Appendix K

Thermodynamic formalism

Being Hungarian is not dficient. You also must be tal-
ented.

— Zsa Zsa Gabor

(G. Vattay)

ties such as averages. It turned out that these are closatgddo very fine

details of the dynamics like stabilities and time periodsdfvidual periodic
orbits. In statistical mechanics a similar duality exist#acroscopic systems are
characterized with thermodynamic quantities (pressemaperature and chemical
potential) which are averages over fine details of the systalfed microstates.
One of the greatest achievements of the theory of dynamysaééms was when
in the sixties and seventies Bowen, Ruelle and Sinai madartagy between
these two subjects explicit. Later this “Thermodynamicrialism” of dynam-
ical systems became widely used making it possible to caiewlarious fractal
dimensions. We sketch the main ideas of this theory and sleawpleriodic orbit
theory helps to carry out calculations.

I N THE PRECEDING CHAPTERs We characterized chaotic systems via global quanti-

K.1 Rényientropies

As we have already seen trajectories in a dynamical systenbeaharacterized
by their symbolic sequences from a generating Markov jiamtitWe can locate
the set of starting pointds s, s, of trajectories whose symbol sequence starts
with a given set ofi symbolss; s;...S,. We can associate manyfidirent quantities

to these sets. There are geometric measures such as theews(gs;...s,), the
areaA(s1%...Sy) or the lengthl(s;s,...sy) of this set. Or in general we can have
some measurg(Ms;s,..s,) = H(S1S...Sy) of this set. As we have seen in (22.10)
the most important is the natural measure, which is the fmitityathat an ergodic
trajectory visits the sgi(s1%...,) = P(S1S2...Sy). The natural measure is additive.
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Summed up for all possible symbol sequences of lengtlgives the measure of
the whole state space:

D, Msiz.s) =1 (K1)
S192...5n

expresses probability conservation. Also, summing upterast symbol we get
the measure of a one step shorter sequence

> is19..-50) = p($1%...5-1).
S

As we increase the lengtim)(of the sequence the measure associated with it de-
creases typically with an exponential rate. It is then usefintroduce the expo-
nents

A(si52..5) = - 10ga(5:52..5). (K.2)

To get full information on the distribution of the natural aseire in the symbolic
space we can study the distribution of exponents. Let thebeurof symbol se-
quences of length with exponents betweehand + dA be given byN,(1)dA.
For largen the number of such sequences increases exponentiallyaféhefrthis
exponential growth can be characterizedgfy) such that

Nn(4) ~ exp(g(4)).

The knowledge of the distributioN,(1) or its essential pa() fully character-
izes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distitm. However it
is very time consuming to calculate the distribution diletly making statistics
for millions of symbolic sequences. Instead, we introduagilery quantities
which are easier to calculate and to handle. These are gahtition sums

@)= ), W(sis.s), K3)

1.5

as they are obviously motivated by Gibbs type partition sofnstatistical me-
chanics. The parametgplays the role of inverse temperaturkgT andE(s;S,...Sy) =
—logu(sls,...sn) is the energy associated with the microstate labeleg; By..s,

We are tempted also to introduce something analogous wétfrtee energy. In
dynamical systems this is called the Rényi entropy [G.5ingel by the growth
rate of the partition sum

11
= lim = —— B
Kg = r!m ni-p Iog[SlS;Snu (slsz...s])]. (K.4)
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In the special casg — 1 we get Kolmogorov entropy

1
Ki=lim = " —p(s15..5)logu(si%..s),

n—oo N

$1%2...5n
while for g = 0 we recover the topological entropy
.1
hop = Ko = r!mo n logN(n),

whereN(n) is the number of existing lengthsequences. To connect the partition
sums with the distribution of the exponents, we can writertlas averages over
the exponents

Z:(p) = f AN (1) exp(-na).

where we used the definition (K.2). For largeve can replaceéNy(2) with its
asymptotic form

Z:(6) ~ f dlexpg(l)) exp-nig).

