
Chapter 38

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

38.1 Quantum eavesdropping

As noted in chapter 37, the classical mechanics of the heliumatom is undefined
at the instant of a triple collision. This is a common phenomenon - there is often
some singularity or discontinuity in the classical mechanics of physical systems.
This discontinuity can even be helpful in classifying the dynamics. The points in
phase space which have a past or future at the discontinuity form manifolds which
divide the phase space and provide the symbolic dynamics. The general rule is that
quantum mechanics smoothes over these discontinuities in aprocess we interpret
as diffraction. We solve the local diffraction problem quantum mechanically and
then incorporate this into our global solution. By doing so,we reconfirm the
central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat
involved. In fact, so involved that we do not have a clue how todo it. In its
place we illustrate the concept of diffractive effects with a pinball game. There
are various classes of discontinuities which a billiard canhave. There may be a
grazing condition such that some trajectories hit a smooth surface while others
are unaffected - this leads to the creeping described in chapter 35. There may be a
vertex such that trajectories to one side bounce differently from those to the other
side. There may be a point scatterer or a magnetic flux line such that we do not
know how to continue classical mechanics through the discontinuities. In what
follows, we specialize the discussion to the second example- that of vertices or
wedges. To further simplify the discussion, we consider thespecial case of a half
line which can be thought of as a wedge of angle zero.

727



CHAPTER 38. DIFFRACTION DISTRACTION 728

Figure 38.1: Scattering of a plane wave off a half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a half
line (see figure 38.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometries. We define the vertex
to be the origin and launch a plane wave at it from an angleα. What is the total
field? This is a problem solved by Sommerfeld in 1896 and our discussion closely
follows his.

The total field consists of three parts - the incident field, the reflected field
and the diffractive field. Ignoring the third of these for the moment, we see that
the space is divided into three regions. In region I there is both an incident and a
reflected wave. In region II there is only an incident field. Inregion III there is
nothing so we call this the shadowed region. However, because of diffraction the
field does enter this region. This accounts for why you can overhear a conversation
if you are on the opposite side of a thick wall but with a door a few meters away.
Traditionally such effects have been ignored in semiclassical calculations because
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,
so let us briefly consider that much simpler problem. There weknow that the
problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (38.1)

whereψ = φ − α andφ is the angular coordinate. The total field is then given by
the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (38.2)

where the negative sign ensures that the boundary conditionof zero field on the
line is satisfied.

Sommerfeld then argued thatv(r, ψ) can also be given a complex integral rep-
resentation

v(r, ψ) = A
∫

C
dβ f (β, ψ)e−ikr cosβ. (38.3)
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CHAPTER 38. DIFFRACTION DISTRACTION 729

Figure 38.2: The contour in the complexβ plane.
The pole is atβ = −ψ (marked by× in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
β approaches infinity.
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This is certainly correct if the functionf (β, ψ) has a pole of residue 1/2πi at β =
−ψ and if the contourC encloses that pole. One choice is

f (β, ψ) =
1
2π

eiβ

eiβ − e−iψ
. (38.4)

(We choose the pole to be atβ = −ψ rather thanβ = ψ for reasons discussed later.)
One valid choice for the contour is shown in figure 38.2. This encloses the pole
and vanishes as|Im β| → ∞ (as denoted by the shading). The sectionsD1 andD2

are congruent because they are displaced by 2π. However, they are traversed in
an opposite sense and cancel, so our contour consists of justthe sectionsC1 and
C2. The motivation for expressing the solution in this complicated manner should
become clear soon.

