Chapter 18

Trace formulas

The trace formula is not a formula, it is an idea.
—NMartin Gutzwiller

quire global information. How can we use a local descriptidra flow

to learn something about the global behavior? In chapter d have re-
lated global averages to the eigenvalues of appropriatieitévMo operators. Here
we show that the traces of evolution operators can be eealw integrals over
Dirac delta functions, and in this way the spectra of evolutbperators become
related to periodic orbits. If there is one idea that one khtmarn about chaotic
dynamics, it happens in this chapter, and it is this: theeefi;mdamental locab
global duality which says that

DYNAMICS 1s poseD in terms of local equations, but the ergodic averages re-

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analyiisdynamics on well-
tiled manifolds, Selberg traces and zetas; and for genenmdimear dynamical
systems the duality is embodied in the trace formulas thaivillenow derive.

These objects are to dynamics what partition functionsestatistical mechanics.

The above phrasing is a bit too highfalutin, so it perhapssgaygo again
through the quick sketch of sects. 1.5 and 1.6. We have a spaiee that we
would like to tessellate by periodic orbits, one short opeit neighborhood, as in
figure 18.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit geser with time,
so we only have to keep track of those who are moving away aloaginsta-
ble directions. The fraction of those who remain in the nkaghood for one
recurrence timé,, is given by the overlap ratio along the initial sphere and the
returning ellipsoid, figure 18.1 (b), and along the expagdigen-directionel)
of Jp(x) this is given by the expanding Floquet multiplief|/Ap;il. A bit more
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CHAPTER 18. TRACE FORMULAS 372

Figure 18.1: (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian matkjx
maps spherical neighborhood xf — ellipsoidal
neighborhood tim& , later, with the overlap ratio
along the expanding eigdirecti@? of J,(x) given

by the expanding eigenvalug|A ;|.

(@)

thinking leads to the conclusion that one also cares abautidny it takes to re-
turn (the long returns contributing less to the time avesagso the weight,

of the p-neighborhoodt, = e‘STp/lApl decreases exponentially both with the
shortest recurrence period and the product (5.7) of expgnioquet multipli-
ersAp = [leApe. With emphasis orexpanding- the flow could be a 60,000-
dimensional dissipative flow, and still the neighborhoodéfined by the handful
of expanding eigen-directions. Now the long-time averaige physical observ-
able -let us say powdD dissipated by viscous friction of a fluid flowing through a
pipe- can be estimated by its mean value (1Dg)T, computed on each neigh-
borhood, and weighted by the above estimate

Wrong in detail, this estimate is the crux of manjPhys. Rev. Letteland in its
essence the key result of this chapter, the ‘trace formblare we redo the argu-
ment in a bit greater depth, and derive the correct formua2@ for a long time
average(D) as a weighted sum over periodic orbits. It will take threeptées,
but it is worth it - the reward is aexact(i.e., not heuristic) and highly convergent
and controllable formula for computing averages over dhdlmws.

18.1 A trace formula for maps

Our extraction of the spectrum df commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simplefjratederive the
trace formula for maps, and then, in sect. 18.2, for flows. firtad formula (18.23)
covers both cases.

To compute an expectation value using (17.14) we have tgriate over all
the values of the kernef"(x,y). Were £" a matrix sum over its matrix elements
would be dominated by the leading eigenvaluenas <o (we went through the
argument in some detail in sect. 15.1). As the trac&'bis also dominated by the
leading eigenvalue as— oo, we might just as well look at the trace for which we
have a very explicit formula exercise 15.3
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CHAPTER 18. TRACE FORMULAS 373
tr LM = f dxL(x, x) = f dxs(x — (X)) A0 (18.1)

On the other hand, by its matrix motivated definition, thedrégs the sum over
eigenvalues (17.20),

(9]

L= e, (18.2)
a=0

We find it convenient to write the eigenvalues as exponehtgather than as
multipliers 4, and we assume that spectrum/is discrete sy, s1, &, - - -, ordered
so that Res, > Res,.1.

For the time being we choose not to worry about convergenseidi sums,
ignore the question of what function space the eigenfunstielong to, and com-
pute the eigenvalue spectrum without constructing anyi@kmigenfunctions.
We shall revisit these issues in more depth in chapter 23deedss how lack of
hyperbolicity leads to continuous spectra in chapter 24.