For largen this integral is dominated by contributions from thasenhich maxi-
mize the exponent

g - 8.
The exponent is maximal when the derivative of the exponanishes

g@) =8. (K.5)
From this equation we can determingg). Finally the partition sum is

Zn(B) ~ exp(lg(1"(8)) — 2" (B)B])-
Using the definition (K.4) we can now connect the Rényi guigr® andy(1)

(B - DKy = 1°(B)B - 92" () (K.6)

Equations (K.5) and (K.6) define the Legendre transforrg(@j. This equation
is analogous with the thermodynamic equation connectiegetitropy and the
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free energy. As we know from thermodynamics we can invert.ggendre trans-
form. In our case we can expregil) from the Rényi entropies via the Legendre
transformation

g(4) = 48°(A) - (B°(A) - DKg-n). (K.7)
where nows*(2) can be determined from

d
a5

[(B" - DKg] = 2. (K.8)

Obviously, if we can determine the Rényi entropies we caaover the distribution
of probabilities from (K.7) and (K.8).

The periodic orbit calculation of the Rényi entropies candarried out by
approximating the natural measure corresponding to a sysgsuence by the
expression (22.10)

av
O — K.9
p(SL s Sn) T—— (K.9)
The partition sum (K.3) now reads
By
Zp)~ ) —, K.10
"(8) ZIW (K-10)

where the summation goes for periodic orbits of lengthWe can define the
characteristic function

"
Qzp) = exp(— Z an(ﬁ)] : (K.12)
According to (K.4) for largen the partition sum behaves as

Zn(B) ~ e DK, (K.12)

Substituting this into (K.11) we can see that the leading oéithe characteristic
function is

20(p) = 7.
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On the other hand substituting the periodic orbit approioma(K.10) into (K.11)
and introducing prime and repeated periodic orbits as wseaet

Z 2T Bynpr

rALE

Qzp) = exp[—
p.r

We can see that the characteristic function is the same azetaefunction we
introduced for Lyapunov exponents (G.12) except we lzefeinstead ofz. Then
we can conclude that the Rényi entropies can be expressetheipressure func-
tion directly as

P@®) = (B - 1)Kg + By, (K.13)

since the leading zero of the zeta function is the pressure Renyi entropie&,
hence the distribution of the expone(@) as well, can be calculated via finding
the leading eigenvalue of the operator (G.4).

From (K.13) we can get all the important quantities of thertiedynamic
formalism. ForB = 0 we get the topological entropy

P(0) = —Ko = ~htop. (K.14)
ForpB = 1 we get the escape rate
P(1) = 7. (K.15)

Taking the derivative of (K.13) i = 1 we get Pesin’s formula [G.2] connecting
Kolmogorov entropy and the Lyapunov exponent

PA)=21=Ki+7y. (K.16)

exercise K.1

It is important to note that, as always, these formulas aretlgtvalid for nice
hyperbolic systems only. At the end of this Chapter we disdhe important
problems we are facing in non-hyperbolic cases.

On figure K.2 we show a typical pressure ag(d) curve computed for the
two scale tent map of Exercise K.4. We have to mention, thaypical hyper-
bolic dynamical system produces a similar parabola likeeuAlthough this is
somewhat boring we can interpret it like a sign of a high lesfetniversality:
The exponentsl have a sharp distribution around the most probable value. Th
most probable value is = P’(0) andg(1) = hyp is the topological entropy. The
average value in closed systems is whig touches the diagonalt = g(1) and
1=g().

Next, we are looking at the distribution of trajectories éalrspace.

thermodyn - 21sep2012 ChaosBook.org version14, Dec 31 2012

APPENDIX K. THERMODYNAMIC FORMALISM 900

Figure K.1 ¢ ! i

Figure K.2: g(1) andP(g) for the map of exercise K.4 *
ata=3andb = 3/2. :

K.2 Fractal dimensions

Hentschel and Procaccia rediscovered a small part of my
theory. Generalized dimensions are not useful at all.

—Benoit B. Mandelbrot

By looking at the repeller we can recognize an interestirgfiapstructure.
In the 3-disk case the starting points of trajectories natiteg the system after
the first bounce form two strips. Then these strips are sidmlivinto an infinite
hierarchy of substrings as we follow trajectories which @t leave the system
after more and more bounces. The finer strips are similarripssbn a larger
scale. Objects with such self similar properties are cdlactals.