What have we done? We extended the space under considerationby a factor
of two and then constructed a solution by assuming that thereis also a source in
the unphysical space. We superimpose the solutions from thetwo sources and at
the end only consider the solution in the physical space to bemeaningful. Fur-
thermore, we expressed the solution as a contour integral which reflects the 2π
periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is peri-
odic in 4π. This can be seen by the fact that the field can be expanded in a series
of the form {sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shown in figure 38.1 and the
unphysical sheet is congruent to it. The sheets are glued together along the half
line so that a curve in the physical space which intersects the half line is continued
in the unphysical space and vice-versa. The boundary conditions are that the total
field is zero on both faces of the half line (which are physically distinct boundary
conditions) and that asr → ∞ the field is composed solely of plane waves and
outgoing circular waves of the formg(φ) exp(ikr)/

√
kr. This last condition is a

result of Huygens’ principle.
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CHAPTER 38. DIFFRACTION DISTRACTION 730

We assume that the complete solution is also given by the method of images
as

vtot = u(r, φ − α) − u(r, φ + α). (38.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative sign
guarantees that the solution vanishes on both faces of the half line. Sommerfeld
then made the ansatz thatu is as given in equation (38.3) with the same contour
C1 + C2 but with the 4π periodicity accounted for by replacing equation (38.4)
with

f (β, ψ) =
1
4π

eiβ/2

eiβ/2 − e−iψ/2
. (38.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.) The
integral (38.3) can be thought of as a linear superposition of an infinity of plane
waves each of which satisfies the Helmholtz equation (∇2

+ k2)v = 0, and so their
combination also satisfies the Helmholtz equation. We will see that the diffracted
field is an outgoing circular wave; this being a result of choosing the pole atβ =
−ψ rather thanβ = ψ in equation (38.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions and therefore constitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful tomassage the contour.
Depending onφ there may or may not be a pole betweenβ = −π andβ = π. In
region I, both functionsu(r, φ ± α) have poles which correspond to the incident
and reflected waves. In region II, onlyu(r, φ − α) has a pole corresponding to the
incident wave. In region III there are no poles because of theshadow. Once we
have accounted for the geometrical waves (i.e., the poles),we extract the diffracted
waves by saddle point analysis atβ = ±π. We do this by deforming the contours
C so that they go through the saddles as shown in figure 38.2.

ContourC1 becomesE2 + F while contourC2 becomesE1 − F where the
minus sign indicates that it is traversed in a negative sense. As a result,F has no
net contribution and the contour consists of justE1 andE2.

As a result of these machinations, the curvesE are simply the curvesD of
figure 38.2 but with a reversed sense. Since the integrand is no longer 2π periodic,
the contributions from these curves no longer cancel. We evaluate both stationary
phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4

√
8π

sec(ψ/2)
eikr

√
kr

(38.7)

so that the total diffracted field is

vdiff = −A
eiπ/4

√
8π

(

sec
(

φ − α
2

)

− sec
(

φ + α

2

)) eikr

√
kr
. (38.8)
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Figure 38.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The curveF
is traversed twice in opposite directions and has no
net contribution.
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Note that this expression breaks down whenφ ± α = π. These angles correspond
to the borders among the three regions of figure 38.1 and must be handled more
carefully - we can not do a stationary phase integral in the vicinity of a pole.
However, the integral representation (38.3) and (38.6) is uniformly valid. exercise 38.1

We now turn to the simple task of translating this result intothe language of
semiclassical Green functions. Instead of an incident plane wave, we assume a
source at pointx′ and then compute the resulting field at the receiver positionx.
If x is in region I, there is both a direct term, and a reflected term, if x is in region
II there is only a direct term and ifx is in region III there is neither. In any event
these contributions to the semiclassical Green function are known since the free
space Green function between two pointsx2 andx1 is

Gf (x2, x1, k) = −
i
4

H(+)
0 (kd) ≈ −

1
√

8πkd
exp{i(kd + π/4)}, (38.9)

whered is the distance between the points. For a reflection, we need to multiply
by −1 and the distance is the length of the path via the reflection point. Most
interesting for us, there is also a diffractive contribution to the Green function. In
equation (38.8), we recognize that the coefficient A is simply the intensity at the
origin if there were no scatterer. This is therefore replaced by the Green function
to go from the source to the vertex which we labelxV . Furthermore, we recognize
that exp(ikr)/

