000+ Zlotfooo()
(1+ Ptiosor+ 22001 — 2tioor)?.. ..
= 1+2t + Z2(t - 13) + Z(toor — tatd)
+7"[toon1 + (too1 — tatg)ts — 8y

+2 [toooo1+ to1011— 2loo111+ (too11 — )t + (2 — té)tloqﬂ'-z“)

We have reinserted the powerszih order to group together cycles and pseudo-
cycles of the same length. Note that the factorized cycleesipns retain the
curvature form; long cycles are still shadowed by (someudes obvious) com-
binations of pseudo-cycles.

Referring back to the topological polynomial (15.40) obéal by settind, =

1, we see that its factorization is a consequence oDhéactorization of the!
function:

Vin=1-2z, 1/{p,=1, 1/ie=1+2, (21.25)

as obtained from (20.7), (21.20) and (21.24)tipe 1.
Their symmetry iK = {e, o}, so according to (21.11), they pick up the group-

theoretic factohy = (e + ¢7)/2. If there is no sign change tp, then evaluation of
det (1- &Ztp) yields

A A E
boundary: (1) = (1-t)(1-0ts)(1-1tp)?, tp=ts. (21.26)
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However, if the cycle weight changes sign under reflectign= —t3, the bound-
ary orbit does not contribute to the subspace symmetricrueflection across the
orbit;

A A E
boundary: (-t,)° = (1-Otp)(l-t)(1-tp)?, th=ts. (21.27)

Résum é

If a dynamical system has a discrete symmetry, the symmietnyld be exploited;
much is gained, both in understanding of the spectra andaédieir evaluation.
Once this is appreciated, it is hard to conceive of a caluawithout factor-
ization; it would correspond to quantum mechanical catauta without wave—
function symmetrizations.

While the reformulation of the chaotic spectroscopy frora ttace sums to
the cycle expansions does not reduce the exponential giowilmber of cycles
with the cycle length, in practice only the short orbits asedj and for them the
labor saving is dramatic. For example, for the 3-disk gampiball there are
256 periodic points of length 8, but reduction to the fundataedomain non-
degenerate prime cycles reduces the number of the distintgscof length 8 to
30.

In addition, cycle expansions of the symmetry reduced dycanzeta func-
tions converge dramatically faster than the unfactorizgthchical zeta functions.
One reason is that the unfactorized dynamical zeta fundias many closely
spaced zeros and zeros of multiplicity higher than one;esihe cycle expansion
is a polynomial expansion in topological cycle length, anomdating such be-
havior requires many terms. The dynamical zeta functionseparate subspaces
have more evenly and widely spaced zeros, are smoother,td@ne symmetry-
induced multiple zeros, and fewer cycle expansion termsr{glycle truncations)
sufice to determine them. Furthermore, the cycles in the fundeaheomain
sample state space more densely than in the full space. Borpe, for the 3-
disk problem, there are 9 distinct (symmetry unrelated)esyof length 7 or less
in full space, corresponding to 47 distinct periodic painta the fundamental
domain, we have 8 (distinct) periodic orbits up to length d #ws 22 diferent
periodic points in 16-th the state space, i.e., an increase in density by a factor
with the same numericaliert.

We emphasize that the symmetry factorization (21.23) ofiramical zeta
function isintrinsic to the classical dynamics, and not a special property oftalian
spectra. The factorization is not restricted to the Hamilio systems, or only to
the configuration space symmetries; for example, the dis@gmmetry can be
a symmetry of the Hamiltonian phase space [21.4]. In corafughe manifold
advantages of the symmetry reduced dynamics should thubvbeus; full state
space cycle expansions, such as those of exercise 20.8edteé only for cross-
checking purposes.
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Commentary

Remark 21.1 Symmetry reductions in periodic orbit theory.  This chapter is based
on a collaborative fort with B. Eckhardt, ref. [21.1]. The group-theoretic fazations
of dynamical zeta functions that we develop here were fitsbéuced and applied in
ref. [21.2]. They are closely related to the symmetrizatimtroduced by Gutzwiller [21.3]
in the context of the semiclassical periodic orbit tracerfolas, put into more gen-
eral group-theoretic context by Robbins [21.4], whose sijmm, together with Lau-
ritzen’s [21.5] treatment of the boundary orbits, has inflted the presentation given here.
The symmetry reduced trace formula for a finite symmetry p@u= {e, gy, . . ., gig/} With

|G| group elements, where the integral over Haar measure iaaeglby a finite group
discrete suniG|™* Ygec = 1, was derived in ref. [21.1]. A related group-theoretic deeom
position in context of hyperbolic billiards was utilizedrief. [21.6], and for the Selberg’s
zeta function in ref. [21.7]. One of its loftier antecedestthe Artin factorization formula
of algebraic number theory, which expresses the zetaifumof a finite extension of a
given field as a product df-functions over all irreducible representations of thereor
sponding Galois group.

