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A very very short introduction

And if you don’t know, now you know,
— The Notorious B.I.G.

If you understand, really understand the cycle averaging formulas (23.23) for
the expectation and covariance of an observable quantity in a chaotic flow,
you do not need this book. If you don’t understand, don’t despair. None of

us were born understanding quantum field theory, either, a subject of comparable
difficulty.

ChaosBook is an advanced textbook on the theory of

classical, turbulent, stochastic and quantum chaotic systems

on level of a 2nd year graduate statistical mechanics or quantum field theory
course. Approach it the way that suits you best.

All this book says is that time evolution adds up probability densities of initial
states. Whenever a problem is linear, you solve it by finding its eigenvectors and
eigenvalues, i.e., zeros of a determinant. This determinant is Greek to you, so it
is called the ‘zeta’ function. One way to evaluate a determinant is in terms of its
traces. That is called the ‘trace formula’.

Now you know. So, have a look at the cycle averaging formulas (23.23), back-
track to where you have a surer footing, work through its derivation.

Any novice can master ChaosBook part I Geometry of chaos and/or online
course part 1 - indeed, any scientist, engineer or mathematician would profit from
understanding nonlinear dynamics on this level.

The theory developed in ChaosBook part II Chaos rules is here to challenge
a seasoned theorist. She might start with chapter 21 Trace formulas and/or online
course part 2, and work her way back or forth, as needed.

Predrag Cvitanović, Atlanta, May 2020

i

https://www.youtube.com/watch?v=_JZom_gVfuw
https://youtube.com/embed/UT2Q_Y_NxaM
http://chaosbook.org/course1/about.html
http://chaosbook.org/course1/index2.html
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Part I

Geometry of chaos

We start out with a recapitulation of the basic notions of dynamics. Our aim is
narrow; we keep the exposition focused on prerequisites to the applications to
be developed in this text. We assume that the reader is familiar with dynamics

on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a broad stroke
description, since describing all possible behaviors of dynamical systems is beyond
human ken. While for a novice there is no shortcut through this lengthy detour, a
sophisticated traveler might bravely skip this well-trodden territory and embark upon the
journey at chapter 18.

The fate has handed you a law of nature. What are you to do with it?

1. Define your dynamical system (M, f ): the space M of its possible states, and the
law f t of their evolution in time.

2. Pin it down locally–is there anything about it that is stationary? Try to determine its
equilibriafixed points (chapter 2).

3. Cut across it, represent as a return map from a section to a section (chapter 3).

4. Explore the neighborhood by linearizing the flow; check the linear stability of its
equilibria / fixed points, their stability eigen-directions (chapters 4 and 5).

5. Does your system have a symmetry? If so, you must use it (chapters 10 to 12). Slice
& dice it (chapter 13).

6. Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (chapter 14).

7. Now venture global distances across the system by continuing local tangent space
into stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (chapter 15).

8. Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (chapter 7 and chapter 16).

Along the way you might want to learn about Lyapunov exponents (chapter 6), classical
mechanics (chapter 8), and billiards (chapter 9).

1



Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

—Eduardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there are
holes large enough to steam a Eurostar train through them. Here we learn
about harmonic oscillators and Keplerian ellipses - but where is the chap-

ter on chaotic oscillators, the tumbling Hyperion? We have just quantized hydro-
gen, where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems where things fall apart;
the center cannot hold; every trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a somewhat advanced, cyclist level

indicates that the section requires a hearty stomach and is probably best
skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

link to a related video

[exercise 1.2] on margin links to an exercise that might clarify a point in the text

indicates that a figure is still missing–you are urged to fetch it

2
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CHAPTER 1. OVERTURE 3

We start out by making promises–we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a histori-
cal overview of the development of chaotic dynamics to appendix A1, and head
straight to the starting line: A pinball game is used to motivate and illustrate most
of the concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life
and meet them with greater calm, but in reality we have
done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were
weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and acces-
sible in systems as noisy as slices of rat brains. Poincaré, the first to understand
deterministic chaos, already said as much (modulo rat brains). Once this topology
is understood, a powerful theory yields the observable consequences of chaotic
dynamics, such as atomic spectra, transport coefficients, turbulent shapes.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
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this material, so you are on your own. We will teach you how to evaluate a deter-
minant, take a logarithm–stuff like that. Ideally, this should take 100 pages or so.
Well, we fail–so far we have not found a way to traverse this material in less than
a semester, or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats, The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic’, have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibit amazingly rich structure
which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree of cycles (periodic
orbits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should
be very different from those for the nearly integrable systems: a good starting
approximation here is the stretching and folding of baker’s dough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a game of pinball. The
remainder of the chapter is a quick tour through the material covered in Chaos-
Book. Do not worry if you do not understand every detail at the first reading–the
intention is to give you a feeling for the main themes of the book. Details will
be filled out later. If you want to get a particular point clarified right now, [section

section 1.4
1.4] check the margin for a link to the appropriate section.
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Figure 1.1: A physicist’s bare bones game of pinball.

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has tried
pool, billiards or snooker–the game is about beating chaos–so we start our story
about what chaos is, and what to do about it, with a game of pinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’ in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, point-like, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at the disks from random starting
positions and angles; they spend some time bouncing between the disks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [25], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate
how they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres
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Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.

1

2

3

23132321

2313

are taken or whether objects are taken other than spheres. From this one
sees then that everything proceeds mathematically–that is, infallibly–in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of phys-
ical system that we shall use here as a paradigm of ‘chaos.’ His claim is wrong in a
deep and subtle way: a state of a physical system can never be specified to infinite
precision, and by this we do not mean that eventually the Heisenberg uncertainty
principle kicks in. In the classical, deterministic dynamics there is no way to take
all the circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can appear to
us to be stochastic; disentangling the deterministic from the stochastic is the main
challenge in many real-life settings, from stock markets to palpitations of chicken
hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each other
separate exponentially with time. During a finite (and in practice, a very small)
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Figure 1.3: Unstable trajectories separate with time.
  x(0)δ

  x(t)δ

x(t)x(0)

number of bounces, the separation δx(t) of these trajectories attains the magnitude
L, which is the characteristic linear extent of the whole system (see figure 1.2).
This property of sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy δx = |δx(0)| of the initial data, the

chapter 6
dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajecto-
ries would only separate, never to meet again. What is also needed is mixing, the
coming together again and again of trajectories. While locally the nearby trajec-
tories separate, the interesting dynamics is confined to a globally finite region of
the state space and thus the separated trajectories are necessarily folded back and
can re-approach each other arbitrarily closely, infinitely many times. For the case
at hand there are 2n topologically distinct n bounce trajectories that originate from
a given disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

section 18.1

N(n) ≈ ehn

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy" (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer. In deterministic dynam-
ics, there is no chaos in the everyday sense of the word; everything proceeds
mathematically–that is, as Baron Leibniz would have it, infallibly. When a physi-
cist says that a certain system exhibits ‘chaos’, she or he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive to
small uncertainties in the initial state. The word ‘chaos’ has in this context taken
on a narrow technical meaning. If a deterministic system is unstable locally (posi-
tive Lyapunov exponent) and exhibits mixing globally (positive entropy), it is said
to be chaotic, figure 1.4.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
and positive entropy’ is useless in practice. Furthermore, measuring these quanti-
ties is intrinsically asymptotic and beyond reach for natural systems. More pow-
erful is Poincaré’s vision of chaos as the interplay of local instability (unstable
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Figure 1.4: Dynamics of a chaotic dynamical sys-
tem is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)

(a) (b)

periodic orbits) and global mixing (intertwining of their stable and unstable mani-
folds). In a chaotic system any open ball of initial conditions, no matter how small,
will in a finite time overlap with any other finite region and in this sense spread
entirely over the asymptotically accessible state space. Once this is grasped, the
focus of theory shifts from attempting to predict individual trajectories (which is
impossible) to describing the space of possible outcomes and evaluating averages
over this space. How this is accomplished is what ChaosBook is about.

1.3.2 What is ‘turbulence’?

I know it when I see it.
—Justice Potter Stewart, Jacobellis v. Ohio (1964)

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon’, French for ‘vor-
tex’, and intuitively it refers to irregular behavior of spatially extended systems
described by deterministic equations of motion–say, a bucket of sloshing water
described by the Navier-Stokes equations. But in practice the word ‘turbulence’
tends to refer to messy dynamics which we understand poorly. As soon as a phe-

chapter 30
nomenon is understood better, it is reclaimed and renamed: ‘a route to chaos’,
‘spatiotemporal chaos’, and so on.

Even a baby nonlinear problem can bedevil the smoothest dynamicist, and
thus there is much squabbling about naming different kinds of complex dynamics
exhibited by nonlinear flows. In practice, “chaos” tends to refer to unstable 3d
flows (1d and 2d maps). If the dimension is higher, new names are made up.
For example, if most orbits of a system are unstable to perturbations in two real
eigendirections, that is “hyperchaos.” A waste of a hyperbole that could have been
saved up to describe a phenomenon of a greater generality than the number 2.

Flows described by partial differential equations [PDEs] are said to be infinite
dimensional, because many ordinary differential equations [ODEs] are needed to
represent the dynamics of one PDE. Even though their state space is ‘infinite-dim-
ensional’, the long-time dynamics of viscous flows, such as Navier-Stokes, and
PDEs modeling them, such as Kuramoto-Sivashinsky, exhibits, when dissipation
is high and the system spatial extent small, apparent ‘low-dimensional’ dynamical
behaviors. For some of these the asymptotic dynamics is known to be confined to
a finite-dimensional inertial manifold, though the rigorous upper bounds on this
dimension are not of much use in the practice.

For large spatial extent the complexity of the spatial motions also needs to be
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taken into account. The systems whose spatial correlations decay sufficiently fast,
and the attractor dimension and number of positive Lyapunov exponents diverges
with system size are said to be extensively, ‘spatio-temporally chaotic’ or ‘weakly
turbulent.’ Spatio-temporally chaotic systems are characterized by creation / an-
nihilation of ‘defects.’ They are extensive; if you increase the spatial extent in a
given direction by a factor of two, you will need twice as many ‘computational
degrees of freedom’ to describe it to the same accuracy. Conversely, for small
system sizes the accurate description might require a large set of coupled ODEs,
but dynamics can still be ‘low-dimensional’ in the sense that it is characterized
by one or a few positive Lyapunov exponents. There is no wide range of scales
involved, nor decays of spatial correlations, and the system is in this sense only
‘chaotic.’

For a subset of physicists and mathematicians who study idealized ‘fully de-
veloped’, ‘homogenous’ turbulence the generally accepted usage is that the ‘tur-
bulent’ fluid is characterized by a range of scales and energy or enstrophy cascades
describable by statistic assumptions. What experimentalists, engineers, geophysi-
cists, astrophysicists actually observe looks nothing like a ‘fully developed tur-
bulence.’ In the physically driven wall-bounded shear flows, the turbulence is
dominated by unstable coherent structures, that is, localized recurrent vortices,
rolls, streaks and like. The statistical assumptions fail, and a dynamical systems
description from first principles is called for.

appendix A1.5

Here comes our quandary. If we ban the words ‘turbulence’ and ‘spatiotem-
poral chaos’ from our study of small extent systems, the relevance of what we
do to larger systems is obscured. The exact unstable coherent structures we deter-
mine pertain not only to the spatially small ‘chaotic’ systems, but also the spatially
large ‘spatiotemporally chaotic’ and the spatially very large ‘turbulent’ systems.
The key aspect we study here - continuous spatial symmetry of the system - is
pertinent to all these systems, independent of their size. So, for the lack of more
precise nomenclature, we take the liberty of using the terms ‘chaos’, ‘spatiotem-
poral chaos’, and ‘turbulence’ interchangeably.

remark 30.1

We return to these painful questions in chapter 30.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimens-
ional attractors visualized as a succession of nearly periodic but unstable motions.
In the same spirit, we shall think of turbulence in spatially extended systems in
terms of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system (clouds, say) through a repertoire of unstable patterns;
as we watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern:

=⇒ other swirls =⇒
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For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

1.3.3 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical frac-
tals.

— Richard P. Taylor [20, 43]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet we
have no trouble keeping track of the annual motions of planets. The rule of thumb
is this; if the Lyapunov time (1.1)–the time by which a state space region initially
comparable in size to the observational accuracy extends across the entire acces-
sible state space–is significantly shorter than the observational time, you need to
master the theory that will be developed here. That is why the main successes of
the theory are in statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory’, so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsic dimension – the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers in elucidating problems of fully
developed turbulence, quantum field theory of strong interactions and early cos-
mology have been modest at best. Even that is a caveat with qualifications. There
are applications–such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted from
our collective understanding. The computer pictures and numerical plots of frac-
tal science of the 1980’s have overshadowed the deep insights of the 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have to do as the illustra-
tion of the power of fractal analysis. Fractal science posits that certain quantities

remark 1.7
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5’, the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [22].

(Lyapunov exponents, generalized dimensions, . . . ) can be estimated on a com-
puter. While some of the numbers so obtained are indeed mathematically sensible
characterizations of fractals, they are in no sense observable and measurable on
the length-scales and time-scales dominated by chaotic dynamics.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat belts
and turn off all electronic devices. But first, a disclaimer: If you understand the
rest of this chapter on the first reading, you either do not need this book, or you are
delusional. If you do not understand it, it is not because the people who figured
all this out first are smarter than you: the most you can hope for at this stage is to
get a flavor of what lies ahead. If a statement in this chapter mystifies/intrigues,
fast forward to a section indicated by [section ...] on the margin, read only the
parts that you feel you need. Of course, we think that you need to learn ALL of it,
or otherwise we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, II. count, III. measure. First, we determine
the intrinsic dimension of the system–the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame front can
turn out to have a very few chaotic degrees of freedom. In this regime the chaotic
dynamics is restricted to a space of low dimension, the number of relevant param-
eters is small, and we can proceed to step II; we count and classify all possible

chapter 14
chapter 18
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Figure 1.6: Binary labeling of the 3-disk pinball tra-
jectories; a bounce in which the trajectory returns to
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the part of the observer. This
we shall do in sect. 1.4.2. If successful, we can proceed with step III: investigate
the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III–measure–in sect. 1.5. The three sections that

chapter 23
follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight to sect. 1.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the three
disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels indicating the order in which the disks are visited; for example, the two
trajectories in figure 1.2 have itineraries _2313_, _23132321_ respectively. Such

exercise 1.1
section 2.1labeling goes by the name symbolic dynamics. As the particle cannot collide two

times in succession with the same disk, any two consecutive symbols must differ.
This is an example of pruning, a rule that forbids certain subsequences of symbols.
Deriving pruning rules is in general a difficult problem, but with the game of
pinball we are lucky–for well-separated disks there are no further pruning rules.

chapter 15

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, figure 1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries.

section 14.6

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there for-
ever. Your game would be just as good if you managed to get it to keep bouncing
between the three disks forever, or place it on any periodic orbit. The only rub
is that any such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important–they form the skeleton onto which all
trajectories trapped for long times cling.
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Figure 1.7: The 3-disk pinball cycles 12323 and
121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig. 1.9.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall sometimes refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn in
figure 1.7–but it is rather hard to perceive the systematics of orbits from their con-
figuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces–the ball just travels at constant velocity along a straight line–
so we can reduce the 4-dimensional flow to a 2-dimensional map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajectory
just after the moment of impact is defined by sn, the arc-length position of the
nth bounce along the billiard wall, and pn = p sin φn the momentum component
parallel to the billiard wall at the point of impact, see figure 1.9. Such section of a
flow is called a Poincaré section. In terms of Poincaré sections, the dynamics is

example 15.8
reduced to the set of six maps Psk←s j : (sn, pn) 7→ (sn+1, pn+1), with s ∈ {1, 2, 3},
from the boundary of the disk j to the boundary of the next disk k.

chapter 9

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories orig-
inating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips M12, M13. Embedded within them there
are four stripsM121,M123,M131,M132 of initial conditions that survive for two
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (s0, p0) . (a) Strips of initial pointsM12,
M13 which reach disks 2, 3 in one bounce, respec-
tively. (b) Strips of initial pointsM121,M131M132

andM123 which reach disks 1, 2, 3 in two bounces,
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-
dius : center separation ratio a:R = 1:2.5. (Y.
Lan)
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bounces, and so forth, see figures 1.8 and 1.9. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are divided into 2n distinct strips:
theMith strip consists of all points with itinerary i = s1s2s3 . . . sn, s = {1, 2, 3}.
The unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point s1s2s3 . . . sn with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a naviga-
tion chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12 . . . either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
example 20.4

What is a good physical quantity to compute for the game of pinball? Such a sys-
tem, for which almost any trajectory eventually leaves a finite region (the pinball
table) never to return, is said to be open, or a repeller. The repeller escape rate
is an eminently measurable quantity. An example of such a measurement would
be an unstable molecular or nuclear state which can be well approximated by a
classical potential with the possibility of escape in certain directions. In an ex-
periment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure 1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

exercise 1.2

For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial conditions get thinned
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CHAPTER 1. OVERTURE 15

out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces, or the survival probability is given by

Γ̂1 =
|M0|

|M|
+
|M1|

|M|
, Γ̂2 =

|M00|

|M|
+
|M10|

|M|
+
|M01|

|M|
+
|M11|

|M|
,

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |Mi| is the area of
the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.2) to fall off exponentially with n and tend to the limit

chapter 27

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape rate γ can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughly γ = 0.4103384077693464893384613078192 . . . , you do not need this
book. If you have no clue, hang on.
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CHAPTER 1. OVERTURE 16

Figure 1.10: The Jacobian matrix Jt maps an infinites-
imal displacement δx at x0 into a displacement Jt(x0)δx
a finite time t later.

δ  x(t) = J
t
δ  x(0)

  x(0)δ

x(0)

x(t)

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eq. (20.15) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory evolves,
it carries along and distorts its infinitesimal neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0) to
linear order, the evolution of the distance to a neighboring trajectory x(t) + δx(t)
is given by the Jacobian matrix J:

δxi(t) =

d∑
j=1

Jt(x0)i jδx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

. (1.4)

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just state the result. The

section 9.2
Jacobian matrix describes the deformation of an infinitesimal neighborhood of
x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, figure 1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than unity in
magnitude), and change their distance only sub-exponentially (or not at all) along
the marginal directions (those whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in figure 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ≈ L, then the area of the ith strip is
Mi ≈ Lli for a strip of width li.
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CHAPTER 1. OVERTURE 17

Each strip i in figure 1.9 contains a periodic point xi. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width li is well-approximated by the contraction around the periodic point xi

within the interval,

li = ai/|Λi| , (1.5)

where Λi is the unstable eigenvalue of the Jacobian matrix Jt(xi) evaluated at
the ith periodic point for t = Tp, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors ai reflect the
overall size of the system and the particular distribution of starting values of x. As
the asymptotic trajectories are strongly mixed by bouncing chaotically around the
repeller, we expect their distribution to be insensitive to smooth variations in the
distribution of initial points.

section 19.4

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth of
Λi, so we neglect them. If the hyperbolicity assumption is justified, we can replace

section 21.1.1
|Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =

(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

remark 18.1

Γ(z) =

∞∑
n=1

Γnzn . (1.6)

Recall that for large n the nth level sum (1.2) tends to the limit Γn → e−nγ, so the
escape rate γ is determined by the smallest z = eγ for which (1.6) diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n
=

ze−γ

1 − ze−γ
. (1.7)

This is the property of Γ(z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of periodic orbits:

Γ(z) =

∞∑
n=1

zn
(n)∑
i

|Λi|
−1

=
z
|Λ0|

+
z
|Λ1|

+
z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.8)

For sufficiently small z this sum is convergent. The escape rate γ is now given by
section 21.3

the leading pole of (1.7), rather than by a numerical extrapolation of a sequence of
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CHAPTER 1. OVERTURE 18

γn extracted from (1.3). As any finite truncation n < ntrunc of (1.8) is a polyno-
mial in z, convergent for any z, finding this pole requires that we know something
about Γn for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity of
Γ(z) from finite truncations of (1.8) by methods such as Padé approximants. How-
ever, as we shall now show, it pays to first perform a simple resummation that
converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λr
p. A

prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of np symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.
By the chain rule for derivatives the stability of a cycle is the same everywhere

exercise 18.2
section 4.5along the orbit, so each prime cycle of length np contributes np terms to the sum

(1.8). Hence (1.8) can be rewritten as

Γ(z) =
∑

p

np

∞∑
r=1

(
znp

|Λp|

)r

=
∑

p

nptp

1 − tp
, tp =

znp

|Λp|
(1.9)

where the index p runs through all distinct prime cycles. Note that we have re-
summed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n ≤ np approximation, but an asymptotic, infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. The npznp factors in (1.9) suggest rewriting
the sum as a derivative

Γ(z) = −z
d
dz

∑
p

ln(1 − tp) .

Hence Γ(z) is z× derivative derivative of the logarithm of the infinite product

1/ζ(z) =
∏

p

(1 − tp) , tp =
znp

|Λp|
. (1.10)

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole of Γ(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.10). The escape rate is related by (1.7) to a divergence of Γ(z), and Γ(z) diverges

section 27.1
whenever 1/ζ(z) has a zero.

section 22.4

Easy, you say: “Zeros of (1.10) can be read off the formula, a zero

zp = |Λp|
1/np

for each term in the product. What’s the problem?” Dead wrong!
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CHAPTER 1. OVERTURE 19

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical

chapter 16
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped–including cycles longer than the shortest
omitted does not improve the accuracy. The result of such numerics is a table of
the shortest cycles, their periods and their stabilities.

section 34.3

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·

= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)

+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.11)

The virtue of the expansion is that the sum of all terms of the same total length
chapter 23

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

section 23.1

The calculation is now straightforward. We substitute a finite set of the eigen-
values and lengths of the shortest prime cycles into the cycle expansion (1.11), and
obtain a polynomial approximation to 1/ζ. We then vary z in (1.10) and determine
the escape rate γ by finding the smallest z = eγ for which (1.11) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the

section 23.2.2
dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
figure 1.11; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab}minus its shadowing
approximation by shorter cycles {a} and {b} (see figure 1.12),

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −

∣∣∣∣∣ Λab

ΛaΛb

∣∣∣∣∣) , (1.12)
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, together
with their linearized neighborhoods, (right frame). In-
dicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

Figure 1.12: A longer cycle p′′ shadowed by a pair (a
‘pseudo orbit’) of shorter cycles p and p′.

p

p'p"

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (tp = znp), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on, so its
itinerary is 2321. In terms of the bounce types shown in figure 1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes
these bounces are very close to the corresponding angles for 0 and 1 cycles. Also
the distances traversed between bounces are similar so that the 2-cycle expanding
eigenvalue Λ01 is close in magnitude to the product of the 1-cycle eigenvalues
Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo
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orbit’ {a}{b} (see figure 1.12), lie close to each other in state space; long shadow-
ing pairs have to start out exponentially close to beat the exponential growth in
separation with time. If the weights associated with the orbits are multiplicative
along the flow (for example, by the chain rule for products of derivatives) and
the flow is smooth, the term in parenthesis in (1.12) falls off exponentially with
the cycle length, and therefore the curvature expansions are expected to be highly
convergent.

chapter 28

1.6 Change in time

MEN are deplorably ignorant with respect to natural
things and modern philosophers as though dreaming in the
darkness must be aroused and taught the uses of things the
dealing with things they must be made to quit the sort of
learning that comes only from books and that rests only
on vain arguments from probability and upon conjectures.

— William Gilbert, De Magnete, 1600

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
off the edge of a pinball table in figure 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
withinM at time t is expected to decay exponentially

Γ(t) =

∫
M

dxdy δ(y − f t(x))∫
M

dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over y tests
whether this trajectory is still inM at time t. The kernel of this integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.13)

is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, f n(x) is the nth iterate of the
map f . For continuous flows, f t(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel Lt in terms of A, the generator of
infinitesimal time translations

Lt = etA ,

very much in the way the quantum evolution is generated by the Hamiltonian H,
section 19.6

the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.
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Figure 1.13: The trace of an evolution operator is con-
centrated in tubes around prime cycles, of length Tp

and thickness 1/|Λp|
r for the rth repetition of the prime

cycle p.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2n). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n → ∞ limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beyond belief, this distribution
is still generated by a simple deterministic law, and with some luck and insight,
our labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changes everything. So far
our formulation has been heuristic, but in the evolution operator formalism the es-
cape rate and any other dynamical average are given by exact formulas, extracted
from the spectra of evolution operators. The key tools are trace formulas and
spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for Lt(x, y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for trLt as
a sum over neighborhoods of prime cycles p and their repetitions

section 21.2

trLt =
∑

p

Tp

∞∑
r=1

δ(t − rTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (1.14)

where Tp is the period of prime cycle p, and the monodromy matrix Mp is the
flow-transverse part of Jacobian matrix J (1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After the rth return to a Poincaré
section, the initial tube Mp has been stretched out along the expanding eigen-
directions, with the overlap with the initial volume given by 1/

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ →
1/|Λp|, the same weight we obtained heuristically in sect. 1.5.1.
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The ‘spiky’ sum (1.14) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigen-
value sum tr eAt =

∑
esαt, while the right-hand side equals zero everywhere except

for the set t = rTp. A Laplace transform smooths the sum over Dirac delta func-
tions in cycle periods and yields the trace formula for the eigenspectrum s0, s1, · · ·

of the classical evolution operator:
chapter 21∫ ∞

0+

dt e−st trLt = tr
1

s −A
=

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (1.15)

The beauty of trace formulas lies in the fact that everything on the right-hand-
side–prime cycles p, their periods Tp and the eigenvalues of Mp–is an invariant
property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

exercise 4.1

d
ds

ln det (s −A) = tr
d
ds

ln(s −A) = tr
1

s −A
, (1.16)

and integrating over s. In this way the spectral determinant of an evolution oper-
ator becomes related to the traces that we have just computed:

chapter 22

det (s −A) = exp

−∑
p

∞∑
r=1

1
r

e−sTpr∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 . (1.17)

The 1/r factor is due to the s integration, leading to the replacement Tp → Tp/rTp

in the periodic orbit expansion (1.15).
section 22.5

We have now retraced the heuristic derivation of the divergent sum (1.7) and
the dynamical zeta function (1.10), but this time with no approximations: formula
(1.17) is exact. The computation of the zeros of det (s − A) proceeds very much
like the computations of sect. 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing
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The replacement of individual trajectories by evolution operators which propa-
gate densities feels like a bit of voodoo. Nevertheless, something very radical and
deeply foundational has taken place. Understanding the distinction between evo-
lution of individual trajectories and the evolution of the densities of trajectories is
key to understanding statistical mechanics–this is the conceptual basis of the sec-
ond law of thermodynamics, and the origin of irreversibility of the arrow of time
for deterministic systems with time-reversible equations of motion: reversibility is
attainable for distributions whose measure in the space of density functions goes
exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return to
the perfect white/red separation. However, that cannot be–in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Ångströms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrium, and transports us into
regions hitherto inaccessible with the tools of equilibrium statistical mechanics.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but trade in the un-
controllable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assumptions.

chapter 24
The classical Boltzmann equation for evolution of 1-particle density is based on
stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle col-
lision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cy-
cle averaging formulas such as the cycle expansion for the diffusion constant
2dD = limT→∞〈x(T )2〉/T of a particle diffusing chaotically across a spatially-
periodic array,

section 24.1

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )

2

|Λp1 · · ·Λpk |
, (1.18)

where n̂p is a translation along one period of a spatially periodic ‘runaway’ tra-
jectory p. Such formulas are exact; the issue in their applications is what are
the most effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calculable to
any desired accuracy from the microscopic dynamics.
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Figure 1.14: (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip drag
force. (Y. Lan)

(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

The concepts of equilibrium statistical mechanics do help us, however, to un-
derstand the ways in which the simple-minded periodic orbit theory falters. A
nonhyperbolicity of the dynamics manifests itself in power-law correlations and

chapter 29
even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), TLyap ≈ λ−1 ln |L/δx| . Beyond that,
chaos rules. And so the most successful applications of ‘chaos theory’ have so far
been to problems where observation time is much longer than a typical ‘turnover’
time, such as statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics, where the notion of tracking accurately a
given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguishable
from the probabilistic random walk diffusion, in low dimensional settings the de-
terministic diffusion is quite recognizable, through the fractal dependence of the
diffusion constant on the system parameters, and perhaps through non-Gaussion
relaxation to equilibrium (non-vanishing Burnett coefficients).

section 24.2.1
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Several tabletop experiments that could measure transport on macroscopic
scales are sketched in figure 1.14 (each a tabletop, but an expensive tabletop). Fig-
ure 1.14 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bouncing
down the washboard, losing some energy at each bounce, or a charged particle
in a constant electric field trickling across a periodic condensed-matter device.
The interplay between chaotic dynamics and energy loss results in a terminal
mean velocity/conductance, a function of the washboard slant or external elec-
tric field that the periodic theory can predict accurately. Figure 1.14 (b) depicts
a ‘cold atom lattice’ of very accurate spatial periodicity, with a dilute cloud of
atoms placed onto a standing wave established by strong laser fields. Interaction
of gravity with gentle time-periodic jiggling of the EM fields induces a diffusion
of the atomic cloud, with a diffusion constant predicted by the periodic orbit the-
ory. Figure 1.14 (c) depicts a tip of an atomic force microscope (AFM) bouncing
against a periodic atomic surface moving at a constant velocity. The frictional
drag experienced is the interplay of the chaotic bouncing of the tip and the energy
loss at each tip/surface collision, accurately predicted by the periodic orbit theory.
/projects None of these experiments have actually been carried out, (save for some
numerical experimentation), but are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lattice
diffusion constant, and AFM tip drag force. But the experimental proposal is sex-
ier than that, and goes into the heart of dynamical systems theory.

remark A1.1

Smale 1960s theory of the hyperbolic structure of the non–wandering set
(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which -
in non-technical terms - asserts that all trajectories of a chaotic dynamical system
deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in figure 1.14 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one of the
groves. An arbitrarily small change in the washboard slope can result in loss of
this collision, change a forward scattering into a backward scattering, and lead to
a discontinuous contribution to the mean velocity. You might hold out hope that
such events are rare and average out, but not so - a loss of a short cycle leads to a
significant change in the cycle-expansion formula for a transport coefficient, such
as (1.18).

When we write an equation, it is typically parameterized by a set of parameters
by as coupling strengths, and we think of dynamical systems obtained by a smooth
variation of a parameter as a ‘family.’ We would expect measurable predictions to
also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a name. That the struc-
tural stability conjecture turned out to be badly wrong is, however, not a blow for
chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps the most

section 15.2
dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintuitive
for a physicist - transport coefficients are not smooth functions of system parame-

section 24.2
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ters, rather they are non-monotonic, nowhere differentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependence of the transport on
system parameters, the periodicity of the microscopic lattice is degraded by impu-
rities, and probabilistic assumptions of traditional statistical mechanics apply. So
the proposal is to –by measuring macroscopic transport– conductance, diffusion,
drag –observe determinism on nanoscales, and –for example– determine whether
an atomic surface is clean.

chapter 30

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not nec-
essarily lead to an increase in the mean flow; mean flow dependence on pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom are
important, and chaotic motion time and space scales are commensurate with the
external driving and spatial scales. Further degrees of freedom act as noise that
smooths out the above fractal effects and restores a smooth functional dependence
of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as I can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreachable,
a domain traditionally traversed only by mathematical physicists and mathemati-
cians. What distinguishes it from mathematics is the insistence on computability
and numerical convergence of methods offered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might state that in a given setting,
for times in excess of 1032 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use to a hard-working
plumber, especially if her hands-on experience is that within the span of a few
typical ‘turnaround’ times the dynamics seems to settle on a (transient?) attractor
of dimension less than 3. If rigor, magic, fractals or brains is your thing, read
remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the
nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path integrals,
group theory, coding theory, graph theory, ergodic theory, linear operator theory,
quantum mechanics, etc.. We include material into the text proper on ‘need-to-
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know’ basis, relegate technical details to appendices, and give pointers to further
reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction
of individual trajectories. The dynamics of densities of trajectories is described
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution
operators. The key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby pe-
riodic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating the associated curvatures. A curvature measures
the deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off for
(almost) all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the hy-
perbolicity assumption, i.e., the assumption of exponential shrinkage of all strips
of the pinball repeller. By dropping the ai prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution of starting x (which should
anyhow be impossible due to the exponential growth of errors), but in exchange
we gain an effective description of the asymptotic behavior of the system. The
pleasant surprise of cycle expansions (1.10) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook – un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning,
discrete symmetries, periodic orbits, averaging over chaotic sets, evolution oper-
ators, dynamical zeta functions, spectral determinants, cycle expansions, quantum
trace formulas, zeta functions, and so on to the semiclassical quantization of he-
lium – should give the reader some confidence in the broad sway of the theory.
The formalism should work for any average over any chaotic set which satisfies
two conditions:
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1. the weight associated with the observable under consideration is multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coeffi-
cients and quantum eigenvalues. A big surprise is that the semi-classical quantum
mechanics of systems classically chaotic is very much like the classical mechanics
of chaotic systems; both are described by zeta functions and cycle expansions of
the same form, with the same dependence on the topology of the classical flow.

But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1. Nonlinear dynamics texts. This text aims to bridge the gap between the
physics and mathematics dynamical systems literature. The intended audience is Hen-
riette Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything she is told. As a complementary presentation we recommend Gaspard’s
monograph [14] which covers much of the same ground in a highly readable and scholarly
manner.

As far as the prerequisites are concerned–ChaosBook is not an introduction to non-
linear dynamics. Nonlinear science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the textbook by Strogatz [42], an
introduction to the applied mathematician’s visualization of flows, fixed points, mani-
folds, bifurcations. It is the most accessible introduction to nonlinear dynamics–a book
on differential equations in nonlinear disguise, and its broadly chosen examples and many
exercises make it a favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [2] is preferable: an elegant introduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensions–a good companion to Chaos-
Book. Introduction more comfortable to physicists is the textbook by Ott [30], with the
baker’s map used to illustrate many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as first books on nonlinear dynamics. Sprott [41] and
Jackson [19] textbooks are very useful compendia of the ’70s and onward ‘chaos’ litera-
ture which we, in the spirit of promises made in sect. 1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and numerical anal-
ysis of dynamical systems for short times (trajectories, fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic systems. For the
dynamical systems material covered here in chapters 2 to 4, as well as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsov [24]. A good introduc-
tion to numerical experimentation with physically realistic systems is Tufillaro, Abbott,
and Reilly [44]. Willis [46] short course on Equilibria, periodic orbits and computing
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them, is a very nice, student friendly introduction to numerical methods that underpin
modern fluid-dynamical applications of the theory developed in ChaosBook, with online
code samples. Korsch and Jodl [23] and Nusse and Yorke [29] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statistical mechan-
ics, partial differential equations and quantum mechanics, the stage is set for any of the
one-semester advanced courses based on ChaosBook.

Question 1.1. Henriette Roux asks
Q You do not do bifurcations?
A No, we do not do bifurcations here. You should already know all about bifurcations.

Remark 1.2. ChaosBook based courses. The courses taught so far (for a listing,
consult ChaosBook.org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulas, zeta func-
tions, cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermody-
namic formalism, period doubling, renormalization operators. A graduate level introduc-
tion to statistical mechanics from the dynamical point view is given by Dorfman [11]; the
Gaspard monograph [14] covers the same ground in more depth. Driebe monograph [12]
offers a nice introduction to the problem of irreversibility in dynamics. The role of ‘chaos’
in statistical mechanics is critically dissected by Bricmont in his highly readable essay
“Science of Chaos or Chaos in Science?” [10].

Spatiotemporal dynamical systems. Partial differential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmetries and bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [18]
offer a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as
a staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows (consult chapter 30).

Quantum chaos. Semiclassical propagators, density of states, trace formulas, semiclassi-
cal spectral determinants, billiards, semiclassical helium, diffraction, creeping, tunneling,
higher-order ~ corrections. For further reading on this topic, consult the quantum chaos
part of ChaosBook.org.

Remark 1.3. Periodic orbit theory. This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook. The role of unstable periodic
orbits was already fully appreciated by Poincaré [8, 33], who noted that hidden in the ap-
parent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths and
self-similar structure, and suggested that the cycles should be the key to chaotic dynamics.
Periodic orbits have been at core of much of the mathematical work on the theory of the
classical and quantum dynamical systems ever since. We refer the reader to the reprint
selection [26] for an overview of some of that literature.

Remark 1.4. If you seek rigor? If you find ChaosBook not rigorous enough,
you should turn to the mathematics literature. We give a short shrift to the theory of
bifurcations, and the KAM (Kolmogorov-Arnol’d-Moser) tori make only a tangential ap-
pearance. We recommend Robinson’s advanced graduate level exposition of dynamical
systems theory [34] from Smale perspective. The most extensive reference is the treatise
by Katok and Hasselblatt [21], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [40],
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Bowen [9] and Sinai [39]. Sinai’s paper is prescient and offers a vision and a program
that ties together dynamical systems and statistical mechanics. It is written for readers
versed in statistical mechanics. For a dynamical systems exposition, consult Anosov and
Sinai [3]. Markov partitions were introduced by Sinai in ref. [38]. The classical text
(though certainly not an easy read) on the subject of dynamical zeta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formalism [36]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) and Smale’s theory of hyperbolic
flows are applied to zeta functions and correlation functions. The status of the theory from
Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [35]. Further
excellent mathematical references on thermodynamic formalism are Parry and Pollicott’s
monograph [31] with emphasis on the symbolic dynamics aspects of the formalism, and
Baladi’s clear and compact reviews of the theory of dynamical zeta functions [5, 6].

Remark 1.5. If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poincaré tilings, modular domains,
Selberg Zeta functions, Riemann hypothesis, . . . Why? While this beautiful mathematics
has been very inspirational, especially in studies of quantum chaos, almost no powerful
method in its repertoire survives a transplant to a physical system that you are likely to
care about.

Remark 1.6. Grasshoppers vs. butterflies. The ‘sensitivity to initial conditions’
was discussed by Maxwell, then 30 years later by Poincaré. In weather prediction, the
Lorenz’ ‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book
review by W. S. Franklin [13]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed
meteorologist, and in 1972 he repackaged it as the ‘Butterfly Effect’. rem:Lorenz Jamie
L. Vernon [45] writes: “During the 139th meeting of the American Association for the
Advancement of Science, Edward Lorenz posed a question, ‘Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?’ Lorenz’s insight called into question laws
introduced as early as 1687 by Sir Isaac Newton suggesting that nature is a probabilistic
mechanical system, ‘a clockwork universe.’ Similarly, Lorenz challenged Pierre-Simon
Laplace, who argued that unpredictability has no place in the universe, asserting that if
we knew all the physical laws of nature, then ‘nothing would be uncertain and the future,
as the past, would be present to [our] eyes.’ ”

Remark 1.7. Sorry, no schmactals!

After all, it’s impossible to read a single tweet, or hear
him speak a sentence or two, without staring deep into
the abyss. He turns being artless into an art form; he is a
Picasso of pettiness; a Shakespeare of s**t. His faults are
fractal: even his flaws have flaws, and so on ad infinitum.

—Nate White

On a hype-free planet, the totality of what Hale & Koçak [17] have to say about this baby-
boomer phenomenon would suffice: “No exposition of planar maps would be complete
without mentioning fractals; so we mention them. Some of the popular resources are
Barnsley [7] and Peitgen & Richter [32].” But no,

Question 1.2. Henriette Roux asks
Q Before any serious study of the topic, fractals would have been the first word to come
to my mind at the mention of chaos theory. So, if I may, why are fractals on the outs?
A We try to explain why in sect. 1.3.3: it’s a regrettable historical accident – fractal

section 1.3.3
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pictures are cute, but not how the theory of chaotic dynamics actually works, which is a
subject much deeper and intellectually more beautiful – hence ChaosBook. Basically, in
the 1980’s physicist were trying to learn the new subject, and spent much time on 1-, 2-,
3-dimensional systems that they could visualize playing with computers. Some insights
were fruitful in understanding high-dimensional, physical problems. Fractals were not
one of them.

But, as people ask, we must say something about them. ChaosBook skirts mathemat-
ics and empirical practice of fractal analysis, such as Hausdorff and fractal dimensions.
The word ‘fractal’ was coined by Mandelbrot [27]. Addison’s introduction to fractal di-
mensions [1] offers a well-motivated entry into this field. For reasons that remain myste-
rious to the authors - perhaps so that Mandelbrot could refer to himself both as the mother
of fractals and the grandmother of multifractals - some physics literature refers to any
fractal generated by more than one scale as a ‘multi’-fractal. This usage divides fractals

remark A1.5
into 2 classes; one consisting of the canonical 1/3’s Cantor set and the Serapinski gasket,
and the second consisting of anything else, including all cases of physical interest. A bit
like naming all one-legged creatures ‘monopeds’, and then claiming the credit for the sole
discovery of all two- or more long-leggedy beasties, and claiming the honor of naming
them ‘multipeds’. Even though the experimental evidence for the fractal geometry of
nature is circumstantial [4], in studies of probabilistically assembled fractal aggregates
such as diffusion limited aggregates (DLA) better measures of ‘complexity’ are lack-
ing. For deterministic systems, however, we can do much better, by studying physically
motivated and experimentally measurable quantities (escape rates, diffusion coefficients,
energy dissipation rates of turbulent flows, semiclassical atomic spectra, ...). That’s what
the ChaosBook is about.

Remark 1.8. Dynamics is! This comes up a lot, so might just as well dispose of it
right away. “Dynamics is,” not “Dynamics are:”

dy·nam·ics (used with a singular verb) The branch of mechanics that deals
with the motion and equilibrium of systems under the action of forces, usu-
ally from outside the system.

Economist style guide says:

“A government, a party, [...] are all it and take a singular verb. So does
a country, even if its name looks plural. Thus The Philippines has a con-
gressional system, as does the United States; the Netherlands does not.
The United Nations is also singular. So are acoustics, ballistics, dynamics,
economics, kinetics, mathematics, mechanics, physics, politics and statics
when being used generally, without the definite article. But such -ics words
are plural when preceded by the, or the plus an adjective, or with a posses-
sive. [...] ‘The dynamics of the dynasty were dynamite’...

Remark 1.9. Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, there is a line of research in neu-
ronal dynamics that focuses on possible unstable periodic states, described for example in
refs. [15, 16, 28, 37].
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A guide to exercises

God can afford to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. As not to fragment the text, the exercises
are indicated by text margin boxes such as the one on this margin, and collected

exercise 23.2
at the end of each chapter. By the end of a (two-semester) course you should have
completed at least three small projects: (a) compute everything for a 1-dimen-
sional repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute
a part of the quantum 3-disk game of pinball, or the helium spectrum, or if you
are interested in statistical rather than the quantum mechanics, compute a transport
coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1, exercise 11.3, exercise 14.1

2. pinball simulator, exercise 9.1, exercise 16.4

3. pinball stability, exercise 16.6, exercise 16.4

4. pinball periodic orbits, exercise 16.5, exercise 16.3

5. helium integrator, exercise 2.11, exercise 7.4

6. helium periodic orbits, exercise 16.10

• Averaging, numerical

1. pinball escape rate, exercise 20.3

• Averaging, periodic orbits

1. cycle expansions, exercise 23.1, exercise 23.2

2. pinball escape rate, exercise 23.4, exercise 23.5

3. cycle expansions for averages, exercise 23.1, exercise 27.3

4. cycle expansions for diffusion, exercise 24.1

5. pruning, transition graphs, exercise 18.6

6. desymmetrization exercise 25.1

7. intermittency, phase transitions, exercise 29.6

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by a chili , or any number of ***
stars. If you solve one of those, it is probably worth a publication. Solutions to
many of the problems are available upon request. A clean solution, a pretty figure,
or a nice exercise that you contribute to ChaosBook will be gratefully acknowl-
edged. Often going through a solution is more instructive than reading the chapter
that problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics. As periodic trajectories
will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in sect. 18.4). Show
that the 3-disk pinball has 3 · 2n−1 itineraries of length
n. List periodic orbits of lengths 2, 3, 4, 5, · · · . Verify
that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, · · · . Try to sketch them.
(continued in exercise 15.7)

1.2. Sensitivity to initial conditions. Assume that two pin-
ball trajectories start out parallel, but separated by 1
Ångström, and the disks are of radius a = 1 cm and
center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the
size of system (assuming that the trajectories have been
picked so they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score (num-
ber of bounces) in a game without cheating, by hook or
crook (by the end of chapter 23 you should be in position
to make very accurate estimates).
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Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We define a dynamical system (M, f ) and classify its solutions as equilibria,
periodic, and aperiodic. An ‘aperiodic’ solution is either ‘wandering’ or
belongs to a non–wandering set, which in turn can be decomposed into

into chain-recurrent sets. Various cases are illustrated with concrete examples,
such as the Rössler and Lorenz systems.

fast track:

chapter 19, p. 358

2.1 Dynamical systems

I would have written a shorter book, but I didn’t have the
time.

— Channeling Blaise Pascal

1 In a dynamical system we observe the world as it evolves with time. We ex-

38
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Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space point x, after a
time t, the point is at f t(x).

f (x)f (x)
t

x

press our observations as numbers and record how they change; given sufficiently
detailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planets against the celestial

section 1.3
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving among the fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions–latitudes and
longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state spaceM (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of the totality of such points as a flow or dynamics,
and the function f t which specifies where the representative point is at time t as
the evolution rule.

remark 2.1

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of the atmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we are less hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may

chapter 15
think such sets a nuisance, but it is quite the contrary–they will enable us to parti-
tion state space, so that the dynamics can be better understood.

Locally, the state space M looks like Rd, meaning that a dynamical evolu-
tion is an initial value problem, with d numbers sufficient to determine what will
happen time t later. The local linear vector space (tangent space) at any given
state space point x ∈ M can be thought of as a ‘chart’ (however, we shall use

1 In order not to interrupt the flow of exposition, the examples are relegated to sect. 2.6. But to
understand the exposition, you have to work through the examples.
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Figure 2.2: A flow: The evolution rule f t can be used
to map a region Mi of the state space into the region
f t(Mi). �
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this term in a more restricted sense, only after the continuous time and contin-
uous symmetries have been ‘quotiented out’, see sects. 3.1 and 13.1). Globally,
the state space may be a more complicated manifold such as a torus, a cylinder,
or some other smooth geometric object. By manifold we mean a smooth differ-
entiable d-dimensional space which looks like Rd only locally. For example, the
state space of an autonomous Hamiltonian system the flow is confined to a curved
constant energy hyper-surface. When we need to stress that the dimension d ofM
is greater than one, we may refer to the point x ∈ M as xi where i = 1, 2, 3, . . . , d.
If the dynamics is described by a set of PDEs (partial differential equations), the

chapter 30
state space is the infinite-dimensional function space, with a given instantaneous
state or field u = u(x) labeled by a set of continuous indices x. The evolution rule

section 2.4
f t :M→M tells us where the initial state x lands inM after the time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f t can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f (x, t) to remind
us that f is really a function of two variables: the time and a point in state space.
Note that time is relative rather than absolute, so only the time interval is neces-
sary. This follows from the fact that a point in state space completely determines
all future evolution, and to locate where it lands in the future it is not necessary to
know anything besides the elapsed time interval. The time parameter can be a real
variable (t ∈ R), in which case the evolution is called a flow, or an integer (t ∈ Z),
in which case the evolution advances in discrete steps in time, given by iteration
of a map. The evolution parameter need not be the physical time; for example, a
time-stationary solution of a partial differential equation is parameterized by spa-
tial variables. In such situations one talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their orbits: given a state x0 at initial time t0, the flow map

f t : x0 → x(x0, t)

yields the state x(t) time t later. This evolution rule traces out a sequence of
points x(t) = f t(x0), the orbit through the point x0 = x(0). We shall usually
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omit the x0 label from x(x0, t). By extension, we can also talk of the evolution
of a regionMi of the state space. The language of continuum mechanics is quite
helpful in visualizing such deformations, not only in 3-dimensional space, but also
in state spaces of arbitrary dimension. Consider a motion f from the undeformed
(reference or initial) region (a ‘body’)Mi to the deformed (current or final) region
M f = f t(Mi). We may write the motion as a map

f t : Mi →M f , (2.1)

such that every x0 inMi is mapped to an x = f t(x0) inM f , as in figure 2.2, where
x denotes the state in the deformed region, and x0 represents the state in the initial,
undeformed region.

exercise 2.1

The subset of points Mx0 ⊂ M that belong to the infinite-time trajectory
of a given point x0 is called the orbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. In this book ‘trajectory’ refers to
a set of points or a curve segment traced out by x(t) over a finite time interval
t. ‘Orbit’ refers to the totality of states that can be reached from x0, with state
spaceM stratified into a union of such orbits (eachMx0 labeled by a single point
belonging to the set, x0 = x(0) for example). Under time evolution a trajectory
segment is mapped into another trajectory segment, but points within an orbit
are only shifted; the orbit considered as a set is unchanged. Hence an orbit is a
dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-
totic t → ∞ dynamics by a systematic hierarchy of compact time-invariant sets or
compact orbits (equilibria, periodic orbits, invariant tori, · · · ).

2.1.1 A classification of possible motions?

Ah, yes, Judgie, everything will go away someday. It’s the
waiting that’s so exquisitely wearing.

— Duke Ellington, to Robert Traver

What kinds of orbits are there? This is a grand question, and there are many
answers. The following chapters offer some. Here is a first attempt to classify all
possible orbits:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum period Tp

aperiodic: f t(x) , f t′(x) for all t , t′ .

A periodic orbit (or a cycle) p is the set of points Mp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
periodic orbit as a periodic point, see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

chapter 5
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Figure 2.3: A periodic point returns to the initial point
after a finite time, x = f Tp (x). Periodic orbit p is the
set of periodic points p =Mp = {x1, x2, · · · } swept out
by the trajectory of any one of them in the finite time
Tp.

x
1

x(T) = x(0)

x
2

x
3

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with the notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (swept by semi-infinite curves originating at an equilibrium along each
stability eigenvector) and the most baffling of all invariant orbits, the infinite time
ergodic orbits.

section 15.1

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, what we today call ‘integrable systems’. The embarrassing truth is that
for a generic dynamical system almost all motions are aperiodic. So we refine the
classification by dividing aperiodic motions into two subtypes: those that wander
off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighbor-
hoodM0 of x to which the orbit never returns

f t(x) <M0 for all t > tmin . (2.2)

In physics literature, the dynamics of such a state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time orbits, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity and replace it by the notion of recurrence. A point
is recurrent or non-wandering, if for any open neighborhood M0 of x and any
time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.3)

In other words, the orbit of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote the non–wandering set of f by Ω, i.e., the
union of all the non-wandering points ofM. This non–wandering set of f is key
to understanding the long-time behavior of a dynamical system; all calculations
undertaken here will be carried out on non–wandering sets.
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So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting
onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing

example 2.3
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like ‘transitive’ and ‘chain-
recurrent’ that we will be ready to discuss only in sect. 17.1.

Conversely, if we can enclose the non–wandering set Ω by a connected state
space volumeM0 and then show that almost all points withinM0, but not in Ω,
eventually exitM0, we refer to the non–wandering set Ω as a repeller. An example
of a repeller is not hard to come by–the pinball game of sect. 1.3 is a simple chaotic
repeller. Ω, the non–wandering set of f , is the union of all of the above, separately
invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from truth. If longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we can establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f t is a family
of mappings of M → M parameterized by t ∈ R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′(x) (the evolution law is the same at all times)
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(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’
appendix A10.1

f t+s = f t ◦ f s = f t( f s) . (2.4)

The family of mappings f t(x) thus forms a continuous (1-parameter forward Lie
semi-) group. Why ‘semi-’group? It may fail to form a group if the dynamics
is not reversible, and the rule f t(x) cannot be used to rerun the dynamics back-
wards in time, with negative t; with no reversibility, we cannot define the inverse
f −t( f t(x)) = f 0(x) = x , in which case the family of mappings f t(x) does not form
a group. In exceedingly many situations of interest–for times beyond the Lya-
punov time, for asymptotic attractors, for dissipative partial differential equations,
for systems with noise, for non-invertible maps–the dynamics cannot be run back-
wards in time, hence, the circumspect emphasis on semigroups. On the other
hand, there are many settings of physical interest, where dynamics is reversible
(such as finite-dimensional Hamiltonian flows), and where the family of evolution
maps f t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.5)

and express the tangent to the curve at point x(t) as
exercise 2.3

dx
dτ

∣∣∣∣∣
τ=0

= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) , (2.6)

the time derivative of the evolution rule, a vector evaluated at the point x(t). By
considering all possible orbits, we obtain the vector ẋ(t) at any point x ∈ M. This
vector field is a (generalized) velocity field:

question 13.2

ẋ(t) = v(x) . (2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.7), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.7). At each point of the
state space a vector indicates the local direction in which the orbit evolves. The
length of the vector |v(x)| is the speed at the point x, and the direction and length
of v(x) changes from point to point (a warning: we have slipped in here a highly

remark 6.1
nontrivial notion of a “norm” or distance in the state space). When the state space
is a complicated manifold embedded in Rd, one can no longer think of the vector
field as being embedded in the state space. Instead, we have to imagine that each
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Figure 2.4: (a) The 2-dimensional vector field for
the Duffing system (2.22), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a tra-
jectory, starting at the tail and ending at the head.
The longer the comet, the faster the flow in that
region.

(a) (b)

point x of state space has a different tangent plane TMx attached to it. The vector
field lives in the union of all these tangent planes, a space called the tangent
bundle

TM =
⋃
x∈M

TMx . (2.8)

TMx is called a fiber at x, hence the whole thing is called the fiber bundle. Locally
a fiber bundle looks like the product of two Rd spaces. Just relax: we’ll do our
best not to use such words again.

A simple example of a flow defined by a 2-dimensional vector field v(x) is
afforded by the unforced Duffing system, figure 2.4. Lorenz flow of figure 2.5,
and Rössler flow of figure 2.6 , are representative 3-dimensional flows.

example 2.1

p. 61

example 2.2

p. 61

example 2.3

p. 61

The instantaneous velocity vector v is tangent to the orbit, except at the equi-
librium points, where it vanishes.

If v(xq) = 0 , (2.9)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The
orbit remains forever stuck at xq. Otherwise the orbit passing through x0 at time
t = 0 can be obtained by integrating the equations (2.7):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.10)

We shall consider here only autonomous flows, i.e., flows for which the vector
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ

= w(y, τ) , (2.11)

can always be converted into a system where time does not appear explicitly.
exercise 2.4
exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.12)

The new flow ẋ = v(x) is autonomous, and the orbit y(τ) can be read off x(t) by
ignoring the last component of x.

exercise 6.3
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
Halcrow) −20 −10 0 10 20
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Figure 2.6: A trajectory of the Rössler flow at time
t = 250. (G. Simon)

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective one only cares about what is the state
of system here and now; think of a field of grass, each grass blade the local ve-
locity vector. From the Lagrangian viewpoint one cares about where a state space
point come from, and where is it going to; think of the state space foliated into a
bowl of linguini, each noodle an orbit, marked with a label x0 somewhere along
it. In the Eulerian formulation the flow is defined by specifying (2.7), the veloc-
ity field v(x). In the Lagrangian formulation it is given by the finite time flow
(2.10), i.e., the totality of the trajectories x(t) comprising the deformed region,
labeled by their origin x0 in the initial undeformed region. If we mark the orbit
x(t) by its initial point x0, we are describing the flow in the Lagrangian coordi-
nates. The Eulerian velocity v(x) at a fixed state space position x is equal to the
Lagrangian velocity v(x(t)) at the orbit passing through x at the instant t. Because
f t is a single-valued function, any point on the orbit can be used to label the orbit.
The transport of the ‘material point’ x0 at t = 0 to its value at the current point
x(t) = f t(x0) is a coordinate transformation from the Lagrangian coordinates to
the Eulerian coordinates.

In numerical work we are given the equations of motion (the local Eulerian
velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
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dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport.

fast track:

chapter 3, p. 66

2.3 Changing coordinates

Whatever else the students will need in later life, it is cer-
tain that they will have to handle changes of variables [...].
One should spend some time teaching in wealth of de-
tail relevant changes of variables. Luckily, some of these
are still included in textbooks, though no textbook now in
print awards this essential technique the importance it de-
serves. Worse, no one realizes that changes of variables
are not just a trick; they are a coherent theory [...].

— Ten Lessons, by Gian-Carlo Rota [39]

Problems are handed down to us in many shapes and forms, and they are not al-
ways expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but in doing so, the velocity
vector field will also change. The vector field lives in a (hyper)plane tangent to the
state space (remember the dreaded tangent bundle?), so changing the state space
coordinates affects the coordinates of the tangent space as well, in a way that we
will now describe.

Denote by h the conjugation function which maps the coordinates of the initial
state spaceM into the reparameterized state space M̃ = h(M), with a point x ∈ M
related to a point y ∈ M̃ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one, a diffeomorphism on open neigh-
borhoods inM and M̃, so given any point y we can go back to x = h−1(y). For
smooth flows the reparameterized dynamics should support the same number of
derivatives as the initial one. If h is a (piecewise) analytic function, we refer to h
as a smooth conjugacy.

What form does the velocity vector field ẋ = v(x) take in the new coordinate
system y = h(x)? Let’s compute it first for a 1-dimensional dynamical system. Let
x(t) = f t(x) be the solution to the differential equation ẋ = v(x) starting at x, and
y(t) = gt(y) be the solution to the same problem, but in the new coordinates. The
velocity vector field in the new coordinates follows from the chain rule:

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
dy
dx

dx
dt

=
dh
dx

v(x) .
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To understand this transformation for a state space of arbitrary dimension, a little
geometrical intuition pays off. The evolution rule gt(y0) on M̃ can be computed
from the evolution rule f t(x0) onM by taking the initial point y0 ∈ M̃, going back
toM, evolving, and then mapping the final point x(t) back to M̃:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (2.13)

Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (2.13) is a short-
hand for y(t) = h( f t(h−1(y0))). and that why h(x) is called a ‘conjugating func-
tion’; it is a similarity transformation generalized to nonlinear coordinate trans-
formations.

The vector field ẋ = v(x) is locally tangent to the flow f t; it is related to the
flow by differentiation (2.6) along the orbit. The vector field ẏ = w(y), y ∈ M̃
locally tangent to gt, follows by the chain rule:

exercise 2.10

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (2.14)

In order to rewrite the right-hand side as a function of y, note that the ∂y differen-
tiation of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
·
∂h−1

∂y

∣∣∣∣∣∣
y

= 1 →
∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (2.15)

so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j
v j(h−1(y)) . (2.16)

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold M̃, but their shapes will change. Globally, h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the coordinate transformation Jacobian matrix ∂ jhi, yielding the
simple transformation law (2.14) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(t), with the concomitant modification of (2.16). An
example is the 2-body collision regularization of the helium Hamiltonian (8.27),
to be undertaken in appendix A2.2.

appendix A2.2

In chapter 30 we shall dispose of the fear of ‘infinite-dimensional’ dynamical
systems–you might prefer to skip sect. 2.4 on first reading.
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Figure 2.7: (a) The Ring of Fire, visualized as a
Bunsen burner flame flutter, with u = u(x, t) the
velocity of the flame front at position x and time t.
(b) A profile of the velocity u of the flame front at
fixed time instant t folded out on a plane, with spa-
tial periodicity u(x, t) = u(x+40, t) (from ref. [30]).

(a)

u(x,t)

x (b)
0 10 20 30 40

−2

−1

0

1

2

x

u

2.4 Life in extreme dimensions

Sometimes I’ve believed as many as six impossible things
before breakfast.

— Lewis Carroll

Systems described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ dynamical systems, because in order to uniquely specify the state
of a spatially extended ‘field’, one needs infinitely many numbers, one for the
value of the field at each configuration space point. Even though the state space

chapter 30
is infinite-dimensional, the long-time dynamics of many such systems of physical
interest is finite-dimensional, contained within a ‘strange attractor’ or an ‘inertial
manifold’. Most of us find it hard to peer into four dimensions. How are we
to visualize -and why we would have any hope of visualizing- dynamics in such
extreme dimensions? A representative point is a point, and its trajectory is a curve
in any 2- or 3-dimensional projection, so that is not so hard. What is hard is to get
an understanding of relative disposition of different states. The coordinates have
to be chosen thoughtfully, as in a randomly picked coordinate frame most orbits
of interest will appear minuscule.

A dynamical system is specified by the pair (M, f ), where d numbers uniquely
determine a state of the system, or the representative point x in the state space
manifoldM. Here we focus on how one constructs such state space, and how one
visualizes a representative point x and its trajectory f t(x) time t later. We shall re-

chapter 30
turn to dynamics, i.e., the evolution rule f t that maps a state space regionMi of the
state space into the region f t(Mi) (see figure 2.2) for such systems in chapter 30,
where we describe in some detail time-evolution equations for spatially-extended
systems, and discuss ‘turbulence’ that such systems may exhibit.

2.4.1 Configuration space: a fluttering flame front

Consider the flame front flutter of gas burning on your kitchen stove. Such ‘Bun-
sen burner’, invented by Göttingen chemistry prodigy Robert Bunsen in 1855, en-
tered popular culture in 1963 as Johnny Cash et al. [6] “Ring of Fire”. Its flame
front instabilities are perhaps the most familiar example of a nonlinear system that
exhibits ‘turbulence’ (or, more modestly, ‘spatiotemporally chaotic behavior’): a
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Figure 2.8: A spatiotemporal plot of the Ring of
Fire “turbulent" solution, periodic domain u(x, t) =

u(x + 20π
√

2, t) is obtained by plotting the profile
of figure 2.7 (b) for successive time instants (ver-
tical axes). The color indicates the value of u at a
given position and instant in time (from ref. [9]).

typical configuration space (or the much abused word ‘physical’ space) visual-
ization is sketched in figure 2.7. Its state can be described by the ‘flame front
velocity’ u = u(x, t) on a periodic domain u(x, t) = u(x + L, t).

Spatial, ‘configuration’ or ‘physical’ space visualization of a state of such
system, figure 2.7, or a fixed time snapshot of velocity and vorticity fields in 3D
Navier-Stokes, or a visualization of the flame front flutter in time, figure 2.8, or
a time-evolving video of a fluid, offer little insight into detailed dynamics of
such systems. To understand the dynamics, one must turn to the complementary,
and often much more illuminating state space representations. In this context
‘flow’ refers to a d-dimensional flow in the dynamical state space, not the flow
of a fluid, and ‘velocity’ to the state space tangent field ẋ = v(x), not to the 3D
configuration space fluid velocity field u(x, t) ∈ R3. A ‘representative point’ is
a full specification of the state x ∈ M of the system, In today’s experiments or
numerical simulations, this is a set of anything from 16 to 106 numbers needed to
specify a complete snapshot of the flame front figure 2.7, or the state of volume

chapter 30
of turbulent fluid in a pipe at an instant in time.

2.4.2 Constructing a state space

Think globally, act locally.
— Patrick Geddes

At this juncture, our everyday, plumber’s visual intuition actually interferes
with dynamical visualization of state space of a spatially-extended systems: while
the spatial dimension of the Ring of Fire is 1, its dimension as a dynamical system
is ∞. Absorbing this simple fact of life is the same rite of passage as going from
the 1-degree of freedom quantum mechanical oscillator to the ‘second quantiza-
tion’ of quantum field theory, with its infinitely many quantum oscillator degrees
of freedom.

To develop some intuition about such dynamics we turn to experiments, or
numerical simulations, such as the Ring of Fire time evolution, figure 2.8. The
first thing we note is that while the dynamics might be ‘turbulent’, for many such
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systems the long-time solutions tend to be smooth. That suggests that a discretiza-
tion, perhaps aided by interpolations such as n-point spatial derivatives might give
us a representation of the dynamics of reasonable accuracy.

Discrete mesh: You can subdivide the configuration domain into a sufficiently
fine discrete grid of N boxes, replace space derivatives in the governing equations
by approximate discrete derivatives, and integrate a finite set of first order differ-
ential equations for the discretized spatial components u j(t) = u( jL/N, t), by any
integration routine you trust. Most often that’s the best you can do.

The next thing we note is that the solutions for many physical systems of
physical interest tend to be not only smooth, but also that the laws that govern
them are invariant in form under operations such as translations. For example,
in configuration space the fluttering flame front governing equations should be
invariant in their form under rotations, time translations, and reflection x → −x,
u→ −u.

Spectral methods: The spatial periodicity u(x, t) = u(x + L, t) then suggests that
it might be convenient to work in the Fourier space,

u(x, t) =

+∞∑
k=−∞

ũk(t) eiqk x , (2.17)

where ũk = xk + i yk = |ũk|eiφk , qk = 2πk/L, L is the domain size, x is the spatial
coordinate and τ is time. Thus a state of a spatially 1-dimensional extended system
can described by an infinite set of complex Fourier coefficients ũk(t). The velocity
field u(x, t) is real, so ũk = ũ∗

−k, and we can replace the sum by an k ≥ 0 sum,
with u writtan as its reflection-symmetric part (sum of cosines) plus its reflection-
antisymmetric part (sum of sines). This is an example of an infinite-dimensional
state space alluded to on page 49, in this section’s introduction.

example 12.7

Intuitively the flame front is smooth, so Fourier coefficients ũk drop off fast
with k, and truncations of (2.17) to finite numbers of terms can yield highly ac-
curate states. In numerical computations this state space is truncated to a finite
number of real numbers. For example, a state might be specified by 2N real
Fourier coefficients, or ‘computational degrees of freedom’

x = (x1, y1, x2, y2, . . . , xN , yN)T . (2.18)

More sophisticated variants of such truncations are called in the literature Gälerkin
truncations, or Gälerkin projections.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space, as in
figure 2.7 and figure 2.8, by inverting (2.17). Spatiotemporal patterns give us a
qualitative picture of the flow and a physical intuition about the energetics of the
flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space is much more informative.
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2.4.3 State space, as visualized by dummies

This is dedicated to Student X
— Professore Dottore Gatto Nero

So the simplest way to construct (in practice a finite dimensional approximation
to) state space coordinates is by a discrete mesh u(x, t)→ u j(t) or ‘spectral’ coef-
ficients u(x, t) → ũk(t). We shall refer to such coordinates as ‘computational de-
grees of freedom’. The same dynamics can look very different in different choices
of coordinates. And when we say that the dynamics is ‘61,506-dimensional’,
we mean that in order to capture a particular physical observable to a sufficient
number of digits of accuracy, we need at least 61,506 computational degrees of
freedom.

The question is: how is one to look at such state space flow? The laziest thing
to do is to examine the trajectory’s projections onto any three computational de-
grees of freedom, let’s say the first three Fourier modes (ũ1, ũ2, ũ3). Why would
you do that? Well, that’s what computer spews out. This won’t do. Let’s ac-
cept that you do not know much about high dimensions, but you have been born
someplace where they force you to watch grown men kick a ball, for hours on
end. Your choice of (ũ1, ũ2, ũ3) coordinates means that you (or the TV camera)
are standing at a corner of the field. Far, far away, at the opposite end of the field,
there is action - but you only see a few little moving silhouettes, and can hardly
see the ball.

Or, if you scholarly kind, and would rather while hours away evaluating Meijer
G-functions, here is a precise way of saying the same: chose a direction in a high-
dimensional state space, call it your basis vector e(1). Now pick a state u in state
space at random. That gives you a second vector. What is the angle between these
two vectors? The cosine of that angle you compute by evaluating the ‘dot’ product
(or L2 norm)

〈u|e(1)〉 =
1
V

∫
Ω

dx u · e(1) , ‖u‖2 = 〈u|u〉 . (2.19)

Once you finish the exercise 2.13 you will know what every computer scientist
exercise 2.13

knows: the expectation value of the angle between any two high-dimensional
vectors picked at random is 90o, with a very small variance. In other words, in
high dimension and with a random coordinate system, every distant silhouette of
Cristiano Ronaldo is vanishingly small. And as your lazy (ũ1, ũ2, ũ3) coordinates
are a random choice, your turbulent state might require 105 such coordinates to be
accurately resolved.

So, if you were a referee, or a camera operator, would your really just stand
there, in the far corner of the field?

2.4.4 Exact state-space portraiture: go where the action is

(J.F. Gibson and P. Cvitanović)
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You are interested into dynamics and especially the recurrent dynamics, so
scan the soccer field and identify, by long-time numerical simulations or other
means, prominent states that characterize the observed recurrent coherent struc-
tures of interest to you. If you form a basis set from them, and project the evolving
state x(t) onto this basis, coordinates so formed will capture close recurrences to
these states. That is, form orthonormal basis functions {e(1), e(2), . . . , e(n)} from a
set of linearly independent fluid states and produce a state-space trajectory

x(t) = (x1(t), x2(t), · · · , xn(t), · · · ) , xn(t) = 〈u(t)|e(n)〉 (2.20)

in the {e(n)} coordinate frame. The projection of the trajectory can be viewed by a
human in any of the 2d planes {e(m), e(n)} or in 3d perspective views {e(`), e(m), e(n)}.
The dimensionality is lower than the full state space, so in such projections tra-
jectories can appear to cross. It is important to understand that this is a low-
dimensional visualization, not low-dimensional modeling, a truncation to fewer
computational degrees of freedom. The dynamics are computed with fully-resolved
direct numerical simulations and then projected onto basis sets to produce low-
dimensional state-space portraits, tailored to specific purposes and specific regions
of state space. The resulting portraiture depends on the physical states involved
and not on the (arbitrary) choice of a numerical representation. Such well-chosen
portraits reveal dynamical information visually, providing insight into dynamics
that can guide further analysis.

At first glance, turbulent dynamics visualized in state space might appear
hopelessly complex, but many detailed studies suggest it might be much less so
than feared: turbulent dynamics appears to be pieced together from near visita-
tions to exact invariant solutions. interspersed by transient interludes. Equilibria,

appendix A1.5
traveling waves, and periodic solutions embody Hopf’s vision: a repertoire of re-
current spatio-temporal patterns explored by turbulent dynamics. We conceive

remark 30.1
of turbulence as a walk through a repertoire of unstable recurrent patterns. As a
turbulent flow evolves, every so often we catch a glimpse of a familiar pattern.
For any finite spatial resolution, the flow approximately follows for a finite time
a pattern belonging to a finite alphabet of admissible fluid states, represented in
ChaosBook by a set of exact invariant solutions.

There is an infinity of possible basis sets, but two types of bases appear par-
ticularly natural: (a) a global basis, determined by a set of dynamically important
states, or (b) a local basis, defined, for example, in terms of a given equilibrium
and its linear stability eigenvectors.

section 4.8

With this road map in hand, we can take a stroll through the state space of a
spatiotemporally turbulent flow. Like many dynamical narratives, this might turn
into a long trek through unfamiliar landscapes with many landmarks of local in-
terest. It is amazing that such a promenade is possible even in 105 dimensions
(computational degrees of freedom). But a detailed road map is a necessary pre-
requisite for solving at least three of your outstanding problems: (a) uncovering
the interrelations between (in principle infinite number of) unstable invariant so-
lutions of a turbulent flow, (b) a partition of state space (symbolic dynamics) is a
needed for a systematic exploration of turbulent dynamics, and (c) linear stability
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eigenvectors and their unstable-manifold continuations will be needed to control
and chaperon a given spatiotemporal state to a desired target state.

In summary, when dealing with spatiotemporally extended systems, you’ll
need dual vision - you will have to think both in the configuration space, and in
the state space.

2.5 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion (2.7).
The simplest is the Euler integrator which advances the trajectory by adding a
small vector δτ× velocity at each time step:

xi → xi + vi(x) δτ . (2.21)

This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If you are interested in Hamiltonian flows you might want
to implement a symplectic integrator of type discussed in appendix A31.2.1. If a

exercise 2.6
‘sophisticated’ integration routine takes days and gobbles up terabits of memory,
you are using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you abso-

exercise 2.7
lutely need to master the requisite numerical methods, this is neither the time nor
the place to expound upon them; how you learn them is your business. And if you

exercise 2.9
have developed some nice routines for solving problems in this text or can point
another student to some, let us know.

exercise 2.11

Résumé

Start from a state space point and evolve it for a finite time, you trace out its
trajectory. Evolve it forward and backward for infinite time, you get the orbit, the
set of all states reachable by evolution from a given state space point. An orbit is
a time-invariant notion: time evolution marches points along it, but the set itself
does not change. The flow describes the time evolution of all state space points,
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i.e., the totality of all orbits: the evolution law f turns the state space into a bowl
of spaghetti, with each individual spaghetto an orbit.

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal
patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time, the system follows approximately a pattern belonging to a finite
repertoire of possible patterns. The long-term dynamics can be thought of as a
walk through the space of such patterns. Recasting this image into mathematics is
the subject of this book.

The state-space portraits are dynamically intrinsic, since the projections are
defined in terms of solutions of the equations of motion, and representation in-
dependent, since the L2 product (2.19) is independent of the numerical represen-
tation. The method can be applied to any high-number of computational degrees
of freedom discretization of a dissipative flow. Production of state-space portraits
requires numerical data of configuration space fields evolving in time (obtained
obtained from simulation or experiment), estimates of important physical states
(such as equilibria and their linear stability eigenfunctions), and a method of com-
puting the inner product between velocity fields over the physical domain.

Commentary

Remark 2.1. ‘State space’ or ‘phase space?’ In ChaosBook, state space is the
set of admissible states in a general d- or ∞-dimensional dynamical system. The term
phase space is reserved for Hamiltonian state spaces of 2D-dimensions, where D is the
number of Hamiltonian degrees of freedom. If the state space is a continuous smooth
manifold much of the literature [25, 32] refers to it as ‘phase space,’ but we find the
control engineering usage sharper: in the state space (or ‘time-domain’) description of
an autonomous physical system, the instantaneous state of the system is represented as a
point within the ‘state space,’ a space whose axes are the state variables, and the evolution
of a state is given by differential equations which are first-order in time. Hopf [26] would
refer to such a state as an ‘instantaneous phase’ of the system obeying a ‘differential law
of the phase motion’. The distinction made here is needed in a text where one treats
deterministic dynamical systems, stochastic systems and quantum-mechanical systems
on equal footing. The term ‘phase’ has a precise meaning in wave mechanics, quantum
mechanics and dynamics of integrable systems at the heart of Hamilton’s formulation of
Newtonian mechanics, while ‘state space’ is more descriptive of the way the notion is
used in the general theory of dynamical systems. Further confusion arises when prefix
spatio- as in ‘spatiotemporal’ is used in reference to states extended in the (1, 2, or 3-dim-
ensional) physical configuration space. They may exhibit spatial wave-like behaviors, but
their state space is∞-dimensional.

Much of the literature denotes the vector field in a first order differential equation
(2.7) by f (x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’
or ‘flow map’ x(x0, t) = Φ(x0, t), or φt(x0), or something else. Here we treat maps and
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flows on an equal footing, and we save Greek letters for matters quantum-mechanical. We
reserve the notation f t(x) for maps such as (2.10) and refer to a state space velocity vector
field as v(x). We come to regret this choice very far into the text, only by the time we
delve into Navier-Stokes equations.

Remark 2.2. Rössler and Duffing flows. The Duffing system (2.22) arises in
the study of electronic circuits [15]. The Rössler flow (2.28) is the simplest flow which

example 2.3exhibits many of the key aspects of chaotic dynamics. It was introduced in ref. [38] as
a set of equations describing no particular physical system, but capturing the essence
of Lorenz chaos in the most simple of smooth flows. Otto Rössler, a man of classical
education, was inspired in this quest by that rarely cited grandfather of chaos, Anaxagoras
(456 B.C.). This and references to earlier work can be found in refs. [22, 36, 46]. We
recommend in particular the inimitable Abraham and Shaw illustrated classic [1] for its
beautiful sketches of many flows, including the Rössler flow. Timothy Jones [28] has a
number of interesting simulations on a Drexel website.

The Rössler flow is the simplest flow which exhibits many of the key aspects of
chaotic dynamics; we shall use it and the 3-pinball systems throughout ChaosBook to

chapter 9motivate introduction of Poincaré sections, return maps, symbolic dynamics, cycle ex-
pansions, and much else. Rössler flow is integrated in exercise 2.7, its equilibria are
determined in exercise 2.8, its Poincaré sections constructed in exercise 3.1, and the cor-
responding return return map computed in exercise 3.2. Its volume contraction rate is
computed in exercise 4.3, its topology investigated in exercise 4.4, the shortest Rössler
flow cycles are computed and tabulated in exercise 7.1, and its Lyapunov exponents eval-
uated in exercise 6.4.

Remark 2.3. Lorenz equation. The Lorenz equation (2.23) is the most celebrated
early illustration of “deterministic chaos” [32] (but not the first - that honor goes to Dame
Cartwright [5] in 1945. Amusingly, Denisov and Ponomarev [11] argue that Ben F. La-
posky might have been the first to observe chaotic attractors as early as 1953, which,
strictly speaking falls after 1945, even in Russia). Lorenz’s 1963 paper, which can be
found in reprint collections refs. [8, 24], is a pleasure to read, and it is still one of the
best introductions to the physics motivating such models (read more about Lorenz here).
The equations, a set of ODEs in R3, exhibit strange attractors. W. Tucker [47–49] has
proven rigorously (via interval arithmetic) that the Lorenz attractor is strange for the orig-
inal parameters (no stable orbits) and that it has a long stable periodic orbit for slightly
different parameters. In contrast to the hyperbolic strange attractors such as the weakly
perturbed cat map [7], the Lorenz attractor is structurally unstable. Frøyland [17] has a
nice brief discussion of Lorenz flow. Frøyland and Alfsen [18] plot many periodic and het-
eroclinic orbits of the Lorenz flow; some of the symmetric ones are included in ref. [17].
Galias and Tucker [19] compute all 2536 periodic orbits of symbolic dynamics periods
n ≤ 14. Guckenheimer-Williams [23] and Afraimovich-Bykov-Shilnikov [2] offer an
in-depth discussion of the Lorenz equation. The most detailed study of the Lorenz equa-
tion was undertaken by Sparrow [42]. For a geophysics derivation, see Rothman course
notes [40]. For a physical interpretation of ρ as “Rayleigh number,” see Jackson [27] and
Seydel [41]. The Lorenz truncation to 3 modes, however, is so drastic that the model
bears no relation to the geophysical hydrodynamics problem that motivated it. Just for
fun, as Lorentz was such a lovable weatherman, in 1972 Willem Malkus constructed [33],
by a feat of reverse engineering, a physical system, a “water wheel”, popularized by Stro-
gatz [44], that is described by Lorentz equations. You can see it simulated Wolfram.com,
and tested experimentally at http://www.ace.gatech.edu. There is no deep physics in this
lovely game, it is but a cute distraction. For detailed pictures of Lorenz invariant mani-
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folds consult Vol II of Jackson [27] and “Realtime visualization of invariant manifolds”
by Ronzan. The Lorenz attractor is a very thin fractal – as we shall see, stable manifold
thickness is of the order 10−4 – whose fractal structure has been accurately resolved by D.
Viswanath [50, 51]. If you wonder what analytic function theory has to say about Lorenz,
check ref. [52]. Modular flows are your thing? E. Ghys and J. Leys have a beautiful tale
for you. Refs. [31, 34] might also be of interest. (continued in remark 11.1)

Remark 2.4. High-dimensional flows and their visualizations. Dynamicist’s vision of
turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [25], see ap-
pendix A1.5. Computational neuroscience grapples with closely related visualization

appendix A1.5and modeling issues [16, 20]. Much about high-dimensional state spaces is counterin-
tuitive. The literature on why the expectation value of the angle between any two high-
dimensional vectors picked at random is 90o is mostly about spikey spheres: see the draft
of the Hopcroft and Kannan [4] book and Ravi Kannan’s course; lecture notes by Her-
mann Flaschka on Some geometry in high-dimensional spaces; Wegman and Solka [53]

exercise 2.13visualizations of high-dimensional data; Spruill paper [43]; a lively mathoverflow.org
thread on “Intuitive crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [21] and described here are akin in spirit
to the low-dimensional projections of the POD modeling [3], in that both methods aim
to capture key features and dynamics of the system in just a few dimensions. But the
method described here is very different from POD in a key way: we construct basis sets
from exact solutions of the fully-resolved dynamics rather than from the empirical eigen-
functions of the POD. Exact solutions and their linear stability modes (a) characterize the
spatially-extended states precisely, as opposed to the truncated expansions of the POD, (b)
allow for different basis sets and projections for different purposes and different regions of
state space, (c) our low-dimensional projections are not meant to suggest low-dimensional
ODE models; they are only visualizations, every point in these projections is still a point
the full state space, and (d) the method is not limited to Fourier mode bases.

(J.F. Gibson and P. Cvitanović)

Remark 2.5. Dynamical systems software: First of all, to understand how adults
in the room feel about this matter, consult Gian-Carlo Rota [39]. But integrate we must,
so: J.D. Meiss [35] has maintained for many years Sci.nonlinear FAQ which is now in
part superseded by the SIAM Dynamical Systems website www.dynamicalsystems.org.
The website glossary contains most of Meiss’s FAQ plus new ones, as well as an up-to-
date software list [45] with links to DSTool, xpp, AUTO [13, 14], etc.. Springer on-line

remark ??
Encyclopaedia of Mathematics maintains links to dynamical systems software packages
on eom.springer.de/D/d130210.htm (dormant since 2000, though). Kuznetsov [29] Ap-
pendix D.9 gives an exhaustive overview of software available in 2004. More recent are
E&F Chaos of Diks et al. [12] and Datseris [10] DynamicalSystems.jl Julia package. For
further links to online codes check ChaosBook.org/extras, as well as remark 15.1.
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[52] D. Viswanath and S. Şahutoğlu, “Complex singularities and the Lorenz
attractor”, SIAM Rev. 52, 294–314 (2010).

[53] E. J. Wegman and J. L. Solka, “On some mathematics for visualizing
high dimensional data”, Sankhya: Indian J. Statistics, Ser. A 64, 429–452
(2002).

flows - 26apr2020 ChaosBook.org edition16.4.8, May 25 2020

https://dspace.mit.edu/bitstream/handle/1721.1/84612/12-006j-fall-2006/contents/index.htm
http://euklid.mi.uni-koeln.de/~seydel/buch2.html
http://euklid.mi.uni-koeln.de/~seydel/buch2.html
http://dx.doi.org/10.1007/978-1-4612-5767-7
http://dx.doi.org/10.1007/978-1-4612-5767-7
http://dx.doi.org/10.1214/ecp.v12-1294
http://dx.doi.org/10.1214/ecp.v12-1294
http://dx.doi.org/10.1214/ecp.v12-1294
http://books.google.com/books?vid=ISBN9780813349107
http://www.dynamicalsystems.org/sw/sw/
http://books.google.com/books?vid=ISBN978-0-471-87645-8
http://books.google.com/books?vid=ISBN978-0-471-87645-8
http://dx.doi.org/10.1016/s0764-4442(99)80439-x
http://dx.doi.org/10.1016/s0764-4442(99)80439-x
http://dx.doi.org/10.1016/s0764-4442(99)80439-x
http://dx.doi.org/10.1007/s002080010018
http://dx.doi.org/10.1007/s002080010018
http://dx.doi.org/10.1007/s002080010018
http://dx.doi.org/10.1007/bf03025276
http://dx.doi.org/10.1007/bf03025276
http://dx.doi.org/10.1007/bf03025276
http://dx.doi.org/10.1088/0951-7715/16/3/314
http://dx.doi.org/10.1088/0951-7715/16/3/314
http://dx.doi.org/10.1088/0951-7715/16/3/314
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://dx.doi.org/10.1016/j.physd.2003.10.006
http://dx.doi.org/10.1137/090753474
http://dx.doi.org/10.1137/090753474
http://dx.doi.org/10.1137/090753474
http://www.jstor.org/stable/25051404
http://www.jstor.org/stable/25051404
http://www.jstor.org/stable/25051404
http://www.jstor.org/stable/25051404


CHAPTER 2. GO WITH THE FLOW 61

2.6 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

Example 2.1. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)
ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.22)

plotted in figure 2.4. The 2-dimensional velocity vectors v(x) = (ẋ, ẏ) are drawn superim-
posed over the configuration coordinates (x(t), y(t)) of state spaceM, but they belong to
a different space (2.8), the tangent bundle TM.

Example 2.2. Lorenz strange attractor. Edward Lorenz arrived at the equation
remark 2.3

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (2.23)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
located at

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.24)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows, but
here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a homo-
clinic orbit at ρ = 13.56 . . . . Beyond that, an infinity of associated periodic orbits are
generated, until ρ = 24.74 . . . , where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice σ =

10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined to
the strange attractor depicted in figure 2.5, and the positions of its equilibria are marked
in figure 11.2 (a). (continued in example 3.3)

click to return: p. 45

Example 2.3. Rössler strange attractor. The Duffing flow of figure 2.4 is bit of a
bore–every orbit ends up in one of the two attractive equilibrium points. Let’s construct
a flow that does not die out, but exhibits a recurrent dynamics. Start with a harmonic
oscillator

ẋ = −y , ẏ = x . (2.25)

The solutions are reit, re−it, and the whole x-y plane rotates with constant angular velocity
θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.26)
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or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1 + (a/2) sin 2θ. The plane is still rotating
with the same average angular velocity, but trajectories are now spiraling out. Any flow
in the plane either escapes, falls into an attracting equilibrium point, or converges to a
limit cycle. Richer dynamics requires at least one more dimension. In order to prevent
the trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value
c by adding

ż = b + z(x − c) , c > 0 . (2.27)

As x crosses c, z shoots upwards exponentially, z ' e(x−c)t. In order to bring it back, start
decreasing x by modifying its equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct kicks
in, and the trajectory drops back toward the x-y plane. This frequently studied example of
an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.28)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is as
exercise 2.8simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for so

‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.9):

x± = (
1
2
±

1
2

√
1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)
(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )

(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) (2.29)

One is close to the origin by construction. The other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.6 (see also
figure 14.7 (a)). Trajectories that start out sufficiently close to the origin seem to converge
to a strange attractor. We say ‘seem’ as there exists no proof that such an attractor is
asymptotically aperiodic–it might well be that what we see is but a long transient on a
way to an attractive periodic orbit. For now, accept that figure 2.6 and similar figures in
what follows are examples of ‘strange attractors.’

(continued in exercise 2.8 and example 3.2) (R. Paškauskas)
click to return: p. 45
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The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Orbits do not intersect. An orbit in the state spaceM
is the set of points one gets by evolving x ∈ M forwards
and backwards in time:

Mx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolution f t is
a one-parameter semigroup, where (2.4)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the semi-
group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other semigroup replacing time?

2.3. Almost ODE’s.

(a) Consider the point x on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function φ.

(b) Show that all extrema of φ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [37]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)
k3 = δτ v(xn + k2/2)
k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.28). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.28). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

ε = a/c , D = 1 − 4ε2 , p± = (1 ±
√

D)/2 .

Express all the equilibria in terms of (c, ε,D, p±),
expand to the first order in ε, and evaluate for
a = b = 0.2, c = 5.7 in (2.28). In the case stud-
ied ε ≈ 0.03, so these estimates are quite accurate.
(continued in exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
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differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise 2.6.
The equation

ẍ = x (2.30)

with initial conditions x(0) = 2 and ẋ = 0 has the
solution x(t) = e−t(1 + e2 t) . Can your integrator
reproduce this solution for the interval t ∈ [0, 10]?
Check your solution by plotting the error as com-
pared to the exact result.

(c) Test your integrator for

ẍ = −x (2.31)

with the same initial conditions and integration in-
terval.

(d) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
For initial conditions, we will always use ẍ(0) =

ẋ(0) = x(0) = 0 . Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
tor is ≈ 2.4).

(e) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from con-
fusing functional relationships, such as x(t) = h−1(y(t))
with numerical relationships, such as w(y) = h′(x)v(x).
Working through an example will clear this up.

(a) The differential equation in M is ẋ = {2x1, x2}

and the change of coordinates from M to M′ is
h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t). Find
h−1.

(b) Show that in the transformed spaceM′, the differ-
ential equation is

d
dt

[
y1
y2

]
=

1
3

[
5y1 + 2y2
y1 + 4y2

]
.

Solve this system. Does it match the solution in
theM space?

2.11. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we
shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (8.27)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
−

Z
r2

+
1

r1 + r2
.

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (r1, r2), ri ≥ 0 quad-
rant. In (r1, r2)-coordinates the potential is singular for
ri → 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. A2.2. In the transformed coor-
dinates (x1, x2, p1, p2) the Hamiltonian equations of mo-
tion take the form

Ṗ1 = 2Q1

2 − P2
2

8
− Q2

2(1 +
Q2

2

R4 )


Ṗ2 = 2Q2

2 − P2
1

8
− Q2

1(1 +
Q2

1

R4 )


Q̇1 =
1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.32)

where R = (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A con-
venient way to visualize the 3-dimensional state
space orbit is by projecting it onto the 2-dimen-
sional (r1(t), r2(t)) plane. (continued in exer-
cise 3.4)

(Gregor Tanner, Per Rosenqvist)

2.12. Surface area of a unit sphere. Compute the volume
of a unit sphere in d dimensions.

2.13. In high dimensions any two vectors are (nearly) or-
thogonal. Among humble plumbers laboring with ex-
tremely high-dimensional ODE discretizations of fluid
and other PDEs, there is an inclination to visualize the
∞-dimensional state space flow by projecting it onto a
basis constructed from a few random coordinates, let’s
say the 2nd Fourier mode along the spatial x direction
against the 4th Chebyshev mode along the y direction.
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It’s easy, as these are typically the computational de-
grees of freedom. As we will now show, it’s easy but
not smart, with vectors representing the dynamical states
of interest being almost orthogonal to any such random
basis.
Suppose your state space M is a real 10 247-dimen-
sional vector space, and you pick from it two vectors
x1, x2 ∈ M at random. What is the angle between them
likely to be?
By asking for ‘angle between two vectors’ we have im-
plicitly assumed that there exist is a dot product

x1
> · x2 = ‖ x1 ‖ ‖ x2 ‖ cos(θ12) ,

so let’s make these vectors unit vectors,
wwwww x j

wwwww = 1 .
When you think about it, you would be hard put to
say what ’uniform probability’ would mean for a vec-
tor x ∈ M = R10 247, but for a unit vector it is obvious:
probability that x direction lies within a solid angle dΩ

is dΩ/(unit hyper-sphere surface).
So what is the surface of the unit sphere (or, the total
solid angle) in d dimensions? One way to compute it is
to evaluate the Gaussian integral

Id =

∫ ∞

−∞

dx1 · · · dxd e−
1
2 (x2

1+···+x2
d) (2.33)

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Recast the integrals in polar coordinate form. You
know how to compute this integral in 2 and 3
dimensions. Show by induction that the surface
S d−1 of unit d-ball, or the total solid angle in even
and odd dimensions is given by

S 2k =
2(2π)k

(2k − 1)!!
, S 2k+1 =

2πk+1

k!
. (2.34)

(c) Show, by examining the form of the integrand in
the polar coordinates, that for arbitrary, perhaps
even complex dimension d ∈ C

S d−1 = 2πd/2/Γ(d/2) .

(In Quantum Field Theory integrals over 4-
momenta are brought to polar form and evaluated
as functions of a complex dimension parameter d.
This procedure is called the ‘dimensional regular-
ization’.)

(d) Check your formula for d = 2 (1-sphere, or the
circle) and d = 3 (2-sphere, or the sphere).

(e) What limit does S d does tend to for large d? (Hint:
it’s not what you think. Try Sterling’s formula).

So now that we know the volume of a sphere, what is a
the most likely angle between two vectors x1, x2 picked
at random? We can rotate coordinates so that x1 is
aligned with the ‘z-axis’ of the hypersphere. An angle
θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P(θ)dθ of finding two vec-
tors at angle θ is given by the area of the merid-
ional strip of width dθ, and derive the formula for
it:

P(θ) =
1
√
π

Γ(d/2)
Γ((d − 1)/2)

.

(One can write analytic expression for this in
terms of beta functions, but it is unnecessary for
the problem at hand).

(g) Show that for large d the probability P(θ) tends
to a normal distribution with mean θ = π/2 and
variance 1/d.

So, in d-dimensional vector space the two random vec-
tors are nearly orthogonal, within accuracy of θ = π/2±
1/d.

If you want to learn more, lecture notes by Hermann
Flaschka on Some geometry in high-dimensional spaces;
are a high quality solution set to this exercise.

If you are a humble plumber, and the notion of a vector
space is some abstract hocus-pocus to you, try thinking
this way. Your 2nd Fourier mode basis vector is some-
thing that wiggles twice along your computation do-
main. Your turbulent state is very wiggly. The product
of the two functions integrated over the computational
domain will average to zero, with a small leftover. We
have just estimated that with dumb choices of coordinate
bases this leftover will be of order of 1/10 247, which is
embarrassingly small for displaying a phenomenon of
order ≈ 1.

Several intelligent choices of coordinates for state space
projections are described in Gibson et al. [21] and the
web tutorial ChaosBook.org/tutorials.

Sara A. Solla and P. Cvitanović
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Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeare, A Midsummer Night’s Dream

The time parameter in the definition of a dynamical system can be either con-
tinuous or discrete. Discrete time dynamical systems arise naturally from

section 2.1
flows. In general there are two strategies for replacing a continuous-time

flow by iterated mappings; by cutting it by Poincaré sections, or by strobing it
at a sequence of instants in time. Think of your partner moving to the beat in a
disco: a sequence of frozen stills. While ‘strobing’ is what any numerical inte-
grator does, by representing a trajectory by a sequence of time-integration step
separated points, strobing is in general not a reduction of a flow, as the sequence
of strobed points still resides in the full state space M, of dimensionality d. An
exception are non-autonomous flows that are externally periodically forced. In
that case it might be natural to observe the flow by strobing it at time intervals
fixed by the external forcing, as in example 8.7 where strobing of a periodically
forced Hamiltonian leads to the ‘standard map.’

In the Poincaré section method one records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. This triggering event can be
as simple as vanishing of one of the coordinates, or as complicated as the trajectory
cutting through a curved hypersurface. A Poincaré section (or, for the remainder
of ChaosBook, often just ‘section’) is not a projection onto a lower-dimensional
space: rather, it is a local change of coordinates to a direction along the flow, and
the remaining coordinates (spanning the section) transverse to it. No information
about the flow is lost by reducing it to its set of Poincaré section points and the
return maps connecting them; the full space trajectory can always be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than visualization; it is also
a fundamental tool of dynamics - to fully unravel the geometry of a chaotic flow,
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Figure 3.1: A trajectory x(t) that intersects a Poincaré
section P at times t1, t2, t3, t4, and closes a cycle
(x̂1, x̂2, x̂3, x̂4), x̂k = x(tk) ∈ P of topological length
4 with respect to the section. In general, the intersec-
tions are not normal to the section. Note also that the
crossing z does not count, as it in the wrong direction.
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one has to quotient all of its symmetries, and evolution in time is one of these
(This delphic piece of hindsight will be illuminated in chapter 12).

3.1 Poincaré sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point on an orbit
can be used to label the orbit, with the state space thus reduced to a ‘skew-product’
of a (d−1)-dimensional space P of labeling points x̂ j ∈ P and the corresponding
1-dimensional orbit curvesM j on which the flow acts as a time translation. How-
ever, as orbits can be arbitrarily complicated and, if unstable, uncontrollable for
times beyond the Lyapunov time (1.1), in practice it is necessary to split the orbit
into finite trajectory segments, with time intervals corresponding to the shortest
recurrence times on a non-wondering set of the flow, finite times for which the
flow is computable.

A particular prescription for picking the orbit-labeling points is called a Poincaré
section. In introductory texts Poincaré sections are treated as pretty visualiza-
tions of a chaotic flows, but their dynamical significance is much deeper than that.
Once a section is defined, a ‘Lagrangian’ description of the flow (discussed above,

chapter 12
page 46) is replaced by the ‘Eulerian’ formulation, with the trajectory-tangent ve-
locity field v(x̂) , x̂ ∈ P enabling us to go freely between the time-quotiened space
P and the full state space M. The dynamically important transverse dynamics
–description of how nearby trajectories attract / repeal each other– is encoded in
mapping P of P → P induced by the flow - dynamics along orbits is of secondary
importance.

Successive trajectory intersections with a Poincaré section, a (d−1)-dimension-
al hypersurface embedded in the d-dimensional state spaceM, figure 3.1, define
the return map, or, in the resto of the ChaosBook, simply return map P(x̂), a
(d−1)-dimensional map of form

x̂′ = P(x̂) = f τ(x̂)(x̂) , x̂′, x̂ ∈ P . (3.1)

Here the first return function τ(x̂)–sometimes referred to as the ceiling function–is
the time of flight to the next section for a trajectory starting at x̂, see figure 3.2. The
choice of the section hypersurface P is altogether arbitrary. It is rarely possible to
define a single section that cuts across all trajectories of interest. Fortunately, one
often needs only a local section in the neighborhood of a template point, a finite
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Figure 3.2: The return time τ(s) as a function of the
parameter s for the Kuramoto-Sivashinsky system dis-
cussed in chapter 30. evaluated on the periodic points,
as in figure 30.10, with the diamonds obtained by 34
periodic points and the dots by 240 periodic points.
The fine structure is due to the fractal structure of the
attractor (from ref. [2]). 0.865
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hypersurface of codimension 1 intersected by a swarm of trajectories near to the
trajectory of interest (the case of several sections is discussed in sect. 15.6). Such
hypersurface can be specified implicitly by a single condition, through a function
U(x) that is zero whenever a point x is on the Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (3.2)

The gradient of U(x) evaluated at x̂ ∈ P serves a two-fold function. First, the
flow should pierce the hypersurface P, rather than being tangent to it. A nearby
point x̂ + δx is in the hypersurface P if U(x̂ + δx) = 0. A nearby point on the
trajectory is given by δx = vδt, so a traversal is ensured by the transversality
condition

(v · ∇U) =

d∑
j=1

v j(x̂) ∂ jU(x̂) , 0 , ∂ jU(x̂) =
∂

∂x̂ j
U(x̂) , x̂ ∈ P . (3.3)

Second, the gradient ∇U defines the orientation of the hypersurface P. The flow
is oriented as well, and a periodic orbit can pierce P twice, traversing it in either
direction, as in figure 3.1. Hence the definition of return map P(x̂) needs to be
supplemented with the orientation condition

x̂n+1 = P(x̂n) , U(x̂n+1) = U(x̂n) = 0 , n ∈ Z+

d∑
j=1

v j(x̂n) ∂ jU(x̂n) > 0 . (3.4)

In this way the continuous time t flow x(t) = f t(x) is reduced to a discrete time n
sequence x̂n of successive oriented trajectory traversals of P.

The simplest choice of a Poincaré section is a hyperplane P specified by a
template point (an important state of the system, located at the tip of the vector x̂′)
and a normal vector n̂ perpendicular to the hyperplane. A Poincaré section point
x̂ is in the hyperplane if it satisfies the linear condition

x̂ ∈ P iff U(x̂) = (x̂ − x̂′) · n̂ = 0 . (3.5)
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Figure 3.3: (Right:) a sequence of Poincaré sec-
tions of the Rössler strange attractor, defined by
planes through the z axis, oriented at angles (a)
−60o (b) 0o, (c) 60o, (d) 120o, in the x-y plane.
(Left:) side and x-y plane view of a typical tra-
jectory with Poincaré sections superimposed. (R.
Paškauskas)
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Consider a circular periodic orbit centered at x̂′, but not lying in P. It pierces
the hyperplane twice; the v · n̂ > 0 traversal orientation condition (3.4) ensures
that the first return time is the full period of the cycle. The simplest choice of

example 15.2
the hyperplane orientation is to chose it to be normal the tangent of the trajectory
passing through the template point, i.e., the state space velocity,

x̂ ∈ P iff U(x̂) = (x̂ − x̂′) · v(x̂′) = 0 . (3.6)

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section, see figure 3.3. Depending on the application,
one might need to convert the discrete time n back to the continuous flow time.
This is accomplished by adding up the first return function times τ(x̂n), with the
accumulated flight time given by

tn+1 = tn + τ(x̂n) , t0 = 0 , xn ∈ P . (3.7)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

chapter 20

A few examples may help visualize this. A typical trajectory of the 3-dim-
ensional Rössler flow is plotted in figure 2.6. A sequence of Poincaré sections of
figure 3.3 illustrates the ‘stretch & fold’ action of Rössler flow. Figure 3.4 exhibits
a set of return maps (3.1).

example 3.1

p. 79

example 3.2

p. 79

The above examples illustrate why a Poincaré section gives a more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
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Figure 3.4: Return maps for the rn → rn+1 ra-
dial distance Poincaré sections of figure 3.3. The
‘multi-valuedness’ of (b) and (c) is only appar-
ent: the full return map is 2-dimensional, {r′, z′} =

P{r, z}. (R. Paškauskas)
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portrait of the Rössler flow figure 2.6 gives us no sense of the thickness of the
attractor, we see clearly in the Poincaré sections of figure 3.3 that even though the
return maps are 2-dimensional→ 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall

question 3.1
quantify this claim in example 4.5.)

fast track:

sect. 3.3, p. 73

3.1.1 Section border

How far does the neighborhood of a template x̂′ extend along the hyperplane
(3.5)? A section captures faithfully neighboring orbits as long as it cuts them
transversally; it fails the moment the velocity field at point x̂∗ fails to pierce the
section. At this location the velocity is tangent to the section and, thus, orthogonal
to the template normal n̂,

n̂ · v(x̂∗) = 0 , x̂∗ ∈ S , (3.8)

i.e., v⊥(x̂), component of the v(x̂) normal to the section, vanishes at x̂∗. For a
smooth flow such points form a smooth (d−2)-dimensional section border S ⊂ P,
encompassing the open neighborhood of the template characterized by qualita-
tively similar flow. We shall refer to this region of the section hyperplane as the
(maximal) chart of the template neighborhood for a given hyperplane (3.5).

If the template point is an equilibrium xq, there is no dynamics exactly at this
point as the velocity vanishes (v(xq) = 0 by the definition of equilibrium), and
the velocity cannot be used to define a normal to the section. Instead, we use the
local linearized flow to construct the local Poincaré section P. We orient P so
the unstable eigenvectors are transverse to the section, and the slowest contracting
eigenvector is tangent to the section, as in figure 4.6. This ensures that the flow is
transverse to P in an open neighborhood of the template xq.

exercise 3.7

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-dim-
ensional sheet of light. Lagrangian particle trajectories either cross, are tangent to,
or fail to reach this plane; the 1-dimensional curves of tangency points define the
section border. An example is offered by the velocity field of the Rössler flow of
figure 4.5. Pick a Poincaré section hyperplane so it goes through both equilibrium
points. The section might be transverse to a large neighborhood around the inner
equilibrium x−, but dynamics around the outer equilibrium x+ is totally different,
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and the competition between the two types of motion is likely to lead to vanishing
of v⊥(x̂), component of the v(x̂) normal to the section, someplace in-between the
two equilibria. A section is good up to the section border, but beyond it an orbit
infinitesimally close to x̂∗ generically does not cross the section hyperplane.

For 3-dimensional flows, the section border S is a 1-dimensional closed curve
in the section 2-dimensional P, and easy to visualize. In higher dimensions, the
section border is a (d−2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.4) at Poincaré section
returns of nearby trajectories close to the section border hypersurface S; (3.8) will
be positive inside, negative immediately outside S.

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent. We do not want to keep recomputing these over
and over. We would rather replace the whole continuous family of solutions by
one solution in order to be more efficient. This approach replaces the dynamics
(M, f ) with dynamics on the quotient state space (M/G, f̂ ). For now, we only

chapter 12
remark that constructing explicit quotient state space flow f̂ is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see chap-
ter 12) will be to resort to the method of slices.

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise this book would not be as much of a doorstop). The invariants of the
flow are its infinite-time orbits; particularly useful invariants are compact orbits
such as equilibrium points, periodic orbits, and tori. For any orbit it suffices to
pick a single state space point x ∈ Mp, the rest of the orbit is generated by the
flow.

Choice of this one ‘labeling’ point is utterly arbitrary; in dynamics this is
called a ‘Poincaré section’, and in theoretical physics this goes by the excep-
tionally uninformative name of ‘gauge fixing’. The price is that one generates
‘ghosts’, or, in dynamics, increases the dimensionality of the state space by ad-
ditional constraints (see sect. 7.2). Gauge fixing is a commonly deployed but in-
elegant procedure where symmetry is broken for computational convenience, and
restored only at the end of the calculation, when all broken pieces are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient, as discussed in sect. 15.6. (b) For ease of compu-
tation, pick linear sections (3.5) when possible. (c) If equilibria play important
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Figure 3.5: (a) Lorenz flow figure 2.5 cut by y = x
Poincaré section plane P through the z axis and
both EQ1,2 equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near the EQ0 equilibrium, the flow
is cut by the second Poincaré section, P′, through
y = −x and the z axis. (b) Poincaré sections P and
P′ laid side-by-side. The singular nature of these
sections close to EQ0 will be elucidated in exam-
ple 4.6 and figure 14.14 (b). (E.
Siminos)

(a) (b)

role in organizing a flow, pick sections that go through them (see example 3.3). In
that case, try to place contracting eigenvectors inside the hyperplane, see Lorenz
figure 3.5. Remember, the stability eigenvectors are never orthogonal to each
other, unless that is imposed by some symmetry. (d) If you have a global discrete

chapter 11
or continuous symmetry, pick sections left invariant by the symmetry (see exam-
ple 11.8). For example, setting the normal vector n̂ in (3.5) at x to be the velocity
v(x) is natural and locally transverse. (e) If you are solving a local problem, like
finding a periodic orbit, you do not need a global section. Pick a section or a set of
(multi-shooting) sections on the fly, requiring only that they are locally transverse
to the flow. (f) If you have another rule of thumb dear to you, let us know.

example 3.3

p. 79

3.2 Computing a Poincaré section

(R. Mainieri)

For almost any flow of physical interest a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when

remark 3.2
you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

Consider the system (2.7) of ordinary differential equations in the vector vari-
able x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.9)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, the map f τn(xn) = xn +

∫
dτ v(x(τ)) cannot be integrated

analytically, so we will have to resort to numerical integration to determine the

maps - 31dec2014 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 3. DISCRETE TIME DYNAMICS 73

trajectories of the system. Our task is to determine the points at which the numer-
ically integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a function U(x) that is zero whenever a point x is
on the Poincaré section, such as the hyperplane (3.5).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very small integration time
step. However, there is a better way to land exactly on the Poincaré section.

Let ta be the time just before U changes sign, and tb the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.10)

we can rewrite the equations of motion (3.9) as

dt
dx1

=
1
v1
, · · · ,

dxd

dx1
=

vd

v1
. (3.11)

Now we use x1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value of x1 on the hypersurface, determined by the hypersurface intersection
condition (3.5). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; any xi can be chosen as the integration
variable, provided the xi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.

example 3.4

p. 80

3.3 Mappings

Do it again! (and again! and again! and ...)
—Isabelle, age 3

Though we have motivated discrete time dynamics by considering sections of a
continuous flow and reduced the continuous-time flow to a family of maps P(x̂)
mapping points x̂ from a section to a section, there are many settings in which
dynamics is inherently discrete, and naturally described by repeated iterations of
the same map

remark 3.1

f :M→M ,
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Figure 3.6: A flow x(t) of figure 3.1 represented by
a return map that maps points in the Poincaré sec-
tion P as x̂n+1 = f (x̂n) . In this example the orbit of
x̂1 is periodic and consists of the four periodic points
(x̂1, x̂2, x̂3, x̂4).
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or sequences of consecutive applications of a finite set of maps, a different map,
fA, fB, . . ., for points in different regions {MA,MB, · · · ,MZ},

{ fA, fB, . . . fZ} :M→M , (3.12)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of the map or maps.
As writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting the (non-commutative)
map composition by ‘◦’

fZ(· · · fB( fA(x))) · · · ) = fZ ◦ · · · fB ◦ fA(x) , (3.13)

and the nth iterate of map f by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)
, f 0(x) = x .

The trajectory of x is the finite set of points
section 2.1{

x, f (x), f 2(x), . . . , f n(x)
}
,

traversed in time n, and Mx, the orbit of x, is the subset of all points of M that
can be reached by iterations of f . A periodic point (cycle point) xk belonging to a
periodic orbit (cycle) of period n is a real solution of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (3.14)

For example, the orbit of x̂1 in figure 3.6 is a set of four cycle points, (x̂1, x̂2, x̂3, x̂4) .

The functional form of such return maps P as figure 3.4 can be approximated
by tabulating the results of integration of the flow from x̂ to the first Poincaré sec-
tion return for many x̂ ∈ P, and constructing a function that interpolates through
these points. If we find a good approximation to P(x̂), we can get rid of numerical
integration altogether, by replacing the continuous time trajectory f t(x̂) by itera-
tion of the return map P(x̂). Constructing accurate P(x̂) for a given flow can be
tricky, but we can already learn much from approximate return maps. Multinomial
approximations

Pk(x̂) = ak +

d∑
j=1

bk j x̂ j +

d∑
i, j=1

cki j x̂i x̂ j + . . . , x̂ ∈ P (3.15)

to return maps
x̂1,n+1
x̂2,n+1
. . .

x̂d,n+1

 =


P1(x̂n)
P2(x̂n)
. . .

Pd(x̂n)

 , x̂n, x̂n+1 ∈ P
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Figure 3.7: The strange attractor and an unstable pe-
riod 7 cycle of the Hénon map (3.18) with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [6])
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motivate the study of model mappings of the plane, such as the Hénon map and
the Lozi map.

example 3.5

p. 80

example 3.6

p. 81

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flow figure 3.4. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable, and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for

exercise 6.3
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

example 3.7

p. 81

As we shall see in sect. 14.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

appendix A10.3

fast track:

sect. 4, p. 84

Résumé

In recurrent dynamics a trajectory exits a region in state space and then reenters it
infinitely often, with finite return times. If the orbit is periodic, it returns after a full
period. So, on average, nothing much really happens along the trajectory–what
is important is behavior of neighboring trajectories transverse to the flow. This
observation motivates a replacement of the continuous time flow by an iterative
mapping, the set of return maps. A visualization of a strange attractor can be
greatly facilitated by a felicitous choice of Poincaré sections, and the computation
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greatly sped up by a reduction of flow to return maps. This observation motivates
in turn the study of discrete-time dynamical systems generated by iterations of
maps.

A particularly natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map, described in chap-
ter 9. As we show in appendix A2, further simplification of a return map, or any

chapter 9
appendix A2

nonlinear map, can be attained through rectifying these maps locally by means of
smooth conjugacies.

In truth, as we shall see in chapter 12, the reduction of a continuous time
flow by the method of Poincaré sections is not a convenience, but an absolute
necessity - to make sense of an ergodic flow, all of its continuous symmetries
must be reduced, evolution in time being one of these symmetries.

Commentary

Remark 3.1. Functions, maps, mappings. In mathematics, ‘mapping’ is a noun,
‘map’ is a verb. Nevertheless, ‘mapping’ is often shortened to ‘map’ and is often used
as a synonym for ‘function.’ ‘Function’ is used for mappings that map to a single point
in R or C, while a mapping which maps to Rd would be called a ‘mapping,’ and not a
‘function.’ Likewise, if a point maps to several points and/or has several pre-images, this
is a ‘many-to-many’ mapping, rather than a function. In his review [14], Smale refers to
iterated maps as ‘diffeomorphisms’, in contradistinction to ‘flows’, which are 1-parameter
groups of diffeomorphisms. In the sense used here, in the theory of dynamical systems,
dynamical evolution from an initial state to a state finite time later is a (time-forward)
map.

Remark 3.2. Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [7, 10, 15]. The idea of changing the integration variable from time to one of the
coordinates, although simple, avoids the alternative of having to interpolate the numerical
solution to determine the intersection.

Question 3.1. Henriette Roux wants to know
Q Why does Poincaré section have to be a hypersurface of codimension 1?
A In 2 dimensions a curve can intersect a 1-dimensional Poincaré section curve in a point,
but it has zero probability of intersecting a random 0-dimensional point in the plane. In 3
dimensions a line intersects a 2-dimensional plane in a single point, but it has zero proba-
bility of intersecting a random 1-dimensional line, or a random 0-dimensional point. In 4
dimensions a line intersects a 3-dimensional hyperplane (a volume) in a single point, but
it has zero probability of intersecting a random 2-dimensional plane. You need a Poincaré
section to separate, at least locally, the d-dimensional state space above the section hy-
persurface from the state space below, and only a codimension 1 = (d−1)-dimensional
hypersurface can do that. Were a trajectory a 2-dimensional ribbon or a tube, it would
intersect a Poincaré section of codimension 2 in a point, but a generic codimension 3
hypersurface would not cut it at all.

Remark 3.3. Hénon, Lozi maps. The Hénon map is of no particular physical im-
port in and of itself–its significance lies in the fact that it is a minimal normal form for
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modeling flows near a saddle-node bifurcation, and that it is a prototype of the stretching
and folding dynamics that leads to deterministic chaos. It is generic in the sense that it
can exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and
non–hyperbolic behaviors. Its construction was motivated by the best known early ex-
ample of ‘deterministic chaos,’ the Lorenz equation, see example 2.2 and remark 2.3.
Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights into
its stretching and folding dynamics motivated Hénon [9] to introduce the Hénon map in
1976. Hénon’s and Lorenz’s original papers can be found in reprint collections refs. [3,
8]. They are a pleasure to read, and are still the best introduction to the physics motivating
such models. Hénon [9] had conjectured that for (a, b) = (1.4, 0.3) Hénon map a generic
initial point converges to a strange attractor. Its existence has never been proven. While
for all practical purposes this is a strange attractor, it has not been demonstrated that long
time iterations are not attracted by some long attracting limit cycle. Indeed, the pruning
front techniques that we describe below enable us to find stable attractors arbitrarily close

exercise 6.3
by in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219, 0.3). A
rigorous proof of the existence of Hénon attractors close to 1-dimensional parabola map is
due to Benedicks and Carleson [1]. A detailed description of the dynamics of the Hénon
map is given by Mira and coworkers [4, 5, 12], as well as very many other authors. The
Lozi map (3.20) is particularly convenient in investigating the symbolic dynamics of 2-
dimensional mappings. Both the Lorenz and Lozi [11] systems are uniformly expanding
smooth systems with singularities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [13], and the existence of the SRB measure was established by
L.-S. Young [16].

section 19.1
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3.4 Examples

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.1. Pendulum. The phase space of a simple pendulum is 2-dimension-
al: momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a point
traces a trajectory through this phase space. As long as the motion is oscillatory, in the
pendulum all orbits are loops, so any trajectory will periodically intersect the line, that is
the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system plotted
in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will intersect
the Poincaré section y = 0 at a series of points that get closer and closer to either of the
equilibrium points; the Duffing oscillator at rest.

click to return: p. 69

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example (as well as example 30.4) offers a better illustration of
the utility of visualization of dynamics by means of Poincaré sections.

Example 3.2. Rössler flow. (Continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Rössler flow (2.28). The strange attractor wraps

exercise 3.1around the z axis, so one choice for a Poincaré section is a plane passing through the
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.3, illustrates the ‘stretch & fold’ action of the Rössler flow,
by assembling these sections into a series of snapshots of the flow. A line segment in (a),
traversing the width of the attractor at y = 0, x > 0 section, starts out close to the x-y plane,
and after the stretching (a) → (b) followed by the folding (c) → (d), the folded segment
returns (d)→ (a) close to the initial segment, strongly compressed. In one Poincaré return
the interval is thus stretched, folded and mapped onto itself, so the flow is expanding. It
is also mixing, as in one Poincaré return a point from the interior of the attractor can map
onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map (3.1),
as in figure 3.4. Cases (a) and (d) are examples of nice 1-to-1 return maps. While (b) and
(c) appear multimodal and non-invertible, they are artifacts of projecting a 2-dimensional

exercise 3.2
return map (rn, zn) → (rn+1, zn+1) onto a 1-dimensional subspace rn → rn+1. (continued
in example 3.4)

click to return: p. 69

Example 3.3. Sections of Lorenz flow. (Continued from example 2.2) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.5 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilibria,
xEQ0 = (0, 0, 0) and the (2.24) pair xEQ1 , xEQ2 . A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked by
dots.
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Equilibria xEQ1 , xEQ2 are centers of out-spirals, and close to them the section is trans-
verse to the flow. However, close to EQ0 trajectories pass the z-axis either by crossing the
section P or staying on the viewer’s side. We are free to deploy as many sections as we
wish: in order to capture the whole flow in this neighborhood we add the second Poincaré
section, P′, through the y = −x diagonal and the z-axis. Together the two sections, fig-
ure 3.5 (b), capture the whole flow near EQ0. In contrast to Rössler sections of figure 3.3,
these appear very singular. We explain this singularity in example 4.6 and postpone con-
struction of a return map until example 11.8. (E. Siminos and J.

click to return: p. 72
Halcrow)

Example 3.4. Computation of Rössler flow Poincaré sections. (Continued from
example 3.2) Convert Rössler equation (2.28) to cylindrical coordinates:

ṙ = υr = −z cos θ + ar sin2 θ

θ̇ = υθ = 1 +
z
r

sin θ +
a
2

sin 2θ

ż = υz = b + z(r cos θ − c) . (3.16)

Poincaré sections of figure 3.3 are defined by the fixing angle U(x) = θ − θ0 = 0. In prin-
ciple one should use the equilibrium x+ from (2.29) as the origin, and its eigenvectors as
the coordinate frame, but here original coordinates suffice, as for parameter values (2.28),
and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases monotonically
with time. Integrate

dr
dθ

= υr/υθ ,
dt
dθ

= 1/υθ ,
dz
dθ

= υz/υθ (3.17)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)
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Example 3.5. Hénon map. The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.18)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

xn+1 = 1 − ax2
n + bxn−1 . (3.19)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics of re-
turn maps such as Rössler’s, figure 3.3. It can be obtained by a truncation of a polynomial
approximation (3.15) to a return map (3.15) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is depicted
in figure 3.7), is obtained by picking an arbitrary starting point and iterating (3.18) on a
computer.

Always plot the dynamics of such maps in the (xn, xn+1) plane, rather than in the
(xn, yn) plane, and make sure that the ordinate and abscissa scales are the same, so xn =
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xn+1 is the 45o diagonal. There are several reasons why one should plot this way: (a) we
think of the Hénon map as a model return map xn → xn+1, and (b) as parameter b varies,
the attractor will change its y-axis scale, while in the (xn, xn+1) plane it goes to a parabola
as b→ 0, as it should.

exercise 3.5

As we shall soon see, periodic orbits will be key to understanding the long-time dy-
namics, so we also plot a typical periodic orbit of such a system, in this case an unstable
period 7 cycle. Numerical determination of such cycles will be explained in sect. 34.1,
and the periodic point labels 0111010, 1110100, · · · in sect. 15.2.

click to return: p. 75

Example 3.6. Lozi map. Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch &
fold’ type.

click to return: p. 75

Example 3.7. Parabola. For sufficiently large value of the stretching parameter
a, one iteration of the Hénon map (3.18) stretches and folds a region of the (x, y) plane
centered around the origin, as will be illustrated in figure 15.5. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded image
through the ‘1-step memory’ term bxn−1 in (3.19). In figure 3.7 the parameter b is rather
large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure clearly
visible. For vanishingly small b the Hénon map reduces to the 1-dimensional quadratic
map

xn+1 = 1 − ax2
n . (3.21)

By setting b = 0 we lose determinism, as on the inverse of map (3.21) can have two real
preimages {x+

n−1, x
−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon map

exercise 3.6
is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive. (continued in example 14.6)

click to return: p. 75
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Exercises

3.1. Poincaré sections of the Rössler flow. (continuation
of exercise 2.8) Calculate numerically a Poincaré sec-
tion (or several Poincaré sections) of the Rössler flow.
As the Rössler flow state space is 3D, the flow maps
onto a 2D Poincaré section. Do you see that in your
numerical results? How good an approximation would
a replacement of the return map for this section by a 1-
dimensional map be? More precisely, estimate the thick-
ness of the strange attractor. (continued as exercise 4.4)

(R. Paškauskas)

3.2. A return return map for the Rössler flow. (contin-
uation of exercise 3.1) That return maps of figure 3.4
appear multimodal and non-invertible is an artifact of
projections of a 2-dimensional return map (Rn, zn) →
(Rn+1, zn+1) onto a 1-dimensional subspace Rn → Rn+1.

Construct a genuine sn+1 = f (sn) return map by param-
eterizing points on a Poincaré section of the attractor
figure 3.3 by a Euclidean length s computed curvilin-
early along the attractor section. (For a discussion of
curvilinear parametrizations of invariant manifolds, see
sect. 15.1.1.)

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor,
figure 7.5 (b).

(P. Cvitanović)

3.3. Arbitrary Poincaré sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.22)

with dt/ds = κ, and choosing κ to be 1 or 1/ f1.
This allows one to switch between t and x1 as the
integration ’time.’

(b) Introduce an extra dimension xn+1 into your sys-
tem and set

xn+1 = U(x) . (3.23)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.
(continuation of exercise 2.11) Make a Poincaré sec-
tion by plotting (r1, p1) whenever r2 = 0: Note that for
r2 = 0, p2 is already determined by (8.27). Compare
your results with figure A2.3 (b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.18) are
given by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (3.24)

3.6. Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-dimen-
sional contraction F of the interval [0, 1] has at
least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F′| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

3.7. Section border for Rössler. (continuation of exer-
cise 3.1) Determine numerically section borders (3.8)
for several Rössler flow Poincaré sections of exercise 3.1
and figure 3.3, at least for angles

(a) −60o , (b) 0o, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.29) and figure 4.5. Two
points only fix a line: think of a criterion for a
good orientation of the section hyperplane, per-
haps by demanding that the contracting eigenvec-
tor of the ’inner’ equilibrium x− lies in it.

(d) (Optional) Hand- or computer-draw a visualiza-
tion of the section border as 3-dimensional fluid
flow which either crosses, is tangent to, or fails to
cross a sheet of light cutting across the flow.

As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitude of v⊥(x̂),
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component of the v(x̂) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For
sections that go through the z-axis, the normal velocity
v⊥(x̂) is tangent to the circle through x̂, and vanishes for

θ̇ in the polar coordinates (3.16), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanović)
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Chapter 4

Local stability

It does not say in the Bible that all laws of nature are ex-
pressible linearly.

— Enrico Fermi

(R. Mainieri and P. Cvitanović)

So far we have concentrated on describing the trajectory of a single initial
point. Our next task is to define and determine the size of a neighborhood
of x(t). We shall do this by assuming that the flow is locally smooth and by

describing the local geometry of the neighborhood by studying the flow linearized
around x(t). Nearby points aligned along the stable (contracting) directions remain
in the neighborhood of the trajectory x(t) = f t(x0); the ones to keep an eye on are
the points which leave the neighborhood along the unstable directions. As we shall
demonstrate in chapter 21, the expanding directions matter in hyperbolic systems.
The repercussions are far-reaching. As long as the number of unstable directions
is finite, the same theory applies to finite-dimensional ODEs, state space volume
preserving Hamiltonian flows, and dissipative, volume contracting infinite-dim-
ensional PDEs.

In order to streamline the exposition, in this chapter all examples are collected
in sect. 4.8. We strongly recommend that you work through these examples: you
can get to them and back to the text by clicking on the [example] links, such as

example 4.8

p. 99

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating near x0 = x(0), with an initial

84
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infinitesimal deviation vector δx(0). The flow then transports the deviation vector
δx(t) along the trajectory x(x0, t) = f t(x0).

4.1.1 Instantaneous rate of shear

The system of linear equations of variations for the displacement of the infinites-
imally close neighbor x + δx follows from the flow equations (2.7) by Taylor
expanding to linear order

ẋi + δ̇xi = vi(x + δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal deviation vector δx is thus transported along the trajectory x(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑
j

∂vi

∂x j
(x)

∣∣∣∣∣∣
x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j(x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dim-
ensional state spaceM ⊂ Rd. The stability matrix or velocity gradients matrix

Ai j(x) =
∂

∂x j
vi(x) (4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow. A swarm of neighboring points of x(t) is instantaneously sheared
by the action of the stability matrix, δx(t + δt) = δx(t) + δt A(xn) δx(t) . A is a
tensorial rate of deformation, so it is a bit hard (if not impossible) to draw.

example 4.1

p. 99

4.1.2 Finite time linearized flow

By Taylor expanding a finite time flow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)
∂x0 j

δx j + · · · , (4.4)

one finds that the linearized neighborhood is transported by the Jacobian matrix
remark 4.1
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Figure 4.1: For finite times a local frame is trans-
ported along the orbit and deformed by Jacobian ma-
trix Jt. As Jt is not self-adjoint, an initial orthogonal
frame is mapped into a non-orthogonal one.

x(0)

x(t)

Jt
v(0)

v(t)

δx(t) = Jt(x0) δx0 , Jt
i j(x0) =

∂x(t)i

∂x(0) j
, J0(x0) = 1 . (4.5)

For example, in 2 dimensions the Jacobian matrix for change from initial to final
coordinates is

Jt =
∂(x , y )
∂(x0, y0)

=

 ∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

 .
The Jacobian matrix is evaluated on a trajectory segment that starts at point

x0 = x(t0) and ends at point x1 = x(t1), t1 ≥ t0. As the trajectory x(t) is determin-
istic, the initial point x0 and the elapsed time t in (4.5) suffice to determine J, but
occasionally we find it helpful to be explicit about the initial and final times and
state space positions, and write

Jt1−t0
i j = Ji j(t1; t0) = Ji j(x1, t1; x0, t0) =

∂x(t1)i

∂x(t0) j
. (4.6)

question 4.1

The map f t is assumed invertible and differentiable so that Jt exists. For
sufficiently short times Jt remains close to 1, so det Jt > 0. By continuity det Jt

remains positive for all times t. However, for discrete time maps, det Jn can have
either sign.

4.1.3 Co-moving frames

J describes the deformation of an infinitesimal neighborhood at a finite time t in
the co-moving frame of x(t). This deformation of an initial frame at x0 into a
non-orthogonal frame at x(t) is described by the eigenvectors and eigenvalues of
the Jacobian matrix of the linearized flow (see figure 4.1),

Jt e( j) = Λ j e( j) , j = 1, 2, · · · , d . (4.7)

Throughout this text the symbol Λk will always denote the kth eigenvalue (the
stability multiplier) of the finite time Jacobian matrix Jt. Symbol λ(k) will be
reserved for the kth stability exponent, with real part µ(k) and phase ω(k):

Λk = etλ(k)
λ(k) = µ(k) + iω(k) . (4.8)

As Jt is a real matrix, its eigenvalues are either real or come in complex conjugate
pairs,

{Λk,Λk+1} = {et(µ(k)+iω(k)), et(µ(k)−iω(k))} ,
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with magnitude |Λk| = |Λk+1| = exp(tµ(k)). The phase ω(k) describes the rotation
velocity in the plane spanned by the pair of real eigenvectors, {Re e(k), Im e(k)},
with one period of rotation given by T = 2π/ω(k) .

example 4.4

p. 100

Jt(x0) depends on the initial point x0 and the elapsed time t. For notational
brevity we omitted this dependence, but in general both the eigenvalues and the
eigenvectors, Λ j = Λ j(x0, t) , · · · , e( j) = e( j)(x0, t) , also depend on the trajectory
traversed.

Nearby trajectories separate exponentially with time along the unstable direc-
tions, approach each other along the stable directions, and change their distance
along the marginal directions at rates slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude larger than, smaller than,
or equal to 1. In the literature, the adjectives neutral, indifferent, center are often
used instead of ‘marginal’. Attracting, or stable directions are sometimes called
‘asymptotically stable’, and so on.

One of the preferred directions is what one might expect, the direction of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight time δt: δx0 = f δt(x0) − x0 = v(x0)δt . By the semigroup
property of the flow, f t+δt = f δt+t, where

f δt+t(x0) =

∫ δt+t

t
dτ v(x(τ)) + f t(x0) = δt v(x(t)) + f t(x0) .

Expanding both sides of f t( f δt(x0)) = f δt( f t(x0)), keeping the leading term in
δt, and using the definition of the Jacobian matrix (4.5), we observe that Jt(x0)
transports the velocity vector at x0 to the velocity vector at x(t) (see figure 4.1):

v(x(t)) = Jt(x0) v(x0) . (4.9)

4.2 Computing the Jacobian matrix

As we started by assuming that we know the equations of motion, from (4.3) we
also know stability matrix A, the instantaneous rate of shear of an infinitesimal
neighborhood δxi(t) of the trajectory x(t). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stability matrix A to Jacobian
matrix Jt. On the level of differential equations the relation follows by taking the
time derivative of (4.5) and replacing δ̇x by (4.2)

d
dt
δx(t) =

dJt

dt
δx0 = A δx(t) = AJt δx0 .

Hence the matrix elements of the [d×d] Jacobian matrix satisfy the ‘tangent linear
equations’

d
dt

Jt(x0) = A(x) Jt(x0) , x = f t(x0) , initial condition J0(x0) = 1 . (4.10)
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For autonomous flows, the matrix of velocity gradients A(x) depends only on x,
not time, while Jt depends on both the state space position and time. Given a nu-
merical routine for integrating the equations of motion, evaluation of the Jacobian
matrix requires minimal additional programming effort; one simply extends the
d-dimensional integration routine and integrates the d2 elements of Jt(x0) concur-
rently with f t(x0). The qualifier ‘simply’ is perhaps too glib. Integration will work
for short finite times, but for exponentially unstable flows one quickly runs into
numerical over- and/or underflow problems. For high-dimensional flows the ana-
lytical expressions for elements of A might be so large that A fits on no computer.
Further thought will have to go into implementation this calculation.

chapter 30

So now we know how to compute Jacobian matrix Jt given the stability matrix
A, at least when the d2 extra equations are not too expensive to compute. Mission
accomplished.

fast track:

chapter 8, p. 141

And yet... there are mopping up operations left to do. We persist until we de-
rive the integral formula (4.19) for the Jacobian matrix, an analogue of the finite-
time ‘Green’s function’ or ‘path integral’ solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hence the next section, which
might seem an embarrassment (what is a section on linear flows doing in a book
on nonlinear dynamics?), offers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool of differential geometry, general
relativity, etc., so we are in good company. If you know your eigenvalues and
eigenvectors, you may prefer to fast forward here.

fast track:

sect. 4.4, p. 89

4.3 A linear diversion

Linear is good, nonlinear is bad.
—Jean Bellissard

Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations isM = Rd, and the equations of
motion (2.7) are written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (4.11)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))
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passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant
in time, the space of solutions is a d-dimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear differential equation (4.11)? If instead of a matrix
equation we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order
to solve the d-dimensional matrix case, it is helpful to rederive this solution by
studying what happens for a short time step δt. If time t = 0 coincides with
position x(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(
1 +

t
m
λ
)m

x(0) ≈ etλx(0) . (4.13)

The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m→ ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative point x is now a vector in Rd acted on by the matrix A, as in
(4.11). Denoting by 1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jt x(0) , Jt = etA = lim
m→∞

(
1 +

t
m

A
)m

. (4.15)

We will find this definition for the exponential of a matrix helpful in the general
case, where the matrix A = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavior of eigenvectors and
eigenvalues of linear flows, we are ready to return to the nonlinear case. How do

question 4.2
we compute the exponential (4.15)?

example 4.2

p. 99

fast track:

sect. 4.4, p. 89
section 5.2.1

4.4 Stability of flows

How does one determine the eigenvalues of the finite time local deformation Jt for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)
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x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (4.16)

The equations for Jt(x0) are linear, so we should be able to integrate them–but in
order to make sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectory x(t). The exponential
of a constant matrix can be defined either by its Taylor series expansion or in terms
of the Euler limit (4.15):

etA =

∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t
m

A
)m

. (4.17)

Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand. For dynamical systems, the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood
is deformed along the flow, and the m discrete time-step approximation to Jt is
therefore given by a generalization of the Euler product (4.17):

Jt(x0) = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδt A(xn) (4.18)

= lim
m→∞

eδt A(xm)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

where δt = (t − t0)/m, and xn = x(t0 + nδt). Indexing of the product indicates that
the successive infinitesimal deformation are applied by multiplying from the left.
The m→ ∞ limit of this procedure is the formal integral

appendix ??

Jt
i j(x0) =

[
Te

∫ t
0 dτA(x(τ))

]
i j
, (4.19)

where T stands for time-ordered integration, defined as the continuum limit of
successive multiplications (4.18). This integral formula for Jt is the main

exercise 4.5
conceptual result of the present chapter. This formula is the finite time companion
of the differential definition (4.10). The definition (4.18) makes evident important
properties of Jacobian matrices, such as their being multiplicative along the flow,

Jt+t′(x) = Jt′(x′) Jt(x), where x′ = f t(x0) , (4.20)

which is an immediate consequence of the time-ordered product structure of (4.18).
However, in practice J is evaluated by integrating (4.10) along with the ODEs that
define a particular flow.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
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n to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of times n = 1, 2, . . . ,

Jn
i j(x0) =

∂ f n
i (x)
∂x j

∣∣∣∣∣∣
x=x0

. (4.21)

As in the finite time case (4.8), we denote by Λk the kth eigenvalue or multiplier
of the finite time Jacobian matrix Jn . There is really no difference from the con-
tinuous time case, other than that now the Jacobian matrix is evaluated at integer
times.

example 4.9

p. 103

The formula for the linearization of nth iterate of a d-dimensional map

Jn(x0) = J(xn−1) · · · J(x1)J(x0) , x j = f j(x0) , (4.22)

in terms of single time steps J jl = ∂ f j/∂xl follows from the chain rule for func-
tional composition,

∂

∂xi
f j( f (x)) =

d∑
k=1

∂ f j(y)
∂yk

∣∣∣∣∣∣
y= f (x)

∂ fk(x)
∂xi

.

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.22) follows from (4.20): Jacobian matrices are multiplicative
along the flow.

exercise 6.3

example 4.10

p. 104

fast track:

chapter 8, p. 141

4.6 Stability of return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the return map P : P → P defined in sect. 3.1
to the stability of the continuous time flow in the full state space.

The hypersurface P can be specified implicitly through a function U(x) that is
zero whenever a point x is on the Poincaré section. A nearby point x + δx is in the
hypersurface P if U(x+δx) = 0, and the same is true for variations around the first
return point x′ = x(τ), so expanding U(x′) to linear order in variation δx restricted
to the Poincaré section, and applying the chain rule leads to the condition

d∑
i=1

∂U(x′)
∂xi

dx′i
dx j

∣∣∣∣∣∣
P

= 0 . (4.23)

In what follows Ui = ∂ jU is the gradient of U defined in (3.3), unprimed quan-
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Figure 4.2: If x(t) intersects the Poincaré section
P at time τ, the nearby x(t) + δx(t) trajectory inter-
sects it time τ + δt later. As (U′ · v′δt) = −(U′ ·
J δx), the difference in arrival times is given by δt =

−(U′ · J δx)/(U′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

tities refer to the starting point x = x0 ∈ P, v = v(x0), and the primed quantities
to the first return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also
denote the full state space Jacobian matrix at the first return by J = Jτ(x0). Both
the first return x′ and the time of flight to the next Poincaré section τ(x) depend
on the starting point x, so the Jacobian matrix

Ĵ(x)i j =
dx′i
dx j

∣∣∣∣∣∣
P

(4.24)

with both initial and the final variation constrained to the Poincaré section hyper-
surface P is related to the continuous flow Jacobian matrix by

dx′i
dx j

∣∣∣∣∣∣
P

=
∂x′i
∂x j

+
dx′i
dτ

dτ
dx j

= Ji j + v′i
dτ
dx j

.

The return time variation dτ/dx, figure 4.2, is eliminated by substituting this ex-
pression into the constraint (4.23),

0 = ∂iU′ Ji j + (v′ · ∂U′)
dτ
dx j

,

yielding the projection of the full space d-dimensional Jacobian matrix to the re-
turn map (d−1)-dimensional Jacobian matrix:

Ĵi j =

(
δik −

v′i ∂kU′

(v′ · ∂U′)

)
Jk j . (4.25)

Substituting (4.9) we verify that the initial velocity v(x) is a zero-eigenvector of Ĵ

Ĵv = 0 , (4.26)

so the Poincaré section eliminates variations parallel to v, and Ĵ is a rank (d−1)-
dimensional matrix, i.e., one less than the dimension of the continuous time flow.

4.7 Neighborhood volume

section 6.2
remark 6.1

Consider a small state space volume ∆V = dd x centered around the point x0 at
time t = 0. The volume ∆V ′ around the point x′ = x(t) time t later is

∆V ′ =
∆V ′

∆V
∆V =

∣∣∣∣∣det
∂x′

∂x

∣∣∣∣∣ ∆V =
∣∣∣det Jt(x0)

∣∣∣ ∆V , (4.27)
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so the |det J| is the ratio of the initial and the final volumes. The determinant
det Jt(x0) =

∏d
i=1 Λi(x0, t) is the product of the Jacobian matrix eigenvalues. We

shall refer to this determinant as the Jacobian of the flow. The Jacobian is easily
exercise 4.1

evaluated. Take the time derivative, use the J evolution equation (4.10) and the
matrix identity ln det J = tr ln J:

d
dt

ln ∆V(t) =
d
dt

ln det J = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) Integrate
both sides to obtain the time evolution of an infinitesimal volume ( Liouville’s
formula)

det Jt(x0) = exp
[∫ t

0
dτ tr A(x(τ))

]
= exp

[∫ t

0
dτ ∂ivi(x(τ))

]
. (4.28)

As the divergence ∂ivi is a scalar quantity, the integral in the exponent (4.19) needs
no time ordering. So all we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d∑
i=1

Aii(x(τ))

=
1
t

ln

∣∣∣∣∣∣∣
d∏

i=1

Λi(x0, t)

∣∣∣∣∣∣∣ =

d∑
i=1

λ(i)(x0, t) (4.29)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere, |Ai j| < M , and so is the trace

∑
i Aii. The time integral

in (4.29) thus grows at most linearly with t, ∂ivi is bounded for all times, and
numerical estimates of the t → ∞ limit in (4.29) are not marred by any blowups.
In numerical evaluations of stability exponents, the sum rule (4.29) can serve as a
helpful check on the accuracy of the computation.

example 4.8

p. 103

The divergence ∂ivi characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. If ∂ivi < 0 at a given state space
point x, the flow is locally contracting, and the trajectory might be falling into an
attractor. If ∂ivi(x) < 0 , for all x ∈ M, the flow is globally contracting, and the
dimension of the attractor is necessarily smaller than the dimension of state space
M. If ∂ivi = 0, the flow preserves state space volume and det Jt = 1. A flow with
this property is called incompressible. An important class of such flows are the
Hamiltonian flows considered in sect. 8.3. But before we can get to that, Henriette

question 4.3
Roux, the perfect student and always alert, pipes up.

Résumé

A neighborhood of a trajectory deforms as it is transported by a flow. Let us
summarize the linearized flow notation used throughout the ChaosBook.
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Differential formulation, flows: Equations

ẋ = v , δ̇x = A δx

govern the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dim-
ensional state space M ⊂ Rd. In the linear approximation, the stability matrix
A = ∂v/∂x describes the instantaneous rate of shearing / compression / expansion
of an infinitesimal neighborhood of state space point x.

Finite time formulation, maps: A discrete sets of trajectory points {x0, x1, · · · ,

xn, · · · } ∈ M can be generated by composing finite-time maps, either given as
xn+1 = f (xn), or obtained by integrating the dynamical equations

xn+1 = f ∆tn(xn) = xn +

∫ tn+1

tn
dτ v(x(τ)) , ∆tn = tn+1 − tn , (4.30)

for a discrete sequence of times {t0, t1, · · · , tn, · · · }, specified by some criterion
such as strobing or Poincaré sections. In the discrete time formulation the dynam-
ics in the tangent bundle (x, δx) ∈ TM is governed by

xn+1 = f (xn) , δxn+1 = J(xn) δxn ,

where

J(xn) = J∆tn(xn) =
∂xn+1

∂xn

is the 1-time step Jacobian matrix. The deformation after a finite time t is de-
scribed by the Jacobian matrix

Jt(x0) = Te
∫ t

0 dτA(x(τ)) ,

where T stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time-step Jacobian
matrix J along the n points x0, x1, x2, . . ., xn−1 on the trajectory of x0,

Jn(x0) = J(xn−1) J(xn−2) · · · J(x1) J(x0) ,

where J(x) is the 1-time step Jacobian matrix.

In ChaosBook the stability multiplier Λk denotes the kth eigenvalue of the
finite time Jacobian matrix Jt(x0), µ(k) the real part of kth stability exponent, and
θ(k) its phase,

Λ = etµ+iθ .

For complex eigenvalue pairs the ‘angular velocity’ ω describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
complex eigenvectors. This angular velocity ω has to be carefully “unwrapped”
because most numerical routines return

θ = tω mod 2π .
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The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud at a finite time t later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each other along stable directions, and
change slowly (algebraically) their distance along marginal or center directions.
The Jacobian matrix Jt is in general neither symmetric, nor diagonalizable by a
rotation, nor do its (left or right) eigenvectors define an orthonormal coordinate
frame. Furthermore, although the Jacobian matrices are multiplicative along the
flow, their eigenvalues are generally not multiplicative in dimensions higher than
one. This lack of a multiplicative nature for eigenvalues has important repercus-
sions for both classical and quantum dynamics.

Commentary

Remark 4.1. Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.3 we only sketch, and in appendix A4 recapitulate a few facts that
our narrative relies on: a useful reference book is Meyer [16]. The basic facts are pre-
sented at length in many textbooks. Frequently cited linear algebra references are Golub
and Van Loan [7], Coleman and Van Loan [4], and Watkins [24, 25]. The standard refer-
ences that exhaustively enumerate and explain all possible cases are Hirsch and Smale [9]
and Arnol’d [2]. A quick overview is given by Izhikevich [11]; for different notions of
orbit stability see Holmes and Shea-Brown [10]. For ChaosBook purposes, we enjoyed
the discussion in chapter 2 Meiss [15], chapter 1 of Perko [17] and chapters 3 and 5 of
Glendinning [5]; we also liked the discussion of norms, least square problems, and differ-
ences between singular value and eigenvalue decompositions in Trefethen and Bau [22].
Appendix A of Stone and Goldbart [20] is an advanced summary of almost everything a

section 6.1graduate student needs to know about linear algebra. More pedestrian and perhaps easier
to read is Chapter 3 of Arfken and Weber [1]. Truesdell [23] and Gurtin [8] are excel-
lent references for the continuum mechanics perspective on state space dynamics; for a
gentle introduction to parallels between dynamical systems and continuum mechanics see
Christov et al. [3] .