18.1.1 Hyperbolicity assumption

We have learned in sect. 16.2 how to evaluate the deltaiumittegral (18.1). section 16.2

According to (16.8) the trace (18.1) picks up a contributieheneverx —
f(x) = 0, i.e., wheneveKx belongs to a periodic orbit. For reasons which we
will explain in sect. 18.2, it is wisest to start by focusingdiscrete time systems.
The contribution of an isolated prime cycgeof periodn, for a mapf can be
evaluated by restricting the integration to an infinitediogen neighborhood,,
around the cycle,

trpL™ = f dxs(x — f™(x))
Mp
d
Np 1
_ b T2 (18.3)
|det(1 - Mp)| P [1[ 11— Apil

For the time being we set here and in (16.9) the obsengibte= 1. Periodic orbit
Jacobian matriM,, is also known as thenonodromy matrixand its eigenvalues
Ap1, Ap2, ..., Apg as the Floquet multipliers. section 5.1.2

We sort the eigenvaluesy 1, Apo, ..., Apg Of the p-cycle [dxd] monodromy
matrix M, into expanding, marginal and contracting sgtsn, c}, as in (5.6). As
the integral (18.3) can be evaluated onlyMf, has no eigenvalue of unit magni-
tude, we assume that no eigenvalue is marginal (we shall #heect. 18.2 that
the longitudinalAp 4.1 = 1 eigenvalue for flows can be eliminated by restricting
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CHAPTER 18. TRACE FORMULAS 374

the consideration to the transverse monodromy madiiy, and factorize the trace
(18.3) into a product over the expanding and the contradiggnvalues

R 1 1
det(1- M| = m]:[ 1—1/Ap,e1:[ AL (18.4)

whereAp = [[eApe is the product of expanding eigenvalues. Botp. and
1/Ape are smaller than 1 in absolute value, and as they are eitakeorreome in
complex conjugate pairs we are allowed to drop the absohites\brackets$: - - |

in the above products.

Thehyperbolicity assumptiorequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Apel > etele any p, any expandingApel > 1
IApcl < e eTr any p, any contractingApc < 1, (18.5)

wherede, A > 0 are strictly positive bounds on the expanding, contrgatiycle
Lyapunov exponents. If a dynamical system satisfies therbgfieity assump-
tion (for example, the well separated 3-disk system cledolys), thelt spectrum
will be relatively easy to control. If the expansjoaontraction is slower than ex-
ponential, let us sapA | ~ sz, the system may exhibit “phase transitions,” and
the analysis is much harder - we shall discuss this in ch2gdter

Example 18.1 Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary
exponents Am = €% is excluded by the hyperbolicity assumption. While the contribution

of a single repeat of a cycle

1 1
(1-e%(1—e) ~ 2(1- cosh)

does not make (16.9) diverge, if Am = €%P/" s rth root of unity, 1/ |det(1— M[,)

(18.6)

verges. For a generic 0 repeats cos{6) behave badly and by ergodicity 1 — cos(6) is
arbitrarily small, 1 — cost6) < e, infinitely often. This goes by the name of “small divisor

problem,” and requires a separate treatment.

It follows from (18.4) that for long timed, = rT, — oo, only the product of

expanding eigenvalues matte}@et(l— ML) — |Ap|". We shall use this fact to
motivate the construction of dynamical zeta functions ict.s89.3. However, for
evaluation of the full spectrum the exact cycle weight (18&s to be kept.

18.1.2 Aclassical trace formula for maps

If the evolution is given by a discrete time mapping, and eli@dic points have
Floquet multipliersiApj| # 1 strictly bounded away from unity, the trad® is
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CHAPTER 18. TRACE FORMULAS 375

given by the sum over afieriodic points iof periodn:

n _ n _ eBAq
tr £ —deL xx= > eI (18.7)

xeFixfn

Here Fix f" = {x : f"(X) = x} is the set of all periodic points of periag and

A is the observable (17.5) evaluated owmeatiscrete time steps along the cycle to
which the periodic poink; belongs. The weight follows from the properties of
the Dirac delta function (16.8) by taking the determinandigk; — f"(x);). If a
trajectory retraces itself times, its monodromy matrix 8}, whereM, is the
[dx d] monodromy matrix (4.6) evaluated along a single traveodghe prime
cycle p. As we saw in (17.5), the integrated observahfeis additive along the
cycle: If a prime cyclep trajectory retraces itsetftimes,n = rn,, we obtainA,
repeated times,A; = A"(x) = rAp, Xi € Mp.