We can characterize fractals via their local scaling prioger The first step is
to draw a uniform grid on the surface of section. We can lookagibus measures
in the square boxes of the grid. The most interesting measagain the natural
measure located in the box. By decreasing the size of theegtid measure in
a given box will decrease. If the distribution of the meassremooth then we
expect that the measure of thtd box is proportional with the dimension of the
section

Wi ~ €.

If the measure is distributed on a hairy object like the regpele can observe
unusual scaling behavior of type

Hi ~ €M,

whereq; is the local “dimension” or Holder exponent of the objects Ais not
necessarily an integer here we are dealing with objectsfrétitional dimensions.
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We can study the distribution of the measure on the surfaseaifon by looking
at the distribution of these local exponents. We can define

~_ logui
" loge’

the local Holder exponent and then we can count how manyeoh tare between
a anda + da. This is Ne(e)da. Again, in smooth objects this function scales
simply with the dimension of the system

Ne(a) ~ Eid;
while for hairy objects we expect andependent scaling exponent
Ne(@) ~ e '@,

f(e@) can be interpreted [G.7] as the dimension of the points enstirface of
section with scaling exponent We can calculatd () with the help of partition
sums as we did fog(1) in the previous section. First, we define

Z(@ =) u. (K.17)

Then we would like to determine the asymptotic behavior ef partition sum
characterized by the(g) exponent

Z(q) ~ 7.
The partition sum can be written in terms of the distributionction ofa-s
Z.(g) = fdaNe(a)eq”.

Using the asymptotic form of the distribution we get

Z.(q) ~ f daete= @),

As € goes to zero the integral is dominated by the term maximitiegexponent.
Thisa* can be determined from the equation

d
s (Ga* - f(a") =0,
(03
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leading to

q=f'(a").
Finally we can read f the scaling exponent of the partition sum

(@) =a’q - f(e).

In a uniform fractal characterized by a single dimensiorhlaoand f () col-
lapse tow = f(a) = D. The scaling exponent then has the forfg) = (g — 1)D.
In case of non uniform fractals we can introduce generaliiggnsions [G.9Dq
via the definition

Dq = 7(a)/(a - 1).

Some of these dimensions have special namesq EdD the partition sum (K.17)
counts the number of non empty boXds Consequently

__logN.
Do =- lim 9 E,
e—0 Ioge

is called the box counting dimension. Fpe 1 the dimension can be determined
as the limit of the formulas foq — 1 leading to

D;= mZm logi/ loge.

This is the scaling exponent of the Shannon informationopyt{G.11] of the
distribution, hence its name isformation dimension.

Using equisize grids is impractical in most of the applioas. Instead, we
can rewrite (K.17) into the more convenient form

»A Ly (K.18)
@

If we cover theith branch of the fractal with a grid of sidginstead ofe we can
use the relation [K.5]

1
P (K.19)
= 1i"(0)
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the non-uniform grid generalization of K.18. Next we showhzan we use the
periodic orbit formalism to calculate fractal dimensionsle have already seen
that the width of the strips of the repeller can be approxauatith the stabilities

of the periodic orbits placed within them

1

o~ —.
TN

Then using this relation and the periodic orbit expressibthe natural measure
we can write (K.19) into the form

n

where the summation goes for periodic orbits of lengtfThe sum for stabilities
can be expressed with the pressure function again

3 1 oPE-r@)
AT ’

and (K.20) can be written as
g nPE-(@) _ 1
for largen. Finally we get an implicit formula for the dimensions
P@-(a-1)Dg) = ar. (K.21)
Solving this equation directly gives us the partial dimensi of the multifractal
repeller along the stable direction. We can see again tleaptéssure function
alone contains all the relevant information. Setting O in (K.21) we can prove
that the zero of the pressure function is the box-countingedision of the repeller
P(Dg) = 0.
Taking the derivative of (K.21) ig = 1 we get

P(1)1-Dg) =7

This way we can express the information dimension with tleajes rate and the
Lyapunov exponent

D;=1-vy/4 (K.22)

If the system is boundy(= 0) the information dimension and all other dimensions
areDg = 1. Also sinceD;0 is positive (K.22) proves that the Lyapunov exponent

must be larger than the escape rate y in general. exercise K.4
exercise K.5
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Résum é