√
kr is, within a proportionality constant, the semiclassical Green

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf (x, xV , k)d(θ, θ′)Gf (xV , x′, k), (38.10)

where, by comparison with equations (38.8) and (38.9), we have

d(θ, θ′) = sec

(

θ − θ′

2

)

− sec

(

θ + θ′

2

)

. (38.11)
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CHAPTER 38. DIFFRACTION DISTRACTION 732

Hereθ′ is the angle to the source as measured from the vertex andθ is the angle to
the receiver. They were denoted asα andφ previously. Note that there is a sym-
metry between the source and receiver as we expect for a time-reversal invariant
process. Also the diffraction coefficient d does not depend on which face of the
half line we use to measure the angles. As we will see, a very important property
of Gdiff is that it is a simple multiplicative combination of other semiclassical
Green functions. exercise 38.2

We now recover our classical perspective by realizing that we can still think
of classical trajectories. In calculating the quantum Green function, we sum over
the contributions of various paths. These include the classical trajectories which
connect the points and also paths which connect the points via the vertex. These
have different weights as given by equations (38.9) and (38.10) but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for
the Green function in the presence of a wedge of arbitrary opening angle [38.15].
It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (38.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the pointsx andx′ as measured
from the vertex and the angles are measured from either face of the wedge. The
functiong is given by

g(r, r′, k, ψ) =
i

8πν

∫

C1+C2

dβ
H+0 (k

√

r2 + r′2 − 2rr′ cosβ)

1− exp
(

iβ+ψ
ν

) (38.13)

whereν = γ/π andγ is the opening angle of the wedge. (ieγ = 2π in the case of
the half plane). The contourC1 +C2 is the same as shown in figure 38.2.

The poles of this integral give contributions which can be identified with the
geometric paths connectingx andx′. The saddle points atβ = ±π give contribu-
tions which can be identified with the diffractive path connectingx and x′. The
saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sinπ

ν

ν

sin θ
ν

sin θ′

ν
(

cosπ
ν
− cosθ+θ

′

ν

) (

cosπ
ν
− cosθ−θ

′

ν

) , (38.14)

which reduces to (38.11) whenν = 2. Note that the diffraction coefficient vanishes
identically if ν = 1/n wheren is any integer. This corresponds to wedge angles
of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds to a right
angle). This demonstration is limited by the fact that it came from a leading
order asymptotic expansion but the result is quite general.For such wedge angles,
we can use the method of images (we will require 2n − 1 images in addition to
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CHAPTER 38. DIFFRACTION DISTRACTION 733

Figure 38.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections off the faces. The top vertex induces diffrac-
tion while the bottom one is a right angle and induces
two specular geometric reflections. ������������
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the actual source point) to obtain the Green function and there is no diffractive
contribution to any order. Classically this corresponds tothe fact that for such
angles, there is no discontinuity in the dynamics. Trajectories going into the vertex
can be continued out of them unambiguously. This meshes withthe discussion in
the introduction where we argued that diffractive effects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allows us to consider ge-
ometries such that the angles are near the optical boundaries or the wedge angle
is close toπ/n. For these geometries the saddle point analysis leading to (38.14)
is invalid due to the existence of a nearby pole. In that event, we require a more
sophisticated asymptotic analysis of the full integral representation.

38.2 An application

Although we introduced diffraction as a correction to the purely classical effects;
it is instructive to consider a system which can be quantizedsolely in terms of
periodic diffractive orbits. Consider the geometry shown in figure 38.4 The clas-
sical mechanics consists of free motion followed by specular reflections off faces.
The upper vertex is a source of diffraction while the lower one is a right angle and
induces no diffraction. This is an open system, there are no bound states - only
scattering resonances. However, we can still test the effectiveness of the theory in
predicting them. Formally, scattering resonances are the poles of the scatteringS
matrix and by an identity of Balian and Bloch are also poles ofthe quantum Green
function. We demonstrate this fact in chapter 35 for 2-dimensional scatterers. The
poles have complex wavenumberk, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace ofG
which we callg(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space while stationary phase ar-
guments for large wavenumberk extract those which are periodic - just as for
classical trajectories. In general,g(k) is given by the sum over all diffractive and
geometric orbits. The contribution of the simple diffractive orbit labeledγ shown
in figure 38.5 tog(k) is determined as follows.

