Chapter 38

Diffr action distraction

(N. Whelan)

IFFRACTION EFFECTS characteristic to scatteringfovedges are incorporated
into the periodic orbit theory.

38.1 Quantum eavesdropping

As noted in chapter 37, the classical mechanics of the heditom is undefined
at the instant of a triple collision. This is a common phennare- there is often
some singularity or discontinuity in the classical mecharaf physical systems.
This discontinuity can even be helpful in classifying theawics. The points in
phase space which have a past or future at the discontirarity inanifolds which
divide the phase space and provide the symbolic dynamiasg@&heral rule is that
guantum mechanics smoothes over these discontinuitiepriocass we interpret
as difraction. We solve the local firaction problem quantum mechanically and
then incorporate this into our global solution. By doing 8@ reconfirm the
central leitmotif of this treatise: think locally - act glalty.

While being a well-motivated physical example, the helitonais somewhat
involved. In fact, so involved that we do not have a clue hovddoit. In its
place we illustrate the concept offifactive dfects with a pinball game. There
are various classes of discontinuities which a billiard bawe. There may be a
grazing condition such that some trajectories hit a smootfase while others
are undtected - this leads to the creeping described in chapter 3&eThay be a
vertex such that trajectories to one side bounéidintly from those to the other
side. There may be a point scatterer or a magnetic flux link that we do not
know how to continue classical mechanics through the dismaities. In what
follows, we specialize the discussion to the second examibiat of vertices or
wedges. To further simplify the discussion, we considersthecial case of a half
line which can be thought of as a wedge of angle zero.
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Figure 38.1: Scattering of a plane wavefa half line.

We start by solving the problem of the scattering of a planeendt a half
line (see figure 38.1). This is the local problem whose sofutve will use to
construct a global solution of more complicated geometiiés define the vertex
to be the origin and launch a plane wave at it from an anglgv/hat is the total
field? This is a problem solved by Sommerfeld in 1896 and csoudision closely
follows his.

The total field consists of three parts - the incident fiel@ téflected field
and the dffractive field. Ignoring the third of these for the moment, we that
the space is divided into three regions. In region | thereoth lan incident and a
reflected wave. In region Il there is only an incident field.région Il there is
nothing so we call this the shadowed region. However, becafidiffraction the
field does enter this region. This accounts for why you cantmag a conversation
if you are on the opposite side of a thick wall but with a dooew fneters away.
Traditionally such &ects have been ignored in semiclassical calculations Becau
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with thieline case,
so let us briefly consider that much simpler problem. Therekm@w that the
problem can be solved by images. An incident wave of amm@ifuts of the form

v(r, y) = Aeikrcosy (38.1)

wherey = ¢ — @ and¢ is the angular coordinate. The total field is then given by
the method of images as

Viot = V(1. ¢ — @) = V(1. ¢ + ), (38.2)

where the negative sign ensures that the boundary condifiaero field on the
line is satisfied.

Sommerfeld then argued théa, ) can also be given a complex integral rep-
resentation

v(r.u) = A fc dB1(B.w)e ™ 0%, (38.3)
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We assume that the complete solution is also given by theadathimages
as

Vot = U(r, ¢ —a) — U(r. ¢ + ). (38.5)

whereu(r,y) is a 4r-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical spackthe negative sign
guarantees that the solution vanishes on both faces of thénea Sommerfeld
then made the ansatz thats as given in equation (38.3) with the same contour
Cy + C, but with the 4 periodicity accounted for by replacing equation (38.4)
Figure 38.2: The contour in the compleX plane. with
The pole is a8 = — (marked byx in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
3 approaches infinity.

1 dh2

In P2~ (339

f(ﬁ"//) =

This is certainly correct if the functiof(B, ) has a pole of residue/2ri atp =
—y and if the contouC encloses that pole. One choice is

1 ek
fe0 = e (38.4)
(We choose the pole to be@t= —y rather thaB = y for reasons discussed later.)
One valid choice for the contour is shown in figure 38.2. Tisleses the pole
and vanishes démp| — « (as denoted by the shading). The sectibasandD;
are congruent because they are displacedbyHowever, they are traversed in
an opposite sense and cancel, so our contour consists @hgisection<C; and
C,. The motivation for expressing the solution in this comgaiéz! manner should
become clear soon.