In this chapter we have shown that thermodynamic quanttiesvarious frac-
tal dimensions can be expressed in terms of the pressurédndhe pressure
function is the leading eigenvalue of the operator whichegates the Lyapunov
exponent. In the Lyapunov cagés just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter {ghkadistribution of
locally fluctuating exponents should not be computed viaintpktatistics. We
can use cyclist formulas for determining the pressure. Therpressure can be
found using short cycles curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories dade(1) andP(g) can be
calculated from short cycles. To use this intimate relatietween long and short
trajectories fectively is still a research level problem.

Commentary

Remark K.1 Mild phase transition.  In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentioned in remact 2 non-hyperbolic
systems the periodic orbit expression of the measure can be

o =€"/|Aol’,

wheres can difer from 1. Usually it is 12. For suficiently negative 3 the corresponding
term 1/|Aql’ can dominate (K.10) while in (K.3"/|Ao|?* plays no dominant role. In
this case the pressure as a functiog afin have a kink at the critical poift= 8. where
BcloglAol = (Bc — 1)Kg, + Bey. ForpB < B. the pressure and the Rényi entropiebei

P(B) # (B— 1)Kg + By

This phenomena is called phase transition. This is howevea nery deep problem. We
can fix the relation between pressure and the entropies tgcieg 1/| Aol with 1/|Aol® in
(K.10).

Remark K.2 Hard phase transition. ~ The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic ®vhith [Ao] — 1 asn — .
Then forg > 1 the contribution of these orbits dominate both (K.10) ai@). Conse-
quently the partition sum scales agB) — 1 and both the pressure and the entropies are
zero. In this case quantities connected y6ith 1 make sense only. These are for example
the topological entropy, Kolmogorov entropy, Lyapunov exent, escape rat®y and

D;. This phase transition cannot be fixed. It is probably faisay that quantities which
depend on this phase transition are only of mathematioalést and not very useful for
characterization of realistic dynamical systems.
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Exercises

K.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the Jacobian matdix

1
w9 = lim = log|AL(xo)l (K.23)
as a generalization of (17.37).
Show that ind dimensions Pesin’s formula is
d
Ki= ) pu®—y, (K.24)
(=

where the summation goes for the positi#€-s only.
Hint: Use thed-dimensional generalization of (K.9)

L
k

where the product goes for the expanding eigenvalues f 4
the Jacobian matrix g-cycle. (G. Vattay)

K.2. Stadium billiard Kolmogorov entropy. (contin-
uation of exercise 8.4) Take= 1.6 andd = 1 in the
stadium billiard figure 8.1, and estimate the Lyapunov
exponent by averaging over a very long trajectory. Bi-
ham and Kvale [K.14] estimate the discrete time Lya-
punov tod ~ 1.0 + .1, the continuous time Lyapunov to
A ~ 0.43+ .02, the topological entropy (for their sym-
bolic dynamicsh ~ 1.15+ .03.

K.3. Entropy of rugged-edge billiards. Take a semi-circle
of diametere and replace the sides of a unit square by
L1/e] semi-circle arcs. K.5.

References

(a) Is the billiard ergodic as — 0?

(b) (hard) Show that the entropy of the billiard map is
2
K; — —=Ine + const,
us

ase — 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, sdy, the entropy
for the flow decays as

Two scale map. Compute all those quantities - dimen-
sions, escape rate, entropies, etc. - for the repeller of the
one dimensional map

X< 0,

%> 0. (K.25)

l+ax if
f(x):{l—bx if

wherea andb are larger than 2. Compute the fractal di-
mension, plot the pressure and compute ftf€) spec-
trum of singularities.

Transfer matrix. Take the unimodal map(x) =
sin(rx) of the intervall = [0,1]. Calculate the four
preimages of the intervalyy = [0,1/2] and |, =
[1/2,1]. Extrapolatef(x) with piecewise linear func-
tions on these intervals. Firad, a, andb of the previous
exercise. Calculate the pressure function of this linear
extrapolation. Work out higher level approximations by
linearly extrapolating the map on thé-th preimages of

l.
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