The techniques of this chapter have been applied to conmgusaif the 3-disk classi-
cal and quantum spectra in refs. [21.8, 21.9], and to a “Zeesffiact” pinball and they?
potentials in ref. [21.10]. In a larger perspective, thedazations developed above are
special cases of a general approach to exploiting the gilveqretic invariances in spec-
tra computations, such as those used in enumeration ofdiedeodesics [21.6, 21.11,
21.12] for hyperbolic billiards [21.13] and Selberg zetadtions [21.14].

Remark 21.2 Other symmetries.  In addition to the symmetries exploited here, time
reversal symmetry and a variety of other non-trivial diseigymmetries can induce fur-
ther relations among orbits; we shall point out several @inegles of cycle degeneracies
under time reversal. We do not know whether such symmetaede exploited for fur-
ther improvements of cycle expansions.

Exercises

21.1. Sawtooth map desymmetrization. ~ Work out the
some of the shortest global cycles oftdrent symme-
tries and fundamental domain cycles for the sawtooth
map of figure 9.4. Compute the dynamical zeta function
and the spectral determinant of the Perron-Frobenius
operator for this map; check explicitly the factorizatiorh_&
(21.2).

antisymmetric part of thevl x M Kronecker product.
Show that ife is a 2-dimensional representation, this is
the A, antisymmetric representation, and

2-dim:  det (£D,(h)t) = 1—ya(Wtya,(N)2.(21.28)

Characters of Ds. (continued from exer-
cise 9.5) B = Cg,, the group of symmetries of an equi-
lateral triangle: has three irreducible representations,

2dimensional _asymmetric rep_resentatio_n. - The two one-dimensional and the other one of multiplicity
above expressions can sometimes be simplified further 2

using standard group-theoretical methods. For example,
the 1 ((tr M) — tr M?) term in (21.16) is the trace of the

21.2.

(a) Allfinite discrete groups are isomorphic to a per-
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(b

-

(©

(d)

(Hint:

mutation group or one of its subgroups, and ele-
ments of the permutation group can be expressed
as cycles. Express the elements of the grogp D

as cycles. For example, one of the rotations is
(123), meaning that vertex 1 maps to 2,2 3,

and 3— 1.

Use your representation from exercise 9.5 to corfd-S-
pute the B character table.

Use a more elegant method from the group-theory
literature to verify your R character table.

Two D irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed

by [2x 2] matrices. Find the matrices for all sixoq g
group elements in this representation.

get yourself a good textbook, like Hamer-

mesh [10.2] or Tinkham [21.15], and read up on classes
and characters.)

21.4. 3-disk desymmetrization.

a)

b)

c)

Referen

Work out the 3-disk symmetry factorization for

the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and hoyy 7.
do they factorize (how do they look in thg, A,

and theE representations).

Find the shortest cycle with no symmetries and
factorize it asin a)

Find the shortest cycle that has the property that
its time reversal is not described by the same sym-
bolic dynamics.

ces
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d) Compute the dynamical zeta functions anc
spectral determinants (symbolically) in the tl
representations; check the factorizations (2
and (21.17).

(Per Rosenqvis

C, factorizations: the Lorenz and Ising systems. Ir
the Lorenz system the labelsand- stand for the left «
the right lobe of the attractor and the symmetry is a
tion by = around thez-axis. Similarly, the Ising Ham
tonian (in the absence of an external magnetic fie
invariant under spin flip. Work out the factorizations
some of the short cycles in either system.

Ising model.  The Ising model with two stateg =
{+, —} per site, periodic boundary condition, and Ha
tonian

He) = =3 Gans

is invariant under spin-flip+ < —. Take advantage
that symmetry and factorize the dynamical zeta fun
for the model, i.e., find all the periodic orbits that
tribute to each factor and their weights.

One orbit contribution.  If pis an orbit in the fur
damental domain with symmetty, show that it cor
tributes to the spectral determinant with a factor

det(l D(h) to )
)

whereD(h) is the representation dfin the regular re|
resentation of the group.
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