Chapter 34

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanovic)

tion, the central results of the semiclassical quantizatbclassically

chaotic systems. In chapter 35 we will rederive these foasfbr the
case of scattering in open systems. Quintessential waveanes &ects such as
creeping, diraction and tunneling will be taken up in chapter 38.

WE DERIVE HERE the Gutzwiller trace formula and the semiclassical zetafun

34.1 Traceformula

Our next task is to evaluate the Green function trace (3lirilB)e semiclassical
approximation. The trace

UGu(®) = [ PaGula.aE) =uGuE)+ )] [ Paci@ar)
j

receives contributions from “long” classical trajectsri@beled byj which start
and end inq after finite time, and the “zero length” trajectories whosadths
approach zero ag — q.

First, we work out the contributions coming from the finitend returning
classical orbits, i.e., trajectories that originate and aha given configuration
pointg. As we are identifyingy with ¢, taking of a trace involves (still another!)
stationary phase condition in tlegg — q limit,

oSi@d.B)l | 95/@Q9q.E)

/ = 0 ’
aai q=q 9 q=q
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Figure 34.1: A returning trajectory in the configura- P‘
tion space. The orbit is periodic in the full phase spac

only if the initial and the final momenta of a returning
trajectory coincide as well.

Figure 34.2: A romanticized sketch ofS,(E) =
S(9,9.E) = jip(q, E)dq landscape orbit. Unstable
periodic orbits traverse isolated ridges and saddles
the mountainous landscape of the act®(y;, g, , E).
Along a periodic orbitS,(E) is constant; in the trans-
verse directions it generically changes quadratically.

meaning that the initial and final momenta (33.40) of contiily trajectories
should coincide

pi(a.9,E) - p{(a,9,.E) =0, g€ jth periodic orbit (34.1)

so the trace receives contributions only from those longsital trajectories which
areperiodicin the full phase space.

For a periodic orbit the natural coordinate system is thenisic one, withg
axis pointing in theg direction along the orbit, ang,, the rest of the coordinates
transverse tg. The jth periodic orbit contribution to the trace of the semicieals
Green function in the intrinsic coordinates is

1 dq d-1 i 1/2,1s-i
trGj(E):WﬁF\fj‘d q.[detD! [Veer>i2M,

where the integration igy goes from 0 td_j, the geometric length of small tube
around the orbit in the configuration space. As always, irstagonary phase ap-
proximation we worry only about the fast variations in theaghS;(qy,q., E),
and assume that the density varies smoothly and is well ajppabed by its
value D’L(qH,O, E) on the classical trajectory, = 0 . The topological index
m;(qy. q., E) is an integer which does not depend on the initial pgjnand not
change in the infinitesimal neighborhood of an isolatedqutei orbit, so we set
m;(E) = mj(qy, 9., E).

The transverse integration is again carried out by theostaty phase method,
with the phase stationary on the periodic orgit,= 0. The result of the transverse
integration can depend only on the parallel coordinate

detD,j(qy, 0, E)

1/2
i, i
detD’ (g, 0, E)

i—2m
s

1 rd
rG;i(E) = 599%
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where the new determinant in the denominator,mﬁt:

det[azsm, q9.E) , #S(@q.E)  #S@q.E)  #S@d, E)]
990 0q;00.j 6qli(()qu 6qliﬁqu ’

is the determinant of the second derivative matrix comirmnfithe stationary
phase integral in transverse directions.

The ratio deDLj/detD’“. is here to enforce the periodic boundary condition
for the semiclassical Green function evaluated on a periodiit. It can be given
a meaning in terms of the monodromy matrix of the periodidtds following
observations

ap,, Hﬂ(q’p )
detD =||—=
+ aq. (.. qd,)
detD’ Hr’)pl _oPL, dps 9P| Ha(pi Pl d - d), ‘
+ 9. dq. g, aq, AL, q.) '

Defining the 2D — 1)-dimensional transverse vectgr = (q., p.) in the full
phase space we can express the ratio

detD’, _ Ha(pJ. pLar—-d)) _ Ha(xl - X,
detD, (T, pL)
= det(M-1), (34.2)

in terms of the monodromy matrik for a surface of section transverse to the
orbit within the constant enerdy = H(q, p) shell.