The nomenclature tends to be a bit confusing. A Jacobian matrix (4.5) is sometimes
referred to as the fundamental solution matrix or simply fundamental matrix, a name in-
herited from the theory of linear ODEs, or the Fréchet derivative of the nonlinear mapping
f t(x), or the ‘tangent linear propagator’, or even as the ‘error matrix’ (Lorenz [13]). The
formula (4.22) for the linearization of nth iterate of a d-dimensional map is called a linear
cocyle, a multiplicative cocyle, a derivative cocyle or simply a cocyle by some. Since ma-
trix J describes the deformation of an infinitesimal neighborhood at a finite time t in the
co-moving frame of x(t), in continuum mechanics it is called a deformation gradient or a
transplacement gradient. It is often denoted D f , but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matrix notation J is more economical.
Single discrete time-step Jacobian J jl = ∂ f j/∂xl in (4.22) is referred to as the ‘tangent
map’ by Skokos [18, 19]. For a discussion of ‘fundamental matrix’ see appendix A4.2.

We follow Tabor [21] in referring to A in (4.3) as the ‘stability matrix’; it is also
referred to as the ‘velocity gradients matrix’ or ‘velocity gradient tensor’. It is the natural
object for study of stability of equilibria, time-invariant point in state space; stability of
trajectories is described by Jacobian matrices. Goldhirsch, Sulem, and Orszag [6] call it
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the ‘Hessenberg matrix’, and to the equations of variations (4.1) as ‘stability equations.’
Manos et al. [14] refer to (4.1) as the ‘variational equations’.

Sometimes A, which describes the instantaneous shear of the neighborhood of x(x0, t),
is referred to as the ‘Jacobian matrix’, a particularly unfortunate usage when one considers
linearized stability of an equilibrium point (5.1). A is not a Jacobian matrix, just as a
generator of SO(2) rotation is not a rotation; A is a generator of an infinitesimal time
step deformation, Jδt ' 1 + Aδt . What Jacobi had in mind in his 1841 fundamental
paper [12] on determinants (today known as ‘Jacobians’) were transformations between
different coordinate frames. These are dimensionless quantities, while dimensionally Ai j

is 1/[time].

More unfortunate still is referring to the Jacobian matrix Jt = exp(tA) as an ‘evolution
operator’, which here (see sect. 20.2) refers to something altogether different. In this book
Jacobian matrix Jt always refers to (4.5), the linearized deformation after a finite time t,
either for a continuous time flow, or a discrete time mapping.

Question 4.1. Henriette Roux is confused
Q What’s the difference between the stability matrix A and the Jacobian matrix Jt?
A The velocity gradients matrix A is the instantaneous shear rate of a neighborhood
of a point x. Dimensionally it is (1/time). The Jacobian matrix Jt is a dimensionless
matrix of ratios of distances across the neighborhood after a finite time t, divided by initial
distances. Stability matrix A is a matrix of spatial derivatives. Jt is obtained by a finite
time integration over A.

Question 4.2. Henriette Roux wants to know
Q So, computing eigenvalues and eigenvectors seems like a good thing. But how do you
really do it?
A Any text on numerics of matrices discusses how this is done; the keywords are ‘Gram-
Schmidt’, and for high-dimensional flows ‘Krylov subspace’ and ‘Arnoldi iteration’. Con-
ceptually (but not for numerical purposes) we like the economical description of neigh-
borhoods of equilibria and periodic orbits afforded by projection operators. While usually
not phrased in language of projection operators, the requisite linear algebra is standard.
As this is a bit of sidetrack that you will find confusing at the first go, it is relegated to
appendix A4.

Question 4.3. Henriette Roux does not like our Jacobian matrix
Q I do not like our definition of the Jacobian matrix in terms of the time-ordered expo-
nential (4.19). Depending on the signs of multipliers, the left hand side of (4.28) can be
either positive or negative. But the right hand side is an exponential of a real number, and
that can only be positive. What gives?
A As we shall see much later on in this text, in discussion of topological indices arising
in semiclassical quantization, this is not at all a dumb question.
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4.8 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected here. If you want to return
back to the main text, click on [click to return] pointer on the margin.

Example 4.1. Rössler and Lorenz flows, linearized. (Continued from exam-
ple 3.4) For the Rössler (2.28) and Lorenz (2.23) flows, the stability matrices are re-
spectively

ARoss =

 0 −1 −1
1 a 0
z 0 x − c

 , ALor =

 −σ σ 0
ρ − z −1 −x

y x −b

 . (4.31)

(continued in example 4.5)
click to return: p. 85

Example 4.2. Jacobian matrix eigenvalues, diagonalizable case. Should we be so
lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =


etλ(1)

· · · 0
. . .

0 · · · etλ(d)

 . (4.32)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.15)):

exercise 4.2

Jt = etA = UetAD U−1 . (4.33)

The action of both A and J is very simple; the axes of orthogonal coordinate system where
A is diagonal are also the eigen-directions of Jt, and under the flow the neighborhood is
deformed by a multiplication by an eigenvalue factor for each coordinate axis.

We recapitulate the basic facts of linear algebra in appendix A4. The following
2-dimensional example serves well to highlight the most important types of linear
flows:

Example 4.3. Linear stability of 2-dimensional flows. For a 2-dimensional flow
the eigenvalues λ(1), λ(2) of A are either real, leading to a linear motion along their eigen-
vectors, x j(t) = x j(0) exp(tλ( j)), or form a complex conjugate pair λ(1) = µ + iω , λ(2) =

µ − iω , leading to a circular or spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ(1) > 0, λ(2) < 0, x1 grows exponentially with time, and
x2 contracts exponentially. This behavior, called a saddle, is sketched in figure 4.3, as
are the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0. The phase velocity ω controls its oscillations.

example A4.2
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Figure 4.3: Trajectories in linearized neighborhoods
of several 2-dimensional equilibria: saddle (hyper-
bolic), in node (attracting), center (elliptic), in spiral.

Figure 4.4: Qualitatively distinct types of stability
exponents {λ(1), λ(2)}, i.e., eigenvalues of the [2×2]
stability matrix A.
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If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A can be
brought to diagonal form and (b) A can be brought to Jordan form, which (in dimension
2 or higher) has zeros everywhere except for the repeating eigenvalues on the diagonal
and some 1’s directly above it. For every such Jordan [dα×dα] block there is only one
eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and we work out in detail
the most important cases in appendix A4, example A4.2.

click to return: p. 89

Example 4.4. In-out spirals. Consider an equilibrium whose stability expo-
nents {λ(1), λ(2)} = {µ + iω, µ − iω} form a complex conjugate pair. The corresponding
complex eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} →

{Re e(1), Im e(1)}. The 2-dimensional real representation,[
µ −ω
ω µ

]
= µ

[
1 0
0 1

]
+ ω

[
0 −1
1 0

]
consists of the identity and the generator of SO(2) rotations in the {Re e(1), Im e(1)} plane.
Trajectories x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-directions)

Jt = eAqt = etµ
[
cos ωt − sin ωt
sin ωt cos ωt

]
, (4.34)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period T . The trajecto-
ries contract/expand radially by the multiplier Λradial and also by the multiplier Λ j, along
the e( j) eigen-direction per turn of the spiral:

exercise A4.1

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (4.35)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of the order ≈ T (and not, let us say, 1000 T , or 10−2T). Λ j multipli-

stability - 10jan2019 ChaosBook.org edition16.4.8, May 25 2020

https://youtube.com/embed/4cMay9qMi7U


CHAPTER 4. LOCAL STABILITY 101

Figure 4.5: Two trajectories of the Rössler flow initi-
ated in the neighborhood of the ‘+’ or ‘outer’ equilib-
rium point (2.29). (R. Paškauskas)
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ers give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.
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Example 4.5. Stability of equilibria of the Rössler flow. (Continued from exam-
ple 4.1) The Rösler system (2.28) has two equilibrium points (2.29), the inner equilib-

exercise 4.4
exercise 2.8

rium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+). Together with their expo-
nents (eigenvalues of the stability matrix), the two equilibria yield quite detailed informa-
tion about the flow. Figure 4.5 shows two trajectories which start in the neighborhood of
the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’ escape, and
those to the left spiral toward the inner equilibrium point ‘−’, where they seem to wander
chaotically for all times. The stable manifold of the outer equilibrium point thus serves as
the attraction basin boundary. Consider now the numerical values for eigenvalues of the
two equilibria:

(µ(1)
− , µ

(2)
− ± iω(2)

− ) = (−5.686, 0.0970 ± i 0.9951 )
(µ(1)

+ , µ(2)
+ ± iω(2)

+ ) = ( 0.1929, −4.596 × 10−6 ± i 5.428 ) .
(4.36)

Outer equilibrium: The µ(2)
+ ± iω(2)

+ complex eigenvalue pair implies that the neighbor-
hood of the outer equilibrium point rotates with angular period T+ ≈

∣∣∣2π/ω(2)
+

∣∣∣ = 1.1575.
The multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts
in the stable manifold plane is the excruciatingly slow multiplier Λ+

2 ≈ exp(µ(2)
+ T+) =

0.9999947 per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor Λ+

1 ≈ exp(µ(1)
+ T+) = 1.2497. Hence the

slow spiraling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The µ(2)
− ± iω(2)

− complex eigenvalue pair tells us that the neighbor-
hood of the ‘−’ equilibrium point rotates with angular period T− ≈

∣∣∣2π/ω(2)
−

∣∣∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.25). The multiplier by which
a trajectory that starts near the ‘−’ equilibrium point spirals away per one rotation is
Λradial ≈ exp(µ(2)

− T−) = 1.84. The µ(1)
− eigenvalue is essentially the z expansion cor-

recting parameter c introduced in (2.27). For each Poincaré section return, the trajectory
is contracted into the stable manifold by the amazing factor of Λ1 ≈ exp(µ(1)

− T−) = 10−15.6

(!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. After one
Poincaré return the interval is of the order of 10−4 fermi, the furthest we will get into
subnuclear structure in this book. Of course, from the mathematical point of view, the
flow is reversible, and the return map is invertible. (continued in example 14.3)

(R. Paškauskas)

Example 4.6. Stability of Lorenz flow equilibria. (Continued from example 4.1) A
glance at figure 3.5 suggests that the flow is organized by its 3 equilibria, so let us have a
closer look at their stable/unstable manifolds.
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Figure 4.6: (a) A perspective view of the lin-
earized Lorenz flow near EQ1 equilibrium, see fig-
ure 3.5 (a). The unstable eigenplane of EQ1 is
spanned by {Re e(1) , Im e(1)}; the stable subspace
by the stable eigenvector e(3). (b) Lorenz flow
near the EQ0 equilibrium: unstable eigenvector
e(1), stable eigenvectors e(2), e(3). Trajectories ini-
tiated at distances 10−8 · · · 10−12, 10−13 away from
the z-axis exit finite distance from EQ0 along the
(e(1), e(2)) eigenvectors plane. Due to the strong λ(1)

expansion, the EQ0 equilibrium is, for all practical
purposes, unreachable, and the EQ1 → EQ0 hete-
roclinic connection never observed in simulations
such as figure 2.5. (E. Siminos; continued in fig-
ure 14.14.)
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The EQ0 equilibrium stability matrix (4.31) evaluated at xEQ0 = (0, 0, 0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b. From

remark 11.8(4.42) it follows that all [x, y] areas shrink at the rate −(σ+1). Indeed, the [x, y] submatrix

A− =

(
−σ σ
ρ −1

)
(4.37)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+ 1)/2±
√

(σ − 1)2/4 + ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ( j)1
λ(i) − λ( j) =

1
λ(i) − λ( j)

(
−σ − λ( j) σ

ρ −1 − λ( j)

)
, i , j ∈ {1, 3} . (4.38)

EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots of a
cubic equation, the secular determinant det (A − λ1) = 0:

λ3 + λ2(σ + b + 1) + λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.39)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex conjugate
pair, leading to a spiral-out instability and the strange attractor depicted in figure 2.5.

All numerical plots of the Lorenz flow are carried out here with the Lorenz parameters
set to σ = 10, b = 8/3, ρ = 28 . We note the corresponding stability exponents for future
reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83 , − 2.666, −22.83 )
EQ1 : (µ(1) ± iω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ) . (4.40)

We also note the rotation period TEQ1 = 2π/ω(1) about EQ1 and the associated expan-
sion/contraction multipliers Λ(i) = exp(µ( j)TEQ1 ) per spiral-out turn:

TEQ1 = 0.6163 , (Λ(1),Λ(3)) = ( 1.060 , 1.957 × 10−4 ) . (4.41)

We learn that the typical turnover time scale in this problem is of the order T ≈ TEQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.42), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ≈ 10−4 per
mean turnover time.
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In the EQ1 neighborhood, the unstable manifold trajectories slowly spiral out, with a
very small radial per-turn expansion multiplier Λ(1) ' 1.06 and a very strong contraction
multiplier Λ(3) ' 10−4 onto the unstable manifold, figure 4.6 (a). This contraction con-
fines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface, which is
evident in figure 3.5.

In the xEQ0 = (0, 0, 0) equilibrium neighborhood, the extremely strong λ(3) ' −23
contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to the
plane spanned by the unstable eigenvector e(1), with λ(1) ' 12, and the slowest con-
traction rate eigenvector e(2) along the z-axis, with λ(2) ' −3. In this plane, the strong
expansion along e(1) overwhelms the slow λ(2) ' −3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ0, figure 4.6 (b). Thus, lin-
earization describes analytically both the singular dip in the Poincaré sections of figure 3.5
and the empirical scarcity of trajectories close to EQ0. (continued in example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7. Lorenz flow: A global portrait. (Continued from example 4.6) As
the EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1
in figure 3.5 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0.

How? Since the dynamics is linear (see figure 4.6 (a)) in the neighborhood of EQ0,
there is no need to integrate numerically the final segment of the heteroclinic connection.
It is sufficient to bring a trajectory a small distance away from EQ0, continue analytically
to a small distance beyond EQ0 and then resume the numerical integration.

What happens next? Trajectories to the left of the z-axis shoot off along the e(1)

direction, and those to the right along −e(1). Given that xy > 0 along the e(1) direction, the
nonlinear term in the ż equation (2.23) bends both branches of the EQ0 unstable manifold
Wu(EQ0) upwards. Then . . . - never mind. We postpone completion of this narrative
to example 11.8, where the discrete symmetry of Lorenz flow will help us streamline
the analysis. As we shall show, what we already know about the 3 equilibria and their
stable/unstable manifolds suffices to completely pin down the topology of Lorenz flow.
(continued in example 11.8)

(E. Siminos and J. Halcrow)

Example 4.8. Lorenz flow state space contraction. (Continued from example 4.6) It
follows from (4.31) and (4.29) that Lorenz flow is volume contracting,

∂ivi =

3∑
i=1

λ(i)(x, t) = −σ − b − 1 , (4.42)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 . For
periodic orbits and long time averages, there is no contraction/expansion along the flow,
λ(‖) = 0, and the sum of λ(i) is constant by (4.42). Thus, we compute only one independent
exponent λ(i). (continued in example 11.8)
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Example 4.9. Stability of a 1-dimensional map. Consider the orbit {. . . , x−1, x0, x1, x2, . . .}
of a 1-dimensional map xn+1 = f (xn). When studying linear stability (and higher deriva-
tives) of the map, it is often convenient to use a local coordinate system za centered on the
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Figure 4.7: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.
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orbit point xa, together with a notation for the map, its derivative, and, by the chain rule,
the derivative of the kth iterate f k evaluated at the point xa,

x = xa + za , fa(za) = f (xa + za)
f ′a = f ′(xa)

Λ(x0, k) = f k
a
′ = f ′a+k−1 · · · f ′a+1 f ′a , k ≥ 2 . (4.43)

Here a is the label of point xa, and the label a+1 is shorthand for the next point b on the
orbit of xa, xb = xa+1 = f (xa). For example, a period-3 periodic point in figure 4.7 might
have label a = 011, and by x110 = f (x011) the next point label is b = 110.

click to return: p. 91

Example 4.10. Hénon map Jacobian matrix. For the Hénon map (3.18) the Jacobian
matrix for the nth iterate of the map is

Mn(x0) =

1∏
m=n

[
−2axm b

1 0

]
, xm = f m

1 (x0, y0) . (4.44)

The determinant of the Hénon one time-step Jacobian matrix (4.44) is constant,

det M = Λ1Λ2 = −b. (4.45)

In this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not an
accident; a constant Jacobian was one of desiderata that led Hénon to construct a map of
this particular form.

click to return: p. 91
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Exercises

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrix M,
det M , 0.

4.2. Stability, diagonal case. Verify the relation (4.33)

Jt = etA = U−1etAD U , AD = UAU−1 .

4.3. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous ∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of ∂ivi. If you see regions
of local expansion, explain them.

(c) (optional) Color-code the points on the trajec-
tory by the sign (and perhaps the magnitude) of
∂ivi − ∂ivi.

(d) Compute numerically the average contraction rate
(4.29) along a typical trajectory on the Rössler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state space d = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, and color-code the
points on the trajectory. Is the flow volume con-
tracting?

(continued in exercise 23.10)

4.4. Topology of the Rössler flow. (continuation of exer-
cise 3.1)

(a) Show that equation |det (A − λ1)| = 0 for Rössler
flow in the notation of exercise 2.8 can be written
as

λ3 +λ2c (p∓ − ε) +λ(p±/ε + 1− c2εp∓)∓ c
√

D = 0
(4.46)

(b) Solve (4.46) for eigenvalues λ± for each equilib-
rium as an expansion in powers of ε. Derive

λ−1 = −c + εc/(c2 + 1) + o(ε)
λ−2 = εc3/[2(c2 + 1)] + o(ε2)
θ−2 = 1 + ε/[2(c2 + 1)] + o(ε)
λ+

1 = cε(1 − ε) + o(ε3)
λ+

2 = −ε5c2/2 + o(ε6)
θ+

2 =
√

1 + 1/ε (1 + o(ε))

(4.47)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
λ−1 ? (continued as exercise 7.1)

(R. Paškauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrix A(t) check that the time-ordered exponential

J(t) = Te
∫ t

0 dτA(τ)

may be written as
J(t) =

∑∞
m=0

∫ t
0 dt1

∫ t1
0 dt2 · · ·

∫ tm−1

0 dtmA(t1) · · · A(tm)
and verify, by using this representation, that J(t) satisfies
the equation

J̇(t) = A(t)J(t),

with the initial condition J(0) = 1.

4.6. A contracting baker’s map. Consider a contracting
(or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by(

xn+1
yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1
yn+1

)
=

(
xn/3 + 1/2

2yn − 1

)
yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then it stretches (and folds) them by a fac-
tor of 2 in the y-direction.

By how much does the state space volume contract for
one iteration of the map?
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Chapter 5

Cycle stability

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

Topological features of a dynamical system –singularities, periodic orbits,
and the ways in which the orbits intertwine– are invariant under a general
continuous change of coordinates. Equilibria and periodic orbits are flow-

invariant sets, in the sense that the flow only shifts points along a periodic orbit,
but the periodic orbit as the set of periodic points remains unchanged in time. Sur-
prisingly, there also exist quantities that depend on the notion of metric distance
between points, but nevertheless do not change value under a smooth change of
coordinates. Local quantities such as the eigenvalues of equilibria and periodic
orbits, and global quantities such as Lyapunov exponents, metric entropy, and
fractal dimensions are examples of properties of dynamical systems independent
of coordinate choice.

We now turn to the first, local class of such invariants, linear stability of equi-
libria and periodic orbits of flows and maps. This will give us metric information
about local dynamics, as well as the key concept, the concept of a neighborhood
of a point x: its size is primarily determined by the number of expanding direc-
tions, and the rates of expansion along them: contracting directions play only a
secondary role (see sect. 5.6).

If you already know that the eigenvalues of periodic orbits are invariants of a
flow, skip this chapter.

fast track:

chapter 7, p. 132

As noted on page 42, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic–nevertheless, equilibria and
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periodic orbits turn out to be the key to unraveling chaotic dynamics. Here we
note a few of the properties that make them so precious to a theorist.

5.1 Equilibria

At the still point, there the dance is.
—T. S. Eliot, Four Quartets - Burnt Norton [00:15:30]

For a start, consider the case where xq is an equilibrium point (2.9). Expanding
around the equilibrium point xq, using the fact that the stability matrix A = A(xq)
in (4.2) is constant, and integrating, f t(x) = xq + eAt(x − xq) + · · · , we verify that
the simple formula (4.15) applies also to the Jacobian matrix of an equilibrium
point,

Jt
q = eAqt , Jt

q = Jt(xq) , Aq = A(xq) . (5.1)

As an equilibrium point is stationary, time plays no role. The eigenvalues and the
eigenvectors of the stability matrix Aq evaluated at the equilibrium point xq,

Aq e( j) = λ
( j)
q e( j) , (5.2)

describe the linearized neighborhood of the equilibrium point, with stability expo-
nents λ( j)

q = µ
( j)
q ± iω( j)

q independent of any particular coordinate choice. Assume
that these eigenvalues are non-degenerate, λ( j) , λ(k) for any pair of eigenvalues.

• If all µ( j) < 0, then the equilibrium is stable, or a sink. For ω( j) = 0, it is an
in node; for ω( j) , 0, it is an in spiral.

• If some µ( j) < 0, and other µ( j) > 0, the equilibrium is hyperbolic, or a
saddle.

• If all µ( j) > 0, then the equilibrium is repelling, or a source. For ω( j) = 0, it
is an out node; for ω( j) , 0, it is an out spiral.

• If some µ( j) = 0, think again (you have a symmetry or a bifurcation).

For 2-dimensional flows, these types of equilibrium stabilities are illustrated in
figures 4.4 and 4.3. The stability matrix eigenvectors (5.2) are the eigenvectors of
the Jacobian matrix as well, Jt

q e( j) = exp(tλ( j)
q ) e( j) .

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they are topological invariants: a
fixed point remains a fixed point for any choice of coordinates, and similarly a

invariants - 25may2014 ChaosBook.org edition16.4.8, May 25 2020

http://jeremyirons.net/2014/01/18/jeremy-irons-reads-ts-eliots-four-quartets/
https://youtube.com/embed/STJ7GUF1XZM


CHAPTER 5. CYCLE STABILITY 108

Figure 5.1: For a prime cycle p, Floquet matrix
Jp returns an infinitesimal spherical neighborhood of
x0 ∈ Mp stretched into an ellipsoid, with overlap ra-
tio along the eigendirection e( j) of Jp(x) given by the
Floquet multiplier |Λ j|. These ratios are invariant un-
der smooth nonlinear reparametrizations of state space
coordinates, and are intrinsic property of cycle p.

J

+   x δ

δp

x0

0x +      x

periodic orbit remains periodic in any representation of the dynamics. Any re-
parametrization of a dynamical system that preserves its topology has to preserve
topological relations between periodic orbits, such as their relative inter-windings
and knots. So the mere existence of periodic orbits suffices to partially organize
the spatial layout of a non–wandering set. No less important, as we shall now
show, is the fact that cycle eigenvalues are metric invariants: they determine the
relative sizes of neighborhoods in a non–wandering set.

We start by noting that due to the multiplicative structure (4.20) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T is

JrT (x) = JT ( f (r−1)T (x)) · · · JT ( f T (x))JT (x) = Jp(x)r , (5.3)

where Jp(x) = JT (x) is the Jacobian matrix for a single traversal of the prime
cycle p, x ∈ Mp is any point on the cycle, and f rT (x) = x as f t(x) returns to x
every multiple of the period T . Hence, it suffices to restrict our considerations to
the stability of prime cycles.

fast track:

sect. 5.3, p. 110

5.2.1 Cycle stability

The time-dependent T-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall

appendix A4.2.1
refer to a Jacobian matrix evaluated on a periodic orbit p either as a [d×d] Floquet
matrix Jp or a [(d−1) × (d−1)] monodromy matrix Mp, to its eigenvalues Λ j as
Floquet multipliers (4.7), and to

λ
( j)
p = µ

( j)
p + iω( j)

p (5.4)

as Floquet exponents. In the literature they are sometimes called “characteristic”
multipliers and exponents. The stretching/contraction rates per unit time are given
by the real parts of Floquet exponents

µ
( j)
p =

1
Tp

ln
∣∣∣Λp, j

∣∣∣ . (5.5)
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Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory x′(t), except those on its center
and stable manifolds.

x’ x=x(T)

x’(T)

The factor 1/Tp in the definition of the Floquet exponents is motivated by its form
for the linear dynamical systems, for example (4.32). (Parenthetically, a Floquet
exponent is not a Lyapunov exponent (6.11) evaluated on one period of prime
cycle p; the relation is subtler than that, read chapter 6). When Λ j is real, we do
care about σ( j) = Λ j/|Λ j| ∈ {+1,−1} , the sign of the jth Floquet multiplier. If

section 8.3
σ( j) = −1 and |Λ j| , 1, the corresponding eigen-direction is said to be inverse
hyperbolic. Keeping track of this by case-by-case enumeration is an unnecessary
nuisance, so most of our formulas will be stated in terms of the Floquet multipliers
Λ j rather than in the terms of the multiplier signs σ( j), exponents µ( j) and phases
ω( j).

In dynamics the expanding directions, |Λe| > 1, have to be taken care of first,
while the contracting directions |Λc| < 1 tend to take care of themselves, hence we
always order multipliers Λk in order of decreasing magnitude |Λ1| ≥ |Λ2| ≥ . . . ≥

|Λd | . Since |Λ j| = etµ( j)
, this is the same as ordering by µ(1) ≥ µ(2) ≥ . . . ≥ µ(d) .We

sort the Floquet multipliers {Λp,1, Λp,2, . . . , Λp,d} of the Floquet matrix evaluated
on the p-cycle into three sets {e,m, c}

expanding: {Λ}e = {Λp, j :
∣∣∣Λp, j

∣∣∣ > 1}

{λ}e = {λ
( j)
p : µ( j)

p > 0}

marginal: {Λ}m = {Λp, j :
∣∣∣Λp, j

∣∣∣ = 1} (5.6)

{λ}m = {λ
( j)
p : µ( j)

p = 0}

contracting: {Λ}c = {Λp, j :
∣∣∣Λp, j

∣∣∣ < 1}

{λ}c = {λ
( j)
p : µ( j)

p < 0} .

In what follows, the volume of expanding manifold will play an important role.
We denote by Λp (no jth eigenvalue index) the product of expanding Floquet
multipliers

Λp =
∏

e

Λp,e . (5.7)

As Jp is a real matrix, complex eigenvalues always come in complex conjugate
pairs, Λp,i+1 = Λ∗p,i, so the product (5.7) is always real.

A periodic orbit of a continuous-time flow, or of a map, or a fixed point of a
map is

p. 107
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• stable, attracting, a sink or a limit cycle if all |Λ j| < 1 (real parts of all
of its Floquet exponents, other than the vanishing longitudinal exponent
for perturbations tangent to the cycle, see sect. 5.3.1, are strictly negative,
0 > µ(1) ≥ µ( j)).

• hyperbolic or a saddle, unstable to perturbations outside its stable manifold
if some |Λ j| > 1, and other |Λ j| < 1 (a set of µ( j) ≥ µmin > 0 is strictly
positive, the rest is strictly negative).

• elliptic, neutral or marginal if all |Λ j| = 1 (µ( j) = 0).

• partially hyperbolic, if µ( j) = 0 for a subset of exponents (other than the
longitudinal one).

• repelling, or a source, unstable to any perturbation if all |Λ j| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal exponent, are strictly
positive, µ( j) ≥ µ(d) > 0).

The region of system parameter values for which a periodic orbit p is stable is
called the stability window of p. The set of initial points that are asymptotically
attracted toMp as t → +∞ (for a fixed set of system parameter values) is called
the basin of attraction of limit cycle p. Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said to be unstable, see figure 5.2.

section 8.4

If all Floquet exponents (other than the vanishing longitudinal exponent) of all
periodic orbits of a flow are strictly bounded away from zero, the flow is said to
be hyperbolic. Otherwise the flow is said to be nonhyperbolic. A confined smooth
flow or map is generically nonhyperbolic, with partial ellipticity or marginality
expected only in presence of continuous symmetries, or for bifurcation param-
eter values. As we shall see in chapter 12, in presence of continuous symme-
tries equilibria and periodic orbits are not likely solutions, and their role is played
by higher-dimensional tori, relative equilibria and relative periodic orbits. For
Hamiltonian flows the symplectic Sp(d) symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a proliferation of elliptic and partially
hyperbolic tori.

section 8.5
question 5.1

example 5.1

p. 118

5.3 Floquet multipliers are invariant

As already noted in (5.1), if the stability matrix A(x) is computed on an equilib-
rium point q,

Aq = A(xq) , (5.8)

its eigenvalues λ(k)
q are flow- and coordinate transformations invariant, so we label

them by q, omit (xq).
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The 1-dimensional map Floquet multiplier (5.23) is a product of derivatives
over all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the Floquet
matrix Jp(x0) in (5.3) does depend on the choice of coordinates and the initial
point x0 ∈ Mp. Nevertheless, as we shall now show, the cycle Floquet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (Λ j, e( j)) computed from Jp evaluated at a periodic point x,

Jp(x) e( j)(x) = Λ j e( j)(x) , x ∈ Mp . (5.9)

Consider another point on the cycle at time t later, x′ = f t(x) whose Floquet
matrix is Jp(x′). By the semigroup property (4.20), JT+t = Jt+T , and the Jacobian
matrix at x′ can be written either as

JT+t(x) = JT (x′) Jt(x) = Jp(x′) Jt(x) ,

or Jt(x) Jp(x). Multiplying (5.9) by Jt(x), we find that the Floquet matrix evalu-
ated at x′ has the same Floquet multiplier,

Jp(x′) e( j)(x′) = Λ j e( j)(x′) , e( j)(x′) = Jt(x) e( j)(x) , (5.10)

but with the eigenvector e( j) transported along the flow x → x′ to e( j)(x′) =

Jt(x) e( j)(x). Hence, in the spirit of the Floquet theory (appendix A4.2.1) one
can define time-periodic eigenvectors (in a co-moving ‘Lagrangian frame’)

e( j)(t) = e−λ
( j)t Jt(x) e( j)(0) , e( j)(t) = e( j)(x(t)) , x(t) ∈ Mp . (5.11)

Jp evaluated anywhere along the cycle has the same set of Floquet multipliers
{Λ1,Λ2, · · · , 1, · · · ,Λd−1}. As quantities such as tr Jp(x), det Jp(x) depend only
on the eigenvalues of Jp(x) and not on the starting point x, in expressions such as
det

(
1 − Jr

p(x)
)

we may omit reference to x,

det
(
1 − Jr

p

)
= det

(
1 − Jr

p(x)
)

for any x ∈ Mp . (5.12)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy
invariants of the flow to sect. 5.4; time-forward map (5.10) is the special case of
this general property of smooth manifolds and their tangent spaces.

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of the
flow (which one should immediately exploit to simplify the problem), or a nonhy-
perbolicity of a flow (a source of much pain, hard to avoid). In that case (typical
of parameter values for which bifurcations occur) one has to go beyond linear
stability, deal with Jordan type subspaces (see example 4.3), and sub-exponential
growth rates, such as tα. For flow-invariant solutions such as periodic orbits, the
time evolution is itself a continuous symmetry, hence a periodic orbit of a flow
always has a marginal Floquet multiplier, as we now show.

chapter 29
exercise 5.1
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Figure 5.3: Any two points along a periodic orbit p
are mapped into themselves after one cycle period T ,
hence a longitudinal deviation vector δx = v(x0)δt is
mapped into itself by the cycle Jacobian matrix Jp.

δ  x
x(T) = x(0)

The Jacobian matrix Jt(x) transports the velocity field v(x) by (4.9), v(x(t)) =

Jt(x0) v(x0) . In general the velocity at point x(t) does not point in the same di-
rection as the velocity at point x0, so this is not an eigenvalue condition for Jt;
the Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning. However, if the orbit is periodic, x(Tp) = x(0), after a
complete period

Jp(x) v(x) = v(x) , x ∈ Mp . (5.13)

Two successive points on the cycle initially distance δx = x′(0) − x(0) apart, are
separated by the exactly same distance after a completed period δx(T) = δx, see
figure 5.3, hence for a periodic orbit of a flow the velocity field v at any point
along cycle is an eigenvector e(‖)(x) = v(x) of the Jacobian matrix Jp with the unit
Floquet multiplier, zero Floquet exponent

Λ‖ = 1 , λ(‖) = 0 . (5.14)

The continuous invariance that gives rise to this marginal Floquet multiplier is
exercise A2.2

the invariance of a cycle (the setMp) under a time translation of its points along
the cycle. As we shall see in sect. 5.5, this marginal stability direction can be
eliminated by cutting the cycle by a Poincaré section and replacing the continuous
flow Floquet matrix by the Floquet matrix of the return map.

If the flow is governed by a time-independent Hamiltonian, the energy is con-
served, and that leads to an additional marginal Floquet multiplier (we shall show
in sect. 8.4 that due to the symplectic invariance (8.21) real eigenvalues come in
pairs). Further marginal eigenvalues arise in presence of continuous symmetries,
as discussed in chapter 12.

5.4 Floquet multipliers are metric invariants

In sect. 5.3 we established that for a given flow, the Floquet multipliers are intrin-
sic to a given cycle, independent of the starting point along the cycle. Now we
prove a much stronger statement: cycle Floquet multipliers are smooth conjugacy
or metric invariants of the flow, the same in any representation of the dynamical
system. That follows by elementary differential geometry considerations:
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If the same dynamics is given by a map f in x coordinates, and a map g in
the y = h(x) coordinates, then f and g (or any other good representation) are
related by a smooth conjugacy, a reparameterization and a coordinate transforma-
tion g = h◦ f ◦h−1 which maps nearby points of f into nearby points of g. As both
f and g are arbitrary representations of the dynamical system, the explicit form
of the conjugacy h is of no interest, only the properties invariant under any trans-
formation h are of general import. Furthermore, a good representation should not
mutilate the data; the mapping h must be a smooth conjugacy which maps nearby
points of f into nearby points of g.

This smoothness guarantees that the cycles are not only topological invariants,
but that their linearized neighborhoods are also metric invariants. For a fixed point
f (x) = x of a 1-dimensional map this follows from the chain rule for derivatives,

g′(y) = h′( f ◦ h−1(y)) f ′(h−1(y))
1

h′(x)

= h′(x) f ′(x)
1

h′(x)
= f ′(x) . (5.15)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again g ◦ h = h ◦ f . The chain rule now relates J′, the Jacobian
matrix of the map g, to the Jacobian matrix of map f :

J′(y)i j = Γ( f (x))ikJ(x)klΓ(x)−1
l j , (5.16)

where the coordinate transformation Jacobian matrices are

Γ(x)ik =
∂yi

∂xk
and Γ(x)−1

ik =
∂xi

∂yk
. (5.17)

(Here, as elsewhere in this book, a repeated index implies summation.) If x is
an equilibrium point, x = f (x), Γ is the matrix inverse of Γ−1, and (5.16) is a
similarity transformation and thus preserves eigenvalues. It is easy to verify that
in the case of period np cycle J′p(y) and Jp(x) are again related by a similarity
transformation. (Note, though, that this is not true for Jr(x) with r , np). As
stability of a flow can always be reduced to stability of a Poincaré return map, a
Floquet multiplier of any cycle, for a flow or a map in arbitrary dimension, is a
metric invariant of the dynamical system.

exercise A2.2

The ith Floquet (multiplier, eigenvector) pair (Λi, e(i)) are computed from J
evaluated at a periodic point x, J(x) e(i)(x) = Λi e(i)(x) , x ∈ Mp . Multiplying
by Γ(x) from the left, and inserting 1 = Γ(x)−1Γ(x), we find that the J evaluated at
y = h(x) has the same Floquet multiplier,

J′p(y) e(i)(y)′ = Λi e(i)(y)′ , (5.18)

but with the eigenvector e(i)(x) mapped to e(i)(y)′ = Γ(x) e(i)(x).

invariants - 25may2014 ChaosBook.org edition16.4.8, May 25 2020

https://youtube.com/embed/RNvxYhi9SaU


CHAPTER 5. CYCLE STABILITY 114

5.5 Stability of return map cycles

(R. Paškauskas and P. Cvitanović)

If a continuous flow periodic orbit p pierces the Poincaré section P once, the
section point is a fixed point of the return map P with stability (4.25)

Ĵi j =

(
δik −

vi Uk

(v · U)

)
Jk j , (5.19)

with all primes dropped, as the initial and the final points coincide, x′ = f T (x) = x.
If the periodic orbit p pierces the Poincaré section n times, the same observation
applies to the nth iterate of P.

We have already established in (4.26) that the velocity v(x) is a zero eigen-
vector of the Poincaré section Floquet matrix, Ĵ v = 0. Consider next (Λα, e(α)),
the full state space αth (eigenvalue, eigenvector) pair (5.9), evaluated at a periodic
point on a Poincaré section,

J(x) e(α)(x) = Λα e(α)(x) , x ∈ P . (5.20)

Multiplying (5.19) by e(α) and inserting (5.20), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix Ĵ have the same Floquet
multiplier

Ĵ(x) ê(α)(x) = Λα ê(α)(x) , x ∈ P , (5.21)

where ê(α) is a projection of the full state space eigenvector onto the Poincaré
section:

(ê(α))i =

(
δik −

vi Uk

(v · U)

)
(e(α))k . (5.22)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has the same
set of Floquet multipliers {Λ1,Λ2, · · ·Λd} as the full state space Floquet matrix Jp,
except for the marginal unit Floquet multiplier (5.14).

As established in (4.26), due to the continuous symmetry (time invariance) Ĵp

is a rank d−1 matrix. We shall refer to the rank [(d−1−N)× (d−1−N)] submatrix
with N−1 continuous symmetries quotiented out as the monodromy matrix Mp

(from Greek mono- = alone, single, and dromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuous symmetries is discussed
in chapter 12 below.

5.6 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of x(t),
and that is why we care about the Floquet multipliers, and especially the unstable
(expanding) ones.

invariants - 25may2014 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 5. CYCLE STABILITY 115

Nearby points aligned along the stable (contracting) directions remain in the
neighborhood of the trajectory x(t) = f t(x0); the ones to keep an eye on are the
points which leave the neighborhood along the unstable directions: all chaos arises
from flights along these these directions. The sub-volume |Mx0 | =

∏e
i ∆xi of the

set of points which get no further away from f t(x0) than L, the typical size of the
system, is fixed by the condition that ∆xiΛi = O(L) in each expanding direction
i. Hence the neighborhood size scales as |Mx0 | ∝ O(Lde)/|Λp| ∝ 1/|Λp| where Λp

is the product of expanding Floquet multipliers (5.7) only; contracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, and figure 5.1 illustrate
intersection of initial volume with its return, and chapters 15 and 21 illustrate the
key role that the unstable directions play in systematically partitioning the state
space of a given dynamical system. The contracting directions are so secondary
that even infinitely many of them (for example, the infinity of contracting eigen-
directions of the spatiotemporal dynamics of Chapter 30) will not matter.

So the dynamically important information is carried by the expanding sub-
volume, not the total volume computed so easily in (4.29). That is also the reason
why the dissipative and the Hamiltonian chaotic flows are much more alike than
one would have naively expected for ‘compressible’ vs. ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding directions. Whether the
contracting eigenvalues are inverses of the expanding ones or not is of secondary
importance. As long as the number of unstable directions is finite, the same theory
applies both to the finite-dimensional ODEs and infinite-dimensional PDEs.

Résumé

Periodic orbits play a central role in any invariant characterization of the dynam-
ics, because (a) their existence and inter-relations are a topological, coordinate-
independent property of the dynamics, and (b) their Floquet multipliers are metric
invariants: The Floquet multipliers of a periodic orbit remain invariant under any
smooth nonlinear change of coordinates f → h ◦ f ◦ h−1 . Let us summarize the
linearized flow notation used throughout the ChaosBook.

Stability of invariant solutions: The linear stability of an equilibrium v(xq) = 0
is described by the eigenvalues and eigenvectors {λ( j), e( j)} of the stability matrix
A evaluated at the equilibrium point, and the linear stability of a periodic orbit
f T (x) = x, x ∈ Mp,

Jp(x) e( j)(x) = Λ j e( j)(x) , Λ j = σ( j)eλ
( j)T ,

by its Floquet multipliers, vectors and exponents {Λ j, e( j)}, where λ( j) = µ( j)±iω( j).
For every continuous symmetry there is a marginal eigen-direction, with Λ j = 1,
λ( j) = 0. With all 1 + N continuous symmetries quotiented out (Poincaré sections
for time, slices for continuous symmetries of dynamics, see chapter 13) linear
stability of a periodic orbit (and, more generally, of a partially hyperbolic torus)
is described by the [(d-1-N)×(d-1-N)] monodromy matrix, all of whose Floquet
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multipliers |Λ j| , 1 are generically strictly hyperbolic,

Mp(x) e( j)(x) = Λ j e( j)(x) , x ∈ Mp/G .

We shall show in chapter 14 that extending the linearized stability hyperbolic
eigen-directions into stable and unstable manifolds yields important global infor-
mation about the topological organization of state space. What matters most are
the expanding directions. The physically important information is carried by the
unstable manifold, and the expanding sub-volume characterized by the product of
expanding Floquet multipliers of Jp. As long as the number of unstable direc-
tions is finite, the theory developed here can be applied to flows of arbitrarily high
dimension.

in depth:

appendix A4, p. 884

fast track:

chapter 11, p. 180

Commentary

Remark 5.1. Periodic orbits vs. ‘cycles’. Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematics) are used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ is easier on the ear than ‘pseudo-
periodic-orbit’. In Soviet times obscure abbreviations were a rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). How Kadanoff and Tang [7]
felt about the matter they let on by referring to these as ‘repulsive cycles’. We refer to
unstable periodic orbits simply as ‘periodic orbits’, and the stable ones ‘limit cycles’.
Strogatz [10] refers to periodic orbits as ‘closed orbits’ if they are isolated, in order to
distinguish limit cycles and unstable orbits from the continuous family of the harmonic
oscillator periodic orbits. Lost in the mists of time is the excitement experienced by the
first physicist to discover that there are periodic orbits other than the limit cycles reached
by mindless computation forward in time; but once one understands that there are at
most several stable limit cycles (SPOs?) as opposed to the Smale horseshoe infinities
of unstable cycles (UPOs?), what is gained by prefix ’U’? A bit like calling all bicycles
‘unstable bicycles’.

Remark 5.2. Periodic orbits and Floquet theory. Study of time-dependent and T-
periodic vector fields is a classical subject in the theory of differential equations [6]. The
fundamental G. Floquet theorem [2] is from 1883, but stability of periodic orbits was al-
ready well understood by G. W. Hill [5] in 1877: G. W. Hill’s work on lunar motions is
discussed by M. C. Gutzwiller [3] whose night job for many years were precise calcula-
tions of lunar dynamics. In physics literature Floquet exponents often assume different
names according to the context where the theory is applied: they are called Bloch phases
in the discussion of Schrödinger equation with a periodic potential [1], or quasi-momenta
in the quantum theory of time-periodic Hamiltonians. For clear discussions of stabilities
of periodic orbits see Hale [4] and Robinson [9]. Here a discussion of Floquet theory is
given in appendix A4.2.1. For further reading on periodic orbits, consult Moehlis and K.
Josić [8] Scholarpedia.org article.
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Question 5.1. Henriette Roux
Q In my 61,506-dimensional computation of a Navier-Stokes equilibrium I generated
about 30 eigenvectors before I wanted to move on. How many of these eigenvectors are
worth generating for a particular solution and why?

chapter 30
A A rule of the thumb is that you need all equilibrium eigenvalues / periodic orbit
Floquet exponents with positive real parts, and at least those negative exponents whose
magnitude is less or comparable to the largest expanding eigenvalue. More precisely;
keep adding the next least contracting eigenvalue to the sum of the preceding ones as long
as the sum is positive (Kaplan-Yorke criterion). Then, just to be conservative, double
the number of eigenvalues you keep. You do not need to worry about the remaining (60
thousand!) eigen-directions for which the negative eigenvalues are of larger magnitude,
as they always contract: nonlinear terms cannot mix them up in such a way that expansion
in some directions overwhelms the strongly contracting ones.
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5.7 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 5.1. Stability of cycles of 1-dimensional maps. The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.43) for stability of the npth
iterate of the map

Λp =
d

dx0
f np (x0) =

np−1∏
m=0

f ′(xm) , xm = f m(x0) . (5.23)

Λp is a property of the cycle, not the initial periodic point, as taking any periodic point in
the p cycle as the initial one yields the same Λp.

A critical point xc is a value of x for which the mapping f (x) has vanishing derivative,
f ′(xc) = 0. A periodic orbit of a 1-dimensional map is stable if∣∣∣Λp

∣∣∣ =
∣∣∣ f ′(xnp ) f ′(xnp−1) · · · f ′(x2) f ′(x1)

∣∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Λp of the nth iterate f n(x) evaluated on a
periodic point x (fixed point of the nth iterate) lies between −1 and 1. If

∣∣∣Λp

∣∣∣ > 1, p-cycle
is unstable.

Example 5.2. Stability of cycles for maps. No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by picking
any periodic point as a starting point, running once around a prime cycle, and multiplying
the individual periodic point Jacobian matrices according to (4.22). For example, the
Floquet matrix Mp for a prime cycle p of length np of the Hénon map (3.18) is given by
(4.44),

Mp(x0) =

1∏
k=np

[
−2axk b

1 0

]
, xk ∈ Mp ,

and the Floquet matrix Mp for a 2-dimensional billiard prime cycle p of length np

Mp = (−1)np

1∏
k=np

[
1 τk
0 1

] [
1 0
rk 1

]

follows from (9.10) of chapter 9 below. The decreasing order in the indices of the products
in above formulas is a reminder that the successive time steps correspond to multiplication
from the left, Mp(x1) = M(xnp ) · · ·M(x1). We shall compute Floquet multipliers of Hénon
map cycles once we learn how to find their periodic orbits, see exercise 16.11.

click to return: p. 110
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Exercises

5.1. A limit cycle with analytic Floquet exponent.
There are only two examples of nonlinear flows for
which the Floquet multipliers can be evaluated analyt-
ically. Both are cheats. One example is the 2-dimen-
sional flow

q̇ = p + q(1 − q2 − p2)
ṗ = −q + p(1 − q2 − p2) .

Determine all periodic solutions of this flow, and deter-
mine analytically their Floquet exponents. Hint: go to
polar coordinates (q, p) = (r cos θ, r sin θ).

G. Bard Ermentrout

5.2. The other example of a limit cycle with analytic Flo-
quet exponent. What is the other example of a
nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.

5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
by solving a third example (or more) of a nonlinear flow
for which the Floquet multipliers can be evaluated ana-
lytically.
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Chapter 6

Lyapunov exponents

[...] people should be taught linear algebra a lot earlier
than they are now, because it short-circuits a lot of really
stupid and painful and idiotic material.

— Stephen Boyd

Let us apply our newly acquired tools to the fundamental diagnostics in dy-
namics: Is a given system ‘chaotic’? And if so, how chaotic? If all points

example 2.3
in a neighborhood of a trajectory converge toward the same orbit, the attrac-

tor is a fixed point or a limit cycle. However, if the attractor is strange, any two
section 1.3.1

trajectories x(t) = f t(x0) and x(t)+δx(t) = f t(x0 + δx0) that start out very close to
remark 6.1

each other separate exponentially with time, and in a finite time their separation
attains the size of the accessible state space.

This sensitivity to initial conditions can be quantified as

‖ δx(t) ‖ ≈ eλt ‖ δx0 ‖ (6.1)

where λ, the mean rate of separation of trajectories of the system, is called the
leading Lyapunov exponent. In the limit of infinite time the Lyapunov exponent
is a global measure of the rate at which nearby trajectories diverge, averaged over
the strange attractor. As it so often goes with easy ideas, it turns out that Lyapunov
exponents are not natural for study of dynamics, and we would have passed them
over in silence, were it not for so much literature that talks about them. So in a
textbook we are duty bound to explain what all the excitement is about. But then
we round the chapter off with a scholarly remark almost as long as the chapter
itself: we do not recommend that you evaluate Lyapunov exponents and Lyapunov
singular vectors. Compute the stability exponents / covariant vectors.

example 6.1

p. 129
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Figure 6.1: The linearized flow maps a swarm
of initial points in an infinitesimal spherical neigh-
borhood of squared radius δx2 at x0 into an ellip-
soid δx>(J>J) δx at x(t) a finite time t later, rotated
and stretched/compressed along the principal axes by
streches {σ j} .
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6.1 Stretch, strain and twirl

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

In general the Jacobian matrix J is neither diagonal, nor diagonalizable, nor con-
stant along the trajectory. What is a geometrical meaning of the mapping of a
neighborhood by J? Here the continuum mechanics insights are helpful, in par-
ticular the polar decomposition which affords a visualization of the linearization
of a flow as a mapping of the initial ball into an ellipsoid (figure 6.1).

First, a few definitions: A symmetric [d× d] matrix Q is positive definite,
Q > 0, if x>Qx > 0 for any nonzero vector x ∈ Rd. Q is negative definite,
Q < 0, if x>Qx < 0 for any nonzero vector x. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are positive (negative). A matrix
R is orthogonal if R>R = 1, and proper orthogonal if det R = +1. Here the
superscript > denotes the transpose. For example, (x1, · · · , xd) is a row vector,
(x1, · · · , xd)> is a column vector. The singular values of a matrix J are the square
roots of the eigenvalues {σ2

j} of JJ†, where † denotes Hermitian transpose.

By the polar decomposition theorem, a deformation J can be factored into a
rotation R and a right / left stretch tensor U / V ,

remark 6.2

J = RU = VR , (6.2)

where R is a proper-orthogonal matrix and U, V are symmetric positive definite
matrices with strictly positive real eigenvalues {σ1, σ2, · · · , σd} called principal
stretches (singular values, Hankel singular values), and with orthonormal eigen-
vector bases,

U u(i) = σiu(i) , {u(1), u(2), · · · , u(d)}

V v(i) = σiv(i) , {v(1), v(2), · · · , v(d)} . (6.3)

σi > 1 for stretching and 0 < σi < 1 for compression along the direction u(i)

or v(i). {u( j)} are the principal axes of strain at the initial point x0; {v( j)} are the
principal axes of strain at the present placement x. From a geometric point of
view, J maps the unit sphere into an ellipsoid, figure 6.1; the principal stretches
are then the lengths of the semiaxes of this ellipsoid. The rotation matrix R carries

Lyapunov - 29nov2019 ChaosBook.org edition16.4.8, May 25 2020
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CHAPTER 6. LYAPUNOV EXPONENTS 122

Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

δ  x

  xδ

  xδ

2

x(t )1

1

x(0)

0

x(t )2

the initial axes of strain into the present ones, V = RUR> . The eigenvalues of the

remark 6.1

right Cauchy-Green strain tensor: J>J = U2

left Cauchy-Green strain tensor: J J> = V2 (6.4)

are {σ2
j}, the squares of principal stretches.

example 6.2

p. 130

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

The mean growth rate of the distance ‖ δx(t) ‖ / ‖ δx0 ‖ between neighboring
trajectories (6.1) is given by the leading Lyapunov exponent which can be esti-
mated for long (but not too long) time t as

λ '
1
t

ln
‖ δx(t) ‖
‖ δx(0) ‖

(6.5)

For notational brevity we shall often suppress the dependence of quantities such
as λ = λ(x0, t), δx(t) = δx(x0, t) on the initial point x0. One can use (6.5) as is,
take a small initial separation δx0, track the distance between two nearby trajecto-
ries until ‖ δx(t1) ‖ gets significantly big, then record t1λ1 = ln(‖ δx(t1) ‖ / ‖ δx0 ‖),
rescale δx(t1) by factor δx0/δx(t1), and continue add infinitum, as in figure 6.2,
with the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑
i

tiλi , t =
∑

i

ti . (6.6)

Deciding what is a safe ’linear range’, the distance beyond which the separation
vector δx(t) should be rescaled, is a dark art.

We can start out with a small δx and try to estimate the leading Lyapunov ex-
ponent λ from (6.6), but now that we have quantified the notion of linear stability
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in chapter 4, we can do better. The problem with measuring the growth rate of the
distance between two points is that as the points separate, the measurement is less
and less a local measurement. In the study of experimental time series this might
be the only option, but if we have equations of motion, a better way is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimal δx we know the δxi(t)/δx j(0)
ratio exactly, as this is by definition the Jacobian matrix

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j(x0) ,

so the leading Lyapunov exponent can be computed from the linearization (4.16)

λ(x0) = lim
t→∞

1
t

ln

wwwww Jt(x0) δx0
wwwww

‖ δx0 ‖
= lim

t→∞

1
2t

ln
(
n̂>Jt>Jtn̂

)
. (6.7)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector n̂ = δx0/ ‖ δx0 ‖matters. If one does not
care about the orientation of the separation vector between a trajectory and its per-
turbation, but only its magnitude, one can interpret

wwwww Jtδx0
wwwww2

= δx0
>(Jt>Jt) δx0 ,

as the error correlation matrix. In the continuum mechanics language, the right
Cauchy-Green strain tensor J>J (6.4) is the natural object to describe how lin-
earized neighborhoods deform. In the theory of dynamical systems the stretches
of continuum mechanics are called the finite-time Lyapunov or characteristic ex-
ponents,

λ(x0, n̂; t) =
1
t

ln
wwwww Jtn̂

wwwww =
1
2t

ln
(
n̂>Jt>Jtn̂

)
. (6.8)

They depend on the initial point x0 and on the direction of the unit vector n̂,
‖ n̂ ‖ = 1 at the initial time. If this vector is aligned along the ith principal stretch,
n̂ = u(i) , then the corresponding finite-time Lyapunov exponent (rate of stretching)
is given by

λ j(x0; t) = λ(x0, u( j); t) =
1
t

lnσ j(x0; t). (6.9)

We do not need to compute the strain tensor eigenbasis to determine the leading
Lyapunov exponent,

λ(x0, n̂) = lim
t→∞

1
t

ln
wwwww Jtn̂

wwwww = lim
t→∞

1
2t

ln
(
n̂>Jt>Jtn̂

)
, (6.10)

as expanding the initial orientation in the strain tensor eigenbasis (6.3), n̂ =
∑

(n̂ ·
u(i))u(i) , we have

n̂>Jt>Jtn̂ =

d∑
i=1

(n̂ · u(i))2σ2
i = (n̂ · u(1))2σ2

1

(
1 + O(σ2

2/σ
2
1)
)
,

with stretches ordered by decreasing magnitude, σ1 > σ2 ≥ σ3 · · · . For long
times the largest stretch dominates exponentially in (6.10), provided the orien-
tation n̂ of the initial separation was not chosen perpendicular to the dominant
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Figure 6.3: A numerical computation of the loga-
rithm of the stretch n̂>(Jt>Jt) n̂ in formula (6.10) for the
Rössler flow (2.28), plotted as a function of the Rössler
time units. The slope is the leading Lyapunov exponent
λ ≈ 0.09. The exponent is positive, so numerics lends
credence to the hypothesis that the Rössler attractor is
chaotic. The big unexplained jump illustrates perils of
Lyapunov exponents numerics. (J. Mathiesen)
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expanding eigen-direction u(1). Furthermore, for long times Jtn̂ is dominated by
the largest stability multiplier Λ1, so the leading Lyapunov exponent is

λ(x0) = lim
t→∞

1
t

{
ln

wwwwww n̂ · e(1)
wwwwww + ln |Λ1(x0, t)| + O(e−2(λ1−λ2)t)

}
= lim

t→∞

1
t

ln |Λ1(x0, t)| , (6.11)

where Λ1(x0, t) is the leading eigenvalue of Jt(x0). The leading Lyapunov expo-
nent now follows from the Jacobian matrix by numerical integration of (4.10). The
equations can be integrated accurately for a finite time, hence the infinite time limit
of (6.7) can be only estimated from a finite set of evaluations of 1

2 ln(n̂>Jt>Jtn̂) as
function of time, such as figure 6.3 for the Rössler flow (2.28).

As the local expansion and contraction rates vary along the flow, the tempo-
ral dependence exhibits small and large humps. The sudden fall to a low value
in figure 6.3 is caused by a close passage to a folding point of the attractor, an
illustration of why numerical evaluation of the Lyapunov exponents, and proving
the very existence of a strange attractor is a difficult problem. The approximately
monotone part of the curve you can use (at your own peril) to estimate the leading
Lyapunov exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.11) directly. First of all, the state
space is dense with atypical trajectories; for example, if x0 happens to lie on a
periodic orbit p, λ would be simply ln |σp,1|/Tp, a local property of cycle p, not
a global property of the dynamical system. Furthermore, even if x0 happens to
be a ‘generic’ state space point, it is still not obvious that ln |σp,1(x0, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets captured in the neigh-
borhood of an elliptic island every so often and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln |σp,1(x0, t)|/t can
dip arbitrarily close to 0+. For state space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, and ln |σp,1(x0, t)|/t can occasionally
go negative; even worse, one never knows whether the asymptotic attractor is pe-
riodic or ‘chaotic’, so any finite time estimate of λ might be dead wrong.

exercise 6.3
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Résumé

Let us summarize the ‘stability’ chapters 4 to 6. A neighborhood of a trajectory
deforms as it is transported by a flow. In the linear approximation, the stabil-
ity matrix A describes the shearing / compression / expansion of an infinitesimal
neighborhood in an infinitesimal time step. The deformation after a finite time t
is described by the Jacobian matrix Jt, whose eigenvalues (stability multipliers)
depend on the choice of coordinates.

Floquet multipliers and eigen-vectors are intrinsic, invariant properties of finite-
time, compact invariant solutions, such as periodic orbits and relative periodic or-
bits; they are explained in chapter 5. Stability exponents [7] are the corresponding
long-time limits estimated from typical ergodic trajectories.

Finite-time Lyapunov exponents and the associated principal axes are defined
in (6.8). Oseledec Lyapunov exponents are the t → ∞ limit of these.

Commentary

Remark 6.1. Lyapunov exponents are uncool, and ChaosBook does not use them
at all. Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix, such
as Jacobian matrix Jt or exponential exp(tA), and are thus a natural tool for study of
dynamics. Principal vectors are not, they are suited to study of the matrix Jt itself. The
polar (singular value) decomposition is convenient for numerical work (any matrix, square
or rectangular, can be brought to such form), as a way of estimating the effective rank of
matrix J by separating the large, significant singular values from the small, negligible
singular values.

Lorenz [13, 14, 30] pioneered the use of singular vectors in chaotic dynamics. We
found the Goldhirsch, Sulem and Orszag [7] exposition very clear, and we also enjoyed
Hoover and Hoover [10] pedagogical introduction to computation of Lyapunov spectra
by the method of Lagrange multipliers. Greene and Kim [8] discuss singular values vs.
Jacobian matrix eigenvalues. While they conclude that “singular values, rather than eigen-
values, are the appropriate quantities to consider when studying chaotic systems,” we beg
to differ: their Fig. 3, which illustrates various semiaxes of the ellipsoid in the case of
Lorenz attractor, as well as the figures in ref. [26], are a persuasive argument for not using
singular values. The covariant vectors are tangent to the attractor, while the principal axes
of strain point away from it. It is the perturbations within the attractor that describe the
long-time dynamics; these perturbations lie within the subspace spanned by the leading
covariant vectors.

That is the first problem with Lyapunov exponents: stretches {σ j} are not related to
the Jacobian matrix Jt eigenvalues {Λ j} in any simple way. The eigenvectors {u( j)} of
strain tensor J>J that determine the orientation of the principal axes, are distinct from
the Jacobian matrix eigenvectors {e( j)}. The strain tensor J>J satisfies no multiplicative
semigroup property such as (4.20); unlike the Jacobian matrix (5.3), the strain tensor
J>rJr for the rth repeat of a prime cycle p is not given by a power of J>J for the single
traversal of the prime cycle p. Under time evolution the covariant vectors map forward
as e( j) → J e( j) (transport of the velocity vector (4.9) is an example). In contrast, the
principal axes have to be recomputed from the scratch for each time t.
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If Lyapunov exponents are not dynamical, why are they invoked so frequently? One
reason is fear of mathematics: the monumental and therefore rarely read Oseledec [18,
21] Multiplicative Ergodic Theorem states that the limits (6.7–6.11) exist for almost all
points x0 and vectors n̂, and that there are at most d distinct Lyapunov exponents λi(x0)
as n̂ ranges over the tangent space. To intimidate the reader further we note in passing
that “moreover there is a fibration of the tangent space TxM, L1(x) ⊂ L2(x) ⊂ · · · ⊂
Lr(x) = TxM, such that if n̂ ∈ Li(x) \ Li−1(x) the limit (6.7) equals λi(x).” Oseledec proof
is important mathematics, but the method is not helpful in elucidating dynamics.

The other reason to study singular vectors is physical and practical: Lorenz [13, 14,
30] was interested in the propagation of errors, i.e., how does a cloud of initial points
x(0) + δx(0), distributed as a Gaussian with covariance matrix Q(0) = 〈δx(0) δx(0)>〉,
evolve in time? For linearized flow with initial isotropic distribution Q(0) = ε1 the answer
is given by the left Cauchy-Green strain tensor,

Q(t) = 〈δx(0) J J>δx(0)>〉 = J Q(t) J> = ε J J> . (6.12)

The deep problem with Lyapunov exponents is that the intuitive definition (6.5) de-
pends on the notion of distance ‖ δx(t) ‖ between two state space points. The Euclidean (or
L2) distance is natural in the theory of 3D continuous media, but what the norm should be
for other state spaces is far from clear, especially in high dimensions and for PDEs. As we
have shown in sect. 5.3, Floquet multipliers are invariant under all local smooth nonlinear
coordinate transformations, they are intrinsic to the flow, and the Floquet eigenvectors are
independent of the definition of the norm [26]. In contrast, the stretches {σ j}, and the
right/left principal axes depend on the choice of the norm. Appending them to dynamics
destroys its invariance.

There is probably no name more liberally and more confusingly used in dynamical
systems literature than that of Lyapunov (AKA Liapunov). Singular values / principal
axes of strain tensor J>J (objects natural to the theory of deformations) and their long-
time limits can indeed be traced back to the thesis of Lyapunov [15, 18] (English trans-
lation [16]), and justly deserve sobriquet ‘Lyapunov’. Oseledec [18] refers to them as
‘Liapunov characteristic numbers’, and Eckmann and Ruelle [4] as ‘characteristic expo-
nents’. The natural objects in dynamics are the linearized flow Jacobian matrix Jt, and its
eigenvalues and eigenvectors (stability or characteristic multipliers and covariant vectors).
Why should they also be called ‘Lyapunov’? The Jacobian matrix eigenvectors {e( j)} (the
covariant vectors) are often called ‘covariant Lyapunov vectors’, ‘Lyapunov vectors’, or
‘stationary Lyapunov basis’ [5] even though they are not the eigenvectors that correspond
to the Lyapunov exponents. That’s just confusing, for no good reason - the Lyapunov
paper [15] is not about the linear stability Jacobian matrix J, it is about J>J and the as-
sociated principal axes. However, Trevisan [26] refers to covariant vectors as ‘Lyapunov
vectors’, and Radons [29] calls them ‘Lyapunov modes’, motivated by thinking of these
eigenvectors as a generalization of ‘normal modes’ of mechanical systems, whereas by
ith ‘Lyapunov mode’ Takeuchi and Chaté [24] mean {λ j, e( j)}, the set of the ith stability
exponent and the associated covariant vector. Kunihiro et al. [12] call the eigenvalues of
stability matrix (4.3), evaluated at a given instant in time, the ‘local Lyapunov exponents’,
and they refer to the set of stability exponents (4.8) for a finite time Jacobian matrix as
the ‘intermediate Lyapunov exponent’, “averaged” over a finite time period. Then there
is the unrelated, but correctly attributed ‘Lyapunov equation’ of control theory, which is
the linearization of the ‘Lyapunov function’, and there is the ‘Lyapunov orbit’ of celestial
mechanics, entirely unrelated to any of objects discussed above.

In short: we do not recommend that you evaluate Lyapunov exponents; compute sta-
bility exponents and the associated covariant vectors instead. Cost less and gets you more
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insight. Whatever you call your exponents, please state clearly how are they being com-
puted. While the Lyapunov exponents are a diagnostic for chaos, we are doubtful of their
utility as means of predicting any observables of physical significance. This is a minority
position - in the literature one encounters many provocative speculations, especially in the
context of foundations of statistical mechanics (‘hydrodynamic’ modes) and the existence
of a Lyapunov spectrum in the thermodynamic limit of spatiotemporal chaotic systems.

Remark 6.2. Matrix decompositions of the Jacobian matrix. The ‘Cartesian decom-
position’ separates stability matrix A into a symmetric stretching matrix and an antisym-
metric spin matrix,

D = (A + A>)/2 , Ω = (A − A>)/2 . (6.13)

The stretching matrix describes the infinitesimal volume and shape changes, while the
spin matrix describes the infinitesimal rigid body rotations. The decomposition into these
two non-commuting matrices suggests that one could compute the stretching rates (Lya-
punov exponents) of the Jacobian matrix, and the total rotation of the orbit neighborhood
by integrating the stability matrix A in the rotating frame (we have not seen this approach
implemented in the Lyapunov exponents literature). A ‘polar decomposition’ of a matrix
or linear operator is a generalization of the factorization of complex number into the polar
form, z = r exp(φ). Matrix polar decomposition is explained in refs. [9, 11, 19, 27]. One
can go one step further than the polar decomposition (6.2) into a product of a rotation and
a symmetric matrix by diagonalizing the symmetric matrix by a second rotation, and thus
express any matrix with real elements in the singular value decomposition (SVD) form

J = R1DR2
> , (6.14)

where D is diagonal and real, and R1, R2 are orthogonal matrices, unique up to permuta-
tions of rows and columns. The diagonal elements {σ1, σ2, . . . , σd} of D are the singular
values of J.

Though singular values decomposition provides geometrical insights into how tan-
gent dynamics acts, many popular algorithms for asymptotic stability analysis (computing
Lyapunov spectrum) employ another standard matrix decomposition, the QR scheme [17],
through which a nonsingular matrix J is (uniquely) written as a product of an orthogonal
and an upper triangular matrix J = QR. This can be thought as a Gram-Schmidt decom-
position of the column vectors of J. The geometric meaning of QR decomposition is that
the volume of the d-dimensional parallelepiped spanned by the column vectors of J has a
volume coinciding with the product of the diagonal elements of the triangular matrix R,
whose role is thus pivotal in algorithms computing Lyapunov spectra [23].

Remark 6.3. Numerical evaluation of Lyapunov exponents. There are volumes of lit-
erature on numerical computation of the Lyapunov exponents, see for example refs. [3, 4,
25, 28]. For early numerical methods to compute Lyapunov vectors, see refs. [1, 22]. The
drawback of the Gram-Schmidt method is that the vectors so constructed are orthogonal
by fiat, whereas the stable / unstable eigenvectors of the Jacobian matrix are in general
not orthogonal. Hence the Gram-Schmidt vectors are not covariant, i.e., the linearized
dynamics does not transport them into the eigenvectors of the Jacobian matrix computed
further downstream. For computation of covariant vectors, see refs. [6, 20].
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6.3 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 6.1. Lyapunov exponent. Given a 1-dimensional map, consider observable
λ(x) = ln | f

′

(x)| and integrated observable

A(x0, t) =

n−1∑
k=0

ln | f
′

(xk)| = ln

∣∣∣∣∣∣∣
n−1∏
k=0

f
′

(xk)

∣∣∣∣∣∣∣ = ln
∣∣∣∣∣∂ f n

∂x
(x0)

∣∣∣∣∣ .
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The Lyapunov exponent is the average rate of the expansion

λ(x0) = lim
n→∞

1
n

n−1∑
k=0

ln | f
′

(xk)| .

click to return: p. 120

Example 6.2. Singular values and geometry of deformations. Suppose we are
in three dimensions, and the Jacobian matrix J is not singular (yet another confusing
usage of word ‘singular’), so that the diagonal elements of D in (6.14) satisfy σ1 ≥ σ2 ≥

σ3 > 0. Consider how J maps the unit ball S = {x ∈ R3 | x2 = 1}. V is orthogonal
(rotation/reflection), so V>S is still the unit sphere: then D maps S onto ellipsoid S̃ =

{y ∈ R3 | y2
1/σ

2
1 + y2

2/σ
2
2 + y2

3/σ
2
3 = 1} whose principal axes directions - y coordinates -

are determined by V . Finally the ellipsoid is further rotated by the orthogonal matrix U.
The local directions of stretching and their images under J are called the right-hand and
left-hand singular vectors for J and are given by the columns in V and U respectively: it
is easy to check that Jvk = σkuk, if vk, uk are the k-th columns of V and U.

click to return: p. 122
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Exercises

6.1. Principal stretches. Consider dx = f (x0 + dx0) −
f (x0), and show that dx = Mdx0+ higher order terms
when ‖dx0‖ � 1. (Hint: use Taylor expansion for
a vector function.) Here, ‖dx0‖ ≡

√
dx0 · dx0 is the

norm induced by the usual Euclidean dot (inner) prod-
uct. Then let dx0 = (d`)ei and show that ‖dx0‖ = d` and
‖dx‖ = σid`. (Christov et al. [2])

6.2. Eigenvalues of the Cauchy-Green strain tensor.
Show that κi = σ2

i using the definition of C, the polar
decomposition theorem, and the properties of eigenval-
ues. (Christov et al. [2])

6.3. How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent λ by
iterating some 100,000 times or so the Hénon map[

x′
y′

]
=

[
1 − ax2 + y
bx

]
for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219, b = 0.3. How much do you now
trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor

vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?

6.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponent λe of the Rössler attractor (2.28).

(b) Plot your own version of figure 6.3. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.3.)

(c) Give your best estimate of λe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponent λc.
Even though it is much smaller than λe, a glance
at the stability matrix (4.31) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.29).
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Chapter 7

Fixed points

So far we have learned that periodic orbits offer invariant characterization of
dynamics in two ways: (a) their existence and inter-relations are a topologi-
cal, coordinate-independent property of the dynamics, and (b) their Floquet

multipliers form an infinite set of metric invariants. Typically they are unstable
and hard to find. But do we really need them? By chapter 21 you will understand
that the answer is a resounding yes.

Sadly, searching for periodic orbits will never become as popular as a week
on Côte d’Azur, or publishing yet another log-log plot in Phys. Rev. Letters. This
chapter is one of four hands-on chapters on extraction of periodic orbits, and can
be skipped on first reading - you can return to it whenever the need for finding
actual cycles arises.

fast track:

chapter 8, p. 141

A serious cyclist will ask “Where are the cycles? And what if they are long?”
and read chapter 16. She will want to also learn about the variational methods

chapter 16
which will enable her to find arbitrarily long, arbitrarily unstable cycles, and read
chapter 34. So here is the key and unavoidable numerical task we must face up

chapter 34
to: find “all(?)" solutions (x,T), x ∈ Rd, T ∈ R+ satisfying the periodic orbit
condition

f T (x) = x , T > 0 , (flow)

f n(x) = x , n ≥ 1 , (map) (7.1)

for a given flow or map.

A prime cycle p of period Tp is a single traversal of the periodic orbit, so our
task will be to find a periodic point x ∈ Mp and the shortest time Tp for which

132



CHAPTER 7. FIXED POINTS 133

Figure 7.1: (a) The inverse time transient to the
01-cycle of the logistic map f (x) = 4x(1− x) from
an initial guess x = 0.2. (b) The same dynam-
ics, but now plotted as the forward iteration of the
doubly-valued inverse map f −1(x). At each itera-
tion we chose the 0 (respectively 1) branch. For
f (x), the 01-cycle is an unstable cycle; for f −1(x)
it is a stable, attracting cycle.

(a) 0
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0.6
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1
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(7.1) has a solution. A periodic point of a flow f t crossing a Poincaré section
n times is a fixed point of Pn , the nth iterate of P, the return map (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapter. By cyclic invariance,

section 5.3
Floquet multipliers and the period of the cycle are independent of the choice of
the initial point, so it will suffice to solve (7.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basin of attraction, it
can be found by integrating the flow for a sufficiently long time. If the cycle is
unstable, simple integration forward in time will not reveal it, and the methods
to be described here need to be deployed. In essence, any method for finding
a cycle is based on devising a new dynamical system which possesses the same
cycle, but for which this cycle is attractive. Beyond that, there is a great freedom
in constructing such systems, and many different methods are used in practice.

7.1 One-dimensional maps

(F. Christiansen)

So far we have given some qualitative hints for how to set out on a periodic
orbit hunt. In what follows, we teach you how to nail down periodic orbits numer-
ically.

7.1.1 Inverse iteration

Let us first consider a very simple method to find the unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1-dimensional maps
are attracting cycles of the inverse map. The inverse map is not single-valued, so
at each backward iteration we have a choice of branch to make. By choosing the
branch according to the symbolic dynamics of the cycle we are trying to find, we
will automatically converge to the desired cycle. Figure 7.1 shows such a path to
the 01-cycle of the logistic map. The rate of convergence is given by the stability
of the cycle, i.e., the convergence is exponentially fast, see figure 7.2.

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-dimensional systems such as the repeller of exercise 16.11. It is not par-
ticularly fast, however, especially if the inverse map is not known analytically. It
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Figure 7.2: Convergence of Newton method (♦) vs.
inverse iteration (+). The error after n iterations
searching for the 01-cycle of the logistic map f (x) =

4x(1− x) with an initial starting guess of x1 = 0.2, x2 =

0.8. The y-axis is log10 of the error. The difference
between the exponential convergence of the inverse it-
eration method and the super-exponential convergence
of Newton method is dramatic.
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also completely fails for higher dimensional systems when one encounters both
stable and unstable directions. Inverse iteration will exchange them, but we will
still be left with both stable and unstable directions. The best strategy is to directly
attack the problem of finding solutions of the periodic orbit condition f T (x) = x.

7.1.2 Newton method

John Keats has written, “Beauty is truth, truth beauty ...."
He has also written “A thing of beauty is a joy forever." I
wish to add, beauty is simple and it is profound. I hope that
my few words will convince you that Newton’s Method is
a concept of great beauty.

—Stephen Smale, The Concinnitas Project

Newton method for determining a zero x∗ of a function F(x) of one variable is
based on a linearization around a starting guess x0:

F(x) ≈ F(x(0)) + F′(x(0))(x − x(0)). (7.2)

An approximate solution x(1) of F(x) = 0 is

x(1) = x(0) − F(x(0))/F′(x(0)). (7.3)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a map f is a solution to F(x) = x − f (x) = 0. We
determine x by iterating

x(m) = g(x(m−1)) = x(m−1) − F(x(m−1))/F′(x(m−1))

= x(m−1) −
1

1 − f ′(x(m−1))
(x(m−1) − f (x(m−1))) . (7.4)

Provided that the fixed point is not marginally stable, f ′(x) , 1 at the fixed point
x, a fixed point of f is a super-stable fixed point of the Newton-Raphson map g,
g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the efficiency of Newton method we compare it to the inverse
iteration method in figure 7.2. Newton method wins hands down: the number
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Figure 7.3: Newton method for finding zeros of func-
tions, f (xzero) = 0, an idealized sketch.

xzero

xzerof( )=0
x i

x i+1

x i+1f( )

x if( )

x i−1

x i−1f( )

Figure 7.4: Newton method of figure 7.3 in real life:
bad initial guess x(b) leads to the Newton estimate x(b+1)

far away from the desired zero of F(x). Sequence
· · · , x(m), x(m+1), · · · , starting with a good guess con-
verges super-exponentially to x∗. The method diverges
if it iterates into the basin of attraction of a local mini-
mum xc. x(b)

x

F(x)

x

(m)F(x    )

(m+1)

x(m)

x
x xxc *

R

L(b+1)x

of significant digits of the accuracy of the x estimate typically doubles with each
iteration.

In order to avoid jumping too far from the desired x∗ (see figure 7.4), one often
initiates the search by the damped Newton method,

∆x(m) = x(m+1) − x(m) = −
F(x(m))
F′(x(m))

∆τ , 0 < ∆τ ≤ 1 ,

takes small ∆τ steps at the beginning, reinstating to the full ∆τ = 1 jumps only
when sufficiently close to the desired x∗.

example 7.1

p. 138

7.2 Flows

(R. Paškauskas and P. Cvitanović)

For a continuous time flow the periodic orbit the Floquet multiplier (5.14) along
the flow direction always equals unity; the separation of any two points along
a cycle remains unchanged after a completion of the cycle. More unit Floquet

section 5.3.1
multipliers arise if the flow satisfies conservation laws, such as the symplectic in-
variance for Hamiltonian flows, or the dynamics is equivariant under a continuous
symmetry transformation.

section 12.3

Let us apply the Newton method of (7.3) to search for periodic orbits with
unit Floquet multipliers, starting with the case of a continuous time flow. Assume
that the periodic orbit condition (7.1) holds for x + ∆x and T + ∆t, with the initial
guesses x and T close to the desired solution, i.e., with |∆x|, ∆t small. The Newton
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setup (7.3)

0 = x + ∆x − f T+∆t(x + ∆x)

≈ x − f T (x) + (1 − J(x)) · ∆x − v( f T (x))∆t (7.5)

suffers from two shortcomings. First, we now need to solve not only for the pe-
riodic point x, but for the period T as well. Second, the marginal, unit Floquet
multiplier (5.14) along the flow direction (arising from the time-translation invari-
ance of a periodic orbit) renders the factor (1 − J) in (7.4) non-invertible: if x is
close to the solution, f T (x) ≈ x, then J(x) ·v(x) = v( f T (x)) ≈ v(x). If ∆x is parallel
to the velocity vector, the derivative term (1 − J) · ∆x ≈ 0, and it becomes harder
to invert (1 − J) as the iterations approach the solution.

As a periodic orbit p is a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by picking ∆x such that the new point lies on the
orbit of the initial one, so we need to constrain the variation ∆x to directions
transverse to the flow, by requiring, for example, that

v(x) · ∆x = 0 . (7.6)

Combining this constraint with the variational condition (7.5) we obtain a Newton
setup for flows, best displayed in the matrix form:[

1 − J(x) −v(x)
v(x) 0

] (
∆x
∆t

)
= −

(
x − f (x)

0

)
(7.7)

This illustrates the general strategy for determining periodic orbits in presence of
continuous symmetries - for each symmetry, pick a point on the orbit by imposing
a constraint, and compute the value of the corresponding continuous parameter
(here the period T) by iterating the enlarged set of Newton equations. Constraining
the variations to transverse ones thus fixes both of Newton’s shortcomings: it
breaks the time-translation invariance, and the period T can be read off once the
fixed point has been found (hence we omit the superscript in f T for the remainder
of this discussion).

More generally, the Poincaré section technique of sect. 3.1 turns the periodic
orbit search into a fixed point search on a suitably defined surface of section, with
a neighboring point variation ∆x with respect to a reference point x constrained to
stay on the surface manifold (3.2),

U(x + ∆x) = U(x) = 0 . (7.8)

The price to pay are constraints imposed by the section: in order to stay on the
surface, arbitrary variation ∆x is not allowed.

example 7.2

p. 139
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Résumé

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given period Tmax) to the periodic orbit condition

f t+T (x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby trajec-
tories in chaotic dynamical systems, direct solution of the periodic orbit condition
can be numerically very unstable. With a sufficiently good initial guess for a point
x on the cycle, however, the Newton-Raphson formula(

1 − J −v(x)
a 0

) (
δx
δT

)
=

(
f (x) − x

0

)
yields improved estimate x′ = x + δx,T ′ = T + δT . Newton-Raphson iteration
then yields the period T and the location of a periodic point xp in the Poincaré
section (xp − x0) · a = 0, where a is a vector normal to the Poincaré section at x0.

Commentary

Remark 7.1. Piecewise linear maps. The Lozi map (3.20) is linear, and hundred of
thousands of cycles can easily be computed by [2×2] matrix multiplication and inversion.

Remark 7.2. Newton gone wild. Skowronek and Gora [2] offer an interesting discus-
sion of Newton iterations gone wild while searching for roots of polynomials as simple as
x2 + 1 = 0.
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Figure 7.5: (a) y → P1(y, z) return map for
x = 0, y > 0 Poincaré section of the Rössler
flow figure 2.6. (b) The 1-cycle found by taking
the fixed point yk+n = yk together with the fixed
point of the z → z return map (not shown) an
initial guess (0, y(0), z(0)) for the Newton-Raphson
search. (c) yk+3 = P3

1(yk, zk), the third iterate of
return map (3.1) together with the corresponding
plot for zk+3 = P3

2(yk, zk), is used to pick starting
guesses for the Newton-Raphson searches for the
two 3-cycles: (d) the 001 cycle, and (e) the 011
cycle. (A. Basu)
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7.3 Examples

Example 7.1. Rössler attractor. We run a long simulation of the Rössler flow
f t, plot a Poincaré section, as in figure 3.3, and extract the corresponding return map P,
as in figure 3.4. Luck is with us, since figure 7.5 (a) return map y → P1(y, z) is quite
reminiscent of a parabola, we take the unimodal map symbolic dynamics, sect. 14.3, as
our guess for the covering dynamics. Strictly speaking, the attractor is “fractal,” but for
all practical purposes the return map is 1-dimensional; your printer will need a resolution
better than 1014 dots per inch to even begin resolving its structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré
section of the Rössler flow figure 2.6 are fixed points (y, z) = Pn (y, z) of the nth return
map.

Using the fixed point yk+1 = yk in figure 7.5 (a) together with the simultaneous fixed
point of the z → P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0)) for the
Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the cycle
figure 7.5 (b) with the Poincaré section point (0, yp, zp), period Tp, expanding, marginal,
contracting Floquet multipliers (Λp,e,Λp,m,Λp,c), and the corresponding Lyapunov expo-
nents (λp,e, λp,m, λp,c):

exercise 7.1

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)
T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1 + 10−14,−1.29 × 10−14)
(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (7.9)

The Newton-Raphson method that we used is described in sect. 7.2.

As an example of a search for longer cycles, we use yk+3 = P3
1(yk, zk), the third iterate

of the return map (3.1) plotted in figure 7.5 (c), together with a corresponding plot for
zk+3 = P3

2(yk, zk), to pick starting guesses for the Newton-Raphson searches for the two
3-cycles plotted in figure 7.5 (d), (e). For a listing of the short cycles of the Rössler flow,
consult exercise 7.1.

The numerical evidence suggests (though a proof is lacking) that all cycles that com-
prise the strange attractor of the Rössler flow are hyperbolic, each with an expanding
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eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal eigenvalue |Λm| = 1
corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely contracting, a
factor of e−32 per one par-course of the attractor, so their numerical determination is quite
difficult. Fortunately, they are irrelevant; for all practical purposes the strange attractor of
the Rössler flow is 1-dimensional, a very good realization of a horseshoe template.

Much of this example is also worked out in Dong [1].

(G. Simon and P. Cvitanović)
click to return: p. 135

Example 7.2. A hyperplane Poincaré section. Let us for the sake of simplicity
assume that the Poincaré section is a (hyper)-plane, i.e., it is given by the linear condition
(3.5)

(x − x0) · n̂ = 0, (7.10)

where n̂ is a vector normal to the Poincaré section and x0 is any point in the Poincaré
section. The Newton setup is then (derived as (7.7))(

1 − J −v(x)
n̂ 0

) (
x′ − x

∆t

)
=

(
−F(x)

0

)
. (7.11)

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(x)∆t, a small vector along the direction of the flow, ensures that such an x
can be found, at least if x is sufficiently close to a fixed point of f . Alternatively, this can
be solved a least squares problem.

To illustrate that the addition of the extra constraint resolves the problem of (1 − J)
non-invertability, we consider the particularly simple example of a 3-d flow with the
(x, y, 0)-plane as the Poincaré section, a = (0, 0, 1). Let all trajectories cross the Poincaré
section perpendicularly, so that v = (0, 0, vz), which means that the marginally stable
direction is also perpendicular to the Poincaré section. Furthermore, let the unstable di-
rection be parallel to the x-axis and the stable direction be parallel to the y-axis. The
Newton setup is now

1 − Λu 0 0 0
0 1 − Λs 0 0
0 0 0 −vz
0 0 1 0



δx
δy
δz
δτ

 =


−Fx
−Fy
−Fz

0

 . (7.12)

If one considers only the upper-left [3 × 3] matrix (which we started out with, prior to
adding the constraint (7.10)) then this matrix is not invertible and the equation does not
have a unique solution. However, the full [4×4] matrix is invertible, as det (·) = −vzdet (1−
M⊥), where M⊥ is the [2×2] monodromy matrix for a surface of section transverse to the
orbit (see sect. 5.5). (F. Christiansen)

click to return: p. 136
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Exercises

7.1. Rössler flow cycles. (continuation of exer-
cise 4.4) Determine all cycles for the Rössler flow
(2.28), as well as their stabilities, up to 3 Poincaré sec-
tion returns. Hint: study the video, and use online
Python code for Homework 3 of the online course.
Table: The Rössler flow (2.28): The itinerary p, a peri-
odic point xp = (0, yp, zp) and the expanding eigenvalue
Λp for cycles up to topological length 3.
( J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
7.2. Inverse iteration method for a Hénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Hénon map (7.13) with a = 6. Listed are the cy-
cle itinerary, its expanding eigenvalue Λp, and its “cen-
ter of mass.” The “center of mass” is listed because it
turns out that it is often a simple rational or a quadratic
irrational.

p Λp
∑

xp,i
0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.18) for the area-preserving
(“Hamiltonian”) parameter value b = −1. The coordi-
nates of a periodic orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (7.13)

with the periodic boundary condition xp,0 = xp,np . Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (7.13) at a = 6 are as listed
above.
Hint: you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (7.13)

x′′p,i = S p,i

√
1 − x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

Here S p,i are the signs of the corresponding periodic
point coordinates, S p,i = xp,i/|xp,i|. (G. Vattay)

7.3. “Center of mass” puzzle. Why is the “cen-
ter of mass,” tabulated in exercise 7.2, often a rational
number?

7.4. Cycle stability, helium. Add to the helium integrator
of exercise 2.11 a routine that evaluates the expanding
eigenvalue for a given cycle.
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Chapter 8

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite different from those within
the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

You might think that the strangeness of contracting flows, flows such as the
Rössler flow of figure 2.6 is of concern only to chemists or biomedical
engineers or the weathermen; physicists do Hamiltonian dynamics, right?

Now, that’s full of chaos, too! The whole story started with Poincaré’s restricted
3-body problem, a realization that chaos rules also in general (non-Hamiltonian)
flows came much later. While it is easier to visualize aperiodic dynamics when
a flow is contracting onto a lower-dimensional attracting set, there are plenty of
examples of chaotic flows that do preserve the full symplectic invariance of Hamil-
tonian dynamics.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamilto-
nian flows. If your eventual destination are applications such as chaos in quan-
tum and/or semiconductor systems, read this chapter. The message: Euclidean
distance is meaningless for symplectic flows. Instead, the distance between two
states is measured by the difference of their phase-state actions. If you work in
neuroscience or fluid dynamics, skip this chapter, continue reading with the bil-
liard dynamics of chapter 9 which requires no incantations of symplectic pairs or
loxodromic quartets.

fast track:

chapter 9, p. 158
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8.1 Hamiltonian flows

“· · · to do this business right is a thing of far greater diffi-
culty than I was aware of.”

— Sir Isaac Newton, in a letter to Edmund Halley

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian
appendix A4

H(q, p) together with the Hamilton’s equations of motion
remark 2.1

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (8.1)

with the d = 2D phase-space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D degrees
of freedom:

x = (q,p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (8.2)

The equations of motion (8.1) for a time-independent, D-degrees of freedom
Hamiltonian can be written compactly as

ẋi = ωi jH, j(x) , H, j(x) =
∂

∂x j
H(x) , (8.3)

where x = (q,p) ∈ M is a phase-space point, and the a derivative of (·) with
respect to x j is denoted by comma-index notation (·), j,

ω =

[
0 I
−I 0

]
, (8.4)

is an antisymmetric [d×d] matrix, and I is the [D×D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the
state space point x = (q,p) is constant along the trajectory x(t),

d
dt

H(q(t),p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi
−
∂H
∂pi

∂H
∂qi

= 0 , (8.5)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamilto-
nian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.

example 8.1

p. 153

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is stratified by curves of constant energy, either periodic, as is the case for the
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Figure 8.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (8.25).

−2 −1 0 1 2

−1

0

1

q

p

Figure 8.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along the r1-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along the r2-
axis. In this example the energy is set to H = E = −1,
and the trajectory is bounded by the kinetic energy = 0
line.

harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one
example A2.1

more degree of freedom, and chaos breaks loose.

example 8.2

p. 153

Note an important property of Hamiltonian flows: if the Hamilton equations
(8.1) are rewritten in the 2D phase-space form ẋi = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible, ∇·v = ∂ivi = ωiH,i j =

0. The symplectic invariance requirements are actually more stringent than just
the phase-space volume conservation, as we shall see in sect. 8.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian
flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’
is a special but important case, a state space with symplectic structure, preserved
by the flow. For us the distinction is necessary, as ChaosBook covers dissipative,
mechanical, stochastic and quantum systems, all as one happy family.

8.2 Symplectic group

Either you’re used to this stuff... or you have to get used
to it.

—Maciej Zworski

A matrix transformation g is called symplectic,

g>ωg = ω , (8.6)
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if it preserves the symplectic bilinear form 〈x̂|x〉 = x̂>ωx, where g> denotes the
transpose of g, and ω is a non-singular [2D×2D] antisymmetric matrix which
satisfies

remark 8.3

ω> = −ω , ω2 = −1 . (8.7)

While these are defining requirements for any symplectic bilinear form, ω is often
conventionally taken to be of form (8.4).

example 8.3

p. 153

If g is symplectic, so is its inverse g−1, and if g1 and g2 are symplectic, so
is their product g2g1. Symplectic matrices form a Lie group called the symplec-
tic group Sp(d). Use of the symplectic group necessitates a few remarks about
Lie groups in general, a topic that we study in more depth in chapter 12. A Lie
group is a group whose elements g(φ) depend smoothly on a finite number N of
parameters φa. In calculations one has to write these matrices in a specific basis,
and for infinitesimal transformations they take form (repeated indices are summed
throughout this chapter, and the dot product refers to a sum over Lie algebra gen-
erators):

g(δφ) ' 1 + δφ · T , δφ ∈ RN , |δφ| � 1 , (8.8)

where {T1,T2 · · · ,TN}, the generators of infinitesimal transformations, are a set
of N linearly independent [d×d] matrices which act linearly on the d-dimensional
phase spaceM. The infinitesimal statement of symplectic invariance follows by
substituting (8.8) into (8.6) and keeping the terms linear in δφ,

Ta
>ω + ωTa = 0 . (8.9)

This is the defining property for infinitesimal generators of symplectic transfor-
mations. Matrices that satisfy (8.9) are sometimes called Hamiltonian matrices.
A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-
tonian matrices form a linear vector space, the symplectic Lie algebra sp(d). By
the antisymmetry of ω,

(ωTa)> = ωTa . (8.10)

is a symmetric matrix. Its number of independent elements gives the dimen-
sion (the number of independent continuous parameters) of the symplectic group
Sp(d),

N = d(d + 1)/2 = D(2D + 1) . (8.11)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is
N = 10.

It is easily checked that the exponential of a Hamiltonian matrix

g = eφ·T (8.12)

is a symplectic matrix; Lie group elements are related to the Lie algebra elements
by exponentiation.

question 8.4
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8.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-
tions of motion can affect the dynamics. In the case at hand, the symplectic in-
variance will reduce the number of independent Floquet multipliers by a factor of
2 or 4.

8.3.1 Canonical transformations

The evolution of Jt (4.5) is determined by the stability matrix A, (4.10):

d
dt

Jt(x) = A(x)Jt(x) , Ai j(x) = ωik H,k j(x) , (8.13)

where the symmetric matrix of second derivatives of the Hamiltonian, H,kn =

∂k∂nH, is called the Hessian matrix. From (8.13) and the symmetry of H,kn it
follows that for Hamiltonian flows (8.3)

A>ω + ωA = 0 . (8.14)

This is the defining property (8.9) for infinitesimal generators of symplectic (or
canonical) transformations.

Consider now a smooth nonlinear coordinate change form yi = hi(x) (see
sect. 2.3 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).
Under which conditions does K generate a Hamiltonian flow? In what follows we
will use the notation ∂ j̃ = ∂/∂y j, si, j = ∂hi/∂x j. By employing the chain rule we
have that

K, j = H,l̃sl̃, j (8.15)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (8.1), ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi js j,lωlmsm,n ẋn (8.16)

The right hand side simplifies to ẋi (yielding Hamiltonian structure) only if

−ωi jsl, jωlmsm,n = δin (8.17)

or, in compact notation,
question 8.2

−ω(∂h)>ω(∂h) = 1 (8.18)

which is equivalent to the requirement (8.6) that ∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformation h is very

example A2.1
cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are a prime example of
canonical transformations.

example 8.4

p. 153
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8.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point xq the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (8.14) with
real matrix elements, so its eigenvalues (the Floquet exponents of (5.1)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(8.14) that the characteristic polynomial of A for an equilibrium xq satisfies

section 5.1
exercise 8.4
exercise 8.5det (A − λ1) = det (ω−1(A − λ1)ω) = det (−ωAω − λ1)

= det (A> + λ1) = det (A + λ1) . (8.19)

That is, the symplectic invariance implies in addition that if λ is an eigenvalue,
then −λ, λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet
exponents of an equilibrium point in a 2-dof system are displayed in figure 8.4.
It is worth noting that while the linear stability of equilibria in a Hamiltonian
system always respects this symmetry, the nonlinear stability can be completely
different.

8.4 Symplectic maps

So far we have considered only the continuous time Hamiltonian flows. As dis-
cussed in sect. 4.4 for finite time evolution mappings, and in sect. 4.5 the iterated
discrete time mappings, the stability of maps is characterized by eigenvalues of
their Jacobian matrices, or ‘multipliers.’ A multiplier Λ = Λ(x0, t) associated to
a trajectory is an eigenvalue of the Jacobian matrix J. As J is symplectic, (8.6)
implies that

J−1 = −ωJ>ω , (8.20)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (J> − Λ1) = det (−ωJ>ω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1 − ΛJ)

= Λ2D det (J − Λ−11) . (8.21)

Hence if Λ is an eigenvalue of J, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues
always come paired as Λ, 1/Λ. The Liouville conservation of phase-space vol-
umes (8.30) is an immediate consequence of this pairing up of eigenvalues. The
complex eigenvalues come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic quartets Λ,
1/Λ, Λ∗ and 1/Λ∗. These possibilities are illustrated in figure 8.3.

example 8.5

p. 154

example 8.6

p. 154

example 8.7

p. 155
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Figure 8.3: Stability of a symplectic map in R4.
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8.5 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the
Hamiltonian system by f t(x), the volume of C after a time t is V(t) = f t(C), and
using (8.30) we derive the Liouville theorem:

V(t) =

∫
f t(C)

dx =

∫
C

∣∣∣∣∣∣det
∂ f t(x′)
∂x

∣∣∣∣∣∣ dx′∫
C

det (J)dx′ =

∫
C

dx′ = V(0) , (8.22)

Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys us much more than
the ‘incompressibility’, or the phase-space volume conservation. Consider the
symplectic product of two infinitesimal vectors

〈δx|δx̂〉 = δx>ωδx̂ = δpiδq̂i − δqiδ p̂i

=

D∑
i=1

{
oriented area in the (qi, pi) plane

}
. (8.23)

Time t later we have

〈δx′|δx̂′〉 = δx>J>ωJδx̂ = δx>ωδx̂ .

This has the following geometrical meaning. Imagine that there is a reference
phase-space point. Take two other points infinitesimally close, with the vectors δx
and δx̂ describing their displacements relative to the reference point. Under the
dynamics, the three points are mapped to three new points which are still infinites-
imally close to one another. The meaning of the above expression is that the area
of the parallelepiped spanned by the three final points is the same as that spanned
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by the initial points. The integral (Stokes theorem) version of this infinitesimal
area invariance states that for Hamiltonian flows the sum of D oriented areas Vi

bounded by D loops ΩVi, one per each (qi, pi) plane, is conserved:∫
V

dp ∧ dq =

∮
ΩV

p · dq = invariant . (8.24)

One can show that also the 4, 6, · · · , 2D phase-space volumes are preserved.
The phase space is 2D-dimensional, but as there are D coordinate combinations
conserved by the flow, morally a Hamiltonian flow is D-dimensional. Hence for

question 8.3
Hamiltonian flows the key notion of dimensionality is D, the number of the de-
grees of freedom, rather than the phase-space dimensionality d = 2D.

in depth:

appendix A8.1, p. 909

Résumé

Physicists do Lagrangians and Hamiltonians. Many know of no world other
than the perfect world of quantum mechanics and quantum field theory in which
the energy and much else is conserved. From the dynamical point of view, a
Hamiltonian flow is just a flow, but a flow with a symmetry: the stability matrix
Ai j = ωik H,k j(x) of a Hamiltonian flow ẋi = ωi jH, j(x) satisfies A>ω+ωA = 0. Its
integral along the trajectory, the linearization of the flow J that we call the ‘Jaco-
bian matrix’, is symplectic, and a Hamiltonian flow is thus a canonical transforma-
tion in the sense that the Hamiltonian time evolution x′ = f t(x) is a transformation
whose linearization (Jacobian matrix) J = ∂x′/∂x preserves the symplectic form,
J>ωJ = ω . This implies that A are in the symplectic algebra sp(2D), and that the
2D-dimensional Hamiltonian phase-space flow preserves D oriented infinitesimal
volumes, or Poincaré invariants. The Liouville phase-space volume conservation
is one consequence of this invariance.

While symplectic invariance enforces |Λ| = 1 for complex eigenvalue pairs
and precludes existence of attracting equilibria and limit cycles typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits |Λ| > 1, and the pairing
requirement only enforces a particular value on the 1/Λ contracting direction.
Hence the description of chaotic dynamics as a sequence of saddle visitations is
the same for the Hamiltonian and dissipative systems. You might find symplec-
ticity beautiful. Once you understand that every time you have a symmetry, you

chapter 12
should use it, you might curse the day [17] you learned to say ‘symplectic’.

Commentary

In theory there is no difference between theory and prac-
tice. In practice there is.

—Anonymous
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Remark 8.1. Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest?

Where does the skew-symmetric ω come from? Newton f = ma law for a motion in
a potential is mq̈ = −∂V . Rewrite this as a pair of first order ODEs, q̇ = p/m , ṗ = −∂V ,
define the total energy H(q, p) = p2/2m + V(q) , and voila, the equation of motion take on
the symplectic form (8.3). What makes this important is the fact that the evolution in time
(and more generally any canonical transformation) preserves this symplectic structure, as
shown in sect. 8.3.1. Another way to put it: a gradient flow ẋ = −∂V(x) contracts a state
space volume into a fixed point. When that happens, V(x) is a ’Lyapunov function’, and
the equilibrium x = 0 is ‘Lyapunov asymptotically stable’. In contrast, the ‘−’ sign in the
symplectic action on (q, p) coordinates, ṗ = −∂V induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Ja-
cobi etc. formulation of mechanics, some of it excellent. In context of what we will
need here, we make a very subjective recommendation–we enjoyed reading Percival and
Richards [23] and Ozorio de Almeida [21]. In a fine overview, Gotay and Isenberg [11]
go as far as to claim that all of science will be symplectized, and with continuing math-
ematicians’ deep dive into symplectic geometry, they might well be right. Exposition of
sect. 8.2 follows Dragt [5]. There are two conventions in literature for what the integer
argument of Sp(· · · ) stands for: either Sp(D) or Sp(d) (used, for example, in refs. [4, 5]),
where D = number of degrees of freedom, and d = 2D. As explained in Chapter 13 of
ref. [4], symplectic groups are the ‘negative dimensional’, d → −d sisters of the orthog-
onal groups, so only the second notation makes sense in the grander scheme of things.
Mathematicians can even make sense of the d =odd-dimensional case, see Proctor [9,
24], by dropping the requirement that ω is non-degenerate, and defining a symplectic
group Sp(M, ω) acting on a vector spaceM as a subgroup of Gl(M) which preserves a
skew-symmetric bilinear form ω of maximal possible rank. The odd symplectic groups
Sp(2D + 1) are not semisimple. If you care about group theory for its own sake (the dy-
namical systems symmetry reduction techniques of chapter 12 are still too primitive to be
applicable to Quantum Field Theory), chapter 14 of ref. [4] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’ as one some-
times does [5, 28] conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched between vectors taken from any com-
plete set of quantum states. We are not sure where this name comes from; Dragt cites
refs. [8, 10], and chapter 17 of his own book in progress [6]. Fulton and Harris [8] use it.
Certainly Van Loan [22] uses in 1981, and Taussky in 1972. Might go all the way back
to Sylvester?

Question 8.1. Dream student Henriette Roux wants to know
Q Dynamics equals a Hamiltonian plus a bracket. Why don’t you just say it?
A It is true that in the tunnel vision of atomic mechanicians the world is Hamiltonian.
But it is much more wondrous than that. This chapter starts with Newton 1687: force
equals acceleration, and we always replace a higher order time derivative with a set of
first order equations. If there are constraints, or fully relativistic Quantum Field Theory
is your thing, the tool of choice is to recast Newton equations as a Lagrangian 1788
variational principle. If you still live in material but non-relativistic world and have not
gotten beyond Heisenberg 1925, you will find Hamilton’s 1827 principal function handy.
The question is not whether the world is Hamiltonian - it is not - but why is it so often
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profitably formulated this way. For Maupertuis 1744 variational principle was a proof
of God’s existence; for Lagrange who made it mathematics, it was just a trick. Our
sect. 38.1.1 “Semiclassical evolution” is an attempt to get inside 17 year old Hamilton’s
head, but it is quite certain that he did not get to it the way we think about it today. He
got to the ‘Hamiltonian’ by studying optics, where the symplectic structure emerges as
the leading WKB approximation to wave optics; higher order corrections destroy it again.
In dynamical systems theory, the densities of trajectories are transported by Liouville
evolution operators, as explained here in sect. 19.6. Evolution in time is a one-parameter
Lie group, and Lie groups act on functions infinitesimally by derivatives. If the evolution
preserves additional symmetries, these derivatives have to respect them, and so ‘brackets’
emerge as a statement of symplectic invariance of the flow. Dynamics with a symplectic
structure are just a special case of how dynamics moves densities of trajectories around.
Newton is deep, Poisson brackets are technology and thus they appear naturally only by
the time we get to chapter 19. Any narrative is of necessity linear, and putting Poisson
ahead of Newton [27] would be a disservice to you, the student. But if you insist: Dragt
and Habib [5, 7] offer a concise discussion of symplectic Lie operators and their relation
to Poisson brackets.

Remark 8.2. Symplectic. The term symplectic –Greek for twining or plaiting
together– was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is
church-doctrinal: Greek ‘kanon’, referring to a reed used for measurement, came to mean
in Latin a rule or a standard.

Remark 8.3. The sign convention of ω. The overall sign of ω, the symplectic invariant
in (8.3), is set by the convention that the Hamilton’s principal function (for energy con-
serving flows) is given by R(q, q′, t) =

∫ q′

q pidqi −Et. With this sign convention the action
along a classical path is minimal, and the kinetic energy of a free particle is positive. Any
finite-dimensional symplectic vector space has a Darboux basis such that ω takes form
(8.6). Dragt [5] convention for phase-space variables is as in (8.2). He calls the dynam-
ical trajectory x0 → x(x0, t) the ‘transfer map’, something that we will avoid here, as it
conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Question 8.2. Henriette Roux, frustrated
Q I hate these sm,n in (8.17). Can’t you use a more sensible notation?
A Be my guest.

Remark 8.4. Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as Λ, 1/Λ, and complex eigenvalues come either in Λ, Λ∗ pairs, |Λ| = 1, or
Λ, 1/Λ, Λ∗, 1/Λ∗ loxodromic quartets. As most maps studied in introductory nonlinear
dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are
we to run into such things in higher dimensions? According to a very extensive study of
periodic orbits of a driven billiard with a four dimensional phase space, carried in ref. [16],
the three kinds of eigenvalues occur with about the same likelihood.

Question 8.3. Henriette Roux, frustrated
Q Would it kill you to draw some pictures in this chapter? It is supposed to be all about
geometry?
A Be my guest.

Question 8.4. Dream student Henriette Roux
Q Something is amiss here... The group orbit of x ∈ M is embedded into M, so it
cannot be of a higher dimension than d, but the dimension of the tangent space of the
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most general action of the group is N ∝ d2 (I’m thinking of U(d), SO(d) and Sp(d) now),
so I cannot fit all of it in a d-dimensional phase space. What gives?
A

Remark 8.5. Standard map. Standard maps model free rotors under the influence
of short periodic pulses, as can be physically implemented, for instance, by pulsed optical
lattices in cold atoms physics. On the theoretical side, standard maps illustrate a number
of important features: small k values provide an example of KAM perturbative regime
(see ref. [14]), while larger k’s illustrate deterministic chaotic transport [3, 18], and the
transition to global chaos presents remarkable universality features [12, 13, 25]. The
quantum counterpart of this model has been widely investigated, as the first example
where phenomena like quantum dynamical localization have been observed [1]. Stability
residue was introduced by Greene [12]. For some hands-on experience of the standard
map, download Meiss simulation code [19].

Remark 8.6. Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its orbits are locally unstable (positive Lyapunov exponent) and
globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov exponents and
discuss their evaluation, but already at this point it would be handy to have a few quick nu-
merical methods to diagnose chaotic dynamics. Laskar’s frequency analysis method [15]
is useful for extracting quasi-periodic and weakly chaotic regions of state space in Hamil-
tonian dynamics with many degrees of freedom. For pointers to other numerical methods,
see ref. [26].
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Example 8.1. Unforced undamped Duffing oscillator. When the damping term
is removed from the Duffing oscillator (2.22), the system can be written in Hamiltonian
form,

H(q, p) =
p2

2
−

q2

2
+

q4

4
. (8.25)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (8.1) are

q̇ = p , ṗ = q − q3 . (8.26)

For 1-dof systems, the ‘surfaces’ of constant energy (8.5) are curves that stratify the phase
plane (q, p), and the dynamics is very simple: the curves of constant energy are the tra-
jectories, as shown in figure 8.1.
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Example 8.2. Collinear helium. In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
−

2
r2

+
1

r1 + r2
. (8.27)

Collinear helium has 2 degrees of freedom, and thus a 4-dimensional phase space M,
which energy conservation stratified by 3-dimensional constant energy hypersurfaces. In
order to visualize it, we often project the dynamics onto the 2-dimensional configuration
plane, the (r1, r2), ri ≥ 0 quadrant, figure 8.2. It looks messy, and, indeed, it will turn out
to be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.
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Example 8.3. Symplectic form for D = 2. For two degrees of freedom the phase space
is 4-dimensional, x = (q1, q2, p1, p2) , and the symplectic 2-form is

ω =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , (8.28)

The symplectic bilinear form 〈x(1)|x(2)〉 is the sum over the areas of the parallelepipeds
spanned pairwise by components of the two vectors,

〈x(1)|x(2)〉 = (x(1))>ω x(2) = (q(1)
1 p(2)

1 − q(2)
1 p(1)

1 ) + (q(1)
2 p(2)

2 − q(2)
2 p(1)

2 ) . (8.29)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,
|x(2) − x(1)|) that is preserved by the symplectic transformations.

click to return: p. 144

Example 8.4. Hamiltonian flows are canonical. For Hamiltonian flows it follows
from (8.14) that d

dt
(
J>ωJ

)
= 0, and since at the initial time J0(x0) = 1, Jacobian matrix

is a symplectic transformation (8.6). This equality is valid for all times, so a Hamiltonian
flow f t(x) is a canonical transformation, with the linearization ∂x f t(x) a symplectic trans-
formation (8.6): For notational brevity here we have suppressed the dependence on time
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Figure 8.4: Stability exponents of a Hamiltonian equi-
librium point, 2-dof.

complex saddle saddle-center

degenerate saddle

(2)(2)

real saddle

generic center degenerate center

(2)

(2)

and the initial point, J = Jt(x0). By elementary properties of determinants it follows from
(8.6) that Hamiltonian flows are phase-space volume preserving, |det J| = 1 . The initial
condition (4.10) for J is J0 = 1, so one always has

det J = +1 . (8.30)

click to return: p. 145

Example 8.5. Hamiltonian Hénon map. By (4.45) the Hénon map (3.18) for
b = −1 value is the simplest 2-dimensional orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of 2-
degrees of freedom Hamiltonian flows. We find it convenient to multiply (3.19) by a and
absorb the a factor into x in order to bring the Hénon map for the b = −1 parameter value
into the form

xi+1 + xi−1 = a − x2
i , i = 1, ..., np , (8.31)

The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a − x2
n − yn

yn+1 = xn . (8.32)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix (arbi-
trarily) the stretching parameter value to a = 6, a value large enough to guarantee that all
roots of 0 = f n(x) − x (periodic points) are real.

exercise 9.7
click to return: p. 146

Example 8.6. 2-dimensional symplectic maps. In the 2-dimensional case the eigen-
values (5.6) depend only on tr Mt

Λ1,2 =
1
2

(
tr Mt ±

√
(tr Mt − 2)(tr Mt + 2)

)
. (8.33)

Greene’s residue criterion states that the orbit is (i) elliptic if the stability residue |tr Mt | −

2 ≤ 0, with complex eigenvalues Λ1 = eiθt, Λ2 = Λ∗1 = e−iθt. If |tr Mt | − 2 > 0, λ is real,
and the trajectory is either

(ii) hyperbolic Λ1 = eλt , Λ2 = e−λt , or (8.34)
(iii) inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (8.35)

click to return: p. 146
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Figure 8.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b) k = 0.3,
k = 0.85 and k = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.

(a) (b)

Example 8.7. Standard map. Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (8.36)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.21) is

Mn(x0, y0) =

1∏
k=n

[
1 + g′(xk) 1

g′(xk) 1

]
. (8.37)

The map preserves areas, det M = 1, and one can easily check that M is symplectic. In
particular, one can consider x on the unit circle, and y as the conjugate angular momentum,
with a function g periodic with period 1. The phase space of the map is thus the cylinder
S 1 × R (S 1 stands for the 1-torus, which is fancy way to say “circle"): by taking (8.36)
mod 1 the map can be reduced on the 2-torus S 2.

The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,
yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with
uniform velocity

xn+1 = xn + y0 = x0 + (n + 1)y0 mod 1 .

The choice of y0 determines the nature of the motion (in the sense of sect. 2.1.1): for
y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q the motion
is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic motion (see
figure 8.5 (a)).

Despite the simple structure of the standard map, a complete description of its dy-
namics for arbitrary values of the nonlinear parameter k is fairly complex: this can be
appreciated by looking at phase portraits of the map for different k values: when k is very
small the phase space looks very much like a slightly distorted version of figure 8.5 (a),
while, when k is sufficiently large, single trajectories wander erratically on a large fraction
of the phase space, as in figure 8.5 (b).

This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.

Note that the map (8.36) provides a stroboscopic view of the flow generated by a
(time-dependent) Hamiltonian

H(x, y; t) =
1
2

y2 + G(x)δ1(t) (8.38)

where δ1 denotes the periodic delta function

δ1(t) =

∞∑
m=−∞

δ(t − m) (8.39)
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and

G′(x) = −g(x) . (8.40)

Important features of this map, including transition to global chaos (destruction of the
last invariant torus), may be tackled by detailed investigation of the stability of periodic
orbits. A family of periodic orbits of period Q already present in the k = 0 rotation maps
can be labeled by its winding number P/Q The Greene residue describes the stability of
a P/Q-cycle:

RP/Q =
1
4

(
2 − tr MP/Q

)
. (8.41)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for
RP/Q < 0 inverse hyperbolic.

For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding number
P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such orbits survive,
according to Poincaré-Birkhoff theorem: half of them elliptic, and half hyperbolic. If
we further vary k in such a way that the residue of the elliptic Q-cycle goes through 1, a
bifurcation takes place, and two or more periodic orbits of higher period are generated.

click to return: p. 146

Exercises

8.1. Complex nonlinear Schrödinger equation. Con-
sider the complex nonlinear Schrödinger equation in one
spatial dimension [17]:

i
∂φ

∂t
+
∂2φ

∂x2 + βφ|φ|2 = 0, β , 0.

(a) Show that the function ψ : R → C defining the
traveling wave solution φ(x, t) = ψ(x−ct) for c > 0
satisfies a second-order complex differential equa-
tion equivalent to a Hamiltonian system in R4 rel-
ative to the noncanonical symplectic form whose
matrix is given by

wc =


0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

 .
(b) Analyze the equilibria of the resulting Ha-

miltonian system in R4 and determine their linear
stability properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and
determine a second order equation for a(s). Show

that the resulting equation is Hamiltonian and has
heteroclinic orbits for β < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

8.2. Symplectic vs. Hamiltonian matrices. In the
language of group theory, symplectic matrices form the
symplectic Lie group Sp(d), while the Hamiltonian ma-
trices form the symplectic Lie algebra sp(d), or the al-
gebra of generators of infinitesimal symplectic transfor-
mations. This exercise illustrates the relation between
the two:

(a) Show that if a constant matrix A satisfy the Hamil-
tonian matrix condition (8.9), then J(t) = exp(tA) ,
t ∈ R, satisfies the symplectic condition (8.6), i.e.,
J(t) is a symplectic matrix.

(b) Show that if matrices Ta satisfy the Hamiltonian
matrix condition (8.9), then g(φ) = exp(φ · T) ,
φ ∈ RN , satisfies the symplectic condition (8.6),
i.e., g(φ) is a symplectic matrix.
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(A few hints: (i) expand exp(A) , A = φ · T , as a power
series in A. Or, (ii) use the linearized evolution equation
(8.13). )

8.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that
the map φ : R2n → R2n given by (q,p) 7→
(Aq, (A−1)>p) is a canonical transformation.

(b) If R is a rotation in R3, show that the map (q,p) 7→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

8.4. Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (8.21) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that the joint multiplicity of λ = ±1 is even,

(c) show that the multiplicities of λ = 1 and λ = −1
cannot be both odd. Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show that Q(1) = 0.

8.5. Cherry’s example. What follows refs. [2, 20] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R4 given by

H =
1
2

(q2
1 + p2

1)− (q2
2 + p2

2) +
1
2

p2(p2
1 −q2

1)−q1q2 p1.

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant τ:

q1 = −
√

2
cos(t − τ)

t − τ
, q2 =

cos 2(t − τ)
t − τ

,

p1 =
√

2
sin(t − τ)

t − τ
, p2 =

sin 2(t − τ)
t − τ

.

These solutions clearly blow up in a finite time;
however they start at t = 0 at a distance

√
3/τ

from the origin, so by choosing τ large, we can
find solutions starting arbitrarily close to the ori-
gin, yet going to infinity in a finite time, so the
origin is nonlinearly unstable.

(Luz V. Vela-Arevalo)
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Chapter 9

Billiards

The dynamics that we have the best intuitive grasp on, and find easiest to grap-
ple with both numerically and conceptually, is the dynamics of billiards.
For billiards, discrete time is altogether natural; a particle moving through

a billiard suffers a sequence of instantaneous kicks, and executes simple motion in
between, so there is no need to contrive a Poincaré section. We have already used
this system in sect. 1.3 as the intuitively most accessible example of chaos. Here
we define billiard dynamics more precisely, anticipating the applications to come.
As billiards lend themselvs naturally to visualization, this chapter –for once– is
better grasped by following the video links on the margins, then by decoding the
notation by reading this text.

9.1 Billiard dynamics

A billiard is defined by a connected region Q ⊂ RD, with boundary ∂Q ⊂ RD−1

separating Q from its complement RD \ Q. The region Q can consist of one com-
pact, finite volume component (in which case the billiard phase space is bounded,
as for the stadium billiard of figure 9.1), or can be infinite in extent, with its
complement RD \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the 3-disk pinball game in
figure 1.1). In what follows we shall most often restrict our attention to planar
billiards.

A point particle of mass m and momentum p = mv moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in the tangential component of
momentum, and instantaneous reversal of the incoming momentum p− component
normal to the boundary,

p = p− − 2(p− · n̂) n̂ , (9.1)

158
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Figure 9.1: The stadium billiard is a 2-dimension-
al domain bounded by two semi-circles of radius
d = 1 connected by two straight walls of length
2a. At the points where the straight walls meet the
semi-circles, the curvature of the border changes
discontinuously; these are the only singular points
of the flow. The length a is the only parameter.
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Figure 9.2: (a) A planar billiard trajectory
is fixed by specifying the perimeter arclength
parametrized by s and the outgoing trajectory an-
gle φ, both measured counterclockwise with re-
spect to the outward normal n̂. (b) The Birkhoff

phase-space coordinate pair (s, p) fully specifies
the trajectory, where p = |p| sin φ is the momen-
tum component tangential to the boundary. As
the pinball kinetic energy is conserved in elas-
tic scattering, the pinball mass and the magnitude
of the pinball momentum are customarily set to
m = |p| = 1.
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with n̂ the unit vector normal to the boundary ∂Q at the collision point. The angle
of incidence equals the angle of reflection, as illustrated in figure 9.2. A billiard is
a Hamiltonian system with a 2D-dimensional phase space x = (q, p) and potential
V(q) = 0 for q ∈ Q, V(q) = ∞ for q ∈ ∂Q. As the energy is conserved, we can set
m = |v| = |p| = 1 without loss of generality.

remark 2.1

A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
sn, the arc length position of the nth bounce measured along the billiard boundary,
and pn = |p| sin φn, the momentum component parallel to the boundary, where
φn is the angle between the outgoing trajectory and the normal to the boundary.
We measure both the arc length s, and the parallel momentum p counterclockwise
relative to the outward normal (see figure 9.2 as well as figure 15.16 (a)). In D =

2, the Poincaré section is a cylinder (an annulus), figure 9.3, where the parallel
momentum p ranges from −|p| to |p|, and the s coordinate is cyclic along each
connected component of ∂Q. The volume in the full phase space is preserved
by the Liouville theorem (8.22). The Birkhoff coordinates x = (s, p) ∈ P, are

exercise 9.7
the natural choice, because with them the return map preserves the phase-space
volume of the (s, p) parameterized Poincaré section (a perfectly good, often used
coordinate set (s, φ) does not do that).

exercise 9.7
section 9.2

Poincaré section condition eliminates one dimension, and the energy conser-
vation |p| = 1 eliminates another, so the Poincaré section return map P is (2D−2)-
dimensional.

billiards - 21jan2018 ChaosBook.org edition16.4.8, May 25 2020
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Figure 9.3: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentum p ranging
over p ∈ {−1, 1}, and with the s coordinate is cyclic
along each connected component of ∂Q. The rectangle
figure 9.2 (b) is such cylinder unfolded, with periodic
boundary conditions gluing together the left and the
right edge of the rectangle.
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The dynamics is given by the return map

P : (sn, pn) 7→ (sn+1, pn+1) (9.2)

from the nth collision to the (n+1)st collision. The discrete time dynamics map P
is equivalent to the Hamiltonian flow (8.1) in the sense that both describe the same
full trajectory. Let tn denote the instant of nth collision. Then the position of the
pinball ∈ Q at time tn + τ ≤ tn+1 is given by 2D − 2 Poincaré section coordinates
(sn, pn) ∈ P together with τ, the distance reached by the pinball along the nth
section of its trajectory (as we have set the pinball speed to 1, the time of flight
equals the distance traversed).

example 9.1

p. 165

9.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems. In-
finitesimal equations of variations (4.2) do not apply, but the multiplicative struc-
ture (4.20) of the finite-time Jacobian matrices does. As they are more physical
than most maps studied by dynamicists, let us work out the billiard stability in
some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by cutting
trajectories by a Poincaré section. We shall now show how going to a local frame
of motion leads to a [2×2] Jacobian matrix.

Consider a planar billiard with phase-space coordinates x = (q1, q2, p1, p2).
Let tn be the instant of the nth collision of the pinball with the billiard boundary,
and t±n = tn ± ε, ε positive and infinitesimal. With the mass and the speed equal to
1, the momentum direction can be specified by angle θ: x = (q1, q2, sin θ, cos θ).
Now parametrize the 2-dimensional neighborhood of a trajectory segment by δx =

(δz, δθ), where

δz = δq1 cos θ − δq2 sin θ , (9.3)

δθ is the variation in the direction of the pinball motion. Due to energy conserva-
tion, there is no need to keep track of δq‖, variation along the flow, as that remains

billiards - 21jan2018 ChaosBook.org edition16.4.8, May 25 2020
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constant. (δq1, δq2) is the coordinate variation transverse to the kth segment of the
flow. From the Hamilton’s equations of motion for a free particle, dqi/dt = pi,
dpi/dt = 0, we obtain the equations of motion (4.1) for the linearized neighbor-
hood

d
dt
δθ = 0,

d
dt
δz = δθ . (9.4)

Let

(δzn, δθn) = (δz(t+n ), δθ(t+n )) , (δz−n , δθ
−
n ) = (δz(t−n ), δθ(t−n )) (9.5)

be the local coordinates immediately after, respectively immediately before the
nth collision. Integrating the free flight from t+n−1 to t−n we obtain

δz−n = δzn−1 + τnδθn−1 , τn = tn − tn−1

δθ−n = δθn−1 , (9.6)

and the Jacobian matrix (4.19) for the nth free flight segment is

MT (xn) =

[
1 τn
0 1

]
. (9.7)

To compute the reflection Jacobian matrix, think of the incoming rays as a
flashlight shining on the billiard boundary at an angle; its footprint, of arclength
δs, is wider then the incoming beam of width δz−n . At incidence angle φn (the
angle between the outgoing particle and the outgoing normal to the billiard edge),
the incoming transverse variation δz−n projects onto an arc on the billiard boundary
of arclength δsn = δz−n / cos φn. Approximating locally a smooth boundary by a
circle of radius ρn, the angle of incidence corresponding to this arc is δsn = ρnδφn,
so δφn = δz−n /ρn cos φn. The specular law of reflection (9.1) doubles this angle and
changes its orientation, increasing the angular spread of the beam to

δzn = −δz−n

δθn = − δθ−n −
2

ρn cos φn
δz−n , ρn = local radius of curvature , (9.8)

so the Jacobian matrix associated with the reflection is

MR(xn) = −

[
1 0
rn 1

]
, rn =

2
ρn cos φn

. (9.9)

The full Jacobian matrix for np consecutive bounces describes a beam of tra-
jectories defocused by MT along the free flight (the τn terms below) and defo-
cused/refocused at reflections by MR (the rn terms below)

exercise 9.6

Mp = (−1)np

1∏
n=np

[
1 τn
0 1

] [
1 0
rn 1

]
, (9.10)
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Figure 9.4: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

ϕθ

where τn is the flight time of the kth free-flight segment of the orbit, rn = 2/ρn cos φn

is the defocusing due to the kth reflection, and ρn is the radius of curvature of
the billiard boundary at the nth scattering point (for our 3-disk game of pinball,
ρ = 1). As the billiard dynamics is phase-space volume preserving, det M = 1,
and the eigenvalues are given by (8.33).

This is an example of the Jacobian matrix chain rule (4.22) for discrete time
systems (the Hénon map stability (4.44) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

det MT = det
[

1 τn
0 1

]
, det MR = det

[
1 0
rn 1

]
, (9.11)

but acting in concert in the interwoven sequence (9.10) they can lead to a hyper-
bolic deformation of the infinitesimal neighborhood of a billiard trajectory.

exercise 16.6

As a concrete application, consider the 3-disk pinball system of sect. 1.3. An-
alytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow
from elementary geometrical considerations. Longer cycles require numerical

exercise 16.7
exercise 9.4evaluation by methods such as those described in chapter 16.
chapter 16

Résumé

A particulary natural application of the Poincaré section method is the reduction of
a billiard flow to a boundary-to-boundary return map. The 3-disk game of pinball
is to chaotic dynamics what a pendulum is to integrable systems; the simplest
physical example that captures the essence of chaos. What next? For an overview
of where are we now, and how are billiards going to help us, click on the video
link.

Commentary

Remark 9.1. Billiards. Birkhoff coordinates [1] were introduced by -well- G.D.
Birkhoff in 1927. That the 3-disk game of pinball is a quintessential example of de-
terministic chaos appears to have been first noted by B. Eckhardt [6]. The model was
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studied in depth classically, semiclassically and quantum mechanically by P. Gaspard and
S.A. Rice [9], and used by P. Cvitanović and B. Eckhardt [4] to demonstrate applicabil-
ity of cycle expansions to quantum mechanical problems. It has been used to study the
higher order ~ corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso
Ramirez [8], construct semiclassical evolution operators and entire spectral determinants
by P. Cvitanović and G. Vattay [5], and incorporate the diffraction effects into the periodic
orbit theory by G. Vattay, A. Wirzba and P.E. Rosenqvist [15]. The full quantum me-
chanics and semiclassics of scattering systems is developed here in the 3-disk scattering
context in chapter 40. Gaspard’s monograph [7], which we warmly recommend, utilizes
the 3-disk system in much more depth than will be attained here. The stadium billiard
was introduced by Bunimovich [2, 3] to demonstrate that full ergodicity is possible even
for billiards with focusing wall segments. Lansel, Porter and Bunimovich [10], Ranković
and Porter [13], and Sawada and Taniguchi [14] discuss 2-particle billiards. For further
links check ChaosBook.org/extras.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regions of stability and regions of
chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face up to much harder challenge,
dynamics of smooth flows. Nevertheless, pinball scattering is relevant to smooth poten-
tials. The game of pinball may be thought of as the infinite potential wall limit of a smooth
potential, and pinball symbolic dynamics can serve as a covering symbolic dynamics in
smooth potentials. One may start with the infinite wall limit and adiabatically relax an
unstable cycle onto the corresponding one for the potential under investigation. If things

section 34.1go well, the cycle will remain unstable and isolated, no new orbits (unaccounted for by
the pinball symbolic dynamics) will be born, and the lost orbits will be accounted for by a
set of pruning rules. The validity of this adiabatic approach has to be checked carefully in
each application, as things can easily go wrong; for example, near a bifurcation the same
naive symbol string assignments can refer to a whole island of distinct periodic orbits.

Another contender for the title of the ‘harmonic oscillator of chaos’ is the baker’s
map which is used as the red thread through Ott’s introduction to chaotic dynamics [12].
The baker’s map is the simplest reversible dynamical system which is hyperbolic and
has positive entropy. We will not have much use for the baker’s map here, as due to its
piecewise linearity it is so nongeneric that it misses all of the subtleties of cycle expansion
curvature corrections that will be central to this treatise.

chapter 23
Remark 9.2. Stability analysis. The chapter 1 of Gaspard monograph [7] is rec-
ommended reading if you are interested in Hamiltonian flows, and billiards in particular.
A. Wirzba has generalized the stability analysis of sect. 9.2 to scattering off 3-dimensional
spheres (follow the links in ChaosBook.org/extras). A clear discussion of linear stability
for the general d-dimensional case is given in Gaspard [7], sect. 1.4.
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9.3 Examples

Example 9.1. 3-disk game of pinball. In the case of bounces off a circular disk, the
position coordinate s = rθ is given by angle θ ∈ [0, 2π]. For example, for the 3-disk game
of pinball of figure 1.6 and figure 15.16 (a) we have two types of collisions:

exercise 9.1

P0 :
{
φ′ = −φ + 2 arcsin p
p′ = −p + a

R sin φ′
back-reflection (9.12)

P1 :
{
φ′ = φ − 2 arcsin p + 2π/3
p′ = p − a

R sin φ′
reflect to 3rd disk . (9.13)

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this example
we are computing intersections of circles and straight lines, nothing more than high-school
geometry is required. There is no need to compute arcsin - one only needs to compute
one square root per each reflection, and the simulations can be very fast.

exercise 9.2

Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s and P1’s.
At each step one has to check whether the trajectory intersects the desired disk (and no
disk in-between). With minor modifications, the above formulas are valid for any smooth
billiard as long as we replace a by the local curvature of the boundary at the point of
collision.

click to return: p. 160

Example 9.2. Duhem’s bull. From Jos Leys, Étienne Ghys and Aurélien Alvarez [11]
comes Chaos – A Mathematical Adventure, a math movie. Chapter V Billiards - Duhem’s
bull goes beyond the billiards discussed here, and motivates much of the symbolic dynam-
ics to be developed bellow. The movie is mathematically sophisticated, and breathtakingly
beautiful.

Exercises

9.1. A pinball simulator. Implement the disk → disk
maps to compute a trajectory of a pinball for a given
starting point, and a given R:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementa-
tion should be within reach of a high-school student.
Please start working on this program now; it will be con-
tinually expanded in chapters to come, incorporating the
Jacobian calculations, Newton root–finding, and so on.

Fast code will use elementary geometry (only one
√
· · · per iteration, rest are multiplications) and eschew

trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work with R:a = 6 and/or 2.5 values. Draw the
correct versions of figure 1.9 or figure 15.4 for R:a = 2.5
and/or 6.

9.2. Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for vari-
ous R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their es-
cape. Try also R:a = 6:1, though that might be too thin
and require some magnification. The initial conditions
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can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of
interest.

9.3. Stability of billiard cycles. Compute the Floquet
multipliers {Λu,Λs} for a few simple cycles:

R-2a aa

R

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distance L + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

(b) Find all periodic orbits and their stabilities for
a billiard ball bouncing between the diagonal
y = x and one of the hyperbola branches y =

−1/x. (continued as exercise 16.4)

9.4. Pinball stability. Add to your exercise 9.1 pinball
simulator a routine that computes the [2×2] Jacobian
matrix. To be able to compare with the numerical re-
sults of coming chapters, work with R:a = 6 and/or 2.5
values.

9.5. A test of your pinball simulator. Test your exer-
cise 9.4 pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.

Compare your result with the exact analytic formulas of
exercise 16.6 and 16.7.

9.6. Stadium billiard. Consider the Bunimovich sta-
dium defined in figure 9.1. The Jacobian matrix associ-
ated with the reflection is given by (9.9). Here we take
ρk = −1 for the semicircle sections of the boundary,
and cos φk remains constant for all bounces in a rota-
tion sequence. The time of flight between two semicir-
cle bounces is τk = 2 cos φk. The Jacobian matrix of one
semicircle reflection folowed by the flight to the next
bounce is

J = (−1)
[

1 2 cos φk
0 1

] [
1 0

−2/ cos φk 1

]
= (−1)

[
−3 2 cos φk

2/ cos φk 1

]
.

A free flight must always be followed by k = 1, 2, 3, · · ·
bounces along a semicircle, hence the natural symbolic
dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues
remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

Jk = (−1)k
[
−2k − 1 2k cos φ
2k/ cos φ 2k − 1

]
. (9.14)

The Jacobian matrix of a cycle p of length np is given
by

Jp = (−1)
∑

nk

np∏
k=1

[
1 τk
0 1

] [
1 0

nkrk 1

]
. (9.15)

Adopt your pinball simulator to the stadium billiard.

9.7. Birkhoff coordinates. Prove that the Birkhoff coor-
dinates are phase-space volume preserving.
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Chapter 10

Flips, slides and turns

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the reflec-
tion and rotation symmetries of various potentials.

This chapter assumes familiarity with basic group theory, as discussed in ap-
pendix A10.1. We find the abstract notions easier to digest by working out the
examples; links to these examples are interspersed throughout the chapter. Work-
ing through these examples is essential and will facilitate your understanding of
various definitions. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly to Z2 = D1 example 11.3, example 11.8, and
C3v = D3 example 11.5, backtrack as needed.

10.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A1.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . . } (10.1)

and a group multiplication rule g j ◦ gi (often abbreviated as g jgi), satisfying
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Figure 10.1: The symmetries of three disks on an
equilateral triangle. A fundamental domain is indi-
cated by the shaded wedge. Work through exam-
ple 11.5.

1. Closure: If gi, g j ∈ G, then g j ◦ gi ∈ G

2. Associativity: gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identity e: g ◦ e = e ◦ g = g for all g ∈ G

4. Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G
such that h ◦ g = g ◦ h = e.

If the group is finite, the number of elements, |G| = n, is called the order of the
group.

The theory of finite groups is developed on two levels. There is a beautiful
theory of groups as abstract entities which yields the classification of their struc-
tures and their irreducible, orthogonal representations in terms of characters. Then
there is the considerably messier matter of group representations, in our case the
ways in which a given symmetry group acts on and stratifies the particular state
space of a problem at hand, the most familiar being the ways in which symme-
tries reduce and block-diagonalize quantum-mechanical problems. What helps us
here is that the symmetries ‘commute’ with dynamics, i.e., we can first reduce a
given state space to its irreducible components, using the symmetry alone, and
then study the action of dynamics on these subspaces. As our intuition is based
on physical manifestations of group actions, in this brief review we shall freely
switch gears between the abstract and the representation levels whenever peda-
gogically convenient.

Whatever else you must do, do work through example 11.5. Once you under-
stand how this works out for the symmetries of an equilateral triangle, or, equiv-
alently, for the three disk billiard of figure 10.1, you know almost everything you
need to know about the general, non-abelian finite groups.

example 10.1

p. 176

example 10.2

p. 176

Definition: Coordinate transformations. Consider a map x′ = f (x), x, x′ ∈
M. An active coordinate transformation Mx corresponds to a non-singular [d×
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d] matrix M that maps the initial vector x ∈ M onto another vector Mx ∈ M.
The corresponding passive coordinate transformation x′ → M−1x′ changes the
coordinate system with respect to which the final vector x′ ∈ M is measured.
Together, a passive and active coordinate transformations yield the map in the
transformed coordinates:

f̂ (x) = M−1 f (Mx) . (10.2)

(For general nonlinear coordinate transformations, see Appendix A2.)

Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-
trices A, B,C, · · · ∈ GL(d) acting in a d-dimensional vector space V ∈ Rd forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit
matrix 11 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

Definition: Matrix representation. Linear action of a group element g on
states x ∈ M is given by a finite non-singular [d×d] matrix D(g), the matrix
representation of element g ∈ G. For brevity we shall often denote by ‘g’ both the
abstract group element and its matrix representation, D(g)x→ gx.

However, when dealing simultaneously with several representations of the
same group action, the notation D(µ)(g) is preferable, where µ is a representa-
tion label (see appendix A10.1). A linear or matrix representation D(G) of the
abstract group G acting on a representation space V is a group of matrices D(G)
such that

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 is mapped onto the matrix product D(g2 ◦ g1) =

D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

D(g)−1.

Some simple 3D representations of the group order 2 are given in example 10.4.

example 10.3

p. 176

example 10.4

p. 176

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g ∈ G there exists a number
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m ≤ |G| such that

gm ≡ g ◦ g ◦ · · · ◦ g︸          ︷︷          ︸
m times

= e → |det D(g)| = 1 . (10.3)

As the modulus of its determinant is unity, det g is an mth root of 1. This is the
reason why all finite groups have unitary representations.

Definition: Symmetry of a dynamical system.

1. A group G is a symmetry of the dynamics if for every solution f (x) ∈ M
and g ∈ G, g f (x) is also a solution.

2. Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M →M
(a discrete time map f , or the continuous flow f t map from the d-dimens-
ional manifoldM into itself) commutes with all actions of G,

f (gx) = g f (x) . (10.4)

3. In the language of physicists: The ‘law of motion’ is invariant, i.e., retains
its form in any symmetry-group related coordinate frame (10.2),

f (x) = g−1 f (gx) , (10.5)

for x ∈ M and any finite non-singular [d×d] matrix representation g of
element g ∈ G. As this are true for any state x, one can state this more
compactly as f ◦ g = g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar function h(x) is said to be G-invariant if h(x) =

h(gx) for all g ∈ G. The group actions map the solution f :M→M into different
(but equivalent) solutions g f (x), hence the invariance condition f (x) = g−1 f (gx)
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant.
It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases by in/equi-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms of invariant coordinates, see sects. 11.5 and 13.2.

example 10.5

p. 176

example 10.6

p. 177

example 10.9

p. 178

10.2 Subgroups, cosets, classes

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

finiteGr - 18feb2019 ChaosBook.org edition16.4.8, May 25 2020

https://youtube.com/embed/jHHKK_T9Pg0


CHAPTER 10. FLIPS, SLIDES AND TURNS 171

Inspection of figure 11.1 indicates that various 3-disk orbits are the same up to
a symmetry transformation. Here we set up some group-theoretic notions needed
to describe such relations. The reader might prefer to skip to sect. 11.1, backtrack
as needed.

Definition: Subgroup. A set of group elements H = {e, b2, b3, . . . , bh} ⊆ G
closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order h =

|H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not in H, is called left
coset cH. For a given subgroup H the group elements are partitioned into H and
m − 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
not include the identity element. A nontrival subgroup can exist only if |G|, the
order of the group, is divisible by |H|, the order of the subgroup, i.e., only if |G| is
not a prime number.

example 10.7

p. 177

Next we need a notion that will, for example, identify the three 3-disk 2-cycles
in figure 11.1 as belonging to the same class.

Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where c is
some other group element. If b and c are both conjugate to a, they are conjugate
to each other. Application of all conjugations separates the set of group elements

exercise 10.1
into mutually not-conjugate subsets called classes, types or conjugacy classes.
The identity e is always in the class {e} of its own. This is the only class which is

exercise 10.5
a subgroup, all other classes lack the identity element.

example 10.8

p. 177

The geometrical significance of classes is clear from (10.5); it is the way co-
ordinate transformations act on mappings. The action, such as a reflection or
rotation, of an element is equivalent to redefining the coordinate frame.

Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group Gp of orbitMp and mp − 1 cosets cGp relates the orbitMp to
mp−1 other distinct orbits cMp. All of them have equivalent symmetry subgroups,

exercise 10.2
or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gc p = c Gp c−1 , (10.6)

i.e., if Gp is the symmetry of orbit Mp, elements of the coset space c ∈ G/Gp

generate the mp − 1 distinct copies ofMp.
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Definition: Invariant subgroup. A subgroup H ⊆ G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as equiv-
alent. This leads to the notion of the factor group or quotient group G/H of G,
with respect to the invariant subgroup H. H thus divides G into H and m − 1
cosets, each of order |H|. The order of G/H is m = |G|/|H|, and its multiplication
table can be worked out from the G multiplication table class by class, with the
subgroup H playing the role of identity. G/H is homeomorphic to G, with |H|
elements in a class of G represented by a single element in G/H.

10.3 Orbits, quotient space
section 2.1

Definition: Orbit. The subset Mx0 ⊂ M traversed by the infinite-time trajec-
tory of a given point x0 is called the orbit (or time orbit, or solution) x(t) = f t(x0).
An orbit is a dynamically invariant notion: it refers to the set of all states that can
be reached in time from x0, thus as a set it is invariant under time evolution. The
full state spaceM is a union of such orbits. We label a generic orbitMx0 by any
point belonging to it, x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets (equilibria, periodic orbits, invariant tori, . . . ), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non–wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loop p = Mp for a prime periodic orbit p, etc.
(note also discussion on page 210, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (10.7)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutions Mp. So we
also need to describe the symmetry of a solution, as opposed to (10.5), the sym-
metry of the system.
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Definition: Reduced state space. The action of group G partitions the state
spaceM into a union of group orbits. This set of group orbits, denotedM/G, has
many names: reduced state space, quotient space or any of the names listed on
page 223.

Definition: Fundamental domain. The images of a single point x under all
actions of a discrete group G form a G-orbit Mx. A fundamental domain M̂ =

M/G is a subset of the state spaceM which contains exactly one point from each
G-orbit. It is an explicit state space realization of the abstract notion of the reduced
state spaceM/G in the case that G is a discrete group.

A fundamental domain can be defined in different ways, here exemplified by
figures 10.1, 11.1, 11.5, 11.3, 11.2 (b) and 24.3. Ideally it is a connected subset
with restrictions on its boundary that ensure the no points are double-counted. The
set of images of a fundamental domain under the group action then tiles the entire
state space.

Reduction of the dynamical state space is discussed in sect. 11.3 for discrete
symmetries, and in sect. 13.2 for continuous symmetries.

Definition: Fixed-point subspace. MH is the set of all state space points left
H-fixed, point-wise invariant under subgroup or ‘centralizer’ H ⊆ G action

MH = Fix (H) = {x ∈ M | h x = x for all h ∈ H} . (10.8)

Points in state space subspaceMG which are fixed points of the full group action
are called invariant points,

MG = Fix (G) = {x ∈ M | g x = x for all g ∈ G} . (10.9)

Definition: Flow invariant subspace. A typical point in fixed-point subspace
MH moves with time, but, due to equivariance (10.4), its trajectory x(t) = f t(x)
remains within f (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (10.10)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smallerMH , easing the numerical searches, so start with the largest subgroups H
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is an invariant subspace if

{Mα | gx ∈ Mα for all g ∈ G and x ∈ Mα} . (10.11)

{0} andM are always invariant subspaces. So is any Fix (H) which is point-wise
invariant under action of G.
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Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
under the action of G are {0} andMα is called irreducible.

Definition: Reducibility. If state space M on which G acts can be written as
a direct sum of irreducible subspaces, then the representation of G on state space
M is completely reducible.

This being group theory, definitions could go on forever. But we stop here,
hopefully having defined everything that we need at the moment, and we pile on
a few more definitions in sect. 11.1, chapter 12, chapter 25 and chapter 26. There
are also chapter 30, appendix A10, and beyond that the n → ∞ group theory
textbooks, if you thirst for more.

Résumé

A group G is a symmetry of the dynamical system (M, f ) if its ‘law of motion’
retains its form under all symmetry-group actions, f (x) = g−1 f (gx) . A mapping f
is said to be invariant if g f = f , where g is any element of G. If the mapping and
the group actions commute, g f = f g, f is said to be equivariant. The governing
dynamical equations are equivariant with respect to the symmetry group G.