A prime cycle is a single traversal of the orbit, and its label non-repeating
symbol string. There is only one prime cycle for each cyckenputation class.
For example, the four periodic poin@®11= 1001= 1100= 0110 belong to thechapter 11
same prime cycle = 0011 of length 4. As both the stability of a cycle and the
weightA, are the same everywhere along the orbit, each prime cycengthn,
contributesn,, terms to the sum, one for each periodic point. Hence (187pea
rewritten as a sum over all prime cycles and their repeats

0 er,B Ay

L= Z Z |det 1-Mp)

Snngr » (18.8)

with the Kronecker deltann r projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward stilf the
continuous time flows, where it would yield a series of Diratta spikes. In both
cases a Laplace transform rids us of the time periodicitystaint.

In the sum over all cycle periods,

Z'tr L =
Z tr L trl 7 Z pz|det

p

20" @B-Ap

: (18.9)
1- Mr)

the constrain®np,r is replaced by weight". Such discrete time Laplace trans-
form of tr £" is usually referred to as a “generating function.” Why thésform?
We are actually not interested in evaluating the sum (1®&Baufiy particular fixed
periodn; what we are interested in is the long time— co behavior. The trans-
form trades in the large time behavior for the smalt behavior. Expressing the
trace as in (18.2), in terms of the sum of the eigenvalues, o¥e obtain therace
formula for maps

S
lee; anz|dz””’é - (18.10)
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CHAPTER 18. TRACE FORMULAS 376

This is our second example of the duality between the spactiueigenvalues
and the spectrum of periodic orbits, announced in the inirtdn to this chapter.
(The first example was the topological trace formula (15)10)

fast track:
W sect. 18.2, p. 377

Example 18.2 A trace formula for transfer operators: For a piecewise-linear map
(16.11), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Ap = AS"A’l’l, where the cycle p contains ng symbols 0 and n; symbols 1, the
trace (18.7) reduces to

n 0 n

n 1 1 1

trL" = E ( ) — = E [ + ) , (18.11)
S \WIL-AFATT IAOIAT  IA1IAT

with eigenvalues

1 1

= ——
IAOlA  IA1IAK

(18.12)

As the simplest example of spectrum for such dynamical system, consider the symmet-
ric piecewise-linear 2-branch repeller (16.11) for which A = Ay = —Ao. In this case all
odd eigenvalues vanish, and the even eigenvalues are given by €% = 2/A¥*1, k eegexcise 16.7

Asymptotically the spectrum (18.12) is dominated by the lesser of the two fixed
point slopes A = Ag (if |Ag| < |A4], otherwise A = A;), and the eigenvalues €% fall off
exponentially as 1/AX, dominated by the single less unstable fixed-point. example 23.1

For k = 0 this is in agreement with the explicit transfer matrix (16.13) eigenval-
ues (17.30). The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (16.13), and that it is
clear by inspection that it has only one eigenvalue €® = 1/|Ao| + 1/|A41|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
operator acts on in order to define the spectrum.  The transfer operator (16.13) is
the correct operator on the space of functions piecewise constant on the state space
partition { Mo, M1}; on this space the operator indeed has only the eigenvalue €®. As
we shall see in example 23.1, the full spectrum (18.12) corresponds to the action of the
transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (16.11)
follows from (18.9)

7(ds + kg
i - z£Z£ _ (|A011 |A1—11\ ) ’ (18.13)
- 1- Z(le—ll + |A1—1I)

verifying the trace formula (18.10).
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18.2 A trace formula for flows

Amazing! | did not understand a single word.
—Fritz Haake

(R. Artuso and P. Cvitanovit)

Our extraction of the spectrum gt commences with the evaluation of the trace
trLl=tre™ = f dxL(x, X) = f dxs(x - (%) PAW (18.14)