The classical periodic orbit actid®y(E) = f p(qy, E)dg; is an integral around
a loop defined by the periodic orbit, and does not depend ostéréng pointoy,
along the orbit, see figure 34.2. The eigenvalues of the ntonog matrix are
also independent of wheid; is evaluated along the orbit, so det{M;) can also
be taken out of they integral

1 1 ig_izmy { dg
trG:(E) = — —er(’slffml) _l
rGiE) 'hgldEt(l— M;)[H/2 o ]

Here we have assumed thsltj has no marginal eigenvalues. The determinant
of the monodromy matrix, the actid®,(E) = fp(qu, E)dq, and the topological
index are all classical invariants of the periodic orbit.eTihtegral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a geriorbit is also a

periodic orbit. The action and the topological index areitagelalong the trajec-
tory, so forrth repeat they simply get multiplied sy The monodromy matrix of
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therth repeat of a prime cyclp is (by the chain rule for derivatives\yl[,, where
My, is the prime cycle monodromy matrix. Let us denote the tim@ogeof the
prime cyclep, the single, shortest traversal of a periodic orbiflpy The remain-
ing integral can be carried out by change of varialoles dg;/q(t)

Lpd
fo Q\ fd—Tp

Note that the spatial integral corresponds wirgletraversal. If you do not see
why this is so, rethink the derivation of the classical trémenula (18.23) - that
derivation takes only three pages of text. Regrettablyhénguantum case we do
not know of an honest derivation that takes less than 30 pafes final result,
the Gutzwiller trace formula

1 gGsesm)
trGe(E) = trGo(E)+hZ pz‘det(l M')|1/2é 3T (34.3)

an expression for the trace of the semiclassical Greenifumict terms of periodic
orbits, is beautiful in its simplicity and elegance.

The topological indexny(E) counts the number of changes of sign of the ma-
trix of second derivatives evaluated along the prime pésiodbit p. By now we
have gone through so many stationary phase approximatiabyau have surely
lost track of what the totain,(E) actually is. The rule is this: The topological
index of a closed curve in alphase space is the sum of the number of times
the partial derivative% for each dual paird;, p;),i = 1,2,...,D (no sum on)
change their signs as one goes once around the curve.

34.1.1 Averagedensity of states

We still have to evaluate @q(E), the contribution coming from the infinitesimal
trajectories. The real part of @(E) is infinite in theq’ — q limit, so it makes
no sense to write it down explicitly here. However, the inmagy part is finite,
and plays an important role in the density of states formukagch we derive next.

The semiclassical contribution to the density of states1@&lis given by
the imaginary part of the Gutzwiller trace formula (34.3)ltiplied with —1/7.

The contribution coming from the zero length trajectorgethie imaginary part of
(33.48) forq’ — qintegrated over the configuration space

1
do(E):—;deqlmGo(q,q, E),

The resulting formula has a pretty interpretation; it esties the number of
guantum states that can be accommodated up to the eBebyycounting the
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available quantum cells in the phase space. This numberéas giy theweyl rule
, as the ratio of the phase space volume bounded by efediyided byh®, the
volume of a quantum cell,

NedE) = o f d®pPqo(E - H(g. p)). (34.4)

where®(X) is the Heaviside function (31.20Ns(E) is an estimate of the spectral
staircase (31.19), so its derivative yields the averagsitjeof states

d
(E) = geNlE) = 5 [ @PPAS(E - HEaP). (34.5)

precisely the semiclassical result (34.6).  For Hamiltosiaf type p?/2m +

V(q), the energy shell volume in (34.5) is a sphere of radeETn(E -V(q)). The

surface of ad-dimensional sphere of radiusis 7%/2r4-1/T(d/2), so the averageexercise 34.2
density of states is given by

__2m D _ D/2-1
YO = gD Joge & ILME V@I, (34.6)
and
NedB) = = — 7% dPq[2m(E - V(@)]°"2. (34.7)

P T(1+ D/2) Jy(g-e

Physically this means that at a fixed energy the phase spacsup@ortNs«(E)
distinct eigenfunctions; anything finer than the quanturh k€ cannot be re-
solved, so the quantum phase spacdfisctively finite dimensional. The average

density of states is of a particularly simple form in one gpatimension exercise 34.3
_T(E)
do(E) = oh (34.8)

whereT(E) is the period of the periodic orbit of fixed ener@y In two spatial
dimensions the average density of states is

mA(E)
2nh2

do(E) = (34.9)

whereA(E) is the classically allowed area of configuration space faictvV(q) <
E. exercise 34.4
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The semiclassical density of states is a sum of the averaggitylef states and
the oscillation of the density of states around the averdgéE) = do(E)+dosdE),
where

1 o COSESp(E)/h — rmpm/2)
dosd(E) = T Zp: Tp ; idet (1— Mp)[/2 (34.10)

follows from the trace formula (34.3).

34.1.2 Regularization of the trace

The real part of thaf — q zero length Green function (33.48) is ultraviolet
divergent in dimensiongl > 1, and so is its formal trace (31.15). The short
distance behavior of the real part of the Green function eaexracted from the
real part of (33.48) by using the Bessel function expansiorsinallz

-ire)(2)" forv#0

@~ { 2(in(z/2)+y) forv=0"

wherey = 0.577... is the Euler constant. The real part of the Green function for
short distance is dominated by the singular part

Zh;“”% r(d- 2)/2)W ford# 2

52 (IN(2M(E — V)Iq - |/2k) +) ford=2

Gsing(ld — q'I, E) =

TheregularizedGreen function

Greg(Qa q.E)=G(a.9.E) - Gsing(lq -q|.E)

is obtained by subtracting tr®¢ — q ultraviolet divergence. For the regularized
Green function the Gutzwiller trace formula is

_ 1 ® & (5Sp(E)-Emy(E))
E)=— E)+ — g T E AR 4.11
" GreglE) = ~inco(B) + 77 4P L [det (1- Mp)72 344D

Now you stand where Gutzwiller stood in 1990. You hold thedréormula in
your hands. You have no clue how good is the»> 0 approximation, how to
take care of the sum over an infinity of periodic orbits, ancethier the formula
converges at all.
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Figure 34.3: A sketch of how spectral determinants
convert poles into zeros: The trace show$El- E,)
type singularities at the eigenenergies while the spe
tral determinant goes smoothly through zeroes.

I i
deferminant= S

34.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge wherensed them, at
the individual energy eigenvalues. What to do? Much of thantum chaos
literature responds to the challenge of wrestling the tfaoulas by replacing
the delta functions in the density of states (31.16) by Ganss But there is no
need to do this - we can compute the eigenenergies withoufuather ado by
remembering that the smart way to determine the eigenvalli@sear operators
is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct teetspl determin-
ant whose zeroes yield the eigenenergies, ldet E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard producirof

det - ) = [ [(E-Ey).

n

but this product is not well defined, since for fixdve multiply larger and larger
numbers E — E;). This problem is dealt with byegularization discussed below
in appendix 34.1.2. Here wefer an impressionistic sketch of regularization.

The logarithmic derivative of det{ — E) is the (formal) trace of the Green
function

d . 1
~ggIndetH - E) = ; E-g - UGE.

This quantity, not surprisingly, is divergent again. Thiatien, however, opens a
way to derive a convergent version of det{ E)sc, by replacing the trace with
the regularized trace

d -
“3E IndetH — E)sc = tr Greg(E).

The regularized trace still hag(E — E,) poles at the semiclassical eigenenergies,
poles which can be generated only if dét{ E)sc has a zero aE = E;, see
figure 34.3. By integrating and exponentiating we obtain

E
detl - E)sc = exp(— f dE’ trG,eg(E'))
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Now we can use (34.11) and integrate the terms coming fronogierorbits,
using the relation (33.17) between the action and the peia periodic orbit,
dSp(E) = Tp(E)dE, and the relation (31.19) between the density of stateshand t
spectral staircas€lNs(E) = do(E)dE. We obtain thesemiclassical zeta function

1 ér(Sp/h—mpn/Z)

S —— (34.12)
r det (1- Mp)12

det — E)sc = &™s(B) exp| - Z Z
p r=1

chapter 20

We already know from the study of classical evolution opmrapectra of chap-
ter 19 that this can be evaluated by means of cycle expansitresbeauty of this
formula is that everything on the right side — the cycle acg, the topological
indexmjp, and monodromy matriM, determinant —is intrinsic, coordinate-choice
independent property of the cygbe

34.3 One-dof systems

It has been a long trek, a stationary phase upon stationagephLet us check
whether the result makes sense even in the simplest caspjdotum mechanics
in one spatial dimension.

In one dimension the average density of states follows fiwriltdof form of
the oscillating density (34.10) and of the average den8uy8)

ToE) , 5 TolE)

dB) =~ 7h

cos€Sp(E)/h — rmp(E)n/2). (34.13)

The classical particle oscillates in a single potentiall with period T(E). There
is no monodromy matrix to evaluate, as in one dimension tiseygly the parallel
coordinate, and no transverse directions. Thepetition sum in (34.13) can be
rewritten by using the Fourier series expansion of a delteedpain

oo

Z S(x—n) = i i i 2 cos(Zrkx).
ke )

n=—co =—00
We obtain

Tp(
2n

d(E) = E) > 6(Sp(E) /2 — my(E)/4 - ). (34.14)

This expression can be simplified by using the relation (BBbketweenT, and
Sp, and the identity (16.7)(x — x*) = |f"(X)[6(f(x)), wherex" is the only zero of
the functionf(x*) = 0 in the interval under consideration. We obtain

d(E) = )’ 6(E - En).
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where the energiels, are the zeroes of the arguments of delta functions in (34.14)

Sp(En)/2n7 = n—mp(E)/4,

wherem,(E) = mp = 2 for smooth potential at both turning points, ang(E) =
m, = 4 for two billiard (infinite potential) walls. These are pisaly theBohr-
Sommerfeld quantized energieg, Elefined by the condition

56 p(d, En)dg = h(n - %) (34.15)

In this way the trace formula recovers the well known 1-do&mfization rule.
In one dimension, the average of states can be expressedHeoquantization
condition. AtE = E, the exact number of statesriswhile the average number
of states i1 — 1/2 since the staircase functidf(E) has a unit jump in this point

Ns«(E) = n— 1/2 = Sp(E)/2rnh — my(E) /4 — 1/2. (34.16)

The 1-dof spectral determinant follows from (34.12) by giog the mon-
odromy matrix part and using (34.16)

detH - E)sc = exp(—lﬁsp + Igmp) exp[— Z %e%'sp‘i?"'mp] . (34.17)
r

Summation yields a logarithm by, t"/r = —In(1 - t) and we get

det@ - E)se = e #S P+5(1—eiSi?)
25in(Sp(E)/h — my(E)/4) .

So in one dimension, where there is only one periodic orbigfgiven energy E,
nothing is gained by going from the trace formula to the spédeterminant. The
spectral determinant is a real function for real energied,i& zeros are again the
Bohr-Sommerfeld quantized eigenenergies (34.15).

34.4 Two-dof systems

For flows in two configuration dimensions the monodromy mallfi, has two

eigenvalues\, and J/Ap, as explained in sect. 7.3. Isolated periodic orbits can

be elliptic or hyperbolic. Here we discuss only the hyperohse, when the
eigenvalues are real and their absolute value is not equaleoThe determinant
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appearing in the trace formulas can be written in terms ofettganding eigen-
value as

Idet (1- MpIY/2 = |ALM2 (1= 1/A) |

and its inverse can be expanded as a geometric series

)

1 5 1
det (1- MpIY2 &4 ALIY2AK

With the 2-dof expression for the average density of st&8é9j the spectral
determinant becomes

R e 0 0 ir (Sp/i-mpr/2)
det(H — E)sc e 22 exp[_ Zp: Z Z rIARL2AK

@ eiSe=%Mp
]—[ 1—m . (34.18)

I
@

I3

B
o]

Résum é

Spectral determinants and dynamical zeta functions ange in classical and
guantum mechanics because in both the dynamical evolugiofe described by
the action of linear evolution operators on infinite-dimenal vector spaces. In
guantum mechanics the periodic orbit theory arose fromesuaf semi-conductors,
and the unstable periodic orbits have been measured iniex#s on the very
paradigm of Bohr's atom, the hydrogen atom, this time inrgjrexternal fields.

In practice, most “quantum chaos” calculations take thgostary phase ap-
proximation to quantum mechanics (the Gutzwiller tracenfala, possibly im-
proved by including tunneling periodic trajectoriesffidiction corrections, etc.)
as the point of departure. Once the stationary phase appatioin is made, what
follows is classicalin the sense that all quantities used in periodic orbit calcu
lations - actions, stabilities, geometrical phases - aassital quantities. The
problem is then to understand and control the convergenctassical periodic
orbit formulas.

While various periodic orbit formulas are formally equizmat, practice shows
that some are preferable to others. Three classes of pewodit formulas are
frequently used:

Trace formulasThe trace of the semiclassical Green function

1 GelE) = f dqGee(. . E)
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is given by a sum over the periodic orbits (34.11). While estsio derive, in cal-

culations the trace formulas are inconvenient for anythutiger than the leading
eigenvalue estimates, as they tend to be divergent in ti@re§physical interest.

In classical dynamics trace formulas hide under a variegppfellations such as
the f —a or multifractal formalism; in quantum mechanics they arewn as the

Gutzwiller trace formulas.

Zeros ofRuelle or dynamical zeta functions

1 s in
l/g(s) = l_[ (1—tp)7 tp = mef’sp imp/2
p p

yield, in combination with cycle expansions, the semidtadestimates ofjuan-
tumresonances. For hyperbolic systems the dynamical zetéidnachave good
convergence and are a useful tool for determination of idalsand quantum me-
chanical averages.

Spectral determinants, Selberg-type zeta functions, Halked determinants,
functional determinantare the natural objects for spectral calculations, withcon
vergence better than for dynamical zeta functions, but lgih transparent cycle
expansions. The 2-dof semiclassical spectral determ{i34nt8)

N . © JSp/hi—irmy/2
dettl - E)sc = & [ ][ ] [1 _ewme ]

1/2 K
p k=0 ‘Apl ! Ap

is a typical example. Most periodic orbit calculations aasdx on cycle expan-
sions of such determinants.

As we have assumed repeatedly during the derivation of #ite formula that
the periodic orbits are isolated, and do not form familiesi¢athe case for inte-
grable systems or in KAM tori of systems with mixed phase spate formulas
discussed so far are valid only for hyperbolic and ellipgcipdic orbits.

For deterministic dynamical flows and number theory, spécteterminants
and zeta functions are exact. The quantum-mechanical deeged by the Gutzwiller
approach, are at best only the stationary phase approxinsatd the exact quan-
tum spectral determinants, and for quantum mechanics aarterg conceptual
problem arises already at the level of derivation of the stassical formulas; how
accurate are they, and can the periodic orbit theory bersysteally improved?

Commentary

Remark 34.1 Gutzwiller quantization of classically chaotic systems.  The derivation
given here and in sects. 33.3 and 34.1 follows closely thell exposition [30.2] by
Martin Gutzwiller, the inventor of the trace formula. Therigation presented here is self
contained, but refs. [30.3, 34.1] might also be of help tostuelent.
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Remark 34.2 Zeta functions.
page 397.

traceSemicl - 2mar2004
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Exercises

34.1. Monodromy matrix from second variationsof theac-
tion. Show that

D,j/D\j=(1-M) (34.19)

34.2. Volume of d-dimensional sphere.

792rd/1(1 + d/2). Show thal'(1 + d/2) = I'(d/2)d/2.

34.3. Averagedensity of statesin 1 dimension. Show that
in one dimension the average density of states is given

by (34.8)
ae) = 0,
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