What have we done? We extended the space under considdrgtafactor
of two and then constructed a solution by assuming that tiseaso a source in
the unphysical space. We superimpose the solutions fronwihsources and at
the end only consider the solution in the physical space tméaningful. Fur-
thermore, we expressed the solution as a contour integriehwhbflects the 2
periodicity of the problem. The half line scattering prohléllows by analogy.

Whereas for the full line the field is periodic imr 2for the half line it is peri-
odic in 4r. This can be seen by the fact that the field can be expandedeines s
of the form{sin(¢/2), sin(®), sin(34/2),---}. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shoigure 38.1 and the
unphysical sheet is congruent to it. The sheets are gluesthtegalong the half
line so that a curve in the physical space which interseetsdif line is continued
in the unphysical space and vice-versa. The boundary ¢onsliare that the total
field is zero on both faces of the half line (which are physjcdistinct boundary
conditions) and that as — oo the field is composed solely of plane waves and
outgoing circular waves of the form(¢) exp(kr)/ Vkr. This last condition is a
result of Huygens’ principle.
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(We divide by 4 rather than 2 so that the residue is properly normalized.) The
integral (38.3) can be thought of as a linear superpositfcananfinity of plane
waves each of which satisfies the Helmholtz equatigh+(k?)v = 0, and so their
combination also satisfies the Helmholtz equation. We &# that the dfracted
field is an outgoing circular wave; this being a result of cting the pole g8 =

—y rather tharmB = y in equation (38.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions andftivereonstitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is usefulnassage the contour.
Depending orp there may or may not be a pole betwggr —7 andp = n. In
region |, both functionsu(r, ¢ + @) have poles which correspond to the incident
and reflected waves. In region Il, onlfr, ¢ — a) has a pole corresponding to the
incident wave. In region Ill there are no poles because obtialow. Once we
have accounted for the geometrical waves (i.e., the palesgxtract the diracted
waves by saddle point analysis@at +r. We do this by deforming the contours
C so that they go through the saddles as shown in figure 38.2.

ContourC; becomesE;, + F while contourC, becomesE; — F where the
minus sign indicates that it is traversed in a negative sefisa resultF has no
net contribution and the contour consists of jHstandE;.

As a result of these machinations, the cureare simply the curve® of
figure 38.2 but with a reversed sense. Since the integraral@wer 2r periodic,
the contributions from these curves no longer cancel. Wiat@both stationary
phase integrals to obtain

gr/4 jkr
u(r,¥) ~ —~A——=sec(/2 38.7
(r,¥) N v/2) N (38.7)
so that the total diracted field is
g4 ¢—a é+ay) ¥
Vi = —~A—— (sec(—)—se({—))—. 38.8
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Here® is the angle to the source as measured from the verted arttie angle to

the receiver. They were denoted@and¢ previously. Note that there is a sym-

metry between the source and receiver as we expect for aréiveesal invariant

process. Also the firaction codficientd does not depend on which face of the

half line we use to measure the angles. As we will see, a vepgiitant property

of Gy is that it is a simple multiplicative combination of othemselassical

Green functions. exercise 38.2

We now recover our classical perspective by realizing thretan still think
of classical trajectories. In calculating the quantum Griemction, we sum over
the contributions of various paths. These include the abk#ajectories which
connect the points and also paths which connect the poiattheivertex. These
have diferent weights as given by equations (38.9) and (38.10) keutdhcept of
summing over classical paths is preserved.

Figure 38.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The cufve

is traversed twice in opposite directions and has no
net contribution.

Note that this expression breaks down wigen @ = 7. These angles correspond

to the borders among the three regions of figure 38.1 and neusabdled more

carefully - we can not do a stationary phase integral in thinity of a pole.