We are not interested in any particular tirhebut into the long-time behavior
ast — oo, so we need to transform the trace from the “time domain” th®
“frequency domain.” A generic flow is a semi-flow defined fordian time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an eimtubperator
yields the resolvent (17.24). This is a delicate step, stheesvolution operator
becomes the identity in the— O* limit. In order to make sense of the trace we
regularize the Laplace transform by a lower d¢titocsmaller than the period of any
periodic orbit, and write

M & o(ss)e
f dte‘SttrLt—tr _ Zes (18.15)

a=0

whereA is the generator of the semigroup of dynamical evolution,se=t. 16.5.
Our task is to evaluate #! from its explicit State space representation.

18.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself dyaat each cycle

period, the eigenvalue of the Jacobian matrix correspgntbnthe eigenvector

along the flow necessarily equals unity for all periodic tebHence for flows thesection 5.2.1
trace integral tt requires a separate treatment for the longitudinal dvactio

evaluate the contribution of an isolated prime cyglef periodT, restrict the in-

tegration to an infinitesimally thin tub&1, enveloping the cycle (see figure 1.13),

and consider a local coordinate system with a longitudioakdinatedx; along

the direction of the flow, and—1 transverse coordinates ,

trp L= fM dx dxyo(x, = f£(3))o(x - F10x)) - (18.16)
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(we setB = 0 in the expg - A) weight for the time being). Pick a point on the
prime cycle p, and let

g 1/2
V() = [Z Vi (X)z} (18.17)
i=1

be the magnitude of the tangential velocity at any pairt (x;,0,---,0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time ai(x) = 0 points, and that would get us nowhere.

As 0 < 1 < Tp, the trajectoryx(r) = f7(xp) sweeps out the entire cycle, and
for larger timesx; is a cyclic variable of periodicityp,

X|(7) = X (r+1Tp) r=1,2--- (18.18)

We parametrize both the longitudinal coordinag¢r) and the velocityv(r) =
V(¥ (7)) by the flight timer, and rewrite the integral along the periodic orbit as

9§d>ﬂ| 5(x - F10q)) = SEdTV(T) 6(x(7) = x(r + 1)). (18.19)
p p

By the periodicity condition (18.18) the Diracfunction picks up contributions
for t = rTy, so the Laplace transform can be split as

wd st _ — N —STpr ;
j(; te 5(X||(T) X||(T + t)) ; e I
I = fE dte'o(x(z) = xi(x + 1T + 1)).

Taylor expanding and applying the periodicity conditiol.(8), we haveq(r +
My +1t) =x(7) +v(n)t+...,

I, = [ dte‘5t6(x||(r) - Xt + er+t)) = Tlr)

so the remaining integral (18.19) oveis simply the cycle perio@?p dr = Tp.
The contribution of the longitudinal integral to the Lapacansform is thus

mdte‘St 56 dx o(x — f'(x)) =T 3 e ST (18.20)
fo ) 16(x) )) p;

This integration is a prototype of what needs to be done foh @aarginal direc-
tion, whenever existence of a conserved quantity (enerdyamiltonian flows,
angular momentum, translational invariance, etc.) ingpdigistence of a smooth
manifold of equivalent (equivariant) solutions of dynaaliequations.
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18.2.2 Stability in the transverse directions

Think of ther = 0 point in above integrals along the cyqgbeas a choice of a
particular Poincaré section. As we have shown in sect.tBe3fransverse Flo-
quet multipliers do not depend on the choice of a Poincacéase so ignoring
the dependence ox(7) in evaluating the transverse integral in (18.16) is justi-
fied. For the transverse integration variables the Jacabiatnix is defined in a
reduced Poincaré surface of sectiBrof fixed x. Linearization of the periodic
flow transverse to the orbit yields

dx s(x - F7P(0) = ——— 18.21
fp ol ) |det(1 - M) uee

whereM, is the p-cycle [d—1xd-1] transversemonodromy matrix. As in (18.5)
we have to assume hyperbolicity, i.e., that the magnituflell tansverse eigen-
values are bounded away from unity.