We consider a pointP just a little off the path and determine the semiclassical
Green function to return toP via the vertex using (38.9) and (38.10). To leading

whelan - 30nov2001 ChaosBook.org version14, Dec 31 2012



CHAPTER 38. DIFFRACTION DISTRACTION 734

Figure 38.5: The dashed line shows a simple periodic
diffractive orbitγ. Between the vertexV and a pointP
close to the orbit there are two geometric legs labeled
±. The origin of the coordinate system is chosen to be
at R.
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order iny the lengths of the two geometric paths connectingP andV ared± =
(L±x)+y2/(L±x)2/2 so that the phase factorik(d++d−) equals 2ikL+iky2/(L2−x2).
The trace integral involves integrating over all pointsP and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx
√

L2 − x2

∫ ∞

−∞
dye

(

iky2 L
L2−x2

)

. (38.15)

We introduced an overall negative sign to account for the reflection at the hard wall
and multiplied by 2 to account for the two traversal senses,VRPV andVPRV. In
the spirit of stationary phase integrals, we have neglectedthe y dependence ev-
erywhere except in the exponential. The diffraction constantdγ is the one corre-
sponding to the diffractive periodic orbit. To evaluate they integral, we use the
identity

∫ ∞

−∞
dξeiaξ2

= eiπ/4

√

π

a
, (38.16)

and thus obtain a factor which precisely cancels thex dependence in thex integral.
This leads to the rather simple result

gγ ≈ −
ilγ
2k















dγ
√

8πklγ















ei(klγ+π/4) (38.17)

wherelγ = 2L is the length of the periodic diffractive orbit. A more sophisticated
analysis of the trace integral has been done [38.6] using theintegral representation
(38.13). It is valid in the vicinity of an optical boundary and also for wedges with
opening angles close toπ/n.

Consider a periodic diffractive orbit withnγ reflections off straight hard walls
andµγ diffractions each with a diffraction constantdγ, j. The total length of the
orbit Lγ =

∑

lγ, j is the sum of the various diffractive legs andlγ is the length of
the corresponding prime orbit. For such an orbit, (38.17) generalizes to

gγ(k) = −
ilγ
2k



















µγ
∏

j=1

dγ, j
√

8πklγ, j



















exp{i(kLγ + nγπ − 3µγπ/4)}. (38.18)
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exercise 38.3

Each diffraction introduces a factor of 1/
√

k and multi-diffractive orbits are thereby
suppressed.

If the orbitγ is prime thenLγ = lγ. If γ is ther’th repeat of a prime orbitβ we
haveLγ = rlβ, nγ = rpβ andµγ = rσβ, wherelβ, pβ andσβ all refer to the prime
orbit. We can then write

gγ = gβ,r = −
ilβ
2k

tr
β (38.19)

where

tβ =



















σβ
∏

j=1

dβ, j
√

8πklβ, j



















exp{i(klβ + pβπ − 3σβπ/4)}. (38.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the
prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑

β

∞
∑

r=1

gβ,r = −
i

2k

∑

β

lβ
tβ

1− tβ
. (38.21)

We cast this as a logarithmic derivative (19.7) by noting that
dtβ
dk = ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit. It
follows that

gdiff(k) ≈
1
2k

d
dk



















ln
∏

β

(1− tβ)



















. (38.22)

In the case that there are only diffractive periodic orbits - as in the geometry of
figure 38.4 - the poles ofg(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏

β

(1− tβ). (38.23)

For geometric orbits, this function would be evaluated witha cycle expansion as
discussed in chapter 20. However, here we can use the multiplicative nature of the
weightstβ to find a closed form representation of the function using a transition
graph, as in chapter 14. This multiplicative property of theweights follows from
the fact that the diffractive Green function (38.10) is multiplicative in segment
semiclassical Green functions, unlike the geometric case.
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Figure 38.6: The two-node transition graph with all
the diffractive processes connecting the nodes.