However, the integral representation (38.3) and (38.6hiformly valid. exercise 38.1

We now turn to the simple task of translating this result ithte language of
semiclassical Green functions. Instead of an incidenteplaave, we assume a
source at poink’ and then compute the resulting field at the receiver position
If xis in region I, there is both a direct term, and a reflected térmis in region
Il there is only a direct term and K is in region Ill there is neither. In any event
these contributions to the semiclassical Green functierkaown since the free
space Green function between two poiriandx; is

G2, X1, K) = —%H((;)(kd) ~ —\/ﬁ expli(kd + 7/4)}, (38.9)

whered is the distance between the points. For a reflection, we regtttiply
by —1 and the distance is the length of the path via the reflect@mntp Most
interesting for us, there is also didactive contribution to the Green function. In
equation (38.8), we recognize that the méent A is simply the intensity at the
origin if there were no scatterer. This is therefore repddog the Green function
to go from the source to the vertex which we lakgl Furthermore, we recognize
that expikr)/ Vkr is, within a proportionality constant, the semiclassicat@h
function to go from the vertex to the receiver.

Collecting these facts, we say
Gier(% X, K) = G (%, xv, K)d(6, ¢')Gg(xv, X, k), (38.10)

where, by comparison with equations (38.8) and (38.9), we ha

d0.0) = sec(e‘zel) _Sec(g_;g/)‘ (38.11)
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For completeness, we remark that there is an exact integpedsentation for
the Green function in the presence of a wedge of arbitrarypiogeangle [38.15].
It can be written as

G(x, X, k) =g(r,r',k ¢ —6) —g(r,r',k, ¢ +6) (38.12)

where ¢, 6) and ¢’, ") are the polar coordinates of the poimtandx’ as measured
from the vertex and the angles are measured from either fate ovedge. The
functiong s given by

(38.13)

) = -
o k) = g

f dﬁHg(k\/r2+ 1’2 — 2rr’ cosp)
C1+C2

1- exp(i’ﬂ)

v

wherev = y/x andy is the opening angle of the wedge. fie= 2r in the case of
the half plane). The conto@; + C, is the same as shown in figure 38.2.

The poles of this integral give contributions which can beniified with the
geometric paths connectingand x’. The saddle points # = +x give contribu-
tions which can be identified with theftliactive path connecting andx’. The
saddle point analysis allows us to identify thédiction constant as

4sinZ singsin
v y >y (38.14)

d,0) = - ,
©.€) v (cosZ - cos®” ) (cos® - cos=E)

which reduces to (38.11) when= 2. Note that the diraction codicient vanishes
identically if v = 1/n wheren is any integer. This corresponds to wedge angles
of y = n/n (eg. r=1 corresponds to a full line and=@2 corresponds to a right
angle). This demonstration is limited by the fact that it eafrom a leading
order asymptotic expansion but the result is quite genEalsuch wedge angles,
we can use the method of images (we will require-21 images in addition to
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Figure 38.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections & the faces. The top vertex inducefic-
tion while the bottom one is a right angle and induces
two specular geometric reflections.

the actual source point) to obtain the Green function ancetiseno difractive
contribution to any order. Classically this correspondshi fact that for such
angles, there is no discontinuity in the dynamics. Trajeesogoing into the vertex
can be continued out of them unambiguously. This meshesthétdiscussion in
the introduction where we argued thaffthctive étects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allssmto consider ge-
ometries such that the angles are near the optical bousdarigne wedge angle
is close tar/n. For these geometries the saddle point analysis leadinggtd4)
is invalid due to the existence of a nearby pole. In that ewgatrequire a more
sophisticated asymptotic analysis of the full integraresentation.

38.2 An application

Although we introduced dliraction as a correction to the purely classidé¢ets;

it is instructive to consider a system which can be quanteadly in terms of
periodic difractive orbits. Consider the geometry shown in figure 38.4 dlas-
sical mechanics consists of free motion followed by speaeifections @ faces.
The upper vertex is a source offdaction while the lower one is a right angle and
induces no diraction. This is an open system, there are no bound statdy - on
scattering resonances. However, we can still testfifeet/eness of the theory in
predicting them. Formally, scattering resonances aredlespf the scattering
matrix and by an identity of Balian and Bloch are also polethefquantum Green
function. We demonstrate this fact in chapter 35 for 2-disi@mal scatterers. The
poles have complex wavenumberas for the 3-disk problem.