Substitution (18.20), (18.21) in (18.16) leads to an exgioesfor trL! as a
sum over all prime cyclep and their repetitions

2 gBAp-sT)

fdte‘SttrLt ZTpZ|det1 vl

(18.22)

Thee — 0 limit of the two expressions for the resolvent, (18.15) éii22), now
yields theclassical trace formula for flows

Zs SQ—Z Z|

(If you are worried about the convergence of the resolvent, d«eep thes regu-
larization.)

g (B-Ap—sTp)

. (18.23)
det 1- Mf)

exercise 18.1

This formula is still another example of the duality betwdes (local) cycles
and (global) eigenvalues. T, takes only integer values, we can replacgé— z
throughout, so the trace formula for maps (18.10) is a speease of the trace
formula for flows. The relation between the continuous arsdréite time cases
can be summarized as follows:

Tp<—>nIO

e—S

et o LM (18.24)

< Z

The beauty of trace formulas is that they are coordinatepedéent: the
|det(1— Mp)| = |det(L — MTp(x))] and &#* = €A™ contributions to the cy-
cle weightt, are both independent of the starting periodic poiné M,. For
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the Jacobian matrii, this follows from the chain rule for derivatives, and for
& from the fact that the integral ovefA ™ is evaluated along a closed loop. In
addition, as we have shown in sect. E{d&at(l - Mp)| is invariant under smooth
coordinate transformations.

We could now proceed to estimate the location of the leadingutarity of
tr (s— A)~! by extrapolating finite cycle length truncations of (18.28)methods
such as Padé approximants. However, it pays to first perfosimple resumma-
tion which converts this divergence of a trace intzeaoof a spectral determinant.
We shall do this in sect. 19.2, but first a brief refresher of/fadl this relates to
the formula for escape rate (1.8ffe@red in the introduction might help digest the
material.

fast track:
W sect. 19, p. 384
18.3 An asymptotic trace formula

,
J In order to illuminate the manipulations of sect. 18.1 arldteesthem to
something we already possess intuition about, we now rezlére heuristic sum
of sect. 1.5.1 from the exact trace formula (18.10). The aegtransforms (18.10)
or (18.23) are designed to capture the timeo asymptotic behavior of the trace
sums. By the hyperbolicity assumption (18.5), fet Tpr large the cycle weight
approaches

det(1 - mp)

— A", (18.25)

whereA, is the product of the expanding eigenvaluesvf. Denote the corre-
sponding approximation to theh trace (18.7) by

o= — (18.26)

and denote the approximate trace formula obtained by rieyjdice cycle weights
|det(1 - ML)| by |Apl" in (18.10) byI'(2). Equivalently, think of this as a replace-
ment of the evolution operator (17.16) by a transfer opei@®in example 18.2).
For concreteness consider a dynamical system whose synulyolamics is com-
plete binary, for example the 3-disk system figure 1.6. Ig ¢hise distinct periodic
points that contribute to theth periodic points sum (18.8) are labeled by all ad-
missible itineraries composed of sequences of legets0, 1}:

& BA"(x)

@ = nng‘rn:Zz" D ™

n=1  xeFixfn
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Ao A 22 e2.3~A0 gfhor  BAwo e2.3~A1
B Z{|A0| " |A1|}+ {|A0|2 " TAod Azl |A1|2}
23{e3ﬂA0 93-A001 93-A010 93-/-\100 }
+ P

+ + + + 18.27
IAol®  |Acoidl  [Aoid  |A1od ( )

Both the cycle average and the stabilities\; are the same for all points € M
in a cyclep. Summing over repeats of all prime cycles we obtain

I'(9 = Z f%ti’p . ty=2Zve A (18.28)
p

This is precisely our initial heuristic estimate (1.9). Bdhat we could not per-
form such sum over in the exact trace formula (18.10) %met(l— M{)) #

r
|det(1— Mp)| ; the correct way to resum the exact trace formulas is to fist e
pand the factors /11 — A,jl, as we shall do in (19.9). section 19.2

If the weightse®”"® are multiplicative along the flow, and the flow is hyper-
bolic, for givenB the magnitude of eacfe®”"*)/A;| term is bounded by some
constantM". The total number of cycles grows a%@®r ase€™, h = topological
entropy, in general), and the sum is convergenziuficiently small,|Z < 1/2M.
For largen thenth level sum (18.7) tends to the leadifj eigenvalue2®. Sum-
ming this asymptotic estimate level by level

ze90
— 7690

F(z)~z ()" = (18.29)

we see that we should be able to determsgpdy determining the smallest value
of z= e % for which the cycle expansion (18.28) diverges.