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

A

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

B

4

1 5
_

_

3

4

2

There is a reflection symmetry in the problem which means thatall resonances
can be classified as even or odd. Because of this, the dynamical zeta function fac-
torizes as 1/ζ = 1/ζ+ζ− (as explained in sects. 21.5 and 21.1.1) and we determine
1/ζ+ and 1/ζ− separately using the ideas of symmetry decomposition of chap-
ter 21.

In the transition graph shown in figure 38.6, we enumerate allprocesses. We
start by identifying the fundamental domain as just the right half of figure 38.4.
There are two nodes which we callA andB. To get to another node fromB, we
can diffract (always via the vertex) in one of three directions. We can diffract back
to B which we denote as process 1. We can diffract toB’s image pointB′ and then
follow this by a reflection. This process we denote as2̄ where the bar indicates
that it involves a reflection. Third, we can diffract to nodeA. Starting atA we can
also diffract to a node in three ways. We can diffract toB which we denote as 4.
We can diffract toB′ followed by a reflection which we denote as4̄. Finally, we
can diffract back toA which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumeratingall closed loops
which do not intersect themselves in figure 38.6. We do it firstfor 1/ζ+ because
that is simpler. In that case, the processes with bars are treated on an equal footing
as the others. Appealing back to sect. 21.5 we find

1/ζ+ = 1− t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1− (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (38.24)

where we have used the fact thatt4 = t4̄ by symmetry. The last term has a positive
sign because it involves the product of shorter closed loops. To calculate 1/ζ−,
we note that the processes with bars have a relative negativesign due to the group
theoretic weight. Furthermore, process 5 is a boundary orbit (see sect. 21.3.1) and
only affects the even resonances - the terms involvingt5 are absent from 1/ζ−. The
result is

1/ζ− = 1− t1 + t2̄ − t3t4 + t3t4̄ ,

= 1− (t1 − t2̄). (38.25)

Note that these expressions have a finite number of terms and are not in the form exercise 38.4

of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (38.20)but note that
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Figure 38.7: The even resonances of the wedge scat-
terer of figure 38.4 plotted in the complexk−plane,
with L = 1. The exact resonances are represented
as circles and their semiclassical approximations as
crosses.
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each weight involves just one diffraction constant. It is then convenient to define
the quantities

u2
A =

exp{i(2kL + 2π)}
√

16πkL
u2

B =
exp{i(2kH + π)}
√

16πkH
. (38.26)

The lengthsL andH = L/
√

2 are defined in figure 38.4; we setL = 1 throughout.
Bouncing inside the right angle atA corresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor exp (i2π) in (38.26) although it is
trivially equal to one. Similarly, there is one specular reflection at pointB giving
p = 1 and therefore a factor of exp (iπ). We have defineduA and uB because,
together with some diffraction constants, they can be used to construct all of the
weights. Altogether we define four diffraction coefficients: dAB is the constant
corresponding to diffracting fromB to A and is found from (38.11) withθ′ = 3π/4
andθ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we havedAA

anddBB = dB′B which equal 2 and 1+
√

2 respectively.di j = d ji due to the Green
function symmetry between source and receiver referred to earlier. Finally, there
is the diffractive phase factors = exp (−i3π/4) each time there is a diffraction.
The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (38.27)

Each weight involves twou’s and oned. The u’s represent the contribution to
the weight from the paths connecting the nodes to the vertex and thed gives the
diffraction constant connecting the two paths.

The equality ofdBB anddB′B implies thatt1 = t2̄. From (38.25) this means that
there are no odd resonances because 1 can never equal 0. For the even resonances
equation (38.24) is an implicit equation fork which has zeros shown in figure 38.7.