Let us first consider how fractive orbits arise in evaluating the trace®f
which we callg(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space whélgostary phase ar-
guments for large wavenumbeé&rextract those which are periodic - just as for
classical trajectories. In generglk) is given by the sum over all firactive and
geometric orbits. The contribution of the simpléfdictive orbit labeled’ shown
in figure 38.5 tog(k) is determined as follows.

We consider a poinP just a little df the path and determine the semiclassical
Green function to return t® via the vertex using (38.9) and (38.10). To leading
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Figure 38.5: The dashed line shows a simple periodi
diffractive orbity. Between the verteX and a poinf
close to the orbit there are two geometric legs label
+. The origin of the coordinate system is chosen to
atR.

order iny the lengths of the two geometric paths connecthgndV ared. =
(L+X)+y?/(L+x)?/2 so that the phase factid(d, +d_) equals KL+iky?/(L?—x?).
The trace integral involves integrating over all poiRtand is

d@kLm/) AL gy o0 ikyzﬁ)
00~ 20, — [ = | "ol (38.15)

We introduced an overall negative sign to account for thecgtin at the hard wall
and multiplied by 2 to account for the two traversal sens&®V andVPRV. In
the spirit of stationary phase integrals, we have neglettte¢ dependence ev-
erywhere except in the exponential. Théwiction constand, is the one corre-
sponding to the diractive periodic orbit. To evaluate theintegral, we use the
identity

f ded®® = g/ \/g (38.16)

and thus obtain a factor which precisely cancelsttiependence in theintegral.
This leads to the rather simple result

ily [ dy j
oL XL dHyrr/4) 38.17
% { 8”"'7} ( )

wherel, = 2L is the length of the periodic fifactive orbit. A more sophisticated
analysis of the trace integral has been done [38.6] usinmtigral representation
(38.13). Itis valid in the vicinity of an optical boundaryaalso for wedges with
opening angles close m/n.

Consider a periodic diractive orbit withn, reflections & straight hard walls
andy, diffractions each with a ffraction constantl, ;. The total length of the
orbit L, = 1, ; is the sum of the various filfactive legs and, is the length of
the corresponding prime orbit. For such an orbit, (38.1Regalizes to

Hy

_ iy dy.j
6, = Zk{g e

} expli(kLy + nyz — 3u,m/4)}. (38.18)
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exercise 38.3

Each difraction introduces a factor of &/k and multi-difractive orbits are thereby
suppressed.

If the orbity is prime therlL, = |,. If y is ther'th repeat of a prime orbj§ we

havel, = rlg, n, = rpg andu, = rog, wherelg, pg andoy all refer to the prime
orbit. We can then write

il

9y =Gsr = —2—kt,5 (38.19)
where
ﬁ 9.
= —2L_Lexpli(kig + psz — 30p7/4)). (38.20)
j-1 VorKlg

It then makes sense to organize the sum ovéraditive orbits as a sum over the
prime difractive orbits and a sum over the repetitions

N i t
Gaifr () = D D Gar =5 ) 'ﬁrﬁtﬁ' (38.21)
B -1 7

We cast this as a logarithmic derivative (19.7) by notingt t% = ilgtg —
optg/2k and recognizing that the first term dominates in the sensidablimit. It
follows that

A (®) ~ %( % {In [a- tﬂ)} . (38.22)
B

In the case that there are onlyffdactive periodic orbits - as in the geometry of
figure 38.4 - the poles aj(k) are the zeros of a dynamical zeta function

e =] Ja-1. (38.23)
B

For geometric orbits, this function would be evaluated vaittycle expansion as
discussed in chapter 20. However, here we can use the nudtipé nature of the
weightstg to find a closed form representation of the function usingaagition
graph, as in chapter 14. This multiplicative property of Wedghts follows from
the fact that the diractive Green function (38.10) is multiplicative in segrmen
semiclassical Green functions, unlike the geometric case.
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Figure 38.6: The two-node transition graph with all1 5
the diffractive processes connecting the nodes. B A

There is a reflection symmetry in the problem which meansathatsonances
can be classified as even or odd. Because of this, the dynaretesfunction fac-
torizes as I = 1/, (as explained in sects. 21.5 and 21.1.1) and we determine
1/¢+ and Y- separately using the ideas of symmetry decomposition gb-cha
ter 21.