If one is interested only in the leading eigenvalue/pit suffices to consider
the approximate tracE(z). We will use this fact in sect. 19.3 to motivate the
introduction of dynamical zeta functions (19.14), and iots&9.5 we shall give
the exact relation between the exact and the approximate foamulas.

Résum é

The description of a chaotic dynamical system in terms ofesycan be visual-
ized as a tessellation of the dynamical system, figure 18ith, avsmooth flow
approximated by itperiodic orbit skeletoneach regionM; centered on a peri-
odic point x; of the topological lengtm, and the size of the region determined
by the linearization of the flow around the periodic point.eThtegral over such
topologically partitioned state space yields thessical trace formula

ZSSQZZ|

g (B-Ap—sTp)

a=0 dtl '\/lr
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Now that we have a trace formula, one might ask: what is it gmo@d As it
stands, it is a scary divergent formula which relates thepeakable infinity of
global eigenvalues to the unthinkable infinity of local @aisé cycles. However,
it is a good stepping stone on the way to construction of spledtterminants (to
which we turn next), and a first hint that when the going is galod theory might
turn out to be convergent beyond our wildest dreams (ch&&gr In order to
implement such formulas, we will have to determine “all’pé cycles. The first
step is topological: enumeration of all admissible cycledartaken in chapter 12.
The more onerous enterprize of actually computing the syale first approach
traditionally, as a numerical task in chapter 13, and thererboldly as a part and
parcel of variational foundations of classical and quandiymamics in chapter 29.

Commentary

Remark 18.1 Who's dunne it? Continuous time flow traces weighted by cycle
periods were introduced by Bowen [18.1] who treated themaisdaré section suspen-
sions weighted by the “time ceiling” function (3.5). Theyngaised by Parry and Polli-

cott [18.2].

Remark 18.2 Flat and sharp traces. In the above formal derivation of trace for-
mulas we cared very little whether our sums were well posadhé Fredholm theory
traces like (18.14) require compact operators with comtirsufunction kernels. This is
not the case for our Dirac delta evolution operators: néedess, there is a large class
of dynamical systems for which our results may be shown todyéeptly legal. In the
mathematical literature expressions like (18.7) are ddl&t traces (see the review [18.4]
and chapter 23). Other names for traces appear as well: dtamce, in the context of 1-
dimensional mappingsharptraces refer to generalizations of (18.7) where contrimsti
of periodic points are weighted by the Lefschetz sidn reflecting whether the periodic
point sits on a branch afth iterate of the map which crosses the diagonal starting fro
below or starting from above [19.10]. Such traces are caeddo the theory of knead-
ing invariants (see ref. [18.4] and references thereinaca@s weighted by1 sign of the
derivative of the fixed point have been used to study the geftubling repeller, leading
to high precision estimates of the Feigenbaum constamefs. [18.5, 20.6, 18.6].

Exercises

18.1. t — 0, regularization of eigenvalue sums’.  In tak- (or heat kernel) case this limit gives rise to the Weyl
ing the Laplace transform (18.23) we have ignored the = or Thomas-Fermi mean eigenvalue spacing.Regularize
t — 0, divergence, as we do not know how to regularize the divergent sum in (18.23) and assign to such volume
the delta function kernel in this limit. In the quantum term some interesting role in the theory of classical res-
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onance spectra. E-mail the solution to the authors. (a) ComputelsLtg(x) to show that

t —
18.2. General weights. (easy) Letf! be a flow andf! the w(s FOYOW(E X) = w(t + 5 X).

operator (b) Restrictt and s to be integers and show that the
most general form ofv is
L'g(x) = f dys(x— f'(y))w(t, y)g(y) w(n, X) = g(¥)a(f ))g(F2(X) - - - g(f" (X)),
for someg that can be multiplied. Could be a
wherew is a weight function. In this problem we will function fromR™ — R™? (0, € N.)

try and determine some of the propertiemust satisfy.
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