For comparison we also show the result from an exact quantum calculation.
The agreement is very good right down to the ground state - as is so often the
case with semiclassical calculations. In addition we can use our dynamical zeta
function to find arbitrarily high resonances and the resultsactually improve in that
limit. In the same limit, the exact numerical solution becomes more difficult to
find so the dynamical zeta function approximation is particularly useful in that
case. exercise 38.5

In general a system will consist of both geometric and diffractive orbits. In
that case, the full dynamical zeta function is the product ofthe geometric zeta
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function and the diffractive one. The diffractive weights are typically smaller
by orderO(1/

√
k) but for smallk they can be numerically competitive so that

there is a significant diffractive effect on the low-lying spectrum. It might be
expected that higher in the spectrum, the effect of diffraction is weaker due to
the decreasing weights. However, it should be pointed out that an analysis of the
situation for creeping diffraction [38.7] concluded that the diffraction is actually
more important higher in the spectrum due to the fact that an ever greater fraction
of the orbits need to be corrected for diffractive effects. The equivalent analysis
has not been done for edge diffraction but a similar conclusion can probably be
expected.

To conclude this chapter, we return to the opening paragraphand discuss the
possibility of doing such an analysis for helium. The important point which al-
lowed us to successfully analyze the geometry of figure 38.4 is that when a trajec-
tory is near the vertex, we can extract its diffraction constant without reference to
the other facets of the problem. We say, therefore, that thisis a “local” analysis
for the purposes of which we have “turned off” the other aspects of the prob-
lem, namely sidesAB andAB′. By analogy, for helium, we would look for some
simpler description of the problem which applies near the three body collision.
However, there is nothing to “turn off.” The local problem is just as difficult as
the global one since they are precisely the same problem, just related by scaling.
Therefore, it is not at all clear that such an analysis is possible for helium.

Résum é

In this chapter we have discovered new types of periodic orbits contributing to the
semiclassical traces and determinants. Unlike the periodic orbits we had seen so
far, these are not true classical orbits. They are generatedby singularities of the
scattering potential. In these singular points the classical dynamics has no unique
definition, and the classical orbits hitting the singularities can be continued in
many different directions. While the classical mechanics does not know which
way to go, quantum mechanics solves the dilemma by allowing us to continue in
all possible directions. The likelihoods of different paths are given by the quan-
tum mechanical weights called diffraction constants. The total contribution to a
trace from such orbit is given by the product of transmissionamplitudes between
singularities and diffraction constants of singularities. The weights of diffractive
periodic orbits are at least of order 1/

√
k weaker than the weights associated with

classically realizable orbits, and their contribution at large energies is therefore
negligible. Nevertheless, they can strongly influence the low lying resonances
or energy levels. In some systems, such as theN disk scattering the diffraction
effects do not only perturb semiclassical resonances, but can also create new low
energy resonances. Therefore it is always important to include the contributions of
diffractive periodic orbits when semiclassical methods are applied at low energies.
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Commentary

Remark 38.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smoothsurface while others
are unaffected, refs. [38.1, 38.2, 38.3, 38.7]

• a vertex such that trajectories to one side bounce differently from those to the other
side, refs. [38.2, 38.4, 38.5, 38.8, 38.9].

• a point scatterer [38.10, 38.11] or a magnetic flux line [38.12, 38.13] such that we
do not know how to continue classical mechanics through the discontinuities.

Remark 38.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extending the geometrical ray
picture of optics to cases where there is a discontinuity. Hemaintained that we could
hang onto that ray-tracing picture by allowing rays to strike the vertex and then leave at
any angle with amplitude (38.8). Both he and Sommerfeld werethinking of optics and not
quantum mechanics and they did not phrase the results in terms of semiclassical Green
functions but the essential idea is the same.