Commentary

Remark 10.1. Literature. We found Tinkham [16] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Slightly longer, but perhaps student-
friendlier is Part I Basic Mathematics of Dresselhaus et al. [5]. Byron and Fuller [1], the
last chapter of volume two, offers an introduction even more compact than Tinkham’s.
For a summary of the theory of discrete groups see, for example, Johnson [10]. Chapter 3
of Rebecca Hoyle [9] is a very student-friendly overview of the group theory a nonlinear
dynamicist might need, with exception of the quotienting, reduction of dynamics to a
fundamental domain, which is not discussed at all. For that, Fundamental domain wiki
is very clear. We also found Quotient group wiki helpful. Curiously, we have not read
any of the group theory books that Hoyle recommends as background reading, which just
confirms that there are way too many group theory books out there. For example, one that
you will not find useful at all is ref. [3]. The reason is presumably that in the 20th century
physics (which motivated much of the work on the modern group theory) the focus was on

appendix A1.6the linear representations used in quantum mechanics, crystallography and quantum field
theory. We shall need these techniques in Chapter 25, where we reduce the linear action
of evolution operators to irreducible subspaces. However, in ChaosBook we are looking
at nonlinear dynamics, and the emphasis is on the symmetries of orbits, their reduced state
space sisters, and the isotypic decomposition of their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the
landscape between the boredom of regular motions and the thrills of chaos. Landau [11]
was the first to discuss the role symmetries play in constraining types of possible bifurca-
tions, in the context to weak nonlinear theory of the instabilities in fluid flows. Chapter
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4 of Rebecca Hoyle [9] is a student-friendly introduction to the treatment of bifurca-
tions in presence of symmetries, worked out in full detail and generality in monographs
by Golubitsky, Stewart and Schaeffer [7], Golubitsky and Stewart [6] and Chossat and
Lauterbach [2]. Sartori [14] Sect. 1.3 offers a concise summary of group-theoretical def-
initions. Chap. 8 of Govaerts [8] reviews numerical methods that employ equivariance
with respect to compact, and mostly discrete groups. (continued in remark 12.1)
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10.4 Examples

Example 10.1. Finite groups. Some finite groups that frequently arise in applications:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• S n: the symmetric group of all permutations of n symbols, order n!.
click to return: p. 168

Example 10.2. Cyclic and dihedral groups. The cyclic group Cn ⊂ SO(2) of order
n is generated by one element. For example, this element can be rotation through 2π/n.

The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take σ corresponding to reflection in the
x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n, then
Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.

click to return: p. 168

Example 10.3. Discrete groups of order 2 on R3. Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidean space R3:

reflections: σ(x, y, z) = (x, y,−z)
rotations: C1/2(x, y, z) = (−x,−y, z) (10.12)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0, 0, 0). Singly, each operation generates a group of
order 2: D1 = {e, σ}, Z2 = {e,C1/2}, and D1 = {e, P}. Together, they form the dihedral
group D2 = {e, σ,C1/2, P} of order 4. (continued in example 10.4)

click to return: p. 169

Example 10.4. Discrete operations on R3. (Continued from example 10.3) The matrix
representation of reflections, rotations and inversions defined by (10.12) is

D(σ) =

 1 0 0
0 1 0
0 0 −1

 , D(C1/2) =

 −1 0 0
0 −1 0
0 0 1

 , D(P) =

 −1 0 0
0 −1 0
0 0 −1

 ,
(10.13)

with det D(C1/2) = 1, det D(σ) = det D(P) = −1; that is why we refer to C1/2 as a
rotation, and σ, P as inversions. As g2 = e in all three cases, these are groups of order 2.
(continued in example 10.6)

click to return: p. 169

Example 10.5. A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 10.2, piecewise-
linear on the state space M = [−1, 1], a compact 1-dimensional line interval, split into
three regionsM = ML ∪MC ∪MR. Denote the reflection operation by σx = −x. The
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Figure 10.2: The bimodal Ulam sawtooth map
with the D1 symmetry f (−x) = − f (x). If the tra-
jectory (a) x0 → x1 → x2 → · · · is a solution, so
is its reflection (b) σx0 → σx1 → σx2 → · · · .
(work through example 10.5; continued in fig-
ure 11.4).
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xσ
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2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall refer
to it as D1, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent trajectory
because σxn+1 = σ f (xn) = f (σxn) (continued in example 11.3)

click to return: p. 170

Example 10.6. Equivariance of the Lorenz flow. (Continued from example 10.4) The
velocity field in Lorenz equations (2.23)

exercise 10.3 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (10.14)

is equivariant under the action of cyclic group Z2 = {e,C1/2} acting on R3 by a π rotation
about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (10.15)

(continued in example 11.8)
click to return: p. 170

Example 10.7. Subgroups, cosets of D3. (Continued from example 11.6)
The 3-disks symmetry group, the D3 dihedral group (11.8) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C1/3,C2/3}, D3 . (10.16)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C1/3}, {σ23,C2/3}. The coset of sub-
group C3 = {e,C1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is D3, then all
elements in a coset act on it the same way, for example {σ12, σ13, σ23}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible cycle
multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full sym-
metry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-disk billiard.
Examples of other multiplicities are given in figure 11.1 and figure 11.6. (continued in
example 10.8)

click to return: p. 171

Example 10.8. Classes of D3. (Continued from example 10.7)
The three classes of the 3-disk symmetry group D3 = {e,C1/3,C2/3, σ, σC1/3, σC2/3}, are
the identity, any one of the reflections, and the two rotations,

{e} ,


σ12
σ13
σ23

 ,

{
C1/3

C2/3

}
. (10.17)

In other words, the group actions either flip or rotate. (continued in example 11.7)
click to return: p. 171
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Example 10.9. Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in streamwise
and spanwise directions. The Navier-Stokes equations for the plane Couette flow have
two discrete symmetries: reflection through the (streamwise , wall-normal) plane, and
rotation by π in the (streamwise , wall-normal) plane. That is why the system has equi-
librium and periodic orbit solutions, as well as relative equilibrium and relative periodic
orbit solutions discussed in chapter 12). They belong to discrete symmetry subspaces.
(continued in example 12.2)

click to return: p. 170
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Exercises

10.1. Transitivity of conjugation. Assume that g1, g2, g3 ∈

G and both g1 and g2 are conjugate to g3. Prove that g1
is conjugate to g2.

10.2. Isotropy subgroup of gx. Prove that for g ∈ G, x and
gx have conjugate isotropy subgroups:

Ggx = g Gx g−1

10.3. Z2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (10.14)

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (10.18)

is equivariant under the action of cyclic group Z2 =

{e,C1/2} acting on R3 by a π rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 10.6. (continued in exer-
cise 11.4)

10.4. Z2-equivariance of Burke-Shaw system. The
Burke-Shaw system [4, 12, 13, 15] is a close relative of
the Lorenz system:

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 −s(x + y)
−y − sxz
sxy + v

 (10.19)

(a) Plot a long-time simulation [4, 12] for (s, v) =

(10.5, 4.272).

(b) Verify that the Burke-Shaw equations are equiv-
ariant under the action of the cyclic group Z2 =

{e,C1/2} acting on R3 by a π rotation about the z
axis,

C1/2(x, y, z) = (−x,−y, z) .

10.5. D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral
triangle:

1

2  3 .

(a) List the group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of D3.
(continued as exercise 12.2 and exercise 25.3)
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Chapter 11

World in a mirror

Even the butterfly that started the hurricane flapped its
wings for a reason.

— Louis Menand, Thinking Sideways, New Yorker,
30 March 2015

So far we have discussed the structure of a group as an abstract entity. Now
we switch gears and describe the action of the group on the state space. This
is the key step; if a set of solutions is equivalent by symmetry (let’s say they

live on a circle), we would like to represent it by a single solution (cut the circle at
a point, or rewrite the dynamics in a ‘ symmetry reduced state space’, where the
circle of equivalent solutions is represented by a single state space point). In this
chapter we study quotienting of discrete symmetries, and in chapter 12 we study
symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapter 25.

As we shall show here and in chapter 25, discrete symmetries simplify the dy-
namics in quite a beautiful way: If dynamics is invariant under a set of discrete
symmetries G, the state space M is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile, the fundamental
domain M/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorter relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories.

section 14.1
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11.1 Symmetries of solutions

Solutions of an equivariant system can satisfy all of system’s symmetries, a sub-
group of them, or have no symmetry at all. For a generic ergodic orbit f t(x) the
trajectory and any of its images under action of g ∈ G are distinct with probability
one, f t(x) ∩ g f t′(x) = ∅ for all t, t′. For example, a typical turbulent trajectory of
pipe flow has no symmetry beyond the identity, so its symmetry group is the trivial
subgroup {e}. For compact invariant sets, such as fixed points and periodic orbits
the situation is very different. For example, the symmetry of the laminar solution
of the plane Couette flow is the full symmetry of its Navier-Stokes equations. In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space point x into itself,

Gx = {g ∈ G : gx = x} , (11.1)

is called the isotropy group (or stability subgroup or little group) of x. Think of a
point (0, 0, z), z , 0 on z axis in 3 dimensions. Its isotropy group is the O(2) group
of rotations in the {x, y} plane.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics. We

exercise 11.1
thus also need a notion of set-wise invariance, as opposed to the above point-wise
invariance under Gx.

Definition: Symmetry of a solution. We shall refer to the maximal subgroup
Gp ⊆ G of actions on state space points within a compact setMp, which leave no
point fixed but leave the set invariant, as the symmetry Gp of the solution labelled
p,

Gp = {g ∈ Gp | gx ∈ Mp, gx , x for g , e} , (11.2)

and reserve the notion of ‘isotropy’ of a setMp for the subgroup Gp that leaves
each point in it fixed.

A cycle p is Gp-symmetric (set-wise symmetric, self-dual) if the action of
elements of Gp on the set of periodic pointsMp reproduces the set. g ∈ Gp acts
as a shift in time, mapping the periodic point x ∈ Mp into another periodic point.

example 11.1

p. 192

Definition: Multiplicity. For a finite discrete group, the multiplicity of orbit p
is mp = |G|/|Gp|.
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Definition: Stratum. A stratum is the union of group orbits of the same type:
two orbits p, p′ belong to the same stratum if and only if their symmetries Gp, Gp′

are conjugate. In other words, a stratum is to state space what a class is to the set
of all group elements in G.

Definition: Gp-fixed orbits: An equilibrium xq or a compact solution p is point-
wise or Gp-fixed if it lies in the invariant points subspace Fix

(
Gp

)
, gx = x for all

g ∈ Gp, and x = xq or x ∈ Mp. A solution that is G-invariant under all group G
operations has multiplicity 1. Stability of such solutions will have to be examined
with care, as they lie on the boundaries of domains related by the action of the
symmetry group.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying that Gp is the symmetry of the solution p, or that
the orbitMp is ‘Gp-invariant’, accomplishes as much without confusing you with
all these names (see remark 10.1). In what follows we say “the symmetry of the
periodic orbit p is Z2 = {e,R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
G s̃ set-wise invariant cycles s built by repeats of relative cycle segments s̃, and
(iii) isotropy subgroup GEQ-invariant equilibria or point-wise Gp-fixed cycles b.
These are illustrated in figures of examples 11.1 to 11.3.

example 11.2

p. 192

Definition: Asymmetric (or fully asymmetric) orbits. An orbit (in particular,
an equilibrium or periodic orbit) has no symmetry if {xa} ∩ {gxa} = ∅ for any
g ∈ G, where {xa} is the set of periodic points belonging to the cycle a. Thus
g ∈ G generate |G| distinct orbits with the same number of points and the same
stability properties.

example 11.3

p. 192

example 11.5

p. 193

example 11.6

p. 193

In example 11.7, we illustrate the non-abelian, noncommutative group struc-
exercise 10.5

ture of the 3-disk game of pinball of sect. 1.3, which has symmetry group elements
that do not commute.

example 11.7

p. 194
exercise 11.4
exercise 11.5

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the
iconic flow of Lorenz of figure 11.2 (a). The example is long but worth work-
ing through: the symmetry-reduced dynamics is much simpler than the original
Lorenz flow.
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Figure 11.1: The 3-disk pinball cycles: (a) 12,
13, 23, 123; the clockwise 132 not drawn. (b)
Cycle 1232; the symmetry related 1213 and 1323
not drawn. (c) Cycle 12323; cycles 12123, 12132,
12313, 13131 and 13232 not drawn. (d) The
fundamental domain, i.e., the light-shaded 1/6th
wedge in (a), consisting of a section of a disk, two
segments of symmetry axes acting as straight mir-
ror walls, and the escape gap to the left. The above
14 full-space cycles restricted to the fundamental
domain and recoded in binary reduce to the two
fixed points 0, 1, 2-cycle 10, and 5-cycle 00111
(not drawn). See figure 11.3 for the 001 cycle.
Work through example 11.6.

(a) (b)

(c) (d)

example 11.8

p. 194

example 11.9

p. 195

Note: nonlinear coordinate transformations such as the doubled-polar an-
gle representation (11.13) and figure 11.2 (b) are not required to implement the
symmetry quotienting M/G. We deploy them only as a visualization aid that
might help the reader disentangle 2-dimensional projections of higher-dimension-
al flows. All numerical calculations can still be carried in the initial, full state
space formulation of a flow, with symmetry-related points identified by linear
symmetry transformations.

in depth:

appendix A25, p. 993

11.2 Relative periodic orbits

So far we have demonstrated that symmetry relates classes of orbits. Now we
show that a symmetry reduces computation of periodic orbits to repeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to the multiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g ∈ Gp if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the sym-
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(a)

EQ2EQ1

EQ0

x

y

z

(b) (c)

Figure 11.2: (a) Lorenz attractor of figure 3.5, the full state space coordinates [x, y, z], with the un-
stable manifold orbits Wu(EQ0). (Green) is a continuation of the unstable e(1) of EQ0, and (brown)
is its π-rotated symmetric partner. (b) Lorenz attractor plotted in [x̂, ŷ, z], the doubled-polar angle
coordinates (11.13), with points related by π-rotation in the [x, y] plane identified. Stable eigen-
vectors of EQ0: e(3) and e(2), along the z axis (11.12). Unstable manifold orbit Wu(EQ0) (green)
is a continuation of the unstable e(1) of EQ0. (c) Blow-up of the region near EQ1: The unstable
eigenplane of EQ1 defined by Re e(2) and Im e(2), the stable eigenvector e(3). The descent of the EQ0

unstable manifold (green) defines the innermost edge of the strange attractor. As it is clear from (a),
it also defines its outermost edge. Work through examples 11.8 and 11.9. (E. Siminos)

metry related segment. The cycle p can thus be subdivided into mp repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats: see figure 11.1 for examples. Thus, in the presence of a
discrete symmetry, the notion of a periodic orbit is replaced by the notion of the
shortest segment of the full state space cycle which tiles the cycle under the action
of the group. In what follows we refer to this segment as a relative periodic orbit.
In the literature this is sometimes referred to as a short periodic orbit, or, for finite
symmetry groups, as a pre-periodic orbit.

The relative periodic orbit p (or its equivariant periodic orbit) is the orbit x(t)
in state spaceM which exactly recurs

x(t) = gp x(t + T p) (11.3)

for the shortest fixed relative period T p and a fixed group action g ∈ Gp. These
group actions are referred to as ‘shifts’ or, in the case of continuous symmetries,
as ‘phases.’ For a discrete group gm = e and finite m (10.3), the period of the
corresponding full state space orbit is given by the mp × (period of the relative
periodic orbit), Tp = |Gp|T p̃, and the ith Floquet multiplier Λp,i is given by Λ

mp
p̃,i of

the relative periodic orbit. The elements of the quotient space b ∈ G/Gp generate
the copies bp, so the multiplicity of the full state space cycle p is mp = |G|/|Gp|.

example 11.10

p. 195

11.3 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson

discrete - 18feb2019 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 11. WORLD IN A MIRROR 185

So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit
segments. The next step achieves much more: it replaces each class by a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state spaceM can be completely
tiled by a fundamental domain M̃ and its symmetry images M̃a = aM̃,
M̃b = bM̃, . . . under the action of the symmetry group G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| . (11.4)

See figure 10.1 for an example: the tiling of the 3-disk with 6 copies of the
fundamental domain.

2. Discrete symmetry can be used to restrict all computations to the funda-
mental domain M̃ = M/G, the reduced state space quotient of the full
state space M by the group actions of G. Several examples are given in
figures 11.1, 11.5 and 11.3.

We can use the invariance condition (10.4) to move the starting point x
into the fundamental domain x = ax̃, and then use the relation a−1b =

h−1 to also relate the endpoint y ∈ M̃b to its image in the fundamental
domain M̃. While the global trajectory runs over the full space M, the
restricted trajectory is brought back into the fundamental domain M̃ any
time it exits into an adjoining tile; the two trajectories are related by the
symmetry operation h which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are removed by reduction
of the full dynamics to the dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to precisely one fun-
damental domain (or relative) cycle p̃.

4. Conversely, each fundamental domain cycle p̃ traces out a segment of the
global cycle p, with the end point of the cycle p̃ mapped into the irreducible
segment of p with the group element hp̃. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elements G = {e, g2, . . . , g|G|} which map the fundamental do-
main M̃ into its copies gM̃, serve also as letters of a symbolic dynamics
alphabet.

exercise 11.3

For a symmetry reduction in presence of continuous symmetries, see sect. 13.2.

example 11.4

p. 192

example 11.11

p. 195
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Figure 11.3: (a) The pair of full-space 9-cycles,
the counter-clockwise 121232313 and the clock-
wise 131323212 correspond to (b) one fundamen-
tal domain 3-cycle 001.

(a) (b)

11.4 Life on the border

In what follows, we shall have to worry also about the boundaries that define
the fundamental domain M̃. Here we by definition include boundaries into the
fundamental tile. The state space transformation g ∈ G leaves invariant the set of
boundary points (see (11.4))

MB = M̃ ∩ M̃a ∩ M̃b · · · ∩ M̃|G| . (11.5)

Peculiar effects, however, arise for orbits that run along symmetry lines that border
a fundamental domain. For example, under reflection σ across a symmetry axis,
the axis itself remains invariant. The properties of boundary orbits that belong
to G-fixed (point-wise invariant) boundary sets will require a bit of thinking. In
our 3-disk example, no such orbits are possible, but they exist in other systems,
such as in the bounded region of the Hénon-Heiles potential (remark 11.2), in 1d
maps of example 11.3, and in Lorenz flow of example 11.8, where the z axis is
a G-invariant border. While boundary orbits are invariant under some symmetry
operations, their neighborhoods are not.

That’s is why one sometimes surgically removes boundaries, and defines

Definition: Free action. An group action on a state space submanifold M̂ is
free if all of the isotropy subgroups Gx, x ∈ M̂ are trivial.

The fact that open neighborhoods of the border are in part outside of it com-
plicates analysis (linear stability of orbits within the boundary has eigenvectors
is the full state space). This affects the Jacobian matrix Mp of the orbit and its
Floquet multipliers.

While for low-dimensional state spaces there are typically relatively few bound-
ary orbits, they tend to be among the shortest orbits, and thus play a key role in
dynamics.

section 25.4.3
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11.5 Invariant polynomials

All invariants are expressible in terms of a finite number
among them. We cannot claim its validity for every group
G; rather, it will be our chief task to investigate for each
particular group whether a finite integrity basis exists or
not; the answer, to be sure, will turn out affirmative in the
most important cases.

—Hermann Weyl, a motivational quote on the “so-
called first main theorem of invariant theory”

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
· · · ) invariant under a given set of symmetries.

Definition: G-invariant function. A function is said to be G-invariant if

f (gx) = f (x) , x ∈ M . (11.6)

A G-invariant function is constant along the group orbit of x.

Invariant polynomial functions play a particularly important role in invariant
theory. The set of all G-invariant polynomial functions of x which is finitely gener-
ated, according to the key result of the representation theory of invariant functions
is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (11.7)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as ‘doubled-polar angle representation’ (11.13) and the 5-dimensional
example of sect. 13.6. We prefer to apply the symmetry to the system as given,
rather than undertake a series of nonlinear coordinate transformations that the the-
orem suggests. (What ‘compact’ in the above refers to will become clearer after

exercise 11.2
we have discussed continuous symmetries. For now, it suffices to know that any
finite discrete group is compact.)

example 11.12

p. 196
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Résumé

If a dynamical system (M, f ) has a symmetry G, the symmetry should be de-
ployed to ‘quotient’ the state space to fundamental domain M̂ =M/G, i.e., iden-
tify all symmetry-equivalent x ∈ M on each group orbit, thus replacing the full
state space dynamical system (M, f ) by the symmetry-reduced (M̂, f̂ ). The main
result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space
solution p is the group of its symmetries Gp ⊆ G of order 1 ≤ |Gp| ≤ |G|, whose
elements leave the orbitMp invariant. The elements of Gp act onMp as shifts,
tiling it with |Gp| copies of its shortest invariant segment, the relative periodic
orbit p̃. The elements of the coset b ∈ G/Gp generate mp = |G|/|Gp| equivalent
copies of p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state space (fundamental domain)M/G, you will
find the life as a fundamentalist so much simpler that you will never return to your
full state space ways of yesteryear. The reduction to the fundamental domain
M̃ = M/G simplifies symbolic dynamics and eliminates symmetry-induced de-
generacies. For the short orbits the labor saving is dramatic. For example, for the
3-disk game of pinball there are 256 periodic points of length 8, but reduction to
the fundamental domain non-degenerate prime cycles reduces this number to 30.
By chapter 24, the savings will be even more dramatic: relative periodic orbits
will tile the infinite periodic state space, and replace a numerical simulation of
diffusion in the infinite domain by an exact calculation of the diffusion constant,
on a compact torus.
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Commentary

Remark 11.1. Symmetries of the Lorenz equation. (Continued from remark 2.3)
After having studied example 11.8 you will appreciate why ChaosBook.org starts out
with the symmetry-less Rössler flow (2.28), instead of the better known Lorenz flow
(2.23). Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the
baby out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds
make possible a robust heteroclinic connection absent from Rössler flow, with unstable
manifold of an equilibrium flowing into the stable manifold of another equilibrium. How
such connections are forced upon us is best grasped by perusing the chapter 13 ‘Hetero-
clinic tangles’ of the inimitable Abraham and Shaw Classics Illustrated [1]. Their beau-
tiful hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz
flow (and its high-dimensional Navier-Stokes relatives) better than any computer simu-
lation. Miranda and Stone [20] were thefirst to quotient the Z2 symmetry and explicitly
construct the desymmetrized, ‘proto-Lorenz system’, by a nonlinear coordinate transfor-
mation into the Hilbert-Weyl polynomial basis invariant under the action of the symme-
try group [6]. For in-depth discussion of symmetry-reduced (‘images’) and symmetry-
extended (‘covers’) topology, symbolic dynamics, periodic orbits, invariant polynomial
bases etc., of Lorenz, Rössler and many other low-dimensional systems there is no better
reference than the Gilmore and Letellier monograph [10]. They interpret [17] the proto-
Lorenz and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes’,
and call quotiented flows such as (Lorenz)/Z2 ‘images.’ Our ‘doubled-polar angle’ visu-
alization of figure 14.14 is a proto-Lorenz in disguise; we, however, integrate the flow and
construct Poincaré sections and return maps in the original Lorenz [x, y, z] coordinates,
without any nonlinear coordinate transformations. The return map figure 14.15 is remi-
niscent in shape both of the one given by Lorenz in his original paper, and the one plotted
in a radial coordinate by Gilmore and Letellier. Nevertheless, it is profoundly different:
our return maps are from unstable manifold → itself, and thus intrinsic and coordinate
independent. In this we follow Christiansen et al. [5]. This construction is necessary
for high-dimensional flows in order to avoid problems such as double-valuedness of re-
turn map projections on arbitrary 1-dimensional coordinates, encountered already in the
Rössler example of figure 3.4. More importantly, as we know the embedding of the un-
stable manifold into the full state space, a periodic point of our return map is - regardless
of the length of the cycle - the periodic point in the full state space, so no additional New-
ton searches are needed. In homage to Lorenz, we note that his return map was already
symmetry-reduced: as z belongs to the symmetry invariant Fix (G) subspace, one can re-
place dynamics in the full space by ż, z̈, · · · . That is G-invariant by construction [10].

Remark 11.2. Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a Z2 symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [4,
11, 22], a D4 = C4v symmetry in quartic oscillators [7, 18], in the pure x2y2 potential [3,
19] and in hydrogen in a magnetic field [8], and a D2 = C2v = V4 = Z2 × Z2 symmetry
in the stadium billiard [21]. A number of nontrivial desymmetrizations are carried out in
the Balasz and Voros review [2]. An example of a system with D3 = C3v symmetry is
provided by the motion of a particle in the Hénon-Heiles potential [12–15], as well as in
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the Chernoff-Barrow-Lifshitz-Khalatnikov-,Sinai-Khanin-Shchur cosmology [16].

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axis cannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require
the special treatment. A partial classification of the 67 possible symmetries of solutions
of the plane Couette flow of example 10.9, and their reduction to 5 conjugate classes is
given in ref. [9].
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[4] F. Christiansen and P. Cvitanović, “Periodic orbit quantization of the anisotropic
Kepler problem”, Chaos 2, 61–69 (1992).
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Figure 11.4: The D1-equivariant bimodal sawtooth map of figure 10.2 has three types of periodic
orbits: (a) D1-fixed fixed point C, asymmetric fixed points pair {L,R}. (b) D1-symmetric (setwise
invariant) 2-cycle LR, composed of the relative cycle segment from L to R and its repeat from R to
L. (c) Asymmetric 2-cycles pair {LC,CR}. (study example 11.3; continued in figure 11.5) (Y.
Lan)

11.6 Examples

Example 11.1. D1-symmetric cycles. For D1 the period of a set-wise symmetric cycle
is even (ns = 2ns̃), and the mirror image of the xs periodic point is reached by traversing
the relative periodic orbit segment s̃ of length ns̃, f ns̃ (xs) = σxs, see figure 11.4 (b).

click to return: p. 181

Example 11.2. D1-invariant cycles. In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 11.4 (a).
As reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 11.4, and work out the symbolic dynamics of
such reflection symmetric systems in example 15.6.

click to return: p. 182

Example 11.3. Group D1 - a reflection symmetric 1d map. Consider the bi-
modal ‘sawtooth’ map of figure 11.4, with the state space M = [−1, 1] split into three
regions M = {ML,MC ,MR} which we label with a 3-letter alphabet L(eft), C(enter),
and R(ight). The symbolic dynamics is complete ternary dynamics, with any sequence
of letters A = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no
additional grammar rules required, see example 14.7 below). The D1-equivariance of the
map, D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.

Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just this
fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, σ maps it
into the reflected cycle σa, with the same period and the same stability properties, see the
fixed points pair {L,R} and the 2-cycles pair {LC,CR} in figure 11.4 (c).

click to return: p. 182

Example 11.4. Group D1 and reduction to the fundamental domain. Consider again
the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of example 11.3,
with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can be tiled by half-line
M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point. The
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Figure 11.5: The bimodal Ulam sawtooth map of
figure 11.4 with the D1 symmetry f (−x) = − f (x),
restricted to the fundamental domain. f (x) is in-
dicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
point C is the fixed point 0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point 2,
and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. (b) The asymmetric
2-cycle pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-cycles.
(work through example 11.4 ) (Y. Lan)
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dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every time a
trajectory leaves this interval, it is mapped back using σ.

In figure 11.5 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 11.5:

In (a) the boundary fixed point C is also the fixed point 0. The asymmetric fixed point
pair {L,R} is reduced to the fixed point 2, and the full state space symmetric 2-cycle LR
is reduced to the fixed point 1. (b) The asymmetric 2-cycle pair {LC,CR} is reduced to
the 2-cycle 01. Finally, the symmetric 4-cycle LCRC is reduced to the 2-cycle 02. This
completes the conversion from the full state space for all fundamental domain fixed points
and 2-cycles, frame (c).

click to return: p. 185

Example 11.5. C3v = D3 symmetry of the 3-disk game of pinball. If the three
unit-radius disks in figure 10.1 are equidistantly spaced, our game of pinball has a sixfold
symmetry. The symmetry group of relabeling the 3 disks is the permutation group S3;
however, it is more instructive to think of this group geometrically, as C3v, also known as
the dihedral group

D3 = {e, σ12, σ13, σ23,C1/3,C2/3} , (11.8)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}.
(continued in example 11.6)

click to return: p. 182

Example 11.6. 3-disk game of pinball - symmetry-related orbits. (Continued from
example 11.5) Applying an element (identity, rotation by ±2π/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory. For
instance, σ23, the flip across the symmetry axis going through disk 1 interchanges the
symbols 2 and 3; it maps the cycle 12123 into 13132, figure 11.1 (c). Cycles 12, 23, and
13 in figure 11.1 (a) are related to each other by rotation by ±2π/3, or, equivalently, by a
relabeling of the disks. (continued in example 10.7)

click to return: p. 182
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Figure 11.6: Cycle 121212313 has multiplicity 6;
shown here is 121313132 = σ23121212313. How-
ever, 121231313 which has the same stability and
period is related to 121313132 by time reversal,
but not by any C3v symmetry.

Example 11.7. 3-disk game of pinball - cycle symmetries. (Continued from
example 10.8) The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by the two
cycles 123 and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped
into each other by any reflection, figure 11.6 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the symmetries of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant subgroup is
G p̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 11.6 (b).

A cycle of no symmetry, such as 12323, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
figure 11.6 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may be related
by time reversal symmetry. An example are the cycles 121212313 and 313212121 =

121213132 which have the same periods and stabilities, but are related by no space sym-
metry, see figure 11.6. (continued in example 11.11)
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Example 11.8. Desymmetrization of Lorenz flow. (Continuation of exam-
ple 10.6) Lorenz equation (10.14) is equivariant under (10.15), the action of order-2
group Z2 = {e,C1/2}, where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (11.9)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible subspaces
M = M+ ⊕M−, the z-axisM+ and the [x, y] planeM−, with projection operators onto
the two subspaces given by

P+ =
1
2

(1 + C1/2) =

 0 0 0
0 0 0
0 0 1

 , P− =
1
2

(1 −C1/2) =

 1 0 0
0 1 0
0 0 0

 . (11.10)

As the flow is Z2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-
mutes with C1/2, and, as we have already seen in example 4.6, the EQ0 stability matrix
decomposes into [x, y] and z blocks.

The 1-dimensional M+ subspace is the fixed-point subspace, with the z-axis points
left point-wise invariant under the group action

M+ = Fix (Z2) = {x ∈ M | g x = x for g ∈ {e,C1/2}} (11.11)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A Z2-fixed point x(t) in
Fix (Z2) moves with time, but according to (10.10) remains within x(t) ∈ Fix (Z2) for all
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times; the subspaceM+ = Fix (Z2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (10.14) is
reduced to the exponential contraction to the EQ0 equilibrium,

ż = −b z . (11.12)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dimens-
ional, with interesting dynamics of their own. Even in this simple case this subspace plays
an important role as a topological obstruction: the orbits can neither enter it nor exit it, so
the number of windings of a trajectory around it provides a natural, topological symbolic
dynamics.

TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy − bz
in the Lorenz equation (10.14) send all initial conditions withinM− = (x(0), y(0), 0) into
the full, z(t) , 0 state spaceM/M+. (continued in example 11.9)
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(E. Siminos and J. Halcrow)

Example 11.9. Lorenz flow in doubled-polar angle representation. By taking as
a Poincaré section any C1/2-equivariant, non-self-intersecting surface that contains the z
axis, the state space is divided into a half-space fundamental domain M̃ =M/Z2 and its
180o rotation C1/2M̃. An example is afforded by the P plane section of the Lorenz flow
in figure 3.5. Take the fundamental domain M̃ to be the half-space between the viewer
and P. Then the full Lorenz flow is captured by re-injecting back into M̃ any trajectory
that exits it, by a rotation of π around the z axis.

chapter 30

As any such C1/2-invariant section does the job, a choice of a ‘fundamental domain’
is here largely mater of taste. For purposes of visualization it is convenient to make
the double-cover nature of the full state space by M̃ explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (x, y) in polar coordinates (x, y) =

(r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar angle representation:’
section 11.5
exercise 11.4(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (11.13)

as in figure 11.2 (b). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant, see example 11.12.
In this representation the M̃ = M/Z2 fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [x̂, ŷ] plane. (continued in example 14.4)

click to return: p. 183

(E. Siminos and J. Halcrow)

Example 11.10. Relative periodic orbits of Lorenz flow. (Continuation of exam-
ple 11.8) The relation between the full state space periodic orbits, and the fundamental
domain (11.13) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rp maps into a single cycle p̃ in the fundamental domain, and
any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a relative periodic orbit p̃.

click to return: p. 184

Example 11.11. 3-disk game of pinball in the fundamental domain.

If the dynamics is equivariant under interchanges of disks, the absolute disk labels
εi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk increments
gi, where gi is the discrete group element that maps disk i−1 into disk i. For 3-disk system
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gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation by C to the next
disk (symbol ‘1’). An immediate gain arising from symmetry invariant relabeling is that
N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions on the admissible
sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 11.1(d)). A set of orbits related in the full space by discrete symme-
tries maps onto a single fundamental domain orbit. The reduction to the fundamental
domain desymmetrizes the dynamics and removes all global discrete symmetry-induced
degeneracies: rotationally symmetric global orbits (such as the 3-cycles 123 and 132)
have multiplicity 2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have
multiplicity 3, and global orbits with no symmetry are 6-fold degenerate. Table 15.2 lists
some of the shortest binary symbols strings, together with the corresponding full 3-disk
symbol sequences and orbit symmetries. Some examples of such orbits are shown in
figures 11.6 and 11.3. (continued in example 15.7)
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Example 11.12. Polynomials invariant under discrete operations on R3. (Continued
from example 10.3) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant
function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.

C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant function
can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one syzygy
between the basis polynomials, (x2)(y2) − (xy)2 = 0.

P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzygies
between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2, P} the G-invariant polynomial basis is
{u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0.

click to return: p. 187
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Exercises

11.1. Gx ⊂ G. The maximal set of group actions which maps
a state space point x into itself,

Gx = {g ∈ G : gx = x} , (11.14)

is called the isotropy group (or stability subgroup or
little group) of x. Prove that the set Gx as defined in
(11.14) is a subgroup of G.

11.2. Polynomials invariant under discrete operations on
R3. Prove that the {e, σ}, {e,C1/2}, {e, P} and
{e, σ,C1/2, P}-invariant polynomial basis and syzygies
are those listed in example 11.12.

11.3. Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.},
· · · ,
correspond to the fundamental domain cycles 0, 1,
01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 15.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 11.3.

(c) Optional: Can you see how the group elements
listed in table 15.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 15.7)

11.4. Lorenz system in polar coordinates: group theory.
Use (A2.13), (A2.14) to rewrite the Lorenz equa-

tion (10.18) in polar coordinates (r, θ, z), where (x, y) =

(r cos θ, r sin θ).

1. Show that in the polar coordinates Lorenz flow
takes form

ṙ =
r
2

(−σ − 1 + (σ + ρ − z) sin 2θ

+(1 − σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z + (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (11.15)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/Z2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation in the [x, y] plane.

4. Rewrite (10.18) in the invariant polynomial basis
of example 11.12 and exercise 11.15.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (11.15) is either a periodic or-
bit or a relative periodic orbit (11.3) of the Lorenz
flow in the (x, y, z) representation.

By going to polar coordinates we have quotiented out the
π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

11.5. Proto-Lorenz system. Here we quotient out the Z2
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [20].

1. Rewrite the Lorenz equation (10.14) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (11.16)

show that it takes form u̇
v̇
ż

 =

 −(σ + 1)u + (σ − r)v + (1 − σ)N + vz
(r − σ)u − (σ + 1)v + (r + σ)N − uz − uN

v/2 − bz


N =

√
u2 + v2 . (11.17)

2. Show that this is the (Lorenz)/Z2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation (11.9).

3. Show that (11.16) is invertible. Where does the
inverse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(10.14) and in the proto-Lorenz form (11.17)
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for the Lorenz parameter values σ = 10, b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.42)
look like now? Interpret.

10. Show that the coordinate change (11.16) is the
same as rewriting (11.15) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x + iy, z2 =

u + iv.

11. How is (11.17) related to the invariant polynomial
basis of example 11.12 and exercise 11.15?
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Chapter 12

Relativity for cyclists

Physicists like symmetry more than Nature
— Rich Kerswell

What if the laws of motion retain their form for a family of coordinate fra-
mes related by continuous symmetries? The finite groups intuition is of
little use here.

example 12.1

p. 215

First of all, why worry about continuous symmetries? In physics, we usually
assume isotropy, that is the laws of nature do not depend on where we are. In
many cases (single or many body quantum mechanics, statistical physics, field
theories etc.), the system studied is defined over an infinite or periodic domain.
For linear problems of this kind, one takes care of the spatial dependence via a
Fourier expansion (2.17), and solves the problem for each mode separately. In
nonlinear theories one might start with a Fourier expansion, but the modes couple
nonlinearly, and hence one needs to solve for all of them simultaneously. The two-

section 12.4.3
modes system, which we shall introduce in sect. 12.4.3 and use for illustrations
throughout this chapter and the next, is an example of a few modes truncation of
such Fourier expansion. Figure 12.1 illustrates the effect continuous symmetry
has on dynamics of this particular system. The strange attractor is a mess, and, as
we shall demonstrate, what makes it messy is its continuous symmetry.

remark 12.2

example 12.8

p. 217

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift’. In the presence of a continuous symmetry an orbit ex-
plores the manifold swept by combined action of the dynamics and the symmetry
induced drifts. Further problems arise when we try to determine whether an orbit
shadows another orbit (see figure 16.1 for a sketch of a close pass to a periodic
orbit), or develop symbolic dynamics (partition the state space, as in chapter 14):

199
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Figure 12.1: Several trajectories of the 4-dim-
ensional two-modes system of example 12.8, a
3-dimensional projection: A long trajectory that
originated close to the relative equilibrium TW1 of
the two-modes flow (12.40), with the starting point
on its unstable manifold. The initial segment of
this trajectory, which follows closely the orbit of
TW1 (see figure 12.5), is colored red; beyond that
the trajectory falls onto the strange attractor (col-
ored blue). Superimposed, in magenta, are four
repeats of the shortest relative periodic orbit 1 (see
figure 12.7 (b)). (N.B. Budanur) x 1
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here a 1-dimensional trajectory is replaced by a (N +1)-dimensional ‘sausage’, a
dimension for each continuous symmetry (N being the total number of parameters
specifying the continuous transformation, and ‘1’ for the time parameter t). How
are we to measure distances between such objects? In this chapter and the next one
we shall learn how to develop visualizations of such flows, quotient symmetries,
and offer computationally straightforward methods of reducing the dynamics to
lower-dimensional, reduced state spaces. The methods should also be applicable
to high-dimensional flows, such as translationally invariant fluid flows bounded
by pipes or planes.

example 12.2

p. 215

example 12.3

p. 215

example 12.4

p. 215

Instead of writing yet another tome on group theory, in what follows we
continue to serve group theoretic nuggets on need-to-know basis, through a series
of pedestrian examples (but take a slightly higher, cyclist road in the text proper).

12.1 Continuous symmetries

I’ve always hated the term ‘group orbit’
— John F. Zappatista

But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of sect. 10.1 apply to compact continuous groups as well, and will not
be repeated here.

example 12.5

p. 216

example 12.6

p. 216

Let G be a group, and gM −→ M a group action on the state spaceM. The
[d×d] matrices g acting on vectors in the d-dimensional state space M form a
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linear representation of the group G. If the action of every element g of a group G
commutes with the flow

gv(x) = v(gx) , g f τ(x) = f τ(gx) , (12.1)

G is a symmetry of the dynamics, and, as in (10.4), the dynamics is said to be
G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on state
spaceM.

Definition: Group orbit For any x ∈ M, the group orbitMx of x is the set of
all points that x is mapped to under the groups actions,

Mx = Orb(x) = {g x | g ∈ G} . (12.2)

See page 172 and figure 12.2 (a).

Definition: Fixed-point subspace MH , or a ‘centralizer’ of a subgroup H ⊂ G,
is the set of all state space points that are H-fixed, point-wise invariant under action
of the subgroup

MH = Fix (H) = {x ∈ M | h x = x for all h ∈ H} . (12.3)

Points in the fixed-point subspace MG are fixed points of the full group action,
i.e., points whose group orbit consists of only the point itself (Mx = {x}). They
are called invariant points,

MG = Fix (G) = {x ∈ M | g x = x for all g ∈ G} . (12.4)

If a point is an invariant point of the symmetry group, by the definition of
equivariance (12.1) the velocity at that point is also in MG, so the trajectory
through that point will remain in MG. MG is disjoint from the rest of the state
space since no trajectory can ever enter or leave it.

example 12.6

The time evolution itself is a noncompact 1-parameter Lie group. Thus the
time evolution and the continuous symmetries can be considered on the same Lie
group footing. For a given state space point x a symmetry group of N continu-
ous transformations together with the evolution in time sweeps out, in general, a
smooth (N+1)-dimensional manifold of equivalent solutions, see figure 12.3 (if
the solution has a symmetry, the manifold may have a dimension less than N+1).
For solutions for which the group orbit of xp is periodic in time Tp, the group
orbit sweeps out a compact invariant manifoldMp. The simplest example is the
N = 0, no symmetry case, where the invariant manifoldMp is the 1-torus traced
out by a periodic trajectory p. IfM is a smooth C∞ manifold, and G is compact
and acts smoothly on M, the reduced state space can be realized as a ‘stratified
manifold’, meaning that each group orbit (a ‘stratum’) is represented by a point in

continuous - 30dec2018 ChaosBook.org edition16.4.8, May 25 2020

https://youtube.com/embed/ofeCGK5kVm0
https://youtube.com/embed/XOmt4GgsrJo
https://youtube.com/embed/47OuHQAmVI0


CHAPTER 12. RELATIVITY FOR CYCLISTS 202

Figure 12.2: (a) The group orbit Mx(0) of state
space point x(0), and the group orbitMx(τ) reached
by the trajectory x(τ) time τ later. As any point on
the manifoldMx(τ) is physically equivalent to any
other, the state space is stratified into the union of
group orbits. (b) Symmetry reduction M → M̂

replaces each full state space group orbitMx by a
single point x̂ ∈ M̂.

(a)

M
x(τ)

M
x(0)

x(0)

x(τ)

M

(b)

M̂ x̂(0)

x̂(τ)

the reduced state space, see figure 12.2 and sect. 13.2. Generalizing the descrip-
tion of a non–wandering set of sect. 2.1.1, we say that for flows with continuous
symmetries the non–wandering set Ω of dynamics (2.3) is the closure of the set
of compact invariant manifoldsMp. Without symmetries, we visualize the non–
wandering set as a set of points; in presence of a continuous symmetry, each such
‘point’ is a group orbit.

12.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of angular mo-
mentum.

— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the struc-
ture of a smooth differential manifold, and (ii) the composition map G ×G → G :
(g, h)→ gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy here
emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier analysis.
By a ‘smooth differential manifold’ one means objects like the circle of angles that
parameterize continuous rotations in a plane, example 12.5, or the manifold swept
by the three Euler angles that parameterize SO(3) rotations.

An element of a Lie group continuously connected to identity can be written
as

g(φ) = eφ·T , φ · T =

N∑
a=1

φaTa , (12.5)

where φ ·T is a Lie algebra element, and φa are the parameters of the transforma-
tion. Repeated indices are summed throughout this chapter, and the dot product
refers to a sum over Lie algebra generators. We find it convenient to use bra-ket
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notation for the Euclidean product of two real vectors x, y ∈ M, i.e., indicate
x-transpose times y by

〈x|y〉 = x>y =

d∑
i

xiyi . (12.6)

Unitary transformations exp(φ · T) are generated by sequences of infinitesimal
steps of form

g(δφ) ' 1 + δφ · T , δφ ∈ RN , |δφ| � 1 , (12.7)

where Ta, the generators of infinitesimal transformations, are a set of linearly
independent [d×d] anti-hermitian matrices, (Ta)† = −Ta, acting linearly on the
d-dimensional state spaceM. In order to streamline the exposition, we postpone
discussion of combining continuous coordinate transformations with the discrete
ones to sect. 12.2.1.

exercise 12.1

Unitary and orthogonal groups (as well as their subgroups) are defined as
groups that preserve ‘length’ norms, 〈gx|gx〉 = 〈x|x〉, and infinitesimally their
generators (12.7) induce no change in the norm, 〈Tax|x〉+ 〈x|Tax〉 = 0 , hence the
Lie algebra generators T are antisymmetric for orthogonal groups, and antihermi-
tian for unitary ones,

T† = −T . (12.8)

For continuous groups the Lie algebra, i.e., the set of N generators Ta of
infinitesimal transformations, takes the role that the |G| group elements play in the
theory of discrete groups. The flow field at the state space point x induced by the
action of the group is given by the set of N tangent fields (see figure 12.3)

ta(x)i = (Ta)i jx j , (12.9)

which span the group tangent space at state space point x. The antisymmetry
(12.8) of generators implies that the action of the group on vector x is locally
normal to it,

〈x|ta(x)〉 = 0 . (12.10)

A group tangent (12.9) is labelled by a pair of indices, as it is a vector both in the
group tangent space and in the state space. We shall indicate by 〈ta(x)|tb(y)〉 the
sum over state space inner product only, and by

〈t(x)|t(y)〉 =

N∑
a=1

〈ta(x)|ta(y)〉 = 〈x|T† · T y〉 (12.11)

the sum over both group and spatial dimensions.

Any representation of a compact Lie group G is fully reducible, and invariant
tensors constructed by contractions of Ta are useful for identifying irreps. The
simplest such invariant is

T> · T =
∑
α

C(α)
2 11(α) , (12.12)
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(a)

v

x(τ)

t1
t2

Mx

x

(b)

x(τ)

x(0)

(c)

x(0)

Mx(0)

Mx(τ)

x(τ)

(d)

x(τ)

x(0)

Figure 12.3: (a) In the presence of an N-continuous parameter symmetry, each state space point
x owns (N + 1) tangent vectors: one v(x) along the time flow x(τ), and the N group tangents
t1(x), t2(x), · · · , tN(x) along infinitesimal symmetry shifts, tangent to the N-dimensional group orbit
Mx. (b) Each point has a unique trajectory (blue) under time evolution. (c) Each point also belongs
to a group orbit (green) of symmetry-related points. For SO(2), this is topologically a circle. Any
two points on a group orbit are physically equivalent, but may lie far from each other in state space.
(d) Together, time-evolution and group actions trace out a “wurst” of physically equivalent solu-
tions.

where C(α)
2 is a number called the quadratic Casimir for irrep labeled α, and 11(α)

is the identity on the α-irreducible subspace, 0 elsewhere. The dot product of two
tangent fields is thus a sum weighted by Casimirs,

〈t(x)|t(x′)〉 =
∑
α

C(α)
2 xi δ

(α)
i j x′j . (12.13)

example 12.7

p. 216

example 12.9

p. 218

The really interesting Lie groups are the non-abelian semisimple ones -but- as
we will discuss nothing much more complicated than the abelian special orthogo-
nal group SO(2) of rotations in a plane, we shall not discuss the non-abelian case
here.

fast track:

sect. 12.2, p. 205

12.1.2 Equivariance under infinitesimal transformations

A flow ẋ = v(x) is G-equivariant (12.1), if symmetry transformations commute
with time evolution

v(x) = g−1 v(g x) , for all g ∈ G . (12.14)
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For an infinitesimal transformation (12.7) the G-equivariance condition becomes

v(x) = (1 − φ · T) v(x + φ · Tx) + · · · = v(x) − φ · Tv(x) +
dv
dx

φ · Tx + · · · .

The v(x) cancel, and φa are arbitrary. Denote the group flow tangent field at x by
ta(x)i = (Ta)i jx j. Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v) − A(x) ta(x) = 0 , (12.15)

where A = ∂v/∂x is the stability matrix (4.3). A learned remark: The directional
derivative along direction ξ is limt→0( f (x + tξ) − f (x))/t . The left-hand side of
(12.15) is the Lie derivative of the dynamical flow field v along the direction of
the infinitesimal group-rotation induced flow ta(x) = Tax,

Ltav =

(
Ta −

∂

∂y
(Tax)

)
v(y)

∣∣∣∣∣∣
y=x

. (12.16)

The equivariance condition (12.15) states that the two flows, one induced by the
exercise 12.9

dynamical vector field v, and the other by the group tangent field t, commute if
their Lie derivatives (or the ‘Lie brackets ’ or ‘Poisson brackets’) vanish.

example 12.10

p. 219

example 12.11

p. 219

Checking equivariance as a Lie algebra condition (12.15) is easier than checking
it for global, finite angle rotations (12.14).

12.2 Symmetries of solutions

Let v(x) be the dynamical flow, and f τ the trajectory or ‘time-τ forward map’ of
an initial point x0,

dx
dt

= v(x) , x(τ) = f τ(x0) = x0 +

∫ τ

0
dτ′ v(x(τ′)) . (12.17)

As discussed in sect. 11.1, solutions x(τ) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have no symmetry at all. For
a given solution x(τ), the subgroup that contains all symmetries that fix x (that
satisfy gx = x) is called the isotropy (or stabilizer) subgroup of x. A generic
ergodic trajectory x(τ) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme is equilibrium or
steady solution (2.9), whose isotropy group is the full symmetry group G.

Definition: Equilibrium xEQ =MEQ is a fixed, time-invariant solution,

v(xEQ) = 0 ,

x(xEQ , τ) = xEQ +

∫ τ

0
dτ′ v(x(τ′)) = xEQ . (12.18)
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Figure 12.4: A relative equilibrium orbit starts out at
some point x(0), with the dynamical flow field v(x) =

c · t(x) pointing along the group tangent space. For
the SO(2) symmetry depicted here, the flow traces out
the group orbit of x(0) in time T = 2π/c. An equilib-
rium lives either in the fixed Fix (G) subspace (x3 axis
in this sketch), or on a group orbit as the one depicted
here, but with zero angular velocity c. In that case the
circle (in general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 

Figure 12.5: {x1, y1, x2} plot of the two-modes sys-
tem with initial point on the unstable manifold of TW1.
In figure 12.1 this trajectory is integrated for a longer
time, until it falls on to the strange attractor. (N.B.
Budanur)
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An equilibrium with full symmetry,

g xEQ = xEQ for all g ∈ G ,

lies, by definition, in Fix (G) subspace (12.3), for example the x3 axis in fig-
ure 12.4 (a). The multiplicity of such solution is one. An equilibrium xEQ with
symmetry GEQ smaller than the full group G belongs to a group orbit G/GEQ .
If G is finite there are |G|/|GEQ | equilibria in the group orbit, and if G is contin-
uous then the group orbit of x is a continuous family of equilibria of dimension
dim G − dim GEQ . For example, if the angular velocity c in figure 12.4 (b) equals
zero, the group orbit consists of a circle of (dynamically static) equivalent equi-
libria.

Definition: Relative equilibrium solution xTW(τ) ∈ MTW : the dynamical flow
field points along the group tangent field, with constant ‘angular’ velocity c, and
the trajectory stays on the group orbit, see figure 12.4 (a):

v(x) = c · t(x) , x ∈ MTW

x(τ) = g(−τ c) x(0) = e−τ c·Tx(0) . (12.19)

A traveling wave
question 13.2

x(τ) = g(−cτ) xTW = xTW − c τ , c ∈ Rd (12.20)

is a special type of a relative equilibrium of equivariant evolution equations, where
the action is given by translation (12.32), g(y) x(0) = x(0) + y . A rotating wave
is another special case of relative equilibrium, with the action is given by angular
rotation. By equivariance, all points on the group orbit are equivalent, the mag-
nitude of the velocity c is same everywhere along the orbit, so a ‘traveling wave’
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x3

x2

x1

gv

gt

gx(0)
g

t

v

x(T) = x(0)

Figure 12.6: A periodic orbit starts out at x(0) with the dynamical v and group tangent t flows
pointing in different directions, and returns after time T to the initial point x(0) = x(T). The group
orbit of the temporal orbit of x(0) sweeps out a (1+N)-dimensional torus, a continuous family of
equivalent periodic orbits, two of which are sketched here. For SO(2) this is topologically a 2-torus.

moves at a constant speed. For an N > 1 trajectory traces out a line within the
group orbit. As the ca components are generically not in rational ratios, the tra-
jectory explores the N-dimensional group orbit (12.2) quasi-periodically. In other
words, the group orbit g(τ) x(0) coincides with the dynamical orbit x(τ) ∈ MTW

and is thus flow invariant.

Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p of
period T ,

f T (x) = x , x ∈ Mp.

By equivariance, g x is another periodic point, with the orbits of x and gx either
identical or disjoint.

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group Gp. If the symmetry group is the full group G, we are back to (12.19),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium. The
other option is that the isotropy group is discrete, the orbit segment {x, gx} is pre-
periodic (or eventually periodic), x(0) = gpx(Tp), where Tp is a fraction of the
full period, Tp = T/m, and thus

x(0) = gpx(Tp) , x ∈ Mp , gp ∈ Gp

x(0) = gm
p x(m Tp) = x(T) = x(0) . (12.21)

If the periodic solutions are disjoint, as in figure 12.6, their multiplicity (if G
is finite, see sect. 10.1), or the dimension of the manifold swept under the group
action (if G is continuous) can be determined by applications of g ∈ G. They form
a family of conjugate solutions (10.6),

Mg p = gMp g−1 . (12.22)
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Figure 12.7: (a) A very idealized sketch: a relative periodic orbit starts out at x(0) with the
dynamical v and group tangent t flows pointing in different directions, and returns to the group
orbit of x(0) after time Tp at x(Tp) = gp x(0), a rotation of the initial point by gp. For flows with
continuous symmetry a generic relative periodic orbit (not pre-periodic to a periodic orbit) fills out
ergodically what is topologically a torus, as in (b); if you are able to draw such a thing, kindly
send us the figure. (b) The simplest example, 4-dimensional two-modes system of example 12.8,
a 3-dimensional projection: 15 repeats of the shortest relative periodic orbit 1 (magenta) winding
around the torus (here visualized as the gray wireframe). (N.B. Budanur)

Definition: Relative periodic orbit p is an orbit Mp in state space M which
exactly recurs

xp(0) = gpxp(Tp) , xp(τ) ∈ Mp , (12.23)

at a fixed relative period Tp, but shifted by a fixed group action gp which brings
the endpoint xp(Tp) back into the initial point xp(0), see figure 12.7 (a). The group
action gp parameters φ = (φ1, φ2, · · · φN) are referred to as ‘phases’, or ‘shifts’. In
contrast to the pre-periodic (12.21), here the phases are irrational, and the trajec-
tory sweeps out ergodically the group orbit without ever closing into a periodic
orbit. For dynamical systems with only continuous (no discrete) symmetries, the
parameters {t, φ1, · · · , φN} are real numbers, ratios π/φ j are almost never rational,
likelihood of finding a periodic orbit for such system is zero, and such relative
periodic orbits are almost never eventually periodic.

Relative periodic orbits are to periodic solutions what relative equilibria (trav-
eling waves) are to equilibria (steady solutions). Equilibria satisfy f τ(x) − x = 0
and relative equilibria satisfy f τ(x) − g(τ) x = 0 for any τ. In a co-moving frame,
i.e., frame moving along the group orbit with velocity v(x) = c · t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relative periodic orbit is peri-
odic in its mean velocity cp = φp/Tp co-moving frame (see figure 12.8), but in the
stationary frame its trajectory is quasiperiodic. A co-moving frame is helpful in
visualizing a single ‘relative’ orbit, but useless for viewing collections of orbits,
as each one drifts with its own angular velocity. Visualization of all relative peri-
odic orbits as periodic orbits we attain only by global symmetry reductions, to be
undertaken in sect. 13.2.
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Figure 12.8: A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a) the
stationary state space coordinate frame {v1, v2, v3},
traced for four periods Tp; (b) the co-moving
{ṽ1, ṽ2, ṽ3} coordinate frame, moving with the
mean angular velocity cp = φp/Tp (from
ref. [10]).

(a)

v1v2

v3

(b)

v�1
v�2

v�3

12.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on and
returns to a given torus of a symmetry equivalent solutions is unlikely to intersect
it at the initial point, unless forced to do so by a discrete symmetry. This we
will make explicit in sect. 13.2, where relative periodic orbits will be viewed as
periodic orbits of the reduced dynamics.

If, in addition to a continuous symmetry, one has a discrete symmetry which is
not its subgroup, one does expect equilibria and periodic orbits. However, a relati-
ve periodic orbit can be pre-periodic if it is equivariant under a discrete symmetry,
as in (12.21): If gm = 1 is of finite order m, then the corresponding orbit is periodic
with period mTp. If g is not of a finite order, a relative periodic orbit is periodic
only after a shift by gp, as in (12.23). Morally, as it will be shown in chapter 25,
such orbit is the true ‘prime’ orbit, i.e., the shortest segment that under action of
G tiles the entire invariant submanifoldMp.

Definition: Relative orbit MGx in state space M is the time evolved group
orbitMx of a state space point x, the set of all points that can be reached from x
by all symmetry group actions and evolution of each in time.

Mx(τ) = {gx(τ) | t ∈ R, g ∈ G} . (12.24)

In presence of symmetry, an equilibrium is the set of all equilibria related by
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory in
time T and all group actions, etc..

chapter 25

12.3 Stability

A spatial derivative of the equivariance condition (12.1) yields the matrix equiv-
ariance condition satisfied by the stability matrix (stated here both for the finite
group actions, and for the infinitesimal, Lie algebra generators):

gA(x)g−1 = A(gx) , [Ta, A] =
∂A
∂x

ta(x) . (12.25)
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For a flow within the fixed Fix (G) subspace, t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix (G) subspace. As
in this subspace stability matrix A commutes with the Lie algebra generators T,
the spectrum of its eigenvalues and eigenvectors is decomposed into irreps of the
symmetry group. This we have already observed for the EQ0 of the Lorenz flow
in example 11.8.

A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so we
expect the perturbations along to group orbit to be marginal, with unit eigenvalues.
The argument is akin to (4.9), the proof of marginality of perturbations along a pe-
riodic orbit. Consider two nearby initial points separated by an N-dimensional in-
finitesimal group transformation (12.7): δx0 = g(δφ)x0− x0 = δφ ·Tx0 = δφ · t(x0).
By the commutativity of the group with the flow, g(δφ) f τ(x0) = f τ(g(δφ)x0). Ex-
panding both sides, keeping the leading term in δφ, and using the definition of the
Jacobian matrix (4.5), we observe that Jτ(x0) transports the N-dimensional group
tangent space at x(0) to the rotated tangent space at x(τ) at time τ:

ta(τ) = Jτ(x0) ta(0) , ta(τ) = Ta x(τ) . (12.26)

For a relative periodic orbit, gpx(Tp) = x(0), at any point along cycle p the group
tangent vector ta(τ) is an eigenvector of the Jacobian matrix with an eigenvalue of
unit magnitude,

Jp ta(x) = ta(x) , Jp(x) = gpJTp(x) , x ∈ Mp . (12.27)

For a relative equilibrium flow and group tangent vectors coincide, v = c · t(x) .
Dotting by the velocity c (i.e., summing over cata) the equivariance condition
(12.15), ta(v) − A(x) ta(x) = 0, we get

example 13.2

(c · T − A)v = 0 . (12.28)

In other words, in the co-rotating frame the eigenvalues corresponding to group
tangent are marginal, and the velocity v is the corresponding right eigenvector.

Two successive points along the cycle separated by δx0 = δφ · t(τ) have the
same separation after a completed period δx(Tp) = gpδx0, hence eigenvalue of
magnitude 1. In presence of an N-dimensional Lie symmetry group, N eigenval-
ues equal unity.

Résumé

The message: If a dynamical systems has a symmetry, use it!

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimensional
equilibria and 1-dimensional periodic orbits studied so far. In sect. 2.1.1 we made
an attempt to classify ‘all possible motions:’ (a) equilibria, (b) periodic orbits, (c)
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everything else. Now one can discern in the fog of dynamics an outline of a more
serious classification - long time dynamics takes place on the closure of a set of
all invariant compact sets preserved by the dynamics, and those are: (a) 0-dimens-
ional equilibriaMEQ , (b) 1-dimensional periodic orbitsMp, (3) global symmetry
induced N-dimensional relative equilibria MTW , (c) (N+1)-dimensional relative
periodic orbitsMp, (d) terra incognita. We have some inklings of the ‘terra incog-
nita:’ for example, in symplectic symmetry settings one finds KAM-tori, and in
general dynamical settings we encounter partially hyperbolic invariant M-tori,
isolated tori that are consequences of dynamics, not of a global symmetry. They
are harder to compute than anything we have attempted so far, as they cannot be
represented by a single relative periodic orbit, but require a numerical computa-
tion of full M-dimensional compact invariant sets and their infinite-dimensional
linearized Jacobian matrices, marginal in M dimensions, and hyperbolic in the
rest. We expect partially hyperbolic invariant tori to play important role in high-
dimensional dynamics. In this chapter we have focused on the simplest example
of such compact invariant sets, where invariant tori are a robust consequence of
a global continuous symmetry of the dynamics. The direct product structure of a
global symmetry that commutes with the flow enables us to reduce the dynamics
to a desymmetrized (d−1−N)-dimensional reduced state spaceM/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifoldsMp invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of a continuous symmetry,
likelihood of finding a periodic orbit is zero. Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie on periodic trajectories in
the full state space, so looking for periodic orbits in systems with continuous
symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter 10, for
example the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can ever enter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the
shortest orbits dominate, and they tend to be the most symmetric solutions.

chapter 25

Commentary

Remark 12.1. Ideal is not real. (continued from remark 10.1): The literature on
symmetries in dynamical systems is immense, most of it deliriously unintelligible. Would
it kill them [15, 16, 20, 24] to say ‘symmetry of orbit p’ instead of carrying on about
‘isotropies, quotients, factors, normalizers, centralizers and stabilizers?’ Group action be-
ing ‘free, faithful, proper, regular?’ Symmetry-reduced state space being ‘orbifold?’ For
the dynamical systems applications at hand we need only the basic Lie group facts, on the
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level of any standard group theory textbook [18]. We found Roger Penrose [27] introduc-
tion to the subject both enjoyable and understandable. Bluman and Kumei [3] Chapter 2
offers a pedagogical introduction to Lie groups of transformations, and Nakahara [25] to
Lie derivatives and brackets. The presentation given here is in part based on Siminos the-
sis [30] and ref. [31]. Term ‘stabilizer’ is used, for example, by Broer et al. [5] to refer
to a periodic orbit with Z2 symmetry; they say that the relative or pre-periodic segment is
in this case called a ‘short periodic orbit.’ In Efstathiou [13] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer.’ The reader is
referred to the monographs of Golubitsky and Stewart [16], Hoyle [20], Olver [26], Bre-
don [4], and Krupa [22] for more depth and rigor than would be wise to wade into here.

Remark 12.2. Two-modes system. Dangelmayr [11], Armbruster, Guckenheimer
and Holmes [1], Jones and Proctor [21], and Porter and Knobloch [28] (see Golubitsky et
al. [17], Sect. XX.1) have investigated bifurcations in 1:2 resonance ODE normal form
models to third order in the amplitudes. Budanur et al. [7] studied (12.40), a particular
case of Danglmayr [11] and Porter and Knobloch [28] 2-Fourier mode SO(2)-equivariant
ODEs, as a relatively simple application of the periodic orbit theory to a system with a
continuous symmetry. In this chapter and the next, we will use this model, which we will
refer to as ‘two-modes’ system, to illustrate the effects of continuous symmetry on the
dynamics and symmetry reduction by the method of slices.

Remark 12.3. Modulated traveling waves. When a ‘traveling wave’ goes unsta-
ble through a Hopf bifurcation, the resulting motion resembles the initial traveling wave
weakly periodically ‘modulated’ in time, hence such relative periodic orbit is often called
a modulated traveling wave (MTW), or a travelling, beating wave [29]. These were stud-
ied, for instance, by Armbruster et al. [1], and a detailed computation of numerous bifur-
cation branches of these solutions was presented by Brown and Kevrekidis [6]. They find
quasiperiodic secondary Hopf bifurcations. In chaos unstable recurrent motions typically
arise come from other, stretching and folding mechanisms, so for our purposes ‘MTW’ is
too narrow a concept, merely a particular case of a relative periodic orbit.
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12.4 Examples

Example 12.1. Invariance under fractional rotations. Consider a velocity field v(x)
equivariant (12.1) under discrete cyclic subgroup Cm = {e,C1/m,C2/m, · · · ,C(m−1)/m} of
SO(2) rotations by 2π/m,

exercise 12.2

C1/mv(x) = v(C1/mx) , (C1/m)m = e .

The field v(x) on the fundamental domain 2π/m is now a tile whose m copies tile the
entire domain. It is periodic on the fundamental domain, and thus has Fourier expansion
with Fourier modes cos(2πm jx), sin(2πm jx). The Fourier expansion on the full interval
(0, 2π) cannot have any other modes, as they would violate the Cm symmetry. This means
that SO(2) always has an infinity of discrete subgroups C2,C3, · · · ,Cm, · · · ; for each the
non-vanishing coefficients are only for Fourier modes whose wave numbers are multiples
of m.

click to return: p. 199

12.4.1 Symmetries of iconic fluid flows

Example 12.2. Continuous symmetries of the plane Couette flow. (continued from
example 10.9) Every solution of Navier-Stokes equations belongs, by the SO(2) × O(2)
symmetry, to a 2-torus T 2 of equivalent solutions. Furthermore these tori are interrelated
by a discrete D2 group of spanwise and streamwise flips of the flow cell. (continued in
example 12.3)

click to return: p. 200

Example 12.3. Relative orbits in the plane Couette flow. (continued from exam-
ple 12.2) Translational symmetry allows for relative equilibria (traveling waves), char-
acterized by a fixed profile Eulerian velocity uTW (x) moving with constant velocity c, i.e.

u(x, τ) = uTW (x − cτ) . (12.29)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solution
that recurs at time Tp with exactly the same disposition of the Eulerian velocity fields over
the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation gp. By
discrete symmetries these solutions come in counter-traveling pairs uq(x − cτ), −uq(−x +

cτ): for example, for each one drifting along with the upper wall, there is a counter-
moving one drifting along with the lower wall. Discrete symmetries also imply existence
of strictly stationary solutions, or ‘standing waves’. For example, a solution with velocity
fields antisymmetric under reflection through the midplane has equal flow velocities in
opposite directions, and is thus an equilibrium stationary in time.

click to return: p. 200

Example 12.4. Traveling, rotating waves. Names ‘traveling waves’, and ‘rotating
waves’ are descriptive of solutions of some PDEs with simple continuous symmetries.
For example, complex Ginzburg Landau equation is equivariant under the action of the
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group g(θ, y) ∈ G = S 1 × R on u(x) ∈ R2, given by translation in the domain and the
rotation of u(x),

g(θ, y) u(x) = R(θ) u(x + y) , R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (12.30)

Hence complex Ginzburg Landau equation allows for rotating wave solutions of form
u(x, t) = R(−ω t) û(x − c t) with fixed profile û(x), velocity c and angular velocity ω.
Traveling waves are typical of translationally invariant systems such as the plane Couette
flow, example 12.3.

click to return: p. 200

12.4.2 Special orthogonal group SO(2)

Example 12.5. Special orthogonal group SO(2). (or S 1) is a group of length-
preserving rotations in a plane. ‘Special’ refers to requirement that det g = 1, in con-
tradistinction to the orthogonal group O(n) which allows for length-preserving inversions
through the origin, with det g = −1. A group element can be parameterized by angle φ,
with the group multiplication law g(φ′)g(φ) = g(φ′ +φ), and its action on smooth periodic
functions u(φ + 2π) = u(φ) generated by

g(φ′) = eφ
′T , T =

d
dφ

. (12.31)

Expand the exponential, apply it to a differentiable function u(φ), and you will recognize
a Taylor series. So g(φ′) shifts the coordinate by φ′, g(φ′) u(φ) = u(φ′ + φ) . (Continued
in example 13.1)

click to return: p. 200

Example 12.6. Translation group. Differential operator T in (12.31) is reminiscent
of the generator of spatial translations. The ‘constant velocity field’ v(x) = v = c ·
T’ acts on x j by replacing it by the velocity vector c j. It is easy to verify by Taylor
expanding a function u(x) that the time evolution is nothing but a coordinate translation
by (time× velocity):

e−τc·Tu(x) = e−τc· ddx u(x) = u(x − τ c) . (12.32)

As x is a point in the Euclidean Rd space, the group is not compact. A sequence of time
steps in time evolution always forms an abelian Lie group, albeit never as trivial as this
free ballistic motion.

If the group actions consist of N rotations which commute, for example act on an
N-dimensional cell with periodic boundary conditions, the group is an abelian group that
acts on a torus T N .

click to return: p. 200

Example 12.7. SO(2) irreps. (Continued from example 12.5) Consider the action
(12.31) of the one-parameter rotation group SO(2) on a smooth periodic function u(φ +

2π) = u(φ) defined on a 1D-dimensional configuration space domain x ∈ [0, 2π). The
state space matrix representation of the SO(2) counter-clockwise (right-handed) rotation
g(φ′)u(φ) = u(φ + φ′) by angle φ′ is block-diagonal, acting on the kth Fourier coefficient
pair (xk, yk) in the Fourier series (2.17),

u(φ) = x0 +

∞∑
k=1

(xk cos kφ + yk sin kφ) . (12.33)
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by multiplication by

g(k)(φ′) =

(
cos kφ′ − sin kφ′
sin kφ′ cos kφ′

)
, T(k) =

(
0 −k
k 0

)
, (12.34)

where T(k) is the kth Fourier mode Lie group generator. The SO(2) group tangent (12.9)
to state space point u(φ) on the kth invariant subspace is

t(k)(u) = k
(
−yk
xk

)
. (12.35)

The L2 norm of t(u) is weighted by the SO(2) quadratic Casimir (12.12), C(k)
2 = k2,

〈t(u)>|t(u)〉 =

∮
dφ
2π

u(φ)>T>Tu(2π − φ) =

∞∑
k=1

k2
(
x2

k + y2
k

)
, (12.36)

and converges only for sufficiently smooth u(φ). What does that mean? We saw in (12.32)
that T generates translations, and by (12.34) the velocity of the kth Fourier mode is k times
higher than for the k = 1 component. If |u(k)| does not fall off faster the 1/k, the action of
SO(2) is overwhelmed by the high Fourier modes.

click to return: p. 204

12.4.3 Two-modes SO(2)-equivariant flow

Example 12.8. Two-modes flow. Consider the pair of U(1)-equivariant complex
ODEs

ż1 = (µ1 − i e1) z1 + a1 z1|z1|
2 + b1 z1|z2|

2 + c1 z1 z2

ż2 = (µ2 − i e2) z2 + a2 z2|z1|
2 + b2 z2|z2|

2 + c2 z2
1 , (12.37)

with z1, z2 complex, and all parameters real valued.

The two-modes system, which we use for illustrations throughout this chapter and
the next, is an example of a few-modes truncation of a Fourier expansion, truncated in
such a way that the model exhibits the same symmetry structure as many nonlinear field
problems, while being drastically simpler to study.

We shall refer to this toy model as the two-modes system. It belongs to the family
of simplest ODE systems that we know that (a) have a continuous U(1) / SO(2), but no
discrete symmetry (if at least one of e j , 0). (b) models ‘weather’, in the same sense
that Lorenz equation models ‘weather’, (c) exhibits chaotic dynamics, (d) can be easily
visualized, in the dimensionally lowest possible setting required for chaotic dynamics,
with the full state space of dimension d = 4, and the SO(2)-reduced dynamics taking
place in 3 dimensions, and (e) for which the method of slices reduces the symmetry by a
single global slice hyperplane.

For parameters far from the bifurcation values, this is a merely a toy model with no
physical interpretation, just like the iconic Lorenz flow (2.23): We use it to illustrate the
effects of continuous symmetry on chaotic dynamics. We have not found a second order
truncation of such models that exhibits interesting dynamics, hence the third order in the
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amplitudes, and the unreasonably high number of parameters. After some experimenta-
tion we fix or set to zero various parameters, and in the numerical examples that follow,
we settle for parameters set to

µ1 = −2.8 , µ2 = 1 , e1 = 0 , e2 = 1 ,
a1 = −1 , a2 = −2.66 , b1 = 0 , b2 = 0 , c1 = −7.75 , c2 = 1 , (12.38)

unless explicitly stated otherwise. For these parameter values the system exhibits chaotic
behavior. Experiment. If you find a more interesting behavior for some other parameter
values, please let us know. The simplified system of equations can now be written as a
3-parameter {µ1, c1, a2} two-modes system,

ż1 = µ1 z1 − z1|z1|
2 + c1 z1 z2

ż2 = (1 − i) z2 + a2 z2|z1|
2 + z2

1 . (12.39)

In order to numerically integrate and visualize the flow, we recast the equations in real
variables by substitution z1 = x1 + i y1, z2 = x2 + i y2. The two-modes system (12.37) is
now a set of four coupled ODEs

ẋ1 = (µ1 − r2) x1 + c1 (x1x2 + y1y2) , r2 = x2
1 + y2

1

ẏ1 = (µ1 − r2) y1 + c1 (x1y2 − x2y1)
ẋ2 = x2 + y2 + x2

1 − y2
1 + a2x2r2

ẏ2 = −x2 + y2 + 2 x1y1 + a2y2r2 . (12.40)

Try integrating (12.40) with random initial conditions, for long times, times much
beyond which the initial transients have died out. What is wrong with this picture? It is
a mess. As we shall show here, the attractor is built up by a nice ‘stretch & fold’ action,
but that is totally hidden from the view by the continuous symmetry induced drifts. In the
rest of this and next chapter’s examples we shall investigate various ways of ‘quotienting’
this SO(2) symmetry, and reducing the dynamics to a 3-dimensional symmetry-reduced
state space. We shall not rest until we attain the simplicity and bliss of a 1-dimensional
return map. (N.B. Budanur and P. Cvitanović)
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Example 12.9. SO(2) rotations for two-modes system. Substituting the Lie algebra
generator

T =


0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

 (12.41)

acting on a 4–dimensional state space (12.40) into (12.5) yields a finite angle SO(2) rota-
tion:

g(φ) =


cos φ − sin φ 0 0
sin φ cos φ 0 0

0 0 cos 2φ − sin 2φ
0 0 sin 2φ cos 2φ

 . (12.42)
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Itinerary (xp,1, yp,1, xp,2, yp,2) Period
1 (0.4525719, 0.0, 0.0509257, 0.0335428) 3.6415120
01 (0.4517771, 0.0, 0.0202026, 0.0405222) 7.3459412
0111 (0.4514665, 0.0, 0.0108291, 0.0424373) 14.6795175
01101 (0.4503967, 0.0, -0.0170958, 0.0476009) 18.3874094

Table 12.1: Several short relative periodic orbits of the two-modes system: itineraries, a periodic
point in a Poincaré section for each orbit, the period.

From (12.34) we see that the action of SO(2) on the complex Lorenz equations state space
decomposes into m = 0 G-invariant m = 1 and m = 2 subspaces.

The generator T is indeed anti-hermitian, T† = −T, and the group is compact, its
elements parametrized by φ mod 2π. Locally, at x ∈ M, the infinitesimal action of the
group is given by the group tangent field t(x) = Tx = (−y1, x1,−y2, x2). In other words,
the flow induced by the group action is normal to the radial direction in the (x1, y1) and
(x2, y2) planes.

click to return: p. 204

Example 12.10. Equivariance of the two-modes system. That two-modes (12.40) is
equivariant under SO(2) rotations (12.42) can be checked by substituting the Lie algebra
generator (12.41) and the stability matrix (4.3) for two-modes (12.40), A =

µ1 − 3x2
1 + c1x2 − y2

1 c1y2 − 2x1y1 c1x1 c1y1
c1y2 − 2x1y1 µ1 − x2

1 − c1x2 − 3y2
1 −c1y1 c1x1

2x1 + 2a2x1x2 2a2x2y1 − 2y1 1 + a2(x2
1 + y2

1) 1
2y1 + 2a2x1y2 2x1 + 2a2y1y2 −1 1 + a2(x2

1 + y2
1)

 .
(12.43)

into the equivariance condition (12.15). Considering that t(v) depends on the full set of
equations (12.40), and A(x) is only its linearization, this is not an entirely trivial statement.
(N.B. Budanur)
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Example 12.11. How contracting is the two-modes flow? For the parameter
values (12.39) the flow is strongly volume contracting (4.29),

∂ivi =

4∑
i=1

λi(x, t) = tr A(x) = 2 [1 + µ1 − (2 − a2) r2] = −3.6 − 9.32 r2 . (12.44)

Note that this quantity depends on the full state space coordinates only through the SO(2)-
invariant r2, so the volume contraction rate is symmetry-invariant characterization of the
flow, as is should be. The shortest relative periodic orbit 1 has period T1 = 3.64 . . . and
typical r2 ≈ 1, (see table 12.1), so in one period a neighborhood of the relative periodic
orbit is contracted by factor ≈ exp(T1 tr A(x)) ≈ 3.7 × 10−21 . This is an insanely contract-
ing flow; if we start with mm4 cube around a periodic point, this volume (remember, two
directions are marginal) shrinks to ≈ mm×mm×10−11mm×10−11mm ≈ mm×mm× fermi
× fermi. Diameter of a proton is a couple of fermis. This strange attractor is thin!

click to return: p. 205
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Exercises

12.1. SO(2) rotations in a plane: Show by exponentiation
(12.5) that the SO(2) Lie algebra element T generates
rotation g in a plane,

g(θ) = eTθ = cos θ
(

1 0
0 1

)
+ sin θ

(
0 −1
1 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
. (12.45)

12.2. Invariance under fractional rotations. Argue that
if the isotropy group of the velocity field v(x) is the dis-
crete subgroup Cm of SO(2) rotations about an axis (let’s
say the ‘z-axis’),

C1/mv(x) = v(C1/mx) = v(x) , (C1/m)m = e ,

the only non-zero components of Fourier-transformed
equations of motion are a jm for j = 1, 2, · · · . Argue that
the Fourier representation is then the quotient map of
the dynamics, M/Cm. (Hint: this sounds much fancier
than what is - think first of how it applies to the Lorenz
system and the 3-disk pinball.)

12.3. U(1) equivariance of two-modes system for finite an-
gles: Show that the vector field in two-modes (12.37)
is equivariant under (12.5), the unitary group U(1) act-
ing on R4 � C2 by

g(θ)(z1, z2) = (eiθz1, ei2θz2) , θ ∈ [0, 2π) . (12.46)

12.4. SO(2) equivariance of two-modes system for finite
angles: Show that two-modes (12.40) are equivariant
under rotation for finite angles.

12.5. Stability matrix of two-modes system: Compute the
stability matrix (12.43) for two-modes system (12.40).

12.6. SO(2) equivariance of two-modes system for in-
finitesimal angles. Show that two-modes equa-
tions are equivariant under infinitesimal SO(2) rota-
tions. Compute the volume contraction rate (4.29), ver-
ify (12.44). Period of the shortest relative periodic orbit
of this system is T1 = 3.6415120. By how much a small
volume centered on the relative periodic orbit contracts
in that time?

12.7. Integrate the two-modes system: Integrate (12.40)
and plot a long trajectory of two-modes in the 4d state
space, (x1, y1, y2) projection, as in Figure 12.1.

12.8. Classify possible symmetries of solutions for your re-
search problem. Classify types of solutions you
expect in your research problem by their symmetries.
Literature examples: plane Couette flow [14], pipe flow
(sect. 2.2 and appendix A of ref. [32]), Kuramoto-Siva-
shinsky (see symmetry discussions of refs. [9, 10], and
probably many better papers out there that we are less
familiar with), Euclidean symmetries of doubly-periodic
2D models of cardiac tissue, 2D Kolmogorov flow [8],
two-modes flow (Dangelmayr [11]; Armbruster, Guck-
enheimer and Holmes [1]; Jones and Proctor [21]; Porter
and Knobloch [28]; Golubitsky et al. [17], Sect. XX.1),
2D ABC flow [12]; perturbed Coulomb systems [19];
systems with discrete symmetries [2, 23]; example 10.5
reflection symmetric 1d map; example 8.5 Hamiltonian
Hénon map; Hamiltonian Lozi map, etc..

12.9. Discover the equivariance of a given flow:

Suppose you were given two-modes system,
but nobody told you that the equations are SO(2)-
equivariant. More generally, you might encounter a
flow without realizing that it has a continuous symmetry
- how would you discover it?
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Chapter 13

Slice & dice

Physicists like symmetry more than Nature
— Rich Kerswell

If the symmetry is continuous, the notion of ‘fundamental domain’ is not appli-
cable. Instead, the dynamical system should be reduced to a lower-dimens-
ional, desymmetrized system, with ‘ignorable’ coordinates separated out (but

not forgotten).

We shall describe here two ways of reducing a continuous symmetry. In the
‘method of slices’ of sect. 13.2 we slice the state space in such a way that an entire
class of symmetry-equivalent points is represented by a single point. In the Hilbert
polynomial basis approach of sect. 13.6 we replace the equivariant dynamics by
the dynamics rewritten in terms of invariant coordinates. In either approach we
retain the option of ‘post-processing’, i.e., computing in the original coordinates,
and then, when done, projecting the solution onto the symmetry reduced state
space.

In the method of slices symmetry reduction is achieved by cutting the group
orbits with a finite set of slice hyperplanes, one for each continuous group param-
eter, with each group orbit of symmetry-equivalent points represented by a single
point, its intersection with the slice. The procedure is akin to (but distinct from)
cutting across continuous-time parametrized trajectories by means of Poincaré
sections. As is the case for Poincaré sections, choosing a ‘good’ slice is a dark
art. We describe two strategies: (i) Foliation of state space by group orbits is a
purely group-theoretic phenomenon that has nothing to do with dynamics, so we
construct slices based on a decomposition of state space into irreducible linear rep-
resentations of the symmetry group G. (ii) Nonlinear dynamics strongly couples
such linear symmetry eigenmodes, so locally optimal slices should be constructed
from physically important recurrent states, or ‘templates’. Our guiding principle
is to chose a slice such that the distance between a ‘template’ state x̂′ and nearby
group orbits is minimized, i.e., we identify the point x̂ on the group orbit (12.2) of
a nearby state x which is the closest match to the template point x̂′.
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Figure 13.1: The freedom to pick a moving frame: A
point x on the full state space trajectory x(τ) is equiv-
alent up to a group rotation g(τ) to the point x̂ on the
curve x̂(τ) if the two points belong to the same group
orbitMx(τ), see (12.2).

M
x(τ)

M
x(0)

x̂(τ) g(τ) x(τ)

x(0)

We start our discussion by explaining the freedom of redefining dynamics in
a moving frame.

13.1 Moving frames

Even a dead fish can go with the flow.
— Jim Hightower, Texas politician

The idea: As the symmetries commute with dynamics, we can evolve a solution
x(τ) for as long as we like, and then rotate it to any equivalent point (see fig-
ure 13.1) on its group orbit. We can map each point along any solution x(τ) to
the unique representative x̂(τ) of the associated group orbit equivalence class, by
a coordinate transformation

x(τ) = g(τ) x̂(τ) . (13.1)

Equivariance guarantees that the two states are physically equivalent.

Definition: Moving frame. For a given x ∈ M and a given space of ‘represen-
tative shapes’ M̂ there exists a unique group element g = g(x, τ) that at instant
τ rotates x into gx = x̂ ∈ M̂. The map that associates to a state space point x a
group action g(x, τ) is called a moving frame.

exercise A2.1
exercise 13.1

Using decomposition (13.1) one can always write the full state space trajectory
as x(τ) = g(τ) x̂(τ), where the (d−N)-dimensional reduced state space trajectory
x̂(τ) is to be fixed by some condition, and g(τ) is then the corresponding curve on
the N-dimensional group manifold of the group action that rotates x̂ into x at time
τ. The time derivative is then ẋ = v(gx̂) = ġx̂ + gv̂, with the reduced state space
velocity field given by v̂ = dx̂/dt. Rewriting this as v̂ = g−1v(g x̂) − g−1ġ x̂ and
using the equivariance condition (12.14) leads to

question 13.1

v̂ = v − g−1ġ x̂ . (13.2)
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The Lie group element (12.5) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d
dt

eφ·T = φ̇ · T .

This is the group tangent velocity g−1ġ x̂ = φ̇ · t(x̂) evaluated at the point x̂, i.e.,
with g = 1 (see figure 12.3). The flow v̂ = dx̂/dt in the (d−N) directions transverse
to the group flow is now obtained by subtracting the flow along the group tangent
direction,

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) . (13.3)

We can pick any coordinate transformation (13.1) between the ‘lab’ and a ‘moving
frame’, any time, any way we like; equivariance guarantees that the states and the
equations of motion (13.3) in the two frames are physically equivalent. This is
a immense freedom, and with freedom comes responsibility, the responsibility of
choosing a good frame.

13.2 Symmetry reduction

Maybe when I’m done with grad school I’ll be able to fig-
ure it all out . . .

— Rebecca Wilczak, undergraduate

Given Lie group G acting smoothly on a C∞ manifold M, we can think of
each group orbit as an equivalence class. Symmetry reduction is the identification
of a unique point on a group orbit as the representative of its equivalence class.
We call the set of all such group orbit representatives the reduced state space
M/G. This space has many names in the literature - it is alternatively called
‘desymmetrized state space’, ‘symmetry-reduced space’, ‘orbit space’ (because
every group orbit in the original space is mapped to a single point in the orbit
space), ‘base manifold’, ‘shape-changing space’ or ‘quotient space’, obtained by
mapping equivariant dynamics to invariant dynamics (‘image’) by methods such
as ‘moving frames’, ‘cross sections’, ‘slices’, ‘freezing’, ‘Hilbert bases’, ‘quoti-

remark 13.1
enting’, ‘lowering of the degree’, ‘lowering the order’, or ‘desymmetrization’.

Symmetry reduction replaces a dynamical system (M, f ) with a symmetry
G by a ‘desymmetrized’ system (M̂, f̂ ) of figure 12.2 (b), a system where each
group orbit is replaced by a point, and the action of the group is trivial, gx̂ = x̂
for all x̂ ∈ M̂, g ∈ G. The reduced state space M̂ is sometimes called the ‘quo-
tient space’ M/G because the symmetry has been ‘divided out’. For a discrete
symmetry, the reduced state space M/G is given by the fundamental domain of
sect. 11.3. In presence of a continuous symmetry, the reduction toM/G amounts
to a change of coordinates where the ‘ignorable angles’ {φ1, · · · , φN} that param-
eterize N continuous coordinate transformations are separated out.
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Figure 13.2: The slice hyperplane M̂, which passes
through the template point x̂′ and is normal to its group
tangent t′, intersects all group orbits (dotted lines) in
an open neighborhood of x̂′. The full state space tra-
jectory point x(τ) (solid black line) and the reduced
state space trajectory x̂(τ) (solid green line) belong to
the same group orbitMx(τ), and are equivalent up to a
moving frame group rotation g(τ) (a rotation by phase
θ(τ)), defined in (13.1).

M̂

x(τ)

x̂(τ)x̂′

t′

x̂(0)

13.3 Bringing it all back home: method of slices

In the ‘method of slices’ the reduced state space representative x̂ of a group orbit
equivalence class is picked by slicing across the group orbits by a fixed hypersur-
face.

Definition: Equivariant state space. The full state space M, stratified by the
action of the group G into orbits.

Definition: Reduced state space. A spaceM/G in which every group orbit of
the equivariant state spaceM is represented by a single point.

There are many ways of constructingM/G. One can replace equivariant co-
ordinates (x1, x2, · · · , xd) by a set of invariant polynomials {u1, u2, · · · , um}, as in
sect. 13.6. Or one can stay in the original state space, but pick a random point on
each group orbit and throw away the rest. The most sensible strategy, however,
is to smoothly change the coordinates in such a way that locally the symmetry
group acts on N ‘phase’ coordinates, and leaves invariant the smooth manifold
M̂ =M/G spanned by the remaining (d−N) transverse coordinates.

Definition: Slice. Let G act regularly on a d-dimensional domain of the d-dim-
ensional state space manifoldM, i.e., with all group orbits N-dimensional. A slice
through the ‘template’ point x̂′ is a (d−N)-dimensional submanifold M̂ such that
all group orbits in an open neighborhood of the point x̂′ intersect M̂ transversally
once and only once (see figure 13.2).

The simplest slice condition defines a linear slice as a (d−N)-dimensional
hyperplane M̂ normal to the N group tangents t′a at template point x̂′:

〈x̂ − x̂′|t′a〉 = 0 , t′a = ta(x̂′) = Ta x̂′ . (13.4)

In other words, ‘slice’ is the group orbit analogue of a Poincaré section (3.5)
for time-evolution orbits. Each ‘big circle’ –a closed group orbit tangent to t′a–
intersects the hyperplane at least twice (for the very simplest illustration, see ex-
ample 13.1. As for a Poincaré section (3.4), we add an orientation condition, and
select the intersection with the clockwise rotation angle into the slice.
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example 13.1

p. 242

As 〈x̂′|t′a〉 = 0 by the antisymmetry of Ta, the slice condition (13.4) fixes φ for
a given x by

0 = 〈x̂|t′a〉 = 〈x|g(φ)>t′a〉 , (13.5)

where g> denotes the transpose of g. The method of moving frames can be inter-
preted as a change of variables

x̂(τ) = g−1(τ) x(τ) , (13.6)

that is passing to a frame of reference in which condition (13.5) is identically sat-
isfied, see example 13.1. Therefore the name ‘moving frame’. A moving frame
should not be confused with the comoving frame, such as the one illustrated in
figure 12.8. Each relative equilibrium, relative periodic orbit and general ergodic
trajectory has its own comoving frame. In the method of slices one fixes a station-
ary slice, and rotates all solutions back into the slice.

Moving frames can be utilized in post-processing methods; trajectories are
computed in the full state space, then rotated into the slice whenever desired, with
the slice condition easily implemented. The slice group tangent t′ is a given vec-
tor, and g(φ) x is another vector, linear in x and a function of group parameters φ.
Rotation parameters φ are determined numerically, by a Newton method, through
the slice condition (13.5).

Figure 13.3 illustrates the method of moving frames for an SO(2) slice normal
to the y1 axis. Looks innocent, but what happens when (x1, y1) = (0, 0)? More on
this in sect. 13.5.

How does one pick a slice point x̂′? A generic point x̂′ not in an invariant sub-
space should suffice to fix a slice. The rules of thumb are much like the ones for
picking Poincaré sections, sect. 3.1.2. The intuitive idea is perhaps best visualized
in the context of fluid flows. Suppose the flow exhibits an unstable coherent struc-
ture that –approximately– recurs often at different spatial dispositions. One can fit
a ‘template’ to one recurrence of such structure, and describe other recurrences as
its translations. A well chosen slice point belongs to such dynamically important
equivalence class (i.e., group orbit). A slice is locally isomorphic toM/G, in an
open neighborhood of x̂′. As is the case for the dynamical Poincaré sections, in
general a single slice does not suffice to reduceM→M/G globally.

The Euclidean product of two vectors x, y is indicated in (13.4) by x-transpose
times y, as in (12.6). More general bilinear norms 〈x, y〉 can be used, as long as
they are G-invariant, i.e., constant on each irreducible subspace. An example is
the quadratic Casimir (12.13).

The slice condition (13.4) fixes N directions; the remaining vectors (x̂N+1 . . . x̂d)
span the slice hyperplane. They are d−N fundamental invariants, in the sense that
any other invariant can be expressed in terms of them, and they are functionally
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Figure 13.3: Method of moving frames for the
two-modes flow SO(2)-equivariant under (12.42),
with slice through â′ = (1, 0, 0, 0), group tan-
gent t′ = (0, 1, 0, 0). The equivariant flow is
4-dimensional: shown is the projection on the
(x1, y1) plane. The clockwise orientation condi-
tion restricts the slice to the 3-dimensional half-
hyperplane x̂1 > 0, ŷ1 = 0. A trajectory started on
the slice at a(τ0) = â(τ0), evolves to a state space
point with a non-zero y1(τn). To bring this point
back to the slice, compute the polar angle φn of
a(τn) in the (x1, y1) plane. Rotate a(τn) clockwise
by φn to â(τn) = g(−φn) a(τn), so that the equiva-
lent point on the circle lies on the slice, ŷ1(τn) = 0.
See sect. 13.5.

a(τ2)

a(τ1) φ1

x1 = x̂1â(τ1) â(τ2)

y1

φ2

a(τ0)

independent. Thus they serve to distinguish orbits in the neighborhood of the
slice-fixing point x̂′, i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.

13.4 Dynamics within a slice

We made too many wrong mistakes
—Yogi Berra

So far we have taken the post-processing approach: evolve the trajectory in the
full state space, than rotate all its points into the slice. You can also split up the
time integration into a sequence of finite time steps, each followed by a rotation
of the end point into the slice, see figure 13.3. It is tempting to see what happens
if the steps are taken infinitesimal. As we shall see, we do get a flow restricted
to the slice, but at a price. The relation (13.3) between the ‘lab’ and ‘moving
frame’ state space velocity holds for any factorization (13.1) of the flow of form
x(τ) = g(τ) x̂(τ). To integrate these equations we first have to fix a particular flow
factorization by imposing conditions on x̂(τ), and then integrate phases φ(τ) on a
given reduced state space trajectory x̂(τ).

Here we demand that the reduced state space is confined to a slice hyperplane.
Substituting (13.3) into the time derivative of the fixed slice condition (13.5),

〈v̂(x̂)|t′a〉 = 〈v(x̂)|t′a〉 − φ̇b 〈tb(x̂)|t′a〉 = 0 ,

yields the equation for the group phase velocities φ̇a for the slice fixed by x̂′,
together with the reduced state space M̂ flow v̂(x̂). In general, the computation
of phase velocities requires inversion of the position-dependent [N ×N] matrix
〈t(x̂)b|ta〉, so from now on we specialize to the simplest, N = 1 parameter case
G = SO(2), where we set φa = φ, t′a = t′:

v̂(x̂) = v(x̂) − φ̇(x̂)t(x̂) , x̂ ∈ M̂ (13.7)

φ̇(x̂) = 〈v(x̂)|t′〉/〈t(x̂)|t′〉 . (13.8)
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t′

x̂′

x̂

gx̂

M̂

t∗

M

gx̂∗

x̂∗

t

Figure 13.4: Schematic of symmetry reduction by the method of slices. The blue point is the
template x̂′. All pink points are equivalent to x̂ up to a shift, so a relative periodic orbit (green) in the
d-dimensional full state spaceM closes into a periodic orbit (blue) in the slice M̂ =M/G, a (d−1)-
dimensional slab transverse to the template group tangent t′. A typical group orbit (dotted) crosses
the slice hyperplane transversally, with a non-orthogonal group tangent t = t(x̂). A slice hyperplane
is almost never a global slice; it is valid up to the slice border, a (d−2)-dimensional hypersurface
(red) of points x̂∗ whose group orbits graze the slice, i.e. points whose tangents t∗ = t(x̂∗) lie in M̂.
Group orbits beyond the slice border do not reach the slice hyperplane: the “missing chunk” is here
indicated by the dashed lines.

Each group orbit Mx = {g x | g ∈ G} is an equivalence class; method of slices
represents the class by its single slice intersection point x̂. By construction 〈v̂|t′〉 =

0, and the motion stays in the (d−N)-dimensional slice. We have thus replaced the
original dynamical system {M, f } by a reduced system {M̂, f̂ }.

In the pattern recognition and ‘template fitting’ settings (13.8) is called the
‘reconstruction equation’. Integrated together, the reduced state space trajectory

exercise 13.2
(13.7) and g(τ) = exp{φ(τ) · T}, the integrated phase (13.8), reconstruct the full
state space trajectory x(τ) = g(τ) x̂(τ) from the reduced state space trajectory x̂(τ),
so no information about the flow is lost in the process of symmetry reduction.

Slice flow equations (13.7) and (13.8) are pretty, but there is a trouble in the
paradise. The slice flow encounters singularities in subsets of state space, with
phase velocity φ̇ divergent whenever the denominator in (13.8) changes sign. We
are going to refer to the set of points x̂∗ at which the denominator of (13.8) van-
ishes as slice border

〈t(x̂∗)|t′〉 = 0 . (13.9)

See figure 13.4 for a schematic illustration. Existence of the slice border makes
the method of slices an in general local method, where one constructs a slice
by picking a template on a particularly interesting solution, and then explores
the dynamics nearby. However, this is only partially useful for our purposes,
since we would like to explore global objects, such as symmetry-reduced chaotic
attractors, interrelation of coherent solutions etc. Several attempts have been made
to overcome this problem by defining multiple slices, and interconnecting them in
such a way that the individual borders of different slices, are not visited by the
dynamics. This, however, is a very complicated task, and requires case-by-case
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attention. The other option is defining a very special slice such that its border is
not visited by the dynamics. In the next section, we describe such a method which
is applicable to many problems that are of interest to us.

13.5 First Fourier mode slice

(N.B. Budanur)

So far, we have given a general description of the method of slices, without
specifying the type of the symmetries we are reducing. We have mentioned in
sect. 2.4 and sect. 12.1 that the dynamics of nonlinear fields of ‘spatially extended
systems’ in periodic cells is a topic of much interest. Such systems are equivariant
under spatial translations. Consider a scalar field u(x, τ) over one space dimension
x and time τ, periodic on a spatial domain of length L, u(x, τ) = u(x+L, τ). Expand
the field in Fourier series, as in (2.17)

u(x, τ) =

+∞∑
k=−∞

ũk(τ) eiqk x . (13.10)

Spatial translations

u(x, τ)→ u(x + `, τ) (13.11)

correspond to U(1) rotations for the Fourier modes

ũk → eikθũk , where θ = 2π`/L . (13.12)

In the state space a = (x1, y1, x2, y2, . . . , xN , yN) spanned by the real and imagi-
nary parts of a finite Fourier mode truncation, (xi, yi) = (Re ũi, Im ũi), this spatial
translation is represented by an SO(2) rotation (see example 12.7)

g(θ) =


R(θ) 0 · · · 0

0 R(2θ) · · · 0
...

...
. . .

...
0 0 · · · R(Nθ)

 , (13.13)

where R(nθ) =

(
cos nθ − sin nθ
sin nθ cos nθ

)
,

with the Lie algebra element

T =



0 −1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 −2 · · · 0 0
0 0 2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −N
0 0 0 0 · · · N 0


. (13.14)
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Figure 13.5: Two-modes flow before (a) and af-
ter (b) symmetry reduction by first Fourier mode
slice. Here a long trajectory (red and blue) starting
on the unstable manifold of the TW1 (red), until it
falls on to the strange attractor (blue) and the short-
est relative periodic orbit 1 (magenta). Note that
the relative equilibrium becomes an equilibrium,
and the relative periodic orbit becomes a periodic
orbit after the symmetry reduction. (N.B.
Budanur)
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Figure 13.6: SO(2) group orbits of state space points
(0.75, 0, 0.1, 0.1) (orange), (0.5, 0, 0.5, 0.5) (green)
(0.1, 0, 0.75, 0.75) (magenta) and the first mode slice
hyperplane (blue). The group tangents at the intersec-
tions with the slice hyperplane are shown as red ar-
rows. As the magnitude of the first Fourier mode de-
creases relative to the magnitude of the second one, so
does the group tangent angle to the slice hyperplane.
(from ref. [13]).

The two-modes system is an example of a system with this kind of symmetry with
modes truncated at N = 2. We define the first Fourier mode slice as the slice
hyperplane in this state space with template

â′ = (1, 0, 0, . . . , 0) , (13.15)

and the directional constraint

x̂1 ≥ 0 (13.16)

(see figure 13.3). We can write the equation (13.7) and (13.8), which describe the
dynamics within the slice hyperplane explicitly for the template (13.15) as

v̂(â) = v(â) −
ẏ1 (â)

x̂1
t(â) , (13.17)

φ̇(â) =
ẏ1(â)

x̂1
. (13.18)

We see from (13.17) and (13.18) that they become singular when x̂1 = 0, i.e.
when the amplitude of the first Fourier mode exactly vanishes. In sect. 13.4 we
argued that the slice singularity happens when the dot product t(â) · t′ vanishes, in
other words, when the group tangent t(â) evaluated at the state space point â has no
component perpendicular to the slice hyperplane. We visualize this in figure 13.6
by showing three dimensional projections of the slice hyperplane, three group
orbits and group tangents for the two-modes system.
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(a) (b) (c)

(d) (e) (f)

Figure 13.7: Traveling wave TW1 with phase velocity c = 0.737 in configuration space: (a) the full
state space solution, (b) symmetry-reduced solution with respect to the lab time, and (c) symmetry-
reduced solution with respect to the in-slice time. Two repeats of T = 33.50 relative periodic orbit
in configuration space: (d) the full state space solution, (e) symmetry-reduced solution with respect
to the lab time, and (f) symmetry-reduced solution with respect to the in-slice time (from ref. [14]).

Our experience from working with spatially extended systems had been that
the first Fourier mode amplitude can get very small, but it does not exactly vanish,
unless a specific initial condition is set. We can deal with the situations when x̂1
is arbitrarily small by defining the in-slice time as

dτ̂ = dτ/x̂1 (13.19)

and re-writing (13.17) and (13.18) in terms of dτ̂ as

dâ/dτ̂ = x̂1v(â) − ẏ1(â) t(â) , (13.20)

dθ(â)/dτ̂ = ẏ1(â) . (13.21)

One ensures to obtain a smooth flow by integrating (13.20) to obtain symmetry-
invariant dynamics. Figure 13.7 illustrates the importance of the time rescaling on
the application of first Fourier mode slice to the Kuramoto-Sivashinsky system.

example 13.2

p. 242

13.6 Method of images: Hilbert bases

(E. Siminos and P. Cvitanović)
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Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl a century ago? In-
deed, the most common approach to symmetry reduction is by means of a Hilbert
invariant polynomial bases (11.7), motivated intuitively by existence of such non-
linear invariants as the rotationally-invariant length r2 = x2

1 + x2
2 + · · · + x2

d, or,
in Hamiltonian dynamics, the energy function. One trades in the equivariant state
space coordinates {x1, x2, · · · , xd} for a non-unique set of m ≥ d polynomials
{u1, u2, · · · , um} invariant under the action of the symmetry group. These poly-
nomials are linearly independent, but functionally dependent through m − d + N
relations called syzygies.

The dynamical equations follow from the chain rule

u̇i =
∂ui

∂x j
ẋ j , (13.22)

upon substitution {x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials.

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of chapter 11, as one that contains the z-axis and
the image of the relative equilibrium TW1, here defined by the condition u1 = u4.
As in example 14.4, we construct the first return map using as coordinate the
Euclidean arclength along the intersection of the unstable manifold of TW1 with
the Poincaré section. Thus the goals set into the introduction to this chapter are
attained: we have reduced the messy strange attractor of figure 12.1 to a 1-dimens-
ional return map. As will be explained in example 14.4 for the Lorenz attractor,
we now have the symbolic dynamics and can compute as many relative periodic
orbits of the complex Lorenz flow as we wish, missing none.

Reducing dimensionality of a dynamical system by explicit elimination of
variables through inclusion of syzygies introduces singularities. Such elimi-
nation of variables, however, is not needed for visualization purposes; syzygies
merely guarantee that the dynamics takes place on a (d − N)-dimensional sub-
manifold in the projection on the {u1, u2, · · · , um} coordinates. However, when
one reconstructs the dynamics in the original spaceM from its imageM/G, the
transformations have singularities at the fixed-point subspaces of the isotropy sub-
groups inM.

What limits the utility of Hilbert basis methods are not such singularities, but
rather the fact that the algebra needed to determine a Hilbert basis becomes com-
putationally prohibitive as the dimension of the system and/or the symmetry group
increases. Moreover, even if such basis were available, rewriting the equations in
an invariant polynomial basis seems impractical, so in practice Hilbert basis com-
putations appear not feasible beyond state space dimension of order ≈ ten. When
the goal is to quotient continuous symmetries of high-dimensional flows, such as
the Navier-Stokes flows, one needs a workable framework. The method of slices
of sect. 13.2 is one such minimalist alternative.
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Résumé

Here we have described how, and offered two approaches to continuous symmetry
reduction. In the method of slices one fixes a ‘slice’ 〈x̂ − x̂′|t′〉 = 0, a hyperplane
normal to the group tangent t′ that cuts across group orbits in the neighborhood of
the slice-fixing point x̂′. Each class of symmetry-equivalent points is represented
by a single point, with the symmetry-reduced dynamics in the reduced state space
M/G given by (13.7):

v̂ = v − φ̇ · t , φ̇ = 〈v|t′〉/〈t|t′〉 .

In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis ap-
proach one transforms the equivariant state space coordinates into invariant ones,
by a nonlinear coordinate transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} + {syzygies} ,

and studies the invariant ‘image’ of dynamics (13.22) rewritten in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more involved than the dis-
crete symmetry reduction to a fundamental domain of chapter 11. Slices are only
local sections of group orbits, and Hilbert polynomials are non-unique and diffi-
cult to compute for high-dimensional flows. However, there is no need to actually
recast the dynamics in the new coordinates: either approach can be used as a vi-
sualization tool, with all computations carried out in the original coordinates, and
then, when done, rotating the solutions into the symmetry reduced state space by
post-processing the data. The trick is to construct a good set of symmetry invari-
ant Poincaré sections (see sect. 3.1), and that is always a dark art, with or without
a symmetry.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifoldsMp invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. Relative periodic orbits are almost never
eventually periodic, i.e., they almost never lie on periodic trajectories in the full
state space, so looking for periodic orbits in systems with continuous symmetries
is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter 10. An
example is the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can ever enter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the
shortest orbits dominate, and they tend to be the most symmetric solutions.

The message: If a dynamical systems has a symmetry, use it!
chapter 25
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Commentary

Remark 13.1. A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued from remark 12.1).

Relative equilibria and relative periodic solutions are related by symmetry reduction
to equilibria and periodic solutions of the reduced dynamics. They appear in many physi-
cal applications, such as celestial mechanics, molecular dynamics, motion of rigid bodies,
nonlinear waves, spiralling patterns, and fluid mechanics. A relative equilibrium is a solu-
tion which travels along an orbit of the symmetry group at constant speed; an introduction
to them is given, for example, in Marsden [46]. According to Cushman, Bates [21] and
Yoder [79], C. Huygens [39] understood the relative equilibria of a spherical pendulum
many years before publishing them in 1673. A reduction of the translation symmetry
was obtained by Jacobi (see wiki/Jacobi coordinates; for a modern, symplectic imple-
mentation, see Laskar et al. [45]). In 1892 German sociologist Vierkandt [73] showed
that on a symmetry-reduced space (the constrained velocity phase space modulo the ac-
tion of the group of Euclidean motions of the plane) all orbits of the rolling disk system
are periodic [8]. According to Chenciner [16], the first attempt to find (relative) periodic
solutions of the N-body problem was the 1896 short note by Poincaré [59], in the con-
text of the 3-body problem. Poincaré named such solutions ‘relative’. Relative equilibria
of the N-body problem (known in this context as the Lagrange points, stationary in the
co-rotating frame) are circular motions in the inertial frame, and relative periodic orbits
correspond to quasiperiodic motions in the inertial frame. For relative periodic orbits in
celestial mechanics see also ref. [12]. A striking application of relative periodic orbits has
been the discovery of “choreographies" in the N-body problems [17, 18, 49].

The modern story on equivariance and dynamical systems starts perhaps with S.
Smale [69] and M. Field [27], and on bifurcations in presence of symmetries with Ru-
elle [63]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at an equi-
librium/fixed point x ∈ MG decomposes into linear irreps of G, and that stable/unstable
manifold continuations of its eigenvectors inherit their symmetry properties, and shows
that an equilibrium can bifurcate to a rotationally invariant periodic orbit (i.e., relative
equilibrium).

Gilmore and Lettelier monograph [33] offers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert polynomial bases (do not look
for ‘Hilbert’ in the index, though). Vladimirov, Toronov and Derbov [75] use an in-
variant polynomial basis to study bounding manifolds of the symmetry reduced complex
Lorenz flow and its homoclinic bifurcations. There is no general strategy how to construct
a Hilbert basis; clever low-dimensional examples have been constructed case-by-case.
The determination of a Hilbert basis appears computationally prohibitive for state space
dimensions larger than ten [19, 29], and rewriting the equations of motions in invariant
polynomial bases appears impractical for high-dimensional flows.

Hilbert proved [38] the theorem (11.7) for the group SLN(C) and Emily Noether [55]
proved it for all the finite groups. Thus, by 1920’s the problem of rewriting equivariant
flows as invariant ones was solved by Hilbert and Weyl, but at the cost of introducing
largely arbitrary extra dimensions, with the reduced flows on manifolds of lower dimen-
sions, constrained by sets of syzygies. Cartan found this unsatisfactory, and in 1935 he
introduced [15] the notion of a moving frame, a map from a manifold to a Lie group,
which seeks no invariant polynomial basis, but instead rewrites the reducedM/G flow in
terms of d−N fundamental invariants defined by a slice that cuts across all group orbits in
some open neighborhood. Fels and Olver view the method as an alternative to the Gröbner
bases methods for computing Hilbert polynomials, to compute functionally independent
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fundamental invariant bases for general group actions (with no explicit connection to dy-
namics, differential equations or symmetry reduction). ‘Fundamental’ here means that
they can be used to generate all other invariants. Olver’s monograph [57] is pedagogical,
but does not describe the original Cartan’s method. Fels and Olver papers [23, 24] are
lengthy and technical. They refer to Cartan’s method as method of ‘moving frames’ and
view it as a special and less rigorous case of their ‘moving coframe’ method. The name
‘moving coframes’ arises through the use of Maurer-Cartan form which is a coframe on
the Lie group G, i.e., they form a pointwise basis for the cotangent space. In refs. [66, 67]
the invariant bases generated by the moving frame method are used as a basis to project a
full state space trajectory to the slice (i.e., theM/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive and frequently reinvented, often
under a different name; for example, it is stated without attribution as the problem 1.
of Sect. 6.2 of Arnol’d Ordinary Differential Equations [2]. The factorization (13.1) is
stated on p. 31 of Anosov and Arnol’d [1], who note, without further elaboration, that in
the vicinity of a point which is not fixed by the group one can reduce the order of a system
of differential equations by the dimension of the group. Ref. [3] refers to symmetry re-
duction as ‘lowering the order’. For the definition of ‘slice’ see, for example, Chossat and
Lauterbach [19]. Briefly, a submanifoldMx̂′ containing x̂′ is called a slice through x̂′ if it
is invariant under isotropy G x̂′(Mx̂′ ) =Mx̂′ . If x̂′ is a fixed point of G, than slice is invariant
under the whole group. The slice theorem is explained, for example, in Encyclopaedia of
Mathematics. Slices tend to be discussed in contexts much more difficult than our appli-
cation - symplectic groups, sections in absence of global charts, non-compact Lie groups.
We follow ref. [62] in referring to a local group-orbit section as a ‘slice’. Refs. [11, 34]
and others refer to global group-orbit sections as ‘cross-sections’, a term that we would
rather avoid, as it already has a different and well established meaning in physics. Duis-
termaat and Kolk [22] refer to ‘slices’, but the usage goes back at least to Guillemin and
Sternberg [34] in 1984, Palais [58] in 1961 and Mostow [51] in 1957 (who discusses
“local cross-sections”). Bredon [11] discusses both cross-sections and slices. Guillemin
and Sternberg [34] define the ‘cross-section’, but emphasize that finding it is very rare:
“existence of a global section is a very stringent condition on a group action. The notion
of ‘slice’ is weaker but has a much broader range of existence.”

Several important fluid dynamics flows exhibit continuous symmetries which are ei-
ther SO(2) or products of SO(2) groups, each of which act on different coordinates of the
state space. The Kuramoto-Sivashinsky equations [43, 68], plane Couette flow [30, 31,
35, 74], and pipe flow [40, 76] all have continuous symmetries of this form. In the 1982
paper Rand [60] explains how presence of continuous symmetries gives rise to rotating
and modulated rotating (quasiperiodic) waves in fluid dynamics. Haller and Mezić [36]
reduce symmetries of three-dimensional volume-preserving flows and reinvent method
of moving frames, under the name ‘orbit projection map’. There is extensive literature
on reduction of symplectic manifolds with symmetry; Marsden and Weinstein 1974 ar-
ticle [48] is an important early reference. Then there are studies of the reduced phase
spaces for vortices moving on a sphere such as ref. [41], and many, many others.

Reaction-diffusion systems are often equivariant with respect to the action of a finite
dimensional (not necessarily compact) Lie group. Spiral wave formation in such nonlinear
excitable media was first observed in 1970 by Zaikin and Zhabotinsky [80]. Winfree [77,
78] noted that spiral tips execute meandering motions. Barkley and collaborators [4, 5]
showed that the noncompact Euclidean symmetry of this class of systems precludes non-
linear entrainment of translational and rotational drifts and that the interaction of the Hopf
and the Euclidean eigenmodes leads to observed quasiperiodic and meandering behaviors.
Fiedler, in the influential 1995 talk at the Newton Institute, and Fiedler, Sandstede, Wulff,
Turaev and Scheel [25, 26, 64, 65] treat Euclidean symmetry bifurcations in the context
of spiral wave formation. The central idea is to utilize the semidirect product structure of
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the Euclidean group E(2) to transform the flow into a ‘skew product’ form, with a part or-
thogonal to the group orbit, and the other part within it, as in (13.7). They refer to a linear
slice M̂ near relative equilibrium as a Palais slice, with Palais coordinates. As the choice
of the slice is arbitrary, these coordinates are not unique. According to these authors, the
skew product flow was first written down by Mielke [50], in the context of buckling in the
elasticity theory. However, this decomposition is no doubt much older. For example, it
was used by Krupa [19, 42] in his local slice study of bifurcations of relative equilibria.
Biktashev, Holden, and Nikolaev [7] cite Anosov and Arnol’d [1] for the ‘well-known’
factorization (13.1) and write down the slice flow equations (13.7).

Neither Fiedler et al. [25] nor Biktashev et al. [7] implemented their methods numer-
ically. That was done by Rowley and Marsden for the Kuramoto-Sivashinsky [62] and
the Burgers [61] equations, and Beyn and Thümmler [6, 70] for a number of reaction-
diffusion systems, described by parabolic partial differential equations on unbounded do-
mains. We recommend the Barkley paper [4] for a clear explanation of how the Euclidean
symmetry leads to spirals, and the Beyn and Thümmler paper [6] for inspirational con-
crete examples of how ‘freezing’/‘slicing’ simplifies the dynamics of rotational, traveling
and spiraling relative equilibria. Beyn and Thümmler write the solution as a composition
of the action of a time dependent group element g(τ) with a ‘frozen’, in-slice solution û(τ)
(13.1). In their nomenclature, making a relative equilibrium stationary by going to a co-
moving frame is ‘freezing’ the traveling wave, and the imposition of the phase condition
(i.e., slice condition (13.4)) is the ‘freezing ansatz’. They find it more convenient to make
use of the equivariance by extending the state space rather than reducing it, by adding
an additional parameter and a phase condition. The ‘freezing ansatz’ [6] is identical to
the Rowley and Marsden [61] and our slicing, except that ‘freezing’ is formulated as an
additional constraint, just as when we compute periodic orbits of ODEs we add Poincaré
section as an additional constraint, i.e., increase the dimensionality of the problem by 1
for every continuous symmetry (see sect. 7.2).

section 7.2

Several symmetry reduction schemes are reviewed in ref. [67]. Here we describe
the method of slices [6, 28, 62], the only method that we find practical for a symmetry
reduction of chaotic solutions of highly nonlinear and possibly also high-dimensional
flows. Derivation of sect. 13.4 follows most closely Rowley and Marsden [61] who, in
the pattern recognition setting refer to the slice point as a ‘template’, and call (13.8) the
‘reconstruction equation’ [46, 47]. They also describe the ‘method of connections’ (called
‘orthogonality of time and group orbit at successive times’ in ref. [6]), for which the
reconstruction equation (13.8) denominator is 〈t(x̂)|t(x̂)〉 and thus non-vanishing as long
as the action of the group is regular. This avoids the spurious slice singularities, but it
is not clear what the ‘method of connections’ buys us otherwise. It does not reduce the
dimensionality of the state space, and it accrues ‘geometric phases’ which prevent relati-
ve periodic orbits from closing into periodic orbits. Geometric phase in laser equations,
including complex Lorenz equations, has been studied in ref. [52–54, 71, 72]. Another
theorist’s temptation is to hope that a continuous symmetry would lead us to a conserved
quantity. However, Noether theorem [56] requires that equations of motion be cast in
Lagrangian form and that the Lagrangian exhibits variational symmetries [9, 10]. Such
variational symmetries are hard to find for dissipative systems.

In general relativity ‘symmetry reduction’ is a method of finding exact solutions by
imposing symmetry conditions to obtain a reduced system of equations, i.e., restricting
the set of solutions considered to an invariant subspace. This is absolutely not what we
mean by ‘symmetry reduction’ in ChaosBook. In Quantum Field Theory van den Heuvel
and van Baal [37], for example, mean slice when the say “fundamental domain”: “Let
A be the set of all gauge fields A : S 3 → su(2). The physical configuration space is the
space of gauge orbitsA/G. Let G be the set of all gauge transformations g : S 3 → S U(2).
We would like to have a fundamental domain, that is, a set of gauge fields which is in one-
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to-one correspondence with the physical configuration space. ” This work is continued,
for example, by Cucchieri [20] who studies the so-called fundamental modular region, a
region free of Gribov copies, in the minimal Landau gauge for pure S U(2) lattice gauge
theory.

References to ‘cyclists’ are bit of a joke in more ways than one. First, ‘cyclist’,
‘pedestrian’ throughout ChaosBook.org refer jokingly both to the title of Lipkin’s Lie
Groups for Pedestrians [44] and to our preoccupations with actual cycling. Lipkin’s
‘pedestrian’ is fluent in Quantum Field Theory, but wobbly on Dynkin diagrams. More to
the point, it is impossible to dispose of Lie groups in a page of text. As an antidote to
the brevity of exposition here, consider reading Gilmore’s monograph [32] which offers a
quirky, personal and enjoyable distillation of a lifetime of pondering Lie groups. As seems
to be the case with any textbook on Lie groups, it will not help you with the problem at
hand, but it is the only place you can learn both what Galois actually did when he invented
the theory of finite groups in 1830, and what, inspired by Galois, Lie actually did in his
1874 study of symmetries of ODEs. Gilmore also explains many things that we pass over
in silence here, such as matrix groups, group manifolds, and compact groups.

One would think that with all this literature the case is shut and closed, but not so.
Applied mathematicians are inordinately fond of bifurcations, and almost all of the pub-
lished work focuses on equilibria, relative equilibria, and their bifurcations, and for these
problems a single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a serious nuisance.

(E. Siminos and P. Cvitanović)

Question 13.1. Henriette Roux is not happy
Q All these formulas like v̂ = v − g−1ġ x̂ look terribly formal...
A Not at all - you use them all the time. What in this classroom is a left, a right, up, down
is actually a wildly rotating frame, whirling along with the rotation of our globe, which is
rotating around the sun, and so on. If you only care about what happens in this room, v̂(τ)
is a good description of the evolution law. If you want to compare celestial observations
from different telescopes, you better go with g(τ) into the ‘fixed’ celestial frame, where
the evolution law is of form v(τ).

Question 13.2. Henriette Roux asks
Q What is the difference between ‘velocity’ and ‘speed’?
A Velocity is a vector, the rate at which the object changes its position. Speed, or
the magnitude of the velocity, is a scalar quantity which describes how fast an object
moves. We denote the rate of change of group phases, or the phase velocity by the vector
c(x) = (φ̇1, · · · , φ̇N) = (c1, · · · , cN), a component for each of the N continuous symme-
try parameters. These are converted to state space velocity components along the group
tangents by

vt(x) = c(x) · t(x) . (13.23)

For rotational waves these are called ‘angular velocities’.

Remark 13.2. Killing fields. The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geometry and special relativity. If this
poetry warms the cockles of your heart, hang on. From wikipedia ( this wikipedia might
also be useful): A Killing vector field is a set of infinitesimal generators of isometries on
a Riemannian manifold that preserve the metric. Flows generated by Killing fields are
continuous isometries of the manifold. The flow generates a symmetry, in the sense that
moving each point on an object the same distance in the direction of the Killing vector
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field will not distort distances on the object. A vector field X is a Killing field if the Lie
derivative with respect to X of the metric g vanishes:

LXg = 0 . (13.24)

Killing vector fields can also be defined on any (possibly nonmetric) manifoldM if we
take any Lie group G acting on it instead of the group of isometries. In this broader sense,
a Killing vector field is the pushforward of a left invariant vector field on G by the group
action. The space of the Killing vector fields is isomorphic to the Lie algebra g of G.

If the equations of motion can be cast in Lagrangian form, with the Lagrangian ex-
hibiting variational symmetries [9, 10], Noether theorem associates a conserved quantity
with each Killing vector.
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13.7 Examples

Example 13.1. An SO(2) moving frame. (Continued from example 12.5) The
SO(2) action

(x̂1, ŷ1) = (x1 cos θ + y1 sin θ, −x1 sin θ + y1 cos θ) (13.25)

is regular on R2\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through x̂′ = (0, 1), with group tangent t′ = (1, 0), and ensure uniqueness by clockwise
rotation into positive y1 axis. Hence the reduced state space is the half-line x1 = 0, x̂2 =

y1 > 0. The slice condition then simplifies to x̂1 = 0 and yields the explicit formula for
the moving frame parameter

θ(x1, y1) = tan−1(x1/y1) , (13.26)

i.e., the angle which rotates the point (x1, y1) back to the slice, taking care that tan−1

distinguishes (x1, y1) plane quadrants correctly. Substituting (13.26) back to (13.25) and
using cos(tan−1 a) = (1 + a2)−1/2, sin(tan−1 a) = a(1 + a2)−1/2 confirms x̂1 = 0. It also
yields an explicit expression for the transformation to variables on the slice,

x̂2 =

√
x2

1 + y2
1 . (13.27)

This was to be expected as SO(2) preserves lengths, x2
1 + y2

1 = x̂2
1 + ŷ2

1. If dynamics is
in plane and SO(2) equivariant, the solutions can only be circles of radius (x2

1 + y2
1)1/2,

so this is the “rectification" of the harmonic oscillator by a change to polar coordinates,
example A2.1. Still, it illustrates the sense in which the method of moving frames yields
group invariants. (E. Siminos)

click to return: p. 225

Example 13.2. In-slice stability. So far we have managed to formulate a relatively
simple symmetry reduction method, applicable to many problems of interest. Can we also
compute the linear stability of a relative equilibrium within a slice?’ The answer is yes.
We compute the reduced stability matrix by taking the in-slice partial derivative of the
in-slice velocity (13.7),

∂v̂(x̂)i

∂x̂ j
=

∂

∂x̂ j

{
v(x̂)i −

〈v(x̂)|t′〉
〈t(x̂)|t′〉

t(x̂)i

}
(13.28)

Â(x̂)i j = A(x̂)i j −
t(x̂)i {(〈t(x̂)|t′〉A(x̂)T − 〈v(x̂)|t′〉TT )t′} j

〈t(x̂)|t′〉2
−
〈v(x̂)|t′〉
〈t(x̂)|t′〉

Ti j ,

or, in matrix notation,

Â(x̂) = A(x̂) −
|t(x̂)〉 〈 (〈t(x̂)|t′〉A(x̂)T − 〈v(x̂)|t′〉TT )t′|

〈t(x̂)|t′〉2
−
〈v(x̂)|t′〉
〈t(x̂)|t′〉

T . (13.29)

How come we got this lengthy formula (13.29), while the stability of a relative equilib-
rium looked beautifully simple in (12.28)? That formula was written in the co-rotating
frame of a relative equilibrium, i.e., in the language of slicing, we picked the relative
equilibrium as the slice template. Substitute x̂ = x̂′ = xTW in (13.29) and recall that
〈v(xTW )|t(xTW )〉 = c. Hence the second term vanishes, and for the relative equilibrium we
recover (12.28):

Â(xTW ) = A(xTW ) − cT . (13.30)
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This equation is only true for a relative equilibrium in its own slice. In a general slice,
such as the one we described in sect. 13.5, one has to use (13.29) to compute the reduced
stability matrix. (N.B. Budanur)

click to return: p. 230
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Exercises

13.1. SO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) on R2

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write
out explicitly the group transformation that brings any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

13.2. The moving frame flow stays in the reduced state
space: Show that the flow (13.7) stays in a (d−1)-
dimensional slice hyperplane.

13.3. Stability of a relative equilibrium in the reduced state
space: Find an expression for the stability matrix of
the system at a relative equilibrium when a linear slice
is used to reduce the symmetry of the flow.

13.4. Stability of a relative periodic orbit in the reduced
state space: Find an expression for the Jacobian
matrix (monodromy matrix) of a relative periodic orbit
when a linear slice is used to reduce the dynamics of the
flow.

13.5. Determination of invariants by the method of slices:
Show that the d − N reduced state space coordinates
determined by the method of slices are independent
and invariant under group actions, and that the method
of slices allows the determination of (in general non-
polynomial) symmetry invariants by a simple algorithm
that works well in high-dimensional state spaces.

13.6. Invariant subspace of the two-modes system: Show
that (0, 0, x2, y2) is a flow invariant subspace of the two-
modes system (12.40), i.e., show that a trajectory with
the initial point within this subspace remains within it
forever.
(N.B. Budanur)

13.7. Slicing the two-modes system: Choose the simplest
slice template point that fixes the 1. Fourier mode,

x̂′ = (1, 0, 0, 0) . (13.31)

(a) Show for the two-modes system (12.40), that the
velocity within the slice (13.7), and the phase ve-
locity (13.8) along the group orbit are

v̂(x̂) = v(x̂) − φ̇(x̂)t(x̂) (13.32)
φ̇(x̂) = −v2(x̂)/x̂1 (13.33)

(b) Determine the chart border (the locus of point
where the group tangent is either not transverse
to the slice or vanishes).

(c) What is its dimension?

(d) What is its relation to the invariant subspace of ex-
ercise 13.7?

(e) Can a symmetry-reduced trajectory cross the chart
border?

(N.B. Budanur and P. Cvitanović)

13.8. The symmetry reduced two-modes flow: Pick an
initial point x̂(0) that satisfies the slice condition (13.4)
for the template choice (13.31) and integrate (13.32) &
(13.33). Plot the three dimensional slice hyperplane
spanned by (x1, x2, y2) to visualize the symmetry re-
duced dynamics. Does it look like figure 13.5 (b)?
(N.B. Budanur)

13.9. Visualize the relative equilibrium of the two-modes
system: Starting the initial condition

x0 = (0.439966, 0,−0.386267, 0.070204) (13.34)

integrate the full state space SO(2)-equivariant (12.40)
and the symmetry reduced (13.32) two-modes system
for t = 250 time units. Plot the (x1, x2, y1) projection of
both trajectories. Explain your results.
(N.B. Budanur)

13.10. Relative equilibria of the two-modes system: Write
down an expression for the reduced velocity (13.32) of
the two-modes system explicitly by substituting (13.33)
and solve v̂ = 0 to find the relative equilibria. Part of
this might be doable analytically (you have an invariant
subspace). If that does not work out for you, solve the
system numerically, for the parameter values (12.39).
Check that x0 of exercise 13.34 is among your solutions.
Mark the relative equilibria that you have found on the
strange attractor plot of exercise 13.8, interpret the role
they play in the dynamics, if any. (N.B. Budanur)

13.11. Stability of the two-modes relative equilibrium:

(a) Write down the stability matrix of the two-modes
system in the reduced state space by computing
derivatives of (13.32).

(b) Compute eigenvalues and eigenvectors of this sta-
bility matrix at the relative equilibrium (13.34)

(c) Indicate the direction along which the nearby tra-
jectories expand.
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(d) Compute the stability eigenvalues and eigenvec-
tors of all relative equilibria of exercise 13.10

(N.B. Budanur)

13.12. Relative periodic orbits of the two-modes system:
Initial conditions and periods for 4 relative periodic or-
bitof the two-modes system are listed in the table 12.1.
Integrate (12.40) and (13.32) with these initial condi-
tions for 3-4 periods, and plot the four trajectories. Ex-
plain what you see.
(N.B. Budanur)

13.13. Poincaré section in the slice Construct a Poincaré
section for the two-modes system in the slice hyper-
plane, such that the relative equilibrium (13.34) and its

expanding direction that you found in (13.11) is in this
Poincaré section. Interpolate this Poincaré section with
a smooth curve, and compute the arclengths positions
of each crossing of the symmetry-reduced flow with the
Poincaré section. (N.B. Budanur)

13.14. Finding relative periodic orbits from a return map.
Produce a return map of the arclengths that you found in
exercise 13.13. Plot this return map. Note that its deriva-
tive is discontinuous at its critical point - why? Interpo-
late to this return map in two pieces and find its fixed
point. Take the fixed point as the initial point to inte-
grate the reduced two-modes system (13.32) for t = 3.7.
What do you see? (N.B. Budanur)
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Chapter 14

Charting the state space

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville, Moby Dick, chapter 32

In this chapter and the next we learn to partition state space in a topologically
invariant way, and identify topologically distinct orbits.

We start in sect. 14.1 with a simple and intuitive example, a 3-disk game
of pinball. The qualitative dynamics of stretching/shrinking strips of surviving
state space regions enables us to partition the state space and assign symbolic
dynamics itineraries to trajectories. For the 3-disk game of pinball all possible
symbol sequences enumerate all possible orbits.

In sect. 14.2 we use Rössler and Lorenz flows to motivate modeling of higher-
dimensional flows by iteration of 1-dimensional maps. For these two flows the
1-dimensional maps capture essentially all of the higher-dimensional flow dynam-
ics, both qualitatively and quantitatively. 1-dimensional maps suffice to explain
the two key aspects of qualitative dynamics; temporal ordering, or itinerary with
which a trajectory visits state space regions (sect. 14.3), and the spatial ordering
between trajectory points (sect. 14.4), which is the key to determining the admis-
sibility of an orbit with a prescribed itinerary. In a generic dynamical system not
every symbol sequence is realized as a dynamical trajectory; as one looks further
and further, one discovers more and more ‘pruning’ rules which prohibit fami-
lies of itineraries. For 1-dimensional ‘stretch & fold’ maps the kneading theory
(sect. 14.5) provides the definitive answer as to which temporal itineraries are ad-
missible as trajectories of the dynamical system. Finally, sect. 14.6 is meant serve
as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestrian level, postponing the
discussion of higher-dimensional, cyclist level issues to chapter 15.

Even though by inclination you might only care about the serious stuff, like
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Figure 14.1: A coarse partition ofM into regionsM0,
M1, andM2, labeled by ternary alphabetA = {0, 1, 2}.

Rydberg atoms or mesoscopic devices, and resent wasting time on formal things,
this chapter and chapters 17 and 18 are good for you. Study them.

14.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)

What can a flow do to points in state space? This is a very difficult question to
answer because we have assumed very little about the evolution function f t; con-
tinuity, and differentiability a sufficient number of times. Trying to make sense of
this question is one of the basic concerns in the study of dynamical systems. The
first answer was inspired by the motion of the planets: they appear to repeat their
motion through the firmament, so the ancients’ attempts to describe dynamical
systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point x0 of a dynamical system is a return of that
point to a neighborhood of where it started. How close the point x0 must return is
up to us: we can choose a volume of any size and shape, and call it the neighbor-
hoodM0, as long as it encloses x0. For chaotic dynamical systems, the evolution
might bring the point back to the starting neighborhood infinitely often. That is,
the set{

y ∈ M0 : y = f t(x0), t > t0
}

(14.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in state space, the important
first step on the way to a theory of dynamical systems: qualitative, topological
dynamics, or symbolic dynamics. As the subject can get quite technical, a sum-
mary of the basic notions and definitions of symbolic dynamics is relegated to
sect. 14.6; check that section and references cited in remark 14.1 whenever you
run into baffling jargon.

We start by dividing the state space into regionsMA,MB, . . . ,MZ , as in fig-
ure 14.1. This can be done in many ways, not all equally clever. Any such division

knead - 9dec2019 ChaosBook.org edition16.4.8, May 25 2020
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Figure 14.2: A trajectory with itinerary 021012.

Figure 14.3: A 1-step memory refinement of the par-
tition of figure 14.1, with each region Mi subdivided
into Mi0, Mi1, and Mi2, labeled by nine ‘words’
{00, 01, 02, · · · , 21, 22}.

01

12

22

02

00

20

21

11
10

of state space into distinct regions constitutes a partition, and we associate with
each region (sometimes referred to as a state) a symbol s from an N-letter alpha-
bet or state set A = {A, B,C, · · · ,Z}. Along the trajectory, different regions will
be visited. The visitation sequence - forthwith referred to as the itinerary - can
be represented by the letters of the alphabet A. If, as in the example sketched in
figure 14.2, the state space is divided into three regions M0, M1, and M2, the
‘letters’ are the integers {0, 1, 2}, and the itinerary for the trajectory sketched in
the figure is 0 7→ 2 7→ 1 7→ 0 7→ 1 7→ 2 7→ · · · .

In general only a subset of points inMB reachesMA. This observation offers
a systematic way to refine a partition by introducing m-step memory: the region
Msm···s1 s0 consists of the subset of points of Ms0 whose itinerary for the next m
time steps will be s0 7→ s1 7→ · · · 7→ sm, see figure 14.3.

example 14.1

p. 266

example 14.2

p. 266

Figure 14.4: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
_2313_ for the first three bounces, but due to the expo-
nentially growing separation of trajectories with time,
follow different itineraries thereafter: one escapes af-
ter _2313_, the other one escapes after _23132321_.
(Notation _2313_ is explained in sect. 14.6.)

1

2

3

23132321

2313
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Figure 14.5: The 3-disk game of pinball Poincaré
section; trajectories emanating from disk 1 with
x = (arclength, parallel momentum) = (s, p),
where p = sin θ. (a) Strips of initial points M12,
M13 which reach disks 2, 3 in one bounce, re-
spectively. (b) 1-step memory refinement of parti-
tion (see figure 14.3): strips of initial pointsM121,
M131, M132 and M123 which reach disks 1, 2, 3
in two bounces, respectively. Disk radius : center
separation ratio a:R = 1:2.5. (Y. Lan)
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If there is no way to reach partitionMi from partitionM j, and conversely, par-
titionM j from partitionMi, the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interesting partition should be
dynamically connected, i.e., one should be able to go from any regionMi to any
other region M j in a finite number of steps. A dynamical system with such a
partition is said to be metrically indecomposable.

In general one also encounters transient regions - regions to which the dy-
namics does not return once they are exited. Hence we have to distinguish be-
tween (uninteresting to us) wandering trajectories that never return to the initial
neighborhood, and the non–wandering set (2.3) of the recurrent trajectories. We
are implicitly assuming that the transients are sufficiently short-lived not to be of
experimental interest.

However, knowing that a point from Mi reaches {M j, · · · ,Mk} in one step
is not quite good enough. We would be happier if we knew that the map of the
entire initial region f (Mi) overlaps nicely with the entireM j; otherwise we have
to subpartition M j into the subset f (Mi) and the reminder, and often we will
find ourselves partitioning ad infinitum, a difficult topic that we shall return to
sect. 15.4.

Such considerations motivate the notion of a Markov partition, a partition for
which no memory of preceding steps is required to fix the transitions allowed
in the next step. Finite Markov partitions can be generated by expanding d-
dimensional iterated mappings f : M → M, ifM can be divided into N regions
{M0,M1, . . . ,MN−1} such that in one step points from an initial regionMi either
fully cover a regionM j, or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (14.2)

Whether such partitions can be found is not clear at all - the borders need to be
lower-dimensional sets invariant under dynamics, and there is no guarantee that
these are topologically simple objects. However, the game of pinball (and many
other non-wandering repeller sets) is especially nice: the issue of determining the
partition borders does not arise, as the survivors live on disconnected pieces of the
state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scattering trajectory, com-
ing in from infinity and escaping after a finite number of collisions, infinite for
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Figure 14.6: For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk spac-
ing exceeds R : a > 2.04821419 . . . . (from
K.T. Hansen [12])

a trapped trajectory, and infinitely repeating for a periodic orbit. A finite length
trajectory is not uniquely specified by its finite itinerary, but an isolated unstable
cycle is: its itinerary is an infinitely repeating block of symbols. For hyperbolic
flows the intersection of the future and past itineraries, the bi-infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · specifies a unique orbit. Almost all infinite length trajec-
tories (orbits) are aperiodic. Still, the longer the trajectory is, the closer to it is a
periodic orbit whose itinerary shadows the trajectory for its whole length: think
of the state space as the unit interval, aperiodic orbits as normal numbers, and
periodic ones as fractions whose denominators correspond to cycle periods (as is,
for example, literally the case for the Farey map, to be discussed in sect. 29.3.4).

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks, see figure 14.6), pruned (for example, for touching or
overlapping disks), or only a first coarse-graining of the topology (as, for example,
for smooth potentials with islands of stability) requires a case-by-case investiga-
tion, a discussion we postpone until sect. 14.5 and chapter 15. For now, we assume
that the disks are sufficiently separated that there is no additional pruning beyond
the prohibition of self-bounces.

Inspecting figure 14.5 we see that the relative ordering of regions with dif-
fering finite itineraries is a qualitative, topological property of the flow. This ob-
servation motivates searches for simple, ‘canonical’ partitions which exhibit in
a simple manner the spatial ordering common to entire classes of topologically
similar nonlinear flows.

14.2 From d-dimensional flows to 1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic flows
and their symbolic dynamics. This is brought out more clearly by the 1-dimen-
sional visualization of ‘stretch & fold’ flows to which we turn now.

We construct here the return maps (3.4) for two iconic flows, the Rössler and
the Lorenz, in order to show how ODEs in higher dimensions can be modeled by
low-dimensional maps. In the examples at hand the strong dissipation happens to
render the dynamics essentially 1-dimensional, both qualitatively and quantitati-
vely. However, as we shall show in chapter 15, strong dissipation is not essential
-the hyperbolicity is- so the method applies to Hamiltonian (symplectic areas pre-
serving) flows as well. The key idea is to replace the original, arbitrarily concocted
coordinates by intrinsic, dynamically invariant curvilinear coordinates erected on
neighborhoods of unstable manifolds.
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Figure 14.7: (a) The Rössler flow, figure 3.3, is
an example of a recurrent flow that stretches and
folds. Shift the origin to equilibrium x− computed
in (2.29), (x, y, z) = (p0 − x−, p1 − y−, p2 − z−).
(b) p0 = 0, p1 > 0 Poincaré section of the x− un-
stable manifold.
(c) s → P(s) Rössler ‘stretch & fold’ return map,
where s is the arc-length distance measured along
the Poincaré section of unstable manifold of equi-
librium point x−. See also figure 14.12.
(R. Paškauskas, A. Basu and J. Newman)

(a)

x

y

z

-5
 0

 5
 10

-10-5 0 5

(b)
0 5 10

−0.06

−0.04

−0.02

0

p
1

p 2

(c)
0 2 4 6 8 10 12

0

2

4

6

8

10

12

s
n

s n+
1

fast track:

sect. 14.3, p. 252

Suppose concentrations of certain chemical reactants worry you, or the variati-
ons in the Vladivostok temperature, humidity, pressure and winds affect your
mood. Such quantities vary within some fixed range, and so do their rates of
change. Even if we are studying an open system such as the 3-disk pinball game,
we tend to be interested in a finite region around the disks and ignore the escapees.
So a typical dynamical system that we care about is bounded. If the price to keep
going is high - for example, we try to stir up some tar, and observe it come to a
dead stop the moment we cease our labors - the dynamics tends to settle into a
simple state. However, as the resistance to change decreases - the tar is heated up
and we are more vigorous in our stirring - the dynamics becomes unstable. What
happens next?

Just by looking at figure 14.7 you get the idea - Rössler flow winds around the
stable manifold of the ‘central’ equilibrium, stretches and folds, and the dynamics
on the Poincaré section of the flow can be reduced to a 1-dimensional map.

example 14.3

p. 266

The next, Lorenz flow example is similar, but the folding mechanism is very
different: the unstable manifold of one of the equilibria collides with the stable
manifold of the other one, forcing a robust heteroclinic connection between the
two.
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example 14.4

p. 266

Heteroclinic connections. The simplest example of intersection of invariant
manifolds is an orbit on the unstable manifold of an unstable equilibrium that
falls into a stable equilibrium (a sink). In general, two manifolds can intersect in

remark 14.4
a stable way (i.e., robustly with respect to small changes of system parameters) if
the sum of their dimensions is greater than or equal to the dimension of the state
space, hence an unstable manifold of dimension k is likely to intersect a stable
manifold whose codimension in state space is less than or equal to k. Whether
the two manifolds actually intersect is a subtle question that is central to the issue
of “structural stability” of ergodic dynamical systems. Trajectories that leave an
equilibrium or periodic orbit along its unstable manifold and reach another equi-
librium or periodic orbit along its stable manifold are called heteroclinic if the two
invariant solutions are distinct or homoclinic if the initial and the final invariant
solutions are the same.

What have we learned from the above two exemplary 3-dimensional flows?
If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. If the equilibria are hyperbolic, the
trajectories will be attracted along some eigen-directions and ejected along others.
The unstable manifold of one equilibrium can avoid stable manifolds of other
equilibria, as is the case for Rössler, or plow into them head on, as is the case for
Lorenz. A typical trajectory wanders through state space, always attracted to the
next equilibrium or periodic orbit neighborhood, and then ejected again. What
is important is the motion along the unstable manifolds – that is where 1d maps
come from.

At this juncture we proceed to show how this works on the simplest exam-
ple: unimodal mappings of the interval. The erudite reader may skim through
this chapter and then take a more demanding path, via the Smale horseshoes of
chapter 15. Unimodal maps are easier, but less physically compelling. Smale
horseshoes offer the high road, more complicated, but the right tool to generalize
what we learned from the 3-disk dynamics, and begin analysis of general dynam-
ical systems. It is up to you - unimodal maps suffice to get quickly to the heart of
this treatise.

14.3 Temporal ordering: Itineraries

In this section we learn to name topologically distinct trajectories for the simple,
but instructive case; 1-dimensional maps of an interval. The simplest such map is
the“coin flip” of figure 14.8: the unit interval is stretched, cut, and overlaid over
itself.

example 14.5

p. 268
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Figure 14.8: The n = 2 and 4 intervals state space
partitions for the Bernoulli shift map (14.18), together
with the fixed points 0, 1 and the 2-cycle 01.