In the transition graph shown in figure 38.6, we enumeratpraltesses. We
start by identifying the fundamental domain as just thetrighif of figure 38.4.
There are two nodes which we c&llandB. To get to another node from, we
can difract (always via the vertex) in one of three directions. Wediffract back
to B which we denote as process 1. We caffrdct toB's image point3” and then
follow this by a reflection. This process we denote2ashere the bar indicates
that it involves a reflection. Third, we canflidact to nodeA. Starting atA we can
also difract to a node in three ways. We carffidict to B which we denote as 4.
We can difract toB’ followed by a reflection which we denote 4sFinally, we
can difract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier dis@us First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratirapsed loops
which do not intersect themselves in figure 38.6. We do it fostl/Z, because
that is simpler. In that case, the processes with bars attten an equal footing
as the others. Appealing back to sect. 21.5 we find

/¢, 1-1t; —t; —ts —taty — tatz + tsty + tsts,

1- (tl + t§+ ts) - 2t3t4 + ts(tl + ti) (3824)

where we have used the fact that= t; by symmetry. The last term has a positive
sign because it involves the product of shorter closed lodscalculate 17,
we note that the processes with bars have a relative negagivelue to the group
theoretic weight. Furthermore, process 5 is a boundary (ebe sect. 21.3.1) and
only afects the even resonances - the terms involt4rage absent from/k_. The
result is

1/ = 1-ti+t;—tatg +tatg,
1-(t1 —t5). (38.25)

Note that these expressions have a finite number of termsrambain the form exercise 38.4
of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (38f®2@)note that
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complex kpane
Figure 38.7: The even resonances of the wedge scat- 7“
terer of figure 38.4 plotted in the compléxplane,

with L = 1. The exact resonances are represented |
as circles and their semiclassical approximations as .
crosses. a0

each weight involves just onefttiaction constant. It is then convenient to define
the quantities

expli(2kL + 2r)} 2 = expli(2kH + 7))}
167KL 5 VIGkH

uz = (38.26)

The lengthd. andH = L/ V2 are defined in figure 38.4; we det= 1 throughout.
Bouncing inside the right angle Atcorresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor ex@s) in (38.26) although it is
trivially equal to one. Similarly, there is one speculareefion at pointB giving

p = 1 and therefore a factor of ex@r]. We have definedis andug because,
together with some @iraction constants, they can be used to construct all of the
weights. Altogether we define fourfifiaction codicients: dag is the constant
corresponding to diracting fromB to Aand is found from (38.11) with’ = 3r/4
andé = x and equals 2 sea(8) ~ 2.165. With analogous notation, we hadga
anddgg = dgg which equal 2 and & V2 respectivelyd;; = d;; due to the Green
function symmetry between source and receiver referredd@ee Finally, there

is the difractive phase factos = exp (-i3r/4) each time there is aftiiaction.
The weights are then as follows:

= SjBBUZB tz SjBrBUZB ta=t4=1;= sdagUaUR
ts = sdaald. (38.27)

Each weight involves twar's and oned. Theu's represent the contribution to
the weight from the paths connecting the nodes to the vertdxtzed gives the
diffraction constant connecting the two paths.

The equality ofdgg anddg g implies thatt; = t;. From (38.25) this means that
there are no odd resonances because 1 can never equal e Evethresonances
equation (38.24) is an implicit equation fowhich has zeros shown in figure 38.7.

For comparison we also show the result from an exact quangaloulation.
The agreement is very good right down to the ground state s ae bften the
case with semiclassical calculations. In addition we canais dynamical zeta
function to find arbitrarily high resonances and the resadtsially improve in that
limit. In the same limit, the exact numerical solution beesnmore diicult to
find so the dynamical zeta function approximation is paldidy useful in that

case. exercise 38.5

In general a system will consist of both geometric antraltive orbits. In
that case, the full dynamical zeta function is the producthef geometric zeta
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function and the diractive one. The diractive weights are typically smaller
by orderO(1/ vk) but for smallk they can be numerically competitive so that
there is a significant diractive éfect on the low-lying spectrum. It might be
expected that higher in the spectrum, theet of difraction is weaker due to
the decreasing weights. However, it should be pointed aitgh analysis of the
situation for creeping diraction [38.7] concluded that theffiiaction is actually
more important higher in the spectrum due to the fact that an eseatgr fraction
of the orbits need to be corrected foffcactive dfects. The equivalent analysis
has not been done for edgefdiction but a similar conclusion can probably be
expected.

To conclude this chapter, we return to the opening paragaaphdiscuss the
possibility of doing such an analysis for helium. The impattpoint which al-
lowed us to successfully analyze the geometry of figure 38tHat when a trajec-
tory is near the vertex, we can extract itffidiction constant without reference to
the other facets of the problem. We say, therefore, thatishés‘local” analysis
for the purposes of which we have “turne@”othe other aspects of the prob-
lem, namely side#\B andAB’. By analogy, for helium, we would look for some
simpler description of the problem which applies near thedtbody collision.
However, there is nothing to “turnfid’ The local problem is just as fiicult as
the global one since they are precisely the same probletrglaged by scaling.
Therefore, it is not at all clear that such an analysis isiptesgor helium.

Résum é

In this chapter we have discovered new types of periodidsduintributing to the
semiclassical traces and determinants. Unlike the periodiits we had seen so
far, these are not true classical orbits. They are genetstesihgularities of the
scattering potential. In these singular points the classignamics has no unique
definition, and the classical orbits hitting the singulagtcan be continued in
many diterent directions. While the classical mechanics does notvkhich
way to go, quantum mechanics solves the dilemma by allowin wontinue in
all possible directions. The likelihoods offi#irent paths are given by the quan-
tum mechanical weights calledffiection constants. The total contribution to a
trace from such orbit is given by the product of transmissiomplitudes between
singularities and diraction constants of singularities. The weights dfrdctive
periodic orbits are at least of ordet ¢k weaker than the weights associated with
classically realizable orbits, and their contribution aigke energies is therefore
negligible. Nevertheless, they can strongly influence tive liying resonances
or energy levels. In some systems, such asNtaisk scattering the éiiraction
effects do not only perturb semiclassical resonances, butlsarceeate new low
energy resonances. Therefore it is always important tadecthe contributions of
diffractive periodic orbits when semiclassical methods aréexppt low energies.
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Commentary

Remark 38.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

e a grazing condition such that some trajectories hit a smesotface while others
are undlected, refs. [38.1, 38.2, 38.3, 38.7]

e avertex such that trajectories to one side bounfferintly from those to the other
side, refs. [38.2, 38.4, 38.5, 38.8, 38.9].

e a point scatterer [38.10, 38.11] or a magnetic flux line [2838.13] such that we
do not know how to continue classical mechanics through iseodtinuities.

Remark 38.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extegdhe geometrical ray
picture of optics to cases where there is a discontinuity. ntdéntained that we could
hang onto that ray-tracing picture by allowing rays to srike vertex and then leave at
any angle with amplitude (38.8). Both he and Sommerfeld wreriing of optics and not
guantum mechanics and they did not phrase the results irs tefisemiclassical Green
functions but the essential idea is the same.

Remark 38.3 Generalizations Consider the gect of replacing our half line by a wedge
of angley; and the right angle by an arbitrary angle If y, > y; andy, > /2 this is an
open problem whose solution is given by equations (38.2d)(88.25) (there will then
be odd resonances) but with modified weights reflecting tegead geometry [38.8].
(Fory, < n/2, more difractive periodic orbits appear and the dynamical zeta fanst
are more complicated but can be calculated with the sameinegt) Wheny; = y1,
the problem in fact has bound states [38.21, 38.22]. Thickse has been of interest in
studying electron transport in mesoscopic devices and anawiave waveguides. How-
ever we can not use our formalism as it stands because fthactiive periodic orbits for
this geometry lie right on the border between illuminated ahadowed regions so that
equation (38.7) is invalid. Even the more uniform derivataf [38.6] fails for that par-
ticular geometry, the problem being that théictive orbit actually lives on the edge of
a family of geometric orbits and this makes the analysibrstire dificult.

Remark 38.4 Diffractive Green functions.  The result (38.17) is proportional to the
length of the orbit times the semiclassical Green funct&hg) to go from the vertex back
to itself along the classical path. The multffidactive formula (38.18) is proportional to
the total length of the orbit times the product of the sensisilgal Green functions to go
from one vertex to the next along classical paths. This teguleralizes to any system —
either a pinball or a potential — which contains point siragities such that we can define
a diffraction constant as above. The contribution to the trach@&emiclassical Green
function coming from a diractive orbit which hits the singularities is proportiot@the
total length (or period) of the orbit times the product of sgassical Green functions in
going from one singularity to the next. This result first ageel in reference [38.2] and
a derivation can be found in reference [38.9]. A similar stine also exists for creeping
[38.2].
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Remark 38.5 Diffractive orbits for hydrogenic atoms. ~ An analysis in terms of dirac-

tive orbits has been made in dférent atomic physics system, the response of hydrogenic

atoms to strong magnetic fields [38.23]. In these systemisgieselectron is highly ex-
cited and takes long traversals far from the nucleus. Uptommiag to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discusselapter 37. However, if the
atom is not hydrogen but sodium or some other atom with oneneal electron, the re-
turning electron feels the charge distribution of the cdeeteons and not just the charge
of the nucleus. This so-called quantum defect inducesesaagtin addition to the clas-
sical re-ejection present in the hydrogen atom. (In thig ¢hs local analysis consists of
neglecting the magnetic field when the trajectory is neamiingdeus.) This is formally
similar to the vertex which causes both specular reflectimhdiffraction. There is then
additional structure in the Fourier transform of the quamgpectrum corresponding to

the induced diractive orbits, and this has been observed experimen&sly2{].

Exercises

38.1.

38.2.

38.3.

exerWhelan - 18dec97

Stationary phaseintegral.  Evaluate the two station-
ary phase integrals corresponding to contdtrandE;
of figure 38.3 and thereby verify (38.7).

(N. Whelan)

Scattering from a small disk  Imagine that instead

of a wedge, we have a disk whose radaiss much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for small Following

the discussion above, show that thérdiction constant

1S 38.5.

2n

S (38.28)
log (&) - ve +i5

whereye = 0.577--- is Euler’s constant. Note that in
this limit d depends weakly ok but not on the scatter-
ing angle.

(N. Whelan)

Several diffractivelegs. Derive equation (38.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

that a slight variation of the firactive orbit only #ect
one leg at a time.

(N. Whelar

4. Unsymmetrized dynamical zeta function. As

sume you know nothing about symmetry decom
tion. Construct the 3-node transition graph for
ure 38.1 by considering,, B and B’ to be physical
distinct. Write down the corresponding dynamical
function and check explicitly that foB = B’ it factor
izes into the product of the even and odd dynamica
functions. Why is there no terts in the full dynamic:
zeta function?

(N. Whelar

Three point scatterers.

Consider the limiting case of the three disk game of
ball of figure 1.1 where the disks are very much sm
than their spacin@®. Use the results of exercise 38.
construct the desymmetrized dynamical zeta func
as in sect. 21.6. You should find, = 1 - 2t wher
t = de®kR-37/4)/ \/8xkR. Compare this formula with tt
from chapter 11. By assuming that the real part
is much greater than the imaginary part show the
positions of the resonances d¢R = a, — iB, wher
an = 27N + 31/4, By = Iog(x/Zmn/d) andn is a nor
negative integer. (See also reference [38.11].)

(N. Whelar
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