Remark 38.3 Generalizations Consider the effect of replacing our half line by a wedge
of angleγ1 and the right angle by an arbitrary angleγ2. If γ2 > γ1 andγ2 ≥ π/2 this is an
open problem whose solution is given by equations (38.24) and (38.25) (there will then
be odd resonances) but with modified weights reflecting the changed geometry [38.8].
(For γ2 < π/2, more diffractive periodic orbits appear and the dynamical zeta functions
are more complicated but can be calculated with the same machinery.) Whenγ2 = γ1,
the problem in fact has bound states [38.21, 38.22]. This last case has been of interest in
studying electron transport in mesoscopic devices and in microwave waveguides. How-
ever we can not use our formalism as it stands because the diffractive periodic orbits for
this geometry lie right on the border between illuminated and shadowed regions so that
equation (38.7) is invalid. Even the more uniform derivation of [38.6] fails for that par-
ticular geometry, the problem being that the diffractive orbit actually lives on the edge of
a family of geometric orbits and this makes the analysis still more difficult.

Remark 38.4 Diffractive Green functions. The result (38.17) is proportional to the
length of the orbit times the semiclassical Green function (38.9) to go from the vertex back
to itself along the classical path. The multi-diffractive formula (38.18) is proportional to
the total length of the orbit times the product of the semiclassical Green functions to go
from one vertex to the next along classical paths. This result generalizes to any system —
either a pinball or a potential — which contains point singularities such that we can define
a diffraction constant as above. The contribution to the trace of the semiclassical Green
function coming from a diffractive orbit which hits the singularities is proportionalto the
total length (or period) of the orbit times the product of semiclassical Green functions in
going from one singularity to the next. This result first appeared in reference [38.2] and
a derivation can be found in reference [38.9]. A similar structure also exists for creeping
[38.2].
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Remark 38.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diffrac-
tive orbits has been made in a different atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [38.23]. In these systems, a single electron is highly ex-
cited and takes long traversals far from the nucleus. Upon returning to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discussed in chapter 37. However, if the
atom is not hydrogen but sodium or some other atom with one valence electron, the re-
turning electron feels the charge distribution of the core electrons and not just the charge
of the nucleus. This so-called quantum defect induces scattering in addition to the clas-
sical re-ejection present in the hydrogen atom. (In this case the local analysis consists of
neglecting the magnetic field when the trajectory is near thenucleus.) This is formally
similar to the vertex which causes both specular reflection and diffraction. There is then
additional structure in the Fourier transform of the quantum spectrum corresponding to
the induced diffractive orbits, and this has been observed experimentally [38.24].

Exercises

38.1. Stationary phase integral. Evaluate the two station-
ary phase integrals corresponding to contoursE1 andE2

of figure 38.3 and thereby verify (38.7).

(N. Whelan)

38.2. Scattering from a small disk Imagine that instead
of a wedge, we have a disk whose radiusa is much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for smalla. Following
the discussion above, show that the diffraction constant
is

d =
2π

log
(

2
ka

)

− γe + i π2
(38.28)

whereγe = 0.577· · · is Euler’s constant. Note that in
this limit d depends weakly onk but not on the scatter-
ing angle.

(N. Whelan)

38.3. Several diffractive legs. Derive equation (38.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

that a slight variation of the diffractive orbit only affects
one leg at a time.

(N. Whelan)

38.4. Unsymmetrized dynamical zeta function. As-
sume you know nothing about symmetry decomposi-
tion. Construct the 3-node transition graph for fig-
ure 38.1 by consideringA, B and B′ to be physically
distinct. Write down the corresponding dynamical zeta
function and check explicitly that forB = B′ it factor-
izes into the product of the even and odd dynamical zeta
functions. Why is there no termt2̄ in the full dynamical
zeta function?

(N. Whelan)

38.5. Three point scatterers.

Consider the limiting case of the three disk game of pin-
ball of figure 1.1 where the disks are very much smaller
than their spacingR. Use the results of exercise 38.2 to
construct the desymmetrized dynamical zeta functions,
as in sect. 21.6. You should find 1/ζA1 = 1 − 2t where
t = dei(kR−3π/4)/

√
8πkR. Compare this formula with that

from chapter 11. By assuming that the real part ofk
is much greater than the imaginary part show that the
positions of the resonances areknR = αn − iβn where
αn = 2πn + 3π/4, βn = log

(√
2παn/d

)

andn is a non-
negative integer. (See also reference [38.11].)

(N. Whelan)
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