Figure 14.9: (a) The full tent map (14.21) parti-
tion {M00,M01,M11,M10} together with the fixed
points x0, x1.
(b) A unimodal repeller with the survivor intervals
after 1 and 2 iterations. Intervals marked s1 s2 · · · sn

consist of points that do not escape in n iterations,
and follow the itinerary S + = s1 s2 · · · sn. Indicated
are the fixed points 0, 1, the 2-cycle 01, and the
3-cycle 011. Note that here, unlike the Bernoulli
map example of figure 14.8, the spatial ordering
does not respect the binary ordering; for example
x00 < x01 < x11 < x10.
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More physically motivated mapping of this type is unimodal; interval is stretched
and folded only once, with at most two points mapping into a point in the refolded
interval, as in the Rössler return map figure 14.7 (b). A unimodal map f (x) is a 1-
dimensional function R → R defined on an intervalM ∈ R with a monotonically
increasing (or decreasing) branch, a critical point (or interval) xc for which f (xc)
attains the maximum (minimum) value, followed by a monotonically decreasing
(increasing) branch. Uni-modal means that the map is a 1-humped map with one
critical point within interval M. Multi-modal maps, with several critical points
within intervalM, can be described with a straight-forward generalization of the
methods we describe next.

example 14.6

p. 268

example 14.7

p. 269

For 1d maps the critical value denotes either the maximum or the minimum
value of f (x) on the defining interval; we assume here that it is a maximum,
f (xc) ≥ f (x) for all x ∈ M. The critical point xc that yields the critical value f (xc)
belongs to neither the left nor the right partitionMi and is instead denoted by its
own symbol s = C. As we shall see, its images and preimages serve as partition
boundary points.
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Figure 14.10: An alternating binary tree relates the
itinerary labeling of the unimodal map intervals, fig-
ure 14.9, to their spatial ordering. The dotted line
stands for 0, the full line for 1; the binary sub-tree
whose root is a full line with symbol 1 reverses the
orientation, due to the orientation-reversing fold in fig-
ures 14.7 and 14.9. See also figure 17.5.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to the
right of xc generates a temporally ordered topological itinerary (14.9) for a given
trajectory,

sn =


1 if xn > xc
C if xn = xc
0 if xn < xc

. (14.3)

We refer to S +(x0) = .s1s2s3 · · · as the future itinerary. Our next task is to answer
the reverse problem: given an itinerary, what is the spatial ordering of points that
belong to the corresponding state space trajectory?

14.4 Spatial ordering

A well-known theorem states that combinatorial factors
are impossible to explain [1].

—G. ’t Hooft and M. Veltman, DIAGRAMMAR

Suppose you have succeeded in constructing a covering symbolic dynamics, such
as the one we constructed for a well-separated 3-disk system. Now start moving
the disks toward each other. At some critical separation (see figure 14.6) a disk
will start blocking families of trajectories traversing the other two disks. The
order in which trajectories disappear is determined by their relative ordering in
space; the ones closest to the intervening disk will be pruned first. Determining
inadmissible itineraries requires that we relate the spatial ordering of trajectories
to their time ordered itineraries.

exercise 15.8

The easiest point of departure is to start by working out this relation for
the symbolic dynamics of 1-dimensional mappings. As it appears impossible
to present this material without getting bogged down in a sea of 0’s, 1’s and
subscripted subscripts, we announce the main result before embarking upon its
derivation:

The admissibility criterion (sect. 14.5) eliminates all itineraries that
section 14.5

cannot occur for a given unimodal map.

For the Bernoulli shift converting itineraries into a topological ordering is easy;
the binary expansion of coordinate γ is also its temporary itinerary. The tent map
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(14.21), figure 14.9 (a) is a bit harder. It consists of two straight segments joined
at x = 1/2. The symbol sn defined in (14.3) equals 0 if the function increases,
and 1 if it decreases. Iteration forward in time generates the time itinerary. More
importantly, the piecewise linearity of the map makes the converse possible: de-
termine analytically an initial point given its itinerary, a property that we now use
to define a topological coordinatization common to all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer and hope that you will
figure it out by yourself.

The tent map point γ(S +) with future itinerary S + is given by converting the
itinerary of sn’s into a binary number γ by the following algorithm:

wn+1 =

{
wn if sn+1 = 0
1 − wn if sn+1 = 1 , w1 = s1

γ(S +) = 0.w1w2w3 . . . =

∞∑
n=1

wn/2n . (14.4)

This follows by inspection from the binary tree of figure 14.10. Once you figure
exercise 14.4

this out, feel free to complain that the way the rule is stated here is incomprehen-
sible, and show us how you did it better.

example 14.9

p. 269

We refer to γ(S +) as the (future) topological coordinate. The wt’s are the digits
in the binary expansion of the starting point γ for the full tent map in figure 14.9 (a)
(see (14.21)). In the left half-interval the map f (x) acts by multiplication by 2,
while in the right half-interval the map acts as a flip as well as multiplication by
2, reversing the ordering, and generating in the process the sequence of sn’s from
the binary digits wn.

The mapping x0 → S +(x0) → γ0 = γ(S +) is a topological conjugacy that
maps the trajectory of an initial point x0 under the iteration of a given unimodal
map to that initial point γ0 for which the trajectory of the ‘canonical’ unimodal
map, the full tent map (14.21), has the same itinerary. The virtue of this conjugacy
is that γ(S +) preserves the ordering for any unimodal map in the sense that if
y > x, then γ(S +(y)) > γ(S +(x)).

example 14.8

p. 269

example 14.10

p. 270

Critical points are special - they define the boundary between intervals, i.e.,
the state space is split into M0 [left part], xc [critical point] and M1 [right part]
intervals. For the dike map figure 14.11 and the repeller figure 14.9, xc is the
whole interval of points along the flat top of the map, but usually it is a point. As
illustrated by figures 14.9 and 14.8, for a unimodal map the preimages f −n(xc) of
the critical point xc serve as partition boundary points. But not all preimages–one
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Figure 14.11: The dike map is obtained by slicing off

the top portion of the tent map in figure 14.9 (a). Any
full tent map orbit that visits the primary pruning inter-
val (κ, 1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit in-
terval the primary pruning interval and all its iterates.
Any admissible orbit has the same topological coordi-
nate and itinerary as the corresponding full tent map
map orbit.

has to ensure that they are within the set of all admissible orbits by checking them
against the kneading sequence of the map, to be explained next.

14.5 Kneading theory

No, you can’t always get what you want
You can’t always get what you want
You can’t always get what you want
But if you try sometime you find
You get what you kneed

—Bradford Taylor

(K.T. Hansen and P. Cvitanović)

The reason we need to be mindful of spatial ordering of temporal itineraries is
that the spatial ordering provides us with criteria that separate inadmissible orbits
from those realizable by the dynamics. For 1-dimensional mappings the kneading
theory provides a precise and definitive criterion of admissibility.

If the parameter in the quadratic map (14.20) is A > 4, or the top of unimodal
map in figure 14.9 exceeds 1, then the iterates of the critical point xc diverge for
n → ∞, and any sequence S + composed of letters si = {0, 1} is admissible, and
any value of 0 ≤ γ < 1 corresponds to an admissible orbit in the non–wandering
set of the map. The corresponding repeller is a complete binary labeled Cantor
set, the n→ ∞ limit of the nth level covering intervals sketched in figure 14.9.

For A < 4 only a subset of the points in the interval γ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller than or
equal to the image of the critical point, the critical value f (xc). Let K = S +(xc)
be the itinerary of the critical point xc, denoted the kneading sequence of the map.
The corresponding topological coordinate is called the kneading value

κ = γ(K) = γ(S +(xc)). (14.5)
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S γ̂(S ) S γ̂(S )
0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table 14.1: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

The ‘canonical’ map that has the same kneading sequence K as f (x) is the
dike map, figure 14.11,

f (γ) =


f0(γ) = 2γ γ ∈ M0 = [0, κ/2)
fc(γ) = κ γ ∈ Mc = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ M1 = (1 − κ/2, 1]

, (14.6)

obtained by slicing off all γ
(
S +(x0)

)
> κ. The dike map is the full tent map

figure 14.9 (a) with the top sliced off. It is convenient for coding the symbolic
dynamics, as those γ values that survive the pruning are the same as for the full
tent map figure 14.9 (a), and are easily converted into admissible itineraries by
(14.4).

If γ(S +) > γ(K), the point x whose itinerary is S + would exceed the critical
value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S +) = sup
m
γ(σm(S +)) (14.7)

be the maximal value, the highest topological coordinate reached by the orbit
x1 → x2 → x3 → . . . , where σ is the shift (see (14.12)), σ(.s1s2s3 · · · = .s2s3 · · · .

For cycles up to length 5 the maximal values are listed in table 14.1. We shall call
the interval (κ, 1] the primary pruned interval. The orbit S + is inadmissible if γ of
any shifted sequence of S + falls into this interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
question 14.1

and γ̂(S +) be the maximal value of the orbit S +. Then the orbit S + is admissible
if and only if γ̂(S +) ≤ κ.

While a particular unimodal map may depend on many parameters, its dy-
namics determines the unique kneading value κ. We shall call κ the topological
parameter of the map. Unlike the parameters of the original dynamical system,
the topological parameter has no reason to be either smooth or continuous. The
jumps in κ as a function of the map parameter such as A in (14.20) correspond to
inadmissible values of the topological parameter. Each jump in κ corresponds to
a stability window associated with a stable cycle of a smooth unimodal map. For
the quadratic map (14.20) κ increases monotonically with the parameter A, but for
a general unimodal map such monotonicity need not hold.
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Figure 14.12: (a) Web diagram generated by
kneading sequence K = S +(xc) (the trajectory of
the critical point) for the unimodal Rössler return
map of figure 14.7 (c). (b) Return map for the
p0 = 0, p1 < 0 Poincaré section of the x− unsta-
ble manifold. The kneading sequence is the same,
as this map is conjugate to figure 14.7 (b) by 1800

turn. The section, however, is in the region of
strong folding, and the map is less convenient in
practice. (A. Basu and J. Newman)
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Figure 14.13: (a) Web diagram generated by
the trajectory of the critical point, the unimodal
Rössler return map of figure 14.7 (b). (b) The
web diagram for the corresponding ‘canonical’
dike map (14.6) with the same kneading sequence.
(A. Basu and J. Newman)
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example 14.11

p. 270

For further details of unimodal dynamics, the reader is referred to appendix A18.1.
As we shall see in sect. 15.4, for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; as a matter of fact, there
is an infinity of parameters that need adjustment for a given symbolic dynamics.
This difficult subject is beyond our current ambition horizon.

fast track:

chapter 15, p. 273

14.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the
natural language and its functioning as a special case of
speech.

— Yuri I. Manin [17]

In this section we collect the basic notions and definitions of symbolic dynamics.
The reader might prefer to skim through this material on a first reading and return
to it later, as the need arises.
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Shifts. We associate with every initial point x0 ∈ M the future itinerary, a se-
quence of symbols S +(x0) = s1s2s3 · · · which indicates the order in which the
regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0 is gener-
ated by

xn+1 = f (xn) , (14.8)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (14.9)

Similarly, the past itinerary S -(x0) = · · · s−2s−1s0 describes the history of x0, the
order in which the regions were visited before arriving to the point x0. To each
point x0 in the state space we thus associate a bi-infinite itinerary

S (x0) = (sk)k∈Z = S -.S + = · · · s−2s−1s0.s1s2s3 · · · , (14.10)

or simply itinerary, if we chose not to use the decimal point to indicate the present.
The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabetA is called the full shift (or topological Markov chain)

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (14.11)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

Here we refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on these se-
quences. As is clear from the definition (14.9), a forward iteration x → x′ = f (x)
shifts the entire itinerary to the left through the ‘decimal point.’ This operation,
denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (14.12)

demotes the current partition label s1 from the future S + to the ‘has been’ itinerary
S -. The inverse shift σ−1 shifts the entire itinerary one step to the right.

A finite sequence b = sksk+1 · · · sk+nb−1 of symbols from A is called a block
of length nb. If the symbols outside of the block remain unspecified, we denote
the totality of orbits that share this block by _sksk+1 · · · sk+nb−1_.

A state space point is a periodic point if its orbit returns to it after a finite
time; in shift space the orbit is periodic if its itinerary is an infinitely repeating
block p∞.

We shall refer to the set of periodic pointsMp that belong to a given periodic
orbit as a cycle

p = s1s2 · · · snp = {xs1 s2···snp
, xs2···snp s1 , · · · , xsnp s1···snp−1} . (14.13)
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A prime cycle p of period np is a single traversal of the orbit; its label is a block
of np symbols that cannot be written as a repeat of a shorter block (in the liter-
ature, such cycles are sometimes called primitive; we shall refer to it as ‘prime’
throughout this text). By its definition, a cycle is invariant under cyclic permuta-
tions of the symbols in the repeating block. A bar over a finite block of symbols
denotes a periodic itinerary with infinitely repeating basic block; we shall omit the
bar whenever it is clear from the context that the orbit is periodic. Each periodic
point is labeled by the starting symbol s0 = snp the next (np − 1) steps of its future
itinerary. For example, the 2nd periodic point is labeled by

xs1 s2···snp
= xs1 s2···s0·s1 s2···snp

.

This - a bit strained - notation is meant to indicate that the symbol block repeats
both in the past and in the future. It is helpful for determining spatial ordering of
cycles of 2D-hyperbolic maps, to be undertaken in sect. 15.3.1.

Orbit that starts out as a finite block followed by infinite number of repeats
of another block p = (s1s2s3 . . . sn) is said to be heteroclinic to the cycle p. An
orbit that starts out as p∞ followed by a different finite block followed by (p′)∞ of
another block p′ is said to be a heteroclinic connection from cycle p to cycle p′.
If the orbit returns to the initial cycle (or equilibrium point), p = p′, the orbit is
said to be a homoclinic connection.

Partitions. A partition is called generating if every infinite symbol sequence
corresponds to a unique point in state space. Coding is non-singular if x , y
implies that codes C(x) , C(y. The finite Markov partition (14.2) is an example.
Constructing a generating partition for a given system is a difficult problem. In
the examples to follow, we shall concentrate on cases which that permit finite
partitions, but in practice almost any generating partition of interest is infinite.

While an infinite itinerary corresponds to a unique point in the state space, any
finite itinerary b = st−`+1 · · · s−1s0.s1s2 · · · st determines a cylinder setMb, the set
of all trajectories x(t) ∈ M whose itineraries

· · · at−`−1at−` st−`+1 · · · s−1s0.s1s2 · · · st at+1at+2 · · · , (14.14)

share the same finite b symbol block, have arbitrary ai ∈ A outside it.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid that,
we often find it convenient to work with partitions finer than strictly necessary.
Ideally the dynamics in the refined partition assigns a unique infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · to each distinct orbit, but there might exist full shift sym-
bol sequences (14.11) which are not realized as orbits; such sequences are called
inadmissible, and we say that the symbolic dynamics is pruned. The word is
suggested by the ‘pruning’ of branches corresponding to forbidden sequences for
symbolic dynamics organized hierarchically into a tree structure, as explained in
chapter 17.

A mapping f : M → M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (14.15)
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is the set of all admissible infinite itineraries, and σ : Σ→ Σ is the shift operator
(14.12). The designation ‘subshift’ comes form the fact that Σ ⊂ AZ is the subset
of the full shift (14.11). The principal task in developing the symbolic dynamics
of a dynamical systems that occurs in applications will be to determine Σ, the
set of all bi-infinite itineraries S that are actually realized by the given dynamical
system.

Pruning. If the dynamics is pruned, the alphabet must be supplemented by
a grammar, a set of pruning rules. After the inadmissible sequences have been
pruned, it is often convenient to parse the symbolic strings into words of variable
length - this is called coding. Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (14.16)

where a pruned block b is a sequence of symbols b = s1s2 · · · snb , s ∈ A, of finite
length nb. In this case we can always construct a finite Markov partition (14.2) by
replacing finite length words of the original partition by letters of a new alphabet.
In particular, if the longest forbidden block is of length M + 1, we say that the
symbolic dynamics is a shift of finite type with M-step memory. In that case we
can recode the symbolic dynamics in terms of a new alphabet, with each new
letter given by an admissible block of at most length M.

A topological dynamical system (Σ, σ) for which all admissible itineraries are
generated by a finite transition matrix (see (17.1))

Σ =
{
(sk)k∈Z : Tsk sk+1 = 1 for all k

}
(14.17)

is called a subshift of finite type.

in depth:

chapter 15, p. 273

Résumé

What you kneed to know.
—Justin Lanier

From our initial chapters 2 to 4 fixation on things local: a representative point, a
short-time trajectory, a neighborhood, in this chapter we have made a courageous
leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globalization
- one should trust the dynamics itself, and let it partition the state space, by means
of its (topologically invariant) unstable manifolds. This works if every equilib-
rium and periodic orbit is unstable, so one exits its local neighborhood via its
unstable manifold. We delineate the segment of the unstable manifold between
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the fixed point and the point where the nonlinearity of the dynamics folds it back
on itself as the primary segment, and measure location of nearby state space points
by arclengths measured along this (curvilinear) segment. For 1-dimensional maps
the folding point is the critical point, and easy to determine. In higher dimensions,
the situation is not so clear - we shall discuss that in chapter 15.

Trajectories exit a neighborhood of an equilibrium or periodic point along un-
stable directions, and fall along stable manifolds towards other invariant orbits,
until they again are repelled along their unstable manifolds. Such sequences of
visitations can be described by symbolic dynamics. As we shall show in chap-
ter 17, they are encoded by transition matrices / transition graphs, and approxi-
mated dynamically by sequences of unstable manifold→ unstable manifold maps,
or, in case of a return to the initial neighborhood, by return maps s→ f (s).

As the kneading theory of sect. 14.5 illustrates, not all conceivable symbol
sequences are actually realized (admissible). The identification of all inadmis-
sible or pruned sequences is in general not possible. However, the theory to be
developed here relies on exhaustive enumeration of all admissible itineraries up
to a given topological length; chapters 15 and 18 describe several strategies for
accomplishing this for physically realistic goals.

Commentary

Remark 14.1. Symbolic dynamics. For a brief history of symbolic dynamics, from
Hadamard in 1898, Morse and Hedlund in 1938 and onward, see notes to chapter 1 of
Kitchens monograph [15], a very clear and enjoyable mathematical introduction to topics
discussed here. Diacu and Holmes [8] provide an excellent survey of symbolic dynamics
applied to celestial mechanics. For a compact survey of symbolic dynamics techniques,
consult sects. 3.2 and 8.3 of Robinson [27]. The binary labeling of the once-folding
map periodic points was introduced by Myrberg [21–25] for 1-dimensional maps, and its
utility to 2-dimensional maps has been emphasized in refs. [10, 20]. For 1-dimensional
maps it is now customary to use the R-L notation of Metropolis, Stein and Stein [6, 18],
indicating that the point xn lies either to the left or to the right of the critical point in
figure 14.9. The symbolic dynamics of such mappings has been extensively studied by
means of the Smale horseshoes, see for example ref. [11]. Using letters rather than nu-
merals in a symbol dynamics alphabetA probably reflects good taste. We prefer numerals
for their computational convenience, as they speed up conversions of itineraries into the
topological coordinates (δ, γ) introduced in sect. 15.3.1. The alternating binary ordering
of figure 14.10 is related to the Gray codes of computer science [26]. Kitchens [15] con-
vention is · · · s−2s−1.s0s1s2s3 · · ·, with ‘.’ placed differently from our convention (14.10).

Remark 14.2. Bernoulli map. The Bernoulli shift map (14.18) and the doubling map
(14.19) are also known as the dyadic transformation, dyadic map, bit shift map, angle
doubling map or sawtooth map (24.21). There are many fine books that discuss it in
depth, for example Driebe [9]. See also remark 28.3.
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Remark 14.3. Kneading theory. The admissible itineraries are studied, for example,
in refs. [7, 11, 18, 28]. We follow here the Milnor-Thurston exposition [19]. They study
the topological zeta function for piecewise monotone maps of the interval, and show that
for the finite subshift case it can be expressed in terms of a finite dimensional kneading
determinant. As the kneading determinant is essentially the topological zeta function of
sect. 18.4, we do not discuss it here. Baladi and Ruelle have reworked this theory in
a series of papers [3–5]. See also P. Dahlqvist’s appendix A18.1. Knight and Klages
refer to the set of iterates of the critical point as the ‘generating orbit’ in their study of
deterministic diffusion [16] (for deterministic diffusion, see chapter 24). They say: “The
structure of the Markov partitions varies wildly under parameter variation. The method
we employ to understand the Markov partitions involves iterating the critical point. The
set of iterates of this point form a set of Markov partition points for the map. Hence we
call the orbit of the critical point a ‘generating orbit.’ If the generating orbit is finite for a
particular value of parameters, we obtain a finite Markov partition. We can then use the
finite Markov partition to tell us about the diffusive properties of the map and hence the
structure of the diffusion coefficient.”

Question 14.1. Henriette Roux wants to know
Q ‘Criterion of admissibility’? What’s the big deal?
A It is amazing - if you know the symbolic itinerary of one trajectory, you know all ad-
missible itineraries. Later, when we will need to compute periodic orbits, this will enable
us to compute them all up to a given length, without any guessing, and without the danger
of missing some, potentially important ones. Savor this moment, this is the last time you
know everything - we will never again have a full description of all possible orbits in any
problem that we care about. A bit like passage from teenagehood to adulthood.

Remark 14.4. Heteroclinic connections. For sketches of heteroclinic connections in
the nonlinear setting, see Abraham and Shaw illustrated classic [2]. Section 5 of ref. [13]
makes elegant use of stable manifold co-dimension counts and of invariant subspaces im-
plied by discrete symmetries of the underlying PDE to deduce the existence of a hetero-
clinic connection. Ref. [14] which defines heteroclinic connections, cycles and networks
has lotos of references. It focuses on two-dimensional unstable manifolds, discusses dis-
crete symmetries, robust cycles on invariant subspaces, and constructs ‘cross-sections’
that lie within the region of approximate linear flow near equilibria.
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14.7 Examples

Example 14.1. 3-disk state space partition. (Continued from example 14.2) Embed-
ded within M12, M13 are four strips M121, M123, M131, M132 of initial conditions that
survive two bounces, and so forth. At each bounce a cone of initially nearby trajectories
disperses (see figures 1.8 and 14.4). In order to attain a desired longer and longer itinerary
of bounces, the strip of initial points x0 = (s0, p0) requires exponentially finer precision,
nested within the initial state space strips drawn in figure 14.5. Provided that the disks are
sufficiently separated, after n bounces the survivors live on 2n exponentially thin strips,
each labeled by a distinct itinerary s1s2s3 . . . sn. (continued in example 15.3)

click to return: p. 248

Example 14.2. 3-disk symbolic dynamics. Consider the motion of a free point
exercise 1.1

particle in a plane with 3 elastically reflecting convex disks, figure 14.4. After a collision
with a disk a particle either continues to another disk or escapes, so a trajectory can be la-
beled by the disk sequence. Sets of configuration space pinball trajectories of figure 14.4
become quickly hard to disentangle. As we shall see in what follows, their state space vi-
sualization in terms of Poincaré sections P = [s, p] (figure 14.5, see also figure 15.16 (b))
is much more powerful. (continued in example 14.1)

click to return: p. 248

Example 14.3. Rössler attractor return map: Stretch & fold. (Continued from
example 4.5) In the Rössler flow (2.28) of example 3.2 we sketched the attractor by
running a long chaotic trajectory, and noted that the attractor of figure 14.7 (a) is very thin.
For Rössler flow an interval transverse to the attractor is stretched, folded and fiercely
pressed back. The attractor is ‘fractal’, but for all practical purposes the return map is
1-dimensional; your printer will need a resolution better than 1013 dots per inch to start
resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by a 1-dim-
ensional return map, but the maps that we plotted in figure 3.4 were disquieting; they did
not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of projection
of a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto the 1-dimensional subspace
Rn → Rn+1. Now that we understand equilibria and their linear stability, let’s do this right.

The key idea is to measure arclength distances along the unstable manifold of the
x− equilibrium point, as in figure 14.7 (a) (arclength parametrization of unstable mani-
folds is discussed in detail in sect. 15.1.1). Luck is with us; figure 14.7 (b) return map
sn+1 = P(sn) looks much like a parabola of example 3.7, so we shall take the unimodal
map symbolic dynamics, sect. 14.3, as our guess for the covering symbolic dynamics.
(continued in example 14.11)

click to return: p. 251

Example 14.4. Lorenz flow: Stretch & crease. We now deploy the symme-
try of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor
commenced in example 11.8. There we showed that the rotational Z2 = {e,R} symmetry
identifies the two equilibria EQ1 and EQ2, and the traditional ‘two-eared’ Lorenz flow
figure 2.5 is replaced by the ‘single-eared’ flow of figure 11.2 (b). Furthermore, the
Z2 symmetry identifies the two half-planes of any plane through the z axis, replacing a
full-space Poincaré section plane by a half-plane, and the two directions of a full-space
eigenvector of EQ0 by a one-sided eigenvector, see figure 11.2 (b).

Example 4.7 explained the genesis of the xEQ1 equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection to
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Figure 14.14: (a) A Poincaré section of the
Lorenz flow in the doubled-polar angle representa-
tion, figure 11.2 (b), given by the [y′, z] plane that
contains the z-axis and the equilibrium EQ1. Most
of the section plane except for the two shaded
trapezoids is removed to aid visualization of the
flow. x′ axis points toward the viewer. (b) The
Poincaré section plane. Crossings into the section
are marked red (solid) and crossings out of the sec-
tion are marked blue (dashed). Outermost points
of both in- and out-sections are given by the EQ0

unstable manifold Wu(EQ0) intersections.
(E. Siminos)
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the xEQ0 = (0, 0, 0) equilibrium. All that remains is to describe how the EQ0 neighbor-
hood connects back to the EQ1 unstable manifold.

Figure 11.2 (b) and figure 14.14 (a) show clearly how the Lorenz dynamics is pieced
together from the 2 equilibria and their unstable manifolds: Having completed the descent
to EQ0, the infinitesimal neighborhood of the heteroclinic EQ1 → EQ0 trajectory is
ejected along the unstable manifold of EQ0 and is re-injected into the unstable manifold
of EQ1. Both sides of the narrow strip enclosing the EQ0 unstable manifold lie above it,
and they get folded onto each other with a knife-edge crease (contracted exponentially for
infinite time to the EQ0 heteroclinic point), with the heteroclinic out-trajectory defining
the outer edge of the strange attractor. This leads to the folding of the outer branch of the
Lorenz strange attractor, illustrated in figure 14.14 (b), with the outermost edge following
the unstable manifold of EQ0.

Now the stage is set for construction of Poincaré sections and associated return maps.
There are two natural choices; the section at EQ0, lower part of figure 14.14 (b), and the
section (blue) above EQ1. The first section, together with the blowup of the EQ0 neigh-
borhood, figure 4.6 (b), illustrates clearly the scarcity of trajectories (vanishing natural
measure) in the neighborhood of EQ0. The flat section above EQ1 (which is, believe it or
not, a smooth conjugacy by the flow of the knife-sharp section at EQ0) is more convenient
for our purposes. Its return map (3.4) is given by figure 14.15.

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its critical
point’s forward trajectory yields the kneading sequence (14.5), and the admissible binary
sequences, so any number of periodic points can be accurately determined from this 1-
dimensional return map, and the 3-dimensional cycles then verified by integrating the
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Figure 14.16: The n = 2 and 4 intervals state space
partitions for the Bernoulli shift map (14.18), together
with the fixed points 0, 1 and the 2-cycle 01. For the
doubling map (14.19) acting on the circle, 0 is the only
one fixed point, as x1 = 1 = 0 (mod 1).

Lorenz differential equations (2.23). As already observed by Lorenz, such a map is ev-
erywhere expanding on the strange attractor, so it is no wonder mathematicians can here
make the ergodicity rigorous. (E. Siminos and J. Halcrow)

section 23.7
click to return: p. 252

Example 14.5. Bernoulli shift map state space partition. First, an easy example:
the Bernoulli shift map, figure 14.16,

b(γ) =

{
b0(γ) = 2γ , γ ∈ M0 = [0, 1/2)
b1(γ) = 2γ − 1 , γ ∈ M1 = (1/2, 1] , (14.18)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with
fixed points γ0 = 0, γ1 = 1. The closely related doubling map acts on the circle

γ 7→ 2γ (mod 1) , γ ∈ [0, 1) (14.19)

and consequently has only one fixed point, γ0 = 0 = 1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of γ =

.s1s2s3 · · · by shifting its digits, b(γ) = .s2s3 · · · . The nth preimages b−(n−1)(γ) of the
critical point γc = 1/2 partition the state space into 2n subintervals, each labeled by the
first n binary digits of points γ = .s1s2s3 . . . within the subinterval: figure 14.16 illustrates
such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.

Consider a map f (x) topologically conjugate (two monotonically increasing branches)
to the Bernoulli shift, with the forward orbit of x generating the itinerary s1s2s3 . . .. Con-
vert this itinerary into Bernoulli map point γ = .s1s2s3 . . .. These values can now be used
to spatially order points with different temporal itineraries: if γ < γ′, then x < x′.

Suppose we have already computed all (n − 1)-cycles of f (x), and would now like
to compute the cycle p = s1s2s3 . . . sn of period n. Mark γ values on the unit interval
for all known periodic points of the Bernoulli shift map, and then insert in between them
γσk p, k = 0, 1, · · · , np − 1 corresponding to periodic points of cycle p. In the dynamical
state space they will be bracketed by corresponding cycle points x j from cycles already
computed, and thus the knowledge of the topological ordering of all cycle points provides
us with robust initial guesses for periodic-orbit searches for any map with 2 monotonically
increasing branches. (continued in example 28.5)

click to return: p. 252

Example 14.6. Unimodal maps. (Continued from example 3.7) The simplest
examples of unimodal maps are the quadratic map

f (x) = Ax(1 − x) , x ∈ M = [0, 1] (14.20)
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and numerically computed return maps such as figure 14.7 (b). Such dynamical systems
are irreversible (the inverse of f is double-valued), but, as we shall show in sect. 15.2,
they may nevertheless serve as effective descriptions of invertible 2-dimensional hyper-
bolic flows. For the unimodal map such as figure 14.9 a Markov partition of the unit
intervalM is given by the two intervals {M0,M1}. (continued in example 14.7)

click to return: p. 253

Example 14.7. Full tent map, Ulam map. (Continued from example 14.6) The
simplest examples of unimodal maps with complete binary symbolic dynamics are the
full tent map, figure 14.9 (a),

f (γ) = 1 − 2|γ − 1/2| , γ ∈ M = [0, 1] , (14.21)

the Ulam map (quadratic map (14.20) with A = 4)
exercise A2.3

f (x) = 4x(1 − x) , x ∈ M = [0, 1] , (14.22)

and the repelling unimodal maps such as figure 14.9. For unimodal maps the Markov
partition of the unit intervalM is given by intervals {M0,M1}. We refer to (14.21) as the
complete tent map because its symbolic dynamics is completely binary: as both f (M0)
and f (M1) fully cover M = {M0,M1}, all binary sequences are realized as admissible
itineraries.

click to return: p. 253

Example 14.8. Periodic orbits of unimodal maps. Let

f (x) =

{
f0(x) if x < xc
f1(x) if x > xc

, (14.23)

and assume that all periodic orbits are unstable, i.e., the stability Λp = f k
a
′ (see (4.43))

satisfies |Λp| > 1. Then the periodic point xs0 s1 s2...sn−1 is the only fixed point of the unique
composition (3.14) of n maps

fsn ◦ · · · ◦ fs2 ◦ fs1 (xs0 s1 s2...sn−1 ) = xs0 s1 s2...sn−1 (14.24)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2n monotone segments, and therefore
there will be 2n or fewer periodic points of length n. For the full tent map (14.21) it
has exactly 2n periodic points. A periodic orbit p of length n corresponds to an infinite

section 15.2
repetition of a length n = np symbol string block, customarily indicated by a line over
the string: p = S p = (s1s2s3 . . . sn )∞ = s1s2s3 . . . sn . As all itineraries are infinite, we
shall adopt convention that a finite string itinerary p = s1s2s3 . . . sn stands for infinite
repetition of a finite block, and routinely omit the overline. A cycle p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S ′. If the itinerary of x0 is
p = s1s2s3 . . . sn , its cyclic permutation σk p = sk sk+1 . . . sn s1 . . . sk−1 corresponds to the
point xk−1 in the same cycle.

click to return: p. 255

Example 14.9. Systematic searches for unimodal map cycles. Knowledge of the
topological coordinate (14.4) is very useful when searching for periodic orbits. Assume
that we have already determined all periodic points xa, xb, · · · of period n, and would like
to have a good initial guess for the period (n+1) periodic point xd with prescribed itinerary
S +

d := S +(xd). It is easy to determine the two closest itineraries γ(S +
a ), γ(S +

b ) that bracket
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Figure 14.17: The alternating binary tree organi-
zation of the periodic points of a unimodal map
(in this example, the Ulam map (14.22)). The
itinerary of a point is read off the tree by starting at
the root and following the branches down to x; rel-
ative ordering of points along the x axis is given by
the relative ordering of the corresponding nodes.

γ(S +
d ). If γ(S +

a ) < γ(S +
d ) < γ(S +

b ), then one can restrict the search for xc to xc ∈ [xa, xb].
For example, the relative ordering of all unimodal map periodic points up to n = 5 is given
in the figure 14.17. Appendix A14.1 contains further details of the symbolics dynamics
for periodic point of unimodal maps.

click to return: p. 255

Example 14.10. Periodic points of the full tent map. Each cycle p is a set of np

rational-valued full tent map periodic points γ. It follows from (14.4) that if the repeat-
ing string s1s2 . . . sn contains an odd number of ‘1’s, the string of well ordered symbols
w1w2 . . .w2n has to be of the double length before it repeats itself. The cycle-point γ is a
geometrical sum which we can rewrite as the odd-denominator fraction

γ(s1s2 . . . sn) =

2n∑
t=1

wt

2t +
1

2−2n

2n∑
t=1

wt

2t + · · ·

=
22n

22n − 1

2n∑
t=1

wt

2t (14.25)

Using this we can calculate the γ̂p = γ̂(S p) for all short cycles. For orbits up to length 5
this is done in table 14.1.

click to return: p. 255

Example 14.11. Rössler return map web diagram. (Continuation of exam-
ple 14.1) The arclength distance along the unstable manifold of the x− equilibrium point
return map, figure 14.7 (b), generates the kneading sequence (14.5) as the itinerary of the
critical point plotted in figure 14.13 (a).

click to return: p. 258
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Exercises

14.1. Binary symbolic dynamics. Verify that the short-
est prime binary cycles of the unimodal repeller of fig-
ure 14.9 are 0, 1, 01, 001, 011, · · · . Compare with ta-
ble 18.1. Sketch them in the graph of the unimodal func-
tion f (x); compare the ordering of the periodic points
with that in figure 14.10. The point is that while over-
layed on each other the longer cycles look like a hope-
less jumble, the periodic points are clearly and logically
ordered by the alternating binary tree.

14.2. Generating prime cycles. Write a program that gen-
erates all binary prime cycles up to a given finite length.

14.3. A contracting baker’s map. Consider the contracting
(or “dissipative”) baker’s map defined in exercise 4.6.

The symbolic dynamics encoding of trajectories is real-
ized via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Consider
the observable a(x, y) = x. Verify that for any periodic
orbit p = s1 . . . snp , si ∈ {0, 1} the integrated observable
is

Ap =
3
4

np∑
j=1

δs j,1 .

14.4. Unimodal map symbolic dynamics. Show that the
tent map point γ(S +) with future itinerary S + is given
by converting the sequence of sn’s into a binary number
by the algorithm (14.4). This follows by inspection from
the binary tree of figure 14.10.

14.5. Unimodal map kneading value. Consider the 1-
dimensional quadratic map

f (x) = Ax(1 − x) , A = 3.8 . (14.26)

(a) (easy) Plot (14.26), and the first 4-8 (whatever
looks better) iterates of the critical point xc = 1/2.

(b) (hard) Draw corresponding intervals of the par-
tition of the unit interval as levels of a Cantor
set, as in the symbolic dynamics partition of fig-
ure 14.9. Note, however, that some of the intervals
of figure 14.9 do not appear in this case - they are
pruned.

(c) (easy) Check numerically that K = S +(xc), knead-
ing sequence (the itinerary of the critical point
(14.5)) is

K = 1011011110110111101011110111110 . . .

As the orbits of a chaotic map are exponentially
unstable, so many digits seem too good to be true
- recheck this sequence using arbitrary precision
arithmetics.

(d) (medium) The tent map point γ(S +) with future
itinerary S + is given by converting the sequence of
sn’s into a binary number by the algorithm (14.4).
List the corresponding kneading value (14.5) se-
quence κ = γ(K) to the same number of digits as
K.

(e) (hard) Plot the dike map, figure 14.11, with the
same kneading sequence K as f (x). The dike map
is obtained by slicing off all γ

(
S +(x0)

)
> κ, from

the full tent map figure 14.9 (a), see (14.6).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect. 18.5.

14.6. “Golden mean” pruned map. Consider a symmetric
tent map on the unit interval such that its highest point
belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the value |Λ| for the slope (the two different
slopes ±Λ just differ by a sign) where the max-
imum at 1/2 is a periodic point in a 3-cycle, as
depicted in the figure.

(b) Show that no orbit of this map can visit the region
x > (1 +

√
5)/4 more than once. Verify also that

once an orbit exceeds x > (
√

5 − 1)/4, it does not
reenter the region x < (

√
5 − 1)/4.

(c) If an orbit is in the interval (
√

5− 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2
we use the symbol 0 and for x > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring _00_ in it.
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(e) On a second thought, is there a periodic orbit that
violates the above _00_ pruning rule?

To continue with this line of thinking, see exercise 18.7
and exercise 22.1. See also exercise 18.6 and exer-
cise 18.8.

14.7. Binary 3-step transition matrix. Construct an [8×8]
binary 3-step transition matrix analogous to the 2-step
transition matrix (17.11). Convince yourself that the
number of terms of contributing to tr T n is independent
of the memory length, and that this [2m×2m] trace is well
defined in the infinite memory limit m→ ∞.

14.8. Full tent map periodic points. This exercise is easy:
just making sure you know how to go back and forth be-
tween spatial and temporal ordering of trajectory points.

(a) compute the two periodic points of cycle 01 “by
hand,” by solving the fixed-point condition for the

second iterate f1 ◦ f0
(b) compute the periodic points of two 3-cycles 001

and 011 by solving the fixed-point condition for
the third iterates

(c) compute the five periodic points of cycle 10011
using (14.25)

(d) compute the five periodic points of cycle 10000

(e) derive (14.25)

(f) (optional) plot the above two 5-cycles on the graph
of the full tent map, and as many others as you
find interesting. Why? Because you can start ap-
preciating the power of kneading theory–while the
state space orbits get more and more complicated
and impenetrable, the kneading sequence pruning
rule is as simple and as sharp as a knife.

(continued in exercise 16.1)
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Chapter 15

Stretch, fold, prune

I.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by differentiable dynamical systems or equiv-
alently the action (differentiable) of a Lie group G on a
manifold M. Here Diff(M) is the group of all diffeomor-
phisms of M and a diffeomorphism is a differentiable map
with a differentiable inverse. (. . . ) Our problem is to study
the global structure, i.e., all of the orbits of M.

—Stephen Smale, Differentiable Dynamical Systems

We have learned that the Rössler attractor is very thin, but otherwise the re-
turn maps that we found were disquieting – figure 3.4 did not appear to
be a one-to-one map. This apparent loss of invertibility is an artifact of

projection of higher-dimensional return maps onto their lower-dimensional sub-
spaces. As the choice of a lower-dimensional subspace is arbitrary, the resulting
snapshots of return maps look rather arbitrary, too. Such observations beg a ques-
tion: Does there exist a natural, intrinsic coordinate system in which we should
plot a return map?

We shall argue in sect. 15.1 that the answer is yes: The intrinsic coordinates
are given by the stable/unstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediate neighborhood of the
unstable manifold. In chapter 5 we established that Floquet multipliers of periodic
orbits are (local) dynamical invariants. Here we shall show that every equilibrium
point and every periodic orbit carries with it stable and unstable manifolds which
provide topologically invariant global foliation of the state space. They will en-
able us to partition the state space in a dynamically invariant way, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of tra-
jectories, and separates the admissible and inadmissible itineraries. We illustrate
how this works on Hénon map example 15.3. Determining which symbol se-
quences are absent, or ‘pruned’ is a formidable problem when viewed in the state

273
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Figure 15.1: (a) An infinitesimal neighborhood
transported along a trajectory x(t). (b) An in-
finitesimal Poincaré section neighborhood brought
back in one period.
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space, [x1, x2, ..., xd] coordinates. It is equivalent to the problem of determining
the location of all homoclinic tangencies, or all turning points of the Hénon attrac-
tor. They are dense on the attractor, and show no self-similar structure in the state
space coordinates. However, in the ‘danish pastry’ representation of sect. 15.3
(and the ‘pruned danish’, in American vernacular, of sect. 15.4), the pruning prob-
lem is visualized as crisply as the New York subway map; any itinerary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
nitty-gritty details of symbolic dynamics.

fast track:

chapter 16, p. 302

15.1 Goin’ global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall
not even try to draw it.

— H. Poincaré, on his discovery of homocli-
nic tangles, Les méthodes nouvelles de la méchanique
céleste [34]

The Jacobian matrix Jt transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initial infinitesimal frame of
neighboring trajectories into a distorted frame time t later, as in figure 15.1 (a)
and figure 4.1. Nearby trajectories separate exponentially along the unstable di-
rections, approach each other along the stable directions, and creep along the
marginal directions.

The Poincaré section fixed point q (as in figure 15.1 (b)) Jacobian matrix J(x)
eigenvectors (5.10) form a rectilinear coordinate frame in which the flow into, out
of, or encircling the fixed point is linear in the sense of sect. 4.3.

The continuations of the span of the local stable, unstable eigen-directions into
global curvilinear invariant manifolds are called the stable, respectively unstable
manifolds. They consist of all points which march into the fixed point forward,
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respectively backward in time

W s =
{
x ∈ M : f t(x) − xq → 0 as t → ∞

}
Wu =

{
x ∈ M : f −t(x) − xq → 0 as t → ∞

}
. (15.1)

Eigenvectors e(i) of the monodromy matrix J(x) play a special role - on them the
action of the dynamics is the linear multiplication by Λi (for a real eigenvector)
along 1-dimensional invariant curve Wu,s

(i) or spiral in/out action in a 2-D surface
(for a complex pair). For t → ±∞ a finite segment on W s

(c), respectively Wu
(e)

converges to the linearized map eigenvector e(c), respectively e(e), where (c), (e)

stand respectively for ‘contracting’, ‘expanding.’ In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

example 15.1

p. 296

Actual construction of these manifolds is the converse of their definition (15.1):
one starts with an arbitrarily small segment of a fixed point eigenvector and lets
evolution stretch it into a finite segment of the associated manifold. As a periodic
point x on cycle p is a fixed point of f Tp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consider ith expanding eigen-
value, eigenvector pair (Λi, e(i)) computed from J = Jp(x) evaluated at a fixed
point x,

J(x)e(i)(x) = Λie(i)(x) , x ∈ Mp , Λi > 1 . (15.2)

Take an infinitesimal eigenvector e(i)(x), ||e(i)(x)|| = ε � 1, and its return Λie(i)(x)
after one period Tp. Sprinkle the straight interval between [ε,Λiε] ⊂ Wu

(i) with a
large number of points x(k), for example equidistantly spaced on logarithmic scale
between ln ε and ln Λi + ln ε . The successive returns of these points f Tp(x(k)),
f 2Tp(x(k)), · · · , f mTp(x(k)) trace out the 1d curve Wu

(i) within the unstable manifold.
As separations between points tend to grow exponentially, every so often one
needs to interpolate new starting points between the rarified ones. Repeat for
−e(i)(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding one,
tracing out the curvilinear stable manifold W s

(i) as a continuation of e(i).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iterate f 2Tp(x(k)), f 4Tp(x(k)), f 6Tp(x(k)) continues in the direction e(i), every
odd one in the direction −e(i).

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair {Λ j,Λ j+1 = Λ∗j} has Floquet exponents (4.8) of form λ( j) =

µ( j) ± iω( j), with the sign of µ(k j) , 0 determining whether the linear neighbor-
hood is out / in spiralling. The orthogonal pair of real eigenvectors {Re e( j), Im e( j)}

smale - 16jan2014 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 15. STRETCH, FOLD, PRUNE 276

Figure 15.2: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of a
complex eigenvalue pair of an unstable equilibrium
of plane Couette flow, a projection from a 61,506-
dimensional state space ODE truncation of the (∞-
dimensional) Navier-Stokes PDE. (J.F. Gibson, 8
Nov. 2005 blog entry [15])

spans a plane. T = 2π/ω( j) is the time of one turn of the spiral, JT Re e( j)(x) =

|Λ j|Re e( j)(x) . As in the real cases above, sprinkle the straight interval between
[ε, |Λ j|ε] along Re e( j)(x) with a large number of points x(k). The flow will now
trace out the 2d invariant manifold as an out / in spiralling strip. Two low-
dimensional examples are the unstable manifolds of the Lorenz flow, figure 14.14 (a),
and the Rössler flow, figure 14.7 (a). For a highly non-trivial example, see fig-
ure 15.2.

The unstable manifolds of a flow are du-dimensional. Taken together with the
marginally stable direction along the flow, they are rather hard to visualize. A
more insightful visualization is offered by (d−1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see also sect. 3.1.2). Stable,
unstable manifolds for maps are defined by

Ŵ s =
{
x ∈ P : Pn(x) − xq → 0 as n→ ∞

}
Ŵu =

{
x ∈ P : P−n(x) − xq → 0 as n→ ∞

}
, (15.3)

where P(x) is the (d−1)-dimensional return map (3.1). In what follows, all invari-
ant manifolds Wu, W s will be restricted to their Poincaré sections Ŵu, Ŵ s.

example 15.2

p. 296

In general the full state space eigenvectors do not lie in a Poincaré section; the
eigenvectors ê( j) tangent to the section are given by (5.22). Furthermore, while in
the linear neighborhood of fixed point x the trajectories return with approximate
periodicity Tp, this is not the case for the globally continued manifolds; τ(x), or
the first return times (3.1) differ, and the Ŵu

( j) restricted to the Poincaré section is
obtained by continuing trajectories of the points from the full state space curve
Wu

( j) to the section P.

For long times the unstable manifolds wander throughout the connected er-
godic component, and are no more informative than an ergodic trajectory. For
example, the line with equitemporal knots in figure 15.2 starts out on a smoothly
curved neighborhood of the equilibrium, but after a ‘turbulent’ episode decays
into an attractive equilibrium point. The trick is to stop continuing an invariant
manifold while the going is still good.
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fast track:

sect. 15.2, p. 278

Learning where to stop is a bit of a technical exercise, the reader might prefer
to skip next section on the first reading.

15.1.1 Parametrization of invariant manifolds

As the flow is nonlinear, there is no ‘natural’ linear basis to represent it. Wistful
hopes like ‘POD modes’, ‘Karhunen-Loève’, and other linear changes of bases do
not cut it. The invariant manifolds are curved, and their coordinatizations are of
necessity curvilinear, just as the maps of our globe are, but infinitely foliated and
thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by its
arclength. Sprinkle evenly points {x(1), x(2), · · · , x(N−1)} between the equilibrium
point xq = x(0) and point x = x(N), along the 1d unstable manifold continuation
x(k) ∈ Ŵu

( j) of the unstable ê( j) eigendirection (we shall omit the eigendirection
label ( j) in what follows). Then the arclength from equilibrium point xq = x(0) to
x = x(N) is given by

s = lim
N→∞

N∑
k=1

(
gi j dx(k)

i dx(k)
j

)1/2
, dx(k)

i = x(k)
i − x(k−1)

i . (15.4)

For the lack of a better idea (perhaps the dynamically determined g = J>J would
be a more natural metric?) let us measure arclength in the Euclidean metric, gi j =

δi j, so

s = lim
N→∞

N∑
k=1

(
dx(k) · dx(k)

)1/2
. (15.5)

By definition f τ(x)(x) ∈ Ŵu
( j), so f t(x) induces a 1d map s(s0, τ) = s( f τ(x0)(x0)).

Turning points are points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterates of the map, i.e., points at
which the manifold folds back onto itself arbitrarily sharply. For our purposes,
approximate turning points suffice. The 1d curve Ŵu

( j) starts out linear at xq, then
gently curves until –under the influence of other unstable equilibria and/or peri-
odic orbits– it folds back sharply at ‘turning points’ and then nearly retraces itself.
This is likely to happen if there is only one unstable direction, as we saw in the
Rössler attractor example 14.3, but if there are several, the ‘turning point’ might
get stretched out in the non-leading expanding directions.

The trick is to figure out a good base segment to the nearest turning point
L = [0, sb], and after the foldback assign to s(x, t) > sb the nearest point s on
the base segment. If the stable manifold contraction is strong, the 2nd coordinate
connecting s(x, t)→ s can be neglected. We saw in example 14.3 how this works.
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You might, by nature and temperament, take the dark view: Rössler has helpful
properties, namely insanely strong contraction along a 1-dimensional stable direc-
tion, that are not present in real problems, such as turbulence in a plane Couette
flow, and thus the lessons of chapter 14 of no use when it comes to real plumb-
ing. For this reason, both of the training examples to come, the billiards and the
Hénon map are of Hamiltonian, phase-space preserving type, and thus as far from
being insanely contracting as possible. Yet, to a thoughtful reader, they unfold
themselves as pages of a book.

Assign to each d-dimensional point x̂ ∈ Lq a coordinate s = s(x̂) whose value
is the Euclidean arclength (15.4) to xq measured along the 1-dimensional Pq sec-
tion of the xq unstable manifold. Next, for a nearby point x̂0 < Lq determine
the point x̂1 ∈ Lq which minimizes the Euclidean distance (x̂0 − x̂1)2, and as-
sign arc length coordinate value s0 = s(x̂1) to x̂0. In this way, an approximate
1-dimensional intrinsic coordinate system is built along the unstable manifold.
This parametrization is useful if the non–wandering set is sufficiently thin that its
perpendicular extent can be neglected, with every point on the non–wandering set
assigned the nearest point on the base segment Lq.

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non–
wandering set. If x̂n is the nth Poincaré section of a trajectory in neighborhood of
xq, and sn is the corresponding curvilinear coordinate, then sn+1 = f τn(sn) models
the full state space dynamics x̂n → x̂n+1. We approximate f (sn) by a smooth,
continuous 1-dimensional map f : Lq → Lq by taking x̂n ∈ Lq, and assigning to
x̂n+1 the nearest base segment point sn+1 = s(x̂n+1).

15.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 278,
about ‘the action (differentiable) of a Lie group G on a manifold M’, time has
come to bring Smale to everyman. If you still remain mystified by the end of
this chapter, reading chapter 19 might help; for example, the Liouville operators
form a Lie group of symplectic, or canonical transformations acting on the (p, q)
manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional in-
vertible flow sketched in figure 14.7 (a) which returns a Poincaré section of the
flow folded into a ‘horseshoe’ (we shall belabor this in figure 15.5). We now

exercise 15.1
offer two examples of locally unstable but globally bounded flows which return
an initial area stretched and folded into a ‘horseshoe’, such that the initial area
is intersected at most twice. We shall refer to such mappings with at most 2n

transverse self-intersections at the nth iteration as the once-folding maps.

The first example is the 3-disk game of pinball figure 14.5, which, for suf-
ficiently separated disks (see figure 14.6), is an example of a complete Smale
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Figure 15.3: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the tra-
jectory returns to the preceding disk is labeled 0, and a
bounce which results in continuation to the third disk
is labeled 1.

Figure 15.4: The 3-disk game of pinball of fig-
ure 14.5, generated by starting from disk 1, pre-
ceded by disk 2, coded in binary, as in figure 15.3.
(a) Strips Msi. j which have survived a bounce in
the past and will survive a bounce in the future.
(b) Iteration corresponds to the decimal point shift;
for example, all points in the rectangle [1.01] map
into the rectangles [0.10], [0.11] in one iteration.

(a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

horseshoe. We start by exploiting its symmetry to simplify it, and then partition
its state space by its stable / unstable manifolds.

example 15.3

p. 297

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold’ is cut
out of the picture by allowing the pinballs that fly between the disks to fall off the
table and escape. Next example captures the ‘stretch & fold’ horseshoe dynamics
of return maps such as Rössler’s, figure 3.3.

example 15.4

p. 297

What is the significance of the subscript such as .011 which labels the M.011
future strip? The two strips M.0,M.1 partition the state space into two regions
labeled by the two-letter alphabet A = {0, 1}. S + = .011 is the future itinerary
for all x ∈ M.011. Likewise, for the past strips all x ∈ Ms−m···s−1 s0. have the past
itinerary S - = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape in m iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.3) of M., is the union of all points whose forward
and backward trajectories remain trapped for all time, given by the intersections
of all images and preimages ofM:

Ω =

{
x | x ∈ lim

m,n→∞
f m(M.)

⋂
f −n(M.)

}
. (15.6)

Two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.
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Figure 15.5: The Hénon map (15.20) for a = 6,
b = −1: fixed point 0 with segments of its stable,
unstable manifolds W s, Wu, and fixed point 1. (a)
Their intersection bounds the regionM. = 0BCD
which contains the non–wandering set Ω. (b)
The intersection of the forward image f (M.) with
M. consists of two (future) strips M0., M1., with
points BCD brought closer to fixed point 0 by the
stable manifold contraction. (c) The intersection
of the forward image f (M.) with the backward im-
age f −1(M.) is a four-region cover of Ω. (d) The
intersection of the twice-folded forward horseshoe
f 2(M.) with backward horseshoe f −1(M.). (e)
The intersection of f 2(M.) with f −2(M.) is a 16-
region cover of Ω. Iteration yields the complete
Smale horseshoe non–wandering set Ω, i.e., the
union of all non-wandering points of f , with ev-
ery forward fold intersecting every backward fold.
(P. Cvitanović and Y. Matsuoka)

(a) −1.0 0.0 1.0
−1.0

0.0

1.0

0 W
u

W
s

B

C
D

1

(b) -1.0 0.0 1.0
-1.0

0.0

1.0

.1

0

.0D

B

C

(c)

0.1

0.0

1.0

1.1

(d)
0.01
0.00

1.00

1.01

1.11

0.11
0.10

1.10

(e)

01.10

01.01

11.00

10.10

Figure 15.6: The dynamics maps two (past) strips
M.0, M.1 into two (future) strips M0., M1.. The
corners are labeled to aid visualization. Note that
the BCGH strip is rotated by 180 degrees. (P.
Cvitanović and Y. Matsuoka)
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For a complete Smale horseshoe every forward fold f n(M) intersects transver-
sally every backward fold f −m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled
by the intersection of its past and future itineraries S (x) = · · · s−2s−1s0.s1s2 · · ·,
where sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z.

remark A1.1

The system is said to be structurally stable if all intersections of forward and
backward iterates ofM remain transverse for sufficiently small perturbations f →
f + δ of the flow, for example, for slight displacements of the disks in the pinball
problem, or sufficiently small variations of the Hénon map parameters a, b. While

section 1.8
structural stability is exceedingly desirable, it is also exceedingly rare. About this,
more later.

section 24.2

15.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering sym-
bolic dynamics, such as a well-separated 3-disk system. Now start moving the
disks toward each other. At some critical separation a disk will start blocking
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Figure 15.7: Kneading orientation preserving Danish
pastry: mimic the horsheshoe dynamics of figure 15.6
by: (1) squash the unit square by factor 1/2, (2) stretch
it by factor 2, and (3) fold the right half back over the
left half.

B

A

A

B

B

A

families of trajectories traversing the other two disks. The order in which trajec-
tories disappear is determined by their relative ordering in space; the ones closest
to the intervening disk will be pruned first. Determining inadmissible itineraries
requires that we relate the spatial ordering of trajectories to their time ordered
itineraries.

exercise 15.8

So far we have rules that, given a state space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the converse: given a
set of itineraries, what is the spatial ordering of corresponding points along the
trajectories? In answering this question we will be aided by Smale’s visualization
of the relation between the topology of a flow and its symbolic dynamics by means
of ‘horseshoes’, such as figure 15.5.

15.3.1 Kneading Danish pastry

The Danish pastry transformation, the simplest baker’s transformation appropriate
to Hénon type mappings, yields a binary coordinatization of all possible periodic
points.

The symbolic dynamics of once-folding map is given by the Danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic se-
quence; the transverse coordinate is given by the tail of the symbolic sequence.
The dynamics on this space is given by symbol shift permutations; volume pre-
serving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non–wandering sets, fatten the in-
tersection regions until they completely cover a unit square, as in figure 15.8.

exercise 15.3
exercise 15.4We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’ dynam-

ical system as the symbol square. The symbol square is a topologically accurate
representation of the non–wandering set and serves as a street map for labeling its
pieces. Finite memory of m steps and finite foresight of n steps partitions the sym-
bol square into rectangles [s−m+1 · · · s0.s1s2 · · · sn], such as those of figure 15.6. In
the binary dynamics symbol square the size of such rectangle is 2−m × 2−n; it cor-
responds to a region of the dynamical state space which contains all points that
share common n future and m past symbols. This region maps in a nontrivial way
in the state space, but in the symbol square its dynamics is exceedingly simple; all
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Figure 15.8: Kneading Danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 15.6 (b) fig-
ure 15.5 into a unit square. Also indicated: the
fixed points 0, 1 and the 2-cycle points {01,10}.
In the symbol square the dynamics maps rectan-
gles into rectangles by a decimal point shift.

(a) .1.0

0.

1.

0

1

(b)

01.

11.

00.

10.

.00 .01 .11 .10

0

01

10

1

Figure 15.9: Kneading orientation preserving
Danish pastry: symbol square representation of an
orientation preserving once-folding map obtained
by fattening the intersections of two forward iter-
ates / two backward iterates of Smale horseshoe
into a unit square.
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of its points are mapped by the decimal point shift (14.12)

σ(· · · s−2s−1s0.s1s2s3 · · · ) = · · · s−2s−1s0s1.s2s3 · · · , (15.7)

example 15.9

p. 299

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labeling of the horseshoe strips, and their
relative placement. The symbol square points γ(S +) with future itinerary S + are
constructed by converting the sequence of sn’s into a binary number by the algo-
rithm (14.4). This follows by inspection from figure 15.10. In order to understand
this relation between the topology of horseshoes and their symbolic dynamics, it
might be helpful to backtrace to sect. 14.4 and work through and understand first
the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged;M−1
0

Figure 15.10: Kneading Danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of figure 15.5 (e) into a unit
square. Also indicated: the fixed points 0, 1, and the 3-
cycle points {011,110,101}. In the symbol square the
dynamics maps rectangles into rectangles by a decimal
point shift.
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has the same orientation asM, whileM−1
1 has the opposite orientation. We assign

exercise 15.5
to an orientation preserving once-folding map the past topological coordinate
δ = δ(S -) by the algorithm:

wn−1 =

{
wn if sn = 0
1 − wn if sn = 1 , w0 = s0

δ(S -) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2n . (15.8)

Such formulas are best derived by solitary contemplation of the action of a folding
map, in the same way we derived the future topological coordinate (14.4).

The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor
set of figure 15.5 to a point in the symbol square of figure 15.10, preserving the
topological ordering. The symbol square [δ, γ] serves as a topologically faithful
representation of the non–wandering set of any once-folding map, and aids us in
partitioning the set and ordering the partitions for any flow of this type.

fast track:

chapter 16, p. 302

15.4 Prune Danish

Anyone know where I can get a good prune Danish in
Charlotte? I mean a real NY Jewish bakery kind of prune
Danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a short path is excluded
by some obstacle, such as a disk that blocks the path, or a mountain. In order to
enumerate orbits correctly, we need to prune the inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-
forward, and sets the stage for situations that resembles more the real life. A
generic once-folding map does not yield a complete horseshoe; some of the horse-
shoe pieces might be pruned, i.e., not realized for particular parameter values of
the mapping. In 1 dimension, the criterion for whether a given symbolic sequence
is realized by a given unimodal map is easily formulated; any orbit that strays to
the right of the value computable from the kneading sequence (the orbit of the
critical point (14.5)) is pruned. This is a topological statement, independent of a
particular unimodal map. Our objective is to generalize this notion to 2-dimen-
sional once-folding maps.
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Figure 15.11: (left) An incomplete Smale horse-
shoe: the inner forward fold does not intersect the
outer backward fold. (right) The primary pruned
region in the symbol square and the corresponding
forbidden binary blocks.
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Figure 15.12: (a) An incomplete Smale horseshoe
which illustrates (b) the monotonicity of the prun-
ing front: the thick line which delineates the left
border of the primary pruned region is monotone
on each half of the symbol square. The backward
folding in this figure and figure 15.11 is schematic
- in invertible mappings there are further miss-
ing intersections, all obtained by the forward and
backward iterations of the primary pruned region.

Adjust the parameters of a once-folding map so that the intersection of the
backward and forward folds is still transverse, but no longer complete, as in fig-
ure 15.11. The utility of the symbol square lies in the fact that the surviving,
admissible itineraries still maintain the same relative spatial ordering as for the
complete case.

In the example of figure 15.11 the rectangles [10.1], [11.1] have been pruned,
and consequently any itinerary containing substrings b1 = 101, b2 = 111 is inad-
missible, or pruned. The symbol dynamics is a subshift of finite type (14.17).

We refer to the left border of this primary pruned region as the pruning front;
another example of a pruning front is drawn in figure 15.12 (b). We call it a
‘front’ as it can be visualized as a border between admissible and inadmissible;
any trajectory whose points would fall to the right of the front in figure 15.12
is inadmissible, i.e., pruned. The pruning front is a complete description of the
symbolic dynamics of once-folding maps (read sect. 15.4.1. The pruning front is a
2-dimensional generalization of the 1-dimensional kneading sequence (14.5); the
location of each vertical step in the pruning front is the kneading sequence of the
corresponding primary turnback of the unstable manifold.

In the examples of figure 15.11 there is a finite number of grammar rules, a
total of two forbidden blocks 101, 111. For now we concentrate on this kind of
pruning (‘subshifts of finte type’) because it is particularly clean and simple.
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15.4.1 Pruning front conjecture

No matter how far down the wrong road you’ve gone, turn
back.

— Turkish proverb

The pruning front conjecture offers a complete description of the symbolic dy-
namics of once-folding maps in the same sense in which the kneading sequence
defines the symbolic dynamics of a 1-dimensional unimodal map. The intuition
behind this conjecture is that the folding induced by a single iteration is the pri-
mary folding, and all other folds (turnbacks, homoclinic tangencies) are images
or preimages of the primary ones. The topology puts two constraints on the form
of a pruning front for once-folding maps:

1. The pruning front is symmetric across the horizontal 1/2 line.

2. The pruning front is monotone across either half of the symbol square.

This is a consequence of the deterministic foliation; inner folds cannot pierce
through the outer folds, and therefore have the same number or fewer transverse
sections than the outer ones.

Our strategy is the following: we first construct the symbol square, the 2-dim-
ensional ‘NYC subway map’ of the topology of a given ‘stretch & fold’ dynamical
system, as illustrated in figure 15.8. The symbol square is a ‘road map’ in which
the various sheets of the stable and unstable manifolds are represented by straight
sections, and the topology is preserved: the nearby periodic points in the symbol
square represent nearby periodic points in the state space. Next we separate the
admissible and the forbidden motions by means of a ‘pruning front’, a boundary
between the two kinds of orbits. We make following assumptions:

(i) The partition conjecture: the non–wandering set of a once-folding map can be
described by a subset of a complete Smale horseshoe, partitioned by the set
of primary turning points.

(ii) The pruning-front conjecture: kneading values of the set of all primary turn-
ing points separate the admissible from the forbidden orbits, and there are
no other pruning rules.

(iii) Multimodal map approximation: A 2-dimensional once-folding map can
be systematically approximated by a sequence of 1-dimensional n-folding
maps.

The intuition behind these conjectures is that the folding induced by a single
iteration is the primary folding, and all other folds (turning points, homoclinic
tangencies) are images or preimages of the primary ones. The asymptotic object
is a collection of infinitely many 1-dimensional sheets, and the pruning front is
the set of the corresponding kneading sequences (14.5), one for each 1-dimen-
sional sheet.
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Table 15.1: Correspondence between the Z2 symmetry reduced cycles p̃ and the full state
space periodic orbits p, together with their multiplicities mp. Also listed are the two
shortest cycles (length 6) related by time reversal, but distinct under D1.

p̃ p mp
1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

fast track:

chapter 16, p. 302

Though a useful tool, Markov partitioning is not without drawbacks. One glar-
ing shortcoming is that Markov partitions are not unique: any of many different
partitions might do the job. The Z2- and D3-equivariant systems that we discuss
next offer a simple illustration of different Markov partitioning strategies for the
same dynamical system.

15.5 Recoding, symmetries, tilings

In chapter 11 we made a claim that if there is a symmetry of dynamics,
we must use it. Here we shall show how to use it, on two concrete examples, and
in chapter 25 we shall be handsomely rewarded for our labors. First, the simplest
example of equivariance, a single ‘reflection’ D1 = Z2 group of example 11.4.

example 15.6

p. 298

Next, let us take the old pinball game and ‘quotient’ the state space by the
symmetry, or ‘desymmetrize.’ As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. For instance, the cycles 12, 23, and 13 in
figure 15.13 are related to each other by rotation by ±2π/3 or, equivalently, by a
relabeling of the disks. We exploit this symmetry by recoding, as in (15.19).

exercise 14.1
exercise 15.7

example 15.5

p. 298
exercise 15.8
exercise 17.2
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Figure 15.13: The 3-disk game of pinball with the
disk radius : center separation ratio a:R = 1:2.5.
(a) 2-cycles 12, 13, 23, and 3-cycles 123 and 132
(not drawn). (b) The fundamental domain, i.e., the
small 1/6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamen-
tal domain are the two fixed points 0, 1. See fig-
ure 11.1 for cycle 10 and further examples.

(a) (b)

Binary symbolic dynamics has two immediate advantages over the ternary
one; the prohibition of self-bounces is automatic, and the coding utilizes the sym-
metry of the 3-disk pinball game in an elegant manner.

exercise 14.2

The 3-disk game of pinball is tiled by six copies of the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflect-
ing mirrors, see figure 15.13 (b). Every global 3-disk trajectory has a correspond-
ing fundamental domain mirror trajectory obtained by replacing every crossing
of a symmetry axis by a reflection. Depending on the symmetry of the full state
space trajectory, a repeating binary alphabet block corresponds either to the full
periodic orbit or to a relative periodic orbit (examples are shown in figure 15.13
and table 15.2). A relative periodic orbit corresponds to a periodic orbit in the
fundamental domain.

Table 15.2 lists some of the shortest binary periodic orbits, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. For a number
of deep reasons that will be elucidated in chapter 25, life is much simpler in the
fundamental domain than in the full system, so whenever possible our computa-
tions will be carried out in the fundamental domain.

example 15.7
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15.6 Charting the state space

In simple examples, such as the Rössler example 3.2, a single Poincaré section
suffices, but this is rarely the case for flows of physical interest. In this section
(skip it on first reading) we commence a discussion of the general case.

A Poincaré section is constructed by picking a ‘template’ point x̂′ within a
state space region of interest, and defining a hypersurface (3.2) that goes through
the template point. In theory, this Poincaré section could be any (d−1)-dimensional
manifold. In practice, a hyperplane (3.5) is the most convenient, the natural choice
for the vector normal to the section being n̂ = v(x̂′), the velocity field at the
template point x̂′. This Poincaré section x̂ ∈ P is a hyperplane,

appendix 7.2

v′ · (x̂ − x̂′) = 0 , v′ = v(x̂′) , (15.9)
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Table 15.2: D3 correspondence between the binary labeled fundamental domain prime
cycles p̃ and the full 3-disk ternary labeled cycles p, together with the D3 transformation
that maps the end point of the p̃ cycle into the irreducible segment of the p cycle, see
example 11.5. White spaces in the above ternary sequences mark repeats of the irreducible
segment; for example, the full space 12-cycle 1212 3131 2323 consists of 1212 and its
symmetry related segments 3131, 2323. The multiplicity of p cycle is mp = 6np̃/np.
The shortest pair of fundamental domain cycles related by time reversal (but no spatial
symmetry) are the 6-cycles 001011 and 001101.

p̃ p gp̃
0 1 2 σ12
1 1 2 3 C
01 12 13 σ23
001 121 232 313 C
011 121 323 σ13
0001 1212 1313 σ23
0011 1212 3131 2323 C2

0111 1213 2123 σ12
00001 12121 23232 31313 C
00011 12121 32323 σ13
00101 12123 21213 σ12
00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p gp̃
000001 121212 131313 σ23
000011 121212 313131 232323 C2

000101 121213 e
000111 121213 212123 σ12
001011 121232 131323 σ23
001101 121231 323213 σ13
001111 121231 232312 313123 C
010111 121312 313231 232123 C2

011111 121321 323123 σ13
0000001 1212121 2323232 3131313 C
0000011 1212121 3232323 σ13
0000101 1212123 2121213 σ12
0000111 1212123 e
· · · · · · · · ·

Figure 15.14: Reduction of a continuous-time flow
(left frame) to a set of return maps (right frame), with
a point on 1-cycle and the two cycle points of a 2-cycle
used as template points.
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normal to the flow direction v′ at the template point x̂′. Such section cuts the
nearby trajectories transversally, and is a good description of solutions similar to
the given template.

So one hyperspace P will, in general, not suffice. A more insightful picture
of the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions {M1,M2, . . . ,MN} and constructing a Poincaré section per re-
gion, global atlas of the state space composed of N local Poincaré sections P( j)

section 14.1
or charts, each one capturing a neighborhood of a qualitatively prominent state
x̂′( j) ∈ S . We shall refer to these states as templates, each represented in the state
spaceM of the system by a template point {x̂′(1), x̂′(2), · · · , x̂′(N)}.

Our Poincaré section is a hyperplane. If we pick another template point
x̂′(2), it comes along with its own section hyperplane. The (d−1)-dimensional
Poincaré sections for an adjacent pair of template intersects in a ‘ridge’ (‘bound-
ary’, ‘edge’), a (d−2)-dimensional hyperplane, easy to compute. Follow an ant
(the sequence of return map iterates) as it progresses along the Poincaré section
P(1). The moment (x̂(1)(τ) − x̂′(2)) · n̂(2) changes sign, the ant has crossed the
ridge, we switch the Poincaré section, and the ant continues its merry stroll now
confined to the P(2) section. Each Poincaré section P( j), provides a local chart
at x̂′( j) for a neighborhood of an important, qualitatively distinct class of solu-
tions; together they ‘Voronoi’ tessellate the curved manifold in which the reduced
dynamics is replaced by a finite set of mappings between hyperplane tiles. An ex-
ample is the periodic-orbit implementation of the idea of state space tessellation
by neighborhoods of recurrent points, so dear to professional cyclists, illustrated
in figure 15.14.

For a given dynamical flow, the physical task is to pick a minimal set of qual-
itatively distinct templates. The state space might be filled by all kinds of highly
unstable, never revisited equilibria and relative periodic orbits. The choice of
templates should reflect the dynamically prominent states seen in the long-time
simulations of system’s dynamics. We have only vague advice on how to pick a
single Poincaré section (see sect. 3.1.2), and no advice on how to systematically
pick a set of ‘good’ templates, other than that the associated section tiles should
be as large as possible, but still sufficiently small to exclude orbit tangencies, i.e.,
stop before crossing their section borders (3.8). Ideally, one wold like to pick as
few templates as possible in figure 15.14. Once templates are picked, the rest is
geometry of hyperplanes, so checking whether the section border is on the far side
of the tile edge (ridge between two sections) is a fast, linear computation.

There is a rub, though - you need to know how to pick the neighboring tem-
plates. Perhaps a glance at figure 15.14 helps visualize the problem; imagine that
the tiles belong to the Poincaré sections through template points on these orbits.
One could slide templates along their trajectories until the pairs of straight line
segments connecting neighboring template points are minimized, but that seems
a bit arbitrary. At this time we have no advice as how to ‘synchronize’ the tem-
plates relative to each other. The astute reader will instantly recognize this as the
problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quantum Field Theory
and General Relativity.
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Figure 15.15: Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other by the
flip across 1 axis. Similarly, (b) 123 and 132 are related
by flips, and (c) 1213, 1232 and 1323 by rotations. (d)
The cycles 121212313 and 121212323 are related by
rotation and time reversal. These symmetries are dis-
cussed in chapter 11 (from ref. [13]).

15.6.1 Navigating the Poincaré-charted state space

Our goal now is to replace the continuous-time dynamics by a set of return maps
between a set of hyperplane sections, as in figure 15.14. The flat hyperplane
(3.5) is an ad hoc construct; one Poincaré section rarely suffices to capture all
of the dynamics of interest. Instead we chart the state space by partitioning it
into N qualitatively distinct regions {M1,M2, . . . ,MN}. Successive trajectory
intersections with the set of (d−1)-dimensional hypersurfaces Ps embedded in the
d-dimensional state spaceM, define the set of (d−1)→ (d−1) return maps

section 14.1

x̂n+1 = Psn+1 sn(x̂n) = f τ(x̂n)(x̂n) (15.10)

x̂n+1 ∈ P
sn+1 , x̂n ∈ P

sn , s ∈ {1, 2, . . . ,N} .

The d-dimensional continuous time flow is thus reduced to discrete time compo-
sition

Ps0 s1···sn = Psn sn−1 ◦ · · · ◦ Ps2 s1 ◦ Ps1 s0

of a set of return maps (15.10) that map the coordinates of Poincaré section Psn to
those of Psn+1 , the next section traversed by a given trajectory.

If a trajectory traverses regions Ms0 → Ms1 → · · · → Msn , the sequence
s0s1 · · · sn = sn ← · · · ← s1 ← s0 is said to be admissible. The return map

section 14.6
Ps0 from section Ps0 to itself has a contribution from any admissible returning
(periodic, sn = s0) sequence of compositions

Ps0 s1···sn−1 s0 = Ps0 sn−1 ◦ · · · ◦ Ps2 s1 ◦ Ps1 s0 (15.11)

The next example offers an unambiguous set of such Poincaré sections which
chapter 14
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Figure 15.16: (a) Poincaré section coordinates for
the 3-disk game of pinball. (b) Collision sequence
(s1, p1) 7→ (s2, p2) 7→ (s3, p3) from the boundary
of a disk to the boundary of the next disk presented
in the Poincaré section coordinates, and coded by
the return maps sequence P3←2P2←1 .

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a symbolic dynamics, a subject that we will return to in
chapter 14.

example 15.8

p. 299

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, with billiard boundaries the obvious choice as
Poincaré sections. For a general flow one is never so lucky. Also, so far we have
discussed only flows with a 1 continuous parameter (the time). The general case
of N-parameter continuous symmetries we postpone to chapter 12.

Résumé

In the preceding and this chapter we start with a d-dimensional state space and
end with a 1-dimensional return map description of the dynamics. The arc-length
parametrization of the unstable manifold maintains the 1-to-1 relation of the full
d-dimensional state space dynamics and its 1-dimensional return-map representa-
tion. To high accuracy no information about the flow is lost by its 1-dimensional
return map description. We explain why Lorenz equilibria are heteroclinically
connected (it is not due to the symmetry), and how to generate all periodic orbits
of Lorenz flow up to given length. This we do, in contrast to the rest of the thesis,
without any group-theoretical jargon to blind you with.

For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentially uncontrollable for the
same reason the flow itself is chaotic - exponential growth of errors. We prefer to
determine a folding point by bracketing it by longer and longer cycles which can
be determined accurately using variational methods of chapter 34, irrespective of
their period.
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For a generic dynamical system a subshift of finite type is the exception rather
than the rule. Its symbolic dynamics can be arbitrarily complex; even for the lo-
gistic map the grammar is finite only for special parameter values. Only some
repelling sets (like our game of pinball) and a few purely mathematical constructs
(called Anosov flows) are structurally stable - for most systems of interest an
infinitesimal perturbation of the flow destroys and/or creates an infinity of trajec-
tories, and specification of the grammar requires determination of pruning blocks
of arbitrary length. The repercussions are dramatic and counterintuitive; for ex-
ample, the transport coefficients such as the deterministic diffusion constant of
sect. 24.2 are emphatically not smooth functions of the system parameters. The

section 24.2
importance of symbolic dynamics is often under appreciated; as we shall see in
chapters 23 and 28, the existence of a finite grammar is the crucial prerequisite for
construction of zeta functions with nice analyticity properties. This generic lack
of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being. Our strategy is akin
to bounding a real number by a sequence of rational approximants; we converge
toward the non–wandering set under investigation by a sequence of self-similar
Cantor sets. The rule that everything to one side of the pruning front is forbidden
is striking in its simplicity: instead of pruning a Cantor set embedded within some
larger Cantor set, the pruning front cleanly cuts out a compact region in the sym-
bol square, and that is all - there are no additional pruning rules. A ‘self-similar’
Cantor set (in the sense in which we use the word here) is a Cantor set equipped
with a subshift of finite type symbol dynamics, i.e., the corresponding grammar
can be stated as a finite number of pruning rules, each forbidding a finite sub-
sequence _s1s2 . . . sn_. Here the notation _s1s2 . . . sn_ stands for n consecutive
symbols s11, s2, . . . , sn, preceded and followed by arbitrary symbol strings.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or graphs, see chapters 17 and 18.

Commentary

Remark 15.1. Stable/unstable manifolds. For pretty hand-drawn pictures of invari-
ant manifolds, see Abraham and Shaw [1]. Construction of invariant manifolds by map
iteration is described in Simo [36]. Fixed point stable / unstable manifolds and their
homoclinic and heteroclinic intersections can be computed using DsTool [2, 14, 29]. Un-
stable manifold turning points were utilized in refs. [6–9, 18, 35] to partition state space
and prune inadmissible symbol sequences. The arclength parameterized return maps were
introduced by Christiansen et al. [5], and utilized in ref. [30] Even though no dynamical
system has been studied more exhaustively than the Lorenz equations, the analysis of
sect. 14.2 is new. The desymmetrization follows Gilmore and Lettelier [16], but the key
new idea is taken from Christiansen et al. [5]: the arc-length parametrization of the unsta-
ble manifold maintains the 1-to-1 relation of the full d-dimensional state space dynamics
and its 1-dimensional return-map representation, in contrast to 1-dimensional projections
of the (d−1)-dimensional Poincaré section return maps previously deployed in the lit-
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erature. In other words, to high accuracy no information about the flow is lost by its
1-dimensional return map description.

Remark 15.2. Smale horseshoe. S. Smale understood clearly that the crucial ingre-
dient in the description of a chaotic flow is the topology of its non–wandering set, and he
provided us with the simplest visualization of such sets as intersections of Smale horse-
shoes. In retrospect, much of the material covered here can already be found in Smale’s
fundamental paper [37], but an engineer or a scientist who has run into a chaotic time
series in his laboratory might not know that he is investigating the action (differentiable)
of a Lie group G on a manifold M, and that the Lefschetz trace formula is the way to go.

We have tried to explain the geometric picture the best we could in the static text for-
mat, but there is no substitute for dynamics but the dynamics itself. We found Demidov’s
“Chaotic maps” [12] simulations of the Hénon map particularly helpful in explaining how
horsheshoes partition the non–wandering sets. For a detailed discussion of the Hamilto-
nian, area-preserving Hénon map repeller symbolic dynamics sketched in example 15.9),
see Li and Tomsovic [31]. Symbolic dynamics of heteroclinic and homoclinic connec-

section 14.6
tions is discussed by Hagiwara and Shudo [21].

Remark 15.3. Pruning fronts. The ‘partition conjecture’ is due to Grassberger and
Kantz [19]. The notion of a pruning front and the ‘pruning-front conjecture’ was formu-
lated by Cvitanović et al. [9], and developed by K.T. Hansen for a number of dynamical
systems in Hansen’s Ph.D. thesis [23] and a series of papers [22]-[24]. The ‘multimodal
map approximation’ is described in Hansen’s thesis [23]. The thesis remains the most ac-
cessible exposition of the pruning theory and its applications. Detailed studies of pruning
fronts are carried out in refs. [10, 11, 17]; ref. [20] is the most detailed study carried out
so far. The rigorous theory of pruning fronts has been developed by Y. Ishii [26–28]
for the Lozi map, and A. de Carvalho [3, 4] in a very general setting. Beyond the orbit
pruning and its infinity of admissible unstable orbits, an attractor of Hénon type may also
own an infinity of attractive orbits coexisting with the strange attractor [32, 33]. We of-
fer heuristic arguments and numerical evidence that the coexistence of attractive orbits
does not destroy the strange attractor/repeller, which is also in this case described by the
2-dimensional Danish pastry plot.
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Figure 15.17: The stable/unstable manifolds of the
equilibrium (xq, xq) = (0, 0) of 2-dimensional flow
(15.12).

y

x

15.7 Examples

Example 15.1. A simple stable/unstable manifolds pair. Consider the 2-dimension-
al ODE system

dx
dt

= −x,
dy
dt

= y + x2 , (15.12)

The flow through a point x(0) = x0, y(0) = y0 can be integrated

x(t) = x0 e−t, y(t) = (y0 + x2
0/3) et − x2

0 e−2t/3 . (15.13)

Linear stability of the flow is described by the stability matrix

A =

(
−1 0
2x 1

)
. (15.14)

The flow is hyperbolic, with a real expanding/contracting eigenvalue pair λ1 = 1, λ2 = −1,
and area preserving. The right eigenvectors at the point (x, y)

e(1) =

(
0
1

)
, e(2) =

(
1
−x

)
. (15.15)

can be obtained by acting with the projection operators (see example A4.2 Decomposition
of 2-dimensional vector spaces)

Pi =
A − λ j1
λi − λ j

: P1 =

[
0 0
x 1

]
, P2 =

[
1 0
−x 0

]
(15.16)

on an arbitrary vector. Matrices Pi are orthonormal and complete.

The flow has a degenerate pair of equilibria at (xq, yq) = (0, 0), with eigenvalues
(stability exponents), λ1 = 1, λ2 = −1, eigenvectors e(1) = (0, 1), e(2) = (1, 0). The
unstable manifold is the y axis, and the stable manifold is given by (see figure 15.17)

y0 +
1
3

x2
0 = 0⇒ y(t) +

1
3

x(t)2 = 0 . (15.17)

(N. Lebovitz)
click to return: p. 275

Example 15.2. A section at a fixed point with a complex Floquet multiplier pair.
The simplest choice of a Poincaré section for a fixed (or periodic) point xq with a complex
Floquet multiplier pair is the plane P specified by the fixed point (located at the tip of the
vector xq) and the eigenvector Im e(k) perpendicular to the plane. A point x is in the section
P if it satisfies the condition

(x − xq) · Im e(k) = 0 . (15.18)

In the neighborhood of xq the spiral out/in motion is in the {Re e(k), Im e(k)} plane, and thus
guaranteed to be cut by the Poincaré section P normal to e(k).

click to return: p. 276
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Example 15.3. Recoding 3-disk dynamics in binary. (Continued from exam-
ple 14.1) The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to quotient the symmetries of
the dynamics in order to obtain a more efficient description. We do this in a quick way
here, and redo it in more detail in sect. 15.5.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what is im-
portant is how a trajectory evolves as it hits subsequent disks, not what label the starting
disk had. We exploit this symmetry by recoding, in this case replacing the absolute disk
labels by relative symbols, indicating the type of the collision. For the 3-disk game of
pinball there are two topologically distinct kinds of collisions, figure 15.3:

exercise 14.1
exercise 15.7

si =

{
0 : pinball returns to the disk it came from
1 : pinball continues to the third disk . (15.19)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 18.1)
are admissible.

exercise 14.2

It is intuitively clear that as we go backward in time (reverse the velocity vector), we
also need increasingly precise specification of x0 = (s0, p0) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Ms1.s2 , the
intersection ofM.s2 with the stripsMs1. obtained by time reversal (the velocity changes
sign sin φ → −sin φ).Ms1.s2 , figure 15.4 (a), is a ‘rectangle’ of nearby trajectories which
have arrived from disk s1 and are heading for disk s2. (continued in example 15.5)

click to return: p. 279

Example 15.4. A Hénon repeller complete horseshoe. (Continued from exam-
ple 3.5) Consider 2-dimensional Hénon map

exercise 3.5

(xn+1, yn+1) = (1 − ax2
n + byn, xn) . (15.20)

If you start with a small ball of initial points centered around the fixed point x0, and iterate
the map, the ball will be stretched and squashed along the unstable manifold Wu

0 . Iterated
backward in time,

(xn−1, yn−1) = (yn,−b−1(1 − ay2
n − xn)) , (15.21)

this small ball of initial points traces out the stable manifold W s
0 . Their intersections

enclose the region M. , figure 15.5 (a). Any point outside W s
0 border of M. escapes to

infinity forward in time, while –by time reversal– any point outside Wu
0 border arrives

from infinity back in paste. In this way the unstable - stable manifolds define topologi-
cally, invariant and optimal initial regionM.; all orbits that stay confined for all times are
confined toM. .

The Hénon map models qualitatively the Poincaré section return map of figure 14.7 (b).
For b = 0 the Hénon map reduces to the parabola (14.20), and, as shown in sects. 3.3 and
34.1, for b , 0 it is kind of a fattened parabola; by construction, it takes a rectangu-
lar initial area and returns it bent as a horseshoe. Parameter a controls the amount of
stretching, while the parameter b controls the amount of compression of the folded horse-
shoe. For definitiveness, fix the parameter values to a = 6, b = −1; the map is then
strongly stretching but area preserving, the furthest away from the strongly dissipative ex-
amples discussed in sect. 14.2. The map is quadratic, so it has 2 fixed points x0 = f (x0),
x1 = f (x1) indicated in figure 15.5 (a). For the parameter values at hand, they are both
unstable.
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Iterated one step forward, the regionM. is stretched and folded into a Smale horse-
shoe drawn in figure 15.5 (b). Label the two forward intersections f (M.) ∩M. byMs.,
with s ∈ {0, 1}. The horseshoe consists of the two stripsM0.,M1. , and the bent segment
that lies entirely outside the W s

0 line. As all points in this segment escape to infinity under
forward iteration, this region can safely be cut out and thrown away.

Iterated one step backwards, the regionM. is again stretched and folded into a horse-
shoe, figure 15.5 (c). As stability and instability are interchanged under time reversal, this
horseshoe is transverse to the forward one. Again the points in the horseshoe bend wander
off to infinity as n → −∞, and we are left with the two (past) stripsM.0,M.1 . Iterating
two steps forward we obtain the four strips M11.,M01.,M00.,M10., and iterating back-
wards we obtain the four stripsM.00,M.01,M.11,M.10 transverse to the forward ones just
as for 3-disk pinball game figure 15.3. Iterating three steps forward we get an 8 strips, and
so on ad infinitum. For a detailed discussion of the Hamiltonian, area-preserving Hénon
map repeller symbolic dynamics sketched above, see Li and Tomsovic [31]. (continued
in example 15.9)

click to return: p. 279

Example 15.5. Recoding ternary symbolic dynamics in binary. Given a ternary se-
quence and labels of 2 preceding disks, rule (15.19) fixes the subsequent binary symbols.
Here we list an arbitrary ternary itinerary, and the corresponding binary sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3
binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (15.22)

The first 2 disks initialize the trajectory and its direction; 3 7→ 1 7→ 2 7→ · · · . Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31, 32
respectively have the same weights, the same size state space partitions, and are coded by
a single binary sequence. (continued in example 15.7)

click to return: p. 286

Example 15.6. C2 recoded. Assume that each orbit is uniquely labeled by an
exercise 11.3infinite string {si}, si ∈ {+,−} and that the dynamics is C2-equivariant under the + ↔ −

interchange. Periodic orbits separate into two classes, the self-dual configurations +−,
+ + −−, + + + − −−, + − − + − + +−, · · · , with multiplicity mp = 1, and the pairs +,
−, + + −, − − +, · · · , with multiplicity mp = 2. For example, as there is no absolute
distinction between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.5 (a), the
Floquet multipliers satisfy Λ+ = Λ−, Λ++− = Λ+−−, and so on.

exercise 25.6

The symmetry reduced labeling ρi ∈ {0, 1} is related to the full state space labeling
si ∈ {+,−} by

If si = si−1 then ρi = 1
If si , si−1 then ρi = 0 (15.23)

For example, the fixed point + = · · ·+ + + + · · · maps into · · · 111 · · · = 1, and so does the
fixed point −. The 2-cycle −+ = · · · − + − + · · · maps into fixed point · · · 000 · · · = 0, and
the 4-cycle − + +− = · · · − − + + − − + + · · · maps into 2-cycle · · · 0101 · · · = 01. A list
of such reductions is given in table 15.1.

click to return: p. 286
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Example 15.7. D3 recoded - 3-disk game of pinball. (Continued from exam-
ple 15.5) The D3 recoding can be worked out by a glance at figure 15.13 (a) (Continuation
of example 11.11). For the symmetric 3-disk game of pinball the fundamental domain is
bounded by a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure 15.13 (b)). The three symmetry axes divide the space into six copies
of the fundamental domain. Any trajectory on the full space can be pieced together from
bounces in the fundamental domain, with symmetry axes replaced by flat mirror reflec-
tions. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has a simple
geometric interpretation, figure 15.3: a collision of type 0 reflects the projectile to the
disk it comes from (back–scatter), whereas after a collision of type 1 projectile continues
to the third disk. For example, 23 = · · · 232323 · · · maps into · · · 000 · · · = 0 (and so do
12 and 13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and so does 132), and so forth.
Such reductions for short cycles are given in table 15.2, figure 15.13 and figure 11.6.

click to return: p. 287

Example 15.8. Pinball game, Poincaré dissected. (Continued from sect. 1.4 and
chapter 9) A phase-space orbit is fully specified by its position and momentum at a
given instant, so no two distinct phase-space trajectories can intersect. The configuration
space trajectories, however, can and do intersect, in rather unilluminating ways, as e.g. in
figure 15.15 (d), and it can be rather hard to perceive the systematics of orbits from their
configuration space shapes. The problem is that we are looking at the projections of 4-
dimensional state space trajectories onto a 2-dimensional configuration subspace. A much
clearer picture of the dynamics is obtained by constructing a set of Poincaré sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position and
outgoing angle, it could proceed to either disk 2 or 3. Not much happens in between the
bounces–the ball just travels at constant velocity along a straight line–so we can reduce the
4-dimensional flow to a 2-dimensional map Pσk←σ j that maps the coordinates (Poincaré
section P1) of the pinball from one disk edge to another. Just after the moment of impact
the trajectory is defined by sn, the arc-length position of the nth bounce along the billiard
wall, and pn = p sin φn the outgoing momentum component parallel to the billiard wall
at the point of impact, figure 15.16 (a). These coordinates (due to Birkhoff) are smart,

exercise 9.7as they conserve the phase-space volume. Trajectories originating from one disk can hit
either of the other two disks, or escape. We label the survivor state space regions P12,
P13. In terms of the three Poincaré sections, one for each disk, the dynamics is reduced
to the set of six maps

(sn+1, pn+1) = Pσn+1←σn (sn, pn) , σ ∈ {1, 2, 3} (15.24)

from the boundary of a disk to the boundary of the next disk, figure 15.16 (b). The explicit
form of this map is easily written down, see example 9.1, but much more economical is
the symmetry quotiented version of chapter 11 which replaces the above 6 forward maps
by a return map pair P0, P1.

click to return: p. 291

Example 15.9. A Hénon repeller subshift. (Continued from example 15.4) The
Hénon map acts on the binary partition as a shift map. Figure 15.6 illustrates action
f (M.0) = M0.. The square [01.01] gets mapped into the rectangles σ[01.01] = [10.1] =

{[10.10], [10.11]}, see figure 15.5 (e). Further examples can be gleaned from figure 15.5.
click to return: p. 282
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Exercises

15.1. A Smale horseshoe. The Hénon map of example 3.5

[
x′
y′

]
=

[
1 − ax2 + by
x

]
(15.25)

maps the [x, y] plane into itself - it was constructed
by Hénon [25] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figure 14.7. For definitiveness fix the pa-
rameters to a = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its
nth iterate by the Hénon map intersects the rectan-
gle 2n times.

b) Construct the inverse of the (15.25).

c) Iterate the rectangle back in the time; how many
intersections are there between the n forward and
m backward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed
points, a 2-periodic point, and points on the two
distinct 3-cycles from table 18.1. The exact peri-
odic points are computed in exercise 16.11.

15.2. A simple stable/unstable manifolds pair. Integrate
flow (15.12), verify (15.13). Check that the projection
matrices Pi (15.16) are orthonormal and complete. Use
them to construct right and left eigenvectors; check that
they are mutually orthogonal. Explain why is (15.17)
the equation for the stable manifold. (N. Lebovitz)

15.3. Kneading Danish pastry. Write down the (x, y) →
(x, y) mapping that implements the baker’s map

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections
of figure 15.5 into a unit square. In the symbol square
the dynamics maps rectangles into rectangles by a dec-
imal point shift. together with the inverse mapping.

Sketch a few rectangles in symbol square and their for-
ward and backward images. (Hint: the mapping is very
much like the tent map (14.21)).

15.4. Kneading danish without flipping. The baker’s map
of exercise 15.3 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y) → (x, y) mapping that implements an
orientation preserving baker’s map (no flip; Jacobian de-
terminant = 1). Sketch and label the first few folds of the
symbol square.

15.5. Orientation reversing once-folding map. By adding
a reflection around the vertical axis to the horseshoe map
g we get the orientation reversing map g̃ shown in the
second Figure above. Q̃0 and Q̃1 are oriented as Q0 and
Q1, so the definition of the future topological coordi-
nate γ is identical to the γ for the orientation preserving
horseshoe. The inverse intersections Q̃−1

0 and Q̃−1
1 are

oriented so that Q̃−1
0 is opposite to Q, while Q̃−1

1 has the
same orientation as Q. Check that the past topological
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coordinate δ is given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2n .(15.26)

15.6. Infinite symbolic dynamics. Let σ be a function that
returns zero or one for every infinite binary string: σ :
{0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an op-
erator T that acts on observables on the space of binary
strings. A function a is an observable if it has bounded
variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)
+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version Tn of the operator
T :

Tna(ε1, ε2, . . . , ε1,n) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace class.

15.7. 3-disk fundamental domain cycles. (continued

from exercise 11.3) Try to sketch 0, 1, 01, 001, 011, · · · .
in the fundamental domain, and interpret the symbols
{0, 1} by relating them to topologically distinct types of
collisions. Compare with table 15.2. Then try to sketch
the location of periodic points in the Poincaré section of
the billiard flow. The point of this exercise is that while
in the configuration space longer cycles look like a hope-
less jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space co-
ordinates which does not respect the topological organi-
zation of the flow.

15.8. 3-disk pruning. (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts at R : a =

2.04821419 . . . , figure 14.6. (K.T. Hansen)
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Chapter 16

Fixed points, and how to get them

Cycles. Is there anything they can’t do?
— Mason Porter, channeling Homer Simpson

Having set up the dynamical context, we now turn to the key and unavoidable
numerical task in this subject; we must search for the solutions (x,T),
x ∈ Rd, T ∈ R+ satisfying the periodic orbit condition

f T (x) = x , T > 0 , (flow)

f n(x) = x , n ≥ 1 , (map) (16.1)

for a given flow or map.

In chapters 21 and 22 we will establish that spectra of evolution operators can
be extracted from periodic orbit sums:∑

(spectral eigenvalues) =
∑

(periodic orbits) .

Hence, periodic orbits are the necessary ingredient for evaluation of the spectra
of evolution operators. We need to know what periodic orbits can exist, and the
symbolic dynamics developed so far is an invaluable tool toward this end.

This chapter, a continuation of chapter 7, is intended as a hands-on guide to
extracting periodic orbits, and should be skipped on first reading - you can return
to it whenever the need for finding actual cycles arises. A serious cyclist will want

chapter 34
to also learn about the variational methods to find cycles, chapter 34. They are
particularly useful when little is known about the topology of a flow, such as in
high-dimensional periodic orbit searches.

fast track:

chapter 17, p. 317
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Due to the exponential divergence of nearby trajectories in chaotic dynamical
systems, fixed point searches based on direct solutions of the fixed-point condition
(16.1) as an initial value problem can be numerically very unstable. Methods that

chapter 34
start with initial guesses for a number of points along the cycle, such as the mul-
tipoint shooting method described here in sect. 16.2, and the variational methods
of chapter 34, are considerably more robust and safer. I you want to do billiards,
proceed straight to sect. 34.3.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation is
preparing a list of all distinct admissible prime periodic symbol sequences, such as
the list given in table 18.1. The relations between the temporal symbol sequences
and the spatial layout of the topologically distinct regions of the state space dis-
cussed in chapters 14 and 15 should enable us to guess the location of a series of
periodic points along a cycle. Armed with such an informed guess we proceed
to improve it by methods such as Newton-Raphson iteration; we show how this
works by applying Newton method to 1- and d-dimensional maps. But first, where
are the cycles?

16.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessing where the cycles are is
the case of planar billiards. The Maupertuis principle of least action here dictates
that the physical trajectories minimize the length of an approximate orbit that
visits a desired sequence of boundary bounces.

example 16.1

p. 312

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. Some might be satisfied with any
rampaging robot that finds “the most important” cycles. The ergodic explorations
of recurrences sometimes perform admirably well, and we discuss this next.

16.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru
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Figure 16.1: An ergodic trajectory can shadow an un-
stable periodic orbit p for a finite time.

p

x(t)

x(0)

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit
remark 16.1

cycles) are never seen in simulations and experiments because they are unstable.
Nevertheless, one does observe close passes to the least unstable equilibria and
periodic orbits, as in figure 16.1. Ergodic exploration by long-time trajectories (or
long-lived transients, in case of strange repellers) can uncover state space regions
with near finite time recurrences. In addition, such trajectories preferentially sam-

section 19.1
ple the natural measure of the ‘turbulent’ flow, and by initiating searches within
the state space concentrations of natural measure bias the search toward the dy-
namically important invariant solutions.

The search consists of following a long trajectory in state space, and looking
for close returns of the trajectory to itself, see figure 16.1. Whenever the trajectory
almost closes in a loop (within a given tolerance), a point close to this near miss
of a cycle can be taken as an initial condition. Supplemented by a Newton routine
described below, a sequence of improved initial conditions may indeed rapidly
lead to closing a cycle. The method preferentially finds the least unstable orbits,
while missing the more unstable ones that contribute little to the cycle expansions.

This blind search is seriously flawed: in contrast to the 3-disk example 16.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in chapters 14 and 15, but are a bit of work to
implement.

16.1.2 Cycles found by thinking

Thinking is extra price.
—Dicho Colombiano

A systematic charting out of state space starts out by a hunt for equilibrium points.
If the equations of motion are a finite set of ODEs, setting the velocity field v(x)
in (2.7) to zero reduces search for equilibria to a search for zeros of a set of al-
gebraic equations. We should be able, in principle, to enumerate and determine
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all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the
Rössler example 2.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be determined by symmetry
considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.
the Lorenz EQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,
about 50 grid points acrossM in each dimension, and compute the velocity field
vk = v(xk) at each grid point xk; a few million vk values are easily stored. Plot
xk for which |vk|

2 < ε, ε << |vmax|
2 but sufficiently large that a few thousand

xk are plotted. If the velocity field varies smoothly across the state space, the
regions |vk|

2 < ε isolate the (candidate) equilibria. Start a Newton iteration with
the smallest |vk|

2 point within each region. Barring exceptionally fast variations in
v(x) this should yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady
states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs
or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A chaotic
trajectory can be thought of as a sequence of visitations to equilibrium neighbor-
hoods. Typically such neighborhoods have many stable, contracting directions
and a handful of unstable directions. Our strategy will be to generalize the billiard
Poincaré section maps Psn+1←sn of example 15.8 to maps from a section of the
unstable manifold of equilibrium sn to the section of stable manifold of equilib-
rium sn+1, and thus reduce the continuous time flow to a sequence of maps. These
Poincaré section maps do double duty, providing us both with an exact represen-
tation of dynamics in terms of maps, and with a covering smbolic dynamics.

We showed in the Lorenz flow example 14.4 how to reduce the 3-dimensional
Lorenz flow to a 1-dimensional return map. In the Rössler flow example 2.3 we
sketched the attractor by running a long chaotic trajectory, and noting that the
attractor is very thin, but that otherwise the return maps that we plotted were dis-
quieting – figure 3.4 did not appear to be a 1-to-1 map. In the next example we
show how to use such information to locate cycles approximately. In the remain-
der of this chapter and in chapter 34 we shall learn how to turn such guesses into
highly accurate cycles.

16.2 Multipoint shooting method

(F. Christiansen)

Periodic orbits of length n are fixed points of f n so in principle we could use
the simple Newton method described above to find them. However, this is not an
optimal strategy. The function f n oscillates wildly, with as many as 2n or more
closely spaced fixed points, and finding a specific periodic point, such as one
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with a given symbolic sequence, requires a very good starting guess. For binary
symbolic dynamics we must expect to improve the accuracy of our initial guesses
by at least a factor of 2n to find orbits of length n. Furthermore, the Jacobian of f n

can be ill-conditioned because its matrix elements can grow like Λn, where Λ is
the leading multiplier of a single discrete time step Jacobian. A better alternative
is the multipoint or multiple shooting method, with the Jacobian matrix broken
up into a product of single-step Jacobian matrices, each with eigenvalues ≈ Λ.
While it might very hard to give a precise initial guess for a long periodic orbit,
if our guesses are informed by a good state space partition, a rough guess for
each point along the desired trajectory might suffice, as for the individual short
trajectory segments the errors have no time to explode exponentially. That is why
in chapter 14 we have developed a qualitative theory of how these cycle points are
laid out topologically.

For a 1-dimensional map a cycle of length n is a zero of the n-dimensional
vector function F:

F(x) = F


x1
x2
·

xn

 =


x1 − fn
x2 − f1
· · ·

xn − fn−1

 , fn = f (xn) . (16.2)

The relationship between the temporal symbol sequences and the spatial layout
of the topologically distinct regions of state space discussed in chapter 14 enable
us to guess the location of a series of periodic points along a cycle. Armed with
such informed initial guesses, we can initiate a Newton-Raphson iteration. The
iteration in Newton’s method now takes the form

d
dx

F(x)(x′ − x) = −F(x) , f ′n = f ′(xn)

where d
dx F(x) is an [n × n] matrix:

d
dx F(x) =


1 − f ′n
− f ′1 1

· · · 1
· · · 1

− f ′n−1 1

 . (16.3)

This matrix can easily be explicitly inverted as shown in example 16.2. You would
think we are done. But not really; the explicit answer involves exponentially large
factors, such as the n-cycle stability multiplier J = f ′n · · · f ′3 f ′2 f ′1 and can easily
lead to overflows for longer cycles.

example 16.2

p. 312

When one sets up Newton iteration on a computer, it is not necessary to write
the left hand side as a matrix. All one needs is a vector containing the f ′(xi)’s and
a vector containing the n’th column, i.e., the cumulative product of the f ′(xi)’s
and a vector containing the right hand side. After iteration the vector containing
the right hand side is the correction to the initial guess.
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16.2.1 d-dimensional maps

Armed with clever initial guesses from a system’s symbolic dynamics, we can
easily extend the Newton-Raphson iteration method to d-dimensional maps. In
this case f ′(xi) is a [d × d] matrix, and d

dx F(x) is an [nd × nd] matrix. In each
of the steps above, we are then manipulating d rows of the left-hand-side matrix.
(Remember that matrices do not commute - always multiply from the left.) In
inverting the nth element of the diagonal we are inverting a [d × d] matrix (1 −∏

f ′(xi)) which can be done as long as none of the eigenvalues of
∏

f ′(xi) equals
1, i.e., if the cycle has no marginally stable eigen-directions.

example 16.3

p. 313

16.3 Cost function

(R. Paškauskas and P. Cvitanović)

It pays to think in terms of a cost (or error) function I(∆x) = (x + ∆x − f (x +

∆x))2/2. Periodic orbit condition (16.1) corresponds both to a zero of I(∆x), and
of its first ∆x variation. Expand I(∆x) to the second order in ∆x, Ĩ ≈ ∆̃x2

/2 + (x−
f (x)) · ∆̃x + (x − f (x))2/2, where ∆̃x = (1− J(x))∆x. To find an extremum, we set
the derivative with respect to ∆̃x to zero. As the term (x − f (x))2/2 is a constant
under ∆x variation, let us define an unconstrained cost function

I0(∆̃x) =
1
2

∆̃x · ∆̃x + (x − f (x)) · ∆̃x , (16.4)

Setting the derivative of this function

∂I0(∆̃x)
∂∆̃x

= ∆̃x + x − f (x) = (1 − J(x)) · ∆x + x − f (x) (16.5)

to zero recovers the Newton setup (7.3)

Next, we need to enforce the constraint that curbs the directions in which ∆x
can point. Lagrange multipliers come to help.

A local surface of section can be constructed when f (x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the velocity vector v(x).
The reference point x0 in (7.10) is x itself, and the surface of section condition is
U(x + ∆x) = v(x) ·∆x = 0. Introduce a Lagrange multiplier λ, and assemble a cost
function with the constraint:

I1(∆̃x, λ) =
1
2

∆̃x · ∆̃x + [x − f (x)] · ∆̃x + λv(x) · ∆̃x . (16.6)

Now we differentiate I1(∆x, λ) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (7.7), with the Lagrange multiplier
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λ = ∆t interpreted as the time increment needed to place f (x) onto the section,
f (x)→ f (x) + v( f (x))∆t.

A global surface of section is a fixed surface U(x + ∆x)−U(x0) ≈ ∂U(x)∆x +

U(x)−U(x0) that hopefully transects all or a significant portion of recurrent parts
of the flow. It is not as ‘natural’ as the local section (7.6), but hard to avoid in
practice, and one is interested not only in the fixed point itself, but in the global
reach of its unstable manifold as well. The simplest choice is a hyperplane (7.10).
The cost function and the variational equations are then

I2(∆x,∆t) =
1
2

∆x[1 − J(x)]∆x + (x − f (x)) ∆x

+ ∆t (∂U(x)∆x + U(x) − U(x0)) , (16.7)

[
1 − J(x) ∂U(x)
∂U(x) 0

] (
∆x
∆t

)
= −

(
x − f (x)

U(x) − U(x0)

)
(16.8)

Further continuous symmetries can be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of a Hamiltonian flow.
There, periodic orbits not only have the time-translation symmetry, but energy-
translation symmetry as well. What is energy-translation symmetry? If there ex-
ists a periodic orbit at x with energy H(x) = E, and period T , it is very likely that it
belongs to a family of orbits (x+ε∆x(E),T +ε∆t(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a unit Floquet multiplier:
indeed, we know from sect. 8.4 that symplectic eigenvalues come in pairs, so unit
multiplier in the time direction implies a unit multiplier in its dual, the energy di-
rection, (Λt,ΛE , · · · ) = (1, 1, · · · ). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Consider the following system

I3(∆x, λ1, λ2) = ∆x[1 − J(x)]∆x/2 + (x − f (x)) ∆x

+ λ1 (U(x + ∆x) − U(x0)) + λ2 (H(x + ∆x) − E0) (16.9)

1 − J(x) ∂U(x) ∂H(x)
∂U(x) 0 0
∂H(x) 0 0


 ∆x
λ1
λ2

 = −

 x − f (x)
U(x) − U(x0)

H(x) − E0

 (16.10)

This is the Newton iteration setup for how to search for a periodic orbit of a Hamil-
tonian flow with a global surface of section U(x) = U(x0) and fixed energy E0.
Note that these instructions do not put every iteration on a surface U(x) = U(x0)
and energy H(x) = E0, unless the surface is a plane U(x) = a · (x − x0), but in-
stead assure that the iterations (provided they converge) will approach the surface
super-exponentially.
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For periodic orbits multi-point shooting generalizes in the same way as (16.3),
but with n additional equations – one for each point on a Poincaré section. The
Newton setup looks like this:

1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

−v1
. . .

−vn

a
. . .

a

0
. . .

0





∆x1
∆x2
·

·

∆xn
∆t1
·

∆tn


=



−F1
−F2
·

·

−Fn
0
.
0


.

(16.11)

Solving this equation resembles the corresponding task for maps. However, we
will need to invert a [(d + 1)n × (d + 1)n] matrix rather than a [d × d] matrix.

Résumé

A prerequisite for a systematic and complete cycle search is a good (but hard
to come by) understanding of the topology of the flow. Usually one starts by -
possibly analytic - determination of the equilibria of the flow. Their locations, sta-
bilities, stability eigenvectors and invariant manifolds offer skeletal information
about the topology of the flow. The next step is numerical long-time evolution
of “typical” trajectories of the dynamical system under investigation. Such nu-
merical experiments build up the “natural measure” and reveal which regions are
most frequently visited. Periodic orbit searches can then be initialized by taking

section 19.4.1
nearly recurring orbit segments and deforming them into closed orbits. With a
sufficiently good initial guess, Newton-Raphson iteration then yields the period T
and the location of a periodic point xp.

The problem one faces with high-dimensional flows is that their topology is
hard to visualize, and that even with a decent starting guess for a point on a peri-
odic orbit, methods like the Newton-Raphson method are likely to fail. Methods

chapter 34
that start with initial guesses for a number of points along the cycle, such as the
multipoint shooting method of sect. 16.2, are more robust. Relaxation (or vari-
ational) methods take this strategy to its logical extreme, and start by a guess of
not a few points along a periodic orbit, but a guess of the entire orbit. Just as
these methods are intimately related to variational principles and path integrals,
we postpone their introduction until chapter 34.

Commentary

Remark 16.1. Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial guesses for periodic orbits from
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close recurrences of a long ergodic trajectory seems like an obvious idea. Nevertheless,
if you need to cite the paper where the method was first deployed, cite ref. [1]. Such
methods have been deployed by many, among them G. Tanner, L. Rondoni, G. Morris,
C.P. Dettmann, and R.L. Davidchack [2–5, 10] (see also sect. 23.7). Sometimes one can
determine most of the admissible itineraries and their weights without working too hard,
but method comes with no guarantee. For a clear and simple overview of how to compute
periodic orbits in higher dimensions (for example, for Navier-Stokes), see Willis [13]
lectures on Equilibria, periodic orbits and computing them, arXiv:1908.06730, a very
nice, student friendly introduction.

Remark 16.2. Cycles, searches, and symmetries. A few comments about the role
of symmetries in actual extraction of cycles. In the N-disk billiard example, a fundamen-
tal domain is a sliver of the N-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return map on a Poincaré section.
While in principle any Poincaré section will do, a natural choice in the present context
are crossings of symmetry axes, see example 8.7. In actual numerical integrations only
the last crossing of a symmetry line needs to be determined. The cycle is run in global
coordinates and the group elements associated with the crossings of symmetry lines are
recorded; integration is terminated when the orbit closes in the fundamental domain. Pe-
riodic orbits with non-trivial symmetry subgroups are particularly easy to find since their
points lie on crossings of symmetry lines, see example 8.7.

Remark 16.3. Symmetries of the symbol square. For a discussion of symmetry
lines see refs. [7–9, 11, 12]. It is an open question (see remark 25.2) as to how time
reversal symmetry can be exploited for reduction of cycle expansions of chapter 23. For
example, the fundamental domain symbolic dynamics for reflection symmetric systems
is discussed in some detail in sect. 25.5, but how does one recode from time-reversal
symmetric symbol sequences to desymmetrized 1/2 state space symbols?
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16.4 Examples

Example 16.1. Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 15.5. . Label the three disks by 1, 2 and 3, and associate to every

section 15.5
section 1.4

trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 15.15. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake the
band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si. The
computational problem is to find the extremum values of cycle length L(s) where s =

(s1, . . . , sn ) , a task that we postpone to sect. 34.3. As an example, the short periods and
exercise 34.2
exercise 16.11stabilities of 3-disk cycles computed this way are listed table 34.1, and some examples are

plotted in figure 15.15. It’s a no brainer, and millions of such cycles have been computed.

click to return: p. 303

Example 16.2. Newton inversion for a 3-cycle. Let us illustrate how Newton multiple
shooting method (16.3) works step by step for a 3-cycle. The initial setup for a Newton
step is: 1 0 − f ′3

− f ′1 1 0
0 − f ′2 1


 ∆x1

∆x2
∆x3

 = −

 F1
F2
F3

 ,
where ∆xi = x′i − xi is the correction to our initial guess xi, and Fi = xi − fi−1 is the error
at ith periodic point. Eliminate the sub-diagonal elements by adding f ′1 times the first row
to the second row, then adding f ′2 times the second row to the third row: 1 0 − f ′3

0 1 − f ′1 f ′3
0 0 1 − J


 ∆x1

∆x2
∆x3

 = −

 F1
F2 + f ′1 F1

F3 + f ′2 F2 + f ′2 f ′1 F1

 .
The next step is to invert the last element on the diagonal, i.e., divide the third row by 1−J,
where J = f ′3 f ′2 f ′1 is the stability of the cycle (when the Newton iteration has converged).
If this element is zero at the periodic orbit, this step cannot work, and so Newton method
is not a good method to find marginally stable cycles. We now have 1 0 − f ′3

0 1 − f ′1 f ′3
0 0 1


 ∆x1

∆x2
∆x3

 =−


F1

F2 + f ′1 F1
F3+ f ′2 F2+ f ′2 f ′1 F1

1−J

 ,

Finally we add f ′3 times the third row to the first row and f ′1 f ′3 times the third row to the
second row: 1 0 0

0 1 0
0 0 1


 ∆x1

∆x2
∆x3

 = −
1

1 − J

 F1 + f ′3 F3 + f ′3 f ′2 F2
F2 + f ′1 F1 + f ′1 f ′3 F3
F3 + f ′2 F2 + f ′2 f ′1 F1

 .

The left hand side matrix is now the unit matrix, and the right hand side is an explicit
formula for the corrections to our initial guess, cyclic in form, as it should be. ∆x1

∆x2
∆x3

 = −
1

1 − J


 1 0 0

0 1 0
0 0 1

 +

 0 0 f ′3
f ′1 0 0
0 f ′2 0

 +

 0 f ′3 f ′2 0
0 0 f ′1 f ′3

f ′2 f ′1 0 0



 F1

F2
F3

 .
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With this, we have gone through one Newton iteration. For an unstable cycle, the error
gets contracted by overal factor 1/(1 − J), with the earlier errors amplified by the orbit
instability; for example, ∆x3 receives a contribution from two time steps in the past of
form f ′2 f ′1 F1.

click to return: p. 306

Example 16.3. Newton method for time delay maps. Some d-dimensional maps
(such as the Hénon map (3.18)) can be written as 1-dimensional time delay maps of the
form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (16.12)

In this case, d
dx F(x) is an [n × n] matrix as in the case of usual 1-dimensional maps but

with non-zero matrix elements on d off-diagonals.
click to return: p. 307
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Exercises

16.1. Ulam map periodic points. (continued from exer-
cise 14.8)

(a) compute the five periodic points of cycle 10011
for the Ulam map (14.22) f (x) = 4x(1 − x) . using
your Newton or other routine.

(b) compute the five periodic points of cycle 10000
(c) plot the above two cycles on the graph of the Ulam

map, verify that their topological ordering is as in
the ‘canonical’ full tent map exercise 14.8.

(d) (optional) This works only for the Ulam map:
compute periodic points by conjugating the full
tent map periodic points of exercise 14.8 using ex-
ercise A2.3.

16.2. Cycles stabilities for the Ulam map (exact). In ex-
ercise 16.1 you should have observed that the numerical
results for the cycle Floquet multipliers (4.43) are ex-
ceptionally simple: the Floquet multiplier of the x0 = 0
fixed point is 4, while the eigenvalue of any other n-
cycle is ±2n. Prove this. (Hint: the Ulam map can be
conjugated to the tent map (14.21). This problem is per-
haps too hard, but give it a try - the answer is in many
introductory books on nonlinear dynamics.)

16.3. Newton-Raphson method. Implement the Newton-
Raphson method in 2 dimensions, and apply it to the
determination of pinball cycles.

16.4. Cycle stability. Add to the pinball simulator of exer-
cise 9.1 a routine that evaluates the expanding eigen-
value for a given cycle.

16.5. Pinball cycles. Determine the stability and length of all
fundamental domain prime cycles of the binary symbol
string lengths up to 5 (or longer) for R : a = 6 3-disk
pinball.

16.6. Fundamental domain fixed points. Use the for-
mula (9.10) for billiard Jacobian matrix to compute the
periods Tp and the expanding eigenvalues Λp of the fun-
damental domain 0 (the 2-cycle of the complete 3-disk
space) and 1 (the 3-cycle of the complete 3-disk space)
fixed points:

Tp Λp

0: R − 2 R − 1 + R
√

1 − 2/R

1: R −
√

3 − 2R
√

3
+ 1 − 2R

√
3
√

1 −
√

3/R

(16.13)

We have set the disk radius to a = 1.

16.7. Fundamental domain 2-cycle. Verify that for the
10-cycle the cycle length and the trace of the Jacobian
matrix are given by

L10 = 2
√

R2 −
√

3R + 1 − 2,
tr J10 = Λ10 + 1/Λ10 (16.14)

= 2L10 + 2 +
1
2

L10(L10 + 2)2

√
3R/2 − 1

.

The 10-cycle is drawn in figure 15.13. The unstable
eigenvalue Λ10 follows from (8.33).

16.8. A test of your pinball simulator: 10-cycle. Test
your exercise 9.4 pinball simulator stability evaluation
by checking numerically the exact analytic 10-cycle sta-
bility formula (16.14).

16.9. Rössler flow cycles. (continuation of exer-
cise 7.1) Determine all cycles for the Rössler flow
(2.28), as well as their stabilities, up to 5 Poincaré sec-
tion returns (Hint: implement (16.3), the multipoint
shooting methods for flows; you can cross-check your
shortest cycles against the ones listed in the table.) You
might find a comparison to Dong [6] Organization of the
periodic orbits in the Rössler flow helpful.

Table: The Rössler flow (2.28): The itinerary p, a peri-
odic point xp = (0, yp, zp) and the expanding eigenvalue
Λp for all cycles up to topological length 7.
( J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

16.10. Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up
to symbol sequence length 5 or longer for collinear he-
lium of figure 8.2.
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16.11. Uniqueness of unstable cycles. Prove
that there exists only one 3-disk prime cycle for a given
finite admissible prime cycle symbol string. Hints: look
at the return maps; can you show that there is exponen-
tial contraction to a unique periodic point with a given
itinerary? Exercise 34.1 might be helpful in this effort.

16.12. Newton setups for flows.

(a) We have formulated three Newton setups for
flows: the ‘local’ setup (7.7), the ‘hyperplane’
setup (7.11), and the ‘global’ setup (16.8). Derive
(16.8) and verify that if the surface of section is
a hyperplane, it reduces to (7.11). (Hint: it is not
inconceivable that (7.11) is wrong as it stands.)

(b) (optional) Derive (16.10), the Newton setup for
Hamiltonian flows.
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Part II

Chaos rules

Qunadry: all these cycles, but what to do with them? What you have now is a
topologically invariant road map of the state space, with the chaotic region pinned
down by a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths

and self-similar structure. In chapter 18 we shall turn this topological dynamics into a
multiplicative operation on the state space partitions by means of transition matrices of
chapter 17, the simplest examples of evolution operators. This will enable us to count the
distinct orbits, and in the process touch upon all the main themes of this book, going the
whole distance from diagnosing chaotic dynamics to computing zeta functions.

1. Partition the state space and describe all allowed ways of getting from ‘here’ to
‘there’ by means of transition graphs (transition matrices). These generate the total-
ity of admissible itineraries (chapter 17)

2. Learn to count (chapter 18)

3. Learn how to measure what’s important (chapter 19)

4. Learn how to evolve the measure, compute averages (chapter 20)

5. Learn what a ‘Fourier transform’ is for a nonlinear world (chapter 21),

6. and how the short-time / long-time duality is encoded by spectral determinant ex-
pression for its spectrum in terms of periodic orbits (chapter 22)

7. Learn how to use short period cycles to describe chaotic world at times much beyond
the Lyapunov time (chapter 23)

8. What is all this hard work good for? Deterministic diffusion and foundations of ‘far
for equilibrium’ statistical mechanics, for example (chapter 24)

9. Back to hard work: ponder how symmetries simplify spectral determinants (chap-
ter 25 and chapter 26)

316



Chapter 17

Walkabout: Transition graphs

I think I’ll go on a walkabout
find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

In chapters 14 and 15 we learned that invariant manifolds partition the state
space in invariant way, and how to name distinct orbits. We have established
and related the temporally and spatially ordered topological dynamics for a

class of ‘stretch & fold’ dynamical systems, and discussed pruning of inadmissi-
ble trajectories.

Here we shall use these results to generate the totality of admissible itineraries.
This task will be particularly easy for repellers with complete Smale horseshoes
and for subshifts of finite type, for which the admissible itineraries are generated
by finite transition matrices, and the topological dynamics can be visualized by
means of finite transition graphs. We shall then turn topological dynamics into a
linear multiplicative operation on the state space partitions by means of transition
matrices, the simplest examples of ‘evolution operators.’ They will enable us – in
chapter 18 – to count the distinct orbits.

17.1 Matrix representations of topological dynamics

The allowed transitions between the regions of a partition {M1,M2, · · · ,Mm} are
encoded in the [m×m]-dimensional transition matrix whose elements take values

Ti j =

{
1 if the transitionM j →Mi is possible
0 otherwise . (17.1)

The transition matrix is an explicit linear representation of topological dynam-
ics. If the partition is a dynamically invariant partition constructed from sta-
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Figure 17.1: Points from the region M21 reach re-
gions {M10,M11,M12}, and no other regions, in one
time step. Labeling exemplifies the ‘shift map’ of ex-
ample 14.5 and (14.12). 21

ble/unstable manifolds, it encodes the topological dynamics as an invariant law
of motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

Several related matrices as well will be needed in what follows. Often it is
convenient to distinguish between two or more paths connecting the same two
regions; that is encoded by the adjacency matrix with non-negative integer entries,

Ai j =

{
k if a transitionM j →Mi is possible in k ways
0 otherwise . (17.2)

More generally, we shall encounter [m×m] matrices which assign different real or
complex weights to different transitions,

Li j =

{
Li j ∈ R or C ifM j →Mi is allowed
0 otherwise . (17.3)

As in statistical physics, we shall refer to these as transfer matrices.

Mi is accessible from M j in k steps if (Lk)i j , 0. A matrix L is called
reducible if there exists one or more index pairs {i, j} such that (Lk)i j = 0 for all
k, otherwise the matrix is irreducible. This means that a trajectory starting in any
partition region eventually reaches all of the partition regions, i.e., the partition
is dynamically transitive or indecomposable, as assumed in (2.3). The notion of
topological transitivity is crucial in ergodic theory: a mapping is transitive if it
has a dense orbit. If that is not the case, state space decomposes into disconnected
pieces, each of which can be analyzed separately by a separate irreducible matrix.
RegionMi is said to be transient if no trajectory returns to it. RegionM j is said
to be absorbing if no trajectory leaves it, L j j , 0, Li j = 0 for all i , j. Hence it
suffices to restrict our considerations to irreducible matrices.

If L has strictly positive entries, Li j > 0, the matrix is called positive; if Li j ≥

0, the matrix is called non-negative. Matrix L is said to be eventually positive or
Perron-Frobenius if Lk is positive for some power k (as a consequence, the matrix
is transitive as well). A non-negative matrix whose columns conserve probability,∑

i Li j = 1, is called Markov, probability or stochastic matrix.
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Figure 17.2: Topological dynamics: shrink each state
space partition region figure 17.1 to a node, and indi-
cate the possibility of reaching a region by a directed
link. The links stand for transition matrix elements
T10,21 = T11,21 = T12,21 = 1; remaining Ti j,21 = 0. 21
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A subshift (14.15) of finite type is a topological dynamical system (Σ, σ),
where the shift σ acts on the space of all admissible itineraries (sk)

Σ =
{
(sk)k∈Z : Tsk+1 sk = 1 for all k

}
, sk ∈ {a, b, c, · · · , z} . (17.4)

The task of generating the totality of admissible itineraries is particularly easy for
subshifts of finite type, for which the admissible itineraries are generated by finite
transition matrices, and the topological dynamics can be visualized by means of
finite transition graphs.

17.2 Transition graphs: wander from node to node

Let us abstract from a state space partition such as figure 17.1 its topological
essence: indicate a partition regionMa by a node, and indicate the possibility of
reaching the regionMb, Lba , 0 by a directed link, as in figure 17.2. Do this for
all nodes. The result is a transition graph.

A transition graph consists of a set of nodes, one for each letter in the alphabet
A = {a, b, c, · · · , z}, connected by a set of directed edges. A directed link starts
out from node j and terminates at node i whenever the matrix element (17.3)
takes value Li j , 0. A link connects two nodes, or originates and terminates on
the same node (a ‘self-loop’). For example, if a partition includes regions labeled
{· · · ,M101,M110, · · · }, the transition matrix element connecting the two is drawn
as L101,110 = 110101 , whereas L0,0 = 0 . Here a dotted link indicates that the
shift σ(x011···) = x11··· involves symbol 0, and a full one a shift σ(x110···) = x10···
that involves 1. A j → · · · → k walk (path, itinerary) traverses a connected set
of directed links, starting at node j and ending at node k. A loop (periodic orbit,
cycle) is a walk that ends at the starting node (which can be any node along the
loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (17.5)

Our convention for ordering indices is that the successive steps in a visitation se-
quence j → i → k are generated by matrix multiplication from the left, Tk j =∑

TkiTi j. Two graphs are isomorphic if one can be obtained from the other by
relabeling links and nodes. As we are interested in recurrent (transitive, indecom-
posable) dynamics, we restrict our attention to irreducible or strongly connected
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graphs, i.e., graphs for which there is a path from any node to any other node. (In
a connected graph one may reach node j from node k, but not node k from node
j.)

A transition graph compactly describes the ways in which the state space re-
gions map into each other, accounts for finite memory effects in dynamics, and
generates the totality of admissible trajectories as the set of all possible walks
along its links. Construction of a good transition graph is, like combinatorics,
unexplainable (check page 254). The only way to learn is by some diagrammatic
gymnastics, so we recommend that you work your way through the examples,
exercises in lieu of plethora of baffling definitions.

example 17.1

p. 326

example 17.2

p. 326

example 17.3

p. 326

The complete unrestricted symbolic dynamics is too simple to be illuminating,
so we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say _11_.
This situation arises, for example, in a billiard, and in studies of the circle maps,
where this kind of symbolic dynamics describes “golden mean” rotations.

exercise 18.6
exercise 18.8

example 17.4

p. 326

example 17.5

p. 327

In the complete N-ary symbolic dynamics case (see example 17.2) the choice
of the next symbol requires no memory of the previous ones. However, any further
refinement of the state space partition requires finite memory.

example 17.6

p. 327

For M-step memory the only nonvanishing matrix elements are of the form
Ts1 s2...sM+1,s0 s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix, as the only non van-
ishing entries in the a = s0s1 . . . sM column of Tba are in the rows b = s1 . . . sM0
and b = s1 . . . sM1. If we increase the number of remembered steps, the transition

exercise 18.1
matrix grows large quickly, as the N-ary dynamics with M-step memory requires
an [NM+1 × NM+1] matrix. Since the matrix is very sparse, it pays to find a com-
pact representation for T . Such a representation is afforded by transition graphs,
which are not only compact, but also give us an intuitive picture of the topological
dynamics.

17.3 Transition graphs: stroll from link to link

(P. Cvitanović and Matjaž Gomilšek)

What do finite graphs have to do with infinitely long trajectories? To understand
the main idea, let us construct an infinite rooted tree graph that explicitly enumer-
ates all possible itineraries. In this construction the nodes are unlabeled, and the
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links labeled (or colored, or dotted in different ways), signifying different kinds of
transitions.

A tree graph is an undirected graph (its links have no sense of direction, j ↔
i) in which there exists exactly one path between any two of its nodes. A tree
graph is thus connected (irreducible) and contains no loops, i.e., it is not possible
to return to any of its nodes by a walk along a sequence of distinct links. A
rooted tree graph is a directed graph (its links are directed, j→ i), obtained from
an undirected tree graph by picking a distinguished node, called the root, and
orienting all links in the tree so that they point away from the root.

Each node in a directed graph has an in-degree (number of links pointing to-
wards it, or the number of ‘parents’), and an out-degree (number of links pointing
away from it, or the number of ‘children’). An internal node has both in- and
out-degree ≥ 1. In a rooted tree graph, all nodes have exactly one parent (in-
degree = 1), except for the root, which is the single “parentless” node (in-degree
= 0), with all links pointing away from it. An external node (leaf ) is a “childless”
node, with in-degree ≥ 1, out-degree = 0. We shall refer to a node with known
ancestors, but as yet unspecified descendants, as a free node.

example 17.7

p. 327

We illustrate how trees are related to transition graphs by first working out
the simplest example of pruned symbolic dynamics, the finite subshift obtained
by prohibition of repeats of one of the symbols, let us say _00_. As we shall
see, for finite grammars a rooted tree (and, by extension, but less obviously, the
associated transition graph) is the precise statement of what is meant topologically
by a “self-similar” fractal; supplemented by scaling information, such a rooted
tree generates a self-similar fractal. Any slightly more complicated grammar
merits a full section of its own, here sect. 17.3.1.

example 17.8

p. 328

17.3.1 Converting pruning blocks into transition graphs

Suppose now that, by hook or crook, you have been so lucky fishing for pruning
rules that you now know the grammar (14.16) in terms of a finite set of pruning
blocks G = {b1, b2, · · · bk}, of lengths ≤ m. Our task is to generate all admissible
itineraries. What to do?

We have already seen the main ingredients of a general algorithm: (1) the
transition graph encodes the self-similarities of the tree of all itineraries, and (2) if
we have a pruning block of length m, we need to descend m levels before we can
start identifying the self-similar sub-trees.
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Figure 17.3: Conversion of the pruning front of
figure 15.12 (b) into a finite transition graph. (a)
Starting with the root node “.”, delineate all prun-
ing blocks on the binary tree. A solid line stands
for “1" and a dashed line for “0”. The ends of for-
bidden strings (i.e., the external nodes) are marked
with ×. Label all internal nodes by reading the bits
connecting “.”, the root of the tree, to the node. (b)
Indicate all admissible starting blocks by arrows.
(c) Recursively drop the leading bits in the admis-
sible blocks; if the truncated string corresponds to
an internal node in (a), identify them. (d) Delete
the transient, non-circulating nodes; all admissi-
ble sequences are generated as walks on this fi-
nite transition graph. (e) Identify all distinct non-
intersecting (products of) loops and construct the
determinant (18.33).

Finite grammar transition graph algorithm.

1. Starting with the root of the tree, delineate all branches that correspond to
all pruning blocks; implement the pruning by removing the last node in each
pruning block (marked ‘×’ in figure 17.3 (a)).

2. Label all nodes internal to pruning blocks by the itinerary connecting the
root node to the internal node, figure 17.3 (a). Why? So far we have pruned
forbidden branches by looking mb steps into future for a given pruning
block, let’s say b = 10110. However, the blocks with the right combina-
tion of past and future [1.0110], [10.110], [101.10] and [1011.0] are also
pruned. In other words, any node whose near past coincides with the begin-
ning of a pruning block is potentially dangerous - a branch further down the
tree might get pruned.

3. Add to each remaining node, including the root, all remaining branches
allowed by the alphabet, and label their top (free) nodes, figure 17.3 (b).
Why? Each one of the free nodes is the beginning point of an infinite tree,
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a tree that should be similar to another one originating closer to the root of
the whole tree.

4. Check that the labels of the newly added free nodes do not themselves
contain any pruning blocks. If they do, remove them (marked ‘×’ in fig-
ure 17.3 (b)).

5. Pick one of the remaining free nodes (e.g. closest to the root of the entire
tree), forget the most distant symbol in its past. Does the truncated itinerary
correspond to an internal node? If yes, identify the two nodes. If not, forget
the next symbol in its past, repeat. If no such truncated past corresponds to
any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free node in question is [1010.].
Three time steps back the past is [010.]. That is not dangerous, as no prun-
ing block in this example starts with 0. Now forget the third step in the past:
[10.] is dangerous, as that is the start of the pruning block [10.110]. Hence
the free node [1010.] should be identified with the internal node [10.].

6. Repeat until all free nodes have been tied back into internal nodes or the
root.

7. Clean up: check whether every node can be reached from every other node.
Remove the transient nodes, i.e., the nodes to which dynamics never returns.

8. The result is a transition graph. There is no guarantee that this is the
smartest, most compact transition graph possible for a given pruning (if
you have a better algorithm, teach us), but walks around it do generate all
admissible itineraries, and nothing else.

example 17.9

p. 328

Résumé

The set of all admissible itineraries is generated multiplicatively by transition
matrices, diagrammatically by transition graphs. Pruning rules for inadmissi-
ble sequences are implemented by constructing corresponding transition matrices
and/or transition graphs. These matrices are the simplest examples of evolution
operators, prerequisite to developing a theory of averaging over chaotic flows.
From our initial chapters 2 to 4 fixation on things local: a representative point,
a short-time trajectory, a neighborhood, in this chapter and the next we make a
courageous leap, and go global.

Commentary

Remark 17.1. Transition graphs. We enjoyed studying Lind and Marcus [14] and
Adler [1] introductions to symbolic dynamics, Markov partitions and transition graphs.
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Alligood, Sauer and Yorke [2] discussion of baker’s maps, Smale horseshoes and their
symbolic dynamics is simple and clear. Finite transition graphs or finite automata are
discussed in refs. [5, 11, 15]. They belong to the category of regular languages. Transition
graphs for unimodal maps are discussed in refs. [8, 10, 13]. For a deep dive into the
physics history of uses of transition graphs, consult ref. [9]. (see also remark 14.1)

Remark 17.2. Inflating transition graphs. In the above examples the symbolic
dynamics has been encoded by labeling links in the transition graph. Alternatively one
can encode the dynamics by labeling the nodes, as in example 17.6, where the 4 nodes
refer to 4 Markov partition regions {M00,M01,M10,M11}, and the 8 links to the 8 non-
zero entries in the 2-step memory transition matrix (17.11).

Remark 17.3. The unbearable growth of transition graphs. A construction of finite
Markov partitions is described in refs. [3, 4, 12], as well as in the innumerably many other
references.

If two regions in a Markov partition are not disjoint but share a boundary, the bound-
ary trajectories require special treatment in order to avoid overcounting, see sect. 25.4.3.
If the image of a trial partition region cuts across only a part of another trial region and
thus violates the Markov partition condition (14.2), a further refinement of the partition is
needed to distinguish distinct trajectories.

The finite transition graph construction sketched above is not necessarily the minimal
one; for example, the transition graph of figure 17.3 does not generate only the “funda-
mental” cycles (see chapter 23), but shadowed cycles as well, such as t00011 in (18.33).
For methods of reduction to a minimal graph, consult refs. [7, 8, 10]. Furthermore, when
one implements the time reversed dynamics by the same algorithm, one usually gets a
graph of a very different topology even though both graphs generate the same admissible
sequences, and have the same determinant. The algorithm described here makes some
sense for 1-dimensional dynamics, but is unnatural for 2-dimensional maps whose dy-
namics it treats as 1-dimensional. In practice, generic pruning grows longer and longer,
and more plentiful pruning rules. For generic flows the refinements might never stop,
and almost always we might have to deal with infinite Markov partitions, such as those
that will be discussed in sect. 18.5. Not only do the transition graphs get more and more
unwieldy, they have the unpleasant property that every time we add a new rule, the graph
has to be constructed from scratch, and it might look very different form the previous
one, even though it leads to a minute modification of the topological entropy. The most
determined effort to construct such graphs may be the one of ref. [6]. Still, this is the best
technology available, until the day when a reader alerts us to something superior.
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Figure 17.4: Transition graph (graph whose links cor-
respond to the nonzero elements of a transition matrix
Tba) describes which regions b can be reached from the
region a in one time step. The 7 nodes correspond to
the 7 regions of the partition (17.8). The links repre-
sent non-vanishing transition matrix elements, such as
T101,110 = 110101 . Dotted links correspond to a shift
by symbol 0, and the full ones by symbol 1.

00 010

100

101

011

110

111

17.4 Examples

Example 17.1. Full binary shift. Consider a full shift on two-state partition A =

{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transition
graph are

T =

[
1 1
1 1

]
= 0 1 . (17.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts orig-
inating in 1. The admissible itineraries are generated as walks on this transition graph.
(continued in example 17.7)

click to return: p. 320

Example 17.2. Complete N-ary dynamics. If all transition matrix entries equal unity
(one can reach any region from any other region in one step),

Tc =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 , (17.7)

the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N.

click to return: p. 320

Example 17.3. A 7-state transition graph. Consider a state space partitioned into 7
regions

{M00,M011,M010,M110,M111,M101,M100} . (17.8)

Let the evolution in time map the regions into each other by acting on the labels as shift
(15.7): M011 → {M110,M111} , M00 → {M00,M011,M010} · · · , with nonvanishing
L110,011, L011,00, . . . , etc.. This is compactly summarized by the transition graph of fig-
ure 17.4. (continued as example 18.6)

click to return: p. 320

Example 17.4. Pruning rules for a 3-disk alphabet. As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33. This
is a finite set of finite length pruning rules, hence, the dynamics is a subshift of finite type
(see (14.16) for definition), with the transition matrix / graph given by

exercise 18.1
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Figure 17.5: The self-similarity of the complete bi-
nary symbolic dynamics represented by a rooted bi-
nary tree: trees originating in nodes B, C, · · · (actually
- any node) are the same as the tree originating in the
root node A. Level m = 4 partition is labeled by 16 bi-
nary strings, coded by dotted (0) and full (1) links read
down the tree, starting from A. See also figure 14.10.

A

B C

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0001

0000

T =

0 1 1
1 0 1
1 1 0

 =
3 1

2

. (17.9)

click to return: p. 320

Example 17.5. ‘Golden mean’ pruning. Consider a subshift on two-state partition
A = {0, 1}, with the simplest grammar G possible, a single pruned block b = _11_
(consecutive repeat of symbol 1 is inadmissible): the state M0 maps both onto M0 and
M1, but the stateM1 maps only ontoM0. The transition matrix and the corresponding
transition graph are

T =

[
1 1
1 0

]
= 0 1 . (17.10)

Admissible itineraries correspond to walks on this finite transition graph. (continued in
example 17.8)

click to return: p. 320

Example 17.6. Finite memory transition graphs. For the binary labeled repeller
with complete binary symbolic dynamics, we might chose to partition the state space into
four regions {M00,M01,M10,M11}, a 1-step refinement of the initial partition {M0,M1}.
Such partitions are drawn in figure 15.4, as well as figure 1.9. Topologically f acts as a
left shift (15.7), and its action on the rectangle [.01] is to move the decimal point to the
right, to [0.1], forget the past, [.1], and land in either of the two rectangles {[.10], [.11]}.
Filling in the matrix elements for the other three initial states we obtain the 1-step memory
transition matrix/graph acting on the 4-regions partition

exercise 14.7

T =


T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11
0 T11,01 0 T11,11

 =

01

10

1100 . (17.11)

(continued in example 18.7)
click to return: p. 320

Example 17.7. Complete binary topological dynamics. Mark a dot ‘·’ on a piece of
paper. That will be the root of our tree. Draw two short directed lines out of the dot, end
each with a dot. The full line will signify that the first symbol in an itinerary is ‘1,’ and
the dotted line will signifying ‘0.’ Repeat the procedure for each of the two new dots,
and then for the four dots, and so on. The result is the binary tree of figure 17.5. Starting
at the top node, the tree enumerates exhaustively all distinct finite itineraries of lengths
n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}
{000, 001, 010, 011, 100, 101, 111, 110} · · · .

Markov - 14mar2015 ChaosBook.org edition16.4.8, May 25 2020
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Figure 17.6: The self-similarity of the _00_ pruned
binary tree: trees originating from nodes C and E are
the same as the entire tree.

The n = 4 nodes in figure 17.5 correspond to the 16 distinct binary strings of length 4,
and so on. By habit we have drawn the tree as the alternating binary tree of figure 14.10,
but that has no significance as far as enumeration of itineraries is concerned - a binary tree
with labels in the natural order, as increasing binary ‘decimals’ would serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper. On the other
hand, we are not doing much - at each node we are turning either left or right. Hence all
nodes are equivalent. In other words, the tree is self-similar; the trees originating in nodes
B and C are themselves copies of the entire tree. The result of identifying B = A, C = A
is a single node, 2-link transition graph with adjacency matrix (17.2)

A =
[
2
]

= A=B=C . (17.12)

An itinerary generated by the binary tree figure 17.5, no matter how long, corresponds to
a walk on this graph. This is the most compact encoding of the complete binary symbolic
dynamics. Any number of more complicated transition graphs such as the 2-node (17.6)
and the 4-node (17.11) graphs generate all itineraries as well, and might sometimes be
preferable.

exercise 18.6
exercise 18.5
click to return: p. 321Example 17.8. ‘Golden mean’ pruning. (a link-to-link version of example 17.5) Now

the admissible itineraries are enumerated by the pruned binary tree of figure 17.6. Identi-
fication of nodes A = C = E leads to the finite 2-node, 3-links transition graph

T =

[
0 1
1 1

]
= . (17.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible
itineraries. This is the same graph as the 2-node graph (17.10), with full and dotted lines
interchanged. (continued in example 18.4)

click to return: p. 321

Example 17.9. Heavy pruning.

We complete this training by examples by implementing the pruning of figure 15.12 (b).
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (17.14)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as pruning
rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches and label
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each internal node by the sequence of 0’s and 1’s connecting it to the root of the tree,
figure 17.3 (a). These nodes are the potentially dangerous nodes - beginnings of blocks
that might end up pruned. Add the side branches to those nodes, figure 17.3 (b). As we
continue down such branches we have to check whether the pruning imposes constraints
on the sequences so generated: we do this by knocking off the leading bits and checking
whether the shortened strings coincide with any of the internal pruning tree nodes: 00 →
0; 110 → 10; 011 → 11; 0101 → 101 (pruned); 1000 → 00 → 00 → 0; 10011 →
0011→ 011→ 11; 01000→ 0.

The trees originating in identified nodes are identical, so the tree is “self-similar.”
Now connect the side branches to the corresponding nodes, figure 17.3 (d). Nodes “." and
1 are transient nodes; no sequence returns to them, and as you are interested here only
in infinitely recurrent sequences, delete them. The result is the finite transition graph of
figure 17.3 (d); the admissible bi-infinite symbol sequences are generated as all possible
walks on this graph.

click to return: p. 323
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Exercises

17.1. Time reversibility. Hamiltonian flows
are time reversible. Does that mean that their transi-
tion graphs are symmetric in all node → node links,
their transition matrices are adjacency matrices, sym-
metric and diagonalizable, and that they have only real
eigenvalues?

17.2. Alphabet {0,1}, prune _1000_, _00100_, _01100_.
This example is motivated by the pruning front descrip-
tion of the symbolic dynamics for the Hénon-type map-
sremark 15.3.

step 1. _1000_ prunes all cycles with a _000_ subse-
quence with the exception of the fixed point 0; hence we
factor out (1 − t0) explicitly, and prune _000_ from the
rest. This means that x0 is an isolated fixed point - no
cycle stays in its vicinity for more than 2 iterations. In

the notation of sect. 17.3.1, the alphabet is {1, 2, 3; 0},
and the remaining pruning rules have to be rewritten in
terms of symbols 2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune _33_, _213_,_313_.
This means that the 3-cycle 3 = 100 is pruned and no
long cycles stay close enough to it for a single _100_
repeat. Prohibition of _33_ is implemented by drop-
ping the symbol “3" and extending the alphabet by the
allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune _213_,
_23 13_, _13 13_, where 13 = 13, 23 = 23 are now
used as single letters. Pruning of the repetitions _13 13_
(the 4-cycle 13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary
dynamics. The other remaining possible blocks _213_,
_2313_ are forbidden by the rules of step 3.
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Chapter 18

Counting

I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This
is the simplest illustration of the raison d’etre of periodic orbit theory;

we derive a duality transformation that relates local information - in this case the
next admissible symbol in a symbol sequence - to global averages, in this case
the mean rate of growth of the number of cycles with increasing cycle period. In
chapter 17 we have transformed, by means of the transition matrices / graphs, the
topological dynamics of chapter 14 into a multiplicative operation. Here we show
that the nth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore given
by the leading eigenvalue of the transition matrix; the leading eigenvalue is in turn
given by the leading zero of the characteristic determinant of the transition matrix,
which is - in this context - called the topological zeta function.

For flows with finite transition graphs this determinant is a finite topological
polynomial which can be read off the graph. However, (a) even something as
humble as the quadratic map generically requires an infinite partition (sect. 18.5),
but (b) the finite partition approximants converge exponentially fast.

The method goes well beyond the problem at hand, and forms the core of the
entire treatise, making tangible the abstract notion of “spectral determinants” yet
to come.

331
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18.1 How many ways to get there from here?

In the 3-disk system of example 14.2 the number of admissible trajectories dou-
bles with every iterate: there are Kn = 3 ·2n distinct itineraries of length n. If disks
are too close and a subset of trajectories is pruned, this is only an upper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the form Kn ≥ Cenĥ. Bounded exponentially by
3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (18.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix element Ti j ∈ {0, 1} in (17.1) indicates whether the tran-
sition from the starting partition j into partition i in one step is allowed or not, and
the (i, j) element of the transition matrix iterated n times

exercise 18.1

(T n)i j =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1 j (18.2)

receives a contribution 1 from every admissible sequence of transitions, so (T n)i j

is the number of admissible n symbol itineraries starting with j and ending with i.

example 18.1

p. 350

The total number of admissible itineraries of n symbols is

Kn =
∑

i j

(T n)i j =
[
1, 1, . . . , 1

]
T n


1
1
...
1

 . (18.3)

We can also count the number of prime cycles and pruned periodic points, but
in order not to break up the flow of the argument, we relegate these pretty results
to sect. 18.7. Recommended reading if you ever have to compute lots of cycles.

A finite [N×N] matrix T has eigenvalues {λ0, λ1, · · · , λm−1} and (right) eigen-
vectors {ϕ0, ϕ1, · · · , ϕm−1} satisfying Tϕα = λαϕα. Expressing the initial vector in
(18.3) in this basis (which might be incomplete, with m ≤ N eigenvectors),

T n


1
1
...
1

 = T n
m−1∑
α=0

bαϕα =

m−1∑
α=0

bαλn
αϕα ,

count - 10mar2018 ChaosBook.org edition16.4.8, May 25 2020

https://youtube.com/embed/uNm4oChL-4k
https://youtube.com/embed/djCAxomT3Ic


CHAPTER 18. COUNTING 333

and contracting with
[
1, 1, . . . , 1

]
, we obtain

Kn =

m−1∑
α=0

cαλn
α .

The constants cα depend on the choice of initial and final partitions: In this ex-
exercise 18.3

ample we are sandwiching T n between the vector
[
1, 1, . . . , 1

]
and its transpose,

but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ϕ0. In an experiment the vector

[
1, 1, . . . , 1

]
would be re-

placed by a description of the initial state, and the right vector would describe the
measurement time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalue λ0 > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore as n increases, the sum
is dominated by the leading eigenvalue of the transition matrix, λ0 > |Re λα|,
α = 1, 2, · · · ,m − 1, and the topological entropy (18.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·

]
= ln λ0 + lim

n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·

]
= ln λ0 , (18.4)

where we have used that (λ1/λ0)n is small, and Taylor expansion ln(1 + x) =

x + O(x2).

What have we learned? The transition matrix T is a one-step, short time oper-
ator, advancing the trajectory from one partition to the next admissible partition.
Its eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly counting K1,K2,K3, . . . and estimating
(18.1) from a slope of a log-linear plot, we have the exact topological entropy if
we can compute the leading eigenvalue of the transition matrix T . This is reminis-
cent of the way free energy is computed from transfer matrices for 1-dimensional
lattice models with finite range interactions. Historically, it is this analogy with
statistical mechanics that led to introduction of evolution operator methods into
the theory of chaotic systems.

18.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by evaluating
the trace tr T n =

∑
λn
α, or by evaluating the determinant det (1 − zT ). We start by

evaluating the trace of transition matrices. The main lesson will be that the trace
receives contributions only from itineraries that return to the initial partition, i.e.,
periodic orbits.
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Consider an M-step memory transition matrix, like the 1-step memory exam-
ple (17.11). The trace of the transition matrix counts the number of partitions that
map into themselves. More generally, each closed walk through n concatenated
entries of T contributes to tr T n the product (18.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by one symbol; the trace
ensures that the walk closes on a periodic string c. Define tc to be the product of
matrix elements along a cycle c, each term being multiplied by a book keeping
variable z.

The lower case ‘t’ indicates that the quantity tc is a ‘local trace’ associated
with the particular, ‘local’ walk c, in the sense that the trace of T n is a sum over
such quantities. In chapters that follow, the tc will take a continuum of values, so
for the remainder of this chapter we stick to the ‘tc’ notation rather than to the 0 or
zn values specific to the counting problem. The book keeping variable z is for the
moment just that, a bookkeeping device, but in the chapters to come it will assume
a much deeper role as the Laplace transform variable dual to the discrete time n
(see the discussion following (21.8), (21.10)), just as the energy is the variable
dual to time in quantum mechanics (this is made explicit by the relation between
the continuous and discrete time cases (21.20), and, deeper still, by the form of
the semiclassical zeta function (39.12)).

The quantity zntr T n is then the sum of tc for all cycles of period n. The tc
= (product of matrix elements along cycle c) is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cycle p of period np contributes np times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting
(remember (17.1), the definition of the transition matrix), the local trace takes
values

tp =

{
znp if p is an admissible cycle
0 otherwise, (18.5)

i.e., (setting z = 1) the local trace is tp = 1 if the cycle is admissible, and tp = 0
otherwise.

example 18.2

p. 350

Hence tr T n = Nn counts the number of admissible periodic points of period
n. The nth order trace (18.29) picks up contributions from all repeats of prime
cycles, with each cycle contributing np periodic points, so Nn, the total number of
periodic points of period n is given by

example 18.1

znNn = zntr T n =
∑
np |n

nptn/np
p =

∑
p

np

∞∑
r=1

δnpr,ntr
p . (18.6)

Here m|n means that m is a divisor of n. An example is the periodic orbit counting
in table 18.2.

remark 18.1

In order to get rid of the awkward divisibility constraint n = npr in the above
sum, we introduce the generating function for numbers of periodic points

remark A22.1
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Table 18.1: Prime cycles for the binary symbolic dynamics up to length 9. The numbers
of prime cycles are given in table 18.3.

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 18.2: The total number Nn of periodic points of period n, expressed in terms of
prime cycles (18.6), for binary symbolic dynamics. The number of contributing prime
cycles illustrates the preponderance of long prime cycles of period n over the repeats of
shorter cycles of periods np, where n = rnp. Further enumerations of binary prime cycles
are given in tables 18.1 and 18.3. (L. Rondoni)

n Nn # of prime cycles of period np

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99
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∞∑
n=1

znNn = tr
zT

1 − zT
. (18.7)

The right hand side is the geometric series sum of Nn = tr T n. Substituting (18.6)
into the left hand side, and replacing the right hand side by the eigenvalue sum
tr T n =

∑
λn
α, we obtain our first example of a trace formula, the topological trace

formula∑
α=0

zλα
1 − zλα

=
∑

p

nptp

1 − tp
. (18.8)

A trace formula relates the spectrum of eigenvalues of an operator - here the tran-
sition matrix - to the spectrum of periodic orbits of a dynamical system. It is a
statement of duality between the short-time, local information - in this case the
next admissible symbol in a symbol sequence - to long-time, global averages, in
this case the mean rate of growth of the number of cycles with increasing cycle
period.

The zn sum in (18.7) is a discrete version of the Laplace transform (see sect. 21.1.2),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (21.9), (21.19), and the Gutzwiller trace formula (39.3) of semi-
classical quantum mechanics. We shall now use this result to compute the spectral
determinant of the transition matrix.

18.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an [m×m]
transition matrix

det (1 − zT ) =

m−1∏
α=0

(1 − zλα) . (18.9)

We could now proceed to diagonalize T on a computer, and get this over with. It
pays, however, to dissect det (1 − zT ) with some care; understanding this compu-
tation in detail will be the key to understanding the cycle expansion computations
of chapter 23 for arbitrary dynamical averages. For T a finite matrix, (18.9) is just
the characteristic polynomial for T . However, we shall be able to compute this ob-
ject even when the dimension of T and other such operators becomes infinite, and
for that reason we prefer to refer to (18.9) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix; we will view the
determinant as a sum over all possible permutation cycles composed of the traces
tr T k, in the spirit of the determinant–trace relation (1.16):

exercise 4.1

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

−∑
n=1

zn

n
tr T n


= 1 − z tr T −

z2

2

(
(tr T )2 − tr T 2

)
− . . . (18.10)
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This is sometimes called a cumulant expansion. Formally, the right hand is a
Taylor series in z about z = 0. If T is an [m×m] finite matrix, then the characteristic
polynomial is at most of order m. In that case the coefficients of zn must vanish
exactly for n > m.

We now proceed to relate the determinant in (18.10) to the corresponding
transition graph of chapter 17: toward this end, we start with the usual textbook
expression for a determinant as the sum of products of all permutations

det M =
∑
{π}

(−1)πM1,π1 M2,π2 · · ·Mm,πm (18.11)

where M = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations of m
symbols, πk is the permutation π applied to k, and (−1)π = ±1 is the parity of
permutation π. The right hand side of (18.11) yields a polynomial in T of order m
in z: a contribution of order n in z picks up m − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · · Tsnπsn (18.12)

where π is the permutation of the subset of n distinct symbols s1 · · · sn indexing T
matrix elements. As in (18.29), we refer to any combination tc = Ts1 sk Ts3 s2 · · · Ts2 s1 ,
for a given itinerary c = s1s2 · · · sk, as the local trace associated with a closed loop
c on the transition graph. Each term of the form (18.12) may be factored in terms
of local traces tc1 tc2 · · · tck , i.e., loops on the transition graph. These loops are non-
intersecting, as each node may only be reached by one link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
single link, as each s j must appear exactly once as a row and column index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the case of loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appear in (18.12), i.e.,
only the diagonal elements of T are picked up. We have k = m loops and an even
permutation π so the sign is given by (−1)k, where k is the number of loops. Now
take the case in which we have i single loops and j loops of length n = 2 j + i.
The parity of the permutation gives (−1) j and the first factor in (18.12) gives
(−1)n = (−1)2 j+i. So once again these terms combine to (−1)k, where k = i + j is
the number of loops. Let f be the maximal number of non-intersecting loops. We

exercise 18.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1 − zT ) =

f∑
k=0

∑′

π

(−1)ktp1 · · · tpk (18.13)
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Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop tab and its shadow tatb in the case at hand
carry the same weight zna+nb , the cancelation is exact, and the loop expansion
(18.13) is finite. In the case that the local traces count prime cycles (18.5), tp = 0
or zn , we refer to det (1 − zT ) as the topological polynomial.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tp f } as the fun-
damental cycles (for an explicit example, see the loop expansion of example 18.6).
This is not a very good definition, as transition graphs are not unique –the most we
know is that for a given finite-grammar language, there exist transition graph(s)
with the minimal number of loops. Regardless of how cleverly a transition graph
is constructed, it is always true that for any finite transition graph the number of
fundamental cycles f is finite. If the graph has m nodes, no fundamental cycle is
of period longer than m, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics tran-
sition graph of figure 17.5 is a little bit too simple, but let us start humbly and
consider it anyway.

example 18.3

p. 351

Similarly, for the complete symbolic dynamics of N symbols the transition graph
has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (18.14)

which gives the topological entropy h = ln N.

example 18.4

p. 351

example 18.5

p. 351

example 18.6

p. 352

18.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the transition graph
is infinite? If we are never sure that looking further into the future will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by its cumulant
expansion (18.10)

exercise 4.1

det (1 − zT ) = 1 −
∞∑

n=1

ĉnzn . (18.15)

example 18.7

p. 352
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Figure 18.1: (a) The region labels in figure 17.4
have been omitted, since the links alone track the
symbolic dynamics. (b)-(j) The fundamental cy-
cles (18.36) for the transition graph (a), i.e., the
set of its non-self-intersecting loops. Each loop
represents a local trace tp, as in (17.5).

(a) (b)

01
0

1
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1

011

001
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0011

01

1
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0

0111

(f)

00111

01
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001101

1

(h)

001011

1

(i)

0010111

(j)

0011101

For finite dimensional matrices the expansion is a finite polynomial, and (18.15)
is an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (18.9) in
terms of cycles, substitute (18.6) into (18.15) and sum over the repeats of prime
cycles using ln(1 − x) = −

∑
r xr/r ,

det (1 − zT ) = exp

−∑
p

∞∑
r=1

tr
p

r

 = exp

∑
p

ln(1 − tp)

∏
α

(1 − zλα) =
∏

p

(1 − tp) , (18.16)

where for the topological entropy the weight assigned to a prime cycle p of period
np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned. This determinant
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is called the topological or Artin-Mazur zeta function, conventionally denoted by

1/ζtop(z) =
∏

p

(1 − znp) = 1 −
∑
n=1

ĉnzn . (18.17)

Counting cycles amounts to giving each admissible prime cycle p weight tp = znp

and expanding the Euler product (18.17) as a power series in z. The number of
prime cycles p is infinite, but if T is an [m×m] finite matrix, then the number of
roots λα is at most m, the characteristic polynomial is at most of order m, and the
coefficients of zn vanish for n > m. As the precise expression for the coefficients ĉn

in terms of local traces tp is more general than the current application to counting,
we postpone its derivation to chapter 23.

The topological entropy h can now be determined from the leading zero z =

e−h of the topological zeta function. For a finite [m×m] transition matrix, the
number of terms in the characteristic equation (18.13) is finite, and we refer to
this expansion as the topological polynomial of order ≤ m. The utility of defining
the determinant by its cumulant expansion is that it works even when the partition
is infinite, m→ ∞; an example is given in sect. 18.5, and many more later on.

fast track:

sect. 18.5, p. 341

18.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (21.19) to the
problem of deriving the topological zeta functions for flows. The time-weighted
density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tp δ(t − rTp) . (18.18)

The Laplace transform smooths the sum over Dirac delta spikes (see (21.18))
and yields the topological trace formula∑

p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t − rTp) =
∑

p

Tp

∞∑
r=1

e−sTpr (18.19)

and the topological zeta function for flows:

1/ζtop(s) =
∏

p

(
1 − e−sTp

)
, (18.20)

related to the trace formula by∑
p

Tp

∞∑
r=1

e−sTpr = −
∂

∂s
ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(18.17) for maps; its leading zero s = −h yields the topological entropy for a flow.
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Figure 18.2: The logarithm ln |z(n)
0 − z0| of the dif-

ference between the leading zero of the nth polyno-
mial approximation to topological zeta function and
our best estimate (18.23), as a function of order of the
polynomial n (the topological zeta function evaluated
for the closest value of A to A = 3.8 for which the
quadratic map has a stable cycle of period n). (from
K.T. Hansen [10])

18.5 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

To understand the need for topological zeta function (18.15), we turn a
dynamical system with (as far as we know - there is no proof) an infinite partition,
or an infinity of ever-longer pruning rules. Consider the 1-dimensional quadratic
map (14.20)

f (x) = Ax(1 − x) , A = 3.8 .

Numerically the kneading sequence (the itinerary of the critical point x = 1/2
(14.5)) is

exercise 18.20

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of figure 14.9. How this
kneading sequence is converted into a series of pruning rules is a dark art.For the
moment it suffices to state the result, to give you a feeling for what a “typical”
infinite partition topological zeta function looks like. For example, approximating
the dynamics by a transition graph corresponding to a repeller of the period 29
attractive cycle close to the A = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

1/ζ(29)
top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (18.21)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (18.22)

Constructing finite transition graphs of increasing length corresponding to A →
3.8 we find polynomials with better and better estimates for the topological en-
tropy. For the closest stable period 90 orbit we obtain our best estimate of the
topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (18.23)
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Figure 18.3: The 90 zeroes of the topological zeta
function for the quadratic map for A = 3.8 approxi-
mated by the nearest topological zeta function with a
stable cycle of length 90. (from K.T. Hansen [10])

Figure 18.2 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (18.23), plotted as a function of the
period of the stable periodic orbit. The error of the estimate (18.22) is expected
to be of order z29 ≈ e−14 because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nodes giving terms ±z29

and of higher order in the polynomial. Hence the convergence is exponential,
with an exponent of −0.47 = −h, the topological entropy itself. In figure 18.3
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin. Most
of the other zeroes are close to the unit circle; we conclude that for infinite state
space partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeed λ1/λ0 = 1/eh = e−h.

18.6 Shadowing

The topological zeta function is a pretty function, but the infinite product (18.16)
should make you pause. For finite transition matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; so why is the right hand
side an infinite product over the infinitely many prime periodic orbits of all peri-
ods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (23.8) of chapter 23; all cycles beyond the fundamental t0
and t1 appear in the shadowing combinations such as

ts1 s2···sn − ts1 s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we are
counting cycles as we do in (18.30) and (18.37), or if the dynamics is piecewise
linear, as in exercise A22.3. As we argue in sect. 1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combina-
tions almost cancel, and the spectral determinant is dominated by the fundamental
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cycles from (18.13), with longer cycles contributing only small “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
an infinite state space partition, with pruning rules for blocks of increasing length,
most of the shadowing combinations still cancel, but the few corresponding to new
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant, as depicted in figure 18.3.

One striking aspect of the pruned cycle expansion (18.21) compared to the
trace formulas such as (18.7) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergence e−h, in
the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (18.15) increases the analyticity domain:
the pole in the trace (18.8) at z = e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants on whether or not the sym-
bolic dynamics is a subshift of finite type is bad news. If the system is generic and
not structurally stable (see sect. 15.2), a smooth parameter variation is in no sense
a smooth variation of topological dynamics - infinities of periodic orbits are cre-
ated or destroyed, and transition graphs go from being finite to infinite and back.
That will imply that the global averages that we intend to compute are generi-
cally nowhere differentiable functions of the system parameters, and averaging
over families of dynamical systems can be a highly nontrivial enterprise; a simple
illustration is the parameter dependence of the diffusion constant computed in a
remark in chapter 24.

You might well ask: What is wrong with computing the entropy from (18.1)?
Does all this theory buy us anything? An answer: If we count Kn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure 17.6, or
the cycle expansion of (18.38) - and the finite estimates of hn = ln Kn/n converge
nonuniformly to h, and on top of that with a slow rate of convergence, |h − hn| ≈

O(1/n) as in (18.4). The determinant (18.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yields the asymptotic value of h
with no need for any finite n extrapolations.

fast track:

sect. 19, p. 358

18.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramago, The Double
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Table 18.3: Number of prime cycles for various alphabets and grammars up to period
10. The first column gives the cycle period, the second gives the formula (18.26) for the
number of prime cycles for complete N-symbol dynamics, and columns three through five
give the numbers of prime cycles for N = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

In what follows, we shall occasionally need to compute all cycles up to
topological period n, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the street, and probably best
skipped on the first reading.

18.7.1 Counting periodic points

The number of periodic points of period n is denoted Nn. It can be computed from
(18.15) and (18.7) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnzn = tr
(
−z

d
dz

ln(1 − zT )
)

= −z
d
dz

ln det (1 − zT )

=
−z d

dz (1/ζtop)

1/ζtop
. (18.24)

Observe that the trace formula (18.8) diverges at z→ e−h, because the denomina-
tor has a simple zero there.

example 18.8

p. 353

example 18.9

p. 353

18.7.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number of prime cycles Mn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of finding Mn is classical in combinatorics
(counting necklaces made out of n beads of N different kinds) and is easily solved.
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There are Nn possible distinct strings of length n composed of N letters. These
Nn strings include all Md prime d-cycles whose period d equals or divides n. A
prime cycle is a non-repeating symbol string: for example, p = 011 = 101 =

110 = . . . 011011 . . . is prime, but 0101 = 010101 · · · = 01 is not. A prime d-
cycle contributes d strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of period n
is therefore related to the number of prime cycles by

Nn =
∑
d|n

dMd , (18.25)

where Nn equals tr T n. The number of prime cycles can be computed recursively

Mn =
1
n

Nn −

d<n∑
d|n

dMd

 ,
or by the Möbius inversion formula

exercise 18.10

Mn = n−1
∑
d|n

µ
(n
d

)
Nd . (18.26)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1 p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to period 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 18.3, obtained by Möbius inversion (18.26).

exercise 18.11

example 18.10

p. 353

example 18.11

p. 353

example 18.12

p. 354

Résumé

The main result of this chapter is the cycle expansion (18.17) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkzk .

For subshifts of finite type, the transition matrix is finite, and the topological zeta
function is a finite polynomial evaluated by the loop expansion (18.13) of det (1−
zT ). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropy h is given by the leading zero z = e−h. This
expression for the entropy is exact; in contrast to the initial definition (18.1), no
n→ ∞ extrapolations of ln Kn/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another region to the leading eigen-
value of the transition matrix T . The spectrum of T is given by topological zeta
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Table 18.4: List of 3-disk prime cycles up to period 10. Here n is the cycle period, Mn is
the number of prime cycles, Nn is the number of periodic points, and S n is the number of
distinct prime cycles under D3 symmetry (see chapter 25 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of periods that divide n.
The prefactors in the fifth column indicate the degeneracy mp of the cycle; for example,
3·12 stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative p̂ which is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by time reversal symmetry, but not by
any D3 transformation.

n Mn Nn S n mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 18.5: The 4-disk prime cycles up to period 8. The symbol definitions are the same
as those shown in table 18.4. Orbits related by time reversal symmetry (but no C4v sym-
metry) already appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn S n mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108
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function, a certain sum over traces tr T n, and in this way the periodic orbit theory
has entered the arena through the trace formula (18.8), already at the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson that will be constantly
reaffirmed, is that while trace formulas are a conceptually essential step in deriving
and understanding periodic orbit theory, the spectral determinant is the right object
to use in actual computations. Instead of summing all of the exponentially many
periodic points required by trace formulas at each level of truncation, spectral det-
erminants incorporate only the small incremental corrections to what is already
known - and that makes them a more powerful tool for computations.

Contrary to claims one all too often encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules, or the “algorithmic
complexity,” as illustrated by sect. 18.5, and figure 18.3 in particular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammar leads to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to the problem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter 21, a weighted generalization of the topological
zeta function.

Commentary

Remark 18.1. Generating functions, Z-transforms. The method of generating func-
tions was introduced by de Moivre in 1730. Euler used it, for example in 1748, to parti-
tion integers [12]. Laplace named it ‘generating function’ [18]. In 1947 Hurewicz [13]
used it to solve linear, constant-coefficient difference equations. In 1952 Ragazzini and
Zadeh [19] renamed it the ‘Z-transforms’, as generating functions are but a form of
Laplace transforms. The theory is pedagogically explained by Elaydi [8], including a
table of common Z-transform pairs, in analogy with the familiar Laplace transform ta-
bles.

Remark 18.2. Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function
for the Frobenius map [22], Artin and Mazur [2] introduced the zeta function (18.17)
that counts periodic points for diffeomorphisms (see also ref. [17] for their evaluation for
maps of the interval). Smale [21] conjectured rationality of the zeta functions for Axiom
A diffeomorphisms, later proved by Guckenheimer [9] and Manning [16]: Every subshift
of finite type has a rational zeta function. However, most subshifts have irrational zeta
functions [4]. See remark 22.4 on page 416 for more zeta function history.

Remark 18.3. “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of the
dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat ap-
plies to other entropies.In order to obtain invariant characterizations we will have to work
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harder. Mathematicians like to define the (impossible to evaluate) supremum over all pos-
sible partitions. The key point that eliminates the need for such searches is the existence
of generators, i.e., partitions that under the dynamics are able to probe the whole state
space on arbitrarily small scales. A generator is a finite partitionM = {M1 . . .MN} with
the following property: consider the partition built upon all possible intersections of sets
f n(Mi), where f is dynamical evolution and n takes all possible integer values (positive
as well as negative), then the closure of such a partition coincides with the ‘algebra of all
measurable sets.’ For a thorough (and readable) discussion of generators and how they
allow a computation of the Kolmogorov entropy, see Arnol’d & Avez [1].

Remark 18.4. Perron-Frobenius matrices. For a proof of the Perron theorem on the
leading eigenvalue see ref. [14]. Appendix A4.1 of Zinn-Justin monograph [23] offers a
clear discussion of the spectrum of the transition (or Perron-Frobenius) matrix.

Remark 18.5. Determinant of a graph. Many textbooks offer derivations of the
loop expansions of characteristic polynomials for transition matrices and their transition
graphs, see for example refs. [6, 11, 20].

Remark 18.6. Ordering periodic orbit expansions. In sect. 23.7 we will introduce
an alternative way of hierarchically organizing cumulant expansions, in which the order
is dictated by stability rather than cycle period: such a procedure may be better suited to
perform computations when the symbolic dynamics is not well understood.

Remark 18.7. T is not trace class. Note to the erudite reader: the transition matrix
T (in the infinite partition limit (18.15)) is not trace class. Still the trace is well defined in
the n→ ∞ limit.

Remark 18.8. Counting prime cycles. Duval [3, 7] has an efficient algorithm for
generating Lyndon words [5, 15] (non-periodic necklaces, i.e., prime cycle itineraries).
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18.8 Examples

Example 18.1. 3-disk itinerary counting. Consider the 3-state partition transition
matrix

T =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 (18.27)

The (T 2)13 = T12T23 = 1 element of T 2 for the 3-disk transition matrix (17.9)0 1 1
1 0 1
1 1 0


2

=

2 1 1
1 2 1
1 1 2

 . (18.28)

corresponds to path 3→ 2→ 1, the only 2-step path from 3 to 1, while (T 2)33 = T31T13 +

T32T23 = 2 counts the two returning, periodic paths 31 and 32.

To identify the 2-cycles you have to look at the trace of T 2. The diagonal terms of T 2

are T
2
11 + T12T21 + T13T31

T 2
22 + T21T12 + T23T32

T 2
33 + T31T13 + T32T23


=

t
2
1 + t12 + t13

t2
2 + t21 + t23

t2
3 + t31 + t32

 .
For example, the ‘weight’ or ‘little trace’ associated with the 2-cycle c = 12 is t12 =

T12T21. Note that tr T 2 = (T 2)11 + (T 2)22 + (T 2)33 = t2
1 + t2

2 + t2
3 + 2(t12 + t13 + t23) has a

contribution from each 2-cycle 12, 13, 23 twice, one contribution for each periodic point.
In general, if T j j , 0, we also get the fixed point contributions t2

j = T 2
j j, in agreement with

(18.6).
click to return: p. 332

Example 18.2. Traces for binary symbolic dynamics. For example, for the [8×8] tran-
sition matrix Ts1 s2 s3,s0 s1 s2 version of (17.11), or any refined partition [2n×2n] transition ma-
trix, n arbitrarily large, the periodic point 100 contributes t100 = z3T100,010T010,001T001,100
to z3tr T 3. This product is manifestly cyclically invariant, t100 = t010 = t001, so a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its orbit.

exercise 14.7

For the binary labeled non–wandering set the first few traces are given by (consult
tables 18.1 and 18.2)

z tr T = t0 + t1,

z2tr T 2 = t2
0 + t2

1 + 2t10,

z3tr T 3 = t3
0 + t3

1 + 3t100 + 3t101,

z4tr T 4 = t4
0 + t4

1 + 2t2
10 + 4t1000 + 4t1001 + 4t1011. (18.29)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0 +

T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
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M → ∞, in which case the contributing partitions are shrunk to the fixed points, tr T =

T0,0 + T1,1.

If there are no restrictions on symbols, the symbolic dynamics is complete, and all
binary sequences are admissible (or allowable) itineraries. As this type of symbolic dy-
namics pops up frequently, we list the shortest binary prime cycles in table 18.1.

exercise 14.2
click to return: p. 334

Example 18.3. Topological polynomial for complete binary dynamics. (Continua-
tion of example 17.1) There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 − (t01 − t0t1) = 1 − 2z (18.30)

0 1 = 1 − 0 − 1 −

(
0 1 − 1 0

)
.

Due to the symmetry under 0 ↔ 1 interchange, this is a redundant graph (the 2-cycle t01
is exactly shadowed by the 1-cycles). Another way to see is that itineraries are labeled
by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links and 2 out-
links, they can be identified, and a more economical presentation is in terms of the [1×1]
adjacency matrix (17.12)

det (1 − zA) = 1 − t0 − t1 = 1 − 2z (18.31)
= 1 − 0 − 1 .

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no surprise.

click to return: p. 338

Example 18.4. Golden mean pruning. The “golden mean" pruning of example 17.5
has one grammar rule: the substring _11_ is forbidden. The corresponding transition

exercise 18.5graph non-intersecting loops are of length 1 and 2, so the topological polynomial is given
by

det (1 − zT ) = 1 − t0 − t01 = 1 − z − z2 (18.32)

0 1 = 1 − 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (18.4) is the loga-
rithm of the golden mean, h = ln 1+

√
5

2 .
click to return: p. 338

Example 18.5. Nontrivial pruning. The non-self-intersecting loops of the transition
graph of figure 17.3 (d) are indicated in figure 17.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (18.33)
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With tp = znp , where np is the period of the p-cycle, the smallest root of

0 = 1 − z − 2z4 + z8 (18.34)

yields the topological entropy h = − ln z, z = 0.658779 . . . , h = 0.417367 . . . , significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropy h = ln 2 = 0.693 . . .

exercise 18.9
click to return: p. 338

Example 18.6. Loop expansion of a transition graph. (Continued from exam-
ple 17.3) Consider a state space covered by 7 neighborhoods (17.8), with the topological
time evolution given by the transition graph of figure 17.4.

The determinant det (1 − zT ) of the transition graph in figure 17.4 can be read off the
graph, and expanded as a polynomial in z, with coefficients given by products of non-
intersecting loops (traces of powers of T ) of the transition graph figure 18.1:

det (1 − zT ) = 1 − (t0 + t1)z − (t01 − t0t1) z2 − (t001 + t011 − t01t0 − t01t1) z3

− (t0011 + t0111 − t001t1 − t011t0 − t011t1 + t01t0t1) z4

− (t00111 − t0111t0 − t0011t1 + t011t0t1) z5 (18.35)
− (t001011 + t001101 − t0011t01 − t001t011) z6

− (t0010111 + t0011101 − t001011t1 − t001101t1 − t00111t01 + t0011t01t1 + t001t011t1) z7 .

Twelve cycles up to period 7 are fundamental cycles:

0, 1, 01, 001, 011, 0011, 0111, 00111, 001011, 001101, 0010111, 0011101 , (18.36)

out of the total of 41 prime cycles (listed in table 18.1) up to cycle period 7. The topolog-
ical polynomial tp → znp

1/ζtop(z) = 1 − 2 z − z7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological entropy
is only a bit smaller than the binary h = ln 2. Not exactly obvious from the partition (17.8).

click to return: p. 338

Example 18.7. Complete binary det (1 − zT ) expansion. (Continuation of exam-
ple 17.6) Consider the loop expansion of the binary 1-step memory transition graph
(17.11)

01

10

1100 = 1 − 0 − 1 −

(
0 1 − 1 0

)
= 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]
−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]

= 1 −
∑

f

t f −
∑

n

ĉn = 1 − 2z . (18.37)

click to return: p. 338
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Example 18.8. Complete N-ary dynamics. To check formula (18.24) for the finite-
grammar situation, consider the complete N-ary dynamics (17.7) for which the number of
periodic points of period n is simply tr T n

c = Nn. Substituting

∞∑
n=1

zn

n
tr T n

c =

∞∑
n=1

(zN)n

n
= − ln(1 − zN) ,

into (18.15) we verify (18.14). The logarithmic derivative formula (18.24) in this case
does not buy us much either, it simply recovers∑

n=1

Nnzn =
Nz

1 − Nz
.

click to return: p. 344

Example 18.9. Nontrivial pruned dynamics. Consider the pruning of figure 17.3 (e).
Substituting (18.24) we obtain∑

n=1

Nnzn =
z + 8z4 − 8z8

1 − z − 2z4 + z8 . (18.38)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Nn; it actually yields the exact numbers of periodic points. In case at hand it yields a
nontrivial recursive formula N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, N8 = 25,
and Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

click to return: p. 344

Example 18.10. Counting N-disk periodic points. A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = tr T n. The
pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the number
of the N-disk periodic points is

Nn = tr T n
N−disk = (N − 1)n + (−1)n(N − 1) . (18.39)

Here Tc is the complete symbolic dynamics transition matrix (17.7). For the N-disk
pruned case (18.39), Möbius inversion (18.26) yields

MN−disk
n =

1
n

∑
d|n

µ
(n
d

)
(N − 1)d +

N − 1
n

∑
d|n

µ
(n
d

)
(−1)d

= M(N−1)
n for n > 2 . (18.40)

There are no fixed points, so MN−disk
1 = 0. The number of periodic points of period 2

is N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of period 2; for periods

n > 2, the number of prime cycles is the same as for the complete (N − 1)-ary dynamics
of table 18.3.

click to return: p. 345

Example 18.11. Pruning individual cycles. Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (18.40). To obtain the topological zeta function, just divide out the binary 1-
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and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles
(1 − z2t12)(1 − z2t13)(1 − z2t23):

exercise 18.14
exercise 18.15

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)
= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (18.41)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (25.32).
As we shall see in chapter 25, symmetries lead to factorizations of topological polynomi-
als and topological zeta functions.

click to return: p. 345

Example 18.12. Alphabet {a, cbk; b}. (Continuation of exercise 18.16) In the cycle
counting case, the dynamics in terms of a → z, cbk → z + z2 + z3 + · · · = z/(1 − z) is a
complete binary dynamics with the explicit fixed point factor (1 − tb) = (1 − z):

exercise 18.19

1/ζtop = (1 − z)
(
1 − z −

z
1 − z

)
= 1 − 3z + z2 .

click to return: p. 345
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Exercises

18.1. A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear differ-
ence equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate tr T n to
tr T n−1 + . . . .)

b) Solve the above difference equation and obtain the
number of periodic orbits of length n. Compare
your result with table 18.4.

c) Find the eigenvalues of the transition matrix T for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics {0, 1}.

18.2. 3-disk prime cycle counting. A prime cycle p
of length np is a single traversal of the orbit; its label is
a non-repeating symbol string of np symbols. For ex-
ample, 12 is prime, but 2121 is not, since it is 21 = 12
repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · · .

18.3. Sum of Ai j is like a trace. Let A be a matrix with
eigenvalues λk. Show that

Γn :=
∑
i, j

[An]i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln |tr An| and ln |Γn| have
the same asymptotic behavior as n→ ∞, i.e., their
ratio converges to one?

(b) Do eigenvalues λk need to be distinct, λk , λl for
k , l? How would a degeneracy λk = λl affect
your argument for (a)?

18.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (18.13):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1 tp2 · · · tpk .

18.5. Transition matrix and cycle counting. Suppose you
are given the transition graph

0 1a b
c

This diagram can be encoded by a matrix T , where the
entry Ti j means that there is a link connecting node i to
node j. The value of the entry is the weight of the link.

(a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a b
c 0

]
.

(b) Enumerate all the walks of length three on the
transition graph. Now compute T 3 and look at the
entries. Is there any relation between the terms in
T 3 and all the walks?

(c) Show that T n
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

(d) Estimate the number Kn of walks of length n for
this simple transition graph.

(e) The topological entropy h measures the rate of ex-
ponential growth of the total number of walks Kn

as a function of n. What is the topological entropy
for this transition graph?

18.6. Alphabet {0,1}, prune _00_ . The transition graph
example 17.8 implements this pruning rule which im-
plies that “0" must always be bracketed by “1"s; in terms
of a new symbol 2 := 10, the dynamics becomes unre-
stricted symbolic dynamics with with binary alphabet
{1,2}. The cycle expansion (18.13) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .
= 1 − t1 − t2 − (t12 − t1t2) (18.42)
−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10) (18.43)
−(t1110 − t110t1) − (t11010 − t110t10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 14.6.
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18.7. “Golden mean” pruned map. (continuation of exer-
cise 14.6) Show that the total number of periodic orbits
of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n .

Continued in exercise 22.1. See also exercise 18.8.

18.8. A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations, S + = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of 0 fixed point, and
_00_ pruned from the recurrent set. (K.T. Hansen)

18.9. Glitches in shadowing. (medium difficulty) Note
that the combination t00011 minus the “shadow” t0t0011 in
(18.33) cancels exactly, and does not contribute to the
topological zeta function (18.34). Are you able to con-
struct a smaller transition graph than figure 17.3 (e)?

18.10. Whence Möbius function? To understand the origin
of the Möbius function (18.26), consider the function

f (n) =
∑
d|n

g(d) (18.44)

where d|n stands for sum over all divisors d of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑
d|n

µ(n/d) f (d) . (18.45)

18.11. Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of
the second column of table 18.3.
Write a program that determines the number of prime
cycles of length n. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

18.12. Counting subsets of cycles. The techniques devel-
oped above can be generalized to counting subsets of cy-
cles. Consider the simplest example of a dynamical sys-
tem with a complete binary tree, a repeller map (14.21)

with two straight branches, which we label 0 and 1. Ev-
ery cycle weight for such map factorizes, with a factor t0
for each 0, and factor t1 for each 1 in its symbol string.
Prove that the transition matrix traces (18.29) collapse
to tr(T k) = (t0 + t1)k, and 1/ζ is simply∏

p

(
1 − tp

)
= 1 − t0 − t1 (18.46)

Substituting (18.46) into the identity∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1
= 1 + t0 + t1

+

∞∑
n=2

n−1∑
k=1

2
(
n − 2
k − 1

)
tk
0tn−k

1 .

Hence for n ≥ 2 the number of terms in the cumulant
expansion with k 0’s and n − k 1’s in their symbol se-
quences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =

{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n − 1

nMn,k =
∑
m
∣∣∣ n

k

µ(m)
(
n/m
k/m

)

where the sum is over all m which divide both n and k.
(continued as exercise 23.7)

18.13. Logarithmic periodicity of ln Nn. (medium diffi-
culty) Plot (ln Nn, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why?

18.14. Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning affects only the fixed points and the 2-
cycles) is given by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (18.47)
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18.15. Symmetric N-disk pinball topological zeta function.
Show that for an N-disk pinball, the topological zeta
function is given by

1/ζN−disk
top = (1 − (N − 1)z) ×

(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 .(18.48)

The topological zeta function has a root z−1 = N − 1,
as we already know it should from (18.39) or (18.14).
We shall see in sect. 25.4 that the other roots reflect the
symmetry factorizations of zeta functions.

18.16. Alphabet {a, b, c}, prune _ab_ . Write down the
topological zeta function for this pruning rule.

18.17. Alphabet {0,1}, prune n repeats of “0" _000 . . . 00_ .
This is equivalent to the n symbol alphabet {1, 2, . . . ,
n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 10. . . 00 block lengths: 2:=10,
3:=100, . . . , n:=100. . . 00. Show that the cycle expan-
sion (18.13) becomes

1/ζ = 1 − t1 − t2 · · · − tn − (t12 − t1t2) . . .
−(t1n − t1tn) . . . .

18.18. Alphabet {0,1}, prune _1000_, _00100_, _01100_.
Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (18.49)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}.
Here 2 and 3 refer to 10 and 100 respectively, as in ex-
ercise 18.17.

18.19. Alphabet {0,1}, prune _1000_, _00100_, _01100_,
_10011_. (This grammar arises from Hénon map

pruning, see remark 15.3.) The first three pruning rules
were incorporated in the preceeding exercise.
(a) Show that the last pruning rule _10011_ leads (in a
way similar to exercise 18.18) to the alphabet {21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23 + t1t23− t2113) . (18.50)

Note that this says that 1, 23, 2, 2113 are the fundamen-
tal cycles; not all cycles up to length 7 are needed, only
2113.
(b) Show that the topological zeta function is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (18.51)

and that it yields the entropy h = 0.522737642 . . . .

18.20. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to the infinite alphabet {1, 2, 3, 4, . . . }
unrestricted symbolic dynamics. The prime cycles are
labeled by all non-repeating sequences of integers, or-
dered lexically: tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m > 0, . . . (see sect. 29.3). Now the num-
ber of fundamental cycles is infinite as well:

1/ζ = 1 −
∑
n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn)

−
∑

n>m>0

(tmnn − tmntn) (18.52)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr

− tmrtn − tmtnr + tmtntr) · · ·

. As shown in table 29.1, this grammar plays an im-
portant role in description of fixed points of marginal
stability.
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Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare, The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 8 and 9 we learned how to track an individual trajectory, and
saw that such a trajectory can be very complicated. In chapter 4 we stud-
ied a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-
voluted, as we shall see, the density of these points might evolve in a manner that
is relatively smooth. The evolution of the density of representative points is for
this reason (and other that will emerge in due course) of great interest. So are
the behaviors of other properties carried by the evolving swarm of representative
points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of linear action of evolution operators.
We shall also show that the important, long-time “natural" invariant densities are
unspeakably unfriendly and essentially uncomputable everywhere singular func-
tions with support on fractal sets. Hence, in chapter 20 we rethink what is it that
the theory needs to predict (“expectation values" of “observables"), relate these
to the eigenvalues of evolution operators, and in chapters 21 to 23 show how to
compute these without ever having to compute a “natural" invariant density ρ0.

358
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Figure 19.1: (a) First level of partitioning: A
coarse partition of M into regions M0, M1, and
M2. (b) n = 2 level of partitioning: A refinement
of the above partition, with each regionMi subdi-
vided intoMi0,Mi1, andMi2.

(a) (b)

01

12

22

02

00

20

21

11
10

19.1 Measures

Do I then measure, O my God, and know not what I mea-
sure?

—St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote by dµ(x) = ρ(x)dx. An intuitive way to define and
construct a physically meaningful measure is by a process of coarse-graining.
Consider a sequence 1, 2, ..., n, ... of increasingly refined partitions of state space,
figure 19.1, into 3 regionsMi defined by the characteristic function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise . (19.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction of
trajectories contained in the ith regionMi ⊂ M at the nth level of partitioning of
the state space:

∆µi =

∫
M

dµ(x) χi(x) =

∫
Mi

dµ(x) =

∫
Mi

dx ρ(x) . (19.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in state
space at time t. This density can be (and in chaotic dynamics, often is) an ar-
bitrarily ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect to the
Lebesgue measure (namely the uniform measure on the state space). We shall
assume that the measure is normalized

(n)∑
i

∆µi = 1 , (19.3)

where the sum is over subregions i at the nth level of partitioning. The infinites-
imal measure ρ(x) dx can be thought of as an infinitely refined partition limit of
∆µi = |Mi| ρ(xi) , where |Mi| is the volume of subregionMi and xi ∈ Mi; also
ρ(x) is normalized∫

M

dx ρ(x) = 1 . (19.4)
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Figure 19.2: The evolution rule f tcan be used to map
a regionMi of the state space into the region f t(Mi). �
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Here |Mi| is the volume of regionMi, and all |Mi| → 0 as n→ ∞.

So far, any arbitrary sequence of partitions will do. What are intelligent ways
of partitioning state space? We already know the answer from chapter 14, but let
us anyway have another look at this, in order to develop some intuition about how
the dynamics transports densities.

chapter 14

19.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in a
regionMi at time t = 0. As the flow evolves, this region is carried into f t(Mi),
as in figure 19.2. No trajectory is created or destroyed, so the conservation of
representative points requires that∫

f t(Mi)
dx ρ(x, t) =

∫
Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand side to the
initial points x0 = f −t(x),∫

Mi

dx0 ρ( f t(x0), t)
∣∣∣det Jt(x0)

∣∣∣ =

∫
Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.28)

ρ(x, t) =
ρ(x0, 0)
|det Jt(x0)|

, x = f t(x0) , (19.5)

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.

The relation (19.5) is linear in ρ, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

exercise 19.1

ρ(x, t) =
(
Lt ◦ ρ

)
(x) =

∫
M

dx0 δ
(
x − f t(x0)

)
ρ(x0, 0) . (19.6)

Let us check this formula. As long as the zero is not smack on the border of ∂M,
integrating Dirac delta functions is easy:

∫
M

dx δ(x) = 1 if 0 ∈ M, zero otherwise.
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Figure 19.3: The piecewise-linear skew ‘full tent
map’ (19.37), with Λ0 = 4/3, Λ1 = −4. See exam-
ple 19.1.

The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its
argument evaluated at all of its zeros:

∫
dx δ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (19.7)

=
∑

{x:h(x)=0}

1
|h′(x)|

,

and in d dimensions the denominator is replaced by∫
dx δ(h(x)) =

∑
j

∫
M j

dx δ(h(x)) =
∑

j

1∣∣∣∣det ∂h(x j)
∂x

∣∣∣∣ , (19.8)

where M j is any open neighborhood that contains the single x j zero of h. Now
you can check that (19.6) is just a rewrite of (19.5):

exercise 19.2

(
Lt ◦ ρ

)
(x) =

∑
x0= f −t(x)

ρ(x0)
| f t(x0)′|

(1-dimensional)

=
∑

x0= f −t(x)

ρ(x0)
|det Jt(x0)|

(d-dimensional) . (19.9)

For a deterministic, invertible flow x has only one preimage x0; allowing for mul-
tiple preimages also takes account of noninvertible mappings such as the ‘stretch
& fold’ maps of the interval, to be discussed briefly in example 19.1, and in more
detail in sect. 14.3.

We shall refer to the integral operator with singular kernel (19.6) as the Perron-
Frobenius operator:

exercise 19.3
example 28.7

Lt(y, x) = δ
(
y − f t(x)

)
. (19.10)

The Perron-Frobenius operator assembles the density ρ(y, t) at time t by going
back in time to the density ρ(x, 0) at time t = 0. The family of Perron-Frobenius
operators

{
Lt}

t∈R+
forms a semigroup parameterized by time

measure - 9dec2019 ChaosBook.org edition16.4.8, May 25 2020
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(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

If you do not like the word “kernel” you might prefer to think of Lt(y, x) as a
matrix with indices x, y, and index summation in matrix multiplication replaced
by an integral over x,

(
Lt ◦ ρ

)
(y) =

∫
dyLt(y, x)ρ(x) . In example 19.1, Perron-

remark 22.4
Frobenius operator is a matrix, and (19.11) illustrates a matrix approximation to
the Perron-Frobenius operator.

example 19.1

p. 375

fast track:

sect. 19.4, p. 364

19.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to different results.

— John Guckenheimer

(R. Artuso and P. Cvitanović)

To a student with a practical bent the above Example 19.1 suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions of state
space into regionsMi, with a piecewise-linear approximations fi to the dynamics
in each region, but that would be too naive; much of the physically interesting
spectrum would be missed. As we shall see, the choice of function space for ρ is

chapter 28
crucial, and the physically motivated choice is a space of smooth functions, rather
than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is nothing but
an elegant way of thinking of the evolution operator, L, as a matrix (this point of
view will be further elaborated in chapter 28). There are many textbook methods
of approximating an operator L by sequences of finite matrix approximations L,
but in what follows the great achievement will be that we shall avoid construct-
ing any matrix approximation to L altogether. Why a new method? Why not
just run it on a computer, as many do with such relish in diagonalizing quantum
Hamiltonians?

The simplest possible way of introducing a state space discretization, fig-
ure 19.4, is to partition the state space M into a non-overlapping collection of
sets M j, j = 1, . . . ,N, and to consider densities (19.2) piecewise constant on
eachM j:

ρ(x) =

N∑
j=1

ρ j
χ j(x)
|M j|

measure - 9dec2019 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 19. TRANSPORTING DENSITIES 363

Figure 19.4: State space discretization approach to
computing averages.

where χ j(x) is the characteristic function (19.1) of the setM j.

An example of a dynamically motivated piecewise constant measure, particu-
larly easy to implement numerically, is the equipartition or cylinder measure.

While an admissible infinite itinerary corresponds to a unique point in the state
space, any finite itinerary b = st−`+1 · · · s−1s0.s1s2 · · · st determines a cylinder set
Mb, the set of all points in M whose itineraries (14.14) share the same finite b
symbol block, and arbitrary ai ∈ A. The cylinder measure ρb weighs all symbol
sequences b of the same length n equally.

Such piecewise-constant densities are coarse grained presentations of fine
grained density ρ̂(x), with (19.2)

ρi =

∫
Mi

dx ρ̂(x).

The Perron-Frobenius operator does not preserve the piecewise constant form, but
we may reapply coarse graining to the evolved measure

ρ′i =

∫
Mi

dx (L ◦ ρ)(x)

=

N∑
j=1

ρ j

|M j|

∫
Mi

dx
∫
M j

dy δ(x − f (y)) ,

or

ρ′i =

N∑
j=1

ρ j
|M j ∩ f −1(Mi)|

|M j|
.

In this way

Li j =
|Mi ∩ f −1(M j)|

|Mi|
, ρ′ = ρL (19.11)
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is a matrix approximation to the Perron-Frobenius operator, and its leading left
eigenvector is a piecewise constant approximation to the invariant measure.

remark 19.3

The problem with such state space discretization approaches is that they are
blind, the grid knows not what parts of the state space are more or less important.
This observation motivated the development of the invariant partitions of chaotic
systems undertaken in chapter 14, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space and a measure of the partition
volumes, in the spirit of figure 15.14.

Furthermore, a piecewise constant ρ belongs to an unphysical function space,
and with such approximations one is plagued by numerical artifacts such as spu-
rious eigenvalues. In chapter 28 we shall employ a more refined approach to
extracting spectra, by expanding the initial and final densities ρ, ρ′ in some basis
ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and replacing L(y, x) by its
ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art of finding
a “good” basis for which finite truncations of Lαβ give accurate estimates of the
eigenvalues of L.

chapter 28

Regardless of how sophisticated the choice of basis might be, the basic prob-
lem cannot be avoided - as illustrated by the natural measure for the Hénon map
(3.18) sketched in figure 19.5, eigenfunctions ofL are complicated, singular func-
tions concentrated on fractal sets, and in general cannot be represented by a nice
basis set of smooth functions. We shall resort to matrix representations of L and
the ϕα basis approach only insofar this helps us prove that the spectrum that we
compute is indeed the correct one, and that finite periodic orbit truncations do
converge.

in depth:

chapter 1, p. 2

19.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (19.12)

Conversely, if such a density exists, the transformation f t(x) is said to be measure-
preserving. As we are given deterministic dynamics and our goal is the compu-
tation of asymptotic averages of observables, our task is to identify interesting
invariant measures for a given f t(x). Invariant measures remain unaffected by dy-
namics, so they are fixed points (in the infinite-dimensional function space of ρ
densities) of the Perron-Frobenius operator (19.10), with the unit eigenvalue:

exercise 19.3

Ltρ(x) =

∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (19.13)

We will construct explicitly such eigenfunction for the piecewise linear map in
example 20.4, with ρ(y) = const and eigenvalue 1. In general, depending on the
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choice of f t(x) and the function space for ρ(x), there may be no, one, or many
solutions of the eigenfunction condition (19.13). For instance, a singular measure
dµ(x) = δ(x − xq)dx concentrated on an equilibrium point xq = f t(xq), or any
linear combination of such measures, each concentrated on a different equilib-
rium point, is stationary. There are thus infinitely many stationary measures that
can be constructed. Almost all of them are unnatural in the sense that the slightest
perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transfor-
mations experienced by an initial smooth distribution ρ(x) under the action of f ,

ρ0(x) = lim
t→∞

∫
M

dy δ(x − f t(y)) ρ(y, 0) ,
∫
M

dy ρ(y, 0) = 1 . (19.14)

Intuitively, the “natural” measure should be the measure that is the least sensitive
to the (in practice unavoidable) external noise, no matter how weak, or round-off

errors in a numerical computation.

19.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechanics?
Yang: I don’t think so.

—Kerson Huang, C.N. Yang interview

In computer experiments, as the Hénon example of figure 19.5, the long time evo-
lution of many “typical" initial conditions leads to the same asymptotic distribu-
tion. Hence the natural measure (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural density,
or even “natural invariant”) is defined as the limit

exercise 19.8
exercise 19.9

ρx0
(y) =


limt→∞

1
t

∫ t
0 dτ δ(y − f τ(x0)) flows

limn→∞
1
n
∑n−1

k=0 δ
(
y − f k(x0)

)
maps ,

(19.15)

where x0 is a generic initial point. Generated by the action of f , the natural
measure satisfies the stationarity condition (19.13) and is thus invariant by con-
struction.

Staring at an average over infinitely many Dirac deltas is not a prospect we
cherish. From a computational point of view, the natural measure is the visitation
frequency defined by coarse-graining, integrating (19.15) over theMi region

∆µi = lim
t→∞

ti
t
, (19.16)

where ti is the accumulated time that a trajectory of total duration t spends in the
Mi region, with the initial point x0 picked from some smooth density ρ(x).
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Let a = a(x) be any observable. In the mathematical literature a(x) is a func-
tion belonging to some function space, for instance the space of integrable func-
tions L1, that associates to each point in state space a number or a set of numbers.
In physical applications the observable a(x) is necessarily a smooth function. The
observable reports on some property of the dynamical system. Several examples
will be given in sect. 20.1.

The space average of the observable a with respect to a measure ρ is given by
the d-dimensional integral over the state spaceM:

〈a〉ρ =
1
|ρM|

∫
M

dx ρ(x)a(x)

|ρM| =

∫
M

dx ρ(x) = mass inM . (19.17)

For now we assume that the state space M has a finite dimension and a finite
volume. By its construction, 〈a〉ρ is a function(al) of ρ. For ρ = ρ0 natural measure
we shall drop the subscript in the definition of the space average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (19.15) into (19.17), we see that the natural
measure corresponds to a time average of the observable a along a trajectory of
the initial point x0,

ax0 = lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) . (19.18)

Analysis of the above asymptotic time limit is the central problem of ergodic
theory. The Birkhoff ergodic theorem asserts that if an invariant measure ρ ex-

remark 19.1
appendix A1ists, the limit a(x0) for the time average (19.18) exists for (almost) all initial x0.

Still, Birkhoff theorem says nothing about the dependence on x0 of time averages
ax0 (or, equivalently, that the construction of natural measures (19.15) leads to a
“single" density, independent of x0). This leads to one of the possible definitions
of ergodic evolution: f is ergodic if for any integrable observable a in (19.18)
the limit function is constant. If a flow enjoys such a property, the time averages
coincide (apart from a set of ρ measure 0) with space averages

lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) = 〈a〉 . (19.19)

For future reference, we note a further property that is stronger than ergodicity:
if the space average of a product of any two variables decorrelates with time,

section 27.3

lim
t→∞
〈a(x)b( f t(x))〉 = 〈a〉〈b〉 , (19.20)

the dynamical system is said to be mixing. The terminology may be understood
better once we consider as the pair of observables in (19.20) characteristic func-
tions of two setsA and B: then (19.20) may be written as

lim
t→∞

µ
(
A∩ f t(B)

)
µ(A)

= µ(B)
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Figure 19.5: Natural measure (19.16) for the Hénon
map (3.18) strange attractor at parameter values
(a, b) = (1.4, 0.3). See figure 3.7 for a sketch of the
attractor without the natural measure binning. See ex-
ample 19.2. (Courtesy of J.-P. Eckmann)
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so that the set B spreads “uniformly" over the whole state space as t increases.
Mixing is a fundamental notion in characterizing statistical behavior for dynam-
ical systems: suppose we start with an arbitrary smooth nonequilibrium distribu-
tion ρ(x)ν(x): the after time t the average of an observable a is given by∫

M

dx ρ(x)ν( f t(x))a(x)

and this tends to the equilibrium average 〈a〉ρ if f is mixing.

example 19.2

p. 375
remark A1.4

If an invariant measure is quite singular –for instance a Dirac δ concentrated
on a fixed point or a cycle– it is most likely of no physical import. No smooth
initial density will converge to this measure if its neighborhood is repelling. In
practice the average (19.15) is problematic and often hard to control, as generic
dynamical systems are neither uniformly hyperbolic nor structurally stable: it is
not known whether even the simplest model of a strange attractor, the Hénon
attractor of figure 19.5, is “strange,” or merely a transient to a very long stable
cycle.

exercise 6.3

19.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we cannot
do better than to measure ρ averaged over some regionMi; the coarse-graining is
not an approximation but a physical necessity. One is free to think of a measure
as a probability density, as long as one keeps in mind the distinction between
deterministic and stochastic flows. In deterministic evolution the evolution kernels
are not probabilistic; the density of trajectories is transported deterministically.
What this distinction means will became apparent later: for deterministic flows

chapter 22
our trace and determinant formulas will be exact, while for quantum and stochastic
flows they will only be the leading saddle point (stationary phase, steepest descent)
approximations.

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you will never need to compute them, at least not
in this book. How so? The evolution operators to which we next turn, and the
trace and determinant formulas to which they will lead us, will assign the correct
weights to desired averages without recourse to any explicit computation of the
coarse-grained measure ∆ρi.
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19.5 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an infinitesimal
step δτ, by expanding the action of Lδτ to linear order in δτ:

Lδτρ(y) =

∫
M

dx δ
(
y − f δτ(x)

)
ρ(x)

=

∫
M

dx δ(y − x − δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣∣det

(
1 + δτ

∂v(y)
∂x

)∣∣∣∣ =
ρ(y) − δτvi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0) − δτ
∂

∂x
(v(x)ρ(x, 0)) . (19.21)

Here we have used the infinitesimal form of the flow (2.7), the Dirac delta Jaco-
exercise 4.1

bian (19.9), and the ln det = tr ln relation. By the Einstein summation conven-
tion, repeated indices imply summation, vi(y)∂i =

∑d
i=1 vi(y)∂i. Moving ρ(y, 0) to

the left hand side and dividing by δτ, we discover that the rate of the deformation
of ρ under the infinitesimal action of the Perron-Frobenius operator is nothing but
the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (19.22)

From (19.21), time evolution by an infinitesimal step δτ forward in time is gener-
ated by

Aρ(x) = + lim
δτ→0+

1
δτ

(
Lδτ − I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (19.23)

We shall refer to

A = −∂ · v −
d∑
i

vi(x)∂i (19.24)

as the time-evolution generator. If the flow is finite-dimensional and invertible,
A is a generator of a full-fledged group. The left hand side of (19.23) is the
definition of time derivative, so the evolution equation for ρ(x) is(

∂

∂t
−A

)
ρ(x) = 0 . (19.25)

appendix A31.2

The finite time Perron-Frobenius operator (19.10) can be formally expressed
by exponentiating the time evolution generatorA as

Lt = etA . (19.26)

The generatorA is reminiscent of the generator of translations. Indeed, for a con-
stant velocity field dynamical evolution is nothing but a translation by (time× velocity):

exercise 19.10

e−tv ∂
∂x a(x) = a(x − tv) . (19.27)
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19.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined
by Hamilton’s equations of motion (8.1). A reader versed in quantum mechan-
ics will have observed by now that with replacement A → − i

~ Ĥ , where Ĥ is
the quantum Hamiltonian operator, (19.25) looks rather like the time dependent
Schrödinger equation, so this is the right moment to figure out what all this means
for Hamiltonian flows.

The Hamilton’s evolution equations (8.1) for any time-independent quantity
Q = Q(q, p) are given by

dQ
dt

=
∂Q
∂qi

dqi

dt
+
∂Q
∂pi

dpi

dt
=
∂H
∂pi

∂Q
∂qi
−
∂Q
∂pi

∂H
∂qi

, (19.28)

where (pi, qi) span the full state space, which for Hamiltonian flows we shall refer
to as the phase space. As equations with this structure arise frequently for sym-
plectic flows, it is convenient to introduce a notation for them, the Poisson bracket

remark 19.4

{A, B} =
∂A
∂pi

∂B
∂qi
−
∂A
∂qi

∂B
∂pi

. (19.29)

In terms of Poisson brackets the time-evolution equation (19.28) takes the compact
form

dQ
dt

= {H,Q} . (19.30)

The discussion of sect. 19.5 applies to any deterministic flow. The full phase
space flow velocity is ẋ = v = (q̇, ṗ), where the dot signifies time derivative.

section 33.1

If the density itself is a material invariant, combining

∂tI + v · ∂I = 0 .

and (19.22) we conclude that ∂ivi = 0 and det Jt(x0) = 1. An example of such
incompressible flow is the Hamiltonian flow. For incompressible flows the con-
tinuity equation (19.22) becomes a statement of conservation of the phase space
volume (see sect. 8.3), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (19.31)

The symplectic structure of Hamilton’s equations (8.1) implies that the flow
is incompressible, ∂ivi = 0, so for Hamiltonian flows the equation for ρ reduces to
the continuity equation for the phase-space density:

appendix ??

∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . ,D . (19.32)
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Consider the evolution of the phase-space density ρ of an ensemble of nonin-
teracting particles; the particles are conserved, so

d
dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (8.1) we obtain the Liouville equation, a special
case of (19.25):

remark 19.4

∂

∂t
ρ(q, p, t) = −A ρ(q, p, t) = {H, ρ(q, p, t)} , (19.33)

where { , } is the Poisson bracket (19.29). The generator of the flow (19.24) is in
this case a generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=
∂H
∂pi

∂

∂qi
−
∂H
∂qi

∂

∂pi
. (19.34)

For example, for separable Hamiltonians of form H = p2/2m+V(q), the equations
of motion are

q̇i =
pi

m
, ṗi = −

∂V(q)
∂qi

. (19.35)

and the action of the generator
exercise 19.11

A = −
pi

m
∂

∂qi
+ ∂iV(q)

∂

∂pi
. (19.36)

Looking back at (19.27) we see that the first term generates a translation in the
configuration space, f (q, p) → f (q − dt q̇, p), and the second generates acceler-
ation by force ∂V(q) in the momentum space. They do not commute, hence the
time integration is not trivial.

The time-evolution generator (19.24) for the case of symplectic flows is called
the Liouville operator. You might have encountered it in statistical mechanics,
while discussing what ergodicity means for 6.02214129 × 1023 hard balls. Here
its action will be very tangible; we shall apply the Liouville operator to systems
as small as 1 or 2 hard balls and to our surprise learn that this suffices to already
get a bit of a grip on foundations of the nonequilibrium statistical mechanics.

in depth:

sect. A31.2, p. 1002

Résumé

In physically realistic settings the initial state of a system can be specified only to
a finite precision. If the dynamics is chaotic, it is not possible to calculate the long
time trajectory of a given initial point. Depending on the desired precision, and
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given a deterministic law of evolution, the state of the system can then be tracked
for a finite time only.

The study of long-time dynamics thus requires trading in the evolution of a
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially
this means trading in nonlinear dynamical equations on a finite dimensional space
x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector space of
density functions ρ(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator,

ρ(x, t) =
(
Lt ◦ ρ

)
(x) ,

and in a differential formulation they satisfy the continuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the notion
of an individual deterministic trajectory loses meaning, is much shorter than the
observation time, the “sharp” observables are those dual to time, the eigenval-
ues of evolution operators. This is very much the same situation as in quantum
mechanics; as atomic time scales are so short, what is measured is the energy,
the quantum-mechanical observable dual to the time. Both in classical and quan-
tum mechanics one has a choice of implementing dynamical evolution on densi-
ties (“Schrödinger picture,” sect. 19.5) or on observables (“Heisenberg picture,”
sect. 20.2 and chapter 21).

In what follows we shall find the second formulation more convenient, but the
alternative is worth keeping in mind when posing and solving invariant density
problems. However, as classical evolution operators are not unitary, their eigen-
functions can be quite singular and difficult to work with. In what follows we
shall learn how to avoid dealing with these eigenstates altogether. As a matter of
fact, what follows will be a labor of radical deconstruction; after having argued
so strenuously here that only smooth measures are “natural,” we shall merrily
proceed to erect the whole edifice of our theory on periodic orbits, i.e., objects
that are δ-functions in state space. The trick is that each comes with an interval, its
neighborhood – periodic points only serve to pin these intervals, just as millimeter
markings on a measuring rod are used to partition a continuum into intervals.

Commentary

Remark 19.1. Ergodic theory: An overview of ergodic theory is outside the scope
of this book: the interested reader may find it useful to consult refs. [2, 17, 22, 26].
The existence of time average (19.18) is the basic result of ergodic theory, known as the
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Birkhoff theorem, see for example refs. [16, 26], or the statement of theorem 7.3.1 in
ref. [19]. The natural measure (19.16) of sect. 19.4.1 is often referred to as the SRB
or Sinai-Ruelle-Bowen measure [5, 24, 25]. If you experience discomfort whenever a
Dirac function is trotted out, Ten Lessons, Gian-Carlo Rota [23] sensible discussion of
‘density functions’ should bring you peace (“From this definition, all properties of the
Dirac delta function are easily derived without any hysterical appeals to functions taking
infinite values · · · ”).

There is much literature on explicit form of natural measure for special classes of
1-dimensional maps [3, 8, 20] - J. M. Aguirregabiria [1], for example, discusses several
families of maps with known smooth measure, and behavior of measure under smooth
conjugacies. As no such explicit formulas exist for higher dimensions and general dy-
namical systems, we do not discuss such measures here.

Remark 19.2. Time evolution as a Lie group: Time evolution of sect. 19.5 is an exam-
ple of a 1-parameter Lie group. Consult, for example, Bluman and Kumei [4] Chapter 2
for a clear and pedagogical introduction to Lie groups of transformations. For a discussion
of the bounded semigroups of page 386 see, for example, Marsden and Hughes [21].

Remark 19.3. Discretization of the Perron-Frobenius operator operator It is an
old idea of Ulam [27] that such an approximation for the Perron-Frobenius operator is
a meaningful one. The piecewise-linear approximation of the Perron-Frobenius operator
(19.11) has been shown to reproduce the spectrum for expanding maps, once finer and
finer Markov partitions are used [7, 9, 12]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [10, 11].

Remark 19.4. The sign convention of the Poisson bracket: The Poisson bracket
is antisymmetric in its arguments and there is a freedom to define it with either sign
convention. When such freedom exists, it is certain that both conventions are in use and
this is no exception. In some texts [13, 14] you will see the right hand side of (19.29)
defined as {B, A} so that (19.30) is dQ

dt = {Q,H}. Other equally reputable texts [15] employ
the convention used here. Landau and Lifshitz [18] denote a Poisson bracket by [A, B],
notation that we reserve here for the quantum-mechanical commutator. As long as one is
consistent, there should be no problem.

Remark 19.5. “Anon it lives"? “Anon it lives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused her of infidelity. Twenty
years later, the servant Paulina shows Leontes this statue of Hermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lived and Paulina has kept her
hidden all these years. The text of the play seems deliberately ambiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)
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19.7 Examples

Example 19.1. Perron-Frobenius operator for a piecewise-linear map. Consider
the expanding 1-dimensional map f (x) of figure 19.3, a piecewise-linear 2–branch map
with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

exercise 19.7

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] . (19.37)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left" unstable fixed point x0 as the
“Ulam” map. Assume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (19.38)

As can be easily checked using (19.9), the Perron-Frobenius operator acts on this piece-
wise constant function as a [2×2] Markov matrix (transfer matrix) L with matrix elements

exercise 19.1
exercise 19.5[

ρ0
ρ1

]
→ Lρ =

[ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

] [
ρ0
ρ1

]
, (19.39)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| = 1,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively,
the fractions of state space taken up by the |M0|, |M1| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to em-
bark in this book, but the full story is much subtler: in general, there will exist no such
finite-dimensional representation for the Perron-Frobenius operator. (continued in ex-
ample 20.4)

click to return: p. 362

Example 19.2. The Hénon attractor natural measure. A numerical calculation of
the natural measure (19.16) for the Hénon attractor (3.18) is given by the histogram in
figure 19.5. The state space is partitioned into many equal-size areasMi, and the coarse
grained measure (19.16) is computed by a long-time iteration of the Hénon map, and
represented by the height of the column over areaMi. What we see is a typical invariant
measure - a complicated, singular function concentrated on a fractal set.

click to return: p. 367
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Exercises

19.1. Integrating over Dirac delta functions.
Check the delta function integrals in

(a) 1 dimension (19.7),∫
dx δ(h(x)) =

∑
{x:h(x)=0}

1
|h′(x)|

, (19.40)

(b) and in d dimensions (19.8), h : Rd → Rd,∫
Rd

dx δ(h(x)) =
∑

j

∫
M j

dx δ(h(x))

=
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣ .
where M j are arbitrarily small regions enclosing
the zeros x j (with x j not on the boundary ∂M j).
For a refresher on Jacobian determinants, read, for
example, Stone and Goldbart Sect. 12.2.2.

(c) The delta function can be approximated by a se-
quence of Gaussians∫

dx δ(x) f (x) = lim
σ→0

∫
dx

e−
x2
2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal
expression∫

R

dx δ(x2)

makes sense.

19.2. Derivatives of Dirac delta functions.
Consider δ(k)(x) = ∂k

∂xk δ(x) .
Using integration by parts, determine the value of∫

R

dx δ′(y) , where y = f (x) − x (19.41)∫
dx δ(2) (y) =

∑
{x:y(x)=0}

1
|y′|

{
3

(y′′)2

(y′)4 −
y′′′

(y′)3

}
∫

dx b(x)δ(2)(y) =
∑

{x:y(x)=0}

1
|y′|

{
b′′

(y′)2 −
b′y′′

(y′)3

+ b
(
3

(y′′)2

(y′)4 −
y′′′

(y′)3

)}
.

These formulas are useful for computing effects of weak
noise on deterministic dynamics [6].

19.3. Lt generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,∫

M
dzLt2 (y, z)Lt1 (z, x) = Lt2+t1 (y, x) , t1, t2 ≥ 0 .

(19.42)

As the flows in which we tend to be interested are in-
vertible, the L’s that we will use often do form a group,
with t1, t2 ∈ R.

19.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in
the interval [0, 1] for the tent map

f (x) = a(1 − 2|x − 0.5|)

for several values of a.
(b) Determine analytically the a dependence of the es-

cape rate γ(a).
(c) Compare your results for (a) and (b).

19.5. Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (19.39).
(b) The maximum value of the first map is 1. Com-

pute an invariant measure for this map.
(c) Compute the leading eigenvalue ofL for this map.
(d) For this map there is an infinite number of in-

variant measures, but only one of them will be
found when one carries out a numerical simula-
tion. Determine that measure, and explain why
your choice is the natural measure for this map.

(e) In the second map the maximum occurs at α =

(3 −
√

5)/2 and the slopes are ±(
√

5 + 1)/2. Find
the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (
√

5 + 1)/2.
(medium difficulty)
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19.6. Escape rate for a flow conserving map. Adjust Λ0,
Λ1 in (19.37) so that the gap between the intervalsM0,
M1 vanishes. Show that the escape rate equals zero in
this situation.

19.7. Eigenvalues of the Perron-Frobenius operator for the
skew full tent map. Show that for the skew full tent
map

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) =

Λ0
Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] .

(19.43)

the eigenvalues are available analytically, compute the
first few.

19.8. “Kissing disks”∗ (continuation of exercises 9.1 and
9.2) Close off the escape by setting R = 2, and look
in real time at the density of the Poincaré section iter-
ates for a trajectory with a randomly chosen initial con-
dition. Does it look uniform? Should it be uniform?

(Hint - phase-space volumes are preserved for Hamil-
tonian flows by the Liouville theorem). Do you notice
the trajectories that loiter near special regions of phase
space for long times? These exemplify “intermittency,”
a bit of unpleasantness to which we shall return in chap-
ter 29.

19.9. Invariant measure for the Gauss map. Consider
the Gauss map:

f (x) =

{
1
x −

[
1
x

]
x , 0

0 x = 0
(19.44)

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2
1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

19.10. A as a generator of translations. Verify that for
a constant velocity field the evolution generator A in
(19.27) is the generator of translations,

etv ∂
∂x a(x) = a(x + tv) .

19.11. Incompressible flows. Show that (19.9) implies that
ρ0(x) = 1 is an eigenfunction of a volume-preserving
flow with eigenvalue s0 = 0. In particular, this im-
plies that the natural measure of hyperbolic and mixing
Hamiltonian flows is uniform. Compare this results with
the numerical experiment of exercise 19.8.
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Chapter 20

Averaging

Why think when you can compute?
—Maciej Zworski

We discuss first the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by in-
tegrating its value along a trajectory. The integral along trajectory can

be split into a sum of over integrals evaluated on trajectory segments; if the ob-
servable is exponentiated, this yields a multiplicative weight for successive trajec-
tory segments. This elementary observation will enable us to recast the formulas
for averages in a multiplicative form that motivates the introduction of evolution
operators and further formal developments to come. The main result is that any
dynamical average measurable in a chaotic system can be extracted from the spec-
trum of an appropriately constructed evolution operator. In order to keep our toes
closer to the ground, in sect. 20.4 we try out the formalism on the first quantitative
diagnosis whether a system is chaotic, the Lyapunov exponent.

20.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainable, however, is a description
of the geometry of the set of possible outcomes, and the evaluation of long-time
averages. Examples of such averages are transport coefficients for chaotic dynam-
ical flows, such as escape rates, mean drifts and diffusion rates; power spectra; and
a host of mathematical constructs such as generalized dimensions, entropies, and
Lyapunov exponents. Here we outline how such averages are evaluated within the
evolution operator framework. The key idea is to replace the expectation values of
observables by the expectation values of exponential generating functionals. This
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CHAPTER 20. AVERAGING 379

associates an evolution operator with a given observable, and relates the expecta-
tion value of the observable to the leading eigenvalue of the evolution operator.

20.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reports on a property of
the dynamical system. The observable is a device, such as a thermometer or laser
Doppler velocitometer. The device itself does not change during the measure-
ment. The velocity field ai(x) = vi(x) is an example of a vector observable; the
speed |v(x)| (the length of this vector), or perhaps a temperature measured in an
experiment at instant τ are examples of scalar observable. We define the inte-
grated observable A as the time integral of the observable a evaluated along the
trajectory of the initial point x0,

A(x0, t) =

∫ t

0
dτ a(x(τ)) , x(t) = f t(x0) . (20.1)

If the dynamics are given by an iterated mapping and the time is discrete, the
integrated observable after n iterations is given by

A(x0, n) =

n−1∑
k=0

a(xk) , xk = f k(x0)) (20.2)

(we suppress vectorial indices for the time being).

example 20.1

p. 391

The time average of the observable along an orbit is defined by

a(x0) = lim
t→∞

1
t

A(x0, t) . (20.3)

If a does not behave too wildly as a function of time –for example, if a(x) is the
Chicago temperature, bounded between −80oF and +130oF for all times– A(x0, t)
is expected to grow no faster than t, and the limit (20.3) exists. For an example of
a time average –the Lyapunov exponent– see sect. 20.4.

The time average is a property of the orbit, independent of the initial point on
that orbit: if we start at a later state space point f T (x0) we get a couple of extra
finite contributions that vanish in the t → ∞ limit:

a( f T (x0)) = lim
t→∞

1
t

∫ t+T

T
dτ a( f τ(x0))

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτ a( f τ(x0)) −

∫ t+T

t
dτ a( f τ(x0))

)
= a(x0) .
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Figure 20.1: (a) A typical chaotic trajectory ex-
plores the state space with the long time visitation
frequency building up the natural measure ρ0(x).
(b) Time average, evaluated along an atypical tra-
jectory such as a periodic orbit, fails to explore the
entire accessible state space. (A. Johansen)

(a) (b)

The integrated observable A(x0, t) and the time average a(x0) take a particu-
larly simple form when evaluated on a periodic orbit. Define

exercise 4.6

Ap =

 apTp =
∫ Tp

0 dτ a(x(τ)) for a flow
apnp =

∑np

i=1 a(xi) for a map
, x ∈ Mp , (20.4)

where p is a prime cycle, Tp is its period, and np is its discrete time period in the
case of iterated map dynamics. The quantity Ap is a loop integral of the observable
along a single traversal of a prime cycle p, so it is an intrinsic property of the cycle,
independent of the starting point x0 ∈ Mp. If the trajectory retraces itself r times,
we just obtain Ap repeated r times. Evaluation of the asymptotic time average
(20.3) therefore requires only a single traversal of the cycle:

ap = Ap/Tp . (20.5)

Innocent as this seems, it implies that a(x0) is in general a wild function of x0;
for a hyperbolic system it takes the same value 〈a〉 for almost all initial x0, but a
different value (20.5) on (almost) every periodic orbit (figure 20.1 (b)).

example 20.2

p. 391
section 24.1

20.1.2 Spatial averages

The space average of a quantity a evaluated over all state space trajectories x(t) at
time t is given by the d-dimensional integral over all initial points x0 at time t = 0:

〈a〉(t) =
1
|M|

∫
M

dx0 a(x(t)) , x(t) = f t(x0)

|M| =

∫
M

dx = volume ofM . (20.6)

The spaceM is assumed to have finite volume - open systems like the 3-disk game
of pinball are discussed in sect. 20.3.

example 20.6

p. 393
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What is it we really do in experiments? We cannot measure the time average
(20.3), as there is no way to prepare a single initial condition with infinite preci-
sion. The best we can do is prepare an initial density ρ(x), perhaps concentrated on
some small (but always finite) neighborhood. Then we can abandon the uniform
space average (20.6) and consider instead the weighted spatial average

〈a〉ρ(t) =
1
|Mρ|

∫
M

dx0 ρ(x0) a(x(t)) , |Mρ| =

∫
M

dx ρ(x) . (20.7)

For ergodic mixing systems, any smooth initial density will tend to the asymptotic
natural measure in the t → ∞ limit ρ(x, t) → ρ0(x). This allows us to take any
smooth initial ρ(x) and define the expectation value 〈a〉 of an observable a as the
asymptotic time and space average over the state spaceM

〈a〉 =
1
|M|

∫
M

dx a(x) = lim
t→∞

1
|M|

∫
M

dx0
1
t

∫ t

0
dτ a(x(t)) . (20.8)

We use the same 〈· · ·〉 notation as for the space average (20.6) and distinguish the
two by the presence of the time variable in the argument: if the quantity 〈a〉(t)
being averaged depends on time, then it is a space average; if it is the infinite time
limit, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every x ∈ M
used as a starting point of a time average. The advantage of averaging over space
is that it smears the starting points which were problematic for the time average
(such as periodic points). While easy to define, the expectation value 〈a〉 turns out
not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follows: Such averages
are more conveniently studied by investigating instead of 〈a〉 the space averages
of form

〈eβ·A〉 =
1
|M|

∫
M

dx eβ·A(x,t) . (20.9)

In the present context β is an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space average by differentiation,

〈Ai〉 =
∂

∂βi
〈eβ·A〉

∣∣∣∣∣
β=0

.

We write ‘β · A′ to indicate that if the observable is a d-dimensional vector a(x) ∈
Rd, then β ∈ Rd; if the observable is a [d × d] tensor, β is also a rank-2 tensor, and
so on. Here we will mostly limit the considerations to scalar β and drop the dot in
‘β · A′.

If the time average limit a(x0) (20.3) exists for ‘almost all’ initial x0’s and the
system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the time av-
erage along almost all trajectories to tend to the same value a, and the integrated
observable A to tend to t a. The space average (20.9) is an integral over exponen-
tials and hence also grows (or shrinks) exponentially with time. So as t → ∞ we
would expect the space average of exp(βA(x, t)) to grow exponentially with time

〈eβA〉 → (const) ets(β) ,
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and its rate of growth (or contraction) characteristic state function to be given by
the limit

s(β) = lim
t→∞

1
t

ln〈eβA〉 . (20.10)

Now we understand one reason for why it is smarter to compute 〈exp(βA)〉
rather than 〈a〉: the expectation value of the observable (20.8), the (generalized)
diffusion tensor, and higher moments of the integrated observable (20.1) can be
computed by evaluating the derivatives of s(β)

∂s
∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈A j〉 = 〈a j〉 ,

∂2s
∂βiβ j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(
〈AiA j〉 − 〈Ai〉〈A j〉

)
= lim

t→∞

1
t
〈(Ai − t 〈ai〉)(A j − t 〈a j〉)〉 = ∆i j ,

(20.11)

and so forth. We have explicitly written out the formulas for a scalar observable;
exercise 20.1

the vector case is worked out in exercise 20.1 (we could have used full derivative
notation ds/dβ in (20.11), but for vector observable we do need partial derivatives
∂s/∂βi). If we can compute the function s(β), we have the desired expectation
value without having to estimate any infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such formulas
good for? A typical application arises in the problem of determining transport
coefficients from underlying deterministic dynamics.

example 20.3

p. 391

We now turn to the problem of evaluating 〈eβA〉, but first you might want to
review some elementary notions of probability theory that will be useful later on.

in depth:

sect. A20.1, p. 952

20.2 Evolution operators

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

The above simple shift of focus, from studying 〈a〉 to studying 〈exp (βA)〉 is the
key to everything that follows. Make the dependence on the flow explicit by
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Figure 20.2: Space averaging pieces together the
time average computed along the t → ∞ orbit
of figure 20.1 by a space average over infinitely
many short t trajectory segments starting at all ini-
tial points at once. x1

x2 x2

x1

ρ(x) [
Lt ◦ ρ

]
(x)

rewriting this quantity as

〈eβA〉 =
1
|M|

∫
M

dx
∫
M

dy δ
(
y − f t(x)

)
eβA(x,t) . (20.12)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique point y at time t. Formally, all we have done above is
to insert the identity

1 =

∫
M

dy δ
(
y − f t(x)

)
, (20.13)

into (20.9) to make explicit the fact that we are averaging only over the trajectories
that remain inM for all times. However, having made this substitution we have
replaced the study of individual trajectories f t(x) by studying the evolution of the
density of the totality of initial conditions. Instead of trying to extract a temporal
average from an arbitrarily long trajectory which explores the state space ergodi-
cally, we can now probe the entire state space with short (and controllable) finite
time pieces of trajectories originating from every point inM.

As a matter of fact (and that is why we went to the trouble of defining the gen-
erator (19.24) of infinitesimal transformations of densities) infinitesimally short
time evolution induced by the generator A of (19.24) suffices to determine the
spectrum and eigenvalues of Lt.

We shall refer to the kernel of the operation (20.12) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβA(x,t) . (20.14)

The simplest example is the β = 0 case, i.e., the Perron-Frobenius operator intro-
duced in sect. 19.2. Another example - designed to deliver the Lyapunov exponent
- will be the evolution operator (20.33) discussed below. The action of the evolu-
tion operator on a function φ is given by[

Ltφ
]

(y) =

∫
M

dx δ
(
y − f t(x)

)
eβA(x,t)φ(x) . (20.15)

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observable A in the exponential. Its job is
to deliver the expectation value of a, but before showing that it accomplishes that,
we need to verify the semigroup property of evolution operators.
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By its definition, the integral over the observable a is additive along the tra-
jectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

A(x0, t1 + t2) =

∫ t1

0
dτ a( f τ(x)) +

∫ t1+t2

t1
dτ a( f τ(x))

= A(x0, t1) + A( f t1(x0), t2) .

As A(x, t) is additive along the trajectory, the evolution operator generates a semi-
exercise 19.3

group
section 19.5

Lt1+t2(y, x) =

∫
M

dzLt2(y, z)Lt1(z, x) , (20.16)

as is easily checked by substitution[
Lt2Lt1a

]
(y) =

∫
M

dx δ(y − f t2(x))eβA(x,t2)
[
Lt1a

]
(x) =

[
Lt1+t2a

]
(y) .

This semigroup property is the main reason why (20.12) is preferable to (20.8) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

In terms of the evolution operator, the space average of the moment-generating
function (20.12) is given by

〈eβA〉 =
1
|M|

∫
M

dx
∫
M

dy φ(y)Lt(y, x)φ(x) .

where φ(x) is the constant function φ(x) = 1. If the linear operator Lt can be
thought of as a matrix, high powers of a matrix are dominated by its fastest grow-
ing matrix elements, and the limit (20.10)

s(β) = lim
t→∞

1
t

ln〈Lt〉 . (20.17)

yields the leading eigenvalue s0(β), and, through it, all desired expectation values
(20.11).

In what follows we shall learn how to extract not only the leading eigenvalue
ofLt, but much of the dominant part of its spectrum. Clearly, we are not interested
into the eigenvalues of Lt for any particular finite time t, but their behavior as
t → ∞. That is achieved via a Laplace transform, see sect. 20.2.3.

20.2.1 Spectrum of an evolution operator

This operator is strange:
it is not self-adjoint, so it is nothing good

—Jean Bellissard

An exposition of a subject is of necessity sequential and one cannot explain ev-
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erything at once. As we shall actually never use eigenfunctions of evolution oper-
ators, we postpone their discussion to sect. 28.6. For the time being we ask the
reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigenvalues sα and eigen-
functions ϕα(x)[

Ltϕα
]

(x) = esαtϕα(x) , α = 0, 1, 2, . . . (20.18)

ordered so that Re sα ≥ Re sα+1. For continuous time flow eigenvalues cannot
depend on time, they are eigenvalues of the time-evolution generator (19.23) we
always write the eigenvalues of an evolution operator in exponentiated form esα

rather than as multipliers λα We find it convenient to write them this way both for
the continuous time Lt and the discrete time L = L1 cases, and we shall assume
that spectrum of L is discrete.

Lt is a linear operator acting on a density of initial conditions ρ(x), x ∈ M, so
the t → ∞ limit will be dominated by s0 = s(β), the leading eigenvalue of Lt,[

Ltρβ
]

(y) :=
∫
M

dx δ
(
y − f t(x)

)
eβA(x,t)ρβ(x) = ets(β)ρβ(y) , (20.19)

where ρβ(x) is the corresponding eigenfunction. For β = 0 the evolution operator
(20.14) is the Perron-Frobenius operator (19.10), with ρ0(x) the natural measure.

From now on we have to be careful to distinguish the two kinds of linear
operators. In chapter 5 we have characterized the evolution of the local linear
neighborhood of a state space trajectory by eigenvalues and eigenvalues of the
linearized flow Jacobian matrices. Evolution operators described in this chapter
are global, and they act on densities of orbits, not on individual trajectories. As
we shall see, one of the wonders of chaotic dynamics is that the more unstable
individual trajectories, the nicer are the corresponding global density functions.

20.2.2 Evolution for infinitesimal times

For infinitesimal time δt, the evolution operator (20.6) acts as

ρ(y, δt) =

∫
dx eβA(x,δt)δ(y − f δt(x)) ρ(x, 0)

=

∫
dx eβa(x)δtδ(y − x − δt v(x)) ρ(x, 0)

= (1 + δt β a(y))
ρ(y, 0) − δt v · ∂∂xρ(y, 0)

1 + δt ∂v
∂x

,

(the denominator arises from the δt linearization of the jacobian) giving the conti-
nuity equation (19.22) a source term

∂ρ

∂t
+

∂

∂xi
(viρ) = β a ρ . (20.20)
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The evolution generator (19.24) eigenfunctions now satisfy

(s(β) −A) ρ(x, β) = β a(x) ρ(x, β) . (20.21)

Differentiating with respect to β

s′(β) ρ(x, β) + s(β)
∂

∂β
ρ(x, β) +

∂

∂x

(
v(x)

∂

∂β
ρ(x, β)

)
= a(x) ρ(x, β) + β a(x)

∂

∂β
ρ(x, β)

In the vanishing auxiliary parameter limit β→ 0, we have s(0) = 0, ρ(x, 0) = ρ0(x)

s′(0) ρ0(x) +
∂

∂xi

(
vi(x)

∂

∂β
ρ(x, 0)

)
= a(x) ρ0(x) .

By integrating, the second term vanishes by Gauss’ theorem

s′(0) =

∫
dx a(x) ρ0(x) = 〈a〉 ,

verifying equation (20.7): spatial average of the observable a is given by the
derivative of the leading eigenvalue s′(0).

fast track:

sect. 21, p. 394

20.2.3 Resolvent of L

Here we limit ourselves to a brief remark about the notion of the ‘spectrum’ of a
linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it is reason-
able to suppose that there exist constants M > 0, s0 ≥ 0 such that ||Lt|| ≤ Mets0 for
all t ≥ 0. What does that mean? The operator norm is defined in the same spirit in
which one defines matrix norms: We are assuming that no value of Ltρ(x) grows
faster than exponentially for any choice of function ρ(x), so that the fastest pos-
sible growth can be bounded by ets0 , a reasonable expectation in the light of the
simplest example studied so far, the escape rate (1.3). If that is so, multiplying
Lt by e−ts0 we construct a new operator e−ts0Lt = et(A−s0) which decays exponen-
tially for large t, ||et(A−s0)|| ≤ M. We say that e−ts0Lt is an element of a bounded
semigroup with generator A − s0I. Given this bound, it follows by the Laplace
transform

remark A22.1∫ ∞

0
dt e−stLt =

1
s −A

, Re s > s0 , (20.22)

that the resolvent operator (s −A)−1 is bounded∣∣∣∣∣∣∣∣∣∣ 1
s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−st Mets0 =

M
s − s0

. (20.23)
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If one is interested in the spectrum of L, as we will be, the resolvent operator is
a natural object to study; it has no time dependence, and it is bounded. It is called
‘resolvent’ because it separates the spectrum ofL into individual constituents, one
for each spectral ’line’. From (20.17), it is clear that the leading eigenvalue s0(β)
corresponds to the pole in (20.23); as we shall see in chapter 21, the rest of the
spectrum is similarly resolved into further poles of the Laplace transform.

The main lesson of this brief aside is that for continuous time flows, the
Laplace transform is the tool that brings down the generator in (19.26) into the
resolvent form (20.22) and enables us to study its spectrum.

in depth:

appendix A31.2,

p. 1002

20.3 Averaging in open systems

IfM is a compact region or set of regions to which the dynamics is con-
fined for all times, (20.8) is a sensible definition of the expectation value. How-
ever, if the trajectories can exitM without ever returning,∫

M

dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, a repeller is a dynamical system for which
the trajectory f t(x0) eventually leaves the regionM, unless the initial point x0 is
on the repeller, so the identity∫

M

dy δ(y − f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (20.24)

might apply only to a fractal subset of initial points of zero Lebesgue measure
(non–wandering set is defined in sect. 2.1.1). Clearly, for open systems we need
to modify the definition of the expectation value to restrict it to the dynamics on
the non–wandering set, the set of trajectories which are confined for all times.

Denote by M a state space region that encloses all interesting initial points,
say the 3-disk Poincaré section constructed from the disk boundaries and all pos-
sible incidence angles, and denote by |M| the volume ofM. The volume of state
space containing all trajectories, which start out within the state space regionM
and recur within that region at time t, is given by

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

)
∼ |M|e−γt. (20.25)

As we have already seen in sect. 1.4.3, this volume is expected to decrease ex-
ponentially, with the escape rate γ. The integral over x takes care of all possible
initial points; the integral over y checks whether their trajectories are still within
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Figure 20.3: A piecewise-linear repeller (19.37): All
trajectories that land in the gap between the f0 and f1

branches escape (Λ0 = 4, Λ1 = −2). See example 20.4.
0 0.5 1

x

0

0.5

1

f(x)

M by the time t. For example, any trajectory that falls off the pinball table in
section 27.1

figure 1.1 is gone for good.

If we expand an initial distribution ρ(x) in (20.18), the eigenfunction basis
ρ(x) =

∑
α aαϕα(x) , we can also understand the rate of convergence of finite-time

estimates to the asymptotic escape rate. For an open system the fraction of trapped
trajectories decays as

section 20.3

ΓM(t) =

∫
M

dx
[
Ltρ

]
(x)∫

M
dx ρ(x)

=
∑
α

esαtaα

∫
M

dxϕα(x)∫
M

dx ρ(x)

= es0t
(
(const.) + O(e(s1−s0)t)

)
. (20.26)

The constant depends on the initial density ρ(x) and the geometry of state space
cutoff region M, but the escape rate γ = −s0 is an intrinsic property of the re-
pelling set. We see, at least heuristically, that the leading eigenvalue of Lt domi-
nates ΓM(t) and yields the escape rate, a measurable property of a given repeller.

The non–wandering set can be very difficult to describe; but for any finite
time we can construct a normalized measure from the finite-time covering volume
(20.25), by redefining the space average (20.9) as

〈eβA〉 =

∫
M

dx
1

|M(t)|
eβA(x,t) ∼

1
|M|

∫
M

dx eβA(x,t)+γt . (20.27)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factor eγt. What
does this mean? Once we have computed γ we can replenish the density lost to
escaping trajectories, by pumping in eγt of new trajectories in such a way that the
overall measure is correctly normalized at all times, 〈1〉 = 1.

example 20.4

p. 392
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20.4 Evolution operator evaluation of Lyapunov exponents

A solution to these problems was offered in sect. 20.2: replace time averaging
along a single orbit by action of a multiplicative evolution operator on the entire
state space, and extract the state space average of the Lyapunov exponent from its
leading eigenvalue, computed from finite length cycles. The main idea - what is
the Lyapunov ‘observable’ - can be illustrated by the dynamics of a 1-dimensional
map.

example 20.5

p. 392

Here we have restricted our considerations to 1-d maps, as for higher-dimensional
flows only the Jacobian matrices are multiplicative, not the individual eigenvalues.
Construction of the evolution operator for evaluation of the Lyapunov spectra for
a d-dimensional flow requires more skill than warranted at this stage in the narra-
tive: an extension of the evolution equations to a flow in the tangent space.

If the chaotic motion fills the whole state space, we are indeed computing the
asymptotic Lyapunov exponent. If the chaotic motion is transient, leading even-
tually to some long attractive cycle, our Lyapunov exponent, computed on a non–
wandering set, will characterize the chaotic transient; this is actually what any
experiment would measure, as even a very small amount of external noise suffices
to destabilize a long stable cycle with a minute immediate basin of attraction.

All that remains is to determine the value of the Lyapunov exponent

λ = 〈ln | f ′(x)|〉 =
∂s(β)
∂β

∣∣∣∣∣
β=0

= s′(0) (20.28)

from (20.11), the derivative of the leading eigenvalue s0(β) of the evolution oper-
ator (20.33).

example 23.3

The only question is: How? (By chapter 23 you will know.)

Résumé

The expectation value 〈a〉 of an observable a(x) integrated, At(x) =
∫ t

0 dτ a(x(τ)),
and time averaged, At/t, over the trajectory x→ x(t) is given by the derivative

〈a〉 =
∂s
∂β

∣∣∣∣∣
β=0

of the leading eigenvalue ets(β) of the evolution operator Lt.

By computing the leading eigenfunction of the Perron-Frobenius operator
(19.10), one obtains the expectation value (19.17) of any observable a(x). Thus
we can construct a specific, hand-tailored evolution operator L for each and every
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observable. The good news is that, by the time we arrive at chapter 23, the scaf-
chapter 23

folding will be removed, both L’s and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expectation values of observables
will remain.

The next question is: How do we evaluate the eigenvalues of L? In exam-
ple 20.4, we saw a piecewise-linear example where these operators reduce to fi-
nite matrices L, but for generic smooth flows, they are infinite-dimensional linear
operators, and finding smart ways of computing their eigenvalues requires some
thought. In chapter 14 we undertook the first step, and replaced the ad hoc parti-
tioning (19.11) by the intrinsic, topologically invariant partitioning. In chapter 18
we applied this information to our first application of the evolution operator for-
malism, evaluation of the topological entropy, and the growth rate of the number
of topologically distinct orbits. In chapters 21 and 22, this small victory will
be refashioned into a systematic method for computing eigenvalues of evolution
operators in terms of periodic orbits.

Commentary

Remark 20.1. ‘Pressure’. The quantity 〈exp(βA)〉 is called a ‘partition function’ by
Ruelle [9]. Some authors decorate it with considerably more Greek and Gothic letters
than is done in this treatise. Ruelle [6] and Bowen [1] had given name ‘pressure’ or
’topological pressure P(a)’ to s(β) (where a is the observable introduced in sect. 20.1.1),
defined by the ‘large system’ limit (20.10). A more standard statistical mechanics name
for s(β) is ‘characteristic state function’. As we shall also apply the theory to computing
the physical gas pressure exerted on the walls of a container by a bouncing particle, we
refer to s(β) as simply the ‘leading eigenvalue’ of the evolution operator introduced in
sect. 19.5. The ‘convexity’ properties such as P(a) ≤ P(|a|) will be pretty obvious con-
sequences of the definition (20.10). In the case that L is the Perron-Frobenius operator
(19.10), the eigenvalues {s0(β), s1(β), · · · } are called the Ruelle-Pollicott resonances [5,
7, 8], with the leading one, s(β) = s0(β) being the one of main physical interest. In or-
der to aid the reader in digesting the mathematics literature, we shall try to point out the
notational correspondences whenever appropriate. The rigorous formalism is replete with
lims, sups, infs, Ω-sets which are not really essential to understanding of the theory, and
are avoided in this book.

Remark 20.2. State space discretization. Ref. [2] discusses numerical discretizatons
of state space, and construction of Perron-Frobenius operators as stochastic matrices, or
directed weighted graphs, as coarse-grained models of the global dynamics, with transport
rates between state space partitions computed using this matrix of transition probabilities;
a rigorous discussion of some of the former features is included in ref. [3].
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20.5 Examples

Example 20.1. Integrated observables.

(a) If the observable is the velocity, ai(x) = vi(x), its time integral A(x0, ti) is the
trajectory A(x0, ti) = xi(t).

(b) For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase-space point x0 = [q(0), p(0)] is

A(x0, t) =

∫ t

0
dτ q̇(τ) · p(τ) (20.29)

and integrated observable.
click to return: p. 379

Example 20.2. Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 24.1)
is dense with initial points that correspond to periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)2 ∼ t2, and its contribution
to the diffusion rate D ∝ x(t)2/t, (20.3) evaluated with a(x) = x(t)2, diverges. Seemingly
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there is a paradox; even though intuition says the typical motion should be diffusive, we
have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by also averaging over the
initial x and worrying about the measure of the ‘pathological’ trajectories. (continued in
example 20.3)

click to return: p. 380

Example 20.3. Deterministic diffusion. (continued from example 20.2) Consider a
point particle scattering elastically off a d-dimensional array of scatterers. If the scatterers
are sufficiently large to block any infinite length free flights, the particle will diffuse chaot-
ically, and the transport coefficient of interest is the diffusion constant 〈x(t)2〉 ≈ 2dDt. In
contrast to D estimated numerically from trajectories x(t) for finite but large t, the above
formulas yield the asymptotic D without any extrapolations to the t → ∞ limit. For ex-
ample, for ai = vi and zero mean drift 〈vi〉 = 0, in d dimensions the diffusion constant is
given by the curvature of s(β) at β = 0,

section 24.1

D = lim
t→∞

1
2dt
〈x(t)2〉 =

1
2d

d∑
i=1

∂2s
∂β2

i

∣∣∣∣∣∣
β=0

, (20.30)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that char-
acterize deterministic diffusion. As we shall see in chapter 24, periodic orbit theory yields
an exact and explicit closed form expression for D.

click to return: p. 382

Example 20.4. Escape rate for a piecewise-linear repeller: (continuation of exam-
ple 19.1) What is gained by reformulating the dynamics in terms of ‘operators’? We start
by considering a simple example in which the operator is a [2×2] matrix. Assume the
expanding 1-dimensional map f (x) of figure 20.3, a piecewise-linear 2–branch repeller
(19.37). Assume a piecewise constant density (19.38). There is no need to define ρ(x) in
the gap betweenM0 andM1, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f is
the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (19.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] ‘transfer’ matrix (Markov matrix) (19.39)

exercise 19.1
exercise 19.5(

ρ0

ρ1

)
→ Lρ =

[ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

] (
ρ0

ρ1

)
,

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at
every iteration. In this example the density is constant after one iteration, so L has only
one non-zero eigenvalue es0 = 1/|Λ0|+1/|Λ1| ≤ 1, with constant density eigenvector ρ0 =

ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1| intervals, so
the exact escape rate (1.3) – the log of the fraction of survivors at each iteration for this
linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (20.31)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. (continued in example 28.5)

click to return: p. 388

Example 20.5. Lyapunov exponent, discrete time 1-dimensional dynamics. Due
to the chain rule (4.22) for the derivative of an iterated map, the stability of a 1-dimen-
sional mapping is multiplicative along the flow, so the integral (20.1) of the observable
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a(x) = ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory of x0,
is additive:

A(x0, n) = ln
∣∣∣ f n′(x0)

∣∣∣ =

n−1∑
k=0

ln
∣∣∣ f ′(xk)

∣∣∣ . (20.32)

The associated one time step evolution operator (20.14) is

L(y, x) = δ(y − f (x)) eβ ln | f ′(x)| . (20.33)

For a 1-dimensional iterative mapping, the Lyapunov exponent is then the expectation
value (20.8) given by a spatial integral (20.7) weighted by the natural measure

λ = 〈ln | f ′(x)|〉 =

∫
M

dx ρ0(x) ln | f ′(x)| . (20.34)

click to return: p. 389

Example 20.6. Microcanonical ensemble. In statistical mechanics the space average
(20.6) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx = dqdp δ(H(q, p) − E) of volume ω(E) =

∫
M

dqdp δ(H(q, p) − E)

〈a(t)〉 =
1

ω(E)

∫
M

dqdp δ(H(q, p) − E) a(q, p; t) (20.35)

is called the microcanonical ensemble average.
click to return: p. 380

Exercises

20.1. Expectation value of a vector observable.
Check and extend the expectation value formulas
(20.11) by evaluating the derivatives of s(β) up to 4-th
order for the space average 〈exp(β · A)〉 with ai a vector
quantity:

(a)

∂s
∂βi

∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈Ai〉 = 〈ai〉 , (20.36)

(b)

∂2s
∂βk∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(
〈AkA j〉 − 〈Ak〉〈A j〉

)
= lim

t→∞

1
t
〈(Ak − t〈ak〉)(A j − t〈a j〉)〉 .

Note that the formalism is smart: it automatically
yields the variance from the mean, rather than
simply the 2nd moment 〈a2〉.

(c) compute the third derivative of s(β).
(d) compute the fourth derivative assuming that the

mean in (20.36) vanishes, 〈ai〉 = 0. The 4-th order
moment formula

K(t) =
〈x4(t)〉
〈x2(t)〉2

− 3 (20.37)

that you have derived is known as kurtosis
(A20.11): it measures a deviation from what the
4-th order moment would be were the distribution
a pure Gaussian (see (24.14) for a concrete exam-
ple). If the observable is a vector, the kurtosis K(t)
is given by∑

k j

[
〈AkAkA jA j〉 + 2

(
〈AkA j〉〈A jAk〉 − 〈AkAk〉〈A jA j〉

)]
(∑

k〈AkAk〉
)2

20.2. Escape rate for a 1-dimensional repeller, numerically.
Consider the quadratic map

f (x) = Ax(1 − x) (20.38)
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on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever or
after some iterate leaves the interval and diverges to mi-
nus infinity. Estimate numerically the escape rate (27.8),
the rate of exponential decay of the measure of points
remaining in the unit interval, for either A = 9/2 or
A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, ex-

ercise 23.2.

20.3. Pinball escape rate from numerical simulation∗.
Estimate the escape rate for R : a = 6 3-disk pinball
by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison,
a numerical simulation of ref. [4] yields γ = .410 . . . .
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Chapter 21

Trace formulas

The trace formula is not a formula, it is an idea.
—Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages re-
quire global information. How can we use a local description of a flow
to learn something about the global behavior? In chapter 20 we have re-

lated global averages to the eigenvalues of appropriate evolution operators. Here
we show that the traces of evolution operators can be evaluated as integrals over
Dirac delta functions, and in this way the spectra of evolution operators become
related to periodic orbits. If there is one idea that one should learn about chaotic
dynamics, it happens in this chapter, and it is this: there is a fundamental local↔
global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will now derive.
These objects are to dynamics what partition functions are to statistical mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again
through the quick sketch of sects. 1.5 and 1.6. We have a state space that we
would like to tessellate by periodic orbits, one short orbit per neighborhood, as in
figure 21.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit get closer with time, so
we only have to keep track of those who are moving away along the unstable di-
rections. The fraction of those who remain in the neighborhood for one recurrence
time Tp is given by the overlap ratio along the initial sphere and the returning el-
lipsoid, figure 21.1 (b), and along the expanding eigen-direction e(i) of Jp(x) this

395
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Figure 21.1: (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian matrix Jp

maps spherical neighborhood of x0 → ellipsoidal
neighborhood time Tp later, with the overlap ratio
along the expanding eigdirection e(i) of Jp(x) given
by the expanding eigenvalue 1/|Λp,i|.

(a) (b)

J

+   x δ

δp

x0

0x +      x

is given by the expanding Floquet multiplier 1/|Λp,i|. A bit more thinking leads
to the conclusion that one also cares about how long it takes to return (the long
returns contributing less to the time averages), so the weight tp of the p-neigh-
borhood tp = e−sTp/|Λp| decreases exponentially both with the shortest recurrence
period and the product (5.7) of expanding Floquet multipliers Λp =

∏
e Λp,e .With

emphasis on expanding - the flow could be a 60,000-dimensional dissipative flow,
and still the neighborhood is defined by the handful of expanding eigen-directions.
Now the long-time average of a physical observable -let us say power D dissipated
by viscous friction of a fluid flowing through a pipe- can be estimated by its mean
value (20.5) Dp/Tp computed on each neighborhood, and weighted by the above
estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many a Phys. Rev. Letter, and in its
essence the key result of this chapter, the ‘trace formula.’ Here we redo the argu-
ment in a bit greater depth, and derive the correct formula (23.23) for a long time
average 〈D〉 as a weighted sum over periodic orbits. It will take three chapters,
but it is worth it - the reward is an exact (i.e., not heuristic) and highly convergent
and controllable formula for computing averages over chaotic flows.

21.1 A trace formula for maps

Our extraction of the spectrum of L commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simpler, we first derive the
trace formula for maps, and then, in sect. 21.2, for flows. The final formula (21.19)
covers both cases.

To compute an expectation value using (20.12) we have to integrate over all
the values of the kernel Ln(x, y). Were Ln a matrix sum over its matrix elements
would be dominated by the leading eigenvalue as n → ∞ (we went through the
argument in some detail in sect. 18.1). As the trace of Ln is also dominated by the
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leading eigenvalue as n→ ∞, we might just as well look at the trace for which we
have a very explicit formula

exercise 18.3

trLn =

∫
dxLn(x, x) =

∫
dx δ

(
x − f n(x)

)
eβA(x,n) . (21.1)

On the other hand, by its matrix motivated definition, the trace is the sum over
eigenvalues (20.18),

trLn =

∞∑
α=0

esαn . (21.2)

We find it convenient to write the eigenvalues as exponents esα rather than as mul-
tipliers λα, and we assume that spectrum of L is discrete, s0, s1, s2, · · · , ordered
so that Re sα ≥ Re sα+1.

For the time being we choose not to worry about convergence of such sums,
ignore the question of what function space the eigenfunctions belong to, and com-
pute the eigenvalue spectrum without constructing any explicit eigenfunctions.
We shall revisit these issues in more depth in chapter 28, and discuss how lack of
hyperbolicity leads to continuous spectra in chapter 29.

21.1.1 Hyperbolicity assumption

We have learned in sect. 19.2 how to evaluate the delta-function integral (21.1).
section 19.2

According to (19.8) the trace (21.1) picks up a contribution whenever x −
f n(x) = 0, i.e., whenever x belongs to a periodic orbit. For reasons which we
will explain in sect. 21.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cycle p of period np for a map f can be
evaluated by restricting the integration to an infinitesimal open neighborhoodMp

around the cycle,

tr pL
np =

∫
Mp

dx δ
(
x − f np(x)

)
=

np∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = np

d∏
i=1

1
|1 − Λp,i|

. (21.3)

For the time being we set here and in (19.9) the observable eβAp = 1. Periodic orbit
Jacobian matrix Mp is also known as the monodromy matrix, and its eigenvalues
Λp,1, Λp,2, . . . , Λp,d as the Floquet multipliers.

section 5.2.1

We sort the eigenvalues Λp,1, Λp,2, . . . , Λp,d of the p-cycle [d×d] monodromy
matrix Mp into expanding, marginal and contracting sets {e,m, c}, as in (5.6). As
the integral (21.3) can be evaluated only if Mp has no eigenvalue of unit magni-
tude, we assume that no eigenvalue is marginal (we shall show in sect. 21.2 that
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the longitudinal Λp,d+1 = 1 eigenvalue for flows can be eliminated by restricting
the consideration to the transverse monodromy matrix Mp), and factorize the trace
(21.3) into a product over the expanding and the contracting eigenvalues∣∣∣∣det

(
1 − Mp

)∣∣∣∣−1
=

1
|Λp|

∏
e

1
1 − 1/Λp,e

∏
c

1
1 − Λp,c

, (21.4)

where Λp =
∏

e Λp,e is the product of expanding eigenvalues. Both Λp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets | · · · |
in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λp,c| < 1 , (21.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearly does), the Lt spectrum
will be relatively easy to control. If the expansion/contraction is slower than ex-
ponential, let us say |Λp,i| ∼ Tp

2, the system may exhibit “phase transitions,” and
the analysis is much harder - we shall discuss this in chapter 29.

example 21.1

p. 405

It follows from (21.4) that for long times, t = rTp → ∞, only the product of
expanding eigenvalues matters,

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ → |Λp|
r. We shall use this fact to

motivate the construction of dynamical zeta functions in sect. 22.3. However, for
evaluation of the full spectrum the exact cycle weight (21.3) has to be kept.

21.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
Floquet multipliers |Λp,i| , 1 strictly bounded away from unity, the trace Ln is
given by the sum over all periodic points i of period n:

trLn =

∫
dxLn(x, x) =

∑
xi∈Fix f n

eβAi

|det (1 − Mn(xi))|
. (21.6)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of period n, and
Ai is the observable (20.4) evaluated over n discrete time steps along the cycle to
which the periodic point xi belongs. The weight follows from the properties of
the Dirac delta function (19.8) by taking the determinant of ∂i(x j − f n(x) j). If a
trajectory retraces itself r times, its monodromy matrix is Mr

p, where Mp is the
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[d×d] monodromy matrix (4.5) evaluated along a single traversal of the prime
cycle p. As we saw in (20.4), the integrated observable A is additive along the
cycle: If a prime cycle p trajectory retraces itself r times, n = rnp, we obtain Ap

repeated r times, Ai = A(xi, n) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four periodic points 0011 = 1001 = 1100 = 0110 belong to the

chapter 14
same prime cycle p = 0011 of length 4. As both the stability of a cycle and the
weight Ap are the same everywhere along the orbit, each prime cycle of length np

contributes np terms to the sum, one for each periodic point. Hence (21.6) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞∑
r=1

erβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣δn,npr , (21.7)

with the Kronecker delta δn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In both
cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,
∞∑

n=1

zntrLn = tr
zL

1 − zL
=

∑
p

np

∞∑
r=1

znprerβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (21.8)

the constraint δn,npr is replaced by weight zn . Such discrete time Laplace transform
of trLn is usually referred to as a ‘generating function’. Why this transform? We
are actually not interested in evaluating the sum (21.7) for any particular fixed pe-
riod n; what we are interested in is the long time n → ∞ behavior. The transform
trades in the large time n behavior for the small z behavior. Expressing the trace as
in (21.2), in terms of the sum of the eigenvalues of L, we obtain the trace formula
for maps:

∞∑
α=0

zesα

1 − zesα
=

∑
p

np

∞∑
r=1

znpr erβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (21.9)

This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (18.8).)

fast track:

sect. 21.2, p. 398

example 21.2

p. 405

21.2 A trace formula for flows

Amazing! I did not understand a single word.
—Fritz Haake
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(R. Artuso and P. Cvitanović)

Our extraction of the spectrum of Lt commences with the evaluation of the trace

trLt = tr eAt =

∫
dxLt(x, x) =

∫
dx δ

(
x − f t(x)

)
eβA(x,t) . (21.10)

We are not interested in any particular time t, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” into the
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (20.22). This is a delicate step, since the evolution operator
becomes the identity in the t → 0+ limit. In order to make sense of the trace we
regularize the Laplace transform by a lower cutoff ε smaller than the period of any
periodic orbit, and write∫ ∞

ε
dt e−st trLt = tr

e−(s−A)ε

s −A
=

∞∑
α=0

e−(s−sα)ε

s − sα
, (21.11)

whereA is the generator of the semigroup of dynamical evolution, see sect. 19.5.
Our task is to evaluate trLt from its explicit state space representation.

21.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows the

section 5.3.1
trace integral trLt requires a separate treatment for the longitudinal direction. To
evaluate the contribution of an isolated prime cycle p of period Tp, restrict the in-
tegration to an infinitesimally thin tubeMp enveloping the cycle (see figure 1.13),
and consider a local coordinate system with a longitudinal coordinate dx‖ along
the direction of the flow, and d−1 transverse coordinates x⊥ ,

tr pL
t =

∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t(x‖)

)
. (21.12)

(we set β = 0 in the exp(β · A) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =

 d∑
i=1

vi(x)2


1/2

(21.13)

be the magnitude of the tangential velocity at any point x = (x‖, 0, · · · , 0) on the
cycle p. The velocity v(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time at v(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectory x‖(τ) = f τ(xp) sweeps out the entire cycle, and
for larger times x‖ is a cyclic variable of periodicity Tp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (21.14)
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We parametrize both the longitudinal coordinate x‖(τ) and the velocity v(τ) =

v(x‖(τ)) by the flight time τ, and rewrite the integral along the periodic orbit as∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
=

∮
p

dτ v(τ) δ
(
x‖(τ) − x‖(τ + t

)
) . (21.15)

By the periodicity condition (21.14) the Dirac δ function picks up contributions
for t = rTp, so the Laplace transform can be split as

∫ ∞

0
dt e−st δ

(
x‖(τ) − x‖(τ + t)

)
=

∞∑
r=1

e−sTpr Ir

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) .

Taylor expanding and applying the periodicity condition (21.14), we have x‖(τ +

rTp + t) = x‖(τ) + v(τ)t + . . . ,

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) =

1
v(τ)

,

so the remaining integral (21.15) over τ is simply the cycle period
∮

p dτ = Tp.
The contribution of the longitudinal integral to the Laplace transform is thus∫ ∞

0
dt e−st

∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
= Tp

∞∑
r=1

e−sTpr . (21.16)

This integration is a prototype of what needs to be done for each marginal direc-
tion, whenever existence of a conserved quantity (energy in Hamiltonian flows,
angular momentum, translational invariance, etc.) implies existence of a smooth
manifold of equivalent (equivariant) solutions of dynamical equations.

21.2.2 Stability in the transverse directions

Think of the τ = 0 point in above integrals along the cycle p as a choice of a
particular Poincaré section. As we have shown in sect. 5.5, the transverse Floquet
multipliers do not depend on the choice of a Poincaré section, so ignoring the
dependence on x‖(τ) in evaluating the transverse integral in (21.12) is justified.
For the transverse integration variables the Jacobian matrix is defined in a reduced
Poincaré section P of fixed x‖. Linearization of the periodic flow transverse to the
orbit yields∫

P

dx⊥δ
(
x⊥ − f rTp

⊥ (x)
)

=
1∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ , (21.17)

where Mp is the p-cycle [d−1×d−1] transverse monodromy matrix. As in (21.5)
we have to assume hyperbolicity, i.e., that the magnitudes of all transverse eigen-
values are bounded away from unity.
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Substitution (21.16), (21.17) in (21.12) leads to an expression for trLt as a
sum over all prime cycles p and their repetitions∫ ∞

ε
dt e−st trLt =

∑
p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (21.18)

The ε → 0 limit of the two expressions for the resolvent, (21.11) and (21.18), now
yields the classical trace formula for flows

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (21.19)

(If you are worried about the convergence of the resolvent sum, keep the ε regu-
exercise 21.1

larization.)

This formula is still another example of the duality between the (local) cycles
and (global) eigenvalues. If Tp takes only integer values, we can replace e−s → z
throughout, so the trace formula for maps (21.9) is a special case of the trace
formula for flows. The relation between the continuous and discrete time cases
can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (21.20)

The beauty of trace formulas is that they are coordinate independent: the∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = |det (1 − MTp(x))| and eβAp = eβA(x,Tp) contributions to the cy-
cle weight tp are both independent of the starting periodic point x ∈ Mp. For the
Jacobian matrix Mp this follows from the chain rule for derivatives, and for eβAp

from the fact that the integral over eβA(x,t) is evaluated along a closed loop. In
addition, as we have shown in sect. 5.3,

∣∣∣∣det
(
1 − Mp

)∣∣∣∣ is invariant under smooth
coordinate transformations.

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (21.19) by methods
such as Padé approximants. However, it pays to first perform a simple resumma-
tion which converts this divergence of a trace into a zero of a spectral determinant.
We shall do this in sect. 22.2, but first a brief refresher of how all this relates to
the formula for escape rate (1.8) offered in the introduction might help digest the
material.

fast track:

sect. 22, p. 408
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21.3 An asymptotic trace formula

In order to illuminate the manipulations of sect. 21.1 and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect. 1.5.1 from the exact trace formula (21.9). The Laplace transforms (21.9)
or (21.19) are designed to capture the time→ ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (21.5), for t = Tpr large the cycle weight
approaches∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣→ |Λp|
r , (21.21)

where Λp is the product of the expanding eigenvalues of Mp. Denote the corre-
sponding approximation to the nth trace (21.6) by

Γn =

(n)∑
i

1
|Λi|

, (21.22)

and denote the approximate trace formula obtained by replacing the cycle weights∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ by |Λp|
r in (21.9) by Γ(z). Equivalently, think of this as a replace-

ment of the evolution operator (20.14) by a transfer operator (as in example 21.2).
For concreteness consider a dynamical system whose symbolic dynamics is com-
plete binary, for example the 3-disk system figure 1.6. In this case distinct periodic
points that contribute to the nth periodic points sum (21.7) are labeled by all ad-
missible itineraries composed of sequences of letters si ∈ {0, 1}:

Γ(z) =

∞∑
n=1

znΓn =

∞∑
n=1

zn
∑

xi∈Fix f n

eβA(xi,n)

|Λi|

= z
{

eβA0

|Λ0|
+

eβA1

|Λ1|

}
+ z2

{
e2βA0

|Λ0|2
+

eβA01

|Λ01|
+

eβA10

|Λ10|
+

e2βA1

|Λ1|2

}
+z3

{
e3βA0

|Λ0|3
+

eβA001

|Λ001|
+

eβA010

|Λ010|
+

eβA100

|Λ100|
+ . . .

}
(21.23)

Both the cycle averages Ai and the stabilities Λi are the same for all points xi ∈ Mp

in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1 − tp
, tp = znpeβAp/|Λp| . (21.24)

This is precisely our initial heuristic estimate (1.9). Note that we could not per-
form such sum over r in the exact trace formula (21.9) as

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , ∣∣∣∣det
(
1 − Mp

)∣∣∣∣r;
the correct way to resum the exact trace formulas is to first expand the factors
1/|1 − Λp,i|, as we shall do in (22.8).

section 22.2

If the weights eβA(x,n) are multiplicative along the flow, and the flow is hyper-
bolic, for given β the magnitude of each |eβA(xi,n)/Λi| term is bounded by some
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constant Mn. The total number of cycles grows as 2n (or as ehn, h = topological
entropy, in general), and the sum is convergent for z sufficiently small, |z| < 1/2M.
For large n the nth level sum (21.6) tends to the leading Ln eigenvalue ens0 . Sum-
ming this asymptotic estimate level by level

Γ(z) ≈
∞∑

n=1

(zes0)n
=

zes0

1 − zes0
(21.25)

we see that we should be able to determine s0 by determining the smallest value
of z = e−s0 for which the cycle expansion (21.24) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to consider
the approximate trace Γ(z). We will use this fact in sect. 22.3 to motivate the
introduction of dynamical zeta functions (22.10), and in sect. 22.5 we shall give
the exact relation between the exact and the approximate trace formulas.

Résumé

The description of a chaotic dynamical system in terms of cycles can be visual-
ized as a tessellation of the dynamical system, figure 21.1, with a smooth flow
approximated by its periodic orbit skeleton, each region Mi centered on a peri-
odic point xi of the topological length n, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over such
topologically partitioned state space yields the classical trace formula

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ .
Now that we have a trace formula, one might ask: what is it good for? As it
stands, it is a scary divergent formula which relates the unspeakable infinity of
global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants (to
which we turn next), and a first hint that when the going is good, the theory might
turn out to be convergent beyond our wildest dreams (chapter 28). In order to
implement such formulas, we will have to determine “all” prime cycles. The first
step is topological: enumeration of all admissible cycles undertaken in chapter 15.
The more onerous enterprize of actually computing the cycles we first approach
traditionally, as a numerical task in chapter 16, and then more boldly as a part and
parcel of variational foundations of classical and quantum dynamics in chapter 34.

Commentary

Remark 21.1. Who’s dunne it? Continuous time flow traces weighted by cycle
periods were introduced by Bowen [4] who treated them as Poincaré section suspensions
weighted by the “time ceiling” function (3.7). They were used by Parry and Pollicott [7].
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Remark 21.2. Flat and sharp traces. In the above formal derivation of trace for-
mulas we cared very little whether our sums were well posed. In the Fredholm theory
traces like (21.10) require compact operators with continuous function kernels. This is
not the case for our Dirac delta evolution operators: nevertheless, there is a large class
of dynamical systems for which our results may be shown to be perfectly legal. In the
mathematical literature expressions like (21.6) are called flat traces (see the Baladi-Ruelle
review [3] and chapter 28). Other names for traces appear as well: for instance, in the
context of 1-dimensional mappings, sharp traces refer to generalizations of (21.6) where
contributions of periodic points are weighted by the Lefschetz sign ±1, reflecting whether
the periodic point sits on a branch of nth iterate of the map which crosses the diagonal
starting from below or starting from above [6]. Such traces are connected to the theory
of kneading invariants (see ref. [3] and references therein). Traces weighted by ±1 sign
of the derivative of the fixed point have been used to study the period doubling repeller,
leading to high precision estimates of the Feigenbaum constant δ, refs. [1, 2, 5, 8].
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Applications”, Nonlinearity 3, 361–386 (1990).

[3] V. Baladi and D. Ruelle, “An extension of the theorem of Milnor and
Thurston on the zeta functions of interval maps”, Ergod. Theor. Dynam.
Syst. 14, 621–632 (1994).

[4] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeo-
morphisms (Springer, New York, 1975).
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21.4 Examples

Example 21.1. Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary
exponents Λm = e±iθ is excluded by the hyperbolicity assumption. While the contribution
of a single repeat of a cycle

1
(1 − eiθ)(1 − e−iθ)

=
1

2(1 − cos θ)
(21.26)

does not make (19.9) diverge, if Λm = ei2πp/r is rth root of unity, 1/
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ diverges.
For a generic θ repeats cos(rθ) behave badly and by ergodicity 1 − cos(rθ) is arbitrarily
small, 1− cos(rθ) < ε, infinitely often. This goes by the name of “small divisor problem,”
and requires a separate treatment.

click to return: p. 397

Example 21.2. A trace formula for transfer operators: For a piecewise-linear map
(19.37), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Λp = Λ

n0
0 Λ

n1
1 , where the cycle p contains n0 symbols 0 and n1 symbols 1. The

trace sum is the sum over all periodic points, corresponding to all possible strings of ‘0’s
and ‘1’s of length n. The number of strings with n0 = m ‘0’s and n1 = n − n0 ‘1’s is given
by the usual combinatorial formula. As they all have the same weight |1−Λm

0 Λn−m
1 |−1, the

trace (21.6) takes the binomial sum form

trLn =

n∑
m=0

(
n
m

)
1

|1 − Λm
0 Λn−m

1 |
.

Now expand the weights in Taylor series

trLn =

n∑
m=0

(
n
m

)
1
|Λ0|

m

1
|Λ1|

n−m

1
1 − Λ0

−mΛ1
−n+m

=

∞∑
k=0

n∑
m=0

(
n
m

)
1

|Λ0|
mΛ0

km

1
|Λ1|

n−mΛ1
k(n−m) .

By the binomial theorem for (a+b)n, for this piecewise-linear map, the trace (21.6) reduces
to

trLn =

∞∑
k=0

 1
|Λ0|Λ

k
0

+
1

|Λ1|Λ
k
1

n

, (21.27)

with eigenvalues

esk =
1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1

. (21.28)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (19.37) for which Λ = Λ1 = −Λ0. In this case all odd
eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.

exercise 19.7

Asymptotically the spectrum (21.28) is dominated by the lesser of the two fixed point
slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off expo-
nentially as 1/Λk, dominated by the single less unstable fixed-point.

example 28.1

trace - 26mar2015 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 21. TRACE FORMULAS 407

For k = 0 this is in agreement with the explicit transfer matrix (19.39) eigenvalues
(20.31). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (19.39), and that it is clear by
inspection that it has only one eigenvalue es0 = 1/|Λ0| + 1/|Λ1|? The example at hand is
one of the simplest illustrations of necessity of defining the space that the operator acts on
in order to define the spectrum. The transfer operator (19.39) is the correct operator on
the space of functions piecewise constant on the state space partition {M0,M1}; on this
space the operator indeed has only the eigenvalue es0 . As we shall see in example 28.1,
the full spectrum (21.28) corresponds to the action of the transfer operator on the space
of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (19.37)
follows from (21.8)

tr
zL

1 − zL
=

z
(

1
|Λ0−1| +

1
|Λ1−1|

)
1 − z

(
1

|Λ0−1| +
1

|Λ1−1|

) , (21.29)

verifying the trace formula (21.9).
click to return: p. 398
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Exercises

21.1. t → 0+ regularization of eigenvalue sums.

In taking the Laplace transform (21.19) we have
ignored the t → 0+ divergence, as we do not know how
to regularize the delta function kernel in this limit. In
the quantum (or heat kernel) case this limit gives rise
to the Weyl or Thomas-Fermi mean eigenvalue spac-
ing.Regularize the divergent sum in (21.19) and assign
to such volume term some interesting role in the theory
of classical resonance spectra. E-mail the solution to the

authors.

21.2. Classical trace formula for flows. Verify (or
improve) the steps in the derivation of the continuous
time trace formula

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (21.30)
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Chapter 22

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

The problemwith the trace formulas (21.9), (21.19) and (21.24) is that they di-
verge at z = e−s0 , respectively s = s0, i.e., precisely where one would like to
use them. While this does not prevent numerical estimation of some “ther-

modynamic" averages for iterated mappings, in the case of the Gutzwiller trace
formula this leads to a perplexing observation that crude estimates of the radius of
convergence seem to put the entire physical spectrum out of reach. We shall now
cure this problem by thinking, at no extra computational cost; while traces and
determinants are formally equivalent, determinants are the tool of choice when it
comes to computing spectra. Determinants tend to have larger analyticity domains

chapter 28
because if trL/(1 − zL) = − d

dz ln det (1 − zL) diverges at a particular value of z,
then det (1 − zL) might have an isolated zero there, and a zero of a function is
easier to determine numerically than its poles.

22.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the determinant

det (1 − zL) =
∏

k

(1 − z/zk) . (22.1)

For finite matrices this is the characteristic determinant; for operators this is the
Hadamard representation of the spectral determinant (sparing the reader from
pondering possible regularization factors). Consider first the case of maps, for

409
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which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity

exercise 4.1

ln det (1 − M) = tr ln(1 − M) = −

∞∑
n=1

1
n

tr Mn , (22.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(21.7), and hence to periodic orbits:

det (1 − zL) = exp

− ∞∑
n

zn

n
trLn


= exp

−∑
p

∞∑
r=1

1
r

znprerβAp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 . (22.3)

Going the other way, the trace formula (21.9) can be recovered from the spec-
tral determinant by taking a derivative

tr
zL

1 − zL
= −z

d
dz

ln det (1 − zL) . (22.4)

example 22.1

p. 419

22.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction. [· · · ] define l(γ)
to be the minimal period of γ [· · · ] then define formally
(another zeta function!) Z(s) to be the infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1 −

[
exp l(γ)

]−s−k
)
.

—Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy to
(22.3)

det (s −A) = exp

−∑
p

∞∑
r=1

1
r

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 , (22.5)

and then check that the trace formula (21.19) is the logarithmic derivative of the
spectral determinant

tr
1

s −A
=

d
ds

ln det (s −A) . (22.6)

det - 2sep2018 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 22. SPECTRAL DETERMINANTS 411

With z set to z = e−s as in (21.20), the spectral determinant (22.5) has the same
form for both maps and flows. We refer to (22.5) as spectral determinant, as the
spectrum of the operatorA is given by the zeros of

det (s −A) = 0 . (22.7)

We now note that the r sum in (22.5) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into an
infinite product over periodic orbits as follows:

Let Mp be the p-cycle [d×d] transverse Jacobian matrix, with eigenvalues
Λp,1, Λp,2, . . . , Λp,d. Expanding the expanding eigenvalue factors 1/(1 − 1/Λp,e)
and the contracting eigenvalue factors 1/(1 − Λp,c) in (21.4) as geometric series,
substituting back into (22.5), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product

det (s −A) =

∞∏
k1=0

· · ·

∞∏
lc=0

1
ζk1···lc

1/ζk1···lc =
∏

p

1 − tp

Λ
l1
p,e+1Λ

l2
p,e+2 · · ·Λ

lc
p,d

Λ
k1
p,1Λ

k2
p,2 · · ·Λ

ke
p,e

 (22.8)

tp = tp(z, s, β) =
1
|Λp|

eβAp−sTpznp . (22.9)

In such formulas tp is a weight associated with the p cycle (letter t refers to the
“local trace” evaluated along the p cycle trajectory), and the index p runs through
all distinct prime cycles. Why the factor znp? It is associated with the trace for-
mula (21.9) for maps, whereas the factor e−sTp is specific to the continuous time
trace formuls (21.19); according to (21.20) we should use either one or the other.
But we have learned in sect. 3.1 that flows can be represented either by their
continuous-time trajectories, or by their topological time Poincaré section return
maps. In cases when we have good control over the topology of the flow, it is
often convenient to insert the znp factor into cycle weights, as a formal parame-
ter which keeps track of the topological cycle lengths. These factors will assist

chapter 23
us in expanding zeta functions and determinants, eventually we shall set z = 1.
The subscripts e, c indicate that there are e expanding eigenvalues, and c contract-
ing eigenvalues. The observable whose average we wish to compute contributes
through the A(x, t) term in the p cycle multiplicative weight eβAp . By its definition
(20.1), the weight for maps is a product along the periodic points

eAp =

np−1∏
j=0

ea( f j(xp)) ,

and the weight for flows is an exponential of the integral (20.4) along the cycle

eAp = exp
(∫ Tp

0
a(x(τ))dτ

)
.
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This formula is correct for scalar weighting functions; more general matrix valued
weights require a time-ordering prescription as in the Jacobian matrix of sect. 4.1.

example 22.2

p. 419

example 22.3

p. 419

Now we are finally poised to deal with the problem posed at the beginning of
chapter 21; how do we actually evaluate the averages introduced in sect. 20.1? The
eigenvalues of the dynamical averaging evolution operator are given by the values
of s for which the spectral determinant (22.5) of the evolution operator (20.14)
vanishes. If we can compute the leading eigenvalue s0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (22.8) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter 23, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

22.3 Dynamical zeta functions

It follows from sect. 21.1.1 that if one is interested only in the leading eigenvalue
of Lt, the size of the p cycle neighborhood can be approximated by 1/|Λp|

r, the
dominant term in the rTp = t → ∞ limit, where Λp =

∏
e Λp,e is the product of

the expanding eigenvalues of the Jacobian matrix Mp. With this replacement the
spectral determinant (22.5) is replaced by the dynamical zeta function

1/ζ = exp

−∑
p

∞∑
r=1

1
r

tr
p

 (22.10)

that we have already derived heuristically in sect. 1.5.2. Resumming the loga-
rithms using

∑
r tr

p/r = − ln(1 − tp) we obtain the Euler product representation of
the dynamical zeta function:

1/ζ =
∏

p

(
1 − tp

)
. (22.11)

In order to simplify the notation, we usually omit the explicit dependence of 1/ζ,
tp on z, s, β whenever the dependence is clear from the context.

The approximate trace formula (21.24) plays the same role vis-à-vis the dyn-
amical zeta function (22.6)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1 − tp
, (22.12)

as the exact trace formula (21.19) plays vis-à-vis the spectral determinant (22.5).
The heuristically derived dynamical zeta function of sect. 1.5.2 now re-emerges
as the 1/ζ0···0(z) part of the exact spectral determinant; other factors in the infinite
product (22.8) affect the non-leading eigenvalues of L.
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In summary, the dynamical zeta function (22.11) associated with the flow f t(x)
is defined as the product over all prime cycles p. The quantities, Tp, np and
Λp, denote the period, topological length and product of the expanding Floquet
multipliers of prime cycle p, Ap is the integrated observable a(x) evaluated on a
single traversal of cycle p (see (20.4)), s is a variable dual to the time t, z is dual
to the discrete “topological” time n, and tp(z, s, β) denotes the local trace over the
cycle p. We have included the factor znp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because the term

1/ζ(s) = 0 (22.13)

when s = s0, Here s0 is the leading eigenvalue of Lt = etA, which is often all
that is necessary for application of this equation. The above argument completes
our derivation of the trace and determinant formulas for classical chaotic flows.
In chapters that follow we shall make these formulas tangible by working out a
series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 23, p. 423

22.4 False zeros

Compare (A22.9) with the Euler product (22.11). For simplicity consider two
equal scales, |Λ0| = |Λ1| = eλ. Our task is to determine the leading zero z = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
(22.11) vanishes whenever one of its factors vanishes. If that were true, each factor
(1 − znp/|Λp|) would yield

0 = 1 − enp(γ−λp), (22.14)

so the escape rate γ would equal the Floquet exponent of a unstable cycle, one
eigenvalue γ = γp for each prime cycle p. This is false! The exponentially
growing number of cycles with growing period conspires to shift the zeros of the
infinite product. The correct formula follows from (A22.9)

0 = 1 − eγ−λ+h , h = ln 2. (22.15)

This particular formula for the escape rate is a special case of a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. Physically this means that the escape induced by the repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling regions, i.e., the entropy h; the positive entropy of orbits shifts the “false
zeros" z = eλp of the Euler product (22.11) to the true zero z = eλ−h.

det - 2sep2018 ChaosBook.org edition16.4.8, May 25 2020
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Figure 22.1: A game of pinball consisting of two disks
of equal size in a plane, with its only periodic orbit (A.
Wirzba).

R
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Figure 22.2: The classical resonances α = {k, n}
(22.17) for a 2-disk game of pinball.
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22.5 Spectral determinants vs. dynamical zeta functions

In sect. 22.3 we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to spectral deter-
minants exactly, by showing that a dynamical zeta function can be expressed as a
ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1 − M)

d∑
k=0

(−1)ktr
(
∧kM

)
, (22.16)

inserted into the exponential representation (22.10) of the dynamical zeta func-
tion, relates the dynamical zeta function to weighted spectral determinants.

example 22.4

p. 420

example 22.5

p. 420

example 22.6

p. 420

22.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determinant
(22.23) tell us? Consider one of the simplest conceivable hyperbolic flows: the
game of pinball of figure 22.1 consisting of two disks of equal size in a plane.
There is only one periodic orbit, with the period T and expanding eigenvalue
Λ given by elementary considerations (see exercise 16.6), and the resonances
det (sα −A) = 0, α = {k, n} plotted in figure 22.2:

sα = −(k + 1)λ + n
2πi
T

, n ∈ Z , k ∈ Z+ , multiplicity k + 1, (22.17)

can be read off the spectral determinant (22.23) for a single unstable cycle:

det (s −A) =

∞∏
k=0

(
1 − e−sT/|Λ|Λk

)k+1
. (22.18)
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In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalue sα gives the decay rate of αth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay rate in this simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Re sα are not a problem, but
as there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary - we can check this by
explicit computation of the right hand side of (21.19), the trace formula for flows:

∞∑
α=0

esαt =

∞∑
k=0

∞∑
n=−∞

(k + 1)e−(k+1)λt+i2πnt/T

=

∞∑
k=0

(k + 1)
(

1
|Λ|Λk

)t/T ∞∑
n=−∞

ei2πnt/T =

∞∑
k=0

k + 1
|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T
∞∑

r=−∞

δ(t − rT)
|Λ|r(1 − 1/Λr)2 . (22.19)

Hence, the two sides of the trace formula (21.19) are verified. The formula is fine
for t > 0; for t → 0+, however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work with the variable z = es, so an infinite strip along Im s maps into an annulus
in the complex z plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (21.7). In the case at hand there is only one time scale
T , and we could just as well replace s by the variable z = e−sT . In general, a
continuous time flow has an infinity of irrationally related cycle periods, and the
resonance arrays are more irregular, cf. figure 23.1.

in depth:

appendix A22, p. 962

Résumé

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det = tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either the spectral determinant

det (s −A) = exp

−∑
p

∞∑
r=1

1
r

e(βAp−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 ,
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or the leading zeros of the dynamical zeta function

1/ζ =
∏

p

(
1 − tp

)
, tp =

1
|Λp|

eβAp−sTp .

The spectral determinant is the tool of choice in actual calculations, as it has
superior convergence properties (this will be discussed in chapter 28 and is il-
lustrated, for example, by table 23.2). In practice both spectral determinants and
dynamical zeta functions are preferable to trace formulas because they yield the
eigenvalues more readily; the main difference is that while a trace diverges at an
eigenvalue and requires extrapolation methods, determinants vanish at s corre-
sponding to an eigenvalue sα, and are analytic in s in an open neighborhood of
sα.

The critical step in the derivation of the periodic orbit formulas for spectral
determinants and dynamical zeta functions is the hyperbolicity assumption (21.5)
that no cycle stability eigenvalue is marginal, |Λp,i| , 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recovering the precise distri-
bution of the initial x (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gain an effective de-
scription of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter 23) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.

Commentary

Remark 22.1. Piecewise monotone maps. A partial list of cases for which the
transfer operator is well defined: the expanding Hölder case, weighted subshifts of finite
type, expanding differentiable case, see Bowen [6]: expanding holomorphic case, see
Ruelle [15]; piecewise monotone maps of the interval, see Hofbauer and Keller [10] and
Baladi and Keller [4].

Remark 22.2. Smale’s wild idea. Smale’s wild idea quoted on page 409 was tech-
nically wrong because 1) the Selberg zeta function yields the spectrum of a quantum
mechanical Laplacian rather than the classical resonances, 2) the spectral determinant
weights are different from what Smale conjectured, as the individual cycle weights also
depend on the stability of the cycle, 3) the formula is not dimensionally correct, as k is an
integer and s represents inverse time. Only for spaces of constant negative curvature do all
cycles have the same Lyapunov exponent λ = ln |Λp|/Tp. In this case, one can normalize
time so that λ = 1, and the factors e−sTp/Λk

p in (22.8) simplify to s−(s+k)Tp , as intuited in
Smale’s quote on page 409 (where l(γ) is the cycle period,Nevertheless, Smale’s intuition
was remarkably on the target.

Remark 22.3. Is this a generalization of the Fourier analysis? Fourier analysis
is a theory of the space ↔ eigenfunction duality for dynamics on a circle. The way in
which periodic orbit theory generalizes Fourier analysis to nonlinear flows is discussed in
ref. [13], a very readable introduction to the Selberg Zeta function.

det - 2sep2018 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 22. SPECTRAL DETERMINANTS 417

Remark 22.4. Zeta functions, antecedents. For a function to be deserving of appel-
lation “zeta,” one expects it to have an Euler product representation (22.11), and perhaps
also satisfy a functional equation. Various kinds of zeta functions are reviewed in refs. [11,
12, 25]. Historical antecedents of the dynamical zeta function are the fixed-point counting
functions introduced by Weil [26], Lefschetz [8] and Artin and Mazur [1], and the deter-
minants of transfer operators of statistical mechanics [21]. In his review article Smale [22]
already intuited, by analogy to the Selberg Zeta function, that the spectral determinant is
the right generalization for continuous time flows. Ruelle [17] discusses various guises
of the dynamical zeta functions, Sharp [19] offers a comprehensive survey of periodic or-
bits of hyperbolic flows, and Baladi [2] is currently the most in-depth monograph on the
subject.

In dynamical systems theory, dynamical zeta functions arise naturally only for piece-
wise linear mappings; for smooth flows the natural object for the study of classical and
quantal spectra are the spectral determinants. Ruelle derived the relation (22.3) between
spectral determinants and dynamical zeta functions, but since he was motivated by the
Artin-Mazur zeta function (18.17) and the statistical mechanics analogy, he did not con-
sider the spectral determinant to be a more natural object than the dynamical zeta function.
This has been put right in papers on “flat traces” [3, 5].

The nomenclature has not settled down yet; what we call evolution operators here
is elsewhere called transfer operators [18], Perron-Frobenius operators [7, 14, 24] and/or
Ruelle-Araki operators. Here we refer to kernels such as (20.14) as evolution operators.
We follow Ruelle in usage of the term “dynamical zeta function,” but elsewhere in the
literature function (22.11) may be called the Ruelle, Artin-Mazur-Ruelle, or Smale-Ruelle
zeta function. Ruelle [16] points out that the corresponding transfer operator T was never
considered by either Perron or Frobenius; a more appropriate designation would be the
Ruelle-Araki operator. Determinants similar to or identical with our spectral determin-
ants are sometimes called Selberg Zetas, Selberg-Smale zetas [9] (Gaspard [9] credits
Smale [23] - but why, dynamical spectral determinant was not derived by either Selberg
or Smale? and we cannot find any other zeta for the flows but the “wild” one quoted
on page 409), functional determinants, Fredholm determinants, or even - to maximize
confusion - dynamical zeta functions [20]. A Fredholm determinant is a notion that

appendix A40.3
applies only to trace class operators - as we consider here a somewhat wider class of
operators, we prefer to refer to their determinants loosely as “spectral determinants.”
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22.7 Examples

Example 22.1. Spectral determinants of transfer operators:

For a piecewise-linear map (19.37) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (21.27) into
(22.3):

det (1 − zL) =

∞∏
k=0

1 − t0
Λk

0

−
t1
Λk

1

 , (22.20)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (21.28), which we
already determined from the trace formula (21.9).

The exponential spacing of eigenvalues guarantees that the spectral determinant (22.20)
is an entire function. It is this property that generalizes to piecewise smooth flows with
finite Markov partitions, and singles out spectral determinants rather than the trace for-
mulas or dynamical zeta functions as the tool of choice for evaluation of spectra.

click to return: p. 409

Example 22.2. Expanding 1-dimensional map: For expanding 1-dimension-
al mappings the spectral determinant (22.8) takes the form

det (1 − zL) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (22.21)

click to return: p. 411

Example 22.3. Two-degrees of freedom Hamiltonian flows: For a 2-degrees of free-
dom Hamiltonian flow the energy conservation eliminates one phase-space variable, and
restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue Λ = 1,
so a periodic orbit of 2-degrees of freedom hyperbolic Hamiltonian flow (or of a 1-degree
of freedom hyperbolic Hamiltonian map) has one expanding transverse eigenvalue Λ,
|Λ| > 1, and one contracting transverse eigenvalue 1/Λ. The weight in (21.4) is expanded
as follows:

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1

|Λ|r(1 − 1/Λr
p)2 =

1
|Λ|r

∞∑
k=0

k + 1
Λkr

p
. (22.22)

The spectral determinant exponent can be resummed,

−

∞∑
r=1

1
r

e(βAp−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =

∞∑
k=0

(k + 1) log
1 − eβAp−sTp

|Λp|Λ
k
p

 ,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s −A) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)k+1
. (22.23)

exercise 28.4
click to return: p. 411
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Example 22.4. Dynamical zeta function in terms of determinants, 1-dimensional
maps: For 1-dimensional maps the identity

1 =
1

(1 − 1/Λ)
−

1
Λ

1
(1 − 1/Λ)

substituted into (22.10) yields an expression for the dynamical zeta function for 1-dimen-
sional maps as a ratio of two spectral determinants

1/ζ =
det (1 − zL)

det (1 − zL(1))
(22.24)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 28, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with
poles given by the zeros of det (1 − zL(1)). The dynamical zeta function and the spec-
tral determinant have the same zeros, although in exceptional circumstances some zeros
of det (1 − zL(1)) might be cancelled by coincident zeros of det (1 − zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 22.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

click to return: p. 413

Example 22.5. Dynamical zeta function in terms of determinants, 2-dimensional
Hamiltonian maps: For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ|

=
1

|Λ|(1 − 1/Λ)2 (1 − 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1 − zL) det (1 − zL(2))

det (1 − zL(1))
. (22.25)

This establishes that for nice 2-dimensional hyperbolic flows the dynamical zeta function
is meromorphic.

click to return: p. 413

Example 22.6. Dynamical zeta functions for 2-dimensional Hamiltonian flows: The
relation (22.25) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1 − 1/Λ)2 −
2
Λ

1
(1 − 1/Λ)2 +

1
Λ2

1
(1 − 1/Λ)2

into the exponential representation (22.10) of 1/ζk, and obtain

1/ζk =
det (1 − zL(k))det (1 − zL(k+2))

det (1 − zL(k+1))2 . (22.26)

Even though we have no guarantee that det (1 − zL(k)) are entire, we do know that the
upper bound on the leading zeros of det (1 − zL(k+1)) lies strictly below the leading zeros
of det (1 − zL(k)), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/ζk generically has a double leading pole coinciding with the
leading zero of the det (1 − zL(k+1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (22.23) is entire, and also implies that the poles
in 1/ζk must have the right multiplicities to cancel in the det (1− zL) =

∏
1/ζk+1

k product.

click to return: p. 413
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Exercises

22.1. Spectrum of the “golden mean” pruned map.
(medium - exercise 18.7 continued)

(a) Determine an expression for trLn, the trace of
powers of the Perron-Frobenius operator (19.10)
acting on the space of real analytic functions for
the tent map of exercise 18.7.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1 − zL) = (22.27)∏
k even

(
1 −

z
Λk+1 −

z2

Λ2k+2

)
×

∏
k odd

(
1 +

z
Λk+1 +

z2

Λ2k+2

)
.

22.2. Dynamical zeta functions from transition graphs.
Extend sect. 18.3 to evaluation of dynamical zeta func-
tions for piecewise linear maps with finite transition
graphs. This generalizes the results of exercise A22.3.

22.3. Zeros of infinite products. Determination of the
quantities of interest by periodic orbits involves work-
ing with infinite product formulas.

(a) Consider the infinite product

F(z) =

∞∏
k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the function F, show that the infi-
nite product diverges when evaluated at z∗.

(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition of F(z) to the infinite
product

F(z) =
∏

p

(1 −
znp

Λnp
)

(e) Are the roots of the factors in the above product
the zeros of F(z)?

(Per Rosenqvist)

22.4. Dynamical zeta functions as ratios of spectral deter-
minants. (medium) Show that the zeta function

1/ζ(z) = exp

−∑
p

∑
r=1

1
r

znp

|Λp|
r


can be written as the ratio

1/ζ(z) = det (1 − zL(0))/det (1 − zL(1)) ,

where det (1 − zL(s)) =
∏

p
∏∞

k=0(1 − znp/|Λp|Λ
k+s
p ).

22.5. Dynamical zeta function for maps. In this prob-
lem we will compare the dynamical zeta function and
the spectral determinant. Compute the exact dynamical
zeta function for the skew full tent map (19.43)

1/ζ(z) =
∏
p∈P

(
1 −

znp

|Λp|

)
.

What are its roots? Do they agree with those computed
in exercise 19.7?

22.6. Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

−∑
p

∞∑
r=1

1
r

tr
p


for a 2-dimensional Hamiltonian map. Using the equal-
ity

1 =
1

(1 − 1/Λ)2 (1 − 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1 − L) det (1 − L(2))/det (1 − L(1))2 .

In this expression det (1−zL(k)) is the expansion one gets
by replacing tp → tp/Λ

k
p in the spectral determinant.

22.7. Riemann ζ function. The Riemann ζ function is
defined as the sum

ζ(s) =

∞∑
n=1

1
ns , s ∈ C .
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(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1 − p−s .

The dynamical zeta function exercise 22.11 is
called a “zeta” function because it shares the form
of the Euler product representation with the Rie-
mann zeta function.

(b) (Not trivial:) For which complex values of s is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product, s =

− ln p, also the zeros of the Riemann ζ function?
If not, why not?

22.8. Finite truncations. (easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple

multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ3
0Λ2

1.

(a) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (19.39), with the right weights.

(b) Compute the finite p truncations of the cycle ex-
pansion, i.e. take the product only over the p up to
given length with np ≤ N, and expand as a series
in z ∏

p

(
1 −

znp

|Λp|

)
.

Do they agree? If not, how does the disagreement
depend on the truncation length N?
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Chapter 23

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

When we set out on this journey, we had promised to teach you something
profound that your professor does not know. Well, this chapter is the
chapter. If your professor knows cycle formulas for dynamical aver-

ages, please send us her name, and we’ll feature it in ChaosBook. They look
like cumulants, but when you start to take them apart you realize how brilliant
they are - your professor would not guess their form even if he wrote 1000 and 7
Physical Review Letters about it. Takes 20 some chapters of hard study to start to
understand them, and who has time for that?

The Euler product representations of spectral determinants (22.8) and dyn-
amical zeta functions (22.11) are really only a shorthand notation - the zeros of
the individual factors are not the zeros of the zeta function, and the convergence
of these objects is far from obvious. Now we shall give meaning to dynamical
zeta functions and spectral determinants by expanding them as cycle expansions,
which are series representations ordered by increasing topological cycle length,
with products in (22.8), (22.11) expanded as sums over pseudo-cycles, products
of weights tp of contributing cycles. The zeros of correctly truncated cycle expan-
sions yield the desired leading eigenvalues of evolution operators, and the expec-
tation values of observables are given by the cycle averaging formulas obtained
from the partial derivatives of dynamical zeta functions (or spectral determinants).

For reasons of pedagogy in what follows everything is first explained in terms
of dynamical zeta functions: they aid us in developing ‘shadowing’ intuition about
the geometrical meaning of cycle expansions. For actual calculations, we recom-
mend the spectral determinant cycle expansions of sects. 23.2.2 and 23.5.2. While
the shadowing is less transparent, and the weights calculation is an iterative nu-
merical algorithm, these expansions use full analytic information about the flow,
and can have better convergence properties than the dynamical zeta functions. For
example, as we shall show in chapter 28, even when a spectral determinant (22.5)

424
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CHAPTER 23. CYCLE EXPANSIONS 425

is entire and calculations are super-exponentially convergent, cycle expansion of
the corresponding dynamical zeta function (22.24) has a finite radius of conver-
gence and captures only the leading eigenvalue, at exponentially convergent rate.

23.1 Pseudo-cycles and shadowing

How are periodic orbit formulas such as (22.11) evaluated? We start by comput-
ing the lengths and Floquet multipliers of the shortest cycles. This always requires
numerical work, such as searches for periodic solutions via Newton’s method; we

chapter 16
shall assume for the purpose of this discussion that the numerics is under con-
trol, and that all short cycles up to a given (topological) length have been found.
Examples of the data required for application of periodic orbit formulas are the
lists of cycles given in exercise 7.2 and table 34.1. Sadly, it is not enough to set
a computer to blindly troll for invariant solutions, and blithely feed those into the
formulas that will be given here. The reason that this chapter is numbered 23 and
not 6, is that understanding the geometry of the non–wandering set is a prereq-
uisite to good estimation of dynamical averages: one has to identify cycles that
belong to a given ergodic component (whose symbolic dynamics and shadowing
is organized by its transition graph), and discard the isolated cycles and equilib-
ria that do not take part in the asymptotic dynamics. It is important not to miss
any short cycles, as the calculation is as accurate as the shortest cycle dropped -
including cycles longer than the shortest omitted does not improve the accuracy
(more precisely, the calculation improves, but so little as not to be worth while).

Given a set of periodic orbits, we can compute their weights tp and expand the
dynamical zeta function (22.11) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1 p2...pk}

(−1)k+1tp1 tp2 . . . tpk (23.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1 tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weights tp, and label each such pseudo-cycle by

π = p1 + p2 + · · · + pk (23.2)

The formal power series (23.1) is now compactly written as

1/ζ = 1 −
∑′

π

tπ . (23.3)

For k > 1, the signed products tπ are weights of pseudo-cycles; they are sequences
of shorter cycles that shadow a cycle with the symbol sequence p1 p2 . . . pk along
the segments p1, p2, . . . , pk, as in figure 1.12. The symbol

∑′ denotes the re-
stricted sum, for which any given prime cycle p contributes at most once to a
given pseudo-cycle weight tπ.
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The pseudo-cycle weight, i.e., the product of weights (22.9) of prime cycles
comprising the pseudo-cycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπ znπ , (23.4)

depends on the pseudo-cycle integrated observable Aπ, the period Tπ, the stability
Λπ,

remark 5.1

Λπ = Λp1Λp2 · · ·Λpk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , nπ = np1 + . . . + npk , (23.5)

and, when available, the topological length nπ.

23.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a system described by a com-
plete binary symbolic dynamics. In this case the Euler product (22.11) is given
by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (23.6)

× (1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

× (1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see table 18.1), and the first few terms of the expansion (23.3) ordered by increas-
ing total pseudo-cycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+ t0+1 + t0+01 + t01+1 + t0+001 + t0+011 + t001+1 + t011+1

− t0+01+1 − . . . (23.7)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudo-cycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant fundamental
contributions t f and the decreasing curvature corrections ĉn, each ĉn split into
prime cycles p of length np=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary of p. For the binary case this regrouping is given
by

1/ζ = 1 − t0 − t1 − [(t01 − t0+1)] − [(t001 − t0+01) + (t011 − t01+1)]

−[(t0001 − t0+001) + (t0111 − t011+1)

+(t0011 − t001+1 − t0+011 + t0+01+1)] − . . .

= 1 −
∑

f

t f −
∑

n

ĉn . (23.8)
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All terms in this expansion up to length np = 6 are given in table 23.1. We refer to
such regrouped series as curvature expansions, because the shadowed combina-
tions [· · · ] vanish identically for piecewise-linear maps with nice partitions, such
as the ‘full tent map’ of figure 19.3.

This separation into ‘fundamental’ and ‘curvature’ parts of cycle expansions
is possible only for dynamical systems whose symbolic dynamics has finite gram-
mar. The fundamental cycles t0, t1 have no shorter approximations; they are the
“building blocks” of the dynamics in the sense that all longer orbits can be approx-
imately pieced together from them. The fundamental part of a cycle expansion is
given by the sum of the products of all non-intersecting loops of the associated
transition graph, discussed in chapter 17. The terms grouped in brackets [· · · ] are

section 18.3
section 23.6the curvature corrections; the terms grouped in parentheses (· · · ) are combinations

of longer cycles and corresponding sequences of “shadowing” pseudo-cycles, as
in figure 1.12. If all orbits are weighted equally (tp = znp), such combinations
cancel exactly, and the dynamical zeta function reduces to the topological poly-
nomial (18.17). If the flow is continuous and smooth, orbits of similar symbolic
dynamics will traverse the same neighborhoods and will have similar weights, and
the weights in such combinations will almost cancel. The utility of cycle expan-
sions of dynamical zeta functions and spectral determinants, in contrast to naive
averages over periodic orbits such as the trace formulas discussed in sect. 27.4,
lies precisely in this organization into nearly canceling combinations: cycle ex-
pansions are dominated by short cycles, with longer cycles giving exponentially
decaying corrections.

More often than not, good symbolic dynamics for a given flow is either not
available, or its grammar is not finite, or the convergence of cycle expansions
is affected by nonhyperbolic regions of state space. In those cases truncations
such as the stability cutoff of sect. 23.7 and sect. 29.3.4 might be helpful. The
idea is to truncate the cycle expansion by including only the pseudo-cycles such
that |Λp1 · · ·Λpk | ≤ Λmax, with the cutoff Λmax equal to or greater than the most
unstable Λp in the data set.

In what follows, we shall introduce two cycle averaging formulas, one based
on dynamical zeta functions and the other on spectral determinants. (Frequently
used, but inferior ‘level sums’ shall be discussed in sect. 27.4.)

23.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in the denominator of the full
pseudo-cycle weight in (21.19),

det
(
1 − Mp1 p2

)
, det

(
1 − Mp1

)
det

(
1 − Mp2

)
,

the cycle expansions for the spectral determinant (22.8) are somewhat less trans-
parent than is the case for the dynamical zeta functions, so we postpone their
evaluation to sect. 23.2.2. Sect. 23.2.1 is a pedagogical warmup. In actual calcu-
lations, implementing the spectral determinant cycle expansions of sect. 23.2.2 is
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Table 23.1: The binary curvature expansion (23.8) up to length 6, listed in such a way that
the sum of terms along the pth horizontal line is the curvature ĉp associated with a prime
cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

- t0
- t1
- t10 + t1t0
- t100 + t10+0
- t101 + t10+1
- t1000 + t100+0
- t1001 + t100+1 + t110+0 - t1+10+0
- t1011 + t101+1
- t10000 + t1000+0
- t10001 + t1001+0 + t1000+1 - t0+100+1
- t10010 + t100+10
- t10101 + t101+10
- t10011 + t1011+0 + t1001+1 - t0+101+1
- t10111 + t1011+1
- t100000 + t10000+0
- t100001 + t10001+0 + t10000+1 - t0+1000+1
- t100010 + t10010+0 + t1000+10 - t0+100+10
- t100011 + t10011+0 + t10001+1 - t0+1001+1
- t100101 - t100110 + t10010+1 + t10110+0

+ t10+1001 + t100+101 - t0+10+101 - t1+10+100
- t101110 + t10110+1 + t1011+10 - t1+101+10
- t100111 + t10011+1 + t10111+0 - t0+1011+1
- t101111 + t10111+1

recommended. Correct objects are spectral determinants, and as using the correct
object costs exactly the same as using the approximations, why settle for less?

23.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by first
computing the weights tp = tp(β, s) of all prime cycles p of topological length
np ≤ N, for given fixed β and s. Denote by the subscript (i) the ith prime cycle
computed, ordered by the topological length n(i) ≤ n(i+1). The dynamical zeta
function 1/ζN truncated to np ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)[1 − t(i)zn(i)] , (23.9)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is the Nth order polynomial approximation

1/ζN = 1 −
N∑

n=1

cnzn . (23.10)

In other words, a cycle expansion is a Taylor expansion in the dummy variable z,
where each term in the sum is raised to the topological cycle length. If both the
number of cycles and their individual weights grow not faster than exponentially
with the cycle length, and we multiply the weight of each cycle p by a factor znp ,
the cycle expansion converges for sufficiently small |z|. If the symbolic dynamics
grammar is finite, the truncation cuttof N has to be larger than the length of longest
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cycle in the transition graph (18.13), for the salubrious effect of shadowing cance-
lations to kick in. If that is the case, further increases in N yield the exponentially
decreasing corrections ĉn in (23.8).

If the dynamics is given by an iterated mapping, the leading zero of (23.10)
as a function of z yields the leading eigenvalue of the appropriate evolution oper-
ator. For continuous time flows, z is a dummy variable that we set to z = 1, and
the leading eigenvalue of the evolution operator is given by the leading zero of
1/ζ(s, β(s)) as function of s.

23.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectral determinant by com-
puting the trace formula (21.9) or (21.19). The weight of prime cycle p repeated
r times is

tp(z, β, r) =
erβAp zr np∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ (discrete time) (23.11)

tp(s, β, r) =
er(βAp−sTp)∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ (continuous time) . (23.12)

For discrete time, the trace formula (21.9) truncated to all prime cycles p and their
repeats r such that npr ≤ N,

tr
zL

1 − zL

∣∣∣∣∣
N

=

N∑
n=1

Cnzn , Cn = trLn , (23.13)

is computed as a polynomial in z by adding a cycle at the time:

tr
zL

1 − zL

∣∣∣∣∣
(i)

= tr
zL

1 − zL

∣∣∣∣∣
(i−1)

+ n(i)

n(i)r≤N∑
r=1

t(i)(z, β, r) .

For continuous time, we assume that the method of Poincaré sections assigns each
cycle a topological length np. Than the trace formula (21.19) is also organized as
a polynomial

tr
1

s −A

∣∣∣∣∣
N

=

N∑
n=1

Cnzn , (23.14)

computed as:

tr
1

s −A

∣∣∣∣∣
(i)

= tr
1

s −A

∣∣∣∣∣
(i−1)

+ T(i)

n(i)r≤N∑
r=1

t(i)(s, β, r) znpr

The periodic orbit data set (23.5) consists of the list of the cycle periods Tp, the
cycle Floquet multipliers Λp,1,Λp,2, . . . ,Λp,d, and the cycle averages of the ob-
servable Ap for all prime cycles p such that np ≤ N. The coefficient of znpr is then
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evaluated numerically for the given parameter values (β, s). Always compute the
leading eigenvalue of the evolution operator first, i.e., the escape rate γ = −s0, in
order to use it in calculation of averages of sect. 23.5 as a weight eγT(i) in (23.13).
Now that we have an expansion for the trace formula (21.8) as a power series, we
compute the Nth order approximation to the spectral determinant (22.3),

det (1 − zL)|N = 1 −
N∑

n=1

Qnzn , Qn = nth cumulant , (23.15)

as follows. The logarithmic derivative relation (22.4) yields(
tr

zL
1 − zL

)
det (1 − zL) = −z

d
dz

det (1 − zL)

(C1z + C2z2 + · · · )(1 − Q1z − Q2z2 − · · · ) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the cumu-
lant) expansion is given recursively by the convolution trace formula expansion
coefficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (23.16)

Given the trace formula (23.13) truncated to zN , we now also have the spectral
determinant truncated to zN .

The same program can also be reused to compute the dynamical zeta function
cycle expansion (23.10), by replacing

∏(
1 − Λr

(i), j

)
in (23.13) by the product of

section 22.3
expanding eigenvalues Λ(i) =

∏
e Λ(i),e.

A few points concerning different cycle averaging formulas:

• The dynamical zeta functions is an approximation to spectral determinant
that yields only the leading eigenvalue of the evolution operator. The cycle
weights depend only on the product of expanding |Λi| Floquet multipliers,
so signs do no matter. For hyperbolic flows they converge exponentially
with increasing cycle lengths.

• spectral determinants weights in (22.3) contain 1/|1 − Λi| factors, so for
them signs of Floquet multipliers Λi do matter. With finite grammar the
leading eigenvalue converges super-exponentially in cycle length.

Note that while the dynamical zeta functions weights use only the expand-
ing Floquet multipliers |Λe|, for spectral determinants the weights are of
form |1−Λr

j|, both expanding and contracting directions contribute, and the
signs of multipliers do matter. That’s why ChaosBook everywhere tracks
multipliers Λ j, rather than Floquet exponents λ j. λ’s belong to equilibria,
periodic orbits require multipliers. That’s the way cookie crumbles. For
very high-dimensional flows (such as unstable periodic solutions of Navier-
Stokes equations), usually only a subset of the most unstable / least con-
tracting Floquet multipliers is known. As long as the contracting Floquet
multipliers omitted from the weights in (23.13) are sufficiently strongly con-
tracting, the errors introduced by replacement |1 − Λr

j| → 1 for such eigen-
values should be negligible.
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Table 23.2: The 3-disk repeller escape rates computed from cycle expansions of the spec-
tral determinant (22.5) and the dynamical zeta function (22.11), as functions of the max-
imal cycle length N. The disk-disk center separation to disk radius ratio is R:a, and the
det(s − A) is an estimate of the classical escape rate computed from the spectral det-
erminant cycle expansion in the fundamental domain. For larger disk-disk separations,
the dynamics is more uniform, as illustrated by the faster convergence. Convergence of
spectral determinant det(s−A) is super-exponential, see chapter 28. For comparison, the
1/ζ(s) column lists estimates from the fundamental domain dynamical zeta function cycle
expansion (23.8), and the 1/ζ(s)3-disk column lists estimates from the full 3-disk cycle
expansion (25.54). The convergence of the fundamental domain dynamical zeta function
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det(s −A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Figure 23.1: Example scans in the complex s
plane: contour plots of the logarithm of the ab-
solute values of (left) 1/ζ(s), (right) spectral deter-
minant det (s−A) for the 3-disk system, separation
R : a = 6. The A1 subspace is evaluated numeri-
cally. The eigenvalues of the evolution operator L
are given by the centers of elliptic neighborhoods
of the rapidly narrowing rings. While the dynam-
ical zeta function is analytic on the Im s ≥ −1 half-
plane, the spectral determinant is entire and reveals
further families of zeros. (P.E. Rosenqvist)

• The least enlightened are the ‘level sum’ cycle averaging formulas. There
is no point in using them, except that they have to be mentioned (here in
sect. 27.4), as there is voluminous literature that uses them.

remark 23.1
• Other formulas published in physics literature are likely to be wrong.

If the set of computed periodic orbits is incomplete, and their Floquet mul-
tipliers inaccurate, distinctions between different cycle averaging formulas are
academic, as there are not sufficiently many cycles to start worrying about what
expansion converges faster.

23.3 Periodic orbit averaging

The first cycle expansion calculation should always be the determination of the
leading eigenvalue of the evolution operator, calculated as follows. After the
prime cycles and the pseudo-cycles have been grouped into subsets of equal topo-
logical length, the dummy variable can be set equal to z = 1. With z = 1, the
expansion (23.15) constitutes the cycle expansion (22.5) for the spectral deter-
minant det(s − A) . We vary s in cycle weights, and determine αth eigenvalue
sα (20.18) by finding s = sα for which (23.15) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbolic system is illustrated in
table 23.2 by the list of pinball escape rates γ = −s0 estimates computed from
truncations of (23.8) and (23.15) to different maximal cycle lengths.

chapter 28

The pleasant surprise, to be explained in chapter 28, is that one can prove
that the coefficients in these cycle expansions decay exponentially or even faster,
because of the analyticity of det (s −A) or 1/ζ(s), for s values well beyond those
for which the corresponding trace formula (21.19) diverges.

example 23.1

p. 446

Our next task will be to compute long-time averages of observables. Three
situations arise, two of them equal in practice:

recycle - 15apr2014 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 23. CYCLE EXPANSIONS 433

(i) The system is bounded, and we have all cycles up to some cutoff: always
start by testing the cycle expansion sum rules of sect. 23.4.

(ii) The system is unbounded, and averages have to be computed over a repeller
whose natural measure is obtained by balancing local instability with the
global escape rate γ = −s0, as in sect. 20.3.

(iii) The system is bounded, but we only have a repelling set consisting of a sub-
set of unstable cycles embedded into the bounded strange attractor. Best one
can do is to treat this as an open system, case (iii). That assigns a stationary
natural measure to neighborhoods of the solutions used, the local instabili-
ties balanced by a weight that includes escape rate exp(γTp). Whether use
of this measure improves averages as one increases the stability cutoff de-
pends on whether the longer cycles explore qualitatively different regions
of state space not visited by the shorter (fundamental) cycles, or only revisit
already known regions (curvature corrections).

23.4 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectories remain confined for all
times, the escape rate (27.8) vanishes γ = −s0 = 0, and the leading eigenvalue of
the Perron-Frobenius operator (19.10) (evolution operator with β = 0) is simply
exp(−tγ) = 1. Conservation of material flow thus implies that for bounded flows
cycle expansions of dynamical zeta functions and spectral determinants satisfy
exact flow conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1 −
∞∑

n=1

Qn(0, 0) = 0 (23.17)

obtained by setting s = 0 in (23.18), (23.19) with cycle weights tp = e−sTp/|Λp| →

1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the observ-
able a(x) under investigation, but only on the cycle stabilities Λp,1, Λp,2, · · · , Λp,d.
Their significance is purely geometric; they are a measure of how well periodic
orbits tessellate state space, as in figure 1.11. Conservation of material flow pro-
vides a first and very useful test of the quality of finite cycle length truncations and
is something that you should always check when constructing a cycle expansion
for a bounded flow.
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Figure 23.2: The eigenvalue condition is satisfied on
the curve F = 0 on the (β, s) plane. The expectation
value of the observable (20.11) is given by the slope of
the curve.

23.5 Cycle formulas for dynamical averages

Want to learn some useful safety maneuvers? Or perhaps
you’d like to become a more able mechanic? Or have bike
safety questions answered? Or eat pizza? Then sign up for
Enlightened Cycling!

— Bike GT: Cycling around Georgia Tech

The eigenvalue conditions for the dynamical zeta function (23.3) and the spectral
determinant (23.15),

0 = 1 −
∑′

π

tπ , tπ = tπ(β, s(β)) (23.18)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (23.19)

are implicit equations for an eigenvalue s = s(β) of the form 0 = F(β, s(β)). The
eigenvalue s = s(β) as a function of β is sketched in figure 23.2; this condition
is satisfied on the curve F = 0. The cycle averaging formulas for the slope and
curvature of s(β) are obtained as in (20.11) by taking derivatives of the eigenvalue
condition. Evaluated along F = 0, by the chain rule the first derivative yields

0 =
d

dβ
F(β, s(β))

=
∂F
∂β

+
ds
dβ

∂F
∂s

∣∣∣∣∣
s=s(β)

=⇒
ds
dβ

= −
∂F
∂β

/ ∂F
∂s

, (23.20)

and the second derivative of F(β, s(β)) = 0 yields

d2s
dβ2 = −

∂2F
∂β2 + 2

ds
dβ

∂2F
∂β∂s

+

(
ds
dβ

)2
∂2F
∂s2

 / ∂F
∂s

. (23.21)
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Denoting expectations as in (A20.2) by

〈A〉F = −
∂F
∂β

∣∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F
∂s

∣∣∣∣∣
β,s=s(β)

,

〈A2〉F = −
∂2F
∂β2

∣∣∣∣∣∣
β,s=s(β)

, 〈TA〉F =
∂2F
∂s∂β

∣∣∣∣∣∣
β,s=s(β)

, (23.22)

the mean cycle expectation value of A, the mean cycle period, and second deriva-
tives of F computed for F(β, s(β)) = 0, we obtain the cycle averaging formulas
for the expectation of the observable (20.11) and for its (generalized) diffusion
constant (or, more generally, diffusion tensor):

〈a〉 =
〈A〉F
〈T〉F

(23.23)

∆ =
1
〈T〉F

〈(A − T 〈a〉)2〉F , (23.24)

and so forth for higher cumulants. These formulas are the central result of periodic
section A20.1

orbit theory. We now show that for each choice of the function F(β, s) in (23.3)
and (23.15) (also the trace, or ‘level sum’ of (27.15)), the above quantities have
explicit cycle expansions.

23.5.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (23.18), the cycle averaging formulas
(23.20), (23.24) require one to evaluate derivatives of dynamical zeta functions at
a given eigenvalue. Substituting the cycle expansion (23.3) for the dynamical zeta
function we obtain

〈A〉ζ := −
∂

∂β

1
ζ

=
∑′

Aπtπ (23.25)

〈T〉ζ :=
∂

∂s
1
ζ

=
∑′

Tπtπ , 〈n〉ζ := −z
∂

∂z
1
ζ

=
∑′

nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles, Aπ, Tπ, and nπ given by (23.4) are evaluated on pseudo-cycles (23.5),
and pseudo-cycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).
In most applications β = 0, and s(β) of interest is typically the leading eigenvalue
s0 = s0(0) of the evolution generatorA.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,
the exponent βAπ − sTπ in (23.4) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (23.26)
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where analogous formulas hold for 〈T〉ζ , 〈n〉ζ .

example 23.2

p. 446

The cycle averaging formulas for the expectation of observable 〈a〉 follow by
substitution into (23.24). Assuming zero mean drift 〈a〉 = 0, the cycle expansion
(23.15) for the variance 〈(A − 〈A〉)2〉ζ is given by

〈A2〉ζ =
∑′

(−1)k+1

(
Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (23.27)

23.5.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,
with the shadowing apparent already by a term-by-term inspection of table 23.2.
For “nice” hyperbolic systems, shadowing ensures exponential convergence of the

section 28.5
dynamical zeta function cycle expansions. This, however, is not the best achiev-
able convergence. As will be explained in chapter 28, for nice hyperbolic systems
the spectral determinant constructed from the same cycle database is entire, and
its cycle expansion converges faster than exponentially. The fastest convergence
is attained by the spectral determinant cycle expansion (23.19) and its deriva-
tives. In this case the ∂/∂s, ∂/∂β derivatives are computed recursively, by taking
derivatives of the spectral determinant cycle expansion contributions (23.13) and
(23.16).

The cycle averaging formulas are exact, and highly convergent for nice hy-
perbolic dynamical systems. An example of their utility is the cycle expansion
formula for the Lyapunov exponent of example 23.3. Further applications of cy-
cle expansions will be discussed in chapter 27.

23.5.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow in con-
tinuous time, and sometimes it might be easier to compute it in discrete time, from
a return map. Return times (3.1) might vary wildly, and it is not at all clear that
the continuous and discrete time averages are related in any simple way. As we
shall now show, the relationship turns out to be both elegantly simple, and totally
general.

exercise 23.12

The mean cycle period 〈T〉F fixes the normalization of the unit of time; it can
be interpreted as the average near recurrence or the average first return time. For
example, if we have evaluated a billiard expectation value 〈a〉 = 〈A〉F/〈T〉F in
terms of continuous time, and would like to also have the corresponding average
〈a〉dscr = 〈A〉F/〈n〉F measured in discrete time, given by the number of reflections
off billiard walls, the two averages are related by

〈a〉dscr = 〈a〉〈T〉F/〈n〉F , (23.28)
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where 〈n〉F the average of the number of bounces np along the cycle p is given by
is (23.25).

example 23.3

p. 446

For 2-dimensional Hamiltonian flows such as our game of pinball (see exam-
ple 22.3), there is only one expanding eigenvalue and (23.42) applies as written.
However, in dimensions higher than one, a correct calculation of Lyapunov expo-
nents requires a bit of sophistication.

23.6 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 17.3 (d) is a compact encod-
ing of the transition matrix for a given subshift. It is a sparse matrix, and the
associated determinant (18.33) can be written by inspection: it is the sum of all
possible partitions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0+0011 + t0011+0001 (23.29)

The simplest application of this determinant is the evaluation of the topological
entropy; if we set tp = znp , where np is the length of the p-cycle, the determinant
reduces to the topological polynomial (18.34).

The determinant (23.29) is exact for the finite graph figure 17.3 (e), as well
as for the associated finite-dimensional transfer operator of example 20.4. For
the associated (infinite dimensional) evolution operator, it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001+0011

−(t00011 − t0+0011 + . . . curvatures) . . . (23.30)

The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (23.8); they
are not shadowed by any combinations of shorter cycles. All other cycles appear
together with their shadows (for example, the t00011 − t0+0011 combination, see
figure 1.12) and yield exponentially small corrections for hyperbolic systems. For
cycle counting purposes, both tab and the pseudo-cycle combination ta+b = tatb in
(23.3) have the same weight zna+nb , so all curvature combinations tab − ta+b vanish
exactly, and the topological polynomial (18.17) offers a quick way of checking
the fundamental part of a cycle expansion.

The splitting of cycles into the fundamental cycles and the curvature correc-
tions depends on balancing long cycles tab against their pseudo-trajectory shadows
tatb. If the ab cycle or either of the shadows a, b do not to exist, such curvature
cancelation is unbalanced.

recycle - 15apr2014 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 23. CYCLE EXPANSIONS 438

The most important lesson of the pruning of the cycle expansions is that pro-
hibition of a finite subsequence imbalances the head of a cycle expansion and
increases the number of the fundamental cycles in (23.8). Hence the pruned ex-
pansions are expected to start converging only after all fundamental cycles have
been incorporated - in the last example, the cycles 1, 10, 10100, 1011100. With-
out cycle expansions, no such crisp and clear cut definition of the fundamental set
of scales is available.

Because topological zeta functions reduce to polynomials for finite grammars,
only a few fundamental cycles exist and long cycles can be grouped into curvature
combinations. For example, the fundamental cycles in exercise 11.3 are the three
2-cycles that bounce back and forth between two disks and the two 3-cycles that
visit every disk. Of all cycles, the 2-cycles have the smallest Floquet exponent,
and the 3-cycles the largest. It is only after these fundamental cycles have been
included that a cycle expansion is expected to start converging smoothly, i.e., only
for n larger than the lengths of the fundamental cycles are the curvatures ĉn (in
expansion (23.8)), a measure of the deviations between long orbits and their short
cycle approximations, expected to fall off rapidly with n.

23.7 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

We have judiciously deployed the 3-disk pinball, with its simple grammar, to mo-
tivate the periodic orbit theory. Most dynamical systems of interest, however, have
infinite grammar, so at any order in z a cycle expansion may contain unmatched
terms that do not fit neatly into the almost canceling curvature corrections. Sim-
ilarly, for the intermittent systems that we shall discuss in sect. 29.3.4, curvature
corrections are not small in general, so again the cycle expansions may converge
slowly. For such systems, schemes that collect the pseudocycle terms according
to some criterion other than the topology of the flow may converge faster than
expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing as much as possible. If a
long cycle is shadowed by two or more shorter cycles and the flow is smooth, the
periods and the Floquet exponents will be additive in sense that the period of the
longer cycle is approximately the sum of the shorter cycle periods. Similarly, as
stability is multiplicative, shadowing is approximately preserved by including all
terms with pseudo-cycle stability∣∣∣Λp1 · · ·Λpk

∣∣∣ ≤ Λmax (23.31)

and ignoring any pseudo-cycles that are less stable.
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Two such schemes for ordering cycle expansions that approximately respect
shadowing are truncations by the pseudocycle period and the stability ordering
that we shall discuss here. In these schemes, a dynamical zeta function or a spec-
tral determinant is expanded. One keeps all terms for which the period, action or
stability for a combination of cycles (pseudo-cycles) is less than a given cutoff.

Settings in which stability ordering may be preferable to ordering by topo-
logical cycle length are the cases of bad grammar, of intermittency, and of partial
cycle data sets.

23.7.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of state space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can use stability-ordered
cycle expansions. Stability truncation is thus easier to implement for a generic
dynamical system than the curvature expansions (23.8) that rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for detecting cycles preferentially finds
the least unstable cycles, regardless of their topological length. Another practical
advantage of the method (in contrast to blind Newton method searches) is that it
preferentially finds cycles in a given connected ergodic component of state space,
ignoring isolated cycles or other ergodic regions elsewhere in state space.

Why should stability-ordered cycle expansions of a dynamical zeta function
converge better than the crude trace formula (27.9), to be discussed in sect. 27.2?
The argument has essentially already been laid out in sect. 18.6: in truncations
that respect shadowing, most of the pseudo-cycles appear in shadowing combi-
nations and nearly cancel, while only the relatively small subset affected by the
increasingly long pruning rules is not shadowed. The error is typically of the order
of 1/Λ, which is smaller by a factor ehT than the trace formula (27.9) error, where
h is the entropy and T is the typical cycle length for cycles of stability Λ.

23.7.2 Smoothing

If most, but not all long cycles in a stability truncation are shadowed by
shorter cycles, we say that the shadowing is partial. The breaking of exact shad-
owing cancellations deserves further comment. Any partial shadowing that may
be present can be (partially) restored by smoothing the stability-ordered cycle ex-
pansions by replacing the 1/Λ weight for each term with the pseudo-cycle stability
Λ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) decreases monotonically from f (0) = 1
to f (Λmax) = 0. The lack of smoothing means we have a step function.
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A typical “shadowing error” induced by the cutoff is due to two pseudo-cycles
of stability Λ separated by ∆Λ; the contributions of these pseudo-cycles are of
opposite sign. Ignoring possible weighting factors, the magnitude of the resulting
term is of order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing, one obtains an
extra term of the form f ′(Λ)∆Λ/Λ, which we want to minimize. A reasonable
guess might be to keep f ′(Λ)/Λ constant and as small as possible, so that

f (Λ) = 1 −
(

Λ

Λmax

)2

The results of a stability-ordered expansion (23.31) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary.

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (22.11) expanded as sums
over pseudo-cycles, which are products of the prime cycle weights tp.

If a flow is hyperbolic and has the topology of the Smale horseshoe (a sub-
shift of finite type), dynamical zeta functions are holomorphic (have only poles
in the complex s plane), the spectral determinants are entire, and the spectrum of
the evolution operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no ‘abscissa of absolute
convergence’ and no ‘entropy barrier’, the exponential proliferation of cycles is
no problem, spectral determinants are entire and converge everywhere, and the
topology dictates the choice of cycles to be used in cycle expansion truncations.

In this case, the basic observation is that the motion in low-dimensional dy-
namical systems is organized around a few fundamental cycles, with the cycle
expansion of the Euler product

1/ζ = 1 −
∑

f

t f −
∑

n

ĉn,

regrouped into dominant fundamental contributions t f and decreasing curvature
corrections ĉn. The fundamental cycles t f have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ĉn

is the difference of a long cycle {ab} and its shadowing approximation by shorter
cycles {a} and {b}, as in figure 1.12:

tab − tatb = tab(1 − tatb/tab)

Orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for increasingly long
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orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy the
‘axiom A’ requirements, such as the 3-disk billiard, curvature expansions converge
very well.

Once a set of the shortest cycles has been found, and the cycle periods, stabili-
ties, and integrated observable have been computed, the cycle averaging formulas
such as (23.25) for the dynamical zeta function

〈a〉 = 〈A〉ζ/〈T〉ζ , where for the zeta function expansions:

〈A〉ζ = −
∂

∂β

1
ζ

=
∑′

Aπtπ , 〈T〉ζ =
∂

∂s
1
ζ

=
∑′

Tπtπ

yield the expectation value of the observable a(x), i.e., the long time average over
the chaotic non–wandering set).

Commentary

Remark 23.1. Alternative Periodic Orbit Theories.

Extraordinary how potent cheap music is.
— Noel Coward

There are no ‘alternative periodic orbit theories’. There is only one ergodic theory, and
periodic orbits are one aspect of it, just like there is only one quantum mechanics, and
WKB is one way to gain insight into it. While the eigenfunctions of quantum evolution
operators are smooth Hilbert space states, the eigenfunctions of deterministic evolution
operators are highly singular, nowhere differentiable functions with support on fractal sets.
The deterministic eigenstates of high-dimensional ergodic flows thus cannot be computed
using the methods developed for quantum eigenstates, at least not without much further
thought. The ergodic, singular ‘natural measure’ is harder (and in high-dimensional state
space impossible) to construct numerically than its smooth quantum cousin, the ‘ground
state’, and periodic orbits seem to be the way to do it. Were ergodic theory easy, Chaos-
Book.org and Gaspard monograph [15] would have been a much breezier reads.

In the vast and vastly uneven periodic orbit literature (should erroneous papers be
cited?) one sometimes encounters the ‘escape-time weighting’ dreamed up by a band of
men who mistook logarithm for exponential,

〈a〉 =

∑
p τpap∑

p τp
, τp =

1∑e
j λp, j

, (23.32)

where the p sum goes over all known unstable periodic orbits, and sometimes also over
judiciously chosen subsets of unstable equilibria. Here

e∑
j

λp, j =
1

Tp
ln Λp , Λp = |Λp,1Λp,2 · · ·Λp,e| , (23.33)

Tp is the period of of the prime periodic orbit p, Λp, j is the jth Floquet multiplier (4.7),
Λp is the product of the expanding multipliers |Λp, j| > 1 , j = 1, . . . , e, and λp, j’s are the
strictly positive Floquet exponents.
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∑e λp,i is the local escape rate from single repelling cycle p, of dimension 1/[time],
so one may interpret its inverse τp as “an estimate of the mean time spent by the system
in vicinity of periodic orbit” p. τp is the mean Lyapunov time of cycle p, that is, the mean
time it takes for the density of neighboring trajectories in an arbitrarily small ball centered
around a point on the trajectory to decrease by factor 1/e.

The ‘escape-time weighting’ was introduced in a rapid communication thusly: “Less
unstable orbits must be weighted more heavily, so the attractor dimension is approximated
by ‘escape-time weighting’ (23.32).” That’s it: the ‘derivation’ in its entirety. Formula
(23.32) is then asserted to approximate the time average 〈a〉 of observable a(x) over the
chaotic attractor in terms of

ap =
1

Tp

∮ Tp

0
dτ a( f τ(x0)) , x0 ∈ p , (23.34)

averaged over each and every prime periodic orbit p found in any computer exploration
of a dynamical system’s state space.

The enchantment with the escape-time weighting approach lies its charming simplic-
ity. If one has a dynamical problem, and if one has a computer one has programmed
to search for periodic orbits, and if the computer brings back a set of unstable periodic
orbits, all one has to do is to put λp, j and ap into the formula (23.32), and it returns a
number - let’s say D = 9.0±0.1, where the error one estimates somehow - which one then
publishes.

The only drawback is that the ‘formula’ is wrong. (1) It comes from nowhere. (2) τp

has dimension of [time], but a ‘weight’ should be a dimensionless number, the likelihood
that an ergodic trajectory enters the neighborhood of the periodic orbit p. (3)

∑
p is the

sum over all unstable prime periodic orbits, regardless whether they belong to the ergodic
component under investigation or dwell isolated in the Moon orbit. (4) The guess for the
weight τp is clearly wrong, as any periodic orbit, no matter how long and unstable, has
the comparable weight

∑e λp,i, as long as its Lyapunovs (instability rate per unit time) are
comparable; the Lyapunov time has nothing to do with the period of the particular cycle.
For that there is an even more baffling fix in the literature, with the Lyapunov time in
(23.32) replaced by

τp = Tp/

e∑
λp,i . (23.35)

The fix is explained as follows: “it is reasonable also to suppose that orbits with longer
periods must be weighted more heavily as they are longer and should provide a greater
contribution to the total sum.” That’s it: another ‘derivation’, in its entirety. No less
wrong.

The exact weight of the unstable prime periodic orbit p (for level sum (21.6)) was
given independently by Kadanoff and Tang [16] and Ozorio de Almeida and Hannay [18]
in 1983. For the classical trace formula for flows (21.19) it is

Tp e−Tp s∣∣∣∣det
(
1 − Mp

)∣∣∣∣ eβAp , Ap = Tpap , (23.36)

where s is the evolution operator eigenvalue, and β is an auxiliary variable. It is de-
termined by the dimensionless Floquet multipliers (eigenvalues of the periodic orbit’s
monodromy matrix Mp) which grow/shrink exponentially with cycle period, not the Os-
eledec Lyapunov exponents or periodic orbit Floquet exponents which measure average
expansion/contraction rate per unit time.
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The exact cycle averaging formulas for the expectation value of the observable a,
derived in chapters 19 to 22, have form

〈a〉 = 〈A〉F/〈T〉F , (23.37)

where the form of the periodic orbit sum 〈· · ·〉F depends on whether it is computed from
the trace formula (27.15), the dynamical zeta function (23.3), or the spectral determinant
(23.15). This sum is never of the form (23.32).

Often one cares only about the leading long-time behavior, and for long periodic or-
bits approximates the denominator of (23.36) by the product of the expanding multipliers
Λp of the monodromy matrix Mp,

e−Tp s∣∣∣∣det
(
1 − Mp

)∣∣∣∣ → tp =
e−Tp s

Λp
. (23.38)

This weight seems to have been first used in 1987 by Auerbach et al. [4], who computed
an nth order estimate s(n) of the leading evolution operator eigenvalue s from the sum of
all periodic points j of period n

1 =
∑

j∈Fix f n

t j eβA(x j,n) , t j =
e−ns(n )

Λ j
, (23.39)

where n is discrete time, and periodic points are fixed points of the nth iterate f n . Even as
its was written, the heuristics of this paper was superseded by the exact cycle expansions,
first published in 1987 Cvitanović letter [10].

Then there is in literature an ‘Alternative Periodic Orbit Theory’ so bold and breath-
less that one can only call it The Heresy: the conjecture is that if one looks carefully
enough, there exists a single periodic orbit that captures all dynamical averages of a tur-
bulent flow. This is so wrong that one is at loss what to say: The spectra of periodic orbits
and the evolution operator eigenvalues are dual to each other, just as configuration and
momentum Fourier spectra are dual to each other. There is no way to describe a general
problem by a single Fourier mode, and there is NO such single periodic orbit. Instead,
there is the well established theory that says how periodic orbits are to be used, and how
many are needed to capture the hyperbolic parts of the non–wandering set to a desired
accuracy. It is as elegant and systematic as Statistical Mechanics and Quantum Field
Theory. Read ChaosBook.org. But who reads books nowadays?

Of course, if one picks at random a very long periodic orbit, one will get estimates as
good as from an ergodic trajectory of comparable length, but then why make life hard by
insisting on exact recurrence? When one starts out, The Heresy is one of the paths to en-
lightenment: Berry diplomatically writes “he found one orbit” in a pean to Gutzwiller [7].
Indeed, in Gutzwiller first paper (1969) on anisotropic Kepler system, the one periodic
orbit obtained by adiabatic deformation of a Kepler ellipse yielded 10% accuracy, which
was great, as in those days it was generally believed that semiclassics should be bad for
the ground state. Two years later Gutzwiller invented periodic orbit theory as a tool for
physicists, applied it to the full anisotropic Kepler problem, and since then there is no
turning back. Similarly, Kawahara [17] computed the first Navier-Stokes periodic orbit
solution embedded in turbulence, and observed that it gave rather accurate estimates of
observables such as the dissipation rate.

The strangest thing about ‘Alternative Periodic Orbit Theories’ is that since introduc-
tion of zeta functions of Smale (1967), Gutzwiller (1969), Ruelle (1976) and their cycle
expansions (1987) there is no need for them whatsoever. Why would one guess an approx-
imate periodic orbit weight when the exact weight is already known? It costs exactly the
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same to compute the exact spectral determinant as it costs to compute a wrong formula,
both require the same periodic orbits, Floquet multipliers, periods, and cycle-averaged
observables ap. Go figure...

Remark 23.2. Pseudo-cycle expansions, cumulant expansions. Bowen’s intro-
duction of shadowing ε-pseudo-orbits [9] was a significant contribution to Smale’s the-
ory. The expression ‘pseudo-orbits’ seems to have been introduced in Parry and Polli-
cott’s 1983 paper [19]. Following them, M. Berry [6] used the expression ’pseudo-orbits’
and quantum chaology. Cycle and curvature expansions of dynamical zeta functions and
spectral determinants in terms of pseudo-cycles were introduced in refs. [2, 10]. Some
literature [21] refers to pseudo-orbits as ‘composite orbits’, and to cycle expansions as
‘Dirichlet series’ (see also appendix ?? and remark ??). To statistical mechanicians,

section A20.1curvature expansions are very reminiscent of cumulant expansions. Indeed, (23.16) is the
standard Plemelj-Smithies cumulant formula for the Fredholm determinant.A new aspect,
not reminiscent of statistical mechanics, is that in cycle expansions each Qn coefficient is
expressed as a sum over exponentially many cycles.

Going from Nn ≈ Nn periodic points of period n to Mn prime cycles reduces the
number of computations from Nn to Mn ≈ Nn−1/n. The use of discrete symmetries (chap-
ter 25) reduces the number of nth level terms by another factor. While reformulating the-
ory from trace (21.24) to cycle expansion (23.8) does not eliminate exponential growth in
the number of cycles, in practice only the shortest cycles are used, and the reduction in
computational labor for these cycles can be significant.

Remark 23.3. Shadowing cycle-by-cycle. A glance at the low order curvatures
in table 23.1 leads to the temptation to associate curvatures to individual cycles, such as
ĉ0001 = t0001 − t0+001. Such combinations tend to be numerically small (see, for example,
ref. [3], table 1). However, splitting ĉn into individual cycle curvatures is not possible in
general [5]; the first example of such ambiguity in the binary cycle expansion is given by
the t100101, t100110 0↔ 1 symmetric pair of 6-cycles; the counterterm t001+011 in table 23.1
is shared by these two cycles.

Remark 23.4. Escape rates. A lucid introduction to escape from repellers is given by
Kadanoff and Tang [16]. For a review of transient chaos see refs. [8, 22]. The ζ–function
formulation is given by Ruelle [20] and W. Parry and M. Pollicott [19] and discussed in
ref. [10]. Altmann and Tel [1] give a detailed study of escape rates, with citations to more
recent literature.

Remark 23.5. Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [11, 12] in a study of chaotic dynamics for the (x2y2)1/a potential. The
presentation here runs along the lines of Dettmann and Morriss [14] for the Lorentz gas,
which is hyperbolic but with highly pruned symbolic dynamics, and Dettmann and Cvi-
tanović [13] for a family of intermittent maps. In the applications discussed in the above
papers, stability ordering yields a considerable improvement over topological length or-
dering. In quantum chaos applications, cycle expansion cancelations are affected by the
phases of pseudo-cycles (their actions), hence period or action ordering rather than sta-
bility is frequently employed.

Remark 23.6. Desymmetrized cycle expansions. The 3-disk cycle expansions
(25.54) might be useful for cross-checking purposes, but, as we shall see in chapter 25,
they are not recommended for actual computations, as the factorized zeta functions yield
much better convergence.
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23.8 Examples

Example 23.1. Newton algorithm for determining the evolution operator eigenval-

ues: Cycle expansions of spectral determinants can be used to compute a set of
leading eigenvalues of the evolution operator. A convenient way to search for these is by
plotting either the absolute magnitude ln |det (s−A)| or the phase of spectral determinants
and dynamical zeta functions as functions of the complex variable s. The eye is guided
to the zeros of spectral determinants and dynamical zeta functions by means of complex
s plane contour plots, with different intervals of the absolute value of the function under
investigation assigned different colors; zeros emerge as centers of elliptic neighborhoods
of rapidly changing colors. Detailed scans of the whole area of the complex s plane un-
der investigation and searches for the zeros of spectral determinants, figure 23.1, reveal
complicated patterns of resonances even for something as simple as the 3-disk game of
pinball. With a good starting guess (such as the location of a zero suggested by the
complex s scan of figure 23.1), a zero 1/ζ(s) = 0 can now be determined by standard
numerical methods, such as the iterative Newton algorithm (7.3), with the mth Newton
estimate given by

sm+1 = sm −

(
ζ(sm)

∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)
〈T〉ζ

. (23.40)

The denominator 〈T〉ζ is required for Newton iteration and is given by cycle expansion
(23.25). We need to evaluate it anyhow, as 〈T〉ζ is needed for the cycle averaging formulas.

click to return: p. 431

Example 23.2. Cycle expansion for the mean cycle period: For example, for the
complete binary symbolic dynamics the mean cycle period 〈T〉ζ is given by

section 1.5.4

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
−

T0 + T1

|Λ0Λ1|

)
(23.41)

+

(
T001

|Λ001|
−

T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
−

T01 + T1

|Λ01Λ1|

)
+ . . . .

Note that the cycle expansions for averages are grouped into the same shadowing combi-
nations as the dynamical zeta function cycle expansion (23.8), with nearby pseudo-cycles
nearly canceling each other.

click to return: p. 435

Example 23.3. Cycle expansion formula for Lyapunov exponents: In sect. 20.4
we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading
eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in
position to deliver on our promise.

The cycle averaging formula (23.26) yields an exact explict expression for the Lya-
punov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′

(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (23.42)

For a repeller, the 1/|Λp|weights are replaced by (27.10), the normalized measure weights
exp(γnp)/|Λp|, where γ is the escape rate.

click to return: p. 436
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Exercises

23.1. Cycle expansions. Write programs that implement
binary symbolic dynamics cycle expansions for (a) dyn-
amical zeta functions, (b) spectral determinants. Com-
bined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in the problems
below.

23.2. Escape rate for a 1-dimensional repeller. (continua-
tion of exercise 20.2 - easy, but long) Consider again
the quadratic map (20.38)

f (x) = Ax(1 − x)

on the unit interval. In order to be definitive, take ei-
ther A = 9/2 or A = 6. Describing the itinerary of any
trajectory by the binary alphabet {0, 1} (’0’ if the iterate
is in the first half of the interval and ’1’ if it is in the
second half), we have a repeller with a complete binary
symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed
points 0 and 1, along with their stabilities.

(b) Sketch the two branches of f −1. Determine all
the prime cycles up to topological length 4 using
your calculator and backwards iteration of f (see
sect. 7.1.1).

(c) Determine the leading zero of the zeta function
(22.11) using the weights tp = znp/|Λp|, where Λp

is the stability of the p-cycle.

(d) Show that for A = 9/2 the escape rate of the re-
peller is 0.361509 . . . using the spectral determin-
antwith the same cycle weight. If you have taken
A = 6, show instead that the escape rate is in
0.83149298 . . .. Compare the coefficients of the
spectral determinant and the zeta function cycle
expansions. Which expansion converges faster?

(Per Rosenqvist)

23.3. Escape rate for the Ulam map. (Medium; repeat of
exercise 16.1) We will try to compute the escape rate for
the Ulam map (14.22)

f (x) = 4x(1 − x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show that Λ0 = 4, Λ1 = −2, Λ01 = −4, Λ001 = −8
and Λ011 = 8.

(b) Show that

Λε1...εn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

Note that the convergence as a function of the
truncation cycle length is slow. Try to fix that by
treating the Λ0 = 4 cycle separately. (continued
as exercise 23.11)

23.4. Pinball escape rate, semi-analytical. Estimate the
3-disk pinball escape rate for R : a = 6 by substituting
analytical cycle stabilities and periods (see exercise 16.6
and exercise 16.7) into the appropriate binary cycle ex-
pansion. Compare your result with the numerical esti-
mate exercise 20.3.

23.5. Pinball escape rate, from numerical cycles. Com-
pute the escape rate for the 3-disk pinball with R : a = 6
by substituting the list of numerically computed cycle
stabilities of exercise 16.5 into the binary cycle expan-
sion.

23.6. Pinball resonances in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(23.5) as contour plots in the complex s plane. Do you
find zeros other than the one corresponding to the com-
plex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

23.7. Counting the 3-disk psudocycles. (continuation of
exercise 18.12) Show that the number of terms in the
3-disk pinball curvature expansion (25.53) is given by∏

p

(
1 + tp

)
=

1 − 3z4 − 2z6

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 +
z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(25.54).
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23.8. 4–disk unfactorized dynamical zeta function cycle
expansions. For the symmetrically arranged 4-disk
pinball, the symmetry group is C4v, which is of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8
(see table 18.3). Show that:

1/ζ = (1 − z2t12)4(1 − z2t13)2(1 − z3t123)8

(1 − z4t1213)8(1 − z4t1214)4(1 − z4t1234)2

(1 − z4t1243)4(1 − z5t12123)8(1 − z5t12124)8

(1 − z5t12134)8(1 − z5t12143)8

(1 − z5t12313)8(1 − z5t12413)8 · · · . (23.43)

Show that the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243

−6 t2
12 − t2

13 − 8 t12t13)
−8z5(t12123 + t12124 + t12134 + t12143 + t12313

+t12413 − 4 t12t123 − 2 t13t123)
−4z6(2 S 8 + S 4 + t3

12 + 3 t2
12 t13 + t12t2

13

−8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243

−4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2
123) − · · ·

where in the coefficient of z6 ,the abbreviations S 8 and
S 4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits with multiplicity 4,
respectively; the orbits are listed in table 18.5.

23.9. Escape rate for the Rössler flow. (continuation of
exercise 7.1) Try to compute the escape rate for the
Rössler flow (2.28) using the method of cycle expan-
sions. The answer should be zero, as nothing escapes.
Ideally you should already have computed the cycles
and have an approximate grammar, but failing that you
can cheat a bit and peak into exercise 7.1.

23.10. State space volume contraction, recycled. (contin-
uation of exercise 4.3) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.3 (d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluated
on a given short cycle, the average is crisp and arbi-
trarily accurate. Recompute 〈∂ · v〉 by means of cycle
expansion, study its convergence. 1/t convergence of
mindless time-averaging is now replaced by exponential
convergence in the cycle length.

23.11. Ulam map is conjugate to the tent map. (con-
tinuation of exercise 23.3, repeat of exercise A2.3 and
exercise 16.2; requires real smarts, unless you look it
up) Explain the magically simple form of cycle stabil-
ities of exercise 23.3 by constructing an explicit smooth
conjugacy (2.13)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (14.22) into the tent map
(14.21).

23.12. Continuous vs. discrete mean return time. Show
that the expectation value 〈a〉 time-averaged over con-
tinuous time flow is related to the corresponding average
〈a〉dscr measured in discrete time (e.g. , Poincaré section
returns) by (23.28):

〈a〉dscr = 〈a〉〈T〉ζ/〈n〉ζ . (23.44)

(Hint: consider the form of their cycle expansions.) The
mean discrete period 〈n〉ζ averaged over cycles, and the
mean continuous time period 〈T〉ζ need to be evalu-
ated only once, thereafter one can compute either 〈a〉
or 〈a〉dscr, whichever is more convenient.
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Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a

constant energy surface for a Hamiltonian system in equilibrium to dissipative sys-
tems in nonequilibrium stationary states. In this more general setting the attractor
plays the role of a constant energy surface, and the SRB measure of sect. 19.1 is
a generalization of the Liouville measure. Such measures are purely microscopic
and indifferent to whether the system is at equilibrium, close to equilibrium or far
from it. “Far for equilibrium” in this context refers to systems with large devia-
tions from Maxwell’s equilibrium velocity distribution. Furthermore, the theory
of dynamical systems has yielded new sets of microscopic dynamics formulas for
macroscopic observables such as diffusion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysis of transport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made, and
the all correlations are taken into account by the inclusion of cycles of all periods.
The infinite extent systems for which the periodic orbit theory yields formulas for
diffusion and other transport coefficients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The motivation are physical
problems such as beam defocusing in particle accelerators or chaotic behavior of
passive tracers in 2-dimensional rotating flows, problems which can be described
as deterministic diffusion in periodic arrays.

In sect. 24.1 we derive the formulas for diffusion coefficients in a simple phys-
ical setting, the 2-dimensional periodic Lorentz gas. This system, however, is not
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CHAPTER 24. DETERMINISTIC DIFFUSION 451

Figure 24.1: Deterministic diffusion in a finite horizon
periodic Lorentz gas. (T. Zhang)

the best one to illustrate the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1-dimensional maps
in sect. 24.2.

24.1 Diffusion in periodic arrays

Chaos happens - let’s make a better use of it.
— Edward Tenner

The 2-dimensional Lorentz gas is an infinite scatterer array in which diffusion of a
light molecule in a gas of heavy scatterers is modeled by the motion of a point par-
ticle in a plane bouncing off an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of any number of pointlike
fast “light molecules” interacting only with the stationary “heavy molecules” and
not among themselves. As the scatterer array is built up from only defocusing
concave surfaces, it is a pure hyperbolic system, and one of the simplest non-
trivial dynamical systems that exhibits deterministic diffusion, figure 24.1. We
shall now show that the periodic Lorentz gas is amenable to a purely determin-
istic treatment. In this class of open dynamical systems quantities characterizing
global dynamics, such as the Lyapunov exponent, pressure and diffusion constant,
can be computed from the dynamics restricted to the elementary cell. The method
applies to any hyperbolic dynamical system that is a periodic tiling M̂ =

⋃
n̂∈T Mn̂

of the dynamical state space M̂ by translatesMn̂ of an elementary cellM, with
T the abelian group of lattice translations (see figure 24.2). If the scattering array
has further discrete rotational and reflection symmetries (G/T is a point group),
each elementary cell may be built from a fundamental domain M̃ by the action
of a discrete (not necessarily abelian) group G. The symbol M̂ refers here to the
full state space, i.e., both the spatial coordinates and the momenta. The spatial
component of M̂ is the complement of the disks in the whole space.

We shall now relate the dynamics inM to diffusive properties of the Lorentz
gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of figure 24.3.

diffusion - 15aug2016 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 24. DETERMINISTIC DIFFUSION 452

Figure 24.2: An elementary cell and its six nearest
neighbor translations. The ratio (24.1) of the distance
between a nearest pair of disks and the disk radius de-
termines the dynamical properties in the system: the
horizon is finite for w/r <= 0.3094 · · · , and infinite
beyond that. (T. Zhang)

wr

We distinguish two types of diffusive behavior; the infinite horizon case, which
allows for infinite length flights, and the finite horizon case, where any free particle
trajectory must hit a disk in finite time. Consider figure 24.2, where w is the
distance between a nearest pair of disks and r is the disk radius (here set to r = 1).
The ratio w/r is the only parametar of the problem, the parameter that determines
the dynamical properties in the system: the horizon is finite for

w
r
<

4
√

3
− 2 = 0.3094 · · · , (24.1)

and infinite beyond that. In this chapter we shall restrict our consideration to the
finite horizon case, with disks sufficiently large so that no infinite length free flight
is possible. In this case the diffusion is normal, with x̂(t)2 growing like t. We shall
discuss the anomalous diffusion case in sect. 24.3.

As we will work with three kinds of state spaces, good manners require that
we repeat what tildes, nothings and hats atop symbols signify:

˜ fundamental domain, triangle in figure 24.3

elementary cell, hexagon in figure 24.3

ˆ full state space, lattice in figure 24.3 (24.2)

It is convenient to define an evolution operator for each of the 3 cases of fig-
ure 24.3. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached by the
flow in time t. x(t) = f t(x0) denotes the corresponding flow in the elementary
cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (24.3)

the translation of the endpoint of the global path into the elementary cellM. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃; f̃ t(x̃) is
related to f t(x̃) by a discrete symmetry g ∈ G which maps x̃(t) ∈ M̃ to x(t) ∈ M .

chapter 25

Fix a vector β ∈ Rd, where d is the dimension of the state space. We will
compute the diffusive properties of the Lorentz gas from the leading eigenvalue of
the evolution operator (20.10)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (24.4)
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Figure 24.3: A periodic lattice of reflecting disks
M̂ is tiled by copies of the fundamental domain
M̃. (a) Motion in the fundamental domain M̃ (top
left), the elementary cell M (top right), and the
full state space M̂ (bottom). (b) The above trajec-
tory unwrapped in the full space and its 11 copies
obtained by applying the twelve D6 point group
actions to it. (from ref. [15]).

(a) (b)

where the average is over all initial points in the elementary cell, x ∈ M.

If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

2dDi j =
∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,

yield a diffusion matrix. This symmetric matrix can, in general, be anisotropic
(i.e., have d distinct eigenvalues and eigenvectors). The spatial diffusion constant
is then given by the Einstein relation (20.30)

D =
1

2d

∑
i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the state space vectors
x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d degrees of
freedom.

We now turn to the connection between (24.4) and periodic orbits in the ele-
mentary cell. As the full M̂ → M̃ reduction is complicated by the non-abelian

remark 24.5
nature of G, we discuss only the abelian M̂ → M reduction.

24.1.1 Reduction from M̂ toM

The key idea follows from inspection of the relation

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M

dx is the volume of the elementary cellM. Due to translational symme-
try, it suffices to start with a density of trajectories defined over a single elementary
cellM. As in sect. 20.2, we have used the identity 1 =

∫
M

dy δ(y − x̂(t)) to moti-
vate the introduction of the evolution operator Lt(ŷ, x). There is a unique lattice
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translation n̂ such that ŷ = y − n̂, with the endpoint y ∈ M translated back to the
elementary cell, and f t(x) given by (24.3). The difference is a translation by a
constant lattice vector n̂, and the Jacobian for changing integration from dŷ to dy
equals unity. Therefore, and this is the main point, translation invariance can be
used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x,y∈M

dxdy eβ·( f̂ t(x)−x)δ(y − f t(x)) . (24.5)

As this is a translation, the Jacobian is |∂ŷ/∂y| = 1. In this way the global f̂ t(x)
flow, infinite volume state space averages can be computed by following the flow
f t(x0) restricted to the compact, finite volume elementary cellM. The equation
(24.5) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (24.6)

where x̂(t) = f̂ t(x) ∈ M̂ is the displacement in the full space, but x, f t(x), y ∈ M.
It is straightforward to check that this operator satisfies the semigroup property
(20.16),∫

M

dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) .

For β = 0, the operator (24.6) is the Perron-Frobenius operator (19.10), with the
leading eigenvalue es0 = 1 because there is no escape from this system (see the
flow conservation sum rule (23.17)).

The rest is old hat. The spectrum of L is evaluated by taking the trace
section 21.2

trLt =

∫
M

dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (24.3). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orbit is called standing
if it is also periodic orbit of the infinite state space dynamics, f̂ Tp(x) = x, and it
is called running if it corresponds to a lattice translation in the dynamics on the
infinite state space, f̂ Tp(x) = x + n̂p. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ friend from chapter 11. In
the theory of area–preserving maps such as the standard map of example 8.7 these
orbits are called accelerator modes, as the diffusion takes place along the momen-
tum rather than the position coordinate. The traveled distance n̂p = n̂Tp(x0) is
independent of the starting point x0, as can be easily seen by continuing the path
periodically in M̂.

The final result is the spectral determinant (22.5)

det (s(β) −A) =
∏

p

exp

− ∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
 , (24.7)

or the corresponding dynamical zeta function (22.11)

1/ζ(β, s) =
∏

p

(
1 −

e(β·n̂p−sTp)

|Λp|

)
. (24.8)
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The dynamical zeta function cycle averaging formula (23.24) for the diffusion
constant (20.30), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1

2d
〈x̂2〉ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
. (24.9)

where the sum is over all distinct non-repeating combination of prime cycles. The
derivation is standard, still the formula is strange. Diffusion is unbounded motion
across an infinite lattice; nevertheless, the reduction to the elementary cell enables
us to compute relevant quantities in the usual way, in terms of periodic orbits.

A sleepy reader might protest that x(Tp) − x(0) is manifestly equal to zero for
a periodic orbit. That is correct; n̂p in the above formula refers to a displacement
x̂(Tp) on the infinite periodic lattice, while p refers to closed orbit of the dynamics
f t(x) reduced to the elementary cell, with xp a periodic point in the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have x̂2
p = 0,

and contribute only to the time normalization 〈T〉ζ . The mean square displace-
ment 〈x̂2〉ζ gets contributions only from the periodic runaway trajectories; they
are closed in the elementary cell, but on the periodic lattice each one grows like
x̂(t)2 = (n̂p/Tp)2t2 = v2

pt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transport or no transport at all:
diffusion arises as a balance between the two kinds of motion, weighted by the
1/|Λp| measure. If the system is not hyperbolic such weights may be abnormally
large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, where λ is the Lyapunov
exponent, and they may lead to anomalous diffusion - accelerated or slowed down
depending on whether the probabilities of the running or the standing orbits are
enhanced.

section 24.3

We illustrate the main idea, tracking of a globally diffusing orbit by the as-
sociated confined orbit restricted to the elementary cell, with a class of simple
1-dimensional dynamical systems where all transport coefficients can be evalu-
ated analytically. For another example of deterministic diffusion in a Hamiltonian

appendix A24
system, consult appendix A24.

24.2 Diffusion induced by chains of 1-dimensional maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in one bounce, and then the
process is repeated. As was shown in chapter 14, the essential part of this pro-
cess is the stretching along the unstable directions of the flow, and in the crudest
approximation the dynamics can be modeled by 1-dimensional expanding maps.
This observation motivates introduction of a class of particularly simple 1-dimen-
sional systems.

example 24.1

p. 466
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Figure 24.4: (a) f̂ (x̂), the full space sawtooth map
(24.21), Λ > 2. (b) f (x), the sawtooth map re-
stricted to the unit circle (24.24), Λ = 6.

(a)

f(x)

a

x̂

^^

(b)

f(x)

x0 1

1

1 3 5 6 4 2

As noted in sect. 24.1.1, the elementary cell cycles correspond to either stand-
ing or running orbits for the map on the full line: we shall refer to n̂p ∈ Z as the
jumping number of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (24.10)

The diffusion constant formula (24.9) for 1-dimensional maps is

D =
1
2
〈n̂2〉ζ

〈n〉ζ
, (24.11)

where the “mean cycle time” is given by (23.25)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (24.12)

and the “mean cycle displacement squared” by (23.27)

〈n̂2〉ζ =
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
, (24.13)

the primed sum indicating all distinct non-repeating combinations of prime cy-
cles. The evaluation of these formulas for the simple system of example 24.1 will
require nothing more than pencil and paper.

example 24.2

p. 466

24.2.1 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (24.14)

known for k > 2 as the Burnett coefficients. The behavior of the higher order coef-
ficients yields information on the relaxation to the asymptotic distribution function
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Figure 24.5: (a) A partition of the unit interval
into six intervals, example 24.4, labeled by the
jumping number n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}.
The partition is Markov, as the critical point is
mapped onto the right border of M1+ . (b) The
transition graph for this partition. (c) The transi-
tion graph in the compact Vadim Moroz notation
of (24.32).
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generated by the diffusive process. Here x̂t is the relevant dynamical variable and
Bk’s are related to moments 〈x̂k

t 〉 of arbitrary order.

Were the diffusive process purely Gaussian

ets(β) =
1

√
4πDt

∫ +∞

−∞

dx̂ eβx̂e−x̂2/(4Dt) = eβ
2Dt (24.15)

the only Bk coefficient different from zero would be B2 = D. Hence, nonvan-
ishing higher order coefficients signal deviations of deterministic diffusion from a
Gaussian stochastic process.

example 24.3

p. 467

We see that deterministic diffusion is not a Gaussian stochastic process. Higher
order even coefficients may be calculated along the same lines.

24.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which
this occurs in two iterations, leaving other cases as exercises. The key idea
is to construct a Markov partition (14.2), with intervals mapped onto unions of
intervals.

example 24.4

p. 467

It is by now clear how to build an infinite hierarchy of finite Markov parti-
tions: tune the slope in such a way that the critical value f (1/2) is mapped into
the fixed point at the origin, f n(1/2) = 0, in a finite number of iterations n. By
taking higher and higher values of n one constructs a dense set of Markov param-
eter values, organized into a hierarchy that resembles the way in which rationals
are densely embedded in the unit interval. For example, each of the 6 primary in-
tervals can be subdivided into 6 intervals obtained by the 2-nd iterate of the map,
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and for the critical point mapping into any of those in 2 steps the grammar (and
the corresponding cycle expansion) is finite. So, if we can prove continuity of
D = D(Λ), we can apply the periodic orbit theory to the sawtooth map (24.21) for
a random “generic” value of the parameter Λ, for example Λ = 4.5. The idea is to
bracket this value of Λ by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and study their convergence
toward the value of D for Λ = 4.5. Some details of how this is accomplished are
given in appendix A14.3 for a related problem, the pruned Bernoulli shift. Judg-
ing how difficult such problem is already for a tent map (see sect. 18.5), this is not
likely to take only a week of work.

Expressions like (24.28) may lead to an expectation that the diffusion coeffi-
cient (and thus transport properties) are smooth functions of parameters control-
ling the chaoticity of the system. For example, one might expect that the diffu-
sion coefficient increases smoothly and monotonically as the slope Λ of the map
(24.21) is increased, or, perhaps more physically, that the diffusion coefficient is a
smooth function of the Lyapunov exponent λ. This turns out not to be true: D as
a function of Λ is a fractal, nowhere differentiable curve illustrated in figure 24.6.
The dependence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely hyper-
bolic systems such as the Lozi map and the 1-dimensional diffusion map (24.21).
The trouble arises due to non-smooth dependence of the topological entropy on
system parameters - any parameter change, no mater how small, leads to creation
and destruction of infinitely many periodic orbits. As far as diffusion is concerned
this means that even though local expansion rate is a smooth function of Λ, the
number of ways in which the trajectory can re-enter the initial cell is an irregular
function of Λ.

The lesson is that lack of structural stability implies lack of spectral stability,
and no global observable is expected to depend smoothly on the system parame-
ters. If you want to master the material, working through one of the deterministic
diffusion projects on ChaosBook.org/pages is strongly recommended.

24.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter 29 have on transport properties? A
marginal fixed point affects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomalous diffusion.

example 24.5

p. 469

D vanishes by the implicit function theorem, z′′(β)|β=1 = 0 when α ≤ 1. The
physical interpretation is that a typical orbit will stick for long times near the 0
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Figure 24.6: The dependence of D on the map parameter a is continuous, but not monotone. Here
a stands for the slope Λ in (24.21) (from R. Klages thesis [29]).
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marginal fixed point, and the ‘trapping time’ will be larger for higher values of the
intermittency parameter s (recall α = 1/s). In that case one needs to look more
closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with re-
spect to expectation values of state space observables (see sect. 24.1): if we use
the diffusion dynamical zeta function (24.8), we may write the diffusion coeffi-
cient as an inverse Laplace transform, in such a way that the distinction between
maps and flows has vanished. In the case of 1-dimensional diffusion we thus have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(24.16)

where the ζ′ refers to the derivative with respect to s.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed using Tauberian theorems. We shall take

ω(λ) =

∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ 7→ 0 and x 7→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼
1
λρ

L
(

1
λ

)
if and only if

u(x) ∼
1

Γ(ρ)
xρ−1L(x) ,

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ

+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

))
cosh β

1 − 4
Λ

e−s cosh β − Λ−4
Λζ(1+α) e

−s(e−s, α + 1) cosh βJ
.

Taking the second derivative with respect to β we obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ

+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

)(
1 − 4

Λ
e−s − Λ−4

Λζ(1+α) e
−sJ(e−s, α + 1)

)2 = gα(s) . (24.17)

The asymptotic behavior of the inverse Laplace transform (24.16) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior of
Jonquière functions near z = 1. The deviations from normal behavior correspond
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to an explicit dependence of D on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have

gα(s) ∼


s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
exercise 24.6

〈(x − x0)2〉t ∼


tα for α ∈ (0, 1)
t/ ln t for α = 1
t for α > 1 .

(24.18)

Résumé

Perfection itself is imperfection.
— Vladimir Horowitz

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only to the finite Lyapunov time TLyap ≈ λ

−1 ln |L/δx| . Beyond that, chaos rules.
We have discussed the implications in sect. 1.8: chaos is good news for prediction
of long term observables such as transport in statistical mechanics.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )

2

|Λp1 · · ·Λpk |
.

Such formulas are exact; the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums required for their evaluation.
Here there are no phenomenological macroscopic parameters; quantities such as
transport coefficients are calculable to any desired accuracy from the microscopic
dynamics.

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of the diffusion constant on the system
parameters (see sect. 1.8), and through non-Gaussion relaxation to equilibrium

section 1.8
(non-vanishing Burnett coefficients).
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That Smale’s “structural stability" conjecture turned out to be wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhaps its most dramatic ex-
perimentally measurable prediction. As long as microscopic periodicity of the
physical system, such as a face of a crystal, is exact, the prediction is counterin-
tuitive for a physicist - transport coefficients are not smooth functions of system
parameters, rather they are non-monotonic, nowhere differentiable functions.

Commentary

Remark 24.1. Lorentz gas. The “Lorentz gas” is one of the simplest hyperbolic
Hamiltonian dynamical systems that exhibits chaos and deterministic diffusion. The orig-
inal Lorentz gas [36] assumed a random distribution of heavy scatterers; a description of
such gas requires statistical assumptions about the distribution of scatterers. A periodic
Lorenz gas (configuration of scatterers invariant under a discrete group of translations of
the plane), however, is amenable to pure deterministic description. Ergodic properties of
periodic Lorenz gases were first studied by Sinai [39], and its diffusive properties have
been extensively studied ever since [8–11, 19, 22, 37]. One distinguishes the infinite
horizon diffusive behavior, which allows for infinite length flights, from the finite horizon
case [10], where the particle always hits the next disk in finite time, and the diffusion is
normal [7, 10], with x̂(t)2 growing like t. Most of the periodic Lorentz gas literature, such
as Bunimovich and Sinai [10], is focused on the symmetries under discrete translations
of periodic tilings of the plane, usually defined by a parallelepipedal “primitive unit cell”
(also called “fundamental domain” in literature; here that term will be reserved for the
smallest tile that tiles the hexagon). However, for a triangular periodic Lorentz gas the
full symmetry group is the space group p6mm (see Chapter 11 of ref. [13] for a discus-
sion of the geometry of space groups), and the natural tiling is in terms of the hexagon
centered on the scattering disk (“Wigner-Seitz cell”, “Voronoi cell”). For a recent review
see Dettmann [16].

Remark 24.2. Who’s dunnit? Cycle expansions for the diffusion constant of a particle
moving in a periodic array have been introduced by Artuso [1] (exact dynamical zeta func-
tion for 1-dimensional chains of maps (24.9)), by Vance [40] (who applied the Artuso [1]
formula to the Lorentz gas) and by Cvitanović, Eckmann and Gaspard [14] (the dynamical
zeta function cycle expansion (24.9) applied to the Lorentz gas). Attempts to evaluate the
Lorentz gas dynamical zeta function cycle expansion were carried out by Schreiber [15]
and Zhang [41].

Remark 24.3. Lack of structural stability for D. Expressions like (24.28) may lead
to an expectation that the diffusion coefficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized, for example, by the Lyapunov
exponent λ = ln Λ). This turns out not to be true: D as a function of Λ is a fractal, nowhere
differentiable curve shown in figure 24.6. The dependence of D on the map parameter Λ

is rather unexpected - even though for larger Λ more points are mapped outside the unit
cell in one iteration, the diffusion constant does not necessarily grow. We refer the reader
to refs. [23, 38] for early work on the deterministic diffusion induced by 1-dimensional
maps. The sawtooth map (24.21) was introduced by Grossmann and Fujisaka [26] who
derived the integer slope formulas (24.28) for the diffusion constant. The sawtooth map
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is also discussed in ref. [21]. The fractal dependence of diffusion constant on the map
parameter is discussed in refs. [29, 32, 33]. Keller, Howard and Klages [28] show that for
piecewise C2 expanding interval maps the diffusion coefficient D is Lipschitz continuous
under parameter variations, up to quadratic logarithmic corrections. R. Klages lecture
notes [31] a quick, first-year Ph.D. introduction to the concept of deterministic diffusion.
For the current state of the art of fractal transport coefficients consult the first part of
Klage’s monograph [30]. Sect. 1.8 discusses briefly the experimental implications; would
be sweet if someone actually check these predictions in an experiment. No fractal-like
behavior of the conductivity for the Lorentz gas has been detected so far [35]. Statistical
mechanicians (see, for example, Gallavotti and Cohen [20]) tend to believe that such
complicated behavior is not to be expected in systems with very many degrees of freedom,
as the addition to a large integer dimension of a number smaller than 1 should be as
unnoticeable as a microscopic perturbation of a macroscopic quantity.

Remark 24.4. Symmetry factorization in one dimension. In the β = 0 limit the
dynamics (24.23) is symmetric under x → −x, and the zeta functions factorize into prod-
ucts of zeta functions for the symmetric and antisymmetric subspaces, as described in
example 25.9:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
∂

∂z
1
ζ

=
1
ζs

∂

∂z
1
ζa

+
1
ζa

∂

∂z
1
ζs
. (24.19)

The leading (material flow conserving) eigenvalue z = 1 belongs to the symmetric sub-
space 1/ζs(0, 1) = 0, so the derivatives (24.12) also depend only on the symmetric sub-
space:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (24.20)

Remark 24.5. Lorentz gas in the fundamental domain. The vector valued nature of
the moment-generating function (24.4) in the case under consideration makes it difficult
to perform a calculation of the diffusion constant within the fundamental domain. Yet we
point out that, at least as regards scalar quantities, the full reduction to M̃ leads to better
estimates. A proper symbolic dynamics in the fundamental domain has been introduced
in ref. [12].

In order to perform the full reduction for diffusion one should express the dynamical
zeta function (24.8) in terms of the prime cycles of the fundamental domain M̃ of the
lattice (see figure 24.3) rather than those of the elementary (Wigner-Seitz) cellM. This
problem is complicated by the breaking of the rotational symmetry by the auxiliary vector
β, or, in other words, the non-commutativity of translations and rotations: see ref. [14].
For a ‘fundamental domain’ in hyperbolic geometry, see for example these notes by K.
Martin.

Remark 24.6. Anomalous diffusion. Anomalous diffusion for 1-dimensional inter-
mittent maps was studied in the continuous time random walk approach in refs. [24, 25].
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Tp # cycles ζ(0,0) λ D
1 5 -0.2169759 1.39193 0.37795
2 10 -0.0248233 1.74541 0.23118
3 33 -0.0221962 1.72235 0.25257
4 108 -0.0002192 1.74450 0.24165
5 373 0.0023463 1.76079 0.24468
6 1378 0.0096330 1.75610 0.24068

numerical experiment 1.760 0.25

Table 24.1: The Lyapunov exponent λ and the diffusion constant D computed in the fundamental
domain, w = 0.3 disk-disk separation, disks radius = 1 (from Zhanget al. [41]).

The first approach within the framework of cycle expansions (based on truncated dynam-
ical zeta functions) was developed by Artuso et al. [2, 4]. For more recent developments,
consult refs. [3, 6] and Klages, Radons and Sokolov [34]. Our treatment follows methods
introduced in ref. [15], applied there to investigate the behavior of a Lorentz gas with
unbounded horizon.

Question 24.1. Henriette Roux wants to know
Q Do these Jonquière functions appear in physics?

exercise 29.1
A In statistical mechanics Jonquière function (24.35) appears in the theory of free Bose-
Einstein gas, see refs. [17, 18].
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24.4 Examples

Example 24.1. Chains of piecewise linear maps. We start by defining the map f̂ on
the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1 − Λ x̂ ∈ (1/2, 1] , Λ > 2 , (24.21)

and then extending the dynamics to the entire real line, by imposing the translation prop-
erty

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (24.22)

As the map is discontinuous at x̂ = 1/2, f̂ (1/2) is undefined, and the x = 1/2 point has to
be excluded from the Markov partition. The map is antisymmetric under the x̂-coordinate
flip

f̂ (x̂) = − f̂ (−x̂) , (24.23)

so the dynamics will exhibit no mean drift; all odd derivatives of the moment-generating
function (20.10) with respect to β, evaluated at β = 0, will vanish.

The map (24.21) is sketched in figure 24.4 (a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope Λ, other points jump n̂ cells, either to the right or to the
left. Repetition of this process generates a random walk for almost every initial condition.

The translational symmetry (24.22) relates the unbounded dynamics on the real line
to dynamics restricted to the elementary cell - in the example at hand, the unit interval
curled up into a circle. Associated to f̂ (x̂) we thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (24.24)

figure 24.4 (b), where [· · · ] stands for the integer part (24.3). For the piecewise linear map
of figure 24.4 we can evaluate the dynamical zeta function in closed form. Each branch
has the same value of the slope, and the map can be parameterized by a single parameter,
for example its critical value a = f̂ (1/2), the absolute maximum on the interval [0, 1]
related to the slope of the map by a = Λ/2. The larger Λ is, the stronger is the stretching
action of the map.

click to return: p. 454

Example 24.2. Unrestricted symbolic dynamics. Whenever Λ is an integer number,
the symbolic dynamics is exceedingly simple. For example, for the case Λ = 6 illus-
trated in figure 24.4 (b), the elementary cell map consists of 6 full branches, with uniform
stretching factor Λ = 6. The branches have different jumping numbers: for branches 1
and 2 we have n̂ = 0, for branch 3 we have n̂ = +1, for branch 4 n̂ = −1, and finally for
branches 5 and 6 we have respectively n̂ = +2 and n̂ = −2. The same structure reappears
whenever Λ is an even integer Λ = 2a: all branches are mapped onto the whole unit in-
terval and we have two n̂ = 0 branches, one branch for which n̂ = +1 and one for which
n̂ = −1, and so on, up to the maximal jump |n̂| = a − 1. The symbolic dynamics is thus
full, unrestricted shift in 2a symbols {0+, 1+, . . . , (a − 1)+, (a − 1)−, . . . , 1−, 0−}, where
the symbol indicates both the length and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight associated with a
given symbol sequence is a product of weights for individual steps, tsq = tstq. For the map
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of figure 24.4 there are 6 distinct weights (24.10):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full cancelation of
all curvature corrections in (23.8). The exact dynamical zeta function (18.13) is given by
the fixed point contributions:

1/ζ(β, z) = 1 − t0+
− t0− − · · · − t(a−1)+

− t(a−1)−

= 1 −
z
a

1 +

a−1∑
j=1

cosh(β j)

 . (24.25)

The leading (and only) eigenvalue of the evolution operator (24.6) is

s(β) = log

1
a

1 +

a−1∑
j=1

cosh(β j)


 , Λ = 2a, a integer . (24.26)

The flow conservation (23.17) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative s(0)′ vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift 〈x̂〉 = 0. The second derivative s(β)′′ yields the diffusion constant
(24.11):

〈n〉ζ = 2a
1
Λ

= 1 , 〈x̂2〉ζ = 2
02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a − 1)2

Λ
(24.27)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1

24
(Λ − 1)(Λ − 2) , Λ even integer . (24.28)

Similar calculation for odd integer Λ = 2k − 1 yields
exercise 24.1

D =
1

24
(Λ2 − 1) , Λ odd integer . (24.29)

click to return: p. 455

Example 24.3. B4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B4 (or kurtosis (A20.11)) is easily evaluated. For example,
using (24.26) in the case of even integer slope Λ = 2a we obtain

exercise 24.2

B4 = −
1

4! · 60
(a − 1)(2a − 1)(4a2 − 9a + 7) . (24.30)

click to return: p. 456

Example 24.4. A finite Markov partition. As an example we determine a value
of the parameter 4 ≤ Λ ≤ 6 for which f ( f (1/2)) = 0. As in the integer Λ case,
we partition the unit interval into six intervals, labeled by the jumping number n̂(x) ∈
{M0+

,M1+
,M2+

,M2− ,M1− ,M0− } , ordered by their placement along the unit interval,
figure 24.5 (a).
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In general the critical value a = f̂ (1/2) will not correspond to an interval bor-
der, but now we choose a such that the critical point is mapped onto the right bor-
der of M1+

. Equating f (1/2) with the right border of M1+
, x = 1/Λ, we obtain a

quadratic equation with the expanding solution Λ = 2(
√

2 + 1). For this parameter value
f (M2+

) = M0+

⋃
M1+

, f (M2− ) = M0−
⋃
M1− , while the remaining intervals map onto

the whole unit intervalM. The transition matrix (17.1) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+

φ1+

φ2+

φ2−
φ1−
φ0−


. (24.31)

One could diagonalize (24.31) on a computer, but, as we saw in chapter 17, the tran-
sition graph of figure 24.5 (b) corresponding to map figure 24.5 (a) offers more insight
into the dynamics. Figure 24.5 (b) can be redrawn more compactly as transition graph
figure 24.5 (c) by replacing parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (24.32)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (18.13) of sect. 18.3, we are led to the dynamical zeta func-
tion

1/ζ(β, z) = 1 − t0+
− t1+

− t2+0+
− t2+1+

− t2−1− − t2−0− − t1− − t0−

= 1 −
2z
Λ

(1 + cosh(β)) −
2z2

Λ2 (cosh(2β) + cosh(3β)) . (24.33)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynamical
zeta function we verify that

1/ζ(0, 1) = 1 −
4
Λ
−

4
Λ2 = 0 ,

as required by the flow conservation (23.17). Conversely, we could have started by picking
the desired Markov partition, writing down the corresponding dynamical zeta function,
and then fixing Λ by the 1/ζ(0, 1) = 0 condition. For more complicated transition graphs
this approach, together with the factorization (24.19), is helpful in reducing the order of
the polynomial condition that fixes Λ.

The diffusion constant follows from (24.11)
exercise 24.3

〈n〉ζ = 4
1
Λ

+ 4
2

Λ2 , 〈n̂2〉ζ = 2
12

Λ
+ 2

22

Λ2 + 2
32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (24.34)
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Figure 24.7: (a) A map with marginal fixed point.
(b) The map restricted to the unit circle.

(a) (b)

Example 24.5. Anomalous diffusion. Consider a 1-dimensional map of the real line
on itself shown in figure 24.7 (a), with the same properties as in sect. 24.2, except for a
marginal fixed point at x = 0. The corresponding circle map is given in figure 24.7 (b).

As in sect. 29.2.1, a branch with support in Mi, i = 1, 2, 3, 4 has constant slope Λi,
while f |M0 is of intermittent form. To keep you nimble, this time we take a slightly
different choice of slopes. The toy example of sect. 29.2.1 was cooked up so that the 1/s
branch cut in dynamical zeta function was the whole answer. Here we shall take a slightly
different route, and pick piecewise constant slopes such that the dynamical zeta function
for intermittent system can be expressed in terms of the Jonquière function

question 24.1

J(z, s) =

∞∑
k=1

zk/ks . (24.35)

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the infinite
alphabet {1, 2, 3, 4, 0i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with table 29.1). The
partitioning of the subinterval M0 is induced by M0k(right) = f̂ −k

(right)(M3
⋃
M4) (where

f̂ −1
(right) denotes the inverse of the right branch of f̂ |M0 ) and the same reasoning applies to

the leftmost branch. These are regions over which the slope of f̂ |M0 is constant. Thus we
have the following stabilities and jumping numbers associated to letters:

0k3, 0k4 Λp = k1+α

q/2 n̂p = 1

0l1, 0l2 Λp = l1+α

q/2 n̂p = −1
3, 4 Λp = ±Λ n̂p = 1
2, 1 Λp = ±Λ n̂p = −1 , (24.36)

where α = 1/s is determined by the intermittency exponent (29.1), while q is to be deter-
mined by the flow conservation (23.17) for f̂ :

4
Λ

+ 2qζ(α + 1) = 1
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(where ζ is the Riemann zeta function), so that q = (Λ − 4)/(2Λζ(α + 1)). The dynamical
zeta function picks up contributions just by the alphabet’s letters, as we have imposed
piecewise linearity, and can be expressed in terms of a Jonquière function (24.35):

1/ζ0(z, β) = 1 −
4
Λ

z cosh β −
Λ − 4

Λζ(1 + α)
z cosh β · J(z, α + 1) . (24.37)

Its first zero z(β) is determined by

4
Λ

z +
Λ − 4

Λζ(1 + α)
z · J(z, α + 1) =

1
cosh β

.
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Exercises

24.1. Diffusion for odd integer Λ. Show that when the slope
Λ = 2k−1 in (24.21) is an odd integer, the diffusion con-
stant is given by D = (Λ2 − 1)/24, as stated in (24.29).

24.2. Fourth-order transport coefficient. Verify (24.30).
You will need the identity

n∑
k=1

k4 =
1
30

n(n + 1)(2n + 1)(3n2 + 3n − 1) .

24.3. Finite Markov partitions. Verify (24.34).

24.4. Maps with variable peak shape: Consider the fol-
lowing piecewise linear map

fδ(x) =


3x

1−δ x ∈ M1
3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣) x ∈ M2

1 − 3
1−δ

(
x − 1

6 (2 + δ)
)

x ∈ M3

where M1 =
[
0, 1

3 (1 − δ)
]
, M2 =

[
1
3 (1 − δ), 1

6 (2 + δ)
]
,

M3 =
[

1
6 (2 + δ), 1

2

]
, and the map in [1/2, 1] is obtained

by antisymmetry with respect to x = 1/2, y = 1/2. Write
the corresponding dynamical zeta function relevant to
diffusion and then show that

D =
δ(2 + δ)
4(1 − δ)

See refs. [5, 27] for further details.

24.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5).
ChaosBook.org/projects offers several project-length
deterministic diffusion exercises.

24.6. Accelerated diffusion. (medium difficulty) Consider
a map h, such that ĥ = f̂ of figure 24.7 (b), but now run-
ning branches are turned into standing branches and vice

versa, so that 1, 2, 3, 4 are standing while 0 leads to both
positive and negative jumps. Build the corresponding
dynamical zeta function and show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24.7. Recurrence times for Lorentz gas with infinite hori-
zon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk ra-
dius R and unit lattice spacing. Label disks accord-
ing to the (integer) coordinates of their center: the se-
quence of recurrence times {t j} is given by the set of
collision times. Consider orbits that leave the disk sit-
ting at the origin and hit a disk far away after a free
flight (along the horizontal corridor). Initial conditions
are characterized by coordinates (φ, α) (φ determines the
initial position along the disk, while α gives the an-
gle of the initial velocity with respect to the outward
normal: the appropriate measure is then dφ cosα dα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how φ(T ) scales
for large values of T : this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk (n, 1), for large values of n (as
n 7→ ∞ n ' T ).

24.8. Diffusion reduced to the fundamental domain.

Maps such as figure 24.4 are antisymmetric. Re-
duce such antisymmetric maps as in example 10.5, and
write down the formula (24.11) for the diffusion con-
stant D in terms of the fundamental domain cycles (rela-
tive periodic orbits) alone (P. Gaspard says it cannot be
done [14]).
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Chapter 25

Discrete symmetry factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

To those versed in Quantum Mechanics (QM), utility of symmetries in reduc-
ing spectrum calculations is sine qua non: if a group of symmetries com-
mutes with the Hamiltonian, irreducible representations of the symmetry

group block-diagonalize it, each block spanned by a set of the degenerate eigen-
states of the same energy. Like most QM gymnastics, this block-diagonalization
has nothing to do with quantum mysteries, it is just linear algebra. As we shall
show here, classical spectral determinants factor in the same way, given that the
evolution operator Lt(y, x) for a system f t(x) is invariant under a discrete symme-
try group G = {e, g2, g3, · · · , g|G|} of order |G|. In the process we 1.) learn that the
classical dynamics, once recast into the language of evolution operators, is much
closer to quantum mechanics than is apparent in the Newtonian, ODE formula-
tion (linear evolution operators, group-theoretical spectral decompositions, . . .),
2.) that once the symmetry group is quotiented out, the dynamics simplifies, and
3.) it’s a triple home run: simpler symbolic dynamics, fewer cycles needed, much
better convergence of cycle expansions. Once you master this, going back to your
pre-desymmetrization ways is unthinkable.

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cycle p
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dµ-dimensional irreps D(µ)(g) of the symmetry group,

(1 − tp)mp =
∏
µ

det
(
1 − D(µ)(h p̂)tp̂

)dµ
, tp = t|G|/mp

p̂ ,

where t p̂ is the cycle weight evaluated on the relative periodic orbit p̂, |G| is the
order of the group, h p̂ is the group element relating the fundamental domain cycle
p̂ to a segment of the full space cycle p, and mp is the multiplicity of the p cycle.
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As dynamical zeta functions have particularly simple cycle expansions, a geomet-
rical shadowing interpretation of their convergence, and suffice for determination
of leading eigenvalues, we shall use them to explain the group-theoretic factoriza-
tions; the full spectral determinants can be factorized using the same techniques.

This chapter is meant to serve as a detailed guide to the computation of dyn-
amical zeta functions and spectral determinants for systems with discrete symme-
tries. Familiarity with basic group-theoretic notions is assumed, with some details
relegated to appendix A10.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working out two cases of physical interest:
Z2 = D1 and C3v = D3 symmetries. C2v = D1 × D1 and C4v = D4 symmetries
are discussed in appendix A25. We start with a review of some basic facts of the
group representation theory.

25.1 Transformation of functions

So far we have recast the problem of long time dynamics into language of lin-
ear operators acting of functions, simplest one of which is ρ(x, t), the density of
trajectories at time t. First we will explain what discrete symmetries do to such
functions, and then how they affect their evolution in time.

Let g be an abstract group element in G. For a discrete group a group element
is typically indexed by a discrete label, g = g j. For a continuous group it is
typically parametrized by a set of continuous parameters, g = g(θm). As discussed
on page 169, linear action of a group element g ∈ G on a state x ∈ M is given by
its matrix representation, a finite non-singular [d×d] matrix D(g):

x→ x′ = D(g) x . (25.1)

example 25.1

p. 490

example 25.2

p. 490

How does the group act on a function ρ of x? Denote by U(g) the operator
ρ′(x) = U(g) ρ(x) that returns the transformed function. One defines the trans-
formed function ρ′ by requiring that it has the same value at x′ = D(g)x as the
initial function has at x,

ρ′(x′) = U(g) ρ(D(g)x) = ρ(x) .

Replacing x → D(g)−1x, we find that a group element g ∈ G acts on a function
ρ(x) defined on state spaceM by its operator representation

U(g) ρ(x) = ρ(D(g)−1x) . (25.2)

This is the conventional, Wigner definition of the effect of transformations on
functions that should be familiar to master quantum mechanicians. Again: U(g) is
an ‘operator’, not a matrix - it is an operation whose only meaning is exactly what
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(25.2) says. And yes, Mathilde, the action on the state space points is D(g)−1x,
not D(g)x.

Consider next the effect of two successive transformations g1, g2:

U(g2)U(g1) ρ(x) = U(g2) ρ(D(g1)−1x) = ρ(D(g2)−1D(g1)−1x)

= ρ(D(g1g2)−1x) = U(g)ρ(x) .

Hence if g1g2 = g, we have U(g2)U(g1) = U(g): so operators U(g) form a repre-
sentation of the group.

25.2 Taking care of fundamentals

Instant gratification takes too long.
— Carrie Fisher

If a dynamical system (M, f ) is equivariant under a discrete symmetry (visualize
the 3-disk billiard, figure 10.1), the state spaceM can be tiled by a fundamental
domain M̂ and its images M̂2 = g2M̂, M̂3 = g3M̂, . . . under the action of the
symmetry group G = {e, g2, . . . , g|G|} ,

section 11.3

M =
∑
g∈G

M̂g = M̂ ∪ M̂2 ∪ M̂3 · · · ∪ M̂|G| . (25.3)

example 25.3

p. 490

25.2.1 Regular representation

Take an arbitrary function ρ(x) defined over the state space x ∈ M. If the state
space is tiled by a fundamental domain M̂ and its copies, function ρ(x) can be
written as a |G|-dimensional vector of functions, each function defined over the
fundamental domain x̂ ∈ M̂ only. The natural choice of a function space basis is
the |G|-component regular basis vector

ρ
reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 =


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 , (25.4)

constructed from an arbitrary function ρ(x) defined over the entire state spaceM,
by applying U(g−1) to ρ(x̂) for each g ∈ G, with state space points restricted to the
fundamental domain, x̂ ∈ M̂.
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Now apply group action operator U(g) to a regular basis vector:

U(g)


ρ( D(e)x̂ )
ρ(D(g2)x̂)

...
ρ(D(g|G|)x̂)

 =


ρ( D(g−1)x̂ )
ρ(D(g−1g2)x̂)

...
ρ(D(g−1g|G|)x̂)

 .
It acts by permuting the components. (And yes, Mathilde, the pesky g−1 is inher-
ited from (25.2), and there is nothing you can do about it.) Thus the action of the
operator U(g) on a regular basis vector can be represented by the corresponding
[|G|×|G|] permutation matrix, called the left regular representation Dreg(g),

U(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 = Dreg(g)


ρ

reg
1 (x̂)
ρ

reg
2 (x̂)
...

ρ
reg
|G| (x̂)

 .
A product of two permutations is a permutation, so this is a matrix representation
of the group. To compute its entries, write out the matrix multiplication explicitly,
labeling the vector components by the corresponding group elements,

ρ
reg
b (x̂) =

G∑
a

Dreg(g)ba ρ
reg
a (x̂) .

A product of two group elements g−1a is a unique element b, so the ath row of
Dreg(g) is all zeros, except the bth column which satisfies g = b−1a. We arrange the
columns of the multiplication table by the inverse group elements, as in table 25.1.
Setting multiplication table entries with g to 1, and the rest to 0 then defines the
regular representation matrix Dreg(g) for a given g,

Dreg(g)ab = δg,b−1a . (25.5)

For instance, in the case of the 2-element group {e, σ} the Dreg(g) can be either
the identity or the interchange of the two domain labels,

Dreg(e) =

[
1 0
0 1

]
, Dreg(σ) =

[
0 1
1 0

]
. (25.6)

The multiplication table for D3 is a more typical, nonabelian group example:
see table 25.1. The multiplication tables for C2 and C3 are given in table 25.2.

The regular representation of group identity element e is always the identity
matrix. As Dreg(g) is a permutation matrix, mapping a tile M̂a into a different tile
M̂ga , M̂a if g , e, only Dreg(e) has diagonal elements, and

tr Dreg(g) = |G| δg,e . (25.7)

example 25.4

p. 490

example 25.5

p. 491

symm - 11apr2015 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 25. DISCRETE SYMMETRY FACTORIZATION 477

D3 e σ12 σ23 σ31 C1/3 C2/3

e e σ12 σ23 σ31 C1/3 C2/3

(σ12)−1 σ12 e C1/3 C2/3 σ23 σ31
(σ23)−1 σ23 C2/3 e C1/3 σ31 σ12
(σ31)−1 σ31 C1/3 C2/3 e σ12 σ23
(C1/3)−1 C2/3 σ23 σ31 σ12 e C1/3

(C2/3)−1 C1/3 σ31 σ12 σ23 C2/3 e

Dreg(σ23) =



0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0


, Dreg(C1/3) =



0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0


Table 25.1: (top) The multiplication table of D3, the group of symmetries of a triangle. (bottom)
By (25.5), the 6 regular representation matrices Dreg(g) of dihedral group D3 have ‘1’ at the location
of g in the D3 multiplication table table 25.1, ‘0’ elsewhere. For example, the regular representation
of the action of operators U(σ23) and U(C2/3) on the regular basis (25.4) are shown here.

25.2.2 Irreps: to get invariants, average

A representation D(µ)(g) acting on dµ-dimensional vector space V (µ) is an irre-
ducible representation (irrep) of group G if its only invariant subspaces are V (µ)

and the null vector {0}. To develop a feeling for this, one can train on a number of
simple examples, and work out in each case explicitly a similarity transformation
S that brings Dreg(g) to a block diagonal form

S −1Dreg(g)S =


D(1)(g)

D(2)(g)
. . .

 (25.8)

for every group element g, such that the corresponding subspace is invariant under
actions g ∈ G, and contains no further nontrivial subspace within it. For the prob-
lem at hand we do not need to construct invariant subspaces ρ(µ)(x) and D(µ)(g)
explicitly. We are interested in the symmetry reduction of the trace formula, and
for that we will need only one simple result (lemma, theorem, whatever): the reg-
ular representation of a finite group contains all of its irreps µ, and its trace is
given by the sum

tr Dreg(g) =
∑
µ

dµ χ(µ)(g) , (25.9)

where dµ is the dimension of irrep µ, and the characters χ(µ)(g) are numbers intrin-
sic to the group G that have to be tabulated only once in the history of humanity.
And they all have been. The finiteness of the number of irreps and their dimen-
sions dµ follows from the dimension sum rule for tr Dreg(e), |G| =

∑
d2
µ.

The simplest example is afforded by the 1-dimensional subspace (irrep) given
by the fully symmetrized average of components of the regular basis function
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ρreg(x)

ρ(A1)(x) =
1
|G|

G∑
g

ρ(D(g) x) .

By construction, ρ(A1) is invariant under all actions of the group, U(g) ρ(A1)(x) =

ρ(A1)(x) . In other words, for every g this is an eigenvector of the regular repre-
sentation Dreg(g) with eigenvalue 1. Other eigenvalues, eigenvectors follow by
working out C3, CN (discrete Fourier transform!) and D3 examples.

example 25.6

p. 491

example 25.7

p. 491

example 25.8

p. 492

The beautiful Frobenius ‘character orthogonality’ theory of irreps (irreducible
representations) of finite groups follows, and is sketched here in appendix A25; it
says that all other invariant subspaces are obtained by weighted averages (‘projec-
tions’)

ρ(µ)(x) =
dµ
|G|

∑
g

χ(µ)(g) U(g) ρ(x) =
dµ
|G|

∑
g

χ(µ)(g) ρ(D(g−1)x) (25.10)

The above ρ(A1)(x) invariant subspace is a special case, with all χ(A1)(g) = 1.

By now the group acts in many different ways, so let us recapitulate:

g abstract group element, multiplies other elements
D(g) [d×d] state space transformation matrix, multiplies x ∈ M
U(g) operator, acts on functions ρ(x) defined over state spaceM

D(µ)(g) [dµ×dµ] irrep, acts on invariant subspace x ∈ M(µ)

Dreg(g) [|G|×|G|] regular matrix rep, acts on vectors x ∈ Mreg

Note that the state space transformation D(g) , D(e) can leave sets of ‘bound-
ary’ points invariant (or ‘invariant points’, see (10.9)); for example, under reflec-
tion σ across a symmetry plane, the plane itself remains invariant. The boundary
periodic orbits that belong to such pointwise invariant sets will require special
care in evaluations of trace formulas.

25.3 Dynamics in the fundamental domain

What happens in the fundamental domain, stays in the fun-
damental domain.

—Professore Dottore Gatto Nero

How does a group act on the evolution operator Lt(y, x)? As in (25.2), its value
should be the same if evaluated at the same points in the rotated coordinates,

U(g)Lt(y, x) = Lt(D(g)−1y,D(g)−1x) . (25.11)
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We are interested in a dynamical system invariant under the symmetry group G ,

i.e., with equations of motion invariant (equivariant) under all symmetries g ∈ G,
section 10.1

D(g) f t(x) = f t(D(g) x) , (25.12)

hence for the evolution operator defined by (20.14) (we can omit the observable
weight with no loss of generality, as long as the observable does not break the
symmetry):

U(g−1)Lt(y, x) = Lt(D(g) y,D(g) x)

= δ
(
D(g) y − f t(D(g) x)

)
= δ

(
D(g) (y − f t(x))

)
=

1
|det D(g)|

δ
(
y − f t(x)

)
.

For compact groups |det D(g)| = 1 by (10.3), so the evolution operator Lt(y, x) is
invariant under group actions,

U(g)Lt(y, x) = Lt(y, x) . (25.13)

This is as it should be. If G is a symmetry of dynamics, the law that moves
densities around should have the same form in all symmetry related coordinate
systems.

As the function ρ(x) that the evolution operator (20.14) acts on is now replaced
by the regular basis vector of functions (25.4) over the fundamental domain, the
evolution operator itself becomes a [|G|×|G|] matrix. If the initial point lies in tile
M̂a, its deterministic trajectory lands in the unique tile M̂b, with a unique relative
shift g = b−1a, with the only non-vanishing entry Lt(y, x)ba = Lt(D(b)ŷ,D(a)x̂)
wherever the regular representation Dreg(g)ba has entry 1 in row a and column
b. Using the evolution operator invariance (25.13) one can move the end point y
into the fundamental domain, and then use the relation g = b−1a to relate the start
point x to its image in the fundamental domain,

Lt(D(b)ŷ,D(a)x̂) = Lt(ŷ,D(g)x̂) ≡ L̂t(ŷ, x̂; g) .

For a given g all non-vanishing entries are the same, and the evolution operator
(20.14) is replaced by the [|G|×|G|] matrix of form

Lt
ba(ŷ, x̂; g) = Dreg(g)baL̂

t(ŷ, x̂; g) ,

if x̂ ∈ M̂a and ŷ ∈ M̂b, zero otherwise, and the evolution L̂t(ŷ, x̂; g) restricted to
M̂. Another way to say it is that the law of evolution in the fundamental domain
is given by

x̂(t) = f̂ t(x̂0) = D(g(t)) f t(x̂0) ,

where the matrix D(g(t)) is the group operation that maps the end point of the
full state space trajectory x(t) back to its fundamental domain representative x̂(t).
While the global trajectory runs over the full space M, the symmetry-reduced
trajectory is brought back into the fundamental domain M̂ every time it crosses
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into an adjoining tile; the two trajectories are related by the ‘reconstruction’ oper-
ation g = g(x̂0, t) which maps the global trajectory endpoint into its fundamental
domain image.

Now the traces (22.3) required for the evaluation of the eigenvalues of the
evolution operator can be computed on the fundamental domain alone

trLt =

∫
M

dxLt(x, x) =

G∑
g

tr Dreg(g)
∫
M̂

dx̂L̂t(x̂, x̂; g) . (25.14)

Nothing seems to have been gained: the trace of regular representation matrix
tr Dreg(g) = |G| δg,e guarantees that only those repeats of the fundamental domain
cycles p̂ that correspond to complete global cycles p contribute, and the factor
tr Dreg(e) = |G| simply says that integral over whole state space is |G| times the
integral over the fundamental domain.

example 25.10

p. 494

But not so fast! Nobody said that the traces of the irreps, tr D(µ)(g) = χ(µ)(g) ,
in the decomposition (25.9) are nonvanishing only for the identity operation e;
they pick up a contribution for every reconstruction operation g(x̂0, t),

trLt =
∑
µ

dµ tr L̂t
µ , tr L̂t

µ =

G∑
g

χ(µ)(g)
∫
M̂

dx̂ L̂t(x̂, x̂; g) , (25.15)

and then the fundamental domain trace
∫

dx̂ L̂t(x̂, x̂; g) picks up a contribution
from each fundamental domain prime cycle p̂, i.e., all relative periodic orbits

x̂ p̂ = gp̂ f T p̂(x̂p̂) , gp̂ = g(x̂p̂,T p̂) .

In chapter 11 we have shown that a discrete symmetry induces degeneracies
among periodic orbits and decomposes periodic orbits into repetitions of irre-
ducible segments; this reduction to a fundamental domain furthermore leads to
a convenient symbolic dynamics compatible with the symmetry, and, most impor-
tantly, to a factorization of dynamical zeta functions. This we now develop, first
in a general setting and then for specific examples.

25.4 Discrete symmetry factorizations

As we saw in chapter 11, discrete symmetries relate classes of periodic orbits and
reduce dynamics to a fundamental domain. Such symmetries simplify and im-
prove the cycle expansions in a rather beautiful way; in classical dynamics, just
as in quantum mechanics, the symmetrized subspaces can be probed by linear op-
erators of different symmetries. If a linear operator commutes with the symmetry,
it can be block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.
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We start by working out the factorization of dynamical zeta functions for
reflection-symmetric systems in sect. 25.5, and the factorization of the corre-
sponding spectral determinants in example 25.9. As reflection symmetry is essen-
tially the only discrete symmetry that a map of the interval can have, this example
completes the group-theoretic factorization of determinants and zeta functions for
1-dimensional maps.

25.4.1 Factorization of dynamical zeta functions

Let p be the full orbit, p̂ the orbit in the fundamental domain and hp̂ an element
of Hp, the symmetry group of p. Restricting the volume integrations to the in-
finitesimal neighborhoods of the cycles p and p̂, respectively, and performing the
standard resummations, we obtain the identity

(1 − tp)mp = det
(
1 − Dreg(h p̂)t p̂

)
, (25.16)

valid cycle by cycle in the Euler products (22.11) for the dynamical zeta func-
tion. Here ‘det ′ refers to the [|G|×|G|] regular matrix representation Dreg(h p̂); as
we shall see, this determinant can be evaluated in terms of irrep characters, and
no explicit representation of Dreg(h p̂) is needed. Finally, if a cycle p is invariant
under the symmetry subgroup Hp ⊆ G of order hp, its weight can be written as a
repetition of a fundamental domain cycle

tp = thp

p̂ (25.17)

computed on the irreducible segment that corresponds to a fundamental domain
cycle.

According to (25.16) and (25.17), the contribution of a degenerate class of
global cycles (cycle p with multiplicity mp = |G|/hp) to a dynamical zeta function
is given by the corresponding fundamental domain cycle p̂:

(1 − thp

p̂ )mp = det
(
1 − Dreg(g p̂)tp̂

)
(25.18)

Let Dreg(g) =
⊕

µ dµD(µ)(g) be the decomposition of the regular matrix represen-
tation into the dµ-dimensional irreps µ of a finite group G. Such decompositions
are block-diagonal, so the corresponding contribution to the Euler product (22.8)
factorizes as

det (1 − Dreg(g)t) =
∏
µ

det (1 − D(µ)(g)t)dµ , (25.19)

where now the product extends over all distinct dµ-dimensional irreps, each con-
tributing dµ times. For the cycle expansion purposes, it has been convenient to
emphasize that the group-theoretic factorization can be effected cycle by cycle, as
in (25.18); but from the evolution operator point of view, the key observation is
that the symmetry reduces the evolution operator to a block diagonal form; this
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block diagonalization implies that the dynamical zeta functions (22.11) factorize
as

1
ζ

=
∏
µ

1

ζ
dµ
µ

,
1
ζµ

=
∏

p̂

det
(
1 − D(µ)(g p̂)t p̂

)
. (25.20)

Determinants of d-dimensional irreps can be evaluated using the expansion of
determinants in terms of traces,

det (1 + M) = 1 + tr M +
1
2

(
(tr M)2 − tr M2

)
+

1
6

(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · · +

1
d!

(
(tr M)d − · · ·

)
, (25.21)

and each factor in (25.19) can be evaluated by looking up the characters χ(µ)(g) =

tr D(µ)(g) in standard tables [12]. In terms of characters, we have for the 1-
dimensional representations

det (1 − D(µ)(g)t) = 1 − χ(µ)(g)t ,

for the 2-dimensional representations

det (1 − D(µ)(g)t) = 1 − χ(µ)(g)t +
1
2

(
χ(µ)(g)2 − χ(µ)(g2)

)
t2,

and so forth.

In the fully symmetric subspace tr DA1(g) = 1 for all orbits; hence a straight-
forward fundamental domain computation (with no group theory weights) always
yields a part of the full spectrum. In practice this is the most interesting subspec-
trum, as it contains the leading eigenvalue of the evolution operator.

exercise 25.2

25.4.2 Factorization of spectral determinants

Factorization of the full spectral determinant (22.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above. By
(25.14) the trace of the evolution operator Lt splits into the sum of inequivalent
irreducible subspace contributions

∑
µ trLt

µ, with

trLt
µ = dµ

∑
g∈G

χ(µ)(g)
∫
M̂

dx̂Lt(D(g)−1 x̂, x̂) .

This leads by standard manipulations to the factorization of (22.8) into

F(z) =
∏
µ

Fµ(z)dµ

Fµ(z) = exp

−∑
p̂

∞∑
r=1

1
r

χ(µ)(gr
p̂)zn p̂r

|det
(
1 − M̂r

p̂

)
|

 , (25.22)
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where M̂ p̂ = D(g p̂)M p̂ is the fundamental domain Jacobian. Boundary orbits
require special treatment, discussed in sect. 25.4.3, with examples given in the
next section as well as in the specific factorizations discussed below.

25.4.3 Boundary orbits

(continued from sect. 11.4) Before we can turn to a presentation of the factoriza-
tions of dynamical zeta functions for the different symmetries we have to discuss
an effect that arises for orbits that run on a symmetry line that borders a funda-
mental domain. In our 3-disk example, no such orbits are possible, but they exist
in other systems, such as in the bounded region of the Hénon-Heiles potential
and in 1-d maps. For the symmetrical 4-disk billiard, there are in principle two
kinds of such orbits, one kind bouncing back and forth between two diagonally
opposed disks and the other kind moving along the other axis of reflection symme-
try; the latter exists for bounded systems only. While there are typically very few
boundary orbits, they tend to be among the shortest orbits, and their neglect can
seriously degrade the convergence of cycle expansions, as those are dominated by
the shortest cycles.

While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the Jacobian matrix Mp of the linearization per-
pendicular to the orbit and thus the eigenvalues. Typically, e.g. if the symmetry
is a reflection, some eigenvalues of Mp change sign. This means that instead of
a weight 1/det (1 − Mp) as for a regular orbit, boundary cycles also pick up con-
tributions of form 1/det (1 − D(g)Mp), where D(g) is a symmetry operation that
leaves the orbit pointwise invariant; see example 25.9.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of a dynamical zeta func-
tion (22.11) from a determinant like (22.8) usually starts with an expansion of the
determinants of the Jacobian. The leading order terms just contain the product of
the expanding eigenvalues and lead to the dynamical zeta function (22.11). Next
to leading order terms contain products of expanding and contracting eigenvalues
and are sensitive to their signs. Clearly, the weights tp in the dynamical zeta func-
tion will then be affected by reflections in the Poincaré section perpendicular to
the orbit. In all our applications it was possible to implement these effects by the
following simple prescription.

If an orbit is invariant under a little groupHp = {e, b2, . . . , bh}, then the corre-
sponding group element in (25.16) will be replaced by a projector. If the weights
are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (25.23)

In the cases that we have considered, the change of sign may be taken into account
by defining a sign function εp(g) = ±1, with the “-" sign if the symmetry element
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g flips the neighborhood. Then (25.23) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (25.24)

The factorizations (25.20), (25.22) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for Z2 and D3 symmetries. D2 and D4 symmetries are worked
out in appendix A25.

25.5 Z2 = D1 factorization

As the simplest example of implementing the above scheme consider the Z2 = D1
symmetry. For our purposes, all that we need to know here is that each orbit or
configuration is uniquely labeled by an infinite string {si}, si = +,− and that the
dynamics is invariant under the + ↔ − interchange, i.e., it is Z2 symmetric. The
Z2 symmetry cycles separate into two classes, the self-dual configurations +−,
+ + −−, + + + − −−, + − − + − + +−, · · · , with multiplicity mp = 1, and the
asymmetric configurations +, −, + + −, − − +, · · · , with multiplicity mp = 2.
For example, as there is no absolute distinction between the “up" and the “down"
spins, or the “left" or the “right" lobe, t+ = t−, t++− = t+−−, and so on.

exercise 25.6

The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard si ∈ {+,−}

Ising spin labeling by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (25.25)

For example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · · − + − + · · · maps into · · · 000 · · · = 0, − + +− = · · · − − + + − − + + · · ·

maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is given in
table 15.1.

Depending on the maximal symmetry groupHp that leaves an orbit p invariant
(see sect. 25.3 as well as example 25.9), the contributions to the dynamical zeta
function factor as

A1 A2

Hp = {e} : (1 − tp̂)2 = (1 − t p̂)(1 − tp̂)

Hp = {e, σ} : (1 − t2
p̂) = (1 − t p̂)(1 + tp̂) , (25.26)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)

H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t2
0
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This yields two binary cycle expansions. The A1 subspace dynamical zeta function
is given by the standard binary expansion (23.8). The antisymmetric A2 subspace
dynamical zeta function ζA2 differs from ζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)

(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)

(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (25.27)

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect. 25.4.3) with
group-theoretic factor hp = (e + σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̂)(1 − 0t p̂) (25.28)

This is the 1/ζ part of the boundary orbit factorization discussed in example 25.9,
where the factorization of the corresponding spectral determinants for the 1-dim-
ensional reflection symmetric maps is worked out in detail.

example 25.9

p. 493

25.6 D3 factorization: 3-disk game of pinball

The next example, the D3 symmetry, can be worked out by a glance at figure 15.13 (a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure 15.13 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced
by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type 0 reflects
the projectile to the disk it comes from (back–scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·
maps into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into
· · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions for short
cycles is given in table 15.2.
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D3 has two 1-dimensional irreps, symmetric and antisymmetric under reflec-
tions, denoted A1 and A2, and a pair of degenerate 2-dimensional representations
of mixed symmetry, denoted E. The contribution of an orbit with symmetry g to
the 1/ζ Euler product (25.19) factorizes according to

det (1 − Dreg(h)t) =
(
1 − χ(A1)(h)t

) (
1 − χ(A2)(h)t

) (
1 − χ(E)(h)t + χ(A2)(h)t2

)2

(25.29)

with the three factors contributing to the D3 irreps A1, A2 and E, respectively, and
the 3-disk dynamical zeta function factorizes into ζ = ζA1ζA2ζ

2
E . Substituting the

D3 characters [12]

D3 A1 A2 E
e 1 1 2

C,C2 1 1 −1
σv 1 −1 0

into (25.29), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

g p̂ A1 A2 E

e : (1 − t p̂)6 = (1 − t p̂)(1 − t p̂)(1 − 2t p̂ + t2
p̂)2

C,C2 : (1 − t3
p̂)2 = (1 − t p̂)(1 − t p̂)(1 + tp̂ + t2

p̂)2

σv : (1 − t2
p̂)3 = (1 − t p̂)(1 + t p̂)(1 + 0t p̂ − t2

p̂)2. (25.30)

where σv stands for any one of the three reflections.

The Euler product (22.11) on each irreducible subspace follows from the fac-
torization (25.30). On the symmetric A1 subspace the ζA1 is given by the standard
binary curvature expansion (23.8). The antisymmetric A2 subspace ζA2 differs
from ζA1 only by a minus sign for cycles with an odd number of 0’s, and is given
in (25.27). For the mixed-symmetry subspace E the curvature expansion is given
by

1/ζE = (1 + zt1 + z2t2
1)(1 − z2t2

0)(1 + z3t100 + z6t2
100)(1 − z4t2

10)

(1 + z4t1001 + z8t2
1001)(1 + z5t10000 + z10t2

10000)

(1 + z5t10101 + z10t2
10101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t2
1 − t2

0) + z3(t001 − t1t2
0)

+z4
[
t0011 + (t001 − t1t2

0)t1 − t2
01

]
(25.31)

+z5
[
t00001 + t01011 − 2t00111 + (t0011 − t2

01)t1 + (t2
1 − t2

0)t100
]

+ · · ·

We have reinserted the powers of z in order to group together cycles and pseudo-
cycles of the same length. Note that the factorized cycle expansions retain the
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curvature form; long cycles are still shadowed by (somewhat less obvious) com-
binations of pseudo-cycles.

Referring back to the topological polynomial (18.41) obtained by setting tp =

1, we see that its factorization is a consequence of the D3 factorization of the ζ
function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (25.32)

as obtained from (23.8), (25.27) and (25.31) for tp = 1.

Their symmetry is K = {e, σ}, so according to (25.23), they pick up the group-
theoretic factor gp = (e +σ)/2. If there is no sign change in tp, then evaluation of
det (1 − e+σ

2 t p̂) yields

A1 A2 E

boundary: (1 − tp)3 = (1 − tp̂)(1 − 0t p̂)(1 − tp̂)2 , tp = t p̂ . (25.33)

However, if the cycle weight changes sign under reflection, tσ p̂ = −t p̂, the bound-
ary orbit does not contribute to the subspace symmetric under reflection across the
orbit;

A1 A2 E

boundary: (1 − tp)3 = (1 − 0t p̂)(1 − tp̂)(1 − tp̂)2 , tp = t p̂ . (25.34)

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and ease of their evaluation.
Once this is appreciated, it is hard to conceive of a calculation without factor-
ization; it would correspond to quantum mechanical calculations without wave–
function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums to
the cycle expansions does not reduce the exponential growth in number of cycles
with the cycle length, in practice only the short orbits are used, and for them the
labor saving is dramatic. For example, for the 3-disk game of pinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta functions.
One reason is that the unfactorized dynamical zeta function has many closely
spaced zeros and zeros of multiplicity higher than one; since the cycle expansion
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is a polynomial expansion in topological cycle length, accommodating such be-
havior requires many terms. The dynamical zeta functions on separate subspaces
have more evenly and widely spaced zeros, are smoother, do not have symmetry-
induced multiple zeros, and fewer cycle expansion terms (short cycle truncations)
suffice to determine them. Furthermore, the cycles in the fundamental domain
sample state space more densely than in the full space. For example, for the 3-
disk problem, there are 9 distinct (symmetry unrelated) cycles of length 7 or less
in full space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 different
periodic points in 1/6-th the state space, i.e., an increase in density by a factor 3
with the same numerical effort.

We emphasize that the symmetry factorization (25.30) of the dynamical zeta
function is intrinsic to the classical dynamics, and not a special property of quantal
spectra. The factorization is not restricted to the Hamiltonian systems, or only to
the configuration space symmetries; for example, the discrete symmetry can be
a symmetry of the Hamiltonian phase space [16]. In conclusion, the manifold
advantages of the symmetry reduced dynamics should thus be obvious; full state
space cycle expansions, such as those of exercise 25.4, are useful only for cross-
checking purposes.

Commentary

Remark 25.1. Symmetry reductions in periodic orbit theory. Some of the standard
references on characters and irreps of compact groups are refs. [2, 6, 8, 12, 21]. We found
Tinkham [19] introduction to the basic concepts the most enjoyable.

This chapter is based on a collaborative effort with B. Eckhardt. The group-theoretic
factorizations of dynamical zeta functions that we develop here were first introduced
and applied in ref. [3]. They are closely related to the symmetrizations introduced by
Gutzwiller [10] in the context of the semiclassical periodic orbit trace formulas, put
into more general group-theoretic context by Robbins [16], whose exposition, together
with Lauritzen’s [13] treatment of the boundary orbits, has influenced the presentation
given here. The symmetry reduced trace formula for a finite symmetry group G =

{e, g2, . . . , g|G|} with |G| group elements, where the integral over Haar measure is replaced
by a finite group discrete sum |G|−1 ∑

g∈G = 1 , derived in ref. [3]. A related group-
theoretic decomposition in context of hyperbolic billiards was utilized in ref. [1], and for
the Selberg’s zeta function in ref. [20]. One of its loftier antecedents is the Artin factor-
ization formula of algebraic number theory, which expresses the zeta-function of a finite
extension of a given field as a product of L-functions over all irreps of the corresponding
Galois group.

The techniques of this chapter have been applied to computations of the 3-disk clas-
sical and quantum spectra in refs. [7, 17], and to a “Zeeman effect" pinball and the x2y2

potentials in ref. [4, 5]. In a larger perspective, the factorizations developed above are
special cases of a general approach to exploiting the group-theoretic invariances in spec-
tra computations, such as those used in enumeration of periodic geodesics [15, 18] for
hyperbolic billiards [9] and Selberg zeta functions [11].
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Remark 25.2. Other symmetries. In addition to the symmetries exploited here,
time reversal symmetry and a variety of other non-trivial discrete symmetries can induce
further relations among orbits; we shall point out several of examples of cycle degenera-
cies under time reversal. We do not know whether such symmetries can be exploited for
further improvements of cycle expansions.
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25.7 Examples

Example 25.1. A matrix representation of 2-element group Z2: If a 2-dimensional
map f (x) has the symmetry x1 → −x1, x2 → −x2, the symmetry group G consists of the
identity and C = C1/2, a rotation by π around the origin. The map f must then commute
with rotations by π, f (D(C)x) = D(C) f (x), with the matrix representation of C given by
the [2 × 2] matrix

D(C) =

[
−1 0
0 −1

]
. (25.35)

C satisfies C2 = e and can be used to decompose the state space into mutually orthog-
onal symmetric and antisymmetric subspaces by means of projection operators (25.50).
(continued in example 25.3)

click to return: p. 473

Example 25.2. A matrix representation of cyclic group C3: A 3-dimensional matrix
representation of the 3-element cyclic group C3 = {e,C1/3,C2/3} is given by the three
rotations by 2π/3 around z-axis in a 3-dimensional state space,

D(e) =

1 1
1

 , D(C1/3) =

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

1

 ,
D(C2/3) =

cos 4π
3 − sin 4π

3
sin 4π

3 cos 4π
3

1

 .
(continued in example 25.4) (X. Ding)

click to return: p. 473

Example 25.3. A 2-tiles state space: The state space M = {x1-x2 plane} of ex-
ample 25.1, with symmetry group G = {e,C}, can be tiled by a fundamental domain
M̂ = {half-plane x1 ≥ 0}, and CM̂ = {half-plane x1 ≤ 0}, its image under rotation by π.

click to return: p. 474

Example 25.4. The regular representation of cyclic group C3: (continued from
example 25.2) Take an arbitrary function ρ(x) over the state space x ∈ M, and define a
fundamental domain M̂ as a 1/3 wedge, with axis z as its (symmetry invariant) edge. The
state space is tiled with three copies of the wedge,

M = M̂1 ∪ M̂2 ∪ M̂3 = M̂ ∪C1/3M̂ ∪C2/3M̂ .

Function ρ(x) can be written as the 3-dimensional vector of functions over the fundamen-
tal domain x̂ ∈ M̂,

(ρreg
1 (x̂), ρreg

2 (x̂), ρreg
3 (x̂)) = (ρ(x̂), ρ(C1/3 x̂), ρ(C2/3 x̂)) . (25.36)

The multiplication table of C3 is given in table 25.2. By (25.5), the regular representation
matrices Dreg(g) have ‘1’ at the location of g in the multiplication table, ‘0’ elsewhere.
The actions of the operator U(g) are now represented by permutations matrices (blank
entries are zeros):

Dreg(e) =

1 1
1

 , Dreg(C1/3) =

 1
1

1

 , Dreg(C2/3) =

 1
1

1

 . (25.37)

(X. Ding)
click to return: p. 475
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Z2 e σ
e e σ
σ−1 σ e

C3 e C1/3 C2/3

e e C1/3 C2/3

(C1/3)−1 C2/3 e C1/3

(C2/3)−1 C1/3 C2/3 e

Table 25.2: The multiplication tables of the 2-element group Z2, and C3, the group of symmetries
of a 3-blade propeller.

Z2 e σ
A 1 1
B 1 -1

C3 e C1/3 C2/3

0 1 1 1
1 1 ω ω2

2 1 ω2 ω

D3 e 3σ 2C
A 1 1 1
B 1 -1 1
E 2 0 -1

Table 25.3: Z2, C3 and D3 character tables. The classes {σ12, σ13, σ14}, {C1/3,C2/3} are denoted 3σ,
2C, respectively.

Example 25.5. The regular representation of dihedral group D3: The multiplication
table of D3 is given in table 25.1. By (25.5), the 6 regular representation matrices Dreg(g)
have ‘1’ at the location of g in the multiplication table, ‘0’ elsewhere. For example,
the regular representation of the action of operators U(σ23) and U(C2/3) are given in
table 25.1. (X. Ding)

click to return: p. 475

Example 25.6. Irreps of cyclic group C3: (continued from example 25.4) We
would like to generalize the symmetric-antisymmetric functions decomposition of C2 to
the order 3 group C3. Symmetrization can be carried out on any number of functions, but
there is no obvious ‘antisymmetrization’. We draw instead inspiration from the Fourier
transformation for a finite periodic lattice, and construct from the regular basis (25.36) a
new set of basis functions

ρ0(x̂) =
1
3

[
ρ(x̂) + ρ(C1/3 x̂) + ρ(C2/3 x̂)

]
(25.38)

ρ1(x̂) =
1
3

[
ρ(x̂) + ωρ(C1/3 x̂) + ω2ρ(C2/3 x̂)

]
(25.39)

ρ2(x̂) =
1
3

[
ρ(x̂) + ω2ρ(C1/3 x̂) + ωρ(C2/3 x̂)

]
. (25.40)

The representation of group C3 in this new basis is block diagonal by inspection:

D(e) =

1 1
1

 , D(C1/3) =

1 0 0
0 ω 0
0 0 ω2

 , D(C2/3) =

1 0 0
0 ω2 0
0 0 ω

 . (25.41)

Here ω = e2iπ/3. So C3 has three 1-dimensional irreps ρ0, ρ1 and ρ2. Generalization to
any Cn is immediate: this is just a finite lattice Fourier transform. (X. Ding)

click to return: p. 477

Example 25.7. Character table of D3: (continued from example 25.5) Let us con-
struct table 25.3. Spectroscopists conventions are to use labels A and B for symmetric,
respectively antisymmetric nondegenerate irreps, and E for the doubly degenerate irreps.
So 1-dimensional representations are denoted by A and B, depending on whether the basis
function is symmetric or antisymmetric with respect to transpositions σi j. E denotes the
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2-dimensional representation. As D3 has 3 classes, the dimension sum rule d2
1 +d2

2 +d2
3 = 6

has only one solution d1 = d2 = 1, d3 = 2. Hence there are two 1-dimensional irreps and
one 2-dimensional irrep. The first column is 1, 1, 2, and the first row is 1, 1, 1 corre-
sponding to the 1-d symmetric representation. We take two approaches to figure out the
remaining 4 entries. First, since B is antisymmetric 1-d representation, so the characters
should be ±1. We anticipate χ(B)(σ) = −1 and can quickly figure out the remaining 3
positions. We check the obtained table satisfies the orthonormal relations. Second, denote
χ(B)(σ) = x and χ(E)(σ) = y, then from the orthonormal relation of the second column
with the first column and itself, we obtain 1 + x + 2y = 0, and 1 + x2 + y2 = 6/3, we get
two sets of solutions, one of them can be shown not compatible with other orthonormality
relations, so x = −1, y = 0. Similarly, we can get the other two characters. (X. Ding)

click to return: p. 477

Example 25.8. Basis for irreps of D3: (continued from example 25.7) From ta-
ble 25.3, we have

PAρ(x) =
1
6

[
ρ(x) + ρ(σ12x) + ρ(σ23x) + ρ(σ31x) + ρ(C1/3x) + ρ(C2/3x)

]
(25.42)

PBρ(x) =
1
6

[
ρ(x) − ρ(σ12x) − ρ(σ23x) − ρ(σ31x) + ρ(C1/3x) + ρ(C2/3x)

]
(25.43)

For projection into irrep E, we need to figure out the explicit matrix representation first.
Obviously, the following 2 by 2 matrices are E irrep.

DE(e) =

[
1 0
0 1

]
, DE(C1/3) =

[
ω 0
0 ω2

]
, DE(C2/3) =

[
ω2 0
0 ω

]
(25.44)

DE(σ12) =

[
0 1
1 0

]
, DE(σ23) =

[
0 ω2

ω 0

]
, DE(σ31) =

[
0 ω
ω2 0

]
(25.45)

So apply projection operator on ρ(x) and ρ(σ12x):

PE
1 ρ(x) =

1
3

[
ρ(x) + ωρ(C1/3x) + ω2ρ(C2/3x)

]
(25.46)

PE
2 ρ(x) =

1
3

[
ρ(x) + ω2ρ(C1/3x) + ωρ(C2/3x)

]
(25.47)

PE
1 ρ(σ12x) =

1
3

[
ρ(σ12x) + ωρ(σ31x) + ω2ρ(σ23x)

]
(25.48)

PE
2 ρ(σ12x) =

1
3

[
ρ(σ12x) + ω2ρ(σ31x) + ωρ(σ23x)

]
(25.49)

Under the invariant basis

{PAρ(x), PBρ(x), PE
1 ρ(x), PE

2 ρ(σ12x), PE
1 ρ(σ12x), PE

2 ρ(x)}

,

D(σ23) =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 ω2 0 0
0 0 ω 0 0 0
0 0 0 0 0 ω2

0 0 0 0 ω 0


D(C1/3) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 ω 0 0 0
0 0 0 ω2 0 0
0 0 0 0 ω 0
0 0 0 0 0 ω2


.

(X. Ding)
click to return: p. 477
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Example 25.9. Reflection symmetric 1-d maps: Consider f , a map on the interval with
reflection symmetry f (−x) = − f (x). A simple example is the piecewise-linear sawtooth
map of figure 11.4. Denote the reflection operation by σx = −x. The symmetry of the
map implies that if {xn} is a trajectory, than also {σxn} is a trajectory because σxn+1 =

σ f (xn) = f (σxn) . The dynamics can be restricted to a fundamental domain, in this case
to one half of the original interval; every time a trajectory leaves this interval, it can be
mapped back using σ. Furthermore, the evolution operator is invariant under the group,
U(σ)Lt(y, x) = Lt(y, x). σ satisfies σ2 = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric subspaces by means of projection
operators

PA1 =
1
2

(1 + U(σ)) , PA2 =
1
2

(1 − U(σ)) ,

Lt
A1

(y, x) = PA1L
t(y, x) =

1
2

(
Lt(y, x) +Lt(−y, x)

)
,

Lt
A2

(y, x) = PA2L
t(y, x) =

1
2

(
Lt(y, x) − Lt(−y, x)

)
. (25.50)

To compute the traces of the symmetrization and antisymmetrization projection op-
erators (25.50), we have to distinguish three kinds of cycles: asymmetric cycles a, sym-
metric cycles s built by repeats of irreducible segments s̃, and boundary cycles b. Now
we show that the spectral determinant can be written as the product over the three kinds
of cycles: det (1 − Lt) = det (1 − Lt)adet (1 − Lt)s̃det (1 − Lt)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa} ∩ {σxa} = ∅, where {xa} is
the set of periodic points belonging to the cycle a. Thus σ generates a second orbit with
the same number of points and the same stability properties. Both orbits give the same
contribution to the first term and no contribution to the second term in (25.50); as they are
degenerate, the prefactor 1/2 cancels. Resuming as in the derivation of (22.11) we find
that asymmetric orbits yield the same contribution to the symmetric and the antisymmetric
subspaces:

det (1 − L±)a =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with σ on the set of
periodic points reproduces the set. The period of a symmetric cycle is always even (ns =

2ns̃) and the mirror image of the xs periodic point is reached by traversing the irreducible
segment s̃ of length ns̃, f ns̃ (xs) = σxs. δ(x − f n(x)) picks up 2ns̃ contributions for every
even traversal, n = rns̃, r even, and δ(x + f n(x)) for every odd traversal, n = rns̃, r odd.
Absorb the group-theoretic prefactor in the Floquet multiplier by defining the stability
computed for a segment of length ns̃,

Λs̃ = −
∂ f ns̃ (x)
∂x

∣∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhoodMs of the s cycle, we obtain
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the contribution to trLn
±:

zntrLn
± →

∫
Ms

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

= ns̃

even∑
r=2

δn,rns̃

tr
s̃

1 − 1/Λr
s̃
±

odd∑
r=1

δn,rns̃

tr
s̃

1 − 1/Λr
s̃


= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1 − 1/Λr
s̃
.

Substituting all symmetric cycles s into det (1 − L±) and resuming we obtain:

det (1 − L±)s̃ =
∏

s̃

∞∏
k=0

1 ∓ ts̃

Λk
s̃



Boundary cycles: In the example at hand there is only one cycle which is neither symmet-
ric nor antisymmetric, but lies on the boundary of the fundamental domain, the fixed point
at the origin. Such cycle contributes simultaneously to both δ(x − f n(x)) and δ(x + f n(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(δ(x − f n(x)) ± δ(x + f n(x)))

=

∞∑
r=1

δn,r tr
b

1
2

(
1

1 − 1/Λr
b
±

1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
tr
b

1 − 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1

Λr
b

tr
b

1 − 1/Λ2r
b

.

Boundary orbit contributions to the factorized spectral determinants follow by resumma-
tion:

det (1 − L+)b =

∞∏
k=0

1 − tb
Λ2k

b

 , det (1 − L−)b =

∞∏
k=0

1 − tb
Λ2k+1

b


Only the even derivatives contribute to the symmetric subspace, and only the odd ones to
the antisymmetric subspace, because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the above
results:

F+(z) =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)∏
s̃

∞∏
k=0

1 − ts̃

Λk
s̃

 ∞∏
k=0

1 − tb
Λ2k

b



F−(z) =
∏

a

∞∏
k=0

(
1 −

ta
Λk

a

)∏
s̃

∞∏
k=0

1 +
ts̃

Λk
s̃

 ∞∏
k=0

1 − tb
Λ2k+1

b

 (25.51)

exercise 25.1
click to return: p. 484

Example 25.10. 3-disk billiard / D3 cycle weights factorized: Compare, for ex-
ample, the contributions of the 12 and 0 cycles of figure 15.13. tr Dreg(h)L̂ does not
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get a contribution from the 0 cycle, as the symmetry operation that maps the first half
of the 12 into the fundamental domain is a reflection, and tr Dreg(σ) = 0. In contrast,
σ2 = e, tr Dreg(σ2) = 6 insures that the repeat of the fundamental domain fixed point
tr (Dreg(h)L̂)2 = 6t2

0, gives the correct contribution to the global trace trL2 = 3 · 2t12.

We see by inspection in figure 15.13 that t12 = t2
0 and t123 = t3

1.
click to return: p. 479
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Exercises

25.1. Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of different sym-
metries and fundamental domain cycles for the saw-
tooth map of figure 11.4. Compute the dynamical zeta
function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (25.51).

25.2. 2-dimensional asymmetric representation. The
above expressions can sometimes be simplified further
using standard group-theoretical methods. For example,
the 1

2

(
(tr M)2 − tr M2

)
term in (25.21) is the trace of the

antisymmetric part of the M × M Kronecker product.
Show that if α is a 2-dimensional representation, this is
the A2 antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2 (h)t2. (25.52)

25.3. Characters of D3. (continued from exer-
cise 10.5) D3 � C3v, the group of symmetries of an
equilateral triangle: has three irreducible representa-
tions, two one-dimensional and the other one of multi-
plicity 2.

(a) All finite discrete groups are isomorphic to a per-
mutation group or one of its subgroups, and ele-
ments of the permutation group can be expressed
as cycles. Express the elements of the group D3
as cycles. For example, one of the rotations is
(123), meaning that vertex 1 maps to 2, 2 → 3,
and 3→ 1.

(b) Use your representation from exercise 10.5 to
compute the D3 character table.

(c) Use a more elegant method from the group-theory
literature to verify your D3 character table.

(d) Two D3 irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed
by [2×2] matrices. Find the matrices for all six
group elements in this representation.

(Hint: get yourself a good textbook, like Hamer-
mesh [12] or Tinkham [19], and read up on classes and
characters.)

25.4. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (23.3) for the 3-disk pin-
ball, assuming no symmetries between disks, is given

by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)
(1 − z3t123)(1 − z3t132)(1 − z4t1213)
(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·

= 1 − z2t12 − z2t23 − z2t31 − z3(t123 + t132)
−z4[(t1213 − t12t13) + (t1232 − t12t23)
+(t1323 − t13t23)] (25.53)
−z5[(t12123 − t12t123) + · · · ] − · · ·

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (23.3) (see table 18.5
and figure 10.1) is given by:

1/ζ = (1 − z2t12)3(1 − z3t123)2(1 − z4t1213)3

(1 − z5t12123)6(1 − z6t121213)6

(1 − z6t121323)3 . . . (25.54)
= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t2

12)
−6z5 (t12123 − t12t123)
−z6 (6 t121213 + 3 t121323 + t3

12 − 9 t12t1213 − t2
123)

−6z7 (t1212123 + t1212313 + t1213123 + t2
12t123

−3 t12t12123 − t123t1213)
−3z8 (2 t12121213 + t12121313 + 2 t12121323

+2 t12123123 + 2 t12123213 + t12132123

+ 3 t2
12t1213 + t12t2

123 − 6 t12t121213

− 3 t12t121323 − 4 t123t12123 − t2
1213) − · · ·

25.5. 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how
do they factorize (how do they look in the A1, A2
and the E representations).

b) Find the shortest cycle with no symmetries and
factorize it as in a)

c) Find the shortest cycle that has the property that
its time reversal is not described by the same sym-
bolic dynamics.

d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizations (25.20)
and (25.22).

(Per Rosenqvist)

exerSymm - 10jan99 ChaosBook.org edition16.4.8, May 25 2020



EXERCISES 498

25.6. C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system [14] the labels + and − stand for the
left or the right lobe of the attractor and the symme-
try is a rotation by π around the z-axis. Similarly, the
Ising Hamiltonian (in the absence of an external mag-
netic field) is invariant under spin flip. Work out the
factorizations for some of the short cycles in either sys-
tem.

25.7. Ising model. The Ising model with two states εi =

{+,−} per site, periodic boundary condition, and Hamil-
tonian

H(ε) = −J
∑

i

δεi,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that con-
tribute to each factor and their weights.

25.8. One orbit contribution. If p is an orbit in the fun-
damental domain with symmetry h, show that it con-
tributes to the spectral determinant with a factor

det
1 − Dreg(h)

tp

λk
p

 ,
where Dreg(h) is the regular representation of G.
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Chapter 26

Continuous symmetry
factorization

Hard work builds character.
— V.I. Warshavski, Private Investigator

Trace formulas relate short time dynamics (unstable periodic orbits) to long
time invariant state space densities (natural measure). Higher dimensional
dynamics requires inclusion of higher-dimensional compact invariant sets,

such as partially hyperbolic invariant tori, into trace formulas. A trace formula for
a partially hyperbolic (N + 1)-dimensional compact manifold invariant under N
global continuous symmetries is derived here. In this extension of ‘periodic orbit’
theory there are no or very few periodic orbits - the relative periodic orbits that
the trace formula has support on are almost never eventually periodic.

The classical trace formula for smooth continuous time flows
chapter 21

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(βAp−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
relates the spectrum of the evolution operator

L(x′, x) = δ
(
x′ − f t(x)

)
eβA(x,t) (26.1)

to the unstable periodic orbits p of the flow f t(x). This formula (and the associated
spectral determinants and cycle expansions) is valid for fully hyperbolic flows.

chapter 22

Here we derive the corresponding formula for dynamics invariant under a
compact group of symmetry transformations. In what follows, a familiarity with
basic group-theoretic notions is assumed, with the definitions relegated to ap-
pendix A10.1.

fast track:

chapter 30, p. 583
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26.1 Compact groups

All the group theory that we shall need here is given by

The Peter-Weyl Theorem, and its corollaries: A compact Lie group
G is completely reducible, its representations are fully reducible (just
as in the finite group representation theory), every compact Lie group
is a closed subgroup of U(n) for some n, and every continuous, uni-
tary, irreducible representation of a compact Lie group is finite di-
mensional.

The theory of semisimple Lie groups is elegant, perhaps too elegant. In what
follows, we serve group theoretic nuggets in need-to-know portions, offering a
pedestrian route through a series of simple examples of familiar aspects of group
theory and Fourier analysis, and a high, cyclist road in the text proper.

But main idea is this: the character χ(m)(θ) of the Frobenius-Weyl representa-
tion theory is a generalization to all compact continuous Lie groups of the weight
eiθm in the Fourier decomposition of a smooth function on a circle into eigen-
modes of translation. mth Fourier component fits m node function around the
circle; (m1,m2, . . . ,mN) representation of a compact Lie group fits a correspond-
ing multi-mode function onto the smooth manifold swept out by the action of the
group. So a basis for a d-dimensional representation (m1,m2, . . . ,mN) of an N-
dimensional compact Lie group is a set of d linearly independent eigenfunctions
on the N-dimensional compact group manifold, with m1, m2, . . . , mN ‘nodes’
along the N directions needed to span the manifold. For a circle this is Fourier
analysis; for a sphere these are spherical harmonics, and the Peter-Weyl theorem
states that analogous expansion exists for every compact Lie group. We will never
need to construct these explicitly.

exercise 26.2

26.1.1 Group representations

Let qa be a vector in d-dimensional vector space V , and G be a group of linear
transformations

q′a = D(g)a
bqb , a, b = 1, 2, . . . , d , g ∈ G

(repeated indices summed throughout this chapter). The [d×d] matrices D(g) form
a representation of the group G. Vectors in the dual space q transform as

q′a = D(g)a
b qb .

Tensors transform as

h′ab
c = D(g)a

f D(g)b
eD(g)c

d h f e
d .
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A function H is an invariant function if (and only if) for any transformation
g ∈ G and for any set of vectors q, r, s, . . .

H(D(g)†q,D(g)†r, . . .D(g)s) = H(q, r, . . . , s) . (26.2)

Unitary transformations connected to the identity can be generated by sequences
of infinitesimal transformations

D(g)a
b ' δb

a + iεi(Ti)b
a εi ∈ R , Ti hermitian ,

and |εi| � 1. The N group generators Ta, a = 1, · · · ,N close the Lie algebra of
G. (More generally, one also needs to study invariance under discrete coordinate
transformations (see chapter 25).

Consider a multilinear invariant function

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

In terms of the generators Ti, H is invariant if all generators “annihilate" it, Ti ·h =

0:

(Ti)a′
a h c...

a′b... + (Ti)b′
b h c...

ab′... − (Ti)c
c′h

c′...
ab... + . . . = 0 . (26.3)

Vector space V is irreducible if the only invariant subspaces of V under the action
of G are (0) and V . If every V on which G acts can be written as a direct sum of
irreducible subspaces, then G is completely reducible.

example 26.1

p. 511

26.1.2 Group integrals

Consider a group integral of form∫
dg D(g)a

bD(g)c
d , (26.4)

where D(g)a
b is a unitary [d×d] matrix representation of g ∈ G, G a compact Lie

group, D(g)c
d is the matrix representation of the action of g on the dual vector

space,

D(g)c
d = (D(g)†)d

c ,

and the integration is over the entire range of g ∈ G, G a compact Lie group. For a
finite group G with |G| group elements the normalized measure is a discrete sum,

dµ(x) =
1
|G|

∑
g

δ(gx) .

For continuous groups, the integration measure dg is known as the Haar measure,
and, given an explicit parametrization of the group manifold, is explicitly com-
putable (see example 26.4 and example 26.5). However, we do need such explicit

exercise 26.1
parametrizations, as the integral (26.4) over the entire group is defined by two
requirements:
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1. Normalization: The group average of an scalar quantity is the quantity it-
self, ∫

dg = 1 . (26.5)

2. Orthonormality of irreducible representations. How do we define∫
dg D(g)a

b = ?

The action of g ∈ G is to rotate a vector xa into x′a = D(g)a
bxb

Manifold traced out by action of G
for all possible group elements g

x
x’

g

The averaging smears x in all directions, hence the second integration rule∫
dg D(g)a

b = 0 , if D(g) is non-trivial representation , (26.6)

simply states that the average over all rotations of a vector is zero.

A representation is trivial (a ‘singlet’) if D(g) = 1 for all group elements g. In
this case no averaging is taking place, and the first integration rule (26.5) applies.

What happens if we average a bilinear combination of a pair of vectors x, y?
There is no reason why such pair should average to zero; for example, we know
that the scalar function |x|2 =

∑
a xax∗a = xaxa is invariant under unitary transfor-

mations, so it cannot have a vanishing average. Therefore, in general∫
dg D(g)a

bD(g)c
d , 0 . (26.7)

To get a feeling for what the right-hand side looks like, we recommend that you
work out the examples.

example 26.2

p. 511

Now let D(g) be any irreducible [d×d] rep. Irreducibility (known in this context
as ‘Schur’s Lemma’) means that any invariant [d×d] tensor Aa

b is proportional to
δa

b. As the only bilinear invariant is δa
b, the Clebsch-Gordan series

=
1
d

+

irreps∑
λ

λ (26.8)
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contains one and only one singlet. Only the singlet survives the group averaging,
and ∫

dg D(λ)(g)a
dD(λ)(g)b

c =
1
d
δd

cδ
b
a . (26.9)

is true for any [d×d] irreducible rep D(λ)(g).

If we take D(µ)(g)αβ and D(λ)(g)d
c in inequivalent representations λ, µ (there

is no matrix K such that D(λ)(g) = KD(µ)(g)K−1 for any g ∈ G), then there is no
way of forming a singlet, and∫

dg D(λ)(g)a
dD(µ)(g)βα = 0 if λ , µ . (26.10)

26.1.3 Characters

The trace of an irreducible [d×d] matrix representation λ of g is called the char-
acter of the representation:

χ(λ)(g) = tr D(λ)(g) = D(λ)(g)a
a . (26.11)

The character of the conjugate representation is

χ(λ)(g−1) = tr D(λ)(g)† = D(λ)(g)a
a = χ(λ)(g)∗ . (26.12)

Contracting (26.8) with two arbitrary invariant [d×d] tensors hd
a and ( f †)b

c, we
obtain the character orthonormality relation∫

dg χ(λ)(hg) χ(µ)(g f ) = δλµ
1
dλ
χ(λ)(h f †) (26.13)

The character orthonormality tells us that if two group invariant quantities share a
D(λ)(g)D(λ)(g−1) pair, the group averaging sews them into a single group invariant
quantity. The replacement of D(λ)(g)a

b by the character χ(λ)(h−1g) does not mean
that the matrix structure is lost; D(λ)(g)a

b can be recovered by differentiating

D(g)a
b =

d
dhb

aχ
(λ)(h−1g) . (26.14)

The essential group theory we shall need here is most compactly summarized
by

The Group Orthogonality Theorem: Let Dµ, Dµ′ be two irreducible matrix repre-
sentations of a compact group G of dimensions dµ, dµ′ ,∫

dg D(µ)(g)a
bD(µ′)(g−1)a′

b′ =
1
dµ
δµ,µ′δ

a′
a δ

b
b′ .

The new trace formula follows from the full reducibility of representations of
a compact group G acting linearly on a vector space V , with irreducible repre-
sentations labeled by sets of integers µ = (µ1, · · · , µN), and the vector space V
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decomposed into invariant subspaces Vµ. For a N-dimensional compact Lie group
G the fundamental result is the Weyl full reducibility theorem, with projection
operator onto the Vµ irreducible subspace given by

Pµ = dµ

∫
G

g χ(µ)(g−1)U(g) . (26.15)

The group elements g = g(θ1, . . . , θN) = eiθ·T are parameterized by N real numbers
{θ1, . . . , θN} of finite range, hence designation ‘compact’.

26.1.4 Transformation operators, projection operators

Suppose we have an arbitrary function or set of functions. How do we obtain
functions with desired symmetry properties? If f is an arbitrary function,

Pαi j f (x) =
dα
|G|

∑
G

D(α)(−1)g f (x) = Fα
i j(x)

which is either zero or a basis function for the ith row of irrep α: a function of
symmetry species (α, i).

example 26.3

p. 512

example 26.4

p. 512

example 26.5

p. 512

The character χ is the trace χ(µ)(g) = tr Dµ(g) =
∑dµ

i=1 Dµ(g)ii , where Dµ(g) is
a [dµ × dµ]-dimensional matrix representation of action of the group element g on
the irreducible subspace Vµ. We will sometimes employ notation g as a shorthand
for D(g), i.e., by x′ = gx we mean the matrix operation x′i =

∑d
j=1 D(g)i jx j, and

by f ′(x) = g f (x) = f (gx), f (x) a smooth function over the state space x ∈ M, we
mean f ′(x) = f (D(g)x).

For an invariant scalar quantity the average over the group in (26.15) must
be the quantity itself, so the group integral is weighted by the normalized Haar
measure (unit group volume)

∫
dg = 1, and dµ is the multiplicity of degenerate

eigenvalues in representation µ.

26.2 Continuous symmetries of dynamics

If action of every element g of a compact group G commutes with the flow ẋ =

v(x),

D(g)v(x) = v(D(g)x) , D(g) f t(x) = f t(D(g)x) ,

G is a global symmetry of the dynamics. The finite time evolution operator (26.1)
can be written as Lt = etA in terms of the time-evolution generator (19.24)

A = lim
δτ→0+

1
δτ

(
Lδτ− I

)
= −∂i(vi(x)) . (26.16)
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The operator etA commutes with all symmetry transformations eiθ·T . For a given
state space point x together they sweep out a (N+1)-dimensional manifold of
equivalent orbits.

As in (25.13), L(y, x) is invariant function. The irreducible eigenspaces of G
are also eigenspaces of the dynamical evolution operator Lt, with the decompo-
sition of the evolution operator to irreducible subspaces, L =

∑
µLµ , following

immediately by application of the projection operator (26.15):

Lt
µ(y, x) = dµ

∫
G

dg χ(µ)(g)Lt(Dµ(g−1) y, x) . (26.17)

As G commutes with f t, all eigenfunctions ρ of Lt must be invariant under G,
ρ(x) = ρ(gx). Infinitesimally, in terms of Lie algebra generators Tφρ(x) = 0.

26.2.1 Relative periodic orbits

Relative periodic orbits are orbits x(t) in state spaceM which exactly recur

x(t) = D(gr
p) x(t + rTp) (26.18)

for a fixed relative period T , its repeats r = 1, 2, · · · , and a fixed group action
g ∈ G ofM. This group action is sometimes referred to as a ‘phase’, or a ‘shift’.
Relative periodic orbits are to periodic solutions what relative equilibria (traveling
waves) are to equilibria (steady solutions).

For dynamical systems with continuous symmetries relative periodic orbits are
almost never eventually periodic, i.e., they almost never lie on periodic trajectories
in the full state space. As almost any such orbit explores ergodically the manifold
swept by action of G, they are sometimes referred to as ‘quasiperiodic.’ However,
an orbit can be periodic if it satisfies a special symmetry. If gm = 1 is of finite
order m, then the corresponding orbit is periodic with period mT . If g is not of
finite order k, orbits can be periodic only after the action of g.

chapter 25

In either case, we refer to the orbits inM satisfying (26.18) as relative periodic
orbits.

26.2.2 Stability of relative periodic orbits

A infinitesimal group transformation maps globally a trajectory in a nearby tra-
jectory, so we expect the initial point perturbations along to group manifold to
be marginal, growing at rates slower than exponential. The argument is akin
to (4.9), the proof of marginality of perturbations along the trajectory. Con-
sider two nearby initial points separated by an infinitesimal group rotation δθ:
δx0 = f δθ(x0) − x0 = v(x0)δθ. By the commutativity of the group with the flow,
f t+δt = f δt+t. Expanding both sides of f t( f δt(x0)) = f δt( f t(x0)), keeping the lead-
ing term in δt, and using the definition of the Jacobian matrix (4.5), we observe
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that Jt(x0) transports the velocity vector at x0 to the velocity vector at x(t) at time
t:

v(x(t)) = Jt(x0) v(x0) . (26.19)

In nomenclature of page 86, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

However, already at this stage we see that if the orbit is periodic, gpx(Tp) =

x(0), at any point along cycle p the velocity v is an eigenvector of the Jacobian
matrix Jp = JTp with an eigenvalue of unit magnitude,

Jp(x) v(x) = v(x) , x ∈ Mp . (26.20)

Two successive points along the cycle separated by δx0 have the same separation
after a completed period δx(Tp) = gpδx0, hence eigenvalue of magnitude 1.

26.3 Symmetry reduced trace formula for flows

As any pair of nearby points on a periodic orbit returns to itself exactly at each
cycle period, the eigenvalue of the Jacobian matrix corresponding to the eigen-
vector along the flow necessarily equals unity for all periodic orbits. In presence of
N-dimensional symmetry Lie group G, further N eigenvalues equal unity. Hence
the trace integral trLt requires a separate treatment for the direction along the flow
and for the N group transformation directions.

To evaluate the contribution of a prime cycle p of period Tp, restrict the inte-
gration to an infinitesimally thin manifoldMp enveloping the cycle and all of its
rotations by G, pick a point on the cycle, and choose a local coordinate system
with a longitudinal coordinate dx‖ along the direction of the flow, N coordinates
dxG along the invariant manifold swept by p under the action of the symmetry
group G, and (d−N−1) transverse coordinates x⊥.

tr pL
t
µ = dµ

∫
G

g χ(µ)(g)
∫
Mp

dx⊥dx‖dxG δ
(
x − D(g)) f t(x)

)
. (26.21)

The integral along the longitudinal, time-evolution coordinate was computed in
(21.16). Eliminating the time dependence by Laplace transform one obtains∫ ∞

0
e−st

∮
p

dx‖ δ‖(x‖ − f t(x‖)) = Tp

∞∑
r=1

e−sTpr . (26.22)

example 26.6

p. 512

The µ subspace group integral is simple:∫
G

g χ(µ)(g)
∫
Mp

dxG δ
(
xG − Dµ(g) f rTp(xG)

)
= χ(µ)(gr

p). (26.23)
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For the remaining transverse coordinates the Jacobian matrix is defined in a (N+1)-
dimensional surface of sectionP of constant (x‖, xG). Linearization of the periodic
flow transverse to the orbit yields∫

P

dx⊥δ
(
x⊥ − Dµ(gr

p) f rTp(x⊥)
)

=
1∣∣∣∣det

(
1 − M̂r

p

)∣∣∣∣ , (26.24)

where M̂p = Dµ(gp)Mp is the p-cycle [(d−1−N)×(d−1−N)] symmetry reduced
Jacobian matrix, computed on the reduced surface of section and rotated by gp.
As in (21.5), we assume hyperbolicity, i.e., that the magnitudes of all transverse
eigenvalues are bounded away from unity.

The classical symmetry reduced trace formula for flows follows by substitut-
ing (26.22) - (26.24) into (26.21):

∞∑
β=0

1
s − sµ,β

= dµ
∑

p

Tp

∞∑
r=1

χ(µ)(gr
p)

er(βAp−sTp)∣∣∣∣det
(
1 − M̂r

p

)∣∣∣∣ . (26.25)

(we can restore eβAp from (26.1) provided that the observable a(x) also commutes
with G.) The sum is over all prime relative periodic orbits p and their repeats,
orbits in state space which satisfy

x(t) = D(gp)x(t + Tp) (26.26)

for a fixed relative period Tp and a fixed shift gp.

The µ = (0, 0, · · · , 0) subspace is the one of most relevance to chaotic dynam-
ics, as its leading eigenfunction, with the fewest nodes and the slowest decay rate,
corresponds to the natural measure observed in the long time dynamics.

In contrast to the case of continuous symmetries, where relative periodic or-
bits are almost never eventually periodic, i.e., they almost never lie on periodic
trajectories in the full state space, for discrete symmetries all relative periodic
orbits are eventually periodic.

Résumé

One of the goals of nonlinear dynamics is to describe the long time evolution of
ensembles of trajectories, when individual trajectories are exponentially unstable.
The main tool in this effort have been trace formulas because they make explicit
the duality between individual short time trajectories, and long time invariant den-
sities (natural measures, eigenfunctions of evolution operators). So far, the main
successes have been in applications to low dimensional flows and iterated map-
pings, where the compact invariant sets of short-time dynamics are equilibria,
periodic points and periodic orbits. Dynamics in higher dimensions requires ex-
tension of trace formulas to higher-dimensional compact invariant sets, such as
partially hyperbolic invariant tori.
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Here we have used a particularly simple direct product structure of a global
symmetry that commutes with the flow to reduce the dynamics to a symmetry
reduced (d−1−N)-dimensional state spaceM/G. The trace formulas do not require
explicit construction (in general difficult), neither of the reduced state space, nor
of the Haar measures.

Amusingly, in this extension of ‘periodic orbit’ theory from unstable 1-dimen-
sional closed orbits to unstable (N + 1)-dimensional compact manifolds invariant
under continuous symmetries, there are no or very few periodic orbits. Relative
periodic orbits are almost never eventually periodic, i.e., they almost never lie on
periodic trajectories in the full state space, unless forced to do so by a discrete
symmetry, so looking for periodic orbits in systems with continuous spatial sym-
metries is a fool’s errand.

Restriction to compact Lie groups in derivation of the trace formula (26.25)
was a matter of convenience, as the general case is more transparent than particu-
lar implementations (such as SO(2) and SO(3) rotations, with their explicit Haar
measures and characters). This can be relaxed as the need arises - much powerful
group theory developed since Cartan-Weyl era is at our disposal. For example, the
time evolution is in general non-compact (a generic trajectory is an orbit of infinite
length). Nevertheless, the trace formulas have support on compact invariant sets in
M, such as periodic orbits and (N+1)-dimensional manifolds generated from them
by action of the global symmetry groups. Just as existence of a periodic orbit is
a consequence of given dynamics, not any global symmetry, higher-dimensional
flows beckon us on with nontrivial higher-dimensional compact invariant sets (for
example, partially hyperbolic invariant tori) for whom the trace formulas are still
to be written.

Commentary

Remark 26.1. Literature Here we need only basic results, on the level of any stan-
dard group theory textbook [11]. This material is covered in any introduction to linear
algebra [9, 16, 19] We found Tinkham [25] the most enjoyable as a no-nonsense, the user
friendliest introduction to the basic concepts. The construction of projection operators
given here is taken from refs. [5–7]. Who wrote this down first we do not know, but
we like Harter’s exposition [12–14] best. Harter’s theory of class algebras offers a more
elegant and systematic way of constructing the maximal set of commuting invariant ma-
trices Mi than the sketch offered here. Bluman and Kumei [1] Chapter 2 offers a clear and
pedagogical introduction to Lie groups of transformations. For the Group Orthogonality
Theorem see, for example, refs. [7, 27], or consult Googlette.

Remark 26.2. Full reducibility of semisimple Lie groups: The study of integrals
over compact Lie groups with respect to Haar measure is important in many areas of
mathematics and physics, see Mehta [17]. In 1896-1897 Frobenius introduced notions of
‘characters’ and group ‘representations’, and proved the full reducibility of representa-
tions of finite groups. The characters χ(µ)(g) for all compact semisimple Lie groups were
constructed and the full reducibility proven by Weyl [21], extending Cartan’s local Lie
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algebra classification to a global theory of group representations. For the history of this
period, see the excellent essay by Hawkins [15].

Diagrammatic notation for group theory is explained in the birdtracks.eu webbook [7].

Remark 26.3. William G. Harter is a prodigy who at age 16 taught himself group
theory by reading Hamermesh [11]. Bill was a graduate student at Caltech (1964-65),
together with Ron Fox. They hated the atmosphere there and the teaching was terrible
(Feynman did not teach that year but Harter and Feynman were good friends). Harter
and Fox shared an interest in group theory and discovered that most of the group theory
books in the physics library had been checked out in 1960-62 by Gell-Mann, Zweig and
Glashow. That only half of the entering students were meant to complete their PhD’s there
led to lots of ugly competition. Harter transferred to UC Irvine, and, upon graduation, got
a job at USC in LA. After a few years he suggested in a faculty meeting that the way
they could improve their quality as a department was “to get rid of all the old farts.”
These same “old farts” soon voted to deny him tenure. He ended up in Campinas, Brazil.
Fox rescued him from there by bringing him for an interview at Georgia Tech, where
he was hired in late 1970’s. He was brilliant, an asset for teaching, making all sorts
of demonstration devices. He built a giant rotating table upon which he placed billiard
balls, a wonderful demonstration of mechanical analogues for charged particle motion in
crossed E and B fields. Everyone (except for one nefarious character) liked him, his work,
and especially his devices. The faculty unanimously supported his promotion to tenure.
He did not, however, think much of the Director of School of Physics, and made that clear.
After an argument with the Director, he stormed out, mortally offended. Denied tenure
again, in 1985 he moved to University of Arkansas, where he developed his Soft Elegant
Educational tools. You can follow his lectures on line.

In 1987 Harter and Weeks [26] used Harter’s theory of the rotational dynamics of
molecules to calculate the rotational-vibrational spectra of the soccer ball-shaped molecule
Buckminsterfullerene, C60, or “buckyball.” C60 had been proposed in 1985 by chemists,
who had seen a mass-spectra peak of atomic mass 720. By 1989 the Harter theory calcu-
lations led to a realization that chemists had been making C60 since the early 1970s. In
1992 Science named C60 “Molecule of the Year,” and in 1996 Curl, Kroto and Smalley
were awarded the Nobel Prize in Chemistry for their discovery of fullerenes.

Remark 26.4. A brief history of relativity: In context of semiclassical quantization
Creagh and Littlejohn [3, 4] concentrate on the case when the continuous symmetry fam-
ily of orbits includes a true periodic orbit (they use infinitesimal variation around true pe-
riodic orbit), not the symmetry reduced case considered here (where almost every relative
periodic orbit of the symmetry-reduced dynamics is not a periodic orbit in the full space).
They emphasize generalized surface of section dynamics. They refer to relative periodic
orbits as ‘generalized periodic orbits’, with ‘generalized period’ Tp = (Tp, µp). They
mention, but do not go to irreducible reps of the symmetry groups, hence no ‘classical
symmetry reduced trace formula for flows’ (26.25) in these papers. Instead, they explic-
itly compute group volumes. In addition to the reduced dynamics weight |det (1 − M⊥)|
they get ∂θ/∂J which we do not have. The Berkeley group did it right for discrete sym-
metries [22, 23].

Here we follow Creagh [2], and in the axially-symmetric case ref. [20]. Creagh refers
to relative periodic orbits as ‘pseudoperiodic’ orbits. Ref. [20] refers to relative periodic
orbits as ‘reduced periodic’ orbits, and to the corresponding orbits in the full state space
as ‘quasiperiodic’. Creagh remarks at the very end of his paper to his formula (6.4) as the
“pleasing result that the quantally reduced spectrum is determined by the classically re-
duced periodic orbits in the usual way.” Ref. [10] discusses a trace formula in symmetry-
reduced space. Muratore-Ginanneschi [18] gives an elegant discussion of ‘zero-modes’ in
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the path integral formulation, but does not go to irreps either. Ref. [24] applies the method
to the problems of noninteracting identical particles.
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26.4 Examples

Example 26.1. Lie algebra. As one does not want the rules to change at every step,
the generators Ti are themselves invariant tensors,

(Ti) a
b = D(g)a

a′D(g)b
b′D(A)(g)ii′ (Ti′ ) a′

b′ , (26.27)

where D(A)(g)i j is the adjoint [N ×N] matrix representation of g ∈ G. For infinitesi-
mal transformations, D(g)a

b ' δb
a + iεi(Ti)b

a. The [d×d] matrices Ti are in general non-
commuting, and from (26.3) it follows that they close N-element Lie algebra

TiT j − T jTi = iCi jkTk i, j, k = 1, 2, ...,N ,

where Ci jk are the structure constants.
click to return: p. 500

Example 26.2. A group integral for SU(n) V × V space. Let D(g) be the defining
[n×n] matrix representation of SU(n). The defining representation is non-trivial, so it
averages to zero by (26.6). The first non-vanishing average involves D(g)†, the matrix
representation of the action of g on the conjugate vector space. To avoid dealing with the
multitude of dummy indices, we resort to diagrammatic notation:

D(g)a
` =

��
��
��
��

��
��
��
��a b , D(g)a

` =
��
��
��
��

��
��
��
��a b . (26.28)

For G the arrows and the triangle point the same way, while for G† they point the opposite
way. Unitarity D(g)†D(g) = 1 is given by

D(g)c
aD(g)c

b = D(g)a
cD(g)b

c = δb
a ,

or, diagramatically:

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
�� . (26.29)

In this notation, the D(g)D(g)† integral (26.7) to be evaluated is∫
dg

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b

a

c

d

. (26.30)

For SU(n) the V ⊗ V tensors decompose into the singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������ ������ + ������ ������

δd
aδ

b
c = 1

nδ
b
aδ

d
c + 1

a (Ti)b
a (Ti)d

c .

We multiply (26.30) with the above decomposition of the identity. The unitarity relation
(26.29) eliminates G’s from the singlet:

��
��
��
��

��
��
��
��

=
1
n

������ ������ + ������ ������ . (26.31)

The generators Ti are invariant tensors, and transform under G according to (26.27). Mul-
tiplying by G−1

ii , we obtain

= . (26.32)
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Hence, the pair GG† in the defining representation can be traded in for a single G in the
adjoint rep

D(g)a
dD(g)b

c = 1
dδ

d
cδ

b
a + 1

a (Ti)b
a Gi j

(
T j

)d

c

= 1
n + .

The adjoint representation Gi j is non-trivial, so it gets averaged to zero by (26.6). Only
the singlet survives

∫
dg =

1
d∫

dg D(g)a
dD(g)b

c =
1
d
δd

cδ
b
a . (26.33)

click to return: p. 501

Example 26.3. Irreducible representations of the SO(2)N abelian group: (Exam-
ple 12.5 continued) All irreducible representations of the SO(2)N abelian group acting on
torus T N are 1-dimensional and labeled by N integers µ = (m1, · · · ,mN). The character
of µ representation is

χ(µ)(g) = e−iµ·φ

click to return: p. 503

Example 26.4. Haar measure for SO(2):

The normalized Haar measure is dg = dφ/(2π).
click to return: p. 503

Example 26.5. Haar measure for SO(3):

SO(3) : dg =
1

2π2 sin2(φ/2)dΩedφ

with dΩe solid angle surface element for unit vector e.

8π2 =

∫
SO(3)

dg

For details, see ref. [8].
click to return: p. 503

Example 26.6. Trace group integral for SO(2): Parameterize rotations on a circle
by φ ∈ [0, 2π). The normalized Haar measure is ddg = dφ/2π, and a trajectory point
advanced by time t and shifted by φ can be denoted x(t, φ). The character is e−iµφ. For
a circle this is just Fourier analysis, for a general compact semisimple Lie group Weyl’s
generalization of Fourier analysis. Consider projection on the µth subspace of the integral
along the rotational direction

IG =

∫
G

g χ(µ)(g)
∮

dxG δG(x(t)G − (D(g)x(0))G).

Coordinate xG is the set of points swept by [0, 2π] rotation of a point x0 = xG(0, 0), so it
is natural to parametrize it by the rotation angle φ′: xG = x(0, φ′), and rewrite the circle
integral as∮

dxG δ
(
xG − Dµ(g)xG(t, 0)

)
=

∫ 2π

0
dφ′

dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.
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Inverting the order of integrations,

IG =

∫ 2π

0
dφ′

∫ 2π

0

dφ
2π

e−iµφ dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.

The integral is novanishing for smallest φp for which x(0, φ′) = x(t, φ′ + φp), and for all
its repeats. Expand the argument of δ function in each such neighborhood φ′ = φp + φ′′.

x(t, φ′ + φp + φ′′) = x(t, φ′ + φp) + φ′′
dx
dφ

(t, φ′ + φp) + · · ·

= x(t, φ′) + φ′′
dx
dφ

(t, φ′) + · · · .

substituting back yields

IG =

∫ 2π

0

dφ′

2π

∞∑
r=1

e−iµφpr dx(0, φ′)
dφ

∫ ε

−ε

dφ′′ e−iµφ′′δ(φ′′
dx
dφ

(0, φ′))

=

∞∑
r=1

e−iµφpr .

click to return: p. 505
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Exercises

26.1. Haar measure for SU(2). SU(2) acts on vectors in
C2, and preserves their absolute value, hence its action
can be parameterized by a 3-sphere S 3, and multiplica-
tion can be viewed as an orthogonal transformation of
S 3. This is a special case of the formula N = n2 − 1 for
the dimension of SU(n). Show that the invariant Haar
measure on SU(2)∫

SU(2)
f (g)dg (26.34)

=
1

4π2

∫ π

−π

∫ π

0

∫ π

0
sin2 φ1 sin φ2dθdφ1dφ2 f (θ, φ1, φ2)

is a normalized surface measure on S 3.

26.2. Relative periodic orbits for circles, bagels and
spheres: (a) Show that relative periodic orbits for a
point scattering specularly in a circular billiard are sin-
gle scattering arcs. Compute their stability. Compute
the spectrum.

(b) Show that relative periodic orbits for a point scat-
tering specularly in the plane that slices symmetrically
upper half of a bagel (floating tire, torus) are single scat-
tering arcs. Compute their stability. Compute the spec-
trum. Compute the escape rate.

(c) Show that relative periodic orbits for a point scatter-
ing specularly within a sphere billiard are single scatter-
ing arcs. Compute their stability, spectrum.
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Part III

Chaos: what to do about it?

What you know now is to partition topologically and invariantly the state space,
compute a hierarchy of cycles, compute spectral determinants and their eigen-
values. What next?

1. Why cycle? (chapter 27)

2. Why does it work? (chapter 28)

3. When does it not work? (chapter 29)

4. What does it have to do with turbulence? (chapter 30)

5. How fat is the turbulent attractor? (chapter 30)

6. There is one that is experimentally relevant (chapter 32)
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Chapter 27

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king - the élan vital - the principle of
evolution ... writing a book, starting a war, founding a
school....”

—F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip
feeling for the traces of evolution operators. It is a melancholy task, as the

“intuition” garnered by these heuristic approximations is in all ways inferior to
the straightforward and exact theory developed so far. But, it has to be done, as
there is immense literature out there that deploys these heuristic estimates, most
of it of it uninspired, some of it plain wrong, and the reader should be able to
understand and sort through that literature. We start out by explaining qualitatively
how local exponential instability of topologically distinct trajectories leads to a
global exponential instability.

27.1 Escape rates

We start by verifying the claim (20.10) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. Consider again the game
of pinball in figure 1.1. Designate byM a region of state space that encloses the
three disks, such as the surface of the table along with all pinball directions. The
fraction of initial points whose trajectories start within M and recur within that
region at the time t is given by

Γ̂M(t) =
1
|M|

∫ ∫
M

dxdy δ
(
y − f t(x)

)
. (27.1)

This quantity is both measurable and physically interesting in a variety of prob-
lems spanning nuclear physics to celestial mechanics. The integral over x takes
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care of all possible initial pinballs; the integral over y checks whether they are
still withinM by time t. If the dynamics is bounded, andM envelops the entire
accessible state space, Γ̂M(t) = 1 for all t. However, if trajectories exit M, the
recurrence fraction decreases with time. For example, any trajectory that falls off

the pinball table in figure 1.1 is gone for good.

These observations can be made more concrete by examining the pinball
phase-space of figure 1.9. With each pinball bounce the initial conditions that
survive get thinned out, each strip yielding two thinner strips within it. The total
fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (27.2)

where i is a binary label of the ith strip, and |Mi| is the area of the ith strip. Phase-
space volume is preserved by the flow, so the strips of survivors are contracted
along the stable eigen-directions and ejected along the unstable eigen-directions.
As a crude estimate of the number of survivors in the ith strip, assume that a ray
of trajectories spreads by a factor Λ after every bounce. The quantity Λ represents
the mean value of the expanding eigenvalue of the corresponding Jacobian matrix
of the flow. We replace |Mi| by the phase-space strip width estimate |Mi|/|M| ∼

1/Λi, which is right in spirit but not without drawbacks. For example, in general
the eigenvalues of a Jacobian matrix for a finite segment of a trajectory have no
invariant meaning; they depend on the choice of coordinates. However, we saw
in chapter 21 that neighborhood sizes are determined by Floquet multipliers of
periodic points, which are invariant under smooth coordinate transformations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1
Λ

+
1
Λ
, · · · , Γ̂n ∼

2n

Λn = e−n(λ−h) = e−nγ , (27.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients
of chaos first mentioned in sect. 1.3.1: the escape rate γ equals the local expansion
rate (the Lyapunov exponent λ = ln Λ) minus the rate of global reinjection back
into the system (the topological entropy h = ln 2).

At each bounce one routinely loses the same fraction of trajectories, so one
expects the sum (27.2) to decay exponentially with n. More precisely, by the
hyperbolicity assumption of sect. 21.1.1, the expanding eigenvalue of the Jacobian
matrix of the flow is exponentially bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (27.4)

and the area of each strip in (27.2) is bounded by |Λ−n
max| ≤ |Mi| ≤ |Λ

−n
min|. Replac-

ing |Mi| in (27.2) by its estimates in terms of |Λmax| and |Λmin| immediately leads
to exponential bounds (2/|Λmax|)n ≤ Γ̂n ≤ (2/|Λmin|)n , i.e.,

ln |Λmax| − ln 2 ≥ −
1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (27.5)
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The argument based on (27.5) establishes only that the sequence γn = − 1
n ln Γn

has a lower and an upper bound for any n. In order to prove that γn converge to the
limit γ, we first show that for hyperbolic systems the sum over surviving intervals
(27.2) can be replaced by a sum over periodic orbit stabilities. By (27.4) the size
of the stripMi can be bounded by the stability Λi of the ith periodic point:

C1
1
|Λi|

<
|Mi|

|M|
< C2

1
|Λi|

, (27.6)

for any periodic point i of period n, with constants C j dependent on the dynamical
system but independent of n. The meaning of these bounds is that for increasingly
long cycles in a system of bounded hyperbolicity, the shrinking of the ith strip is
better approximated by the derivatives evaluated on the periodic point within the
strip. Hence, the survival probability can be bounded close to the periodic point
stability sum

Ĉ1 Γn <

(n)∑
i

|Mi|

|M|
< Ĉ2 Γn , (27.7)

where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (21.22). This establishes that
for hyperbolic systems the survival probability sum (27.2) can be replaced by the
periodic orbit sum (21.22).

exercise 27.1
exercise 19.4

We conclude that for hyperbolic, locally unstable flows the fraction (27.1) of
initial x whose trajectories remain trapped within M up to time t is expected to
decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (27.8)

27.2 Natural measure in terms of periodic orbits

Let us now refine the reasoning of sect. 27.1 and argue that the trace is a discretized
integral over state space. Consider the trace (21.6) in the large time limit (21.21):

trLn =

∫
dx δ

(
x − f n(x)

)
eβA(x,n) ≈

(n)∑
i

eβA(xi,n)

|Λi|
.

The factor 1/|Λi| was interpreted in (27.2) as the area of the ith phase-space strip.
Hence, the trLn represents a discrete version of

∫
dx eβA(x,n) approximated by

a tessellation into strips centered on periodic points xi, (see figure 1.11), with
the volume of the ith neighborhood given by estimate |Mi| ∼ 1/|Λi|, and eβA(x,n)

estimated by eβA(xi,n), its value at the ith periodic point. If the symbolic dynam-
ics is complete, any state space rectangle [s−m · · · s0.s1s2 · · · sn] always contains

section 15.3.1
the periodic point s−m · · · s0s1s2 · · · sn; hence, although the periodic points are of
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measure zero (just like rationals in the unit interval), they are dense on the non–
wandering set. Equipped with a measure for the associated rectangles, periodic
orbits suffice to cover the entire non–wandering set. The average of eβA evaluated
on the non–wandering set is therefore given by the trace, properly normalized so
that 〈1〉 = 1:

〈eβA〉n ≈

∑(n)
i eβA(xi,n)/|Λi|∑(n)

i 1/|Λi|
=

(n)∑
i

µi eβA(xi,n) . (27.9)

Here µi is the normalized natural measure
section 20.3

(n)∑
i

µi = 1 , µi = enγn/|Λi| , (27.10)

which is correct both for closed systems as well as open systems.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect. 19.3), periodic orbit theory is smart, as it automatically
partitions integrals according to the intrinsic topology of the flow, and assigns to
each tile i the invariant natural measure µi.

27.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 20.1 was to evaluate the space and time averaged expectation
value (20.8). An average over all periodic orbits can accomplish the job only if
the periodic orbits fully explore the asymptotically accessible state space.

Why should unstable periodic points end up being dense? The cycles are intu-
itively expected to be dense because on a connected chaotic set a typical trajectory
is expected to behave ergodically, and infinitely many times pass arbitrarily close
to any point on the set (including the initial point of the trajectory itself). The
argument proceeds more or less as follows. Partition M in arbitrarily small re-
gions and consider particles that start in the regionMi, and return to it in n steps
after some peregrination in the state space. For example, a trajectory might re-
turn a little to the left of its original position, whereas a nearby neighbor might
return a little to the right of its original position. By assumption, the flow is con-
tinuous, so generically one expects to be able to gently move the initial point in
such a way that the trajectory returns precisely to the initial point, i.e., one ex-
pects a periodic point of period n in cell i. As we diminish the size of regionsMi,
aiming a trajectory that returns toMi becomes increasingly difficult. Therefore,
we are guaranteed that unstable orbits of increasingly large periods are densely
interspersed in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it must
be checked for the particular system at hand. A variety of ergodic but insuffi-
ciently mixing counter-examples can be constructed - the most familiar being a
quasiperiodic motion on a torus.
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27.3 Correlation functions

The time correlation function CAB(t) of two observables A and B along the trajec-
tory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) . (27.11)

If the system is ergodic, with invariant continuous measure ρ0(x)dx, then correla-
tion functions do not depend on x0 (apart from a set of zero measure), and may be
computed by a state space average as well,

CAB(t) =

∫
M

dx0 ρ0(x0)A( f t(x0))B(x0) . (27.12)

For a chaotic system we expect that time evolution will lose the information con-
tained in the initial conditions, so that CAB(t) will approach the uncorrelated limit
〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB − 〈A〉〈B〉 (27.13)

for any pair of observables coincides with the definition of mixing, a fundamental
property in ergodic theory. We now assume without loss of generality that 〈B〉 = 0.
(Otherwise we may define a new observable by B(x) − 〈B〉.) Our purpose is now
to connect the asymptotic behavior of correlation functions with the spectrum of
the Perron-Frobenius operator L. We can write (27.12) as

C̃AB(t) =

∫
M

dx
∫
M

dy A(y)B(x)ρ0(x)δ(y − f t(x))

and recover the evolution operator

C̃AB(t) =

∫
M

dx
∫
M

dy A(y)Lt(y, x)B(x)ρ0(x).

Recall sect. 19.1, where we showed that ρ(x) is the eigenvector of L corre-
sponding to probability conservation:∫

M

dyLt(x, y)ρ(y) = ρ(x) .

We can expand the x-dependent part of this equation in terms of the eigenbasis of
L:

B(x)ρ0(x) =

∞∑
α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand side is zero
the coefficient c0 must vanish. The action of L can then be written as

C̃AB(t) =
∑
α,0

e−sαtcα

∫
M

dy A(y)ρα(y). (27.14)
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We see immediately that if the spectrum has a gap, i.e., if the second largest
exercise 27.2

leading eigenvalue is isolated from the largest eigenvalue (s0 = 0) then (27.14)
implies exponential decay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rate ν = s1 then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), and the choice of a particular observable influences only the
prefactor.

Correlation functions are often accessible from time series measurable in lab-
oratory experiments and numerical simulations; moreover, they are intimately
linked to transport exponents.

27.4 Trace formulas vs. level sums

Benoit B. Mandelbrot: “I would be perfectly happy being
Kepler” [to a coming fractals’ Newton]. Referring to the
broad array of things now described by fractals, he added,
“I have been Kepler many times over.”

—J. Gleick, New York Times, January 22, 1985

Trace formulas (21.9) and (21.19) diverge precisely where one would
like to use them, at s equal to eigenvalues sα. To avoid this divergence, one can
proceed as follows; according to (21.23) the “level” sums (all symbol strings of
length n) are asymptotically dominated by the leading eigenvalue es0n of the evo-
lution operator∑

i∈Fix f n

eβA(xi,n)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue s0 is fixed by the condition

1 =
∑

i∈Fix f n

eβA(xi,n)e−s(n)n

|Λi|
. (27.15)

The eigenvalue condition for the level sum (27.15) can be written in the same form
as the two conditions (23.18) and (23.19) given so far:

0 = 1 −
(n)∑
i

ti , ti = ti(β, s(β)) , ni = n . (27.16)

We do not recommended it as a computational method. The difficulty in estimat-
ing the leading eigenvalue s0 from this n→ ∞ limit is at least twofold:

1. Due to an exponential growth in the number of intervals and an exponential
decrease in the attainable accuracy, the maximum n, achieved experimentally or
numerically, is approximately between 5 and 20.
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2. The pre-asymptotic sequence of finite estimates s(n) is not unique, because
the sums Γn depend on how we define the escape region, and because in gen-
eral the areas |Mi| in the sum (27.2) should be weighted by the density of initial
conditions ρ(0). For example, an overall measuring unit rescaling |Mi| → α|Mi|

introduces 1/n corrections in s(n) defined by the log of the sum (27.8): s(n) →

s(n) + lnα/n. This problem can be ameliorated by defining a level average as a
function of s,

〈eβA(s)〉(n) :=
∑

i∈Fix f n

eβA(xi,n)esn

|Λi|
, (27.17)

and determining the nth level estimate s(n) by requiring that the ratios of successive
levels satisfy

1 =
〈eβA(s(n))〉(n)

〈eβA(s(n))〉(n−1)
.

This avoids the worst problem with formula (27.15), the 1/n corrections due to
its lack of rescaling invariance. However, even though much published ponder-
ing of “chaos” relies on it, there is no need for such gymnastics: dynamical zeta
functions and spectral determinants are already invariant not only under linear
rescalings, but under all smooth nonlinear conjugacies x → h(x), and require no
n→ ∞ extrapolations to asymptotic times. Comparing this with cycle expansions
(23.8), we see the difference; in the level sum approach, we keep increasing expo-
nentially the number of terms with no reference to the fact that most are already
known from shorter estimates, but in cycle expansions short terms dominate and
longer ones enter only as exponentially small corrections.

27.4.1 Flow conservation sum rules

The trace formula version of the flow conservation sum rule (23.17) comes in two
varieties (one for maps and another for flows). By flow conservation, the leading
eigenvalue is s0 = 0, which for maps (27.16) yields

trLn =
∑

i∈Fix f n

1
|det (1 − Mn(xi)) |

= 1 + es1n + . . . . (27.18)

For flows, one can apply this rule by grouping together cycles from t = T to
t = T + ∆T

1
∆T

T≤rTp≤T+∆T∑
p,r

Tp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1

∆T

∫ T+∆T

T
dt

(
1 + es1t + . . .

)
= 1 +

1
∆T

∞∑
α=1

esαT

sα

(
esα∆T − 1

)
≈ 1 + es1T + · · · .(27.19)

As is usual for fixed level trace sums, the convergence of (27.18) is controlled
by the gap between the leading and next-to-leading eigenvalues of the evolution
operator.
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Résumé

We conclude this chapter by a general comment on the relation of finite trace
sums such as (27.2) to spectral determinants and dynamical zeta functions. One
might be tempted to believe that given a deterministic rule, a sum like (27.2)
can be evaluated to any desired precision. For short times, this is indeed true:
every region Mi in (27.2) can be accurately delineated, and there is no need for
any fancy theory. However, if the dynamics is unstable, local variations in initial
conditions grow exponentially and in a finite time attain the size of the system.
The difficulty with estimating the n → ∞ limit from (27.2) is then at least twofold:

1. Due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20;

2. The pre-asymptotic sequence of finite estimates γn is not unique, because
the sums Γ̂n depend on how we define the escape region, and because in general
the areas |Mi| in the sum (27.2) should be weighted by the density of initial x0.

In contrast, dynamical zeta functions and spectral determinants are invariant
under all smooth nonlinear conjugacies x → h(x), not only linear rescalings, and
require no n→ ∞ extrapolations.

Commentary

Remark 27.1. Nonhyperbolic measures. The measure µi = 1/|Λi| is the natural
measure only for the strictly hyperbolic systems. For nonhyperbolic systems, the mea-
sure might develop cusps. For example, for Ulam maps (unimodal maps with quadratic
critical point mapped onto the “left” unstable fixed point x0, discussed in more detail in
chapter 29), the measure develops a square-root singularity on the 0 cycle:

µ0 =
1

|Λ0|
1/2 . (27.20)

Thermodynamic averages are still expected to converge in the “hyperbolic” phase in
which the positive entropy of unstable orbits dominates the marginal orbits, but they fail
in the “nonhyperbolic” phase. The general case remains unclear [5, 7, 8, 10, 13].

Remark 27.2. Trace formula periodic orbit averaging. The cycle averaging formulas
are not the first thing one intuitively writes down; the approximate trace formulas are
more accessibly heuristically. Trace formula for averaging (27.19) was discussed for the
first time by Hannay and Ozorio de Almeida [11, 12]. Another novelty of cycle averaging
formulas is one of their main virtues, in contrast to the explicit analytical results such
as those of ref. [9]. Their evaluation does not require any explicit construction of the
(coordinate dependent) eigenfunctions of the Perron-Frobenius operator (i.e., the natural
measure ρ0).

Remark 27.3. Role of noise in dynamical systems. In any physical application,
the dynamics is always accompanied by external noise in addition to deterministic chaos.
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The former can be characterized by its strength σ and distribution. Lyapunov exponents,
correlation decay, and dynamo rate can be defined in this case the same way as in the
deterministic case. One might think that noise completely destroys the results derived
here. However, as we show chapter 33, deterministic formulas remain valid to accuracy
comparable with noise width if the noise level is small. A small level of noise even helps,
as it makes the dynamics more ergodic. Deterministically non-communicating parts of
state space become weakly connected due to noise. This argument explains why periodic
orbit theory is also applicable to non-ergodic systems. For small amplitude noise, one can
expand perturbatively

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averages a0. The expansion coefficients a1, a2, ... can also be
expressed in terms of periodic orbit formulas. Calculating these coefficients is one of the
challenges facing periodic orbit theory, discussed in refs. [3, 4, 6].
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[6] P. Cvitanović, N. Søndergaard, G. Palla, G. Vattay, and C. P. Dettmann,
“Spectrum of stochastic evolution operators: Local matrix representation
approach”, Phys. Rev. E 60, 3936–3941 (1999).

[7] P. Grassberger, R. Badii, and A. Politi, “Scaling laws for invariant mea-
sures on hyperbolic and nonhyperbolic atractors”, J. Stat. Phys. 51, 135–
178 (1988).

[8] C. Grebogi, E. Ott, and J. A. Yorke, “Crises, sudden changes in chaotic
attractors, and transient chaos”, Physica D 7, 181–200 (1983).

[9] S. Grossmann and S. Thomae, “Invariant distributions and stationary cor-
relation functions of one-dimensional discrete processes”, Z. Naturf. A 32,
1353–1363 (1977).

[10] E. Ott, C. Grebogi, and J. A. Yorke, “Theory of first order phase transitions
for chaotic attractors of nonlinear dynamical systems”, Phys. Lett. A 135,
343–348 (1989).

getused - 24dec2012 ChaosBook.org edition16.4.8, May 25 2020

http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1088/0951-7715/3/2/006
http://dx.doi.org/10.1103/PhysRevLett.65.2087
http://dx.doi.org/10.1103/PhysRevLett.65.2087
http://dx.doi.org/10.1103/PhysRevLett.65.2087
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1023/B:JOSS.0000033173.38345.f9
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1088/0951-7715/12/4/312
http://dx.doi.org/10.1103/PhysRevA.38.1503
http://dx.doi.org/10.1103/PhysRevA.38.1503
http://dx.doi.org/10.1103/PhysRevA.38.1503
http://dx.doi.org/10.1103/PhysRevA.38.1503
http://dx.doi.org/10.1103/PhysRevE.60.3936
http://dx.doi.org/10.1103/PhysRevE.60.3936
http://dx.doi.org/10.1103/PhysRevE.60.3936
http://dx.doi.org/10.1007/BF01015324
http://dx.doi.org/10.1007/BF01015324
http://dx.doi.org/10.1007/BF01015324
http://dx.doi.org/10.1007/BF01015324
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1016/0167-2789(83)90126-4
http://dx.doi.org/10.1515/zna-1977-1204
http://dx.doi.org/10.1515/zna-1977-1204
http://dx.doi.org/10.1515/zna-1977-1204
http://dx.doi.org/10.1515/zna-1977-1204
http://dx.doi.org/10.1016/0375-9601(89)90005-4
http://dx.doi.org/10.1016/0375-9601(89)90005-4
http://dx.doi.org/10.1016/0375-9601(89)90005-4
http://dx.doi.org/10.1016/0375-9601(89)90005-4


CHAPTER 27. WHY CYCLE? 526

[11] A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and Quantization
(Cambridge Univ. Press, Cambridge UK, 1989).

[12] A. M. Ozorio de Almeida and J. H. Hannay, “Periodic orbits and a corre-
lation function for the semiclassical density of states”, J. Phys. A 17, 3429
(1984).

[13] A. Politi, R. Badii, and P. Grassberger, “On the geometric structure of
non-hyperbolic attractors”, J. Phys. A 21, L763–L769 (1988).

getused - 24dec2012 ChaosBook.org edition16.4.8, May 25 2020

http://dx.doi.org/10.1017/cbo9780511564161
http://dx.doi.org/10.1088/0305-4470/17/18/013
http://dx.doi.org/10.1088/0305-4470/17/18/013
http://dx.doi.org/10.1088/0305-4470/17/18/013
http://dx.doi.org/10.1088/0305-4470/17/18/013
http://dx.doi.org/10.1088/0305-4470/21/15/004
http://dx.doi.org/10.1088/0305-4470/21/15/004
http://dx.doi.org/10.1088/0305-4470/21/15/004


EXERCISES 527

Exercises

27.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining
trapped in the interval [0, 1] for the logistic map

f (x) = A(1 − (2x − 1)2), (27.21)

and determine the A dependence of the escape rate
γ(A) numerically.

(b) Develop a numerical method for calculating the
lengths of intervals of trajectories remaining stuck
for n iterations of the map.

(c) Describe the dependence of A near the critical
value Ac = 1?

27.2. Four-scale map correlation decay rate. Consider
the piecewise-linear map

f
01

f
11

f
10

b c

f
00

00 01 10 11

f (x) =


f00 = Λ0x
f01 = s01(x − b) + 1
f11 = Λ1(x − b) + 1
f10 = s10(x − 1)

with a 4-interval state space Markov partition

M = {M00,M01,M10,M11}

= {[0, b/Λ0], (b/Λ0, b](b, c](c, 1]} .

(a) compute s01, s10, c.

(b) Show that the 2-cycle Floquet multiplier does not
depend on b,

Λ01 = s01s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) Write down the [2×2] Perron-Frobenius operator
acting on the space of densities piecewise constant
over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-
ant.

(f) Show that the escape rate vanishes, γ = − ln(z0) =

0.

(g) Determine the spectrum of the Perron-Frobenius
operator on the space of densities piecewise con-
stant over the four partitions. Show that the second
largest eigenvalue of the is 1

z1
= −1 + 1

Λ0
− 1

Λ1
.

(h) Is this value consistent with the tent map value
previously computed in exercise 19.4 (with the ap-
propriate choice of {Λ0,Λ1, c}).

(i) (optional) Is this next-to leading eigenvalue still
correct if the Perron-Frobenius operator acts on
the space of analytic functions?

27.3. Lyapunov exponents for 1-dimensional maps. Ex-
tend your cycle expansion programs so that the first and
the second moments of observables can be computed.
Use it to compute the Lyapunov exponent for the fol-
lowing maps:

(a) the piecewise-linear skew tent (flow conserving
map)

f (x) =

{
Λ0x if 0 ≤ x < Λ−1

0 ,
Λ1(1 − x) if Λ−1

0 ≤ x ≤ 1. ,

Λ1 = Λ0/(Λ0 − 1).

(b) the Ulam map f (x) = 4x(1 − x) .

(c) the skew Ulam map

f (x) = Λ0x(1 − x)(1 − bx) , (27.22)

1/Λ0 = xc(1− xc)(1−bxc) . In our numerical work
we fix (arbitrarily, the value chosen in ref. [1])
b = 0.6, so

f (x) = 0.1218 x(1 − x)(1 − 0.6 x)

with a peak f (xc) = 1 at xc = 0.7.

(d) the repeller of f (x) = Ax(1− x), for either A = 9/2
or A = 6 (this is a continuation of exercise 23.2).

(e) the 2-branch flow conserving map

f0(x) =
1

2h

(
h − p +

√
(h − p)2 + 4hx

)
f1(x) =

1
2h

(h + p − 1) (27.23)

+
1

2h

√
(h + p − 1)2 + 4h(x − p) ,
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with a 2-interval state space Markov partition
M = {M0,M1} = {[0, p], (p, 1]} . This is a non-
linear perturbation of the Bernoulli shift map, for
which h = 0 (28.21); the first 15 eigenvalues of
the Perron-Frobenius operator are listed in ref. [2]
for p = 0.8, h = 0.1. Use these parameter values
when computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases
(c), (d) and (e) require numerical computation of cy-
cle stabilities. Just to see whether the theory is worth

the trouble, also check your cycle expansions results for
cases (c) and (d) with Lyapunov exponents computed
by direct numerical averaging along trajectories of ran-
domly chosen initial points:

(f) trajectory-trajectory separation (6.1) (hint: rescale
δx every so often, to avoid numerical overflows),

(g) iterated stability (6.11).

How good is the numerical accuracy compared with pe-
riodic orbit theory predictions for (a) - (g)?
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Chapter 28

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
quantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

As we shall see, the trace formulas and spectral determinants work well, some-
times very well. The question is: Why? And it still is. The heuristic
manipulations of chapter 21 were naive and reckless, as we are facing

infinite-dimensional vector spaces and singular integral kernels.

We now outline the key ingredients of proofs that put the trace and determi-
nant formulas on solid footing. This requires taking a closer look at the evolution
operators from a mathematical point of view, since up to now we have talked
about eigenvalues without any reference to what kind of a function space the cor-
responding eigenfunctions belong to. We shall restrict our considerations to the
spectral properties of the Perron-Frobenius operator for maps, as proofs for more
general evolution operators follow along the same lines. What we refer to as a “the
set of eigenvalues” acquires meaning only within a precisely specified functional
setting: this sets the stage for a discussion of the analyticity properties of spectral
determinants. In example 28.1 we compute explicitly the eigenspectrum for the
three analytically tractable piecewise linear examples. In sect. 28.3 we review the
basic facts of the classical Fredholm theory of integral equations. The program
is sketched in sect. 28.4, motivated by an explicit study of eigenspectrum of the
Bernoulli shift map, and in sect. 28.5 generalized to piecewise real-analytic hy-
perbolic maps acting on appropriate densities. We show on a very simple example
that the spectrum is quite sensitive to the regularity properties of the functions
considered.

For expanding and hyperbolic finite-subshift maps analyticity leads to a very
strong result; not only do the determinants have better analyticity properties than
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CHAPTER 28. WHY DOES IT WORK? 530

the trace formulas, but the spectral determinants are singled out as entire functions
in the complex s plane.

remark 28.1

The goal of this chapter is not to provide an exhaustive review of the rigorous the-
ory of the Perron-Frobenius operators and their spectral determinants, but rather
to give you a feeling for how our heuristic considerations can be put on a firm
basis. The mathematics underpinning the theory is both hard and profound.

If you are primarily interested in applications of the periodic orbit theory, you
should skip this chapter on the first reading.

fast track:

chapter 16, p. 302

28.1 Linear maps: exact spectra

We start gently; in example 28.1 we work out the exact eigenvalues and eigen-
functions of the Perron-Frobenius operator for the simplest example of unstable,
expanding dynamics, a linear 1-dimensional map with one unstable fixed point.
Ref. [12] shows that this can be carried over to d-dimensions. Not only that, but
in example 28.5 we compute the exact spectrum for the simplest example of a
dynamical system with an infinity of unstable periodic orbits, the Bernoulli shift.

example 28.1

p. 548

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation: k labels the kth eigenfunction xk in the same spirit in which the number
of nodes labels the kth quantum-mechanical eigenfunction. A quantum-mechanical
amplitude with more nodes has more variability, hence a higher kinetic energy.
Analogously, for a Perron-Frobenius operator, a higher k eigenvalue 1/|Λ|Λk is
getting exponentially smaller because densities that vary more rapidly decay more
rapidly under the expanding action of the map.

example 28.2

p. 548

The left hand side of (28.18) is a meromorphic function, with the leading zero
at z = |Λ|. So what?

example 28.3

p. 548

This example shows that: (1) an estimate of the leading pole (the leading
eigenvalue of L) from a finite truncation of a trace formula converges exponen-
tially, and (2) the non-leading eigenvalues of L lie outside of the radius of con-
vergence of the trace formula and cannot be computed by means of such cycle
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Figure 28.1: The Bernoulli shift map.

expansion. However, as we shall now see, the whole spectrum is reachable at no
extra effort, by computing it from a determinant rather than a trace.

example 28.4

p. 549

The main lesson to glean from this simple example is that the cumulants Qn

decay asymptotically faster than exponentially, as Λ−n(n−1)/2. For example, if we
approximate series such as (28.19) by the first 10 terms, the error in the estimate
of the leading zero is ≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a single
repelling fixed point. What about chaos? Systems where the number of unstable
cycles increases exponentially with their length? We now turn to the simplest
example of a dynamical system with an infinity of unstable periodic orbits.

example 28.5

p. 549

The Bernoulli map spectrum looks reminiscent of the single fixed-point spec-
trum (28.17), with the difference that the leading eigenvalue here is 1, rather than
1/|Λ|. The difference is significant: the single fixed-point map is a repeller, with
escape rate (1.7) given by the L leading eigenvalue γ = ln |Λ|, while there is no
escape in the case of the Bernoulli map. As already noted in discussion of the
relation (22.15), for bounded systems the local expansion rate (here ln |Λ| = ln 2)

section 22.4
is balanced by the entropy (here ln 2, the log of the number of preimages Fs),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are correct for
two piecewise linear maps in 1 dimension, one with a single fixed point, and one
with a full binary shift chaotic dynamics. For a single fixed point, eigenfunctions
are monomials in x. For the chaotic example, they are orthogonal polynomials on
the unit interval. What about higher dimensions? We check our formulas on a
2-dimensional hyperbolic map next.

example 28.6

p. 549

So far we have checked the trace and spectral determinant formulas derived
heuristically in chapters 21 and 22, but only for the case of 1-dimensional and
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2-dimensional linear maps. But for infinite-dimensional vector spaces this game
is fraught with dangers, and we have already been mislead by piecewise linear
examples into spectral confusions: contrast the spectra of example 19.1 and ex-
ample 20.4 with the spectrum computed in example 21.2.

We show next that the above results do carry over to a sizable class of piece-
wise analytic expanding maps.

28.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes very effective way to look at
operators is through their matrix representations. Evolution operators are moving
density functions defined over some state space, and as in general we can imple-
ment this only numerically, the temptation is to discretize the state space as in
sect. 19.3. The problem with such state space discretization approaches that they
sometimes yield plainly wrong spectra (compare example 20.4 with the result of
example 21.2), so we have to think through carefully what is it that we really
measure.

An expanding map f (x) takes an initial smooth density φn(x), defined on a
subinterval, stretches it out and overlays it over a larger interval, resulting in a new,
smoother density φn+1(x). Repetition of this process smoothes the initial density,
so it is natural to represent densities φn(x) by their Taylor series. Expanding

φn(y) =

∞∑
k=0

φ(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑
`=0

φ(`)
n+1(0)

y`

`!
,

φ(`)
n+1(0) =

∫
dx δ(`)(y − f (x))φn(x)

∣∣∣
y=0 , x = f −1(0) ,

and substitute the two Taylor series into (19.6):

φn+1(y) = (Lφn) (y) =

∫
M

dx δ(y − f (x)) φn(x) .

The matrix elements follow by evaluating the integral

L`k =
∂`

∂y`

∫
dxL(y, x)

xk

k!

∣∣∣∣∣∣
y=0

. (28.1)

we obtain a matrix representation of the evolution operator∫
dxL(y, x)

xk

k!
=

∑
k′

yk′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into the yk′ com-
ponent of the density φn+1(y) one time step later, with y = f (x).
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Figure 28.2: A nonlinear one-branch repeller with a
single fixed point wq.

0 0.5 1w0

0.5

1

f(w)

w*

We already have some practice with evaluating derivatives δ(`)(y) = ∂`

∂y` δ(y) from
sect. 19.2. This yields a representation of the evolution operator centered on the
fixed point, evaluated recursively in terms of derivatives of the map f :

L`k =

∫
dx δ(`)(x − f (x))

xk

k!

∣∣∣∣∣∣
x= f (x)

(28.2)

=
1
| f ′|

(
d
dx

1
f ′(x)

)` xk

k!

∣∣∣∣∣∣∣
x= f (x)

.

The matrix elements vanish for ` < k, so L is a lower triangular matrix. The
diagonal and the successive off-diagonal matrix elements are easily evaluated it-
eratively by computer algebra

Lkk =
1
|Λ|Λk , Lk+1,k = −

(k + 2)! f ′′

2k!|Λ|Λk+2 , · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal terms drop
off exponentially, as 1/|Λ|k+1, the terms below the diagonal fall off even faster, and
truncating L to a finite matrix introduces only exponentially small errors.

The trace formula (28.18) takes now a matrix form

tr
zL

1 − zL
= tr

zL
1 − zL

. (28.3)

In order to illustrate how this works, we work out a few examples.

In example 28.7 we show that these results carry over to any analytic single-
branch 1-dimensional repeller. Further examples motivate the steps that lead to
a proof that spectral determinants for general analytic 1-dimensional expanding
maps, and - in sect. 28.5, for 1-dimensional hyperbolic mappings - are also entire
functions.

example 28.7

p. 550

This super-exponential decay of cumulants Qk ensures that for a repeller con-
sisting of a single repelling point the spectral determinant (28.19) is entire in the
complex z plane.
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In retrospect, the matrix representation method for solving the density evolu-
tion problems is eminently sensible — after all, that is the way one solves a close
relative to classical density evolution equations, the Schrödinger equation. When
available, matrix representations for L enable us to compute many more orders
of cumulant expansions of spectral determinants and many more eigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as (22.24) imply that
the dynamical zeta function is a meromorphic function. The practical import of
this observation is that it guarantees that finite order estimates of zeroes of dyn-
amical zeta functions and spectral determinants converge exponentially, or - in
cases such as (28.19) - super-exponentially to the exact values, and so the cycle
expansions to be discussed in chapter 23 represent a true perturbative approach to
chaotic dynamics.

Before turning to specifics we summarize a few facts about classical theory
of integral equations, something you might prefer to skip on first reading. The
purpose of this exercise is to understand that the Fredholm theory, a theory that
works so well for the Hilbert spaces of quantum mechanics does not necessarily
work for deterministic dynamics - the ergodic theory is much harder.

fast track:

sect. 28.4, p. 535

28.3 Classical Fredholm theory

He who would valiant be ’gainst all disaster
Let him in constancy follow the Master.

—John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =

∫
dy δ(x − f (y)) φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =

∫
M

dyK(x, y)ϕ(y) , (28.4)

and one is tempted to resort to classical Fredholm theory in order to establish
analyticity properties of spectral determinants. This path to enlightenment is
blocked by the singular nature of the kernel, which is a distribution, whereas the
standard theory of integral equations usually concerns itself with regular kernels
K(x, y) ∈ L2(M2). Here we briefly recall some steps of Fredholm theory, before
working out the example of example 28.5.
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The general form of Fredholm integral equations of the second kind is

ϕ(x) =

∫
M

dyK(x, y)ϕ(y) + ξ(x) (28.5)

where ξ(x) is a given function in L2(M) and the kernelK(x, y) ∈ L2(M2) (Hilbert-
Schmidt condition). The natural object to study is then the linear integral operator
(28.4), acting on the Hilbert space L2(M): the fundamental property that follows
from the L2(Q) nature of the kernel is that such an operator is compact, that is
close to a finite rank operator.A compact operator has the property that for every
δ > 0 only a finite number of linearly independent eigenvectors exist correspond-
ing to eigenvalues whose absolute value exceeds δ, so we immediately realize
(figure 28.5) that much work is needed to bring Perron-Frobenius operators into
this picture.

We rewrite (28.5) in the form

Tϕ = ξ , T = 11 − K . (28.6)

The Fredholm alternative is now applied to this situation as follows: the equation
Tϕ = ξ has a unique solution for every ξ ∈ L2(M) or there exists a non-zero
solution of Tϕ0 = 0, with an eigenvector of K corresponding to the eigenvalue 1.
The theory remains the same if instead ofT we consider the operatorTλ = 11−λK
with λ , 0. AsK is a compact operator there is at most a denumerable set of λ for
which the second part of the Fredholm alternative holds: apart from this set the
inverse operator ( 11−λT )−1 exists and is bounded (in the operator sense). When λ
is sufficiently small we may look for a perturbative expression for such an inverse,
as a geometric series

remark A22.1

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (28.7)

where Kn is a compact integral operator with kernel

Kn(x, y) =

∫
Mn−1

dz1 . . . dzn−1K(x, z1) · · · K(zn−1, y) ,

andW is also compact, as it is given by the convergent sum of compact operators.
The problem with (28.7) is that the series has a finite radius of convergence, while
apart from a denumerable set of λ’s the inverse operator is well defined. A funda-
mental result in the theory of integral equations consists in rewriting the resolving
kernelW as a ratio of two analytic functions of λ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K

(
x1 . . . xn
y1 . . . yn

)
=

∣∣∣∣∣∣∣∣
K(x1, y1) . . . K(x1, yn)

. . . . . . . . .
K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣∣∣
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we may write the explicit expressions

D(λ) = 1 +

∞∑
n=1

(−1)n λ
n

n!

∫
Mn

dz1 . . . dznK

(
z1 . . . zn
z1 . . . zn

)

= exp

− ∞∑
m=1

λm

m
trKm

 (28.8)

D(x, y; λ) = K

(
x
y

)
+

∞∑
n=1

(−λ)n

n!

∫
Mn

dz1 . . . dznK

(
x z1 . . . zn
y z1 . . . zn

)

The quantity D(λ) is known as the Fredholm determinant (see (22.16)):it is an
entire analytic function of λ, and D(λ) = 0 if and only if 1/λ is an eigenvalue of
K .

Worth emphasizing again: the Fredholm theory is based on the compactness
of the integral operator, i.e., on the functional properties (summability) of its ker-
nel. As the Perron-Frobenius operator is not compact, there is a bit of wishful
thinking involved here.

28.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrable L1, or square-integrable L2 on interval [0, 1]
are mapped into themselves by the Perron-Frobenius operator, and in both cases
the constant function φ0 ≡ 1 is an eigenfunction with eigenvalue 1. If we focus
our attention on L1 we also have a family of L1 eigenfunctions,

φθ(y) =
∑
k,0

exp(2πiky)
1
|k|θ

(28.9)

with complex eigenvalue 2−θ, parameterized by complex θ with Re θ > 0. By
varying θ one realizes that such eigenvalues fill out the entire unit disk. Such
essential spectrum, the case k = 0 of figure 28.5, hides all fine details of the
spectrum.

What’s going on? Spaces L1 and L2 contain arbitrarily ugly functions, allow-
ing any singularity as long as it is (square) integrable - and there is no way that
expanding dynamics can smooth a kinky function with a non-differentiable singu-
larity, let’s say a discontinuous step, and that is why the eigenspectrum is dense
rather than discrete. Mathematicians love to wallow in this kind of muck, but there
is no way to prepare a nowhere differentiable L1 initial density in a laboratory. The
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only thing we can prepare and measure are piecewise smooth (real-analytic) den-
sity functions.

For a bounded linear operator A on a Banach space Ω, the spectral radius
is the smallest positive number ρspec such that the spectrum is inside the disk of
radius ρspec, while the essential spectral radius is the smallest positive number
ρess such that outside the disk of radius ρess the spectrum consists only of isolated
eigenvalues of finite multiplicity (see figure 28.5).

exercise 28.5

We may shrink the essential spectrum by letting the Perron-Frobenius oper-
ator act on a space of smoother functions, exactly as in the one-branch repeller
case of sect. 28.1. We thus consider a smaller space, Ck+α, the space of k times
differentiable functions whose k’th derivatives are Hölder continuous with an ex-
ponent 0 < α ≤ 1: the expansion property guarantees that such a space is mapped
into itself by the Perron-Frobenius operator. In the strip 0 < Re θ < k + α most φθ
will cease to be eigenfunctions in the space Ck+α; the function φn survives only for
integer valued θ = n. In this way we arrive at a finite set of isolated eigenvalues
1, 2−1, · · · , 2−k, and an essential spectral radius ρess = 2−(k+α).

We follow a simpler path and restrict the function space even further, namely
to a space of analytic functions, i.e., functions for which the Taylor expansion is
convergent at each point of the interval [0, 1]. With this choice things turn out easy
and elegant. To be more specific, let φ be a holomorphic and bounded function on
the disk D = B(0,R) of radius R > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions provided (1 + R)/2 < R so all we
need is to choose R > 1. If Fs , s ∈ {0, 1}, denotes the s inverse branch of the
Bernoulli shift (28.21), the corresponding action of the Perron-Frobenius operator
is given by Lsh(y) = σ F′s(y) h ◦ Fs(y), using the Cauchy integral formula along
the ∂D boundary contour:

Lsh(y) = σ

∮
∂D

dw
2πi

h(w)F′s(y)
w − Fs(y)

. (28.10)

For reasons that will be made clear later we have introduced a sign σ = ±1 of the
given real branch |F′(y)| = σ F′(y). For both branches of the Bernoulli shift s = 1,
but in general one is not allowed to take absolute values as this could destroy
analyticity. In the above formula one may also replace the domain D by any
domain containing [0, 1] such that the inverse branches maps the closure of D into
the interior of D. Why? simply because the kernel remains non-singular under
this condition, i.e., w − F(y) , 0 whenever w ∈ ∂D and y ∈ Cl D. The problem
is now reduced to the standard theory for Fredholm determinants, sect. 28.3. The
integral kernel is no longer singular, traces and determinants are well-defined, and
we can evaluate the trace of LF by means of the Cauchy contour integral formula:

tr LF =

∮
dw
2πi

σF′(w)
w − F(w)

.

Elementary complex analysis shows that since F maps the closure of D into its
own interior, F has a unique (real-valued) fixed point x∗ with a multiplier strictly
smaller than one in absolute value. Residue calculus therefore yields

exercise 28.6
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tr LF =
σF′(x∗)

1 − F′(x∗)
=

1
| f ′(x∗) − 1|

,

justifying our previous ad hoc calculations of traces using Dirac delta functions.

example 28.8

p. 551

We worked out a very specific example, yet our conclusions can be gener-
alized, provided a number of restrictive requirements are met by the dynamical
system under investigation:

exercise 28.6

1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded in
magnitude away from 1),
4) the map (or the flow) is real analytic, i.e., it has a piecewise ana-
lytic continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfied by the dynamical
systems that we actually desire to understand. Still, they are not devoid of physical
interest; for example, nice repellers like our 3-disk game of pinball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a finite
matrix in an appropriate basis; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow. Semi-
classical quantum mechanics suggest operators of this form with β = 1/2.The
problem with such operators arises from the fact that when considering the Ja-
cobian matrices Jab = JaJb for two successive trajectory segments a and b, the
corresponding eigenvalues are in general not multiplicative, Λab , ΛaΛb (unless
a, b are iterates of the same prime cycle p, so JaJb = Jra+rb

p ). Consequently, this
evolution operator is not multiplicative along the trajectory. The theorems require
that the evolution be represented as a matrix in an appropriate polynomial basis,
and thus cannot be applied to non-multiplicative kernels, i.e., kernels that do not
satisfy the semi-group property Lt′Lt = Lt′+t.

Property 2 is violated by the 1-dimensional tent map (see figure 28.3 (a))

f (x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point xc = 1/2
is not a pre-periodic point, so there is no finite Markov partition and the sym-
bolic dynamics does not have a finite grammar (see sect. 15.4 for definitions). In
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Figure 28.3: (a) A (hyperbolic) tent map without
a finite Markov partition. (b) A Markov map with
a marginal fixed point.

(a) (b)

practice, this means that while the leading eigenvalue of L might be computable,
the rest of the spectrum is very hard to control; as the parameter α is varied, the
non-leading zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see figure 28.3 (b))

f (x) =

{
x + 2x2 , x ∈ I0 = [0, 1

2 ]
2 − 2x , x ∈ I1 = [ 1

2 , 1]
.

Here the interval [0, 1] has a Markov partition into two subintervals I0 and I1, and
f is monotone on each. However, the fixed point at x = 0 has marginal stability
Λ0 = 1, and violates condition 3. This type of map is called “intermittent" and
necessitates much extra work. The problem is that the dynamics in the neighbor-
hood of a marginal fixed point is very slow, with correlations decaying as power
laws rather than exponentially. We will discuss such flows in chapter 29.

Property 4 is required as the heuristic approach of chapter 21 faces two major
hurdles:

1. The trace (21.7) is not well defined because the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present approach,
so that the Banach space of analytic functions in a disk is preserved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter several problems. First,
in higher dimensions life is not as simple. Multi-dimensional residue calculus is
at our disposal but in general requires that we find poly-domains (direct product
of domains in each coordinate) and this need not be the case. Second, and per-
haps somewhat surprisingly, the ‘counting of periodic orbits’ presents a difficult
problem. For example, instead of the Bernoulli shift consider the doubling map
(14.19) of the circle, x 7→ 2x mod 1, x ∈ R/Z. Compared to the shift on the
interval [0, 1] the only difference is that the endpoints 0 and 1 are now glued to-
gether. Because these endpoints are fixed points of the map, the number of cycles
of length n decreases by 1. The determinant becomes:

det (1 − zL) = exp

−∑
n=1

zn

n
2n − 1
2n − 1

 = 1 − z.
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The value z = 1 still comes from the constant eigenfunction, but the Bernoulli
polynomials no longer contribute to the spectrum (as they are not periodic). Proofs
of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering purely ex-
panding maps. When stable and unstable directions co-exist we have to resort to
stranger function spaces, as shown in the next section.

28.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do not
know what that means.

—Federico Bonnetto, Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If f is an
area-preserving hyperbolic and real-analytic map of, for example, a 2-dimensional
torus then the Perron-Frobenius operator is unitary on the space of L2 functions,
and its spectrum is confined to the unit circle. On the other hand, when we
compute determinants we find eigenvalues scattered around inside the unit disk.
Thinking back to the Bernoulli shift example 28.5, one would like to imagine
these eigenvalues as popping up from the L2 spectrum by shrinking the function
space. Shrinking the space, however, can only make the spectrum smaller so this
is obviously not what happens. Instead one needs to introduce a ‘mixed’ function
space where in the unstable direction one resorts to analytic functions, as before,
but in the stable direction one instead considers a ‘dual space’ of distributions on
analytic functions. Such a space is neither included in nor includes L2 and we
have thus resolved the paradox. However, it still remains to be seen how traces
and determinants are calculated.

The linear hyperbolic fixed point example 28.6 is somewhat misleading, as we
have made explicit use of a map that acts independently along the stable and unsta-
ble directions. For a more general hyperbolic map, there is no way to implement
such direct product structure, and the whole argument falls apart. Her comes an
idea; use the analyticity of the map to rewrite the Perron-Frobenius operator acting
as follows (where σ denotes the sign of the derivative in the unstable direction):

Lh(z1, z2) =

∮ ∮
σ h(w1,w2)

(z1 − f1(w1,w2)( f2(w1,w2) − z2)
dw1

2πi
dw2

2πi
. (28.11)

Here the function φ should belong to a space of functions analytic respectively
outside a disk and inside a disk in the first and the second coordinates; with the
additional property that the function decays to zero as the first coordinate tends
to infinity. The contour integrals are along the boundaries of these disks. It is an
exercise in multi-dimensional residue calculus to verify that for the above linear
example this expression reduces to (28.24). Such operators form the building
blocks in the calculation of traces and determinants. One can prove the following:
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Figure 28.4: An analytic hyperbolic map that defines
a unique trajectory between two rectangles, where wh

is the contracting coordinate at the initial rectangle and
zv is the expanding coordinate at the image rectangle.
In particular, wv and zh (not shown) are uniquely spec-
ified.

Theorem: The spectral determinant for 2-dimensional hyperbolic analytic maps
is entire.

remark 28.8

The proof, apart from the Markov property that is the same as for the purely
expanding case, relies heavily on the analyticity of the map in the explicit con-
struction of the function space. The idea is to view the hyperbolicity as a cross
product of a contracting map in forward time and another contracting map in back-
ward time. In this case the Markov property introduced above has to be elaborated
a bit. Instead of dividing the state space into intervals, one divides it into rectan-
gles. The rectangles should be viewed as a direct product of intervals (say hori-
zontal and vertical), such that the forward map is contracting in, for example, the
horizontal direction, while the inverse map is contracting in the vertical direction.
For Axiom A systems (see remark 28.8) one may choose coordinate axes close
to the stable/unstable manifolds of the map. With the state space divided into
N rectangles {M1,M2, . . . ,MN}, Mi = Ih

i × Iv
i one needs a complex extension

Dh
i × Dv

i , with which the hyperbolicity condition (which simultaneously guaran-
tees the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f (Mi) ∩ Int(M j) = ∅, or for each pair
wh ∈ Cl(Dh

i ), zv ∈ Cl(Dv
j) there exist unique analytic functions of wh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j), such that f (wh,wv) = (zh, zv).
Furthermore, if wh ∈ Ih

i and zv ∈ Iv
j , then wv ∈ Iv

i and zh ∈ Ih
j (see figure 28.4).

In plain English, this means for the iterated map that one replaces the coor-
dinates zh, zv at time n by the contracting pair zh,wv, where wv is the contracting
coordinate at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (28.11) acts on functions analytic outside
Dh

i in the horizontal direction (and tending to zero at infinity) and inside Dv
i in

the vertical direction. The contour integrals are precisely along the boundaries of
these domains.

A map f satisfying the above condition is called analytic hyperbolic and the
theorem states that the associated spectral determinant is entire, and that the trace
formula (21.7) is correct.

Examples of analytic hyperbolic maps are provided by small analytic pertur-
bations of the cat map, the 3-disk repeller, and the 2-dimensional baker’s map.
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28.6 Physics of eigenvalues and eigenfunctions

By now we appreciate that any honest attempt to look at the spectral prop-
erties of the Perron-Frobenius operator involves hard mathematics, but the reward
is of this effort is that we are able to control the analyticity properties of dynamical
zeta functions and spectral determinants, and thus substantiate the claim that these
objects provide a powerful and well-founded theory.

Often (see chapter 20) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate from a repeller, or, for a gen-
eral evolution operator, formulas for expectation values of observables and their
higher moments. Also the eigenfunction associated to the leading eigenvalue has
a physical interpretation (see chapter 19): it is the density of the natural measures,
with singular measures ruled out by the proper choice of the function space. This
conclusion is in accord with the generalized Perron-Frobenius theorem for evolu-
tion operators. In a finite dimensional setting, the statement is:

remark 28.7

• Perron-Frobenius theorem: Let Li j be a non-negative matrix, such that
some finite n exists for which any initial state has reached any other state,
(Ln)i j > 0 ∀i, j: then

1. The maximal modulus eigenvalue is non-degenerate, real, and posi-
tive,

2. The corresponding eigenvector (defined up to a constant) has non-
negative coordinates.

We may ask what physical information is contained in eigenvalues beyond the
leading one: suppose that we have a probability conserving system (so that the
dominant eigenvalue is 1), for which the essential spectral radius satisfies 0 <

ρess < θ < 1 on some Banach space B. Denote by P the projection corresponding
to the part of the spectrum inside a disk of radius θ. We denote by λ1, λ2 . . . , λM

the eigenvalues outside of this disk, ordered by the size of their absolute value,
with λ1 = 1. Then we have the following decomposition

Lϕ =

M∑
i=1

λiψiLiψ
∗
i ϕ + PLϕ (28.12)

when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1] matrix,
as λ0 is simple, due to the Perron-Frobenius theorem), whereas ψi is a row vector
whose elements form a basis on the eigenspace corresponding to λi, and ψ∗i is
a column vector of elements of B∗ (the dual space of linear functionals over B)
spanning the eigenspace of L∗ corresponding to λi. For iterates of the Perron-
Frobenius operator, (28.12) becomes

Lnϕ =

M∑
i=1

λn
i ψiLn

i ψ
∗
i ϕ + PLnϕ . (28.13)
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If we now consider, for example, correlation between initial ϕ evolved n steps and
final ξ,

〈ξ|Ln|ϕ〉 =

∫
M

dy ξ(y)
(
Lnϕ

)
(y) =

∫
M

dw (ξ ◦ f n)(w)ϕ(w) , (28.14)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L∑
i=2

λn
i ω

(n)
i (ξ, ϕ) + O(θn) , (28.15)

where

ω(n)
i (ξ, ϕ) =

∫
M

dy ξ(y)ψiLn
i ψ
∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces of information:
they rule the convergence of expressions containing high powers of the evolution
operator to leading order (the λ1 contribution). Moreover if ω1(ξ, ϕ) = 0 then

exercise 28.7
(28.14) defines a correlation function: as each term in (28.15) vanishes exponen-
tially in the n → ∞ limit, the eigenvalues λ2, . . . , λM determine the exponential
decay of correlations for our dynamical system. The prefactors ω depend on the
choice of functions, whereas the exponential decay rates (given by logarithms of
λi) do not: the correlation spectrum is thus a universal property of the dynamics
(once we fix the overall functional space on which the Perron-Frobenius operator
acts).

example 28.9

p. 551

28.7 Troubles ahead

The above discussion confirms that for a series of examples of increasing gener-
ality formal manipulations with traces and determinants are justified: the Perron-
Frobenius operator has isolated eigenvalues, the trace formulas are explicitly ver-
ified, and the spectral determinant is an entire function whose zeroes yield the
eigenvalues. Real life is harder, as we may appreciate through the following
considerations:

• Our discussion tacitly assumed something that is physically entirely reason-
able: our evolution operator is acting on the space of analytic functions, i.e.,
we are allowed to represent the initial density ρ(x) by its Taylor expansions
in the neighborhoods of periodic points. This is however far from being the

exercise 28.1
only possible choice: mathematicians often work with the function space
Ck+α, i.e., the space of k times differentiable functions whose k’th deriva-
tives are Hölder continuous with an exponent 0 < α ≤ 1: then every yη with
Re η > k is an eigenfunction of the Perron-Frobenius operator and we have

Lyη =
1
|Λ|Λη

yη , η ∈ C .
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Figure 28.5: Spectrum of the Perron-Frobenius oper-
ator acting on the space of Ck+α Hölder-continuous
functions: only k isolated eigenvalues remain between
the spectral radius, and the essential spectral radius
which bounds the “essential,” continuous spectrum.

essential spectrum

isolated eigenvaluespectral radius

This spectrum differs markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between the spectral radius and a
smaller disk of radius 1/|Λ|k+1, see figure 28.5. In literature the radius of
this disk is called the essential spectral radius.

In sect. 28.4 we discussed this point further, with the aid of a less trivial
1-dimensional example. The physical point of view is complementary to
the standard setting of ergodic theory, where many chaotic properties of a
dynamical system are encoded by the presence of a continuous spectrum,
used to prove asymptotic decay of correlations in the space of L2 square-
integrable functions.

exercise 28.2

• A deceptively innocent assumption is hidden beneath much that was dis-
cussed so far: that (28.16) maps a given function space into itself. The
expanding property of the map guarantees that: if f (x) is smooth in a do-
main D then f (x/Λ) is smooth on a larger domain, provided |Λ| > 1. For
higher-dimensional hyperbolic flows this is not the case, and, as we saw in
sect. 28.5, extensions of the results obtained for expanding 1-dimensional
maps are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch, one fixed
point repeller can be extended to dynamical systems with Cantor sets of
periodic points: we showed this in sect. 28.4.

Résumé

Examples of analytic eigenfunctions for 1-dimensional maps are seductive, and
make the problem of evaluating ergodic averages appear easy; just integrate over
the desired observable weighted by the natural measure, right? No, generic natural
measure sits on a fractal set and is singular everywhere. The point of this book
is that you never need to construct the natural measure, cycle expansions will do
that job.

A theory of evaluation of dynamical averages by means of trace formulas
and spectral determinants requires a deep understanding of their analyticity and
convergence. We worked here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)
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2. exact spectrum for a locally analytic map, matrix representation

3. rigorous proof of existence of discrete spectrum for 2-dimensional hyper-
bolic maps

In the case of especially well-behaved “Axiom A” systems, where both the
symbolic dynamics and hyperbolicity are under control, it is possible to treat
traces and determinants in a rigorous fashion, and strong results about the ana-
lyticity properties of dynamical zeta functions and spectral determinants outlined
above follow.

Most systems of interest are not of the “axiom A” category; they are neither
purely hyperbolic nor (as we have seen in chapters 14 and 15 ) do they have
finite grammar. The importance of symbolic dynamics is generally grossly under
appreciated; the crucial ingredient for nice analyticity properties of zeta functions
is the existence of a finite grammar (coupled with uniform hyperbolicity).

The dynamical systems which are really interesting - for example, smooth
bounded Hamiltonian potentials - are presumably never fully chaotic, and the
central question remains: How do we attack this problem in a systematic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 28.1. Surveys of rigorous theory. We recommend the references listed in
remark 1.1 for an introduction to the mathematical literature on this subject. For a physi-
cist, Driebe’s monograph [8] might be the most accessible introduction into mathematics
discussed briefly in this chapter. There are a number of reviews of the mathematical
approach to dynamical zeta functions and spectral determinants, with pointers to the orig-
inal references, such as refs. [3, 17]. An alternative approach to spectral properties of the
Perron-Frobenius operator is given in ref. [24].

Ergodic theory, as presented by Sinai [22] and others, tempts one to describe the
densities on which the evolution operator acts in terms of either integrable or square-
integrable functions. For our purposes, as we have already seen, this space is not suitable.
An introduction to ergodic theory is given by Sinai, Kornfeld and Fomin [15]; more ad-
vanced old-fashioned presentations are Walters [25] and Denker, Grillenberger and Sig-
mund [6]; and a more formal one is given by Peterson [16].

Remark 28.2. Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [14]. A technical introduction of the theory from an operator point
of view is given in ref. [7]. The theory is presented in a more general form in ref. [12].

Remark 28.3. Bernoulli shift. For a more in-depth discussion, consult chapter 3 of
ref. [8]. The extension of Fredholm theory to the case of Bernoulli shift on Ck+α (in which
the Perron-Frobenius operator is not compact – technically it is only quasi-compact. That
is, the essential spectral radius is strictly smaller than the spectral radius) has been given
by Ruelle [20]: a concise and readable statement of the results is contained in ref. [2].
We see from (28.30) that for the Bernoulli shift the exponential decay rate of correlations
coincides with the Lyapunov exponent: while such an identity holds for a number of
systems, it is by no means a general result, and there exist explicit counterexamples. See
also remark 14.2.

Remark 28.4. Hyperbolic dynamics. When dealing with hyperbolic systems one
might try to reduce to the expanding case by projecting the dynamics along the unstable
directions. As mentioned in the text this can be quite involved technically, as such unstable
foliations are not characterized by strong smoothness properties. For such an approach,
see ref. [24].

Remark 28.5. Spectral determinants for smooth flows. The theorem on page 539 also
applies to hyperbolic analytic maps in d dimensions and smooth hyperbolic analytic flows
in (d + 1) dimensions, provided that the flow can be reduced to a piecewise analytic map
by a suspension on a Poincaré section, complemented by an analytic “ceiling” function
(3.7) that accounts for a variation in the section return times. For example, if we take
as the ceiling function g(x) = esT (x), where T (x) is the next Poincaré section time for a
trajectory staring at x, we reproduce the flow spectral determinant (22.23). Proofs are
beyond the scope of this chapter.
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Remark 28.6. Explicit diagonalization. For 1-dimensional repellers a diagonalization
of an explicit truncated Lmn matrix evaluated in a judiciously chosen basis may yield
many more eigenvalues than a cycle expansion (see refs. [1, 5]). The reasons why one
persists in using periodic orbit theory are partially aesthetic and partially pragmatic. The
explicit calculation of Lmn demands an explicit choice of a basis and is thus non-invariant,
in contrast to cycle expansions which utilize only the invariant information of the flow. In
addition, we usually do not know how to construct Lmn for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of sect. 1.3, whereas periodic
orbit theory is true in higher dimensions and straightforward to apply.

Remark 28.7. Perron-Frobenius theorem. A proof of the Perron-Frobenius the-
orem may be found in ref. [25]. For positive transfer operators, this theorem has been
generalized by Ruelle [18].

Remark 28.8. Axiom A systems. The proofs in sect. 28.5 follow the thesis
work of H.H. Rugh [9, 19, 21]. For a mathematical introduction to the subject, consult
the excellent review by V. Baladi [3]. It would take us too far afield to give and explain
the definition of Axiom A systems (see refs. [4, 23]). Axiom A implies, however, the
existence of a Markov partition of the state space from which the properties 2 and 3
assumed on page 549 follow.

Remark 28.9. Left eigenfunctions. We shall never use an explicit form of left eigen-
functions, corresponding to highly singular kernels like (28.32). Many details have been
elaborated in a number of papers, such as ref. [13], with a daring physical interpretation.

Remark 28.10. Ulam’s idea. The approximation of Perron-Frobenius operator defined
by (19.11) has been shown to reproduce the spectrum for expanding maps, once finer
and finer Markov partitions are used [10]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [11].
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28.8 Examples

Example 28.1. The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 22.2, let us work out a trivial
example: a repeller with only one expanding linear branch

f (x) = Λx , |Λ| > 1 ,

and only one fixed point xq = 0. The action of the Perron-Frobenius operator (19.10) is

Lφ(y) =

∫
dx δ(y − Λx) φ(x) =

1
|Λ|

φ(y/Λ) . (28.16)

From this one immediately gets that the monomials yk are eigenfunctions:
click to return: p. 529

Lyk =
1
|Λ|Λk yk , k = 0, 1, 2, . . . (28.17)

Example 28.2. The trace formula for a single fixed point: The eigenvalues Λ−k−1

fall off exponentially with k, so the trace of L is a convergent sum

trL =
1
|Λ|

∞∑
k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1
| f (0)′ − 1|

,

in agreement with (21.6). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (21.9):

click to return: p. 529
∞∑

k=0

zesk

1 − zesk
=

∞∑
r=1

zr

|1 − Λr |
, esk =

1
|Λ|Λk . (28.18)

Example 28.3. Meromorphic functions and exponential convergence: As an illus-
tration of how exponential convergence of a truncated series is related to analytic proper-
ties of functions, consider, as the simplest possible example of a meromorphic function,
the ratio

h(z) =
z − a
z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function h can
be represented by the power series

h(z) =

∞∑
k=0

σkzk ,

whereσ0 = a/b, and the higher order coefficients are given byσ j = (a−b)/b j+1. Consider
now the truncation of order N of the power series

click to return: p. 529

hN(z) =

N∑
k=0

σkzk =
a
b

+
z(a − b)(1 − zN/bN)

b2(1 − z/b)
.

Let ẑN be the solution of the truncated series hN(ẑN) = 0. To estimate the distance between
a and ẑN it is sufficient to calculate hN(a). It is of order (a/b)N+1, so finite order estimates
converge exponentially to the asymptotic value.
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Example 28.4. The spectral determinant for a single fixed point: The spectral
determinant (22.3) follows from the trace formulas of example 28.2:

det (1 − zL) =

∞∏
k=0

(
1 −

z
|Λ|Λk

)
=

∞∑
n=0

(−t)n Qn , t =
z
|Λ|

, (28.19)

where the cummlants Qn are given explicitly by the Euler formula
exercise 28.3
click to return: p. 530

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2 · · ·
Λ−n+1

1 − Λ−n . (28.20)

Example 28.5. Eigenfunction of Bernoulli shift map. (continued from example 14.5) The
Bernoulli shift map figure 28.1

f (x) =

{
f0(x) = 2x , x ∈ I0 = [0, 1/2)
f1(x) = 2x − 1 , x ∈ I1 = (1/2, 1] (28.21)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius operator
(19.9) assembles ρ(y) from its two preimages

Lρ(y) =
1
2
ρ
( y
2

)
+

1
2
ρ

(
y + 1

2

)
. (28.22)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials Bn(x). These polynomials are
generated by the Taylor expansion of the exponential generating function

G(x, t) =
text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x −

1
2
, . . .

The Perron-Frobenius operator (28.22) acts on the exponential generating function G as

LG(x, t) =
1
2

(
text/2

et − 1
+

tet/2ext/2

et − 1

)
=

t
2

ext/2

et/2 − 1
=

∞∑
k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k.

The full operator has two components corresponding to the two branches. For the n
times iterated operator we have a full binary shift, and for each of the 2n branches the
above calculations carry over, yielding the same trace (2n − 1)−1 for every cycle on length
n. Without further ado we substitute everything back and obtain the determinant,

click to return: p. 530

det (1 − zL) = exp

−∑
n=1

zn

n
2n

2n − 1

 =
∏
k=0

(
1 −

z
2k

)
, (28.23)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
1/2n, . . . .

Example 28.6. The simplest of 2-dimensional maps - a single hyperbolic fixed point:
We start by considering a very simple linear hyperbolic map with a single hyperbolic fixed
point,

f (x) = ( f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .
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The Perron-Frobenius operator (19.10) acts on the 2-dimensional density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (28.24)

What are good eigenfunctions? Cribbing the 1-dimensional eigenfunctions for the stable,
contracting x1 direction from example 28.1 is not a good idea, as under the iteration of L
the high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would get multiplied
by exponentially exploding eigenvalues 1/Λk

s. This makes sense, as in the contracting
directions hyperbolic dynamics crunches up initial densities, instead of smoothing them.
So we guess instead that the eigenfunctions are of form

ϕk1k2 (x1, x2) = xk2
2 /xk1+1

1 , k1, k2 = 0, 1, 2, . . . , (28.25)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series in the
expanding direction, the x2 variable. The action of Perron-Frobenius operator on this set
of basis functions

Lϕk1k2 (x1, x2) =
σ

|Λu|

Λ
k1
s

Λ
k2
u

ϕk1k2 (x1, x2) , σ = Λs/|Λs|

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by Λ
k1
s /Λ

k2+1
u

factor in the eigenvalue. One verifies by an explicit calculation (undoing the geometric
click to return: p. 530

series expansions to lead to (22.8)) that the trace of L indeed equals 1/|det (1 − M)| =

1/|(1 − Λu)(1 − Λs)| , from which it follows that all our trace and spectral determinant
formulas apply. The argument applies to any hyperbolic map linearized around the fixed
point of form f (x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λd xd).

Example 28.7. Perron-Frobenius operator in a matrix representation: As in ex-
ample 28.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative
σ = σ(F′) = F′/|F′| , and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point x = wq,

Lφ(y) =

∫
dx δ(y − f (x)) φ(x) = σ F′(y) φ(F(y)) .

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (28.26)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =

∞∑
n=0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (28.10), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1 . (28.27)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

exercise 28.6
click to return: p. 532tr L =

σ F′(w∗)
1 − F′(w∗)

=
1

| f ′(w∗) − 1|
.
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Example 28.8. Perron-Frobenius operator in a matrix representation: As in ex-
ample 28.1, we start with a map with a single fixed point, but this time with a nonlin-
ear piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative
σ = σ(F′) = F′/|F′|

Lφ(z) =

∫
dx δ(z − f (x)) φ(x) = σ F′(z) φ(F(z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (28.28)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (28.10), we see that in this basis L is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1 . (28.29)

Taking the trace and summing we get:
click to return: p. 537

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

tr L =
σ F′(w∗)

1 − F′(w∗)
=

1
| f ′(w∗) − 1|

.

Example 28.9. Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (28.21) on the space of analytic functions on a disk: apart from the origin we
have only simple eigenvalues λk = 2−k, k = 0, 1, . . . . The eigenvalue λ0 = 1 corresponds
to probability conservation: the corresponding eigenfunction B0(x) = 1 indicates that the
natural measure has a constant density over the unit interval. If we now take any analytic
function η(x) with zero average (with respect to the Lebesgue measure), it follows that
ω1(η, η) = 0, and from (28.15) the asymptotic decay of the correlation function is (unless
also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (28.30)

Thus, − log λ1 gives the exponential decay rate of correlations (with a prefactor that de-
pends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-
mula

η(z) =

∫ 1

0
dw η(w) +

∞∑
m=1

η(m−1)(1) − η(m−1)(0)
m!

Bm(z) . (28.31)

As we are considering functions with zero average, we have from (28.14) and the fact that
Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =

∞∑
m=1

(2−m)n(η(m)(1) − η(m)(0))
m!

∫ 1

0
dz η(z)Bm(z) .
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The decomposition (28.31) is also useful in realizing that the linear functionals ψ∗i are
singular objects: if we write it as

η(z) =

∞∑
m=0

Bm(z)ψ∗m[η] ,

we see that these functionals are of the form

ψ∗i [ε] =

∫ 1

0
dw Ψi(w)ε(w) ,

where
click to return: p. 542

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1) − δ(i−1)(w)

)
, (28.32)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function ε is
analytic in neighborhoods of w,w − 1. (continued in example 29.1)
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Exercises

28.1. What space does L act on? Show that (28.17) is
a complete basis on the space of analytic functions on a
disk (and thus that we found the complete set of eigen-
values).

28.2. What space does L act on? What can be said about
the spectrum of (28.16) on L1[0, 1]? Compare the result
with figure 28.5.

28.3. Euler formula. Derive the Euler formula (28.20),
|u| < 1:

∞∏
k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u
(1 − u)(1 − u2)

+
t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=

∞∑
k=0

tk u
k(k−1)

2

(1 − u) · · · (1 − uk)
.

28.4. 2-dimensional product expansion. We con-
jecture that the expansion corresponding to exercise 28.3

is in the 2-dimensional case given by

∞∏
k=0

(1 + tuk)k+1

=

∞∑
k=0

Fk(u)
(1 − u)2(1 − u2)2 · · · (1 − uk)2 tk

= 1 +
1

(1 − u)2 t +
2u

(1 − u)2(1 − u2)2 t2

+
u2(1 + 4u + u2)

(1 − u)2(1 − u2)2(1 − u3)2 t3 + · · ·

Fk(u) is a polynomial in u, and the coefficients fall off

asymptotically as Cn ≈ un3/2
. Verify; if you have a proof

to all orders, e-mail it to the authors. (See also solu-
tion 28.3).

28.5. Bernoulli shift on L spaces. Check that the family
(28.9) belongs to L1([0, 1]). What can be said about the
essential spectral radius on L2([0, 1])? A useful refer-
ence is ref. [26].

28.6. Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

28.7. Escape rate. Consider the escape rate from a strange
repeller: find a choice of trial functions ξ and ϕ such
that (28.14) gives the fraction on particles surviving after
n iterations, if their initial density distribution is ρ0(x).
Discuss the behavior of such an expression in the long
time limit.
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Chapter 29

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that the evolu-
tion operators have discrete spectra {z0, z1, z2, . . . } given by the zeros of

1/ζ(z) = (· · · )
∏

k

(1 − z/zk) .

The assumption was based on the tacit premise that the dynamics is everywhere
exponentially unstable. Real life is nothing like that - state spaces are generi-
cally infinitely interwoven patterns of stable and unstable behaviors. The stable
(in the case of Hamiltonian flows, integrable) orbits do not communicate with
the ergodic components of the phase space, and can be treated by classical meth-
ods. In general, one is able to treat the dynamics near stable orbits as well as
chaotic components of the phase space dynamics well within a periodic orbit ap-
proach. Problems occur at the borderline between chaos and regular dynamics
where marginally stable orbits and manifolds present difficulties and still unre-
solved challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message
will be that spectra of evolution operators are no longer discrete, dynamical zeta
functions exhibit branch cuts of the form

1/ζ(z) = (· · · ) + (1 − z)α(· · · ) ,

and correlations decay no longer exponentially, but as power laws.
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Figure 29.1: Typical phase space for an area-
preserving map with mixed phase space dynamics;
here the standard map for k = 1.2 .

29.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from regular behav-
iors to behaviors where long time intervals of regular behavior (“laminar phases”)
are interrupted by fast irregular bursts. The closer the parameter is to the onset of
such bursts, the longer are the intervals of regular behavior. The distributions of
laminar phase intervals are well described by power laws.

This phenomenon is called intermittency, and it is a very general aspect of
dynamics, a shadow cast by nonhyperbolic, marginally stable state space regions.
Complete hyperbolicity assumed in (21.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamics in smooth potentials,
billiards with smooth walls, the infinite horizon Lorentz gas, etc.) one encounters
mixed state spaces with islands of stability coexisting with hyperbolic regions,
see figure 29.1 andexample 8.7. Wherever stable islands are interspersed with
chaotic regions, trajectories which come close to the stable islands can stay ‘glued’
for arbitrarily long times. These intervals of regular motion are interrupted by
irregular bursts as the trajectory is re-injected into the chaotic part of the phase
space. How the trajectories are precisely ‘glued’ to the marginally stable region is
often hard to describe. What coarsely looks like a border of an island will under
magnification dissolve into infinities of island chains of decreasing sizes, broken
tori and bifurcating orbits, as illustrated in figure 29.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (5.6), or (in studies of the onset of intermittency) to the proximity of a
nearly marginal complex or unstable orbits. In Hamiltonian systems intermittency
goes hand in hand with the existence of (marginally stable) KAM tori. In more
general settings, the existence of marginal or nearly marginal orbits is due to in-
complete intersections of stable and unstable manifolds in a Smale horseshoe type
dynamics (see figure 15.12). Following the stretching and folding of the invariant
manifolds in time one will inevitably find state space points at which the stable and
unstable manifolds are almost or exactly tangential to each other, implying non-
exponential separation of nearby points in state space or, in other words, marginal
stability. Under small parameter perturbations such neighborhoods undergo tan-
gent bifurcations - a stable/unstable pair of periodic orbits is destroyed or created
by coalescing into a marginal orbit, so the pruning which we shall encounter in
chapter 15, and the intermittency discussed here are two sides of the same coin.

section 15.4
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Figure 29.2: A complete binary repeller with a
marginal fixed point.

Figure 29.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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How to deal with the full complexity of a typical Hamiltonian system with
mixed phase space is a very difficult, still open problem. Nevertheless, it is pos-
sible to learn quite a bit about intermittency by considering rather simple exam-
ples. Here we shall restrict our considerations to 1-dimensional maps which in the
neighborhood of a single marginally stable fixed point at x=0 take the form

x 7→ f (x) = x + O(x1+s) , (29.1)

and are expanding everywhere else. Such a map may allow for escape, like the
map shown in figure 29.2 or the dynamics may be bounded, like the Farey map

x 7→ f (x) =

{
x/(1 − x) x ∈ [0, 1/2[
(1 − x)/x x ∈ [1/2, 1] (29.2)

Figure 29.3 compares a trajectory of the tent map (14.21) side by side with a
trajectory of the Farey map. In a stark contrast to the uniformly chaotic trajectory
of the tent map, the Farey map trajectory alternates intermittently between slow
regular motion close to the marginally stable fixed point, and chaotic bursts.

section 29.3.4

The presence of marginal stability has striking dynamical consequences: cor-
relation decay may exhibit long range power law asymptotic behavior and diffu-
sion processes can assume anomalous character. Escape from a repeller of the
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form figure 29.2 may be algebraic rather than exponential. In long time explo-
rations of the dynamics intermittency manifests itself by enhancement of natural
measure in the proximity of marginally stable cycles.

The questions we shall address here are: how does marginal stability affect
zeta functions or spectral determinants? And, can we deduce power law decays of
correlations from cycle expansions?

In example 28.5 we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the sim-
ple fact that the cycle weight 1/|1−Λr

p| in the trace (21.3) or the spectral determi-
nant (22.3) diverges for marginal orbits with |Λp| = 1 tells us that we have to treat
these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-expansions
in a systematic manner. To get to know the difficulties lying ahead, we will start
in sect. 29.2 with a piecewise linear map, with the asymptotics (29.1). We will
construct a dynamical zeta function in the usual way without worrying too much
about its justification and show that it has a branch cut singularity. We will cal-
culate the rate of escape from our piecewise linear map and find that it is charac-
terized by decay, rather than exponential decay, a power law. We will show that
dynamical zeta functions in the presence of marginal stability can still be written
in terms of periodic orbits, exactly as in chapters 20 and 27, with one exception:
the marginally stable orbits have to be explicitly excluded. This innocent looking
step has far reaching consequences; it forces us to change the symbolic dynamics
from a finite to an infinite alphabet, and entails a reorganization of the order of
summations in cycle expansions, sect. 29.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated marginally
stable fixed points and cycles. In sect. 29.3, we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maps tailored to intermit-
tency. The knowledge of the type of singularity one encounters enables us to
develop the efficient resummation method presented in sect. 29.3.1.

Finally, in sect. 29.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and provides valuable information
about more complicated systems, such as billiards.

29.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting dy-
namics, it is also at the root of many sorrows such as slow convergence of cycle
expansions. In order to get to know the kind of problems which arise when study-
ing dynamical zeta functions in the presence of marginal stability we will consider
an artfully concocted piecewise linear model first. From there we will move on to
the more general case of smooth intermittant maps, sect. 29.3.
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Figure 29.4: A piecewise linear intermittent map of
(29.3) type: more specifically, the map piecewise lin-
ear over intervals (29.8) of the toy example studied be-
low, a = .5, b = .6, s = 1.0.
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29.2.1 A toy map

The Bernoulli shift map (28.21) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now construct a likewise
piecewise linear model, an intermittent map stripped down to its bare essentials.

Consider a map x 7→ f (x) on the unit intervalM = [0, 1] with two monotone
branches

f (x) =

{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1] . (29.3)

The two branches are assumed complete, that is f0(M0) = f1(M1) =M. The map
allows escape if a < b and is bounded if a = b (see figure 29.2 and figure 29.4).
We take the right branch to be expanding and linear:

f1(x) =
1

1 − b
(x − b) .

Next, we will construct the left branch in a way, which will allow us to model
the intermittent behavior (29.1) near the origin. We chose a monotonically de-
creasing sequence of points qn in [0, a] with q1 = a and qn → 0 as n → ∞.
This sequence defines a partition of the left intervalM0 into an infinite number of
connected intervalsMn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =

∞⋃
n=2

Mn. (29.4)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervalsMn for n ≥ 2.

• f0(qn) = qn−1, that isMn = f −n+1
0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition ensures the
existence of a simple Markov partition. The slopes of the various linear segments
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are

f ′0(x) =
f0(qn−1)− f0(qn)

qn−1−qn
=

|Mn−1 |
|Mn |

for x ∈ Mn, n ≥ 3
f ′0(x) =

f0(q1)− f0(q2)
q1−q2

= 1−a
|M2 |

for x ∈ M2

f ′0(x) = 1
1−b =

|M|

|M1 |
for x ∈ M1

(29.5)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a key role
for intermittent maps of the form (29.1). An orbit 10n enters the intervalsM1 →

Mn+1 → Mn → . . . → M2 successively and the family approaches the marginal
stable fixed point at x = 0 for n → ∞. The stability of a cycle 10n for n ≥ 1 is
given by the chain rule (4.43),

Λ10n = f ′0(xn+1) f ′0(xn) . . . f ′0(x2) f ′1(x1) =
1

|Mn+1|

1 − a
1 − b

, (29.6)

with xi ∈ Mi.

The properties of the map (29.3) are completely determined by the sequence
{qn}. By choosing qn = 2−n, for example, we recover the uniformly hyperbolic
Bernoulli shift map (28.21). An intermittent map of the form (29.4) having the
asymptotic behavior (29.1) can be constructed by choosing an algebraically de-
caying sequence {qn} behaving asymptotically like

qn ∼
1

n1/s ,

where s is the intermittency exponent in (29.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s . (29.7)

As can be seen from (29.6), the Floquet multipliers of periodic orbit families ap-
proaching the marginal fixed point, such as the 10n family increase in turn only
algebraically with the cycle length.

It may now seem natural to construct an intermittent toy map in terms of a
partition |Mn| = 1/n1+1/s, that is, a partition which follows (29.7) exactly. Such
a choice leads to a dynamical zeta function which can be written in terms of so-
called Jonquière functions (or polylogarithms) which arise naturally also in the
context of the Farey map (29.2), and the anomalous diffusion of sect. 24.3. We

question 24.1
will, however, not follow this route here; instead, we will engage in a bit of reverse
engineering and construct a less obvious partition which will simplify the algebra
considerably later without loosing any of the key features typical for intermittent
systems. We fix the intermittent toy map by specifying the intervalsMn in terms
of Gamma functions according to

|Mn| = C
Γ(n + m − 1/s − 1)

Γ(n + m)
for n ≥ 2, (29.8)
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where m = [1/s] denotes the integer part of 1/s and C is a normalization constant
fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

 ∞∑
n=m+1

Γ(n − 1/s)
Γ(n + 1)

−1

. (29.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as required by the
condition (29.7).

Next, let us write down the dynamical zeta function of the toy map in terms
of its periodic orbits, that is

1/ζ(z) =
∏

p

(
1 −

znp

|Λp|

)
One may be tempted to expand the dynamical zeta function in terms of the binary
symbolic dynamics of the map; we saw, however, in sect. 23.7 that such cycle ex-
pansion converges extremely slowly. The shadowing mechanism between orbits
and pseudo-orbits fails for orbits of the form 10n with stabilities given by (29.6),
due to the marginal stability of the fixed point 0. It is therefore advantageous to
choose as the fundamental cycles the family of orbits with code 10n or, equiva-
lently, switch from the finite (binary) alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals Mn exactly
ontoMn−1, all periodic orbits entering the left branch at least twice are canceled
exactly by pseudo cycles, and the cycle expanded dynamical zeta function depends
only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏
p,0

(
1 −

znp

|Λp|

)
= 1 −

∞∑
n=1

zn

|Λ10n−1 |

= 1 − (1 − b)z − C
1 − b
1 − a

∞∑
n=2

Γ(n + m − 1/s − 1)
Γ(n + m)

zn . (29.10)

The fundamental term (23.8) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent for |z| ≥ 1. We will see that this
behavior is due to a branch cut of 1/ζ starting at z = 1. We need to find analytic
continuations of sums over algebraically decreasing terms in (29.10). Note also
that we omitted the fixed point 0 in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta function in more detail in
sect. 29.2.4.
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29.2.2 Branch cuts

Starting from the dynamical zeta function (29.10), we first have to worry about
finding an analytical continuation of the sum for |z| ≥ 1. We do, however, get this
part for free here due to the particular choice of interval lengths made in (29.8).
The sum over ratios of Gamma functions in (29.10) can be evaluated analytically
by using the following identities valid for 1/s = α > 0 (the famed binomial
theorem in disguise),

• α non-integer

(1 − z)α =

∞∑
n=0

Γ(n − α)
Γ(−α)Γ(n + 1)

zn (29.11)

• α integer

(1 − z)α log(1 − z) =

α∑
n=1

(−1)ncnzn (29.12)

+ (−1)α+1α!
∞∑

n=α+1

(n − α − 1)!
n!

zn

with

cn =

(
α
n

) n−1∑
k=0

1
α − k

.

In order to simplify the notation, we restrict the intermittency parameter to the
range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
to arbitrary s > 0 using equations (29.11) and (29.12). The infinite sum in (29.10)
can now be evaluated with the help of (29.11) or (29.12), that is,

∞∑
n=2

Γ(n − 1/s)
Γ(n + 1)

zn =

{
Γ(− 1

s )
[
(1 − z)1/s − 1 + 1

s z
]

for 1 < 1/s < 2;
(1 − z) log(1 − z) + z for s = 1 .

The normalization constant C in (29.8) can be evaluated explicitly using (29.9)
and the dynamical zeta function can be given in closed form. We obtain for 1 <

1/s < 2

1/ζ(z) = 1 − (1 − b)z −
a

1/s − 1
1 − b
1 − a

(
(1 − z)1/s − 1 +

1
s

z
)
. (29.13)

and for s = 1,

1/ζ(z) = 1 − (1 − b)z − a
1 − b
1 − a

(
(1 − z) log(1 − z) + z

)
. (29.14)

It now becomes clear why the particular choice of intervalsMn made in the last
section is useful; by summing over the infinite family of periodic orbits 0n1 ex-
plicitly, we have found the desired analytical continuation for the dynamical zeta
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function for |z| ≥ 1. The function has a branch cut starting at the branch point z = 1
and running along the positive real axis. That means, the dynamical zeta function
takes on different values when approaching the positive real axis for Re z > 1 from
above and below. The dynamical zeta function for general s > 0 takes on the form

1/ζ(z) = 1 − (1 − b)z −
a

gs(1)
1 − b
1 − a

1
zm−1

(
(1 − z)1/s − gs(z)

)
(29.15)

for non-integer s with m = [1/s] and

1/ζ(z) = 1− (1− b)z−
a

gm(1)
1 − b
1 − a

1
zm−1

(
(1 − z)m log(1 − z) − gm(z)

)
(29.16)

for 1/s = m integer and gs(z) are polynomials of order m = [1/s] which can
be deduced from (29.11) or (29.12). We thus find algebraic branch cuts for non
integer intermittency exponents 1/s and logarithmic branch cuts for 1/s integer.
We will see in sect. 29.3 that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamical zeta functions due
to intermittency. So, how do we calculate averages or escape rates of the dynamics
of the map from a dynamical zeta function with branch cuts? We take ‘a learning
by doing’ approach and calculate the escape from our toy map for a < b.

29.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n time steps,
is the integral representation (A22.6)

Γn =
1

2πi

∮
γ−r

z−n
(

d
dz

log ζ−1(z)
)

dz , (29.17)

where the contour encircles the origin in the clockwise direction. If the contour
lies inside the unit circle |z| = 1, we may expand the logarithmic derivative of
ζ−1(z) as a convergent sum over all periodic orbits. Integrals and sums can be
interchanged, the integrals can be solved term by term, and the formula (21.22)
is recovered. For hyperbolic maps, cycle expansion methods or other techniques
may provide an analytic extension of the dynamical zeta function beyond the lead-
ing zero; we may therefore deform the original contour into a larger circle with ra-
dius R which encircles both poles and zeros of ζ−1(z), see figure 29.5 (a). Residue
calculus turns this into a sum over the zeros zα and poles zβ of the dynamical zeta
function, that is

Γn =

zeros∑
|zα |<R

1
zn
α
−

poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (29.18)

where the last term gives a contribution from a large circle γ−R . We thus find
exponential decay of Γn dominated by the leading zero or pole of ζ−1(z).
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Figure 29.5: The survival probability Γn calcu-
lated by contour integration; integrating (29.17)
inside the domain of convergence |z| < 1 (shaded
area) of 1/ζ(z) in periodic orbit representation
yields (21.22). A deformation of the contour γ−r
(dashed circle) to a larger circle γ−R gives contribu-
tions from the poles and zeros ⊗ of 1/ζ(z) between
the two circles. These are the only contributions
for hyperbolic maps (a), for intermittent systems
additional contributions arise, given by the contour
γcut running along the branch cut (b).
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Things change considerably in the intermittent case. The point z = 1 is a
branch cut singularity and there exists no Taylor series expansion of ζ−1 around
z = 1. Second, the path deformation that led us to (29.18) requires more care, as it
must not cross the branch cut. When expanding the contour to large |z| values, we
have to deform it along the branch Re (z) ≥ 1, Im (z) = 0 encircling the branch cut
in anti-clockwise direction, see figure 29.5 (b). We will denote the detour around
the cut as γcut. We may write symbolically∮

γr

=

zeros∑
−

poles∑
+

∮
γR

+

∮
γcut

where the sums include only the zeros and the poles in the area enclosed by the
contours. The asymptotics is controlled by the zero, pole or cut closest to the
origin.

Let us now go back to our intermittent toy map. The asymptotics of the sur-
vival probability of the map is here governed by the behavior of the integrand
d
dz log ζ−1 in (29.17) at the branch point z = 1. We restrict ourselves again to the
case 1 < 1/s < 2 first and write the dynamical zeta function (29.13) in the form

1/ζ(z) = a0 + a1(1 − z) + b0(1 − z)1/s ≡ G(1 − z)

and

a0 =
b − a
1 − a

, b0 =
a

1 − 1/s
1 − b
1 − a

.

Setting u = 1 − z, we need to evaluate

1
2πi

∮
γcut

(1 − u)−n d
du

log G(u)du (29.19)

where γcut goes around the cut (i.e., the negative u axis). Expanding the integrand
d
du log G(u) = G′(u)/G(u) in powers of u and u1/s at u = 0, one obtains

d
du

log G(u) =
a1

a0
+

1
s

b0

a0
u1/s−1 + O(u) . (29.20)

The integrals along the cut may be evaluated using the general formula

1
2πi

∮
γcut

uα(1 − u)−ndu =
Γ(n − α − 1)
Γ(n)Γ(−α)

∼
1

nα+1 (1 + O(1/n)) (29.21)
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Figure 29.6: The asymptotic escape from an intermit-
tent repeller is a power law. Normally it is preceded
by an exponential, which can be related to zeros close
to the cut but beyond the branch point z = 1, as in
figure 29.5 (b).

which can be obtained by deforming the contour back to a loop around the point
u = 1, now in positive (anti-clockwise) direction. The contour integral then picks
up the (n−1)st term in the Taylor expansion of the function uα at u = 1, cf. (29.11).
For the continuous time case the corresponding formula is

1
2πi

∮
γcut

zαeztdz =
1

Γ(−α)
1

tα+1 . (29.22)

Plugging (29.20) into (29.19) and using (29.21) we get the asymptotic result

Γn ∼
b0

a0

1
s

1
Γ(1 − 1/s)

1
n1/s =

a
s − 1

1 − b
b − a

1
Γ(1 − 1/s)

1
n1/s . (29.23)

We see that, asymptotically, the escape from an intermittent repeller is described
by power law decay rather than the exponential decay we are familiar with for
hyperbolic maps; a numerical simulation of the power-law escape from an inter-
mittent repeller is shown in figure 29.6.

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1 − z and A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansions of A(u) and B(u) are

a0 =
b − a
1 − a

, b0 =
a

gs(1)
1 − b
1 − a

,

see (29.15). Expanding d
du log G(u) around u = 0, one again obtains leading or-

der contributions according to (29.20) and the general result follows immediately
using (29.21), that is,

Γn ∼
a

sgs(1)
1 − b
b − a

1
Γ(1 − 1/s)

1
n1/s . (29.24)

Applying the same arguments for integer intermittency exponents 1/s = m, one
obtains

Γn ∼ (−1)m+1 a
sgm(1)

1 − b
b − a

m!
nm . (29.25)

So far, we have considered the survival probability for a repeller, that is we
assumed a < b. The formulas (29.24) and (29.25) do obviously not apply for the
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case a = b, that is, for the bounded map. The coefficient a0 = (b − a)/(1 − a)
in the series representation of G(u) is zero, and the expansion of the logarithmic
derivative of G(u) (29.20) is no longer valid. We get instead

d
du

log G(u) =

 1
u

(
1 + O(u1/s−1)

)
s < 1

1
u

(
1
s + O(u1−1/s)

)
s > 1

,

assuming non-integer 1/s for convenience. One obtains for the survival probabil-
ity.

Γn ∼

{
1 + O(n1−1/s) s < 1

1/s + O(n1/s−1) s > 1 .

For s > 1, this is what we expect. There is no escape, so the survival probability
is equal to 1, which we get as an asymptotic result here. The result for s > 1 is
somewhat more worrying. It says that Γn defined as sum over the instabilities of
the periodic orbits as in (27.18) does not tend to unity for large n. However, the
case s > 1 is in many senses anomalous. For instance, the invariant density cannot
be normalized. It is therefore not reasonable to expect that periodic orbit theories
will work without complications.

29.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous section,
we had the nice property that interval lengths did exactly coincide with the inverse
of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|
n−1.

There is thus no problem in replacing the survival probability Γn given by (1.2),
(27.2), that is the fraction of state spaceM surviving n iterations of the map,

Γn =
1
|M|

(n)∑
i

|Mi| .

by a sum over periodic orbits of the form (21.22). The only orbit to worry about is
the marginal fixed point 0 itself which we excluded from the zeta function (29.10).

For smooth intermittent maps, things are less clear and the fact that we had to
prune the marginal fixed point is a warning sign that interval estimates by periodic
orbit stabilities might go horribly wrong. The derivation of the survival probability
in terms of cycle stabilities in chapter 27 did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittent maps. We therefore have
to carefully reconsider this derivation in order to show that periodic orbit formulas
are actually valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of say s
branches defined on intervals Ms and we assume that the map maps each inter-
val Ms onto M, that is f (Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see figure 29.2).
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The generating partition is composed of the domainsMs . The nth level parti-
tion C(n) = {Mi} can be constructed iteratively. Here i’s are words i = s2s2 . . . sn

of length n, and the intervalsMi are constructed recursively

Ms j = f −1
s (M j) , (29.26)

where s j is the concatenation of letter s with word j of length n j < n.

In what follows we will concentrate on the survival probability Γn , postponing
other quantities of interest, such as averages, to later considerations. In establish-
ing the equivalence of the survival probability and the periodic orbit formula for
the escape rate for hyperbolic systems we have assumed that the map is expand-
ing, with a minimal expansion rate | f ′(x)| ≥ Λmin > 1. This enabled us to bound
the size of every survivor stripMi by (27.6), the stability Λi of the periodic orbit i
within theMi, and bound the survival probability by the periodic orbit sum (27.7).

The bound (27.6)

C1
1
|Λi|

<
|Mi|

|M|
< C2

1
|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent systems. The
problem is that now there is no lower bound on the expansion rate, the minimal
expansion rate is Λmin = 1. The survivor stripM0n which includes the marginal
fixed point is thus completely overestimated by 1/|Λ0n | = 1 which is constant for
all n.

exercise A22.1

However, bounding survival probability strip by strip is not what is required
for establishing the bound (27.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average size of intervals along a periodic
orbit can be bounded close to the stability of the periodic orbit for all but the
interval M0n . The weaker bound applies to averaging over each prime cycle p
separately

C1
1
|Λp|

<
1
np

∑
i∈p

|Mi|

|M|
< C2

1
|Λp|

, (29.27)

where the word i represents a code of the periodic orbit p and all its cyclic permu-
tations. It can be shown that one can find positive constants C1, C2 independent
of p. Summing over all periodic orbits leads then again to (27.7).

To study averages of multiplicative weights we follow sect. 20.1 and introduce
a state space observable a(x) and the integrated quantity

A(x, n) =

n−1∑
k=0

a( f k(x)).

This leads us to introduce the moment-generating function (20.9)

〈eβ A(x,n)〉,
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Figure 29.7: Transition graph corresponding to the al-
phabet {0k−11; 0 , k ≥ 1}

where 〈.〉 denote some averaging over the distribution of initial points, which we
choose to be uniform (rather than the a priori unknown invariant density). Again,
all we have to show is, that constants C1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑
i∈p

1
|M|

∫
MQ

eβA(x,n)dx < C2
eβAp

|Λp|
, (29.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫
M

eβA(x,n)dx < C2Γn(β), (29.29)

with

Γn(β) =

n∑
p

eβAp

|Λp|
.

and a dynamical zeta function can be derived. In the intermittent case one can
expect that the bound (29.28) holds using an averaging argument similar to the
one discussed in (29.27). This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natural alphabet to use
is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}. The symbol 0
occurs unaccompanied by any 1’s only in the 0 marginal fixed point which is
disconnected from the rest of the transition graph, see figure 29.7.

chapter 15

What happens if we remove a single prime cycle from a dynamical zeta func-
tion? In the hyperbolic case such a removal introduces a pole in the 1/ζ and slows
down the convergence of cycle expansions. The heuristic interpretation of such a
pole is that for a subshift of finite type removal of a single prime cycle leads to
unbalancing of cancellations within the infinity of of shadowing pairs. Neverthe-
less, removal of a single prime cycle is an exponentially small perturbation of the
trace sums, and the asymptotics of the associated trace formulas is unaffected.

chapter 28

In the intermittent case, the fixed point 0 does not provide any shadowing ,
and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,

is meaningless. It seems therefore sensible to take out the factor (1 − t0) = 1 − z
from the product representation of the dynamical zeta function (22.11), that is, to
consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1 − z)1/ζinter(z) .
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We saw in the last sections, that the zeta function 1/ζinter(z) has all the nice prop-
erties we know from the hyperbolic case, that is, we can find a cycle expansion
with - in the toy model case - vanishing curvature contributions and we can calcu-
late dynamical properties like escape after having understood, how to handle the
branch cut. But you might still be worried about leaving out the extra factor 1 − z
all together. It turns out, that this is not only a matter of convenience, omitting
the marginal 0 cycle is a dire necessity. The cycle weight Λn

0 = 1 overestimates
the corresponding interval length ofM0n in the partition of the state spaceM by
an increasing amount thus leading to wrong results when calculating escape. By
leaving out the 0 cycle (and thus also theM0n contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determinant (22.3), given
in product form as

det (1 − zL) =
∏

p

∞∏
m=0

(
1 −

znp

|Λp|Λ
m
p

)
,

for intermittent maps the marginal stable cycle has to be excluded. It introduces
an (unphysical) essential singularity at z = 1 due the presence of a factor (1 − z)∞

stemming from the 0 cycle.

29.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise linear-
ity of the map led to exact cancellations of the curvature contributions leaving
only the fundamental terms. There are still infinitely many orbits included in the
fundamental term, but the cycle weights were chosen in such a way that the zeta
function could be written in closed form. For a smooth intermittent map this all
will not be the case in general; still, we will argue that we have already seen al-
most all the fundamentally new features due to intermittency. What remains are
technicalities - not necessarily easy to handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques work
for general 1-dimensional maps with a single isolated marginal fixed point. To
keep the notation simple, we will consider two-branch maps with a complete bi-
nary symbolic dynamics as for example the Farey map, figure 29.3, or the repeller
depicted in figure 29.2. We again assume that the behavior near the fixed point is
given by (29.1). This implies that the stability of a family of periodic orbits ap-
proaching the marginally stable orbit, as for example the family 10n, will increase
only algebraically, that is we find again for large n

1
Λ10n

∼
1

n1+1/s ,

where s denotes the intermittency exponent.

When considering zeta functions or trace formulas, we again have to take out
the marginal orbit 0; periodic orbit contributions of the form t0n1 are now unbal-
anced and we arrive at a cycle expansion in terms of infinitely many fundamental
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Table 29.1: Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and their cyclic
repeats (110 = 101, 1110 = 1101, . . .) are accounted for by cancelations and combination
factors in the cycle expansion (29.30).

∞ – alphabet binary alphabet
n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

terms as for our toy map. This corresponds to moving from our binary symbolic
dynamics to an infinite symbolic dynamics by making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also table 29.1. The topological length of the orbit is thus no longer determined
by the iterations of our two-branch map, but by the number of times the cycle
goes from the right to the left branch. Equivalently, one may define a new map,
for which all the iterations on the left branch are done in one step. Such a map is
called an induced map and the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map.

exercise 15.1

For generic intermittent maps, curvature contributions in the cycle expanded
zeta function will not vanish exactly. The most natural way to organize the cycle
expansion is to collect orbits and pseudo orbits of the same topological length
with respect to the infinite alphabet. Denoting cycle weights in the new alphabet
as tnm... = t10n−110m−1..., one obtains

ζ−1 =
∏
p,0

(
1 − tp

)
= 1 −

∞∑
n=1

ce (29.30)

= 1 −
∞∑

n=1

tn −
∞∑

m=1

∞∑
n=1

1
2

(tmn − tmtn)

−

∞∑
k=1

∞∑
m=1

∞∑
n=1

(
1
3

tkmn −
1
2

tkmtn +
1
6

tktmtn) −
∞∑

l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .

The first sum is the fundamental term, which we have already seen in the toy
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model, (29.10). The curvature terms cn in the expansion are now e-fold infinite
sums where the prefactors take care of double counting of prime periodic orbits.

Let us consider the fundamental term first. For generic intermittent maps, we
can not expect to obtain an analytic expression for the infinite sum of the form

f (z) =

∞∑
n=0

hnzn. (29.31)

with algebraically decreasing coefficients

hn ∼
1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the power
series diverges for z > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expected. By carefully subtract-
ing the asymptotic behavior with the help of (29.11) or (29.12), one can in general
construct an analytic continuation of f (z) around z = 1 of the form

f (z) ∼ A(z) + (1 − z)α−1B(z) α < N (29.32)

f (z) ∼ A(z) + (1 − z)α−1 ln(1 − z) α ∈ N ,

where A(z) and B(z) are functions analytic in a disc around z = 1. We thus again
find that the zeta function (29.30) has a branch cut along the real axis Re z ≥ 1.
From here on we can switch to auto-pilot and derive algebraic escape, decay of
correlation and all the rest. We find in particular that the asymptotic behavior
derived in (29.24) and (29.25) is a general result, that is, the survival probability
is given asymptotically by

Γn ∼ C
1

n1/s (29.33)

for all 1-dimensional maps of the form (29.1). We have to work a bit harder if
we want more detailed information like the prefactor C, exponential precursors
given by zeros or poles of the dynamical zeta function or higher order corrections.
This information is buried in the functions A(z) and B(z) or more generally in the
analytically continued zeta function. To get this analytic continuation, one may
follow either of the two different strategies which we will sketch next.

29.3.1 Resummation

One way to get information about the zeta function near the branch cut is to de-
rive the leading coefficients in the Taylor series of the functions A(z) and B(z) in
(29.32) at z = 1. This can be done in principle, if the coefficients hn in sums like
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(29.31) are known (as for our toy model). One then considers a resummation of
the form

∞∑
j=0

h jz j =

∞∑
j=0

a j(1 − z) j + (1 − z)α−1
∞∑
j=0

b j(1 − z) j, (29.34)

and the coefficients a j and b j are obtained in terms of the h j’s by expanding (1−z) j

and (1 − z) j+α−1 on the right hand side around z = 0 using (29.11) and equating
the coefficients.

In practical calculations one often has only a finite number of coefficients
h j, 0 ≤ j ≤ N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resummation scheme for the
computation of the coefficients a j and b j in (29.34). We replace the infinite sums
in (29.34) by finite sums of increasing degrees na and nb, and require that

na∑
i=0

ai(1 − z)i + (1 − z)α−1
nb∑
i=0

bi(1 − z)i =

N∑
i=0

hizi + O(zN+1) . (29.35)

One proceeds again by expanding the right hand side around z = 0, skipping all
powers zN+1 and higher, and then equating coefficients. It is natural to require that
|nb + α − 1 − na| < 1, so that the maximal powers of the two sums in (29.35) are
adjacent. If one chooses na + nb + 2 = N + 1, then, for each cutoff length N, the
integers na and nb are uniquely determined from a linear system of equations. The
price we pay is that the so obtained coefficients depend on the cutoff N. One can
now study convergence of the coefficients a j, and b j, with respect to increasing
values of N, or various quantities derived from a j and b j. Note that the leading
coefficients a0 and b0 determine the prefactor C in (29.33), cf. (29.23). The re-
summed expression can also be used to compute zeros, inside or outside the radius
of convergence of the cycle expansion

∑
h jz j.

The scheme outlined in this section tacitly assumes that a representation of
form (29.32) holds in a disc of radius 1 around z = 1. Convergence is improved
further if additional information about the asymptotics of sums like (29.31) is used
to improve the ansatz (29.34).

29.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation of sums
of the form (29.31) without explicitly relying on an ansatz (29.34). The main
idea is to rewrite the sum (29.31) as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuation of each integral by
contour deformation. In order to do so, we need to know the n dependence of
the coefficients hn ≡ h(n) explicitly for all n. If the coefficients are not known
analytically, one may proceed by approximating the large n behavior in the form

h(n) = n−α(C1 + C2n−1 + . . .) , n , 0 ,
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and determine the constants Ci numerically from periodic orbit data. By using the
Poisson resummation identity

∞∑
n=−∞

δ(x − n) =

∞∑
m=−∞

exp(2πimx) , (29.36)

we may write the sum as (29.31)

f (z) =
1
2

h(0) +

∞∑
m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (29.37)

The continuous variable x corresponds to the discrete summation index n and it
is convenient to write z = r exp(iσ) from now on. The integrals are still not con-
vergent for r > 0, but an analytical continuation can be found by considering the
contour integral, where the contour goes out along the real axis, makes a quarter
circle to either the positive or negative imaginary axis and goes back to zero. By
letting the radius of the circle go to infinity, we essentially rotate the line of inte-
gration from the real onto the imaginary axis. For the m = 0 term in (29.37), we
transform x→ ix and the integral takes on the form∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ , 0 or 2π. The
last condition reminds us again of the existence of a branch cut at Re z ≥ 1. By
the same technique, we find the analytic continuation for all the other integrals in
(29.37). The real axis is then rotated according to x → sign(m)ix where sign(m)
refers to the sign of m.∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over |m| explicitly
and one finally obtains the compact expression

f (z) =
1
2

h(0) + i
∫ ∞

0
dx h(ix) rixe−xσ (29.38)

+ i
∫ ∞

0
dx

e−2πx

1 − e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (29.38) is exact
for r ≤ 1, and provides an analytic continuation for r > 0. The expression (29.38)
is especially useful for an efficient numerical calculations of a dynamical zeta
function for |z| > 1, which is essential when searching for its zeros and poles.

29.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (29.30), and
showed how to deal with such power series with algebraically decreasing coef-
ficients. The fundamental term determines the main structure of the zeta function
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in terms of the leading order branch cut. Corrections to both the zeros and poles
of the dynamical zeta function as well as the leading and subleading order terms
in expansions like (29.32) are contained in the curvature terms in (29.30). The
first curvature correction is the 2-cycle sum

∞∑
m=1

∞∑
n=1

1
2

(tmn − tmtn) ,

with algebraically decaying coefficients which again diverge for |z| > 1. The
analytically continued curvature terms have as usual branch cuts along the positive
real z axis. Our ability to calculate the higher order curvature terms depends on
how much we know about the cycle weights tmn. The form of the cycle stability
(29.6) suggests that tmn decrease asymptotically as

tmn ∼
1

(nm)1+1/s (29.39)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼
1

(m1m2 . . .mn)1+1/s .

If we happen to know the cycle weights tm1m2...mn analytically, we may proceed as
in sect. 29.3.2, transform the multiple sums into multiple integrals and rotate the
integration contours.

We have reached the edge of what has been accomplished so far in computing
and what is worth the dynamical zeta functions from periodic orbit data. In the
next section, we describe a probabilistic method applicable to intermittent maps
which does not rely on periodic orbits.

29.3.4 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situations, truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion. This situation is best
illustrated by intermittent maps. The simplest of these is the Farey map

f (x) =

{
f0 = x/(1 − x) 0 ≤ x ≤ 1/2
f1 = (1 − x)/x 1/2 ≤ x ≤ 1 ,

. (29.40)

For the Farey map, the symbolic dynamics is of complete binary type, so the
lack of shadowing is not due to the lack of a finite grammar, but rather to the
intermittency caused by the existence of the marginal fixed point x0 = 0, for which
the stability multiplier is Λ0 = 1. This fixed point does not participate directly in
the dynamics and is omitted from cycle expansions. Its presence is, however,
very much felt instead in the stabilities of neighboring cycles with n consecutive
iterates of the symbol 0, whose stability falls of only as Λ ∼ n2, in contrast to
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Figure 29.8: Comparison of cycle expansion trun-
cation schemes for the Farey map (29.40); the
deviation of the truncated cycles expansion for
|1/ζN(0)| from the exact flow conservation value
1/ζ(0) = 0 is a measure of the accuracy of the
truncation. The jagged line is the logarithm of
the stability ordering truncation error; the smooth
line is smoothed according to sect. 23.7.2; the di-
amonds indicate the error due to the topological
length truncation, with the maximal cycle length N
shown. They are placed along the stability cutoff

axis at points determined by the condition that the
total number of cycles is the same for both trunca-
tion schemes.
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the most unstable cycles with n consecutive 1’s, which are exponentially unstable,
|Λ01n | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count in the style
of sect. 18.7.2 leads to a total of 74,248,450 prime cycles of length 30 or less,
not including the marginal point x0 = 0. Evaluating a cycle expansion to this
order is an impressive computational feat. However, stability of the least unstable
cycle omitted is roughly Λ1030 ∼ 302 = 900, so it yields a 0.1% correction. The
situation may be much worse than this estimate suggests, because the next 1031

cycle contributes a similar amount, and could easily reinforce the error. Adding
up all such omitted terms, we arrive at an estimated error of about 3%, for a cycle-
length truncated cycle expansion based on more than 109 pseudo-cycle terms! On
the other hand, if one truncates by stability at Λmax = 3000, only 409 prime cycles
suffice to attain the same accuracy of about a 3% error, figure 29.8.

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) = 0. Devia-
tions from this exact result give an indication of the convergence of a given cycle
expansion. Errors corresponding to different truncation schemes are indicated in
figure 29.8. We see that topological length truncation schemes are hopelessly bad
in this case; stability length truncations are somewhat better, but still rather bad.
In simple cases like this one, where intermittency is caused by a single marginal
fixed point, convergence can be improved by going to infinite alphabets.

29.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in which to
investigate dynamical implications of marginal fixed points. We now take an al-
together different track and describe how probabilistic methods may be employed
in order to write down approximate dynamical zeta functions for intermittent sys-
tems.

We will discuss the method in a very general setting, for a flow in arbitrary
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dimension. The key idea is to introduce a surface of section P such that all tra-
jectories traversing this section will have spent some time both near the marginal
stable fixed point and in the chaotic phase. An important quantity in what follows
is (3.7), the first return time τ(x), or the time of flight of a trajectory starting in
x to the next return to the surface of section P. The period of a periodic orbit p
intersecting the P section np times is

Tp =

np−1∑
k=0

τ( f k(xp)),

where f (x) is the Poincaré map, and xp ∈ P is a periodic point. The dynamical
zeta function (22.11)

1/ζ(z, s, β) =
∏

p

(
1 −

znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑
k=0

a( f k(xp)), (29.41)

associated with the observable a(x) captures the dynamics of both the flow and the
chapter 20

Poincaré map. The dynamical zeta function for the flow is obtained as 1/ζ(s, β) =

1/ζ(1, s, β), and the dynamical zeta function for the discrete time Poincaré map is
1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the chaotic in-
terludes render the consecutive return (or recurrence) times T (xi), T (xi+1) and ob-
servables a(xi), a(xi+1) effectively uncorrelated. Consider the quantity eβA(x0,n)−sT (x0,n)

averaged over the surface of section P. With the above probabilistic assumption
the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼

(∫
P

eβa(x)−sτρ(x)dx
)n

,

where ρ(x) is the invariant density of the Poincaré map. This type of behavior is
equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx of 1/ζ(z, s, β)

in the z-β plane. In the language of Ruelle-Pollicott resonances this means that
there is an infinite gap to the first resonance. This in turn implies that 1/ζ(z, s, β)
may be written as

remark 20.1

1/ζ(z, s, β) = z −
∫
P

eβa(x)−sτ(x)ρ(x)dx ,

where we have neglected a possible analytic and non-zero prefactor. The dynam-
ical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1 −
∫
P

eβa(x)ρ(x)e−sτ(x)dx . (29.42)

Normally, the best one can hope for is a finite gap to the leading resonance of
the Poincaré map. with the above dynamical zeta function only approximatively
valid. As it is derived from an approximation due to Baladi, Eckmann, and Ruelle,
we shall refer to it as the BER zeta function 1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =

∫
P

δ(τ − τ(x))ρ(x)dx
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The BER zeta function at β = 0 is then given in terms of the Laplace transform
exercise 24.6

of this distribution

1/ζBER(s) = 1 −
∫ ∞

0
ψ(τ)e−sτdτ.

exercise 29.5

example 29.1

p. 580

example 29.2

p. 580

It may seem surprising that the BER approximation produces exact results in
the two examples above. The reason for this peculiarity is that both these systems
are piecewise linear and have complete Markov partitions. As long as the map
is piecewise linear and complete, and the probabilistic approximation is exactly
fulfilled, the cycle expansion curvature terms vanish. The BER zeta function and
the fundamental part of a cycle expansion discussed in sect. 23.1.1 are indeed
intricately related, but not identical in general. In particular, note that the BER zeta
function obeys the flow conservation sum rule (23.17) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résumé

The presence of marginally stable fixed points and cycles changes the analytic
structure of dynamical zeta functions and the rules for constructing cycle expan-
sions. The marginal orbits have to be omitted, and the cycle expansions now need
to include families of infinitely many longer and longer unstable orbits which
accumulate toward the marginally stable cycles. Correlations for such nonhy-
perbolic systems may decay algebraically with the decay rates controlled by the
branch cuts of dynamical zeta functions. Compared to pure hyperbolic systems,
the physical consequences are drastic: exponential decays are replaced by slow
power-law decays, and transport properties, such as the diffusion may become
anomalous.

Commentary

Remark 29.1. What about the evolution operator formalism? The main virtue of
evolution operators was their semigroup property (20.16). This was natural for hyper-
bolic systems where instabilities grow exponentially, and evolution operators capture this
behavior due to their multiplicative nature. Whether the evolution operator formalism is
a good way to capture the slow, power law instabilities of intermittent dynamics is less
clear. The approach taken here leads us to a formulation in terms of dynamical zeta func-
tions rather than spectral determinants, circumventing evolution operators altogether. It is
not known if the spectral determinants formulation would yield any benefits when applied
to intermittent chaos. Some results on spectral determinants and intermittency can be
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found in ref. [24]. A useful mathematical technique to deal with isolated marginally sta-
ble fixed point is that of inducing, that is, replacing the intermittent map by a completely
hyperbolic map with infinite alphabet and redefining the discrete time; we have used this
method implicitly by changing from a finite to an infinite alphabet. We refer to refs. [13,
21, 22] for detailed discussions of this technique, as well as applications to 1-dimensional
maps.

Remark 29.2. Intermittency. Intermittency was discovered by Manneville and
Pomeau [15] in their study of the Lorenz system. They demonstrated that in neighbor-
hood of parameter value rc = 166.07 the mean duration of the periodic motion scales as
(r − rc)1/2. In ref. [20] they explained this phenomenon in terms of a 1-dimensional map
(such as (29.1)) near tangent bifurcation, and classified possible types of intermittency.

Piecewise linear models like the one considered here have been studied by Gaspard
and Wang [9, 26, 27]. The escape problem has here been treated following ref. [6], re-
summations following ref. [5]. The proof of the bound (29.27) is given in P. Dahlqvist’s
notes, see ChaosBook.org/extras/PDahlqvistEscape.pdf.

Farey map (29.40) has been studied widely in the context of intermittent dynamics,
for example in refs. [1, 7, 16–19, 24]. The Fredholm determinant and the dynamical
zeta functions for the Farey map (29.40) and the related Gauss shift map (19.44) have
been studied by Mayer [16]. He relates the continued fraction transformation to the Rie-
mann zeta function, and constructs a Hilbert space on which the evolution operator is
self-adjoint, and its eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [23] for “Axiom A" hyperbolic systems.

Remark 29.3. Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller’s monograph [8] is a highly recommended
introduction to these methods.

Remark 29.4. Probabilistic methods, BER zeta functions. Probabilistic description
of intermittent chaos was introduced by Geisal and Thomae [11]. The BER approximation
studied here is inspired by Baladi, Eckmann and Ruelle [2], with further developments in
refs. [3, 4].
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29.5 Examples

Example 29.1. Return times for the Bernoulli map. For the Bernoulli shift map
(28.21)

x 7→ f (x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (21.8))

1/ζBER(z) = 1 −
∞∑

n=1

ψnzn = 1 −
∞∑

n=1

zn

2n

=
1 − z

1 − z/2
= ζ−1(z)/(1 − z/Λ0) . (29.43)

Thanks to the uniformity of the piecewise linear map measure (19.39) the “approximate"
click to return: p. 576

zeta function is in this case the exact dynamical zeta function, with the periodic point 0
pruned.

Example 29.2. Return times for the model of sect. 29.2.1. For the toy model of
sect. 29.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1−b)/(1−a), for n ≥ 2, leading to a BER
zeta function

1/ζBER(z) = 1 − z|M1| −

∞∑
n=2

|Mn|zn,

which again coincides with the exact result, (29.10).
click to return: p. 576
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Exercises

29.1. Integral representation of Jonquière functions.
Check the integral representation

J(z, α) =
z

Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
for α > 0 .

(29.44)

Note how the denominator is connected to Bose-
Einstein distribution. Compute J(x + iε) − J(x − iε) for
a real x > 1.

29.2. Power law correction to a power law. Expand
(29.20) further and derive the leading power law correc-
tion to (29.23).

29.3. Power-law fall off. In cycle expansions the stabilities
of orbits do not always behave in a geometric fashion.
Consider the map f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x → 0. Define a sym-
bolic dynamics for this map by assigning 0 to the points
that land on the interval [0, 1/2) and 1 to the points that
land on (1/2, 1]. Show that the stability of orbits that
spend a long time on the 0 side goes as n2. In particular,
show that

Λ 00···0︸︷︷︸
n

1 ∼ n2

29.4. Power law fall-off of Floquet multipliers in the sta-

dium billiard. From the cycle expansions
point of view, the most important consequence of the
shear in Jn for long sequences of rotation bounces nk in
(9.14) is that the Λn grows only as a power law in num-
ber of bounces:

Λn ∝ n2
k . (29.45)

Check.

29.5. Probabilistic zeta function for maps. Derive the
probabilistic zeta function for a map with recurrence dis-
tribution ψn.

29.6. Accelerated diffusion. Consider a map h, such that
ĥ = f̂ , but now running branches are turner into stand-
ing branches and vice versa, so that 1, 2, 3, 4 are stand-
ing while 0 leads to both positive and negative jumps.
Build the corresponding dynamical zeta function and
show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

29.7. Anomalous diffusion (hyperbolic maps). Anoma-
lous diffusive properties are associated to deviations
from linearity of the variance of the phase variable we
are looking at: this means the diffusion constant (20.30)
either vanishes or diverges. We briefly illustrate in this
exercise how the local local properties of a map are cru-
cial to account for anomalous behavior even for hyper-
bolic systems.
Consider a class of piecewise linear maps, relevant to
the problem of the onset of diffusion, defined by

fε(x) =



Λx for x ∈
[
0, x+

1

]
a − Λε,γ|x − x+| for x ∈

[
x+

1 , x
+
2

]
1 − Λ′(x − x+

2 ) for x ∈
[
x+

2 , x
−
1

]
1 − a + Λε,γ|x − x−| for x ∈

[
x−1 , x

−
2

]
1 + Λ(x − 1) for x ∈

[
x−2 , 1

]
where Λ = (1/3 − ε1/γ)−1, Λ′ = (1/3 − 2ε1/γ), Λε,γ =

ε1−1/γ, a = 1+ε, x+ = 1/3, x+
1 = x+−ε1/γ, x+

2 = x++ε1/γ,
and the usual symmetry properties (24.23) are satisfied.
Thus this class of maps is characterized by two escap-
ing windows (through which the diffusion process may
take place) of size 2ε1/γ: the exponent γ mimicks the or-
der of the maximum for a continuous map, while piece-
wise linearity, besides making curvatures vanish and
leading to finite cycle expansions, prevents the appear-
ance of stable cycles. The symbolic dynamics is eas-
ily described once we consider a sequence of param-
eter values {εm}, where εm = Λ−(m+1): we then par-
tition the unit interval though the sequence of points
0, x+

1 , x
+, x+

2 , x
−
1 , x

−, x−2 , 1 and label the corresponding
sub–intervals 1, sa, sb, 2, db, da, 3: symbolic dynamics is
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described by an unrestricted grammar over the following
set of symbols

{1, 2, 3, s# ·1i, d# ·3k} # = a, b i, k = m,m+1,m+2, . . .

This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1−

2z
Λ
−

z
Λ′
−4 cosh(α)ε1/γ−1

m
zm+1

Λm

(
1 −

z
Λ

)−1

from which, by (24.9) we get

D =
2ε1/γ−1

m Λ−m(1 − 1/Λ)−1

1 − 2
Λ
− 1

Λ′
− 4ε1/γ−1

m

(
m+1

Λm(1−1/Λ) + 1
Λm+1(1−1/Λ)2

)

(29.46)

The main interest in this expression is that it allows ex-
ploring how D vanishes in the ε 7→ 0 (m 7→ ∞) limit: as
a matter of fact, from (29.46) we get the asymptotic be-
havior D ∼ ε1/γ, which shows how the onset of diffusion
is governed by the order of the map at its maximum.

Remark 29.5. Onset of diffusion for continuous maps.
The zoology of behavior for continuous maps at the on-
set of diffusion is described in refs. [10, 12, 25]: our
treatment for piecewise linear maps was introduced in
ref. [14].

exerInter - 6jun2003 ChaosBook.org edition16.4.8, May 25 2020



Chapter 30

Turbulence?

I am an old man now, and when I die and go to Heaven
there are two matters on which I hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, I am rather optimistic.

—Sir Horace Lamb

There is only one honorable cause that would justify sweating through so much
formalism - this is but the sharpening of a pencil in order that we may attack
the Navier-Stokes equation,

∂u
∂t

+ u · ∇u = −
∇p
ρ

+ ν∇2u + f , (30.1)

and solve the problem of turbulence.

Being realistic, we are not so foolhardy to immediately plunge into the prob-
lem – there are too many dimensions and indices. Instead, we start small, in one
spatial dimension, u → u, u · ∇u → u∂xu, assume constant density ρ, forget
about the pressure p, and so on. This line of reasoning, as well as many other
equally sensible threads of thought, such as the amplitude equations obtained via
weakly nonlinear stability analysis of steady flows, leads to a small set of fre-
quently studied nonlinear PDE models, like the one that we turn to now. You only
need chapters 2 to 5 and chapters 14 to 15 to get started.

30.1 Configuration space: a fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespeare, Romeo and Juliet, Act I, Scene I

The Kuramoto-Sivashinsky equation is one of the simplest nonlinear systems
used to describe ‘turbulence’ (often modestly referred to here as ‘spatiotempo-
rally chaotic behavior’). This equation was first derived to model a laminar flame

584
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Figure 30.1: A typical “turbulent" solution of
the Kuramoto-Sivashinsky equation, system size
L̃ = 10

√
2 ≈ 88.86. The color (gray scale) in-

dicates the value of u at any given position and
time. The x coordinate is plotted in units of the
most unstable wavelength 2π

√
2, which is empir-

ically approximately the mean wavelength of the
turbulent flow. The dynamics is typical of a large
system, in this case approximately 10 mean wave-
lengths wide (from ref. [11]).

front, such as the flickering of a gas flame on your kitchen stove, figure 2.7.
The time evolution of the ‘flame front velocity’ u = u(x, t) on a periodic domain
u(x, t) = u(x + L, t) is given by

ut + 1
2 (u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (30.2)

In this equation t ≥ 0 is the time and x is the spatial coordinate. The subscripts
x and t denote partial derivatives with respect to x and t: ut = ∂u/∂t, uxxxx stands
for the 4th spatial derivative of u = u(x, t) at position x and time t. In what follows
we use interchangeably the ‘dimensionless system size’ L̃, or the periodic domain
size L = 2πL̃, as the system parameter. We take note, as in the Navier-Stokes
equation (30.1), of the ‘inertial’ term u∂xu, the ‘anti-diffusive’ term ∂2

xu (with a
“wrong” sign), ‘(hyper-)viscosity’ ν, etc..

In what follows we will analyze -step by step- PDEs, using methods de-
veloped above for finite dimensional dynamical systems, a discussion started in
sect. 2.4 Life in extreme dimensions. First we discuss PDEs as fields defined over
configuration space. Once we go over to the state space description the techniques
developped for analysis of ODEs will go over to PDEs, as is.

30.1.1 Symmetries of Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation (30.2) is space translationally invariant, time
translationally invariant, and invariant under reflection x → −x, u → −u. Com-
paring ut and (u2)x terms we note that u has dimensions of [x]/[t], hence u is the
‘velocity’, rather than the ‘height’ of the flame front. Indeed, the Kuramoto-Siva-
shinsky equation is Galilean invariant: if u(x, t) is a solution, then v + u(x − vt, t),
with v an arbitrary constant velocity, is also a solution. Without loss of generality,
in our calculations we shall work in the zero mean velocity frame∫

dx u = 0 . (30.3)

In terms of the system size L, the only length scale available, the dimensions of
terms in (30.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 . Scaling out the
“viscosity” parameter ν by x → xν1/2 , t → tν , u → uν−1/2 , brings the Ku-
ramoto-Sivashinsky equation (30.2) to a non-dimensional form (for the “integral”
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form of the equations, see remark 30.3)

ut + u ux + uxx + uxxxx = 0 , x ∈ [0, Lν−1/2) = [0, 2πL̃) . (30.4)

In this way we trade in both the “viscosity” ν and the system size L for a single
dimensionless parameter

L̃ = L/(2π
√
ν) (30.5)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky sys-
tem. Some authors use L as the system parameter, with ν fixed to 1, and others
vary νwith L fixed to either 1 or 2π. Physically, varying L is the right thing to do if
one is interested in taking L large, and studying ‘spatio-temporal chaos.’ In what
follows we state results of all calculations in units of the dimensionless parameter
L̃.

The 2π factor in (30.5) is motivated by the stability analysis of the quiescent
u(x, t) = 0 equilibrium. First, in these units the u(x, t) = 0 equilibrium bifurcates
at each integer value L̃ = n, see figure 30.2. Second, in these units the 2π

√
2 mean

wavelength estimate, confirmed by simulations such as figure 30.1, follows from
the analytic formula for the stability exponents (5.2) of the u(x, t) = 0 station-
ary solution, see the Fourier modes form of the Kuramoto-Sivashinsky equation
(30.14),

λ(k) = q2
k − q4

k , qk = k/L̃ . (30.6)

The most unstable mode, nearest to the maximum of this stability formula k =

L̃/
√

2, sets the mean wavelength
√

2 of the KS ‘turbulent’ dynamics, see fig-
ure 30.8 and example 30.5.

example 30.5

p. 606

The time units also have to be rescaled; for example, if Tp
∗ is a period of a

periodic solution of (30.2) with a given ν and L = 2π, then the corresponding
solution of the non-dimensionalized (30.4) has period

Tp = Tp
∗/ν . (30.7)

The term (u2)x in (30.2) makes this a nonlinear system. This is one of the
simplest conceivable nonlinear PDE, playing the role in the theory of spatially
extended systems a bit like the role that the x2 nonlinearity plays in the dynamics

example 3.7
of iterated mappings. The time evolution of a typical solution of the Kuramoto-

section 3.3
Sivashinsky system is illustrated by figure 30.1.

remark 30.1

LetU be the space of real-valued velocity fields periodic and square integrable
on the interval Ω = [−L/2, L/2],

U = {u ∈ L2(Ω) | u(x) = u(x + L)} . (30.8)

G, the group of actions g ∈ G on a state space (reflections, translations, etc.)
is a symmetry of the Kuramoto-Sivashinsky equation (30.2) if g ut = F(g u). A

PDEs - 25apr2020 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 30. TURBULENCE? 587

continuous symmetry maps each state u ∈ U to a manifold of physically equivalent
states. The Kuramoto-Sivashinsky equation is time translationally invariant, and
space translationally invariant on a periodic domain under the 1-parameter group
O(2) = D1,x nSO(2) : {σ, τ`/L}. If u(x, t) is a solution, then τ`/L u(x, t) = u(x + `, t)
is an equivalent solution for any shift 0 ≤ ` < L, as is the reflection (‘parity’ or
‘inversion’)

σ u(x) = −u(−x) . (30.9)

Reflection generates the dihedral subgroup D1 = Z2 = {1, σ} of O(2). Relation
σ2 = 1 induces linear decomposition u(x) = u+(x) + u−(x), u±(x) = P±u(x) ∈ U±,
into irreducible subspaces U = U+ ⊕ U−, where

P+ = (1 + σ)/2 , P− = (1 − σ)/2 , (30.10)

are the antisymmetric/symmetric projection operators. Applying P+, P− on the
KS equation (30.2) we have

u+
t = −(u+u+

x + u−u−x ) − u+
xx − u+

xxxx

u−t = −(u+u−x + u−u+
x ) − u−xx − u−xxxx . (30.11)

If u− = 0, KS flow is confined to the antisymmetric U+ subspace,

u+
t = −u+u+

x − u+
xx − u+

xxxx , (30.12)

but otherwise the nonlinear terms in (30.11) mix the two subspaces.

example 30.1

p. 604

example 30.2

p. 604

example 30.4

p. 605

30.2 Constructing a state space

Spatial periodicity u(x, t) = u(x + L, t) makes it convenient to work in the Fourier
space,

u(x, t) =

+∞∑
k=−∞

ak(t)eikx/L̃ , (30.13)

with the 1-dimensional PDE (30.2) replaced by an infinite set of ODEs for the
complex Fourier coefficients ak(t):

ȧk = vk(a) = (q2
k − q4

k) ak − i
qk

2

+∞∑
m=−∞

amak−m , qk = k/L̃ . (30.14)

As ȧ0 = 0, a0 is a conserved quantity, in our calculations fixed to a0 = 0 by
the vanishing mean 〈u〉 condition (30.3) for the front velocity. The velocity
field u(x, t) is real, so ak = a∗

−k, and we can replace the sum by an m > 0 sum.
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This is the infinite set of ordinary differential equations promised in this chapter’s
introduction.

As ȧ0 = 0 in (30.14), a0 is a conserved quantity fixed to a0 = 0 by the condi-
tion (30.3).

The translation operator action on the Fourier coefficients (2.17), represented
here by a complex valued vector a = {ak ∈ C | k = 1, 2, . . .}, is given by

τ`/L a = g(`) a , (30.15)

where g(`) = diag(eiqk `) is a complex valued diagonal matrix, which amounts to
the kth mode complex plane rotation by an angle k `/L̃. The reflection acts on the
Fourier coefficients by complex conjugation,

σ a = −a∗ . (30.16)

Due to the hyperviscous damping uxxxx, long time solutions of Kuramoto-
Sivashinsky equation are smooth, ak drop off fast with k, and truncations of (30.14)
to N terms, 16 ≤ N ≤ 128, yield highly accurate solutions for system sizes con-
sidered here. Robustness of the Fourier representation of KS as a function of
the number of modes kept in truncations, a subtle issue. Adding an extra mode
to a truncation introduces a small perturbation. However, this can (and often
will) throw the dynamics into a different asymptotic state. A chaotic attractor
for N = 15 can collapse into an attractive period-3 cycle for N = 16, and so on.
If we compute, for example, the Lyapunov exponent λN for a strange attractor of
the system (30.14), there is no reason to expect λN to smoothly converge to a limit
value λ, as N → ∞, because of the lack of structural stability both as a function
of truncation N, and the system size L̃. However, later in this chapter we explore
both equilibria and short periodic orbits, which are robust under mode truncations
and small system parameter L̃ changes. Spatial representations of PDEs (such
as figure 30.1 (b) and the 3D snapshots of velocity and vorticity fields in Navier-
Stokes) offer little insight into detailed dynamics of low-Re flows. Much more
illuminating are the state space representations.

30.2.1 Equilibria and relative equilibria

Equilibria (or the steady solutions) are the fixed profile time-invariant solutions,

u(x, t) = uq(x) . (30.17)

Due to the translational symmetry, the KS system also allows for relative equilib-
ria (traveling waves, rotating waves), characterized by a fixed profile uq(x) moving
with constant speed c, i.e.

u(x, t) = uq(x − ct) . (30.18)

Here suffix q labels a particular invariant solution. Because of the reflection sym-
metry (30.9), the relative equilibria come in counter-traveling pairs uq(x − ct),
−uq(−x + ct).

PDEs - 25apr2020 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 30. TURBULENCE? 589

0.5 1. 1.5 2. 2.5 3. 3.5 4.

0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6

E

L̃

E0

E1

E2

E3

TW±1

TW±2

Figure 30.2: The energy (30.30) of the equilibria and relative equilibria that exist up to L = 22,
L̃ = 3.5014 . . ., plotted as a function of the system size L̃ = L/2π (additional equilibria, not present
at L = 22 are given in ref. [21]). Solid curves denote 2- and 3-cell solutions E2 and E3, dotted
curves the GLMRT equilibrium E1, and dashed curves the relative equilibria TW±1 and TW±2. The
parameter α of refs. [21, 26] is related to the system size by L̃ =

√
α/4.

The set of equilibria, relative equilibria, and their stable / unstable manifolds
are important for us, as they form the coarsest topological framework for organiz-
ing state space orbits.

example 30.6

p. 606

example 30.7

p. 607

In the Fourier representation the relative equilibria time dependence is

ak(t)e−itcqk = ak(0) . (30.19)

Differentiating with respect to time, we obtain the Fourier space version of the
relative equilibrium condition (30.43),

vk(a) − iqkcak = 0 , (30.20)

which we solve for (time independent) ak and c.

Periods of spatially periodic equilibria are multiples of L. Every time the sys-
tem size crosses L̃ = n, n-cell states are generated through pitchfork bifurcations
off u = 0 equilibrium. Due to the translational invariance of Kuramoto-Sivashin-
sky equation, they form invariant circles in the full state space. In theU+ subspace
considered here, they correspond to 2n points, each shifted by L/2n. For a suf-
ficiently small L the number of equilibria is small and concentrated on the low
wave-number end of the Fourier spectrum.

From (30.14) we see that the origin u(x, t) = 0 has Fourier modes as the linear
stability eigenvectors. The |k| < L̃ long wavelength perturbations of the flat-front
equilibrium are linearly unstable, while all |k| > L̃ short wavelength perturbations
are strongly contractive. The high k eigenvalues, corresponding to rapid variations
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of the flame front, decay so fast that the corresponding eigendirections are physi-
cally irrelevant. The most unstable mode, nearest to |k| = L̃/

√
2, sets the scale of

the mean wavelength
√

2 of the KS ‘turbulent’ dynamics, see figure 30.1.

30.2.2 Relative periodic orbits, symmetries and periodic orbits

The KS equation (30.2) is time translationally invariant, and space translationally
invariant under the 1-d Lie group of O(2) rotations: if u(x, t) is a solution, then
u(x + `, t) and −u(−x, t) are equivalent solutions for any −L/2 < ` ≤ L/2. As
a result of invariance under τ`/L, KS equation can have relative periodic orbit
solutions with a profile up(x), period Tp, and a nonzero shift `p

τ`p/Lu(x,Tp) = u(x + `p,Tp) = u(x, 0) = up(x) . (30.21)

Relative periodic orbits (30.21) are periodic in vp = `p/Tp co-rotating frame (see
figure 12.8), but in the stationary frame their trajectories are quasiperiodic. Due to
the reflection symmetry (30.9) of KS equation, every relative periodic orbit up(x)
with shift `p has a symmetric partner −up(−x) with shift −`p.

Due to invariance under reflections, KS equation can also have relative peri-
odic orbits with reflection, which are characterized by a profile up(x) and period
Tp

σu(x + `,Tp) = −u(−x − `,Tp) = u(x + `, 0) = up(x) , (30.22)

giving the family of equivalent solutions parameterized by ` (as the choice of the
reflection point is arbitrary, the shift can take any value in −L/2 < ` ≤ L/2).

Armbruster et al. [1, 2] and Brown and Kevrekidis [6] (see also ref. [27]) link
the birth of relative periodic orbits to an infinite period global bifurcation involv-
ing a heteroclinic loop connecting equilibria or a bifurcation of relative equilibria,
and also report creation of relative periodic orbit branches through bifurcation of
periodic orbits.

As ` is continuous in the interval [−L/2, L/2], the likelihood of a relative
periodic orbit with `p = 0 shift is zero, unless an exact periodicity is enforced
by a discrete symmetry, such as the dihedral symmetries discussed above. If the
shift `p of a relative periodic orbit with period Tp is such that `p/L is a rational
number, then the orbit is periodic with period nTp. The likelihood to find such
periodic orbits is also zero.

However, due to the KS equation invariance under the dihedral Dn and cyclic
Cn subgroups, the following types of periodic orbits are possible:

(a) The periodic orbit lies within a subspace pointwise invariant under the
action of Dn or Cn. For instance, for D1 this is the U+ antisymmetric subspace,
−up(−x) = up(x), and u(x,Tp) = u(x, 0) = up(x). The periodic orbits found in
refs. [9, 31] are all in U+, as the dynamics is restricted to antisymmetric subspace.
For L = 22 the dynamics in U+ is dominated by attracting (within the subspace)
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heteroclinic connections and thus we have no periodic orbits of this type, or in any
other of the Dn–invariant subspaces.

(b) a pre-periodic orbit satisfies

u(x, t + Tp) = γu(x, t) , (30.23)

for some group element γ ∈ O(2) such that γm = e for some integer m so that
the orbit repeats after time mTp (see ref. [20] for a general discussion of condi-
tions on the symmetry of periodic orbits). If an orbit is of reflection type (30.22),
στ`/Lu(x,Tp) = −u(−x− `,Tp) = u(x, 0), then it is pre-periodic to a periodic orbit
with period 2Tp. Indeed, since (στ`/L)2 = σ2 = 1, and the KS solutions are time
translation invariant, it follows from (30.22) that

u(x, 2Tp) = στ`/Lu(x,Tp) = (στ`/L)2u(x, 0) = u(x, 0) .

Thus any shift acquired during time 0 to Tp is compensated by the opposite shift
during evolution from Tp to 2Tp. All periodic orbits we have found for L = 22 are
of type (30.23) with γ = R. Pre-periodic orbits with γ ∈ Cn have been found by
Brown and Kevrekidis [6] for KS system sizes larger than ours, but we have not
found any for L = 22. Pre-periodic orbits are a hallmark of any dynamical system
with a discrete symmetry, where they have a natural interpretation as periodic
orbits in the fundamental domain.

30.3 Energy budget

Mathematical physics is three things: Gaussian integrals,
integration by parts and ... (nobody remembers exactly
what the third thing was, including Joel).

—Joel Lebowitz, in a seminar

In physical settings where the observation times are much longer than the dy-
namical ‘turnover’ and Lyapunov times (statistical mechanics, quantum physics,
turbulence) periodic orbit theory provides highly accurate predictions of measur-
able long-time averages such as the dissipation and the turbulent drag. Physical
predictions have to be independent of a particular choice of ODE representation
of the PDE under consideration and invariant under all symmetries of the dynam-
ics. In this section we discuss a set of such physical observables for the 1-d KS
invariant under reflections and translations. Here we shall show that they offer
a visualization of solutions of dynamics in which the symmetries are explicitly
quotiented out.

The space average of a function a = a(x, t) = a(u(x, t)) periodic on the interval
L is given by

〈a〉 =
1
L

∮
dx a(x, t) , (30.24)
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We note that total derivatives vanish by the spatial periodicity on the L domain,
and that by integration by parts

〈 fx〉 = 0 , 〈 fxg〉 = −〈 f gx〉 (30.25)

for any L-periodic functions f , g. In general 〈a〉 is time dependent. Its mean value
is given by the time average

a = lim
t→∞

1
t

∫ t

0
dτ 〈a〉 = lim

t→∞

1
t

∫ t

0

1
L

∮
dτ dx a(x, τ) . (30.26)

The mean value of aq = a(uq) evaluated on equilibrium or relative equilibrium
u(x, t) = uq(x − ct), is

aq = 〈a〉q = aq . (30.27)

Evaluation of the infinite time average (30.26) on a function of a periodic orbit
or relative periodic orbit up(x, t) = up(x + `p, t + Tp) requires only a single Tp

traversal,

ap =
1

Tp

∫ Tp

0
dτ 〈a〉 . (30.28)

Equation (30.2) can be written as

ut = −Vx , V(x, t) = 1
2 u2 + ux + uxxx , (30.29)

and E can be interpreted as the mean energy density (30.30). So, even though KS
is a phenomenological small-amplitude equation, the time-dependent L2 norm of
u (simplified using integration by parts, as in (30.25)),

E =
1
L

∮
dx V(x, t) =

1
L

∮
dx

u2

2
, (30.30)

has a physical interpretation as the average ‘energy’ density of the flame front.
This analogy to the mean kinetic energy density for the Navier-Stokes motivates
what follows.

The energy (30.30) is intrinsic to the flow, independent of the particular ODE
basis set chosen to represent the PDE. As the Fourier amplitudes are eigenvec-
tors of the translation operator, in the Fourier space the energy is a diagonalized
quadratic norm,

E =

∞∑
k=1

Ek , Ek = 1
2 |ak|

2 , (30.31)

and explicitly invariant term by term under translations and reflections.

Take time derivative of the energy density (30.30), substitute (30.2) and inte-
grate by parts, as in (30.25):

Ė = 〈ut u〉 = −〈
(
u2/2 + ux + uxxx

)
x

u〉

= 〈ux u2/2 + ux
2 + ux uxxx〉 . (30.32)
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Figure 30.3: Power input 〈ux
2〉 vs. dissipation 〈uxx

2〉

for L = 22 equilibria and relative equilibria, for sev-
eral periodic orbits and relative periodic orbits, and
for a typical ‘turbulent’ state. Note that (up,x)2 of the
(Tp, `p) = (32.8, 10.96) relative periodic orbit, which
appears well embedded within the turbulent state, is
close to the turbulent expectation (ux)2 (from ref. [11]).
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Figure 30.4: EQ1 (red), EQ2 (green), EQ3 (blue),
connections from EQ1 to A(L/4)EQ1 (green), from
A(L/4)EQ1 to EQ1 (yellow-green) and from EQ3 to
A(L/4)EQ1 (blue), along with a generic long-time
“turbulent" evolution (grey) for L = 22. Three different
projections of the (E, 〈ux

2〉, 〈uxx
2〉) − 〈ux

2〉) represen-
tation are shown (from ref. [11]).
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The first term in (30.32) vanishes by integration by parts, 3〈ux u2〉 = 〈(u3)x〉 = 0 ,
and integrating the third term by parts yet again one gets that the energy variation
in the Kuramoto-Sivashinsky equation (30.2)

Ė = P − D , P = 〈ux
2〉 , D = 〈uxx

2〉 (30.33)

balances the power P pumped in by anti-diffusion uxx against the energy dissipa-
tion rate D by hyper-viscosity uxxxx.

In figure 30.3 we plot the power input 〈ux
2〉 vs. dissipation 〈uxx

2〉 for all
L = 22 equilibria and relative equilibria determined so far, several periodic orbits
and relative periodic orbits, and for a typical “turbulent" evolution. The time
averaged energy density E computed on a typical orbit goes to a constant, so the
mean values (30.26) of drive and dissipation exactly balance each other:

Ė = lim
t→∞

1
t

∫ t

0
dτ Ė = P − D = 0 . (30.34)

In particular, the equilibria and relative equilibria fall onto the diagonal in fig-
ure 30.3 (a), and so do time averages computed on periodic orbits and relative
periodic orbits:

Ep =
1

Tp

∫ Tp

0
dτ E(τ) , Pp =

1
Tp

∫ Tp

0
dτ P(τ) = Dp . (30.35)

In the Fourier basis (30.31) the conservation of energy on average takes form

0 =

∞∑
k=−∞

(q2
k − q4

k) Ek , Ek(t) = 1
2 |ak(t)|2 . (30.36)

The large k convergence of this series is insensitive to the system size L; Ek have
to decrease much faster than q−4

k . Deviation of Ek from this bound for small k
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Figure 30.5: Spatiotemporally periodic solution
u0(x, t), with period T0 = 30.0118 . The antisymmetric
subspace, u(x, t) = −u(−x, t), so we plot x ∈ [0, L/2].
System size L̃ = 2.89109, N = 16 Fourier modes trun-
cation (from ref. [9]).

determines the active modes. This may be useful to bound the number of equilib-
ria, with the upper bound given by zeros of a small number of long wavelength
modes.

30.4 Infinite-dimensional flows: Numerics

The computer is not a mere mathematical excrescence,
useful for technological ends. Rather, I believe that it
is a meta-development that might very well change what
mathematics is considered to be.

— P. J. Davis [13]

The trivial solution u(x, t) = 0 is an equilibrium point of (30.2), but that is basically
all we know as far as useful analytical solutions are concerned. To develop some
intuition about the dynamics we turn to numerical simulations.

How are solutions such as figure 30.1 computed? The salient feature of such
partial differential equations is a theorem saying that for state space contracting
flows, the asymptotic dynamics is describable by a finite set of ‘inertial manifold’
ordinary differential equations. How you solve the equation (30.2) numerically is
up to you. Here are some options:

Discrete mesh: You can divide the x interval into a sufficiently fine discrete grid of
N points, replace space derivatives in (30.2) by approximate discrete derivatives,
and integrate a finite set of first order differential equations for the discretized
spatial components u j(t) = u( jL/N, t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (30.14), trun-
cating the ladder of equations to a finite number of modes N, i.e., set ak = 0 for
k > N. In the applied mathematics literature more sophisticated variants of such

exercise 2.6
truncations are called Gälerkin truncations, or Gälerkin projections. You need to
worry about ‘stiffness’ of the equations and the stability of your integrator. For the
parameter values explored in this chapter, truncations N in range 16 to 64 yield
sufficient accuracy.

Pseudo-spectral methods: You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

example 30.3

p. 605
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Figure 30.6: Projections of a typical 16-
dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a) {a1, a2, a3},
(b) {a1, a2, a4}. System size L̃ = 2.89109, N = 16
Fourier modes truncation (from ref. [9]).
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Figure 30.7: The attractor of the Kuramoto-Sivashin-
sky system (30.14), plotted as the a6 component of
the a1 = 0 Poincaré section return map. Here 10,000
Poincaré section returns of a typical trajectory are plot-
ted. Also indicated are the periodic points 0, 1, 01 and
10. System size L̃ = 2.89109, N = 16 Fourier modes
truncation (from ref. [9]).

30.5 Visualization

The ultimate goal, however, must be a rational theory of
statistical hydrodynamics where [· · · ] properties of turbu-
lent flow can be mathematically deduced from the funda-
mental equations of hydromechanics.

—E. Hopf

The problem with high-dimensional representations, such as truncations of the
infinite tower of equations (30.14), is that the dynamics is difficult to visualize.
The best we can do without much programming is to examine the trajectory’s

example 30.4
projections onto any three axes ai, a j, ak, as in figure 30.11.

The question is: how is one to look at such a flow? It is not clear that restricting
the dynamics to a Poincaré section necessarily helps - after all, a section reduces
a (d + 1)-dimensional flow to a d-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of points in 15 dimensions?
The next example illustrates the utility of visualization of dynamics by means of
Poincaré sections.
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The example 30.4 illustrates why a Poincaré section gives a more informa-
tive snapshot of the flow than the full flow portrait. While no fine structure is
discernible in the full state space flow portraits of the Kuramoto-Sivashinsky dy-
namics, figure 30.11, the return map figure 30.7 reveals the fractal structure in the
asymptotic attractor.

In order to find a better representation of the dynamics, we now turn to its
topological invariants.

30.6 Why does a flame front flutter?

I understood every word.
—Fritz Haake

section 21.2

We start by considering the case where aq is an equilibrium point (2.9). Ex-
panding around the equilibrium point aq, and using the fact that the matrix A =

A(aq) in (4.2) is constant, we can apply the simple formula (5.1) also to the Jaco-
bian matrix of an equilibrium point of a PDE,

Jt(aq) = eAt A = A(aq) .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium. As the
system size L̃ is increased, the “flame front” becomes increasingly unstable and
turbulent, the dynamics goes through a rich sequence of bifurcations sketched in
figure 30.2 that which we shall not dwell on here.

According to (30.6) the |k| < L̃ long wavelength perturbations of the flat-front
equilibrium are linearly unstable, while all |k| > L̃ short wavelength perturbations
are strongly contractive. The high k eigenvalues, corresponding to rapid varia-
tions of the flame front, decay so fast that the corresponding eigen-directions are
physically irrelevant. To illustrate the rapid contraction in the non-leading eigen-
directions we plot in figure 30.8 the eigenvalues of the equilibrium in the unsta-
ble regime, for relatively small system size, and compare them with the Floquet
multipliers of the least unstable cycle for the same system size. The equilibrium
solution is very unstable, in 5 eigen-directions, the least unstable cycle only in
one. Note that for k > 7 the rate of contraction is so strong that higher eigen-
directions are numerically meaningless for either solution; even though the flow
is infinite-dimensional, the attracting set must be rather thin.

While in general for L̃ sufficiently large one expects many coexisting attractors
in the state space, in numerical studies most random initial conditions seem to
settle on the same chaotic attractor.

From (30.14) we see that the u(x, t) = 0 flat-front equilibrium has Fourier
modes as the linear stability eigenvectors. For |k| < L̃, the corresponding Fourier
modes are unstable. The most unstable mode has k = L̃/

√
2 and defines the scale
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Figure 30.8: Floquet exponents λk (5.4) versus k for
the least unstable spatio-temporally periodic orbit 1 of
the Kuramoto-Sivashinsky system, compared with the
stability exponents (5.2) of the u(x, t) = 0 flat-front
equilibrium, λk = k2 − k4. The eigenvalues λk for k ≥ 8
fall below the numerical accuracy of integration and
are not meaningful. The cycle 1 was computed using
methods of chapter 16. System size L̃ = 2.89109, N =

16 Fourier modes truncation (from ref. [9]).
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of basic building blocks of the spatiotemporal dynamics of the Kuramoto-Siva-
shinsky equation in large system size limit.

Consider now the case of initial ak sufficiently small that the bilinear amak−m

terms in (30.14) can be neglected. Then we have a set of decoupled linear equa-
tions for ak whose solutions are exponentials, at most a finite number for which
|k| ≤ L̃ is growing with time, and infinitely many with |k| > L̃ decaying in time.
The growth of the unstable long wavelengths (low |k|) excites the short wave-
lengths through the amak−m nonlinear term. The excitations thus transferred are
dissipated by the strongly damped short wavelengths, and a “chaotic equilibrium”
can emerge. The very short wavelengths |k| � 1/

√
ν remain small for all times,

but the intermediate wavelengths of order |k| ∼ 1/
√
ν play an important role in

maintaining the dynamical equilibrium. As the damping parameter decreases,
the solutions increasingly take on shock front character poorly represented by the
Fourier basis, and many higher harmonics may need to be kept in truncations of
(30.14).

Hence, while one may truncate the high modes in the expansion (30.14), care
has to be exercised to ensure that no modes essential to the dynamics are chopped
away.

In other words, even though our starting point (30.2) is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on a finite-dimensional at-
tracting manifold, and so we are back on the familiar territory of sect. 2.2: the
theory of a finite number of ODEs applies to this infinite-dimensional PDE as
well.

We can now start to understand the remark on page 44 that for infinite di-
mensional systems time reversibility is not an option: evolution forward in time
strongly damps the higher Fourier modes. There is no turning back: if we re-
verse the time, the infinity of high modes that contract strongly forward in time
now explodes, instantly rendering evolution backward in time meaningless. As so
much you are told about dynamics, this claim is also wrong, in a subtle way: if
the initial u(x, 0) is in the non–wandering set (2.3), the trajectory is well defined
both forward and backward in time. For practical purposes, this subtlety is not of
much use, as any time-reversed numerical trajectory in a finite-mode truncation
will explode very quickly, unless special precautions are taken.
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Figure 30.9: The return map of the Kuramoto-Siva-
shinsky system (30.14) figure 30.7, from the unstable
manifold of the 1 fixed point to the (neighborhood of)
the unstable manifold. Also indicated are the periodic
points 0 and 01. 0
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Figure 30.10: The return map sn+1 = f (sn) con-
structed from the images of periodic points. The di-
amonds were obtained by using 34 periodic points,
and the tiny dots were obtained by using 240 periodic
points. We have indicated the periodic points 0, 1 and
01. Note that the transverse fractal structure of the map
shows when the number of points is increased. System
size L̃ = 2.89109, N = 16 Fourier modes truncation
(from ref. [9]).
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When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure. The more unstable eigen-directions it has (for
example, the u = 0 solution), the more unlikely it is that an orbit will recur in its
neighborhood.

Unstable manifold of a “least unstable” equilibrium. Asymptotic dynamics
spends a large fraction of time in neighborhoods of a few equilibria with only a
few unstable eigen-directions.

30.7 Intrinsic parametrization

Both in the Rössler flow of example 3.2, and in the Kuramoto-Sivashinsky system
of example 30.4 we have learned that the attractor is very thin, but otherwise the
return maps that we found were disquieting – neither figure 3.4 nor figure 30.7
appeared to be one-to-one maps. This apparent loss of invertibility is an artifact of
projection of higher-dimensional return maps onto lower-dimensional subspaces.
As the choice of lower-dimensional subspace is arbitrary, the resulting snapshots
of return maps look rather arbitrary, too. Other projections might look even less
suggestive.

Such observations beg a question: Does there exist a ‘natural’, intrinsically
optimal coordinate system in which we should plot of a return map?
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As we shall now argue (see also sect. 16.1), the answer is yes: The intrinsic
coordinates are given by the stable/unstable manifolds, and a return map should
be plotted as a map from the unstable manifold back onto the immediate neigh-
borhood of the unstable manifold.

Examination of numerical plots such as figure 30.11 suggests that a more
thoughtful approach would be to find a coordinate transformation y = h(x) to
a ‘center manifold’, such that in the new, curvilinear coordinates large-scale dy-
namics takes place in (y1, y2) coordinates, with exponentially small dynamics in
y3, y4 · · · . But - thinking is extra price - we do not know how to actually accom-
plish this, and we do not believe it can be accomplished globally.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we sketched the attractors by running a long chaotic trajectory, and noted
that the attractors are very thin, but otherwise the return maps that we plotted were
disquieting – neither figure 3.4 nor figure 30.7 appeared to be 1-to-1 maps. In this
section we show how to use such information to approximately locate cycles.

Résumé

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solution of Yang-Mills equa-
tions of motion, but shouldn’t a strongly nonlinear field theory dynamics be dom-
inated by turbulent solutions? How are we to think about systems where every
spatiotemporal solution is unstable?

Here we think of turbulence in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve, every so often we
catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For a finite spatial resolution and a finite time, a pattern belonging to a finite al-
phabet of admissible patterns is observed; the long term dynamics can be thought
of as a walk through the space of such patterns. Recasting this image into mathe-
matics is what ChaosBook is about.

The problem one faces with high-dimensional flows is that their topology is
hard to visualize, and that even with a decent starting guess for a point on a peri-
odic orbit, methods like the Newton-Raphson method are likely to fail. Methods

chapter 34
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that start with initial guesses for a number of points along the cycle, such as the
multipoint shooting method of sect. 16.2, are more robust. The relaxation (or
variational) methods take this strategy to its logical extreme, and start by a guess
of not a few points along a periodic orbit, but a guess of the entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter 34.

At present the theory is in practice applicable only to systems with a low
intrinsic dimension – the minimum number of coordinates necessary to capture
its essential dynamics. If the system is very turbulent (a description of its long
time dynamics requires a space of very high intrinsic dimension) we are out of
luck.

Commentary

In saying this, I imply no criticism of the Court, which
in those cases was faced with the task of trying to define
what may be indefinable. [...] I shall not today attempt
further to define the kinds of material I understand to be
embraced within that shorthand description; and perhaps I
could never succeed in intelligibly doing so. But I know it
when I see it, [...]

—Justice Potter Stewart, Jacobellis v. Ohio (1964)

Remark 30.1. A brief history of dynamicist’s vision of turbulence. Dynamical ap-
proaches to study of turbulence are - surprisingly - still a cutting-edge research area. We
have not even agreed yet on when one is allowed to use word ‘turbulence’. For many prac-
titioners, a wide range of scales (i.e., high Reynolds numbers) is the essential ingredient
of turbulence, with intermittency, fractality, ..., possibly exhibited by a particular turbulent
flow, but not essential. When and how ChaosBook uses words ‘chaos’, ‘spatiotemporal
chaos’ and ‘turbulence’ is explained in sect. 1.3.2 What is ‘turbulence’?. You might find

appendix A1.5also Appendix A1.5 amusing.

The precise definition of the Reynolds number depends on the system, the boundary
conditions and the forcing terms. Once that is fixed, one can compute bifurcations and
determine the onset of chaos to a desired precision. Some would claim we may only call
it ‘turbulence’ when there is an inertial range, but there is mounting evidence, by masters
of fully developed turbulent flows and large eddy simulations [8, 38], that transitional
turbulence contains the key ingredients of fully developed turbulence, and that changes
in the flow as the Reynolds number increases are continuous [3, 4, 8, 38]. So, when
does the multi-scale character start? Even at the onset of chaos one observes a broad
spatial Fourier spectrum, indicating many active scales. Then, as he Reynolds number is
increased, progressively smaller scales become active, whereas the large remain. If, in
your opinion, what we do is not ‘turbulence’, please pinpoint at what Reynolds number
turbulence, as defined by you, begins and what happens exactly then.

The work described in this chapter was initiated by Vakhtang Putkaradze’s 1996
ChaosBook term project (see ChaosBook.org/extras), and continued by Budanur, Chris-
tiansen, Cvitanović, Davidchack, Ding, Gudorf, Lan, and Siminos [7, 9–12, 14–16, 19,
22, 23, 29–31]. You too can initiate a whole full-fledged research program by a carrying
out a good ChaosBook course project.
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For a clear and simple overview of how to compute periodic orbits in higher dimen-
sions (for example, for Navier-Stokes), see Willis [37] lectures on Equilibria, periodic
orbits and computing them, arXiv:1908.06730, a very nice, student friendly introduction.

P. Cvitanović and M. Avila

Remark 30.2. Visualizations of steady turbulence. Visualizations of a high-dimensional
state space trajectory are of necessity projections onto two or three dimensions. An ap-
pealing choice is to monitor the flow in terms of physical, symmetry-invariant observ-
ables, measured in units of their laminar values. In fluid dynamics Reynolds-Orr energy
equation [34, 35] or power-dissipation balance equation for instantaneous kinetic energy
E(t) ,Ė = I − D, balances the instantaneous power I(t) pumped in the system against
the energy dissipation rate D(t) due to viscous effects. Greene and Kim [21] derive the
corresponding equation for Kuramoto-Sivashinsky system (further physical observables
beyond (E(t),D(t), I(t)) are difficult to construct). While such visualizations are common
in literature [25], projections onto a plane spanned by energy production and dissipation
are misleading. As on average Ė ≈ 0, in such projections the ∞–dimensional state space
ergodic trajectory tends to stay close to the I = D line, and much important information
is lost: if two fluid states are clearly separated in such plot, they are also separated in
the high-dimensional state space, but converse is not true; physically distinct states might
have comparable dissipation rate, and such plots often obscure some of the most rele-
vant features of the flow; more detailed examinations of the flow necessitate state space
projections taylored to specific flow structures [11, 19].

The theorem on finite dimensionality of inertial manifolds of state space contracting
PDE flows is proven in ref. [17]. Physical interpretation of the average “energy” density
of the flame front of sect. 30.3, in analogy with the mean kinetic energy density for the
Navier-Stokes, comes from Greene and Kim [21], a recommended reading. For equilibria
the L-independent bound on E is given by Michelson [33]. The best current bound [5, 18]
on the long-time limit of E as a function of the system size L scales as E ∝ L3/2, but deep
in their hearts physicists know that E is extensive [15, 39], i.e., it scales linearly with the
system size E ∝ L.

Remark 30.3. Kuramoto-Sivashinsky. The Kuramoto-Sivashinsky equation was intro-
duced in refs. [28, 36]. While it is usually written down in the “derivative” form (30.4),
some authors prefer the “integral” form

ht + hxx + hxxxx +
1
2

h2
x = 0 , where u = hx , (30.37)

see, for example, Michelson [33]. Holmes, Lumley and Berkooz [24] offer a delightful
discussion of why this system deserves study as a staging ground for studying turbu-
lence in full-fledged Navier-Stokes equation. How good a description of a flame front
this equation is not a concern here; suffice it to say that such model amplitude equations
for interfacial instabilities arise in a variety of contexts - see e.g. ref. [26] and Encyclo-
pediaOfMath.org - and this one is perhaps the simplest physically interesting spatially
extended nonlinear system.

Our criterion for reliable truncations of the infinite ladder of ordinary differential
equations (30.14) is as follows. Adding an extra dimension to a truncation of the system
(30.14) introduces a small perturbation, and this can (and often will) throw the system into
a totally different asymptotic state. A chaotic attractor for N = 15 can become a period
three window for N = 16, and so on. If we compute, for example, the Lyapunov exponent
λ(ν,N) for the strange attractor of the system (30.14), there is no reason to expect λ(ν,N)
to smoothly converge to the limit value λ(ν,∞) as N → ∞. The situation is different in the
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periodic windows, where the system is structurally stable, and it makes sense to compute
Lyapunov exponents, escape rates, etc. for the repeller, i.e., the closure of the set of
all unstable periodic orbits. Here the power of cycle expansions comes in: to compute
quantities on the repeller by direct averaging methods is generally more difficult, because
the asymptotic motion collapses to the stable cycle.
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[9] F. Christiansen, P. Cvitanović, and V. Putkaradze, “Hopf’s last hope: Spa-
tiotemporal chaos in terms of unstable recurrent patterns”, Nonlinearity
10, 55–70 (1997).
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[11] P. Cvitanović, R. L. Davidchack, and E. Siminos, “On the state space ge-
ometry of the Kuramoto-Sivashinsky flow in a periodic domain”, SIAM J.
Appl. Dyn. Syst. 9, 1–33 (2010).
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30.8 Examples

Example 30.1. Kuramoto-Sivashinsky antisymmetric subspace: The Fourier co-
efficients ak are in general complex numbers. We can isolate the antisymmetric sub-
space u(x, t) = −u(−x, t) by considering the case of ak pure imaginary, ak → iak, where
ak = −a−k are real, with the evolution equations

ȧk = q2
k

(
1 − q2

k

)
ak +

qk

2

+∞∑
m=−∞

amak−m . (30.38)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces to
the invariance under discrete translation by half a spatial period L. In the Fourier repre-
sentation (30.38) this corresponds to invariance under

a2m → a2m , a2m+1 → −a2m+1 . (30.39)

click to return: p. 586

Example 30.2. Cyclic subgroups of SO(2): Any rational shift τ1/mu(x) = u(x + L/m)
generates a discrete cyclic subgroup Cm of O(2), also a symmetry of KS system. Reflec-
tion together with Cm generates another symmetry of KS system, the dihedral subgroup
Dm of O(2). The only non-zero Fourier components of a solution invariant under Cm are
a jm , 0, j = 1, 2, · · · , while for a solution invariant under Dm we also have the condition
Re a j = 0 for all j. Dm reduces the dimensionality of state space and aids computation of
equilibria and periodic orbits within it. For example, the 1/2-cell translations

τ1/2 u(x) = u(x + L/2) (30.40)

and reflections generate O(2) subgroup D2 = {1, σ, τ, τσ}, which reduces the state space
into four irreducible subspaces (for brevity, here τ = τ1/2):

τ σ τσ

P(1) =
1
4

(1 + τ + σ + τσ) S S S

P(2) =
1
4

(1 + τ − σ − τσ) S A A

P(3) =
1
4

(1 − τ + σ − τσ) A S A (30.41)

P(4) =
1
4

(1 − τ − σ + τσ) A A S .

P( j) is the projection operator onto u( j) irreducible subspace, and the last 3 columns refer
to the symmetry (or antisymmetry) of u( j) functions under reflection and 1/2-cell shift. By
the same argument that identified (30.12) as the invariant subspace of KS, here the KS
flow stays within the US = U(1) + U(2) irreducible D1 subspace of u profiles symmetric
under 1/2-cell shifts.

While in general the bilinear term (u2)x mixes the irreducible subspaces of Dn, for D2
there are four subspaces invariant under the flow [26]:

{0}: the u(x) = 0 equilibrium
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U+ = U(1) + U(3): the reflection D1 irreducible space of antisymmetric u(x)

US = U(1) + U(2): the shift D1 irreducible space of L/2 shift symmetric u(x)

U(1): the D2 irreducible space of u(x) invariant under x 7→ L/2 − x, u 7→ −u.

With the continuous translational symmetry eliminated within each subspace, there are
no relative equilibria and relative periodic orbits, and one can focus on the equilibria and
periodic orbits only, as was done for U+ in refs. [9, 29, 31]. In the Fourier representation,
the u ∈ U+ antisymmetry amounts to having purely imaginary coefficients, since a−k =

a∗k = −ak. The 1/2 cell-size shift τ1/2 generated 2-element discrete subgroup {1, τ1/2} is
of particular interest because in the U+ subspace the translational invariance of the full
system reduces to invariance under discrete translation (30.40) by half a spatial period
L/2.

Each of the above dynamically invariant subspaces is unstable under small perturba-
tions, and generic solutions of Kuramoto-Sivashinsky equation belong to the full space.
Nevertheless, since all equilibria of the KS flow studied in this paper lie in theU+ subspace
(see sect. 30.6), U+ plays important role for the global geometry of the flow. However,
linear stability of these equilibria has eigenvectors both in and outside of U+, and needs
to be computed in the full state space.

click to return: p. 586

Example 30.3. Kuramoto-Sivashinsky simulation, antisymmetric subspace: To get
started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (30.2), or,
equivalently, ν = 1, L = 36.33052 in the non-dimensionalized units (30.38). Consider the
antisymmetric subspace (30.38), so the non-dimensionalized system size is L̃ = L/2π =

2.89109. Truncate (30.38) to 0 ≤ k ≤ 16, and integrate an arbitrary initial condition. Let
the transient behavior settle down.

Why this L̃? For this system size L̃ the dynamics appears to be chaotic, as far as can
be determined numerically. Why N = 16? In practice one repeats the same calculation at
different truncation cutoffs N, and makes sure that the inclusion of additional modes has
no effect within the desired accuracy. For this system size N = 16 suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the corre-
sponding spatiotemporal pattern u(x, t) over the configuration space using (2.17), as in
figure 30.1 and figure 30.5. Such patterns give us a qualitative picture of the flow, but
no detailed dynamical information; for that, tracking the evolution in a high-dimensional
state space, such as the space of Fourier modes, is much more informative.

click to return: p. 593

Example 30.4. Kuramoto-Sivashinsky return maps: Consider the Kuramoto-
Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily) the
hyperplane a1 = 0 as the Poincaré section, and integrate (30.14) with a1 = 0, and an
arbitrary initial point (a2, . . . , aN). When the flow crosses the a1 = 0 hyperplane in the
same direction as initially, the initial point is mapped into (a′2, . . . a

′
N) = P(a2, . . . , aN).

This defines P, the return map (3.1) of the (N − 1)-dimensional a1 = 0 hyperplane into
itself.

Figure 30.7 is a typical result. We have picked - again arbitrarily - a subspace such as
a6(n + 1) vs. a6(n) in order to visualize the dynamics. While the topology of the attractor
is still obscure, one thing is clear: even though the flow state space is infinite dimensional,
the attractor is finite and thin, barely thicker than a line.

click to return: p. 586
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Example 30.5. Stability matrix: The Kuramoto-Sivashinsky flat flame front u(x, t) =

0 is an equilibrium point of (30.2). The stability matrix (4.3) follows from (30.14)

Ak j(a) =
∂vk(a)
∂a j

= (q2
k − q4

k)δk j + qk(ak− j − ak+ j) . (30.42)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, the eigenvec-
tors are Fourier modes, and – as in (4.32) – the Jacobian matrix is diagonal, Jt

k j(0) =

δk je(q2
k−q4

k )t .

Example 30.6. Equilibria of equilibria.

The equilibrium condition ut = 0 for the Kuramoto-Sivashinsky equation PDE (30.2)
is the ODE

1
2

(u2)x + uxx + uxxxx = 0 .

More generally, the relative equilibrium condition (30.18) is the ODE

1
2 (u2)x + uxx + uxxxx = c ux (30.43)

which can be analyzed as a dynamical system in its own right. Integrating once we get

1
2 u2 − cu + ux + uxxx = E . (30.44)

This equation can be interpreted as a 3-dimensional dynamical system with spatial coor-
dinate x playing the role of ‘time,’ and the integration constant E can be interpreted as
‘energy,’ see sect. 30.3.

The value of E strongly influences the nature of the solutions. For E > 0 there is
rich E-dependent dynamics, with fractal sets of bounded solutions investigated in depth
by Michelson [33]. For L̃ < 1 the only equilibrium of the system is the globally attracting
constant solution u(x, t) = 0, denoted EQ0 from now on. With increasing system size L
the system undergoes a series of bifurcations. The resulting equilibria and relative equi-
libria are described in the classical papers of Kevrekidis, Nicolaenko and Scovel [26],
and Greene and Kim [21], among others. The relevant bifurcations up to the system size
investigated here are summarized in figure 30.2: at L̃ = 22/2π = 3.5014 · · · , the equi-
libria are the constant solution EQ0, the equilibrium EQ1 called GLMRT by Greene and
Kim [21, 32], the 2- and 3-cell states EQ2 and EQ3, and the pairs of relative equilibria
TW±1, TW±2. All equilibria are in the antisymmetric subspace U+, while EQ2 is also
invariant under D2 and EQ3 under D3.

Written as a 3-dimensional dynamical system (30.44) (considering only the equilib-
rium, c = 0 case for now) with spatial coordinate x playing the role of “time,” this is a
volume preserving flow

ux = v , vx = w , wx = u2 − v − E , (30.45)

with the “time” reversal symmetry,

x→ −x, u→ −u, v→ v, w→ −w .

From (30.45) we see that

(u + w)x = u2 − E .

If E < 0, u + w increases without bound with x → ∞, and every solution escapes to
infinity. If E = 0, the origin (0, 0, 0) is the only bounded solution.
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For E > 0 there is much E-dependent interesting dynamics, with complicated frac-
tal sets of bounded solutions. The sets of the solutions of the equilibrium condition
(30.45) are themselves in turn organized by the equilibria of the equilibrium condition,
and the connections between them. For E > 0 the equilibrium points of (30.45) are
c+ = (

√
E, 0, 0) and c− = (−

√
E, 0, 0). Linearization of the flow around c+ yields Floquet

exponents [2λ ,−λ ± iθ] with

λ =
1
√

3
sinh φ , θ = cosh φ ,

and φ fixed by sinh 3φ = 3
√

3E. Hence c+ has a 1-dimensional unstable manifold and
a 2-dimensional stable manifold along which solutions spiral in. By the x → −x “time
reversal” symmetry, the invariant manifolds of c− have reversed stability properties.

The non–wandering set of this dynamical system is quite pretty, and surprisingly
hard to analyze. However, we do not need to explore the fractal set of the Kuramo-
to-Sivashinsky equilibria for infinite size system here; for a fixed system size L with
periodic boundary condition, the only surviving equilibria are those with periodicity L.
They satisfy the equilibrium condition for (30.14)

q2
k

(
1 − q2

k

)
ak − i

qk

2

+∞∑
m=−∞

amak−m = 0 . (30.46)

Periods of spatially periodic equilibria are multiples of L. Every time L̃ crosses an integer
value L̃ = n, new n-cell states are generated through pitchfork bifurcations. In the full
state space they form an invariant circle due to the translational invariance of (30.4). In the
antisymmetric subspace (see example 30.1), they corresponds to two points, half-period
translates of each other of the form

u(x, t) = −2
∑

k

akn sin(knx) ,

where akn ∈ R.

For any fixed spatial period L the number of spatially periodic solutions is finite up
to a spatial translation. This observation can be heuristically motivated as follows. Finite
dimensionality of the inertial manifold bounds the size of Fourier components of all so-
lutions. On a finite-dimensional compact manifold, an analytic function can only have a
finite number of zeros. So, the equilibria, i.e., the zeros of a smooth velocity field on the
inertial manifold, are finitely many.

For a sufficiently small L the number of equilibria is small, mostly concentrated on
the low wave number end of the Fourier spectrum. These solutions may be obtained by
solving the truncated versions of (30.46).

(Y. Lan and P. Cvitanović)
click to return: p. 588

Example 30.7. Some Kuramoto-Sivashinsky equilibria:

See figure 30.12.

See figure 30.13.
click to return: p. 588
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Figure 30.11: Projections of a typical
16-dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a) {a1, a2, a3},
(b) {a1, a2, a4}. System size L̃ = 2.89109, N = 16
Fourier modes truncation (from ref. [9]).
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Exercises

30.1. Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: if u(x, t) is a solution, then
v + u(x + 2vt, t), with v an arbitrary constant ve-
locity, i s also a solution.

(b) Verify that mean

〈u〉 =
1
L

∫
L
dx u

is conserved by the flow.
(c) Argue that the choice (30.3) of the vanishing mean

velocity, 〈u〉 = 0 leads to no loss of generality in
calculations that follow.

(d) [thinking is extra cost] Inspection of
various “turbulent" solutions of Kuramoto-Siva-
shinsky equation reveals subregions of “traveling
waves" with locally nonzero 〈u〉. Is there a way
to use Galilean invariance locally, even though we
eliminated it by the 〈u〉 = 0 condition?

30.2. Infinite dimensional dynamical systems are not
smooth. Many of the operations we consider natural
for finite dimensional systems do not have smooth be-
havior in infinite dimensional vector spaces. Consider,
as an example, a concentration φ diffusing on R accord-
ing to the diffusion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an infi-
nite dimensional dynamical system. That is, write
it as ẋ = F(x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =

∫
R

dx φ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R
|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is
not the cause of our difficulties.

(e) Do you see a way of generalizing these results?

30.3. Kuramoto-Sivashinsky energy transfer rates.

(a) Derive (30.30) from (30.29). Now that you have
your integration by parts skills hone, also show
that

〈uxxxu2〉 = 〈ux
3〉

〈uxxxxxu2〉 = −5〈uxuxx
2〉 . (30.47)

(b) Derive the power - dissipation rate relation
(30.33).

(c) Prove that for an equilibrium E is constant.
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Figure 30.12: Long-time evolution of a typical
“sustained turbulence” trajectory for L = 38.5
in: (a) The space-time representation of u(x, t)
in the [x, t] plane, x ∈ [0, L/2] horizontally, t ∈
[0, 7600] in vertical segments. The color repre-
sents the magnitude of u(x, t). (b) [a1, a2] Fourier
modes projection, (c) [a3, a4] projection. The typ-
ical time scale is set by the shortest periods of
the periodic orbits embedded in the central, “wob-
bly” and side, “traveling wave” patterns of order
T = 20 ∼ 25, so this is a very long simulation,
over 300 “turnover” times. The goal of this paper
is to describe the characteristic unstable “wobble”
and “traveling wave” patterns in terms of a hier-
archy of invariant periodic orbit solutions (from
ref. [31]).
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Figure 30.13: The non–wandering set displayed
in figure 30.12 (b) and (c) appears to consist of
three patches: the left part (S L), the center part
(S C) and the right part (S R), each centered around
an unstable equilibrium: (a) central C1 equilib-
rium, (b) right side R1 equilibrium on the interval
[0, L], and its reflection L1 (from ref. [31]).
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(d) Derive formulas for Ṗ, Ḋ, Ë and d
dt 〈ux

3〉 in terms
of space averages 〈· · ·〉. You will note that higher
derivatives of u appear. The guiding principle is to
use integration by parts until the number of such
derivatives is minimized.

(e) Invent another such formula.

30.4. Navier-Stokes energy transfer rates. The Mil-
lenium Prize tempts you to ponder the Navier-Stokes
equations

∂tvi + v j∂ jvi = −∂i p + ν∂ j jvi (30.48)

in the utterly unphysical setting, a periodic 3D box of
size [L × L × L]. The space average of a function
a = a(x, t) = a(v(x, t)) on the interval L is given by

〈a〉 =
1
L3

∮
dx3a(x, t) . (30.49)

(a) Prove conservation of momentum

d
dt
〈vi〉 = 0 (30.50)

(b) Prove power-dissipation rate relation

1
2

d
dt
〈v2〉 = −ν〈|ω2|〉 (30.51)

(c) Prove conservation of helicity.

1
2

d
dt
〈v · ω〉 = −ν〈ω · ∇ × ω〉 (30.52)

(d) While you are on the roll: derive another such
formula. Pipe or plane Couette flow power-
dissipation relation Ė = P − D would be partic-
ularly useful.
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30.5. Local Galilean invariance of Kuramoto-Sivashinsky?

Inspection of various “turbulent" solutions of
Kuramoto-Sivashinsky equation reveals subregions of

“traveling waves" with locally nonzero 〈u〉. Is there a
way to use Galilean invariance locally, even though we
eliminated it by the 〈u〉 = 0 condition?
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Chapter 31

Koopman modes

(S. Bagheri and P. Cvitanović)

So far we have mostly focused on computation of eigenvalues of evolution
operators. Here we shall discuss the role of their eigenfunctions. This is
easiest to explain for systems with stable equilibria and periodic orbits, for

which the dynamics is described by Koopman operators. We shall show how here
how the nonlinear dynamics of transient states on the way to a stable solution is
captured by the eigenfunctions of the linear Koopman operator.

31.1 Koopmania

The Koopman operator action on an observable a(x) (a bounded and smooth state
space function that associates a scalar to state x) is to replace it by its downstream
value time t later, a(x)→ a(x(t)), evaluated at the trajectory point x(t):

[
K ta

]
(x) = a( f t(x)) =

∫
M

dyK t(x, y) a(y)

K t(x, y) = δ
(
y − f t(x)

)
. (31.1)

Given an initial density of representative points ρ(x), the state space average of
a(x) evolves as

〈a〉ρ(t) =
1
|ρM|

∫
M

dx a( f t(x)) ρ(x) =
1
|ρM|

∫
M

dx
[
K ta

]
(x) ρ(x)

=
1
|ρM|

∫
M

dx dy a(y) δ
(
y − f t(x)

)
ρ(x) .

612
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The ‘propagator’ δ
(
y − f t(x)

)
can be interpreted as belonging to the Perron-Frobenius

operator (19.10), so the two operators are adjoint to each other,∫
M

dx
[
K ta

]
(x) ρ(x) =

∫
M

dy a(y)
[
Ltρ

]
(y) . (31.2)

The Koopman and Perron-Frobenius operators describe the dynamics in comple-
mentary ways. Koopman advances the trajectory by time t, Perron-Frobenius de-
pends on the trajectory point time t in the past. Perron-Frobenius propagates a
conserved quantity (a density of initial conditions) forward in time. The growth
(or decay) of the density depends on the compression (or expansion) of a volume
occupied by a set of trajectories. The dynamics of an observable depends on the
other hand on one single trajectory.

exercise 31.1

The family of Koopman operators
{
K t}

t∈R+
forms a semigroup parameterized

by time, K tK t′ = K t+t′ , K0 = 1 with the generator of infinitesimal time transla-
tions defined by

A† = lim
t→0+

1
t

(
K t − 1

)
.

If the flow is finite-dimensional and invertible, A† is a generator of a group. The
explicit form ofA† follows from expanding dynamical evolution up to first order,
as in (2.6):

A†a(x) = lim
t→0+

1
t

(
a( f t(x)) − a(x)

)
= vi(x)∂ia(x) . (31.3)

This is by definition the time derivative, so the time-evolution equation for a(x)
is (

d
dt
−A†

)
a(x) = 0 . (31.4)

We formally write the solution to (31.4) as
appendix A31.2

a(x(t)) = etA†a(x0) = K ta(x0) ,

so the finite time Koopman operator (31.1) can be recovered by exponentiating
the time-evolution generator A†. The generator A† looks very much like the

exercise A31.1
generator of translations. For example, for a constant velocity field dynamical
evolution is nothing but a translation by time× velocity:

exercise 19.10

etv ∂
∂x a(x) = a(x + tv) . (31.5)

As we will not need to implement a computational formula for general etA in what
follows, we relegate making sense of such operators to appendix A31.2.

appendix A31.2

The Koopman / Perron-Frobenius operators are non-normal, non-self-adjoint
operators, so their left and right eigenvectors differ. The right eigenvectors of
a Perron-Frobenius operator are the left eigenvectors of the Koopman, and vice
versa. That is,

Aφα(x) = sαφα(x) , A†ψα(x) = s∗αψα(x) , α = 0, 1, 2, · · ·
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The left and right eigenfunctions satisfy the bi-orhogonality condition with respect
to L2 norm,∫

M

dx φ∗αψβ = δαβ . (31.6)

While one might think of a Koopman operator as an ‘inverse’ of the Perron-
Frobenius operator, the notion of adjoint is the right one, especially in settings
where flow is not time-reversible, as is the case for dissipative PDEs (infinite di-
mensional flows contracting forward in time) and for stochastic flows.

Given the left and right eigenfunctions, we can express the evolution of an
observable as

a(x(t)) =
[
K ta

]
(x0) =

∑
α

cαesαtψα(x0) (31.7)

where

cα =

∫
M

dx a(x) φ∗α(x) .

This expansion suggests an alternative description of nonlinear dynamics, which is
the (linear) evolution of observables in an infinite-dimensional space. In principle,
this allows the study of full nonlinear dynamics using linear operator-theoretical
tools.

example 31.1

p. 618

example 31.2

p. 618

31.2 Koopman eigenvalues for a limit cycle

The [(d−1)×(d−1)]-dimensional monodromy matrix Mi j = ∂ jPi(x̂a) of dimension
governs the dynamics of the small perturbation δx̂ within a Poincaré section.

Even though the monodromy matrix M(x̂) depends upon x̂ (the ‘starting’ point
of the periodic orbit), its eigenvalues do not, so we may write for its eigenvectors
e( j) (sometimes referred to as ‘covariant Lyapunov vectors,’ or, for periodic orbits,
as ‘Floquet vectors’)

M(x) e( j)(x) = Λ j e( j)(x) , Λ j = eλ
( j)T . (31.8)

where Floquet exponents λ( j) = µ( j) ± iω( j) are independent of x. We order the
Floquet multipliers as

|Λ1| ≥ |Λ2| ≥ · · · ≥ |Λd−1| . (31.9)

The limit cycle is stable if |Λ1| < 1.
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The two most important characteristics of the limit cycle are thus the funda-
mental frequency and the leading Lyapunov exponent, defined by

ω =
2π
T
, µ =

1
T

ln |Λ1|, (31.10)

respectively.

Here we follow the derivations chapter 21, except that the analysis is restricted
to the simpler case of a stable limit cycle. The trace of the Koopman operator is,

trK t =

∫
M

K t(x, x)dx.

where K t is the kernel. Inspired by this definition, we define the trace of Koop-
man operator as

trK t =

∫
M

δ(x − f t(x))dx. (31.11)

From (31.11), one observes that the traceK t receives a contribution whenever the
trajectory returns to the starting point after r repeats of the limit cycle period T .

To proceed, we decompose the propagator ft into two parts, the (d−1)-dimen-
sional return map P and a 1-dimensional return-time function τ. The return map
captures only the transverse part of the periodic dynamics, since the flow compo-
nent tangent to the trajectory, which is not in the span of the Poincaré section, has
not been taken into account. Assuming the longitudinal state component has a
certain mean velocity v as it traverses the limit cycle, one may transform this com-
ponent to a time coordinate system using the relation vdt. Thus the full dynamics
is described by the return map P and by the first return function τ(x̂) that provides
the (non-constant) time interval between successive points x̂ on Poincaré section,
e.g. tk+1 = tk + τ(x̂k). Applying τ recursively, we may write ((k+1)th time as a
function first point and initial time,

tk+1 = t1 +

k−1∑
j=0

τ(P j x̂1). (31.12)

Now, factor the kernel of K t (31.11) into two parts

trK t =

∫
P(§̂)=0

dx̂
∫ τ(x̂)

0
dt δ

(
x̂ − Pk x̂

)
δ

t − k−1∑
j=0

τ(P j x̂)

 , (31.13)

where Pk and τ are defined above and in (31.12), respectively. We treat the two
Dirac delta functions separately, starting with Pk. First recall that the Dirac delta
function applied to a scalar-valued function g(x), is∫

δ(g(x))dx =

∫
δ(x)|g′(0)−1|dx =

∑
j

1
|g′(x j)|

,
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where x j are the roots of g(x). This property may be generalized to d−1 dimensions
and applied to the Dirac-delta in (31.13),∫

P(u)=0
dx̂ δ(x̂ − Pk(x̂)) =

1
|det (I −Mr)|

, (31.14)

where I denotes the identity matrix. The second part of the trace can be written as

∫ τ(x̂)

0
δ(t −

k−1∑
j=0

τ(P j x̂))dt = T
∞∑

r=1

δ(t − rT). (31.15)

Inserting the identities (31.14) and (31.15) in (31.13), we get the trace formula for
a single limit cycle of period T ,

trK t = T
∞∑

r=1

δ(t − rT)
|det (I −Mr)|

, (31.16)

which was first derived in ref. [1], here given in the special case of a single limit
cycle. The trace formula is a sum whose terms are nonzero only for integers of
the cycle period. The rth nonzero term describes how much after the rth return to
the Poincaré section a small neighborhood volume (i.e. a tube) of the stable limit
cycle has retracted. This relation thus connects the trace of K t to the dynamics in
the local stable manifold of the limit cycle.

The Koopman eigenvalues are the poles of the Laplace transform of trace of
K t ∫ ∞

0
e−sttrK tdt = tr

1
s −A

,

i.e., the poles of the resolvent of A. By inserting (31.16) in the left-hand side of
above equation one obtains,

tr
1

s −A
=

∂

∂s
ln(det (s −A)),

where det (s −A) is the spectral determinant,

det (s −A) = exp

− ∞∑
r=1

1
r

e−sTr

|det (I −Mr)|

 .
Now, since the determinant does not depend on the basis which M is described in,
we may write it in terms of the eigenvalues of M,

1
|det (I −Mr)|

=

d−1∏
k=1

1
1 − Λr

k
, (31.17)

where we have assumed that |Λk| < 1 for all k.

Denominators can be expanded in Taylor series such as

(1 − x)−1(1 − y)−1 = 1 + x + y + x2 + xy + y2 + . . . ,
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when |x| < 1, |y| < 1. Each term in the product (31.17) may thus be written
as an infinite sum. Define a multi-index as an array of d non-negative integers
jk = 0, 1, 2, . . . :

j = [ j1, j2, . . . , jd] ∈ Nd ,

Consider next the product of d − 1 Floquet multipliers

Λ = Λ1Λ2 · · ·Λd−1 = eT (µ(1)+µ(2)+···+µ(d−1)) ,

(the imaginary parts of complex pairs cancel in the exponent), and define

µ = [µ(1), µ(2), · · · , µ(d−1)] ∈ Rd .

Λ can now be raised to jth power as

Λ j = eTµ· j = Λ
j1
1 Λ

j2
2 · · ·Λ

jd−1
d−1 . (31.18)

Using multi-index notation (31.18) we may write (31.17) as

1
|det (I −Mr)|

=
∑

j
Λr j ,

and consequently the spectral determinant as

det (s −A) = exp

− ∞∑
r=1

1
r

(e−sT
∑

j
Λ j)r

 .
Applying the identity

∑
xr/r = − ln(1− x), we obtain the final form of the spectral

determinant for a stable limit cycle

det (s −A) =

∞∏
j

(
1 − e−sT Λ j

)
. (31.19)

The zeros of det (s − A) = 0 are given by the zeros of individual terms in the
product:

e−T (s−µ· j) = 1 .

Taking the logarithm of both sides, we obtain

s j,m = µ · j + 2πim/T = µ · j + imω (31.20)

with m = 0,±1,±2, . . . . For our particular choice of analytic observables the
spectrum of K t is reduced to its minimal components, namely any integer mul-
tiple of the stability eigenvalues. Thus, for any stable limit cycle, the Koopman
eigenvalues form a lattice on the lower half of the complex plane. The marginal
eigenvalues on the horizontal imaginary axis corresponding to j = 0 correspond
to the non-decaying time-averaged mean (m = 0) and periodic dynamics (m , 0)
on the limit cycle. The remaining eigenvalues j , 0 are decaying and describe
the transient behavior of flow in the local stable manifold of the limit cycle.

example 31.3

p. 619
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Commentary

Remark 31.1. Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [3, 5], see also ref. [4]. In-
spired by the contemporary advances in quantum mechanics, Koopman [3] observed in
1931 that K t is unitary on L2(µ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(
iĤt/~

)
– the kernel of Lt(y, x) intro-

duced in (19.13) (see also sect. 20.2) is the analogue of the Green function discussed here
in chapter 36. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [5]. We shall not use Hilbert spaces here and
the operators that we shall study will not be unitary. For a discussion of the relation be-
tween the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [4] and Gaspard [2].
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31.3 Examples

Example 31.1. Spectrum of a 1D linear system. Consider a 1D system with a single
equilibrium

ẋ = λx, (31.21)

If the observable a(x) is a smooth, real-analytical function, the Koopman operator spec-
trum can be identified from its Taylor expansion,

sk = kλ
φk = δ(k)(x)
ψk = xk

when λ < 0 (attractor) (31.22)

and 
sk = −(k + 1)λ
φk = xk

ψk = δ(k)(x)
when λ > 0 (repeller) (31.23)

for k = 0, 1, · · · . Here the superscript (k) refers to the kth derivative. We observe the
duality between the right/left eigenfunctions and the repelling/attracting points. When
λ < 0, any neighborhood of representative points shrinks to a point and asymptotically
the density becomes a singular function. On the other hand, any smooth observable has
the asymptotic limit a(0). Koopman operatorK t is thus the appropriate evolution operator
to represent the dynamics in stable manifolds, since the observable dynamics goes along
with the flow.

click to return: p. 613

Example 31.2. Spectrum of a 1D nonlinear system. As an example of how the effects
of nonlinearity are captured by expansion into eigenfunctions of the Koopman operator,
consider the stable nonlinear system:

ẋ = λx − x3, λ < 0 (31.24)

where the only equilibrium point is the attracting fixed point xq = 0. The difference
between (31.24) and the linear system in (31.21), is the presence of a cubic nonlinear
term. However, the nonlinear coordinate transformation

y = g(x) =
x

√
x2 − λ

(31.25)

transforms (31.24) into a linear system ẏ = λy, whose spectrum is already determined by
(31.22). The Koopman spectrum in terms of the coordinate x is thus

sk = kλ
φk(x) = δ(k)

(
x − g−1(y)

)
|y=0

ψk(x) =
(
x/
√

x2 − λ
)k

(31.26)

where k = 0, 1, · · · and the derivative of δ is with respect to y. Comparing to (31.22),
the Koopman eigenvalues are not modified by the cubic nonlinear term in (31.24), but the
term

√
x2 − λ appears in the Koopman eigenfunctions.

Consider the expansion (31.7) of a position x(t) at time t considered as an observable,
a(x(t)) = x(t),

x(t) =

(
−λ

x0
2 − λ

)1/2

x0 eλt +
1
√
−λ

(
x0

x0
2 − λ

)3/2

e3λt + · · · (31.27)
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Figure 31.1: (black line) The trajectory x(t) of (31.24)
plotted on logarithmic scale as a function of time, for
λ = −0.6. (red lines) Reconstructions of the trajec-
tory based on the expansion (31.27) – including up to
the φ1, φ3, φ5 or φ7 left eigenfunction of K t. (dashed
line) The trajectory of the linearized system, with x3

neglected in (31.24).
0 0.5 1 1.5 2

10
0

Figure 31.2: State trajectory starting close to xq = 0
and with µ = 1/10 for the system (31.28) in x, y-plane
(left) and the (x, z)-plane (right).
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In figure 31.1, the trajectory x(t) (black line) obtained by integrating (31.24) starts out
by a rapid decay to the stable manifold of the stable fixed point, followed by an expo-
nential decay along the manifold to xq = 0. In a purely linear analysis, the state evolves
as xlim(t) = x0eλt (dashed black line in the figure). A linear analysis provides the expo-
nential decay rate, but fails to describe the curved trajectory in its initial stages. In the
figure the first non-zero expansion terms and the superposition of gradually increasing
number of modes are shown with red lines. Whereas the Koopman eigenvalues provide
the asymptotic decay rate, the Koopman eigenfunctions provide the direction as well as
an amplitude. Including higher order terms in the expansion, eventually the full state tra-
jectory can be recovered by a number of Koopman eigenfunctions, and thus the transient
nonlinear dynamics preceding the infinitesimal linear region can be captured.

click to return: p. 613

Example 31.3. Spectrum of a stable limit cycle. Consider the three dimensional
system

ẋ = µx − y − xz
ẏ = µy − x − yz
ż = −z + x2 + y2 , .

(31.28)

for µ & 0. The system has an unstable fixed point

xq = (x, y, z) = 0,

and an attracting limit cycle

xa = (
√
µ cos t,

√
µ sin t, µ).

In figure 31.2, a typical trajectory starting near xq is shown. The trajectory grows expo-
nentially with the exponent λq > 0 and after a transient time, approaches the stable limit
cycle exponentially fast with the exponent λa < 0.

The set of discrete Koopman/Perron-Frobenius eigenvalues is simply the union of
the eigenvalues associated with the fixed point and the limit cycle. One may thus treat the
two critical elements separately using the formulas derived from the trace of the operators.
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Here we only consider the spectrum pertaining to stable limit cycle. By considering the
Poincaré section given by the plane y = 0 and its associated monodromy matrix, one
arrives at

Λ = −2µ, ω = 2π .

According to formula (31.20) the Koopman/Perron-Frobenius eigenvalues { j,m} = { j1, 0, . . . , 0,m}
corresponding to this leading Floquet exponent are,

s j,m = jΛ + imω = −2µ j + mi2π

for j = 0, 1, 2, . . . and m = 0,±1,±2, . . . . The expansion of the state observable into the
leading complex Koopman eigenfunctions ( j = 0, 1 and m = 0, 1) associated with (31.28)
is

x(t) = v0,0 + v0,1 eit + v1,0 e−2µt + c.c + . . .

with,

v0,0 = (0, 0, µ), (31.29)

v0,1 =

√
µ

2
(1, 0, 0) +

i
√
µ

2
(0, 1, 0), (31.30)

v1,0 =
c
√
µ

2
(0, 0,

r2 − µ

r2 ), (31.31)

where c is some constant and r2 = x2 + y2.

The first two modes resolve the attractor dynamics; v0,0 represents the average asymp-
totic value, and v0,1 the periodic asymptotic solution with unit frequency on the attractor.
These two Koopman modes correspond to the three first (real) empirical Karhunen-Loève
or proper orthogonal decomposition modes. A robust low-order representation of the flow
should in addition to the limit cycle also, at least in some sense, capture the dynamics of
the corresponding attracting inertial manifold, that connects the unstable fixed point with
the limit cycle. This is the role of the transient mode v1,0; the function (r2 − µ)/r2 is sin-
gular near the fixed point and zero at the limit cycle and points in the direction z, i.e. from
xq to xa.

click to return: p. 616

Exercises

31.1. Perron-Frobenius operator is the adjoint of the
Koopman operator. Check (31.2) - it might be
wrong as it stands. Pay attention to presence/absence
of a Jacobian.

31.2. Nonlinear system mapped into a linear one. (31.24)
and the linear system in (31.21), is the presence of a cu-
bic nonlinear term. Show the nonlinear coordinate trans-

formation (31.25)

y = g(x) =
x

√
x2 − λ

transforms (31.24) into a linear system ẏ = λy.

31.3. Stability of a limit cycle. Show that the
system (31.28) has an attracting limit cycle xa =

(
√
µ cos t,

√
µ sin t, µ).
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Chapter 32

Irrationally winding

I don’t care for islands, especially very small ones.
—D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at

the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context of dissipative dynamical systems one of the most common and ex-
perimentally well explored routes to chaos is the two-frequency mode–locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typically first one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstable and outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode–lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio of the two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode–locked states overlap,
chaos sets in. The likelihood that a mode–locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global" theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local" renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our
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Figure 32.1: Unperturbed circle map (k = 0 in (32.1))
with golden mean rotation number.
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intuition is much facilitated by approximating circle maps by number-theoretic
models. The models that arise in this way are by no means mathematically triv-
ial, they turn out to be related to number-theoretic abysses such as the Riemann
conjecture, already in the context of the “trivial" models.

32.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle maps x→ x′ = f (x), restricted to the one dimensional torus,
such as the sine map

xn+1 = f (xn) = xn + Ω −
k

2π
sin(2πxn) mod 1 . (32.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a con-
tinuous second derivative at the inflection point (where the second derivative van-
ishes). For the generic, physically relevant case (the only one considered here) the
inflection is cubic. Here k parametrizes the strength of the nonlinear interaction,
and Ω is the bare frequency.

The state space of this map, the unit interval, can be thought of as the elemen-
tary cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω −
k

2π
sin(2πx̂n) . (32.2)

where ˆ is used in the same sense as in chapter 24.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (32.3)

and can be shown to be independent of the initial value x̂0.

For k = 0, the map is a simple rotation (the shift map) see figure 32.1

xn+1 = xn + Ω mod 1 , (32.4)
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Figure 32.2: The critical circle map (k = 1 in (32.1)),
often referred to as the devil’s staircase [21]; here the
winding number W is a function of the parameter Ω.

and the rotation number is given by the parameter Ω.

W(k = 0,Ω) = Ω .

For given values of Ω and k the winding number can be either rational or irra-
tional. For invertible maps and rational winding numbers W = P/Q the asymptotic
iterates of the map converge to a unique attractor, a stable periodic orbit of period
Q

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q − 1 .

This is a consequence of the independence of x̂0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values of Ω values for which the iterates of the circle
map are attracted to the P/Q cycle. This interval is called the P/Q mode–locked

exercise 32.1
(or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ω
right
P/Q −Ω

le f t
P/Q . (32.5)

where Ω
right
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value of Ω for which W(k,Ω) =

P/Q. Parametrizing mode lockings by the exponent µ rather than the width ∆ will
be convenient for description of the distribution of the mode–locking widths, as
the exponents µ turn out to be of bounded variation. The stability of the P/Q cycle
is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “center" of the
stability interval) and 1 (the Ω

right
P/Q , Ω

le f t
P/Q endpoints of (32.5)). For the shift map

(32.4), the stability intervals are shrunk to points. As Ω is varied from 0 to 1, the
iterates of a circle map either mode–lock, with the winding number given by a
rational number P/Q ∈ (0, 1), or do not mode–lock, in which case the winding
number is irrational. A plot of the winding number W as a function of the shift
parameter Ω is a convenient visualization of the mode–locking structure of circle
maps. It yields a monotonic “devil’s staircase" of figure 32.2 whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection point xc

(see figure 32.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (32.1)) are called critical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameter k increases, the mode–locked
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Figure 32.3: Critical circle map (k = 1 in (32.1)) with
golden mean bare rotation number.
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intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstable P/Q cycle for any rational P/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free" shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a hi-
erarchical structure. From a physical point of view, the main problem is to identify
a (number-theoretically) consistent hierarchy susceptible of experimental verifi-
cation. We will now describe a few ways of organizing rationals along the unit
interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

32.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal length Q. This is the physical motivation for partitioning mode
lockings into sets of cycle length up to Q. In number theory such sets of rationals
are called Farey series. They are denoted by FQ and defined as follows. The
Farey series of order Q is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceed Q. Thus Pi/Qi

belongs to FQ if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =

{1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}
A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi are
consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.
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The number of terms in the Farey series FQ is given by

Φ(Q) =

Q∑
n=1

φ(Q) =
3Q2

π2 + O(Q ln Q). (32.6)

Here the Euler function φ(Q) is the number of integers not exceeding and rel-
atively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) =

4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction partitioning of
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode–lockings in a circle map,
then the first level is obtained by deleting ∆[1], ∆[2], · · · ,∆[a1], · · · mode–lockings;
their complement are the covering intervals `1, `2, . . . , `a1 , . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . . ] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined as the
monotonically increasing sequence of all rationals Pi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partition-
ing labeled by S∞ = {a1a2a3 · · · }, ak ∈ Z+, i.e., the set of winding numbers with
infinite continued fraction expansions. The continued fraction labeling is particu-
larly appealing in the present context because of the close connection of the Gauss
shift to the renormalization transformation R, discussed below. The Gauss map

T (x) =
1
x
−

[
1
x

]
x , 0

0 , x = 0 (32.7)

([· · · ] denotes the integer part) acts as a shift on the continued fraction represen-
tation of numbers on the unit interval

x = [a1, a2, a3, . . . ] → T (x) = [a2, a3, . . . ] . (32.8)

into the “mother” interval `a2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode–
lockings even at the first step of the partitioning. Thus numerical and experimental

irrational - 22sep2000 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 32. IRRATIONALLY WINDING 627

Figure 32.4: Farey tree: alternating binary or-
dered labeling of all Farey denominators on the nth
Farey tree level.
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use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure 32.2 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by
the Farey mediant (P + P′)/(Q + Q′) of the parent mode–lockings P/Q and P′/Q′.
This kind of cycle “gluing" is rather general and by no means restricted to circle
maps; it can be attained whenever it is possible to arrange that the Qth iterate
deviation caused by shifting a parameter from the correct value for the Q-cycle is
exactly compensated by the Q′th iterate deviation from closing the Q′-cycle; in
this way the two near cycles can be glued together into an exact cycle of length
Q+Q′. The Farey tree is obtained by starting with the ends of the unit interval
written as 0/1 and 1/1, and then recursively bisecting intervals by means of Farey
mediants.

We define the nth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k −
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{
[4], [2, 2], [1, 1, 2], [1, 3]

}
=

(1
4
,

1
5
,

3
5
,

3
4

)
. (32.9)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters” in Tn,
given by

[· · · , a]
[· · · , a − 1, 2] [· · · , a + 1]

Iteration of this rule places all rationals on a binary tree, labeling each by a unique
binary label, figure 32.4.
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The smallest and the largest denominator in Tn are respectively given by

[n − 2] =
1

n − 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (32.10)

where the Fibonacci numbers Fn are defined by Fn+1 = Fn+Fn−1; F0 = 0, F1 =

1, and ρ is the golden mean ratio

ρ =
1 +
√

5
2

= 1.61803 . . . (32.11)

Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree
level will cause strong nonhyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, we now briefly sum-
marize the results of the circle-map renormalization theory.

32.2 Local theory: “Golden mean" renormalization

The way to pinpoint a point on the border of order is to recursively ad-
just the parameters so that at the recurrence times t = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the preceding ni steps, but not so strong as to force the
trajectory into a stable attracting orbit. The renormalization operation R imple-
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space (by rescaling by a factor α), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factor δ),
and by replacing the initial map f by the nth iterate f n restricted to the magnified
neighborhood

fp(x)→ R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new func-
tion, framed in a smaller box, is a rescaling of the original function, i.e., the fix-
point function of the renormalization operator R. The best known is the period
doubling renormalization, with the recurrence times ni = 2i. The simplest circle
map example is the golden mean renormalization, with recurrence times ni = Fi

given by the Fibonacci numbers (32.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generaliza-
tion of the Gauss shift (32.38); it maps a circle map (represented as a pair of
functions (g, f ), of winding number [a, b, c, . . . ] into a rescaled map of winding
number [b, c, . . . ]:

Ra

(
g
f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (32.12)
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Acting on a map with winding number [a, a, a, . . . ], Ra returns a map with the
same winding number [a, a, . . . ], so the fixed point of Ra has a quadratic irrational
winding number W = [a, a, a, . . . ]. This fixed point has a single expanding eigen-
value δa. Similarly, the renormalization transformation Rap . . .Ra2Ra1 ≡ Ra1a2...ap

has a fixed point of winding number Wp = [a1, a2, . . . , anp , a1, a2, . . . ], with a
single expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by comparing suc-
cessive continued fraction approximants to W. Consider the Pr/Qr rational ap-
proximation to a quadratic irrational winding number Wp whose continued frac-
tion expansion consists of r repeats of a block p. Let Ωr be the parameter for which
the map (32.1) has a superstable cycle of rotation number Pr/Qr = [p, p, . . . , p].
The δp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ
−r
p . (32.13)

What this means is that the “devil’s staircase" of figure 32.2 is self-similar under
magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successive Pr/Qr mode–locked intervals
converge to universal limits. The simplest example of (32.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W = [1, 1, 1, ...] = (

√
5 − 1)/2.

When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle length Q and describing the range of possible asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks with
a power law

∆1/Q ∝ Q−3 (32.14)

For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth con-
tinued fraction approximant to the golden mean. The intuitive reason is that the
golden mean winding sits as far as possible from any short cycle mode–locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (32.15)

where P = Fn−1, Q = Fn and µ1 is related to the universal Shenker number δ1
(32.13) and the golden mean (32.11) by

µ1 =
ln |δ1|

2 ln ρ
= 1.08218 . . . (32.16)

The closeness of µ1 to 1 indicates that the golden mean approximant mode–
lockings barely feel the fact that the map is critical (in the k=0 limit this exponent
is µ = 1).
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To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218 · · · . (32.17)

32.3 Global theory: Thermodynamic averaging

Consider the following average over mode–locking intervals (32.5):

Ω(τ) =

∞∑
Q=1

∑
(P|Q)=1

∆−τP/Q. (32.18)

The sum is over all irreducible rationals P/Q, P < Q, and ∆P/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of length Q, with winding number P/Q.

The qualitative behavior of (32.18) is easy to pin down. For sufficiently neg-
ative τ, the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as for the
critical circle maps the mode–lockings fill the entire Ω range [48]. However, as τ
increases, the contributions of the narrow (large Q) mode–locked intervals ∆P/Q

get blown up to 1/∆τ
P/Q, and at some critical value of τ the sum diverges. This oc-

curs for τ < 0, as Ω(0) equals the number of all rationals and is clearly divergent.

The sum (32.18) is infinite, but in practice the experimental or numerical
mode–locked intervals are available only for small finite Q. Hence it is necessary
to split up the sum into subsets Sn = {i} of rational winding numbers Pi/Qi on
the “level" n, and present the set of mode–lockings hierarchically, with resolution
increasing with the level:

Z̄n(τ) =
∑
i∈Sn

∆−τi . (32.19)

The original sum (32.18) can now be recovered as the z = 1 value of a “gener-
ating" function Ω(z, τ) =

∑
n znZ̄n(τ). As z is anyway a formal parameter, and

n is a rather arbitrary “level" in some ad hoc partitioning of rational numbers,
we bravely introduce a still more general, P/Q weighted generating function for
(32.18):

Ω(q, τ) =

∞∑
Q=1

∑
(P|Q)=1

e−qνP/Q Q2τµP/Q . (32.20)

The sum (32.18) corresponds to q = 0. Exponents νP/Q will reflect the importance
we assign to the P/Q mode–locking, i.e., the measure used in the averaging over
all mode–lockings. Three choices of of the νP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =

∞∑
Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τµP/Q , (32.21)
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the continued fraction partitioning

Ω(q, τ) =

∞∑
n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1 ,...,an] , (32.22)

and the Farey tree partitioning

Ω(q, τ) =

∞∑
k=n

2−qn
2n∑
i=1

Q2τµi
i , Qi/Pi ∈ Tn . (32.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure" dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.

32.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution" is
obtained by deleting the parameter values corresponding to the mode–lockings in
the subset Sn; left behind is the set of complement covering intervals of widths

`i = Ωmin
Pr/Qr

−Ωmax
Pl/Ql

. (32.24)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode–locking
intervals ∆Pr/Qr (∆Pl/Ql) bounding `i and i is a symbolic dynamics label, for ex-
ample the entries of the continued fraction representation P/Q = [a1, a2, ..., an] of
one of the boundary mode–lockings, i = a1a2 · · · an. `i provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑
i∈Sn

`−τi (32.25)

The value of −τ for which the n → ∞ limit of the sum (32.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervals `i is optimal;
otherwise it provides an upper bound to DH . As by construction the `i intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, but a proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle maps DH = 0.870 . . .
is a (global) universal number.

exercise 32.2

32.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (32.25) from finite numbers of covering intervals
`i is a rather unilluminating chore. Fortunately, there exist considerably more
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elegant ways of extracting DH . We have noted that in the case of the “trivial"
mode–locking problem (32.4), the covering intervals are generated by iterations
of the Farey map (32.37) or the Gauss shift (32.38). The nth level sum (32.25) can
be approximated by Ln

τ, where

Lτ(y, x) = δ(x − f −1(y))| f ′(y)|τ

This amounts to approximating each cover width `i by |d f n/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1 − zLτ) = exp

−∑
p

∞∑
r=1

zrnp

r

|Λr
p|
τ

1 − 1/Λr
p


=

∏
p

∞∏
k=0

(
1 − znp |Λp|

τ/Λk
p

)
. (32.26)

The sum (32.25) is dominated by the leading eigenvalue of Lτ; the Hausdorff
dimension condition Zn(−DH) = O(1) means that τ = −DH should be such that
the leading eigenvalue is z = 1. The leading eigenvalue is determined by the
k = 0 part of (32.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the map f (x):

0 =
∏

p

(
1 − 1/|Λp|

DH
)
. (32.27)

For the Gauss shift (32.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, the xa fixed points (quadratic ir-
rationals with xa = [a, a, a . . . ] infinitely repeating continued fraction expansion)
are given by

xa =
−a +

√
a2 + 4

2
, Λa = −

a +
√

a2 + 4
2

2

(32.28)

and the xab = [a, b, a, b, a, b, . . . ] 2–cycles are given by

xab =
−ab +

√
(ab)2 + 4ab
2b

(32.29)

Λab = (xabxba)−2 =

(
ab + 2 +

√
ab(ab + 4)

2

)2

We happen to know beforehand that DH = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, the Gauss map is not a
repeller), so is the infinite product (32.27) merely a very convoluted way to com-
pute the number 1? Possibly so, but once the meaning of (32.27) has been grasped,
the corresponding formula for the critical circle maps follows immediately:

0 =
∏

p

(
1 − 1/|δp|

DH
)
. (32.30)
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Table 32.1: Shenker’s δp for a few periodic continued fractions, from ref. [9].

p δp
[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

The importance of this formula relies on the fact that it expresses DH in terms
of universal quantities, thus providing a nice connection from local universal ex-
ponents to global scaling quantities: actual computations using (32.30) are rather
involved, as they require a heavy computational effort to extract Shenker’s scaling
δp for periodic continued fractions, and moreover dealing with an infinite alpha-
bet requires control over tail summation if an accurate estimate is to be sought. In
table 32.1 we give a small selection of computed Shenker’s scalings.

32.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode–locking phenomenology. We will consider it by means of
the thermodynamic formalism of appendix A32, by looking at the free energy.

Consider the Farey tree partition sum (32.23): the narrowest mode–locked
interval (32.15) at the nth level of the Farey tree partition sum (32.23) is the golden
mean interval

∆Fn−1/Fn ∝ |δ1|
−n. (32.31)

It shrinks exponentially, and for τ positive and large it dominates q(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|

ln 2
= 1.502642 . . . (32.32)

However, for τ large and negative, q(τ) is dominated by the interval (32.14) which
shrinks only harmonically, and q(τ) approaches 0 as

q(τ)
τ

=
3 ln n
n ln 2

→ 0. (32.33)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n → ∞ limit, the
q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but is a non-trivial
function of τ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
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picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial" Farey level thermodynamics is given by the
“Farey model,” in which the intervals `P/Q are replaced by Q−2:

Zn(τ) =

2n∑
i=1

Q2τ
i . (32.34)

Here Qi is the denominator of the ith Farey rational Pi/Qi. For example (see
figure 32.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (32.38) of the Gauss shift on rationals, the nth Farey
level sum Zn(−1) can be written as the integral

Zn(−1) =

∫
dx δ( f n(x)) =

∑
1/| f ′a1...ak

(0)| ,

and in general

Zn(τ) =

∫
dxLn

τ(0, x) ,

with the sum restricted to the Farey level a1 + · · · + ak = n + 2. It is easily checked
that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages of x = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (32.26). The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluate q(τ) exactly for τ = k/2,
k a nonnegative integer. First, one observes that Zn(0) = 2n. It is also easy to check
that Zn(1/2) =

∑
i Qi = 2 · 3n. More surprisingly, Zn(3/2) =

∑
i Q3 = 54 · 7n−1.

A few of these “sum rules” are listed in the table 32.2, they are consequence of
the fact that the denominators on a given level are Farey sums of denominators on
preceding levels.

exercise 32.3

A bound on DH can be obtained by approximating (32.34) by

Zn(τ) = n2τ + 2nρ2nτ. (32.35)

In this approximation we have replaced all `P/Q, except the widest interval `1/n,
by the narrowest interval `Fn−1/Fn (see (32.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at the τ value for which
the two terms in (32.35) contribute equally:

Dn = D̂ + O
(
ln n
n

)
, D̂ =

ln 2
2 ln ρ

= .72 . . . (32.36)

For negative τ the sum (32.35) is the lower bound on the sum (32.25) , so D̂ is
a lower bound on DH .
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 32.2: Partition function sum rules for the Farey model.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systems there are orbits that
stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic tangles. Thus the considerations of chapter 29
are important also in the analysis of renormalization at the onset of chaos.

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 32.1. The physics of circle maps. Mode–locking phenomenology is re-
viewed in ref. [18], a more theoretically oriented discussion is contained in ref. [21].
While representative of dissipative systems we may also consider circle maps as a crude
approximation to Hamiltonian local dynamics: a typical island of stability in a Hamil-
tonian 2-dimensional map is an infinite sequence of concentric KAM tori and chaotic
regions. In the crudest approximation, the radius can here be treated as an external pa-
rameter Ω, and the angular motion can be modeled by a map periodic in the angular
variable [45, 46]. By losing all of the ‘island-within-island’ structure of real systems, cir-
cle map models skirt the problems of determining the symbolic dynamics for a realistic
Hamiltonian system, but they do retain some of the essential features of such systems,
such as the golden mean renormalization [19, 46] and nonhyperbolicity in form of se-
quences of cycles accumulating toward the borders of stability. In particular, in such
systems there are orbits that stay “glued" arbitrarily close to stable regions for arbitrarily
long times. As this is a generic phenomenon in physically interesting dynamical sys-
tems, such as the Hamiltonian systems with coexisting elliptic islands of stability and
hyperbolic homoclinic tanglees, development of good computational techniques is here
of utmost practical importance.
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Remark 32.2. Critical mode–locking set The fact that mode–lockings completely fill
the unit interval at the critical point has been proposed in refs. [21, 30]. The proof that the
set of irrational windings is of zero Lebesgue measure in given in ref. [48].

Remark 32.3. Counting noise for Farey series. The number of rationals in the Farey
series of order Q is φ(Q), which is a highly irregular function of Q: incrementing Q by 1
increases Φ(Q) by anything from 2 to Q terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations to Q → ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields the best
numerical value of the Hausdorff dimension (32.25) of any methods used so far; for ex-
ample the computation in ref. [3] for critical sine map (32.1), based on 240 ≤ Q ≤ 250
Farey series partitions, yields DH = .87012 ± .00001. The quoted error refers to the vari-
ation of DH over this range of Q; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a large factor.

Remark 32.4. Farey tree presentation function. The Farey tree rationals can be
generated by backward iterates of 1/2 by the Farey presentation function [15]:

f0(x) = x/(1 − x) 0 ≤ x < 1/2
f1(x) = (1 − x)/x 1/2 < x ≤ 1 . (32.37)

The Gauss shift (32.7) corresponds to replacing the binary Farey presentation function
branch f0 in (32.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a − 1

< x ≤
1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (32.38)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the Gauss shift, fa1a2···ak (x) =

0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by (32.37) and by its
non-trivial circle-map generalizations will turn out to be a renormalization group flow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as “flipping heads and
tails" relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [11].

An alternative labeling of Farey denominators has been introduced by Knauf [29]
in context of number-theoretical modeling of ferromagnetic spin chains: it allows for a
number of elegant manipulations in thermodynamic averages connected to the Farey tree
hierarchy.

Remark 32.5. Circle map renormalization The idea underlying golden mean renor-
malization goes back to Shenker [45]. A renormalization group procedure was formu-
lated in refs. [16, 40, 44], where moreover the uniqueness of the relevant eigenvalue is
claimed. This statement has been confirmed by a computer–assisted proof [37], and in the
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following we will always assume it. There are a number of experimental evidences for
local universality, see refs. [20, 47].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [11, 22–24]) is derived by methods akin to those used in describing
intermittency [42]: 1/Q cycles accumulate toward the edge of 0/1 mode–locked inter-
val, and as the successive mode–locked intervals 1/Q, 1/(Q − 1) lie on a parabola, their
differences are of order Q−3.

Remark 32.6. Farey series and the Riemann hypothesis The Farey series thermo-
dynamics is of a number theoretical interest, because the Farey series provide uniform
coverings of the unit interval with rationals, and because they are closely related to the
deepest problems in number theory, such as the Riemann hypothesis [13, 49] . The dis-
tribution of the Farey series rationals across the unit interval is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has motivated a compilation of an
entire handbook of Farey series [38]. A quantitative measure of the non-uniformity of the
distribution of Farey rationals is given by displacements of Farey rationals for Pi/Qi ∈ FQ

from uniform spacing:

δi =
i

Φ(Q)
−

Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complex s plane, and would seem to have nothing to do with
physicists’ real mode–locking widths that we are interested in here. However, there is
a real–line version of the Riemann hypothesis that lies very close to the mode–locking
problem. According to the theorem of Franel and Landau [13, 17, 49], the Riemann
hypothesis is equivalent to the statement that∑

Qi≤Q

|δi| = o(Q
1
2 +ε)

for all ε as Q → ∞. The mode–lockings ∆P/Q contain the necessary information for
constructing the partition of the unit interval into the `i covers, and therefore implicitly
contain the δi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjecture about the thermodynam-
ics of irrational windings is equivalent to (or harder than) the Riemann hypothesis, but the
danger lurks.

Remark 32.7. Farey tree partitioning. The Farey tree partitioning was introduced
in refs. [10, 11, 51] and its thermodynamics is discussed in detail in refs. [3, 15]. The
Farey tree hierarchy of rationals is rather new, and, as far as we are aware, not previously
studied by number theorists. It is appealing both from the experimental and from the
golden-mean renormalization point of view, but it has a serious drawback of lumping
together mode–locking intervals of wildly different sizes on the same level of the Farey
tree.

Remark 32.8. Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [21]. The question was reexamined in ref. [3], where
it was pointed out how a high-precision numerical estimate is in practice very hard to
obtain. It is not at all clear whether this is the optimal global quantity to test but at least
the Hausdorff dimension has the virtue of being independent of how one partitions mode–
lockings and should thus be the same for the variety of thermodynamic averages in the
literature.
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The formula (32.30), linking local to global behavior, was proposed in ref. [9].

The derivation of (32.30) relies only on the following aspects of the “hyperbolicity
conjecture" of refs. [11, 14, 27, 31, 43]:

1. limits for Shenker δ’s exist and are universal. This should follow from the renor-
malization theory developed in refs. [16, 37, 40, 44], though a general proof is still
lacking.

2. δp grow exponentially with np, the length of the continued fraction block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n grows as a power
of n. According to (32.14), limn→∞ δp ∝ n3. In the calculation of ref. [9] the
explicit values of the asymptotic exponents and prefactors were not used, only the
assumption that the growth of δp with n is not slower than a power of n.

Remark 32.9. Farey model. The Farey model (32.33) has been proposed in ref. [3];
though it might seem to have been pulled out of a hat, the Farey model is as sensible
description of the distribution of rationals as the periodic orbit expansion (32.26).

Remark 32.10. Symbolic dynamics for Hamiltonian rotational orbits. The rotational
codes of ref. [12] are closely related to those for maps with a natural angle variable, for
example for circle maps [50, 52] and cat maps [41]. Ref. [12] also offers a systematic rule
for obtaining the symbolic codes of “islands around islands” rotational orbits [35]. These
correspond, for example, to orbits that rotate around orbits that rotate around the elliptic
fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [1, 2]; however in these cases the entire set of orbits in an island was assigned
the same sequence and the motivation was to study the transport implications for chaotic
orbits outside the islands [35, 36].

Remark 32.11. Three-frequency mode locking. P. Cvitanović (notes available
upon request) has extended the two-frequency mode–locking golden-mean renormaliza-
tion to the three-frequency mode–locking ‘spiral mean’ renormalization theory, where
the golden and metal means (solutions of quadratic equations) are generalized to Pisot--
Vijayaraghauan (PV) numbers (solutions of cubic or higher order equations). Kim and
Ostlund discuss this problem in refs. [25, 26, 28]. See also refs. [4–6, 33].
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[3] R. Artuso, P. Cvitanović, and B. G. Kenny, “Phase transitions on strange
irrational sets”, Phys. Rev. A 39, 268–281 (1989).

[4] C. Baesens, J. Guckenheimer, S. Kim, and R. MacKay, “Three coupled os-
cillators: mode-locking, global bifurcations and toroidal chaos”, Physica
D 49, 387–475 (1991).

irrational - 22sep2000 ChaosBook.org edition16.4.8, May 25 2020

http://dx.doi.org/10.1088/0951-7715/13/3/306
http://dx.doi.org/10.1088/0951-7715/13/3/306
http://dx.doi.org/10.1088/0951-7715/13/3/306
http://dx.doi.org/10.1143/PTP.71.1419
http://dx.doi.org/10.1143/PTP.71.1419
http://dx.doi.org/10.1143/PTP.71.1419
http://dx.doi.org/10.1103/PhysRevA.39.268
http://dx.doi.org/10.1103/PhysRevA.39.268
http://dx.doi.org/10.1103/PhysRevA.39.268
http://dx.doi.org/10.1016/0167-2789(91)90155-3
http://dx.doi.org/10.1016/0167-2789(91)90155-3
http://dx.doi.org/10.1016/0167-2789(91)90155-3
http://dx.doi.org/10.1016/0167-2789(91)90155-3


CHAPTER 32. IRRATIONALLY WINDING 639

[5] P. R. Baldwin, “A multidimensional continued fraction and some of its
statistical properties”, J. Stat. Phys. 66, 1463–1505 (1992).

[6] S.-g. Chen and Y.-q. Wang, “Cubic irrational number and critical scaling
law for quasiperiodic motion”, Phys. Lett. A 153, 113–116 (1991).

[7] P. Contucci and A. Knauf, “The phase transition of the number-theoretical
spin chain”, Forum Mathematicum 9, 547–568 (1997).

[8] A. Csordás and P. Szépfalusy, “Dynamical multifractal properties of a map
related to a chaotic cosmological model”, Phys. Rev. A 40, 2221–2224
(1989).
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Exercises

32.1. Mode-locked intervals. Check that when k , 0 the
interval ∆P/Q have a non-zero width (look for instance
at simple fractions, and consider k small). Show that for
small k the width of ∆0/1 is an increasing function of k.

32.2. Bounds on Hausdorff dimension. By making use of
the bounds (32.17) show that the Hausdorff dimension
for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240 . . .

32.3. Farey model sum rules. Verify the sum rules reported
in table 32.2. An elegant way to get a number of sum
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf [7].

32.4. Metric entropy of the Gauss shift. Check that the
Lyapunov exponent of the Gauss map (32.7) is given by
π2/6 ln 2. This result has been claimed to be relevant in
the discussion of “mixmaster" cosmologies, see ref. [8].

32.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2) + (1 − z) log(1 − z) − (1 − z)

and

F(z, s) ∼ ζ(s) + Γ(1 − s)(1 − z)s−1 − S (s)(1 − z)

for s ∈ (1, 2) (S (s) being expressed by a converging
sum). You may use either more detailed estimate for
ζ(s, a) (via Euler summation formula) or keep on sub-
tracting leading contributions.

32.6. jn and αcr. Look at the integration region and how it
scales by plotting it for increasing values of n.

32.7. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s = 2, 4, 6 using different acceleration algorithms: check
your results with refs. [32, 39].

32.8. Farey tree and continued fractions I. Consider the
Farey tree presentation function f : [0, 1] 7→ [0, 1], such
that if I = [0, 1/2) and J = [1/2, 1], f |I = x/(1 − x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss map g(x) = 1/x − [1/x].

32.9. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approxima-
tion to the Farey tree presentation function (hint: sub-
stitute first the righmost, hyperbolic branch with a lin-
ear one): consider then the spectral determinant of the
induced map ĝ, and calculate the first two eigenvalues
besides the probability conservation one. Compare the
results with the rigorous bound deduced in ref. [34].
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Part IV

The rest is noise

Qunadry: all these cycles, but how many do I need? Any physical system suffers
background noise, any numerical prediction suffers computational roundoff noise,
and any set of equations models nature up to a given accuracy, since degrees of

freedom are always neglected. If the noise is weak, the short-time dynamics is not altered
significantly: short periodic orbits of the deterministic flow still partition coarsely the
state space.

1. What is “noise”? (chapter 33)

2. Variational principles of classical mechanics, and path integrals of quantum me-
chanics, reimagined (chapter 34)
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Chapter 33

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

This chapter (which reader can safely skip on the first reading) is about noise,
how it affects classical dynamics, and the ways it mimics quantum dynam-
ics.

Why - in a monograph on deterministic and quantum chaos - start discussing
noise? First, in physical settings any dynamics takes place against a noisy back-
ground, and whatever prediction we might have, we have to check its robustness to
noise. Second, as we show in this chapter, to the leading order in noise strength,
the semiclassical Hamilton-Jacobi formalism applies to weakly stochastic flows
in toto. As classical noisy dynamics is more intuitive than quantum dynamics,

section 38.1
understanding effects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectic structure emerges here not
as a deep principle of mechanics, but an artifact of the leading approximation to
quantum/noisy dynamics. Third, the variational principle derived here turns out
to be a powerful tool for determining periodic orbits, see chapter 34. And, last but
not least, upon some reflection, the whole enterprize of replacing deterministic
trajectories by deterministic evolution operators, chapters 19 to 23, seems fatally
flowed; if we have given up infinite precision in specifying initial conditions, why
do we alow ourselves the infinite precision in the specification of evolution laws,
i.e., define the evolution operator by means of the Dirac delta function δ(y− f t(x))?
It will be comforting to learn that the deterministic evolution operators survive un-
scathed, as the leading approximation to the noisy ones in the limit of weak noise.

Another key result derived here is the evolution law (33.45) for the covariance
matrix Qa of a linearly evolved Gaussian density,

Qa+1 = MaQaMa
> + ∆a .

To keep things simple we shall describe covariance evolution in the discrete time
dynamics context, but the results apply both to the continuous and discrete time
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flows. The most important lesson, however, is that physicist’s Brownian diffusion
intuition -that the effect of the noise is to spread out the trajectory as

√
t- is wrong:

In nonlinear dynamics the noise is always local, determined by balancing local
nonlinear dynamics against the memory of the noise past.

section 33.5

We start by deriving the continuity equation for purely deterministic, noiseless
flow, and then incorporate noise in stages: diffusion equation, Langevin equation,
Fokker-Planck equation, stochastic path integrals, Hamilton-Jacobi formulation.

33.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)

The large body of accrued wisdom on the subject of flows called fluid dynamics
is about physical flows of media with continuous densities. On the other hand, the
flows in state spaces of dynamical systems frequently require more abstract tools.
To sharpen our intuition about those, it is helpful to outline the more tangible fluid
dynamical vision.

Consider first the simplest property of a fluid flow called material invariant.
A material invariant I(x) is a property attached to each point x that is preserved
by the flow, I(x) = I( f t(x)); for example, at point x(t) = f t(x)) a green particle
(more formally: a passive scalar) is embedded into the fluid. As I(x) is invariant,
its total time derivative vanishes, İ(x) = 0. Written in terms of partial derivatives
this is the conservation equation for the material invariant

∂tI + v · ∂I = 0 . (33.1)

Let the density of representative points be ρ(x, t). The manner in which the flow
redistributes I(x) is governed by a partial differential equation whose form is rel-
atively simple because the representative points are neither created nor destroyed.
This conservation property is expressed in the integral statement

∂t

∫
V

dx ρI = −

∫
∂V

dσ n̂iviρI ,

where V is an arbitrary volume in the state spaceM, ∂V is its surface, n̂ is its out-
ward normal, and repeated indices are summed over throughout. The divergence
theorem turns the surface integral into a volume integral,∫

V

[
∂t(ρI) + ∂i(viρI)

]
dx = 0 ,

where ∂i is the partial derivative operator with respect to xi. Since the integration
is over an arbitrary volume, we conclude that

∂t(ρI) + ∂i(ρIvi) = 0 . (33.2)

The choice I ≡ 1 yields the continuity equation for the density:

∂tρ + ∂i(ρvi) = 0 . (33.3)
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Here we have used the language of fluid mechanics to ease the visualization, but,
as we have seen in our previous derivation of the continuity equation (19.22), any
deterministic state space flow satisfies the continuity equation in any dimension.

Why -even though the dynamics is nonlinear- is this equation linear? As each
deterministic orbit is distinct and intersects no other orbit, no ‘particles’ are cre-
ated or destroyed, they are non-interacting, hence description in terms of linear
evolution operators possible.

33.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly green molecules, embedded
in a denser gas of light molecules. Assume that the density of tracer molecules
ρ̄ compared to the background gas density ρ is low, so we can neglect green-
green collisions. Each green molecule, jostled by frequent collisions with the
background gas, executes its own Brownian motion. The molecules are neither
created nor destroyed, so their number within an arbitrary volume V changes with
time only by the current density j̄i flow through its surface ∂V (with n̂ its outward
normal):

∂t

∫
V

dx ρ̄ = −

∫
∂V

dσ n̂i j̄i . (33.4)

The divergence theorem turns this into the conservation law for tracer density:

∂tρ̄ + ∂i j̄i = 0 . (33.5)

The tracer density ρ̄ is defined as the average density of a ‘material particle,’ av-
eraged over a subvolume large enough to contain many green (and still many
more background) molecules, but small compared to the macroscopic observa-
tional scales. What is j̄? If the density is constant, on the average as many
molecules leave the material particle volume as they enter it, so a reasonable phe-
nomenological assumption is that the average current density (not the individual
particle current density ρvi in (33.3)) is driven by the density gradient

j̄i = −D
∂ρ̄

∂xi
. (33.6)

This is the Fick law, with the diffusion constant D a phenomenological parameter.
Substituting this current into (33.5) yields the diffusion or heat equation,

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t) (33.7)

(from here on we drop bar’s over ρ̄, j̄.) For sake of streamlining the argument
we have assumed in (33.6) that diffusion in d dimensions is time-invariant, ho-
mogenous and isotropic, ∆(x, t) = 2 D 1. More generally, diffusion is described
by a state space- (Toto, remember? we’re not necessarily in 3 spatial dimen-
sions anymore) and time-dependent symmetric diffusion tensor ∆i j = ∆ ji, with
ji = −1

2∆i j∂ j ρ , leading to the anisotropic diffusion equation

∂tρ(x, t) =
1
2
∂i

(
∆i j(x, t) ∂ j ρ(x, t)

)
. (33.8)
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In practice, the diffusion tensor is almost always anisotropic. For example, physi-
cist’s Brownian diffusion is a flow in the 6-dimensional {configuration, velocity}
phase space, with white noise probability distribution exp(−v2/2kBT ), modeling
random force kicks applied only to the 3 velocity variables v. In this case one
thinks of diffusion coefficient D = kBT/2 as temperature.

33.2.1 Heat kernel

The heat equation we can solve analytically. Fourier transforming (33.7),

∂

∂t
ρ̃(k, t) = −D k2ρ̃(k, t) , ρ(x, t) =

∫
dk
2π
ρ̃(k, t) eikx , (33.9)

substituting ˙̃ρ, integrating over time,

ρ(x, t) =

∫
dk
2π

ρ̃(k, 0) eikx−D k2t ,

and Fourier transforming back we obtain an exact solution of the heat equation in
terms of an initial Dirac delta density distribution, ρ(x, 0) = δ(x − x0),

ρ(x, t) =
1

(4πDt)d/2 e−
(x−x0)2

4Dt . (33.10)

A field theorist will see this as reminiscent of the quantum free particle propaga-
tion (see sect. 38.2.2). The solution of the general, anisotropic case (33.8) (here
exact for all times) is

LFP(x, t; x0, 0) =
1

√
det (2πt ∆)

exp
[
−

1
2 t

(x>
1
∆

x)
]
. (33.11)

The average distance covered in time t obeys the diffusion formula

〈(x − x0)2〉t =

∫
dx ρ(x, t) (x − x0)2 = 2dDt . (33.12)

The Einstein Brownian diffusion formula describes the 3-dimensional Brownian
motion of heavy molecules jostled by thermal motions of the light molecules of
the fluid. Here the diffusion is something much more general: it takes place in
the dynamical state space of dimension d, and is described by diffusion tensor
D→ ∆i j(x, t).

33.2.2 Random walks

More insight into the evolution of the density of tracer molecules is obtained con-
sidering a d-dimensional random walk of an individual tracer molecule kicked by
a stochastic term,

dx
dt

= ξ̂(t) . (33.13)
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A way to make sense of ξ̂(t) is to first construct the probability distribution for
additive noise ξ at short but finite time steps δτ, with tn+1 = tn + δτ, and the
particle xn = x(tn) at time tn executing a random walk, xn+1 = xn + ξ(tn) , where x
is a d-dimensional state vector, and xn, j is its jth component at time n. The natural
choice is that probability that the trajectory reaches xn+1 is given by a normalized
Gaussian

LFP(xn+1, tn+1; xn, tn) =
1

√
det (2πδτ∆)

exp
[
−

1
2 δτ

(ξn
> 1

∆
ξn)

]
, (33.14)

ξn = xn+1 − xn , characterized by zero mean and the diffusion tensor (covariance
matrix),

〈ξ j(tn)〉 = 0 , 〈ξi(tm) ξ j
>(tn)〉 = δτ∆i j δnm , (33.15)

where 〈· · ·〉 stands for ensemble average over many realizations of the noise, and
the superfix > indicates a transpose. As the time discretization δτ is arbitrary,
the diffusing cloud of noisy trajectories should be described by a distribution that
keeps its form as δτ→ 0. Indeed, the semigroup property of a Gaussian kernel,

LFP(x, t; x′′, t′′) =

∫
dx′LFP(x, t; x′, t′)LFP(x′, t′; x′′, t′′) , (33.16)

ensures that the distribution keeps its form under successive diffusive steps.
LFP(x, t; x0, 0) describes the diffusion at any time, including the integer time in-
crements {tn} = {δτ, 2δτ, · · · , nδτ, · · · }, and thus provides a bridge between the
continuous and discrete time formulations of noisy evolution.

example 33.1

p. 661

33.3 Noisy trajectories

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman

(P. Cvitanović and D. Lippolis)

So far we have considered tracer molecule dynamics which is purely Brownian,
with no deterministic ‘drift’. Consider next a d-dimensional deterministic flow
ẋ = v(x) perturbed by a stochastic term ξ̂,

dx
dt

= v(x) + ξ̂(t) , (33.17)

where the deterministic velocity field v(x) is called ‘drift’ in the stochastic litera-
ture (or ‘advection’ in fluid dynamics), and ξ̂(t) is additive noise, uncorrelated in
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time. We shall refer to equations of this type as Langevin equations. The more
general case of a tensor ∆(x) which is a state space position dependent but time
independent can be treated along the same lines. In this case the stochastic flow
(33.17) is written as

dx = v(x) dt + σ(x) dξ̂(t) , 〈ξn ξ
>
m〉 = 1 δnm , ∆ = σσ> . (33.18)

σ(x) is called the ‘diffusion matrix’, and the noise is referred to as ‘multiplicative’.
Explicit time dependence in ∆(x, t) would take us into world of non-autonomous,
externally driven flows, beyond the comfort zone of ChaosBook.org.

As in (33.13), a way to make sense of (33.17) is to first construct the proba-
bility distribution for additive noise ξ at a short but finite time δτ. In time δτ the
deterministic trajectory advances by v(xn) δτ. As δτ is arbitrary, it is desirable that
the diffusing cloud of noisy trajectories is given by a distribution that keeps its
form as δτ → 0. This holds if the noise is Brownian, i.e., the probability that the
trajectory reaches xn+1 is given by a normalized Gaussian (33.14),

LFP(xn+1, δτ; xn, 0) =
1
N

exp
[
−

1
2 δτ

(ξn
> 1

∆n
ξn)

]
. (33.19)

Here ξn = δxn − v(xn) δτ , the deviation of the noisy trajectory from the deter-
ministic one, can be viewed either in terms of velocities {ẋ, v(x)} (continuous time
formulation), or finite time maps {xn → xn+1, xn → f δτ(xn)} (discrete time formu-
lation),

δxn = xn+1 − xn ' ẋn δτ , f δτ(xn) − xn ' v(xn) δτ , (33.20)

where

{x0, x1, · · · , xn, · · · , xk} = {x(0), x(δτ), · · · , x(nδτ), · · · , x(t)} (33.21)

is a sequence of k + 1 points xn = x(tn) along the noisy trajectory, separated by
time increments δτ = t/k.

The phenomenological Fick law current (33.6) is now a sum of two compo-
nents, the material particle deterministic drift v(x) and the weak noise term

ji = viρ − D
∂ρ

∂xi
,

[
= viρ −

1
2

∆i j(x) ∂ j ρ(x, t)
]
, (33.22)

with the full, anisotropic and space-dependent version indicated in [· · · ], and sum
over repeated index j implied. Substituting this j into (33.5) yields

∂tρ + ∂i(ρvi) = D ∂2ρ . (33.23)

In the general, anisotropic case (33.8) this equation is known as the Fokker-Planck
or forward Kolmogorov equation

∂tρ + ∂i(ρvi) =
1
2
∂i

(
∆i j(x) ∂ j ρ(x, t)

)
. (33.24)

The left hand side, dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (33.3) recovered in the weak noise limit D → 0. The right hand side
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describes the diffusive transport in or out of the material particle volume. If the
density is lower than in the immediate neighborhood, the local curvature is posi-
tive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature diffusion
lowers the local density, thus smoothing the variability of ρ. Where is the density
going globally?

If the system is bound, the probability density vanishes sufficiently fast outside
the central region, ρ(x, t)→ 0 as |x| → ∞, and the total probability is conserved∫

dx ρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
natural measure, the invariant density

ρ0(x) = lim
t→∞

ρ(x, t) , (33.25)

an eigenfunction ρ(x, t) = est ρ0(x) of the time-independent Fokker-Planck equa-
tion (

∂ivi − D ∂2 + sα
)
ρα = 0 , (33.26)

with vanishing eigenvalue s0 = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunction of the Fokker-Planck
equation tends to natural measure (19.14) of the corresponding deterministic flow,
the leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting, s0 < 0, and the density
of the system tends to zero. In this case the leading eigenvalue s0 of the time-
independent Fokker-Planck equation (33.26) can be interpreted by saying that a
finite density can be maintained by pumping back probability into the system at
a constant rate γ = −s0. The value of γ for which any initial probability density
converges to a finite stationary equilibrium density is called the escape rate. In
the noiseless limit this coincides with the deterministic escape rate (20.25).

The distribution (33.14) describes how an initial density of particles concen-
trated in a Dirac delta function at xn spreads in time δτ. In the Fokker-Planck
description individual noisy Langevin trajectories (33.17) are replaced by the evo-
lution of the density of noisy trajectories. The finite time Fokker-Planck evolution
ρ(x, t) =

[
Lt

FP ◦ ρ
]

(x, 0) of an initial density ρ(x0, 0) is obtained by a sequence of
consecutive short-time steps (33.14)

LFP(xk, t; x0, 0) =

∫
[dx] exp

− 1
4Dδτ

k−1∑
n=0

[xn+1 − f δτ(xn)]2

 , (33.27)

where t = k δτ, and the Gaussian normalization factor in (33.14) is absorbed into
intermediate integrations by defining

[dx] =

k−1∏
n=0

dxd
n

Nn

Nn = [det (2πδτ∆(xn))]1/2 (anisotropic diffusion tensor ∆)

= (4Dδτ)d/2 (isotropic diffusion, ∆(x) = 2 D 1) . (33.28)
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As D → 0, the distribution tends to the noiseless, deterministic Dirac delta func-
tion Perron-Frobenius operator (19.10). The stochastic flow (33.17) can now be
understood as the continuous time, δτ → 0 limit, with the velocity noise ξ̂(t) a
Gaussian random variable of zero mean and covariance matrix

〈ξ̂ j(t)〉 = 0 , 〈ξ̂i(t) ξ̂ j(t′)〉 = ∆i j δ(t − t′) . (33.29)

It is worth noting that the continuous time flow noise ξ̂(t) in (33.17) and (33.29) is
dimensionally a velocity [x]/[t], asLFP(xn+1, δτ; xn, 0) is a probability density for
velocity ξ, while the discrete time noise ξn in (33.14), (33.15) is dimensionally a
length [x], as ρ(x, t) is a probability density for position x. The important point is
that the same diffusion tensor ∆(x) describes the diffusion both in the configuration
space and the velocity space.

The continuous time limit of (33.27), δτ = t/k → 0, defines formally the
Fokker-Planck evolution operator

LFP(x, t; x0, 0) =

∫
[dx] exp

{
−

1
4D

∫ t

0
[ẋ(τ) − v(x(τ))]2dτ

}
(33.30)

as a stochastic path (or Wiener) integral for a noisy flow, and the associated con-
tinuous time Fokker-Planck (or forward Kolmogorov) equation (33.24) describes
the time evolution of a density of noisy trajectories. We have introduced noise
phenomenologically, and used the weak noise assumption in retaining only the
first derivative of ρ in formulating the Fick law (33.6) and including noise addi-
tively in (33.22). The δτ → 0 limit and the proper definition of ẋ(τ) are delicate
issues of no import for the applications studied here. A full theory of stochastic
ODEs is much subtler, but this will do for our purposes.

The exponent

−
1

4D δτ

[
xn+1 − f δτ(xn)

]2
' −

δτ

4D
[ẋ(τ) − v(x(τ))]2 (33.31)

can be interpreted as a cost function which penalizes deviation of the noisy trajec-
tory δx from its deterministic prediction v δτ, or, in the continuous time limit, the
deviation of the noisy trajectory tangent ẋ from the deterministic velocity field v.
Its minimization is one of the most important tools of the optimal control theory,
with velocity ẋ(τ) along a trial path varied with aim of minimizing its distance to
the target v(x(τ)).

33.4 Noisy maps

(P. Cvitanović and D. Lippolis)

For pedagogical reasons we shall often find it convenient to consider a noisy dis-
crete time dynamical system

xn+1 = f (xn) + ξn , (33.32)
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where x is a d-dimensional state vector, and xn, j is its jth component at time n.
In the Fokker-Planck description individual noisy trajectories are replaced by the
evolution of the density of noisy trajectories, with the ξn = xn+1− f (xn) probability
distribution of zero mean and diffusion tensor, and the time increment in (33.15)
set to δτ = 1,

〈ξn, j〉 = 0 , 〈ξn,i ξ
>
m, j〉 = ∆i j(xn) δnm . (33.33)

As we shall show, in nonlinear dynamics the noise is never isotropic and/or ho-
mogeneous. Even if the infinitesimal time step noise (33.14) covariance matrix
in (33.18) were independent of the state space position x, this cannot be true of
∆(x) for the discrete time flow (33.32) obtained by the Poincaré section reduction
method of sect. 3.1, as the return times (3.1) and the noise accumulated along the
corresponding trajectory segments depend on the starting Poincaré section point.
Indeed, as we shall argue in sect. 33.5, in nonlinear dynamics all noise is local.
As long as the noise distribution at x is autonomous (not explicitly dependent on
time) the stochastic flow (33.32) can be written as xn+1 = xn + σ(xn) ξn , where
∆ = σσ>, and σ(x) is the multiplicative noise diffusion matrix defined in (33.18).

The action of discrete one-time step Fokker-Planck evolution operator on the
density distribution ρ at time k,

ρk+1(y) = [LFP ρk](y) =

∫
dxLFP(y, x) ρk(x)

LFP(y, x) =
1

N(x)
e−

1
2 (y− f (x))> 1

∆(x) (y− f (x)) , (33.34)

is centered on the deterministic step f (x) and smeared out diffusively by noise.
Were diffusion uniform and isotropic, ∆(x) = 2 D 1, the Fokker-Planck evolution
operator would be proportional to exp

(
−{y − f (x)}2/2∆

)
, i.e., the penalty for stray-

ing from the deterministic path is just a quadratic error function. The kth iterate
of Lk

FP(xk; x0) = LFP(xk, t; x0, 0) is a d-dimensional path integral over the k − 1
intermediate noisy trajectory points,

Lk
FP(xk; x0) =

∫
[dx] e−

1
2
∑

n(xn+1− f (xn)>) 1
∆(xn) (xn+1− f (xn)) , (33.35)

where the Gaussian normalization factor in (33.34) is absorbed into intermediate
integrations by defining

[dx] =

k−1∏
n=1

dxd
n

Nn
, Nn =

√
(2π)ddet ∆(xn) . (33.36)

We shall also need to determine the effect of noise accumulated along the
trajectory points preceding x. As the noise is additive forward in time, one cannot
simply invert the Fokker-Planck evolution operator; instead, the past is described
by the adjoint Fokker-Planck evolution operator,

ρ̃k−1(x) = [L†FP ρ̃k](x) =

∫
[dy] e−

1
2 (y− f (x))> 1

∆
(y− f (x)) ρ̃k(y) , (33.37)
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which transports a density concentrated around the point f (x) to a density con-
centrated around the previous point x and adds noise to it. In the deterministic,
vanishing noise limit this is the Koopman operator (31.1).

The Fokker-Planck evolution operator (33.34) is non-hermitian and non-unitary.
For example, if the deterministic flow is contracting, the natural measure (the lead-
ing right eigenvector of the evolution operator) will be concentrated and peaked,
but then the corresponding left eigenvector has to be broad and flat, as backward
in time the deterministic flow is expanding. We shall denote by ρα the right eigen-
vectors of LFP, and by ρ̃α its left eigenvectors, i.e., the right eigenvectors of the
adjoint operator L†FP.

33.5 All nonlinear noise is local

I ain’t gonna work for Maggie’s pa no more
No, I ain’t gonna work for Maggie’s pa no more
Well, he puts his cigar
Out in your face just for kicks

— Bob Dylan, Maggie’s Farm

(P. Cvitanović and D. Lippolis)

Our main goal in this section is to convince the reader that the diffusive dynamics
of nonlinear flows is fundamentally different from Brownian motion, with the flow
inducing a local, history dependent noise. In order to accomplish this, we gener-
alize here the notion of invariant deterministic recurrent solutions, such as fixed
points and periodic orbits, to noisy flows. While a Langevin trajectory (33.32)
can never return exactly to the initial point and thus cannot ever be periodic, in
the Fokker-Planck formulation (33.35) a recurrent motion can be defined as one
where a peaked distribution returns to the initial neighborhood after time n. Re-
currence so defined not only coincides with the classical notion of a recurrent orbit
in the vanishing noise limit, but it also enables us to derive exact formulas for how
this local, history dependent noise is to be computed.

As the function xn+1 − f (xn) is a nonlinear function, in general the path inte-
gral (33.35) can only be evaluated numerically. In the vanishing noise limit the
Gaussian kernel sharpens into the Dirac δ-function, and the Fokker-Planck evo-
lution operator reduces to the deterministic Perron-Frobenius operator (19.10).
For weak noise the Fokker-Planck evolution operator can be evaluated perturba-
tively as an asymptotic series in powers of the diffusion constant, centered on the
deterministic trajectory. Here we retain only the linear term in this series, which
has a particulary simple dynamics given by a covariance matrix evolution formula
(see (33.45) below) that we now derive.

We shift local coordinates labeled at time ‘a′ to the deterministic trajectory
{. . . , x−1, x0, x1, x2, . . . , } centered coordinate frame x = xa + za, Taylor expand
f (x) = fa(za) = xa+1 + Maza + · · · , and approximate the noisy map (33.32) by its
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linearization,

za+1 = Maza + ξa , Mi j(x) = ∂ fi/∂x j , (33.38)

with the deterministic trajectory points at za = za+1 = 0, and Ma = M(xa) the
one time step Jacobian matrix. The corresponding linearized Fokker-Planck evo-
lution operator (33.34) action on density ρa(za) = ρ(xa + za, a) is given in the local
coordinates by

ρa+1(za+1) =

∫
dzaL

a
FP(za+1, za) ρa(za) (33.39)

by the linearization (33.38) centered on the deterministic trajectory

La
FP(za+1, za) =

1
N

e−
1
2 (za+1−Maza)> 1

∆a
(za+1−Maza) . (33.40)

The superscript ‘a’ in La
FP distinguishes the local, linearized Fokker-Planck evo-

lution operator coordinate frame za = x − xa centered on the deterministic trajec-
tory point xa from the full global evolution operator (33.35), in global coordinate
system x.

The kernel of the linearized Fokker-Planck evolution operator (33.40) is a
Gaussian. As a convolution of a Gaussian with a Gaussian is again a Gaussian,
we investigate the action of the linearized Fokker-Planck evolution operator on a
normalized, cigar-shaped Gaussian density distribution

ρa(z) =
1

Ca
e−

1
2 z> 1

Qa
z , Ca = [det (2πQa)]1/2 , (33.41)

and the action of the linearized adjoint Fokker-Planck evolution operator on den-
sity

ρ̃a(z) =
1

Ca
e−

1
2 z> 1

Q̃a
z
, Ca =

[
det (2π Q̃a)

]1/2
, (33.42)

also centered on the deterministic trajectory, with strictly positive [d×d] covari-
ance matrices Q, Q̃. Label ‘a’ plays a double role, and {a + 1, a} stands both for
the {next, initial} space partition and for the times the trajectory lands in these
partitions. The linearized Fokker-Planck evolution operator (33.40) maps the
Gaussian ρa(za) into the Gaussian

ρa+1(za+1) =
1

Ca

∫
[dza] e−

1
2

[
(za+1−Maza)> 1

∆a
(za+1−Maza) + za

> 1
Qa

za
]

(33.43)

one time step later. Likewise, linearizing the adjoint Fokker-Planck evolution
operator (33.37) around the xa trajectory point yields:

ρ̃a(za) =
1

Ca+1

∫
[dza+1] e

− 1
2 [(za+1−Maza)> 1

∆a
(za+1−Maza) + za+1

> 1
˜̃Qa+1

za+1]
.(33.44)
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Completing the squares, integrating and substituting (33.41), respectively (33.42)
we obtain the formula for covariance matrix evolution forward in time,

Qa+1 = MaQaMa
> + ∆a . (33.45)

In the adjoint case, the evolution of the Q̃ is given by

MaQ̃aM>a = Q̃a+1 + ∆a . (33.46)

The two covariance matrices differ, as the adjoint evolution Q̃a is computed by
going backwards along the trajectory. These covariance evolution rules are the
basis of all that follows.

Think of the initial covariance matrix (33.41) as an error correlation matrix
describing the precision of the initial state, a cigar-shaped probability distribution
ρa(za). In one time step this density is deterministically advected and deformed
into density with covariance MQM>, and then the noise ∆ is added: the two kinds
of independent uncertainties add up as sums of squares, hence the covariance evo-
lution law (33.45), resulting in the Gaussian ellipsoid whose widths and orienta-
tion are given by the singular values and singular vectors (6.14) of the covariance
matrix. After n time steps, the variance Qa is built up from the deterministically
propagated Mn

a Qa−nMnT
a initial distribution, and the sum of noise kicks at inter-

vening times, Mk
a∆a−kMkT

a , also propagated deterministically.

The pleasant surprise is that the evaluation of this noise requires no Fokker-
Planck PDE formalism. The width of a Gaussian packet centered on a trajectory
is fully specified by a deterministic computation that is already a pre-computed
byproduct of the periodic orbit computations; the deterministic orbit and its linear
stability. We have attached label ‘a’ to ∆a = ∆(xa) in (33.45) to account for
the noise distributions that are inhomogeneous, state space dependent, but time
independent multiplicative noise.

33.6 Weak noise: Hamiltonian formulation

All imperfection is easier to tolerate if served up in small
doses.

— Wislawa Szymborska

(G. Vattay and P. Cvitanović)

In the spirit of the WKB approximation (to be fully developed in chapter 37), we
shall now study the evolution of the probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (33.47)

The time evolution of R is given by

∂tR + v∂R + (∂R)2 = D∂v + D∂2R .
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Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR + H(x, ∂R) = 0

is known as the Hamilton-Jacobi equation . The function R can be interpreted as
section 38.1

the Hamilton’s principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v + p

ṗ = −∂xH = −A>p , (33.48)

where A is the stability matrix (4.3)

Ai j(x) =
∂vi(x)
∂x j

.

The noise Lagrangian is then

L(x, ẋ) = ẋ · p − H =
1
2

[ẋ − v(x)]2 . (33.49)

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (33.31) for noise ξ2 = [ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two points x0 and x. Which noisy
path is the most probable path that connects them in time t? The probability of a
given pathP is given by the probability of the noise sequence ξ(t) which generates
the path. This probability is proportional to the product of the noise probability
functions (33.31) along the path, and the total probability for reaching x from x0
in time t is given by the sum over all paths, or the stochastic path integral (Wiener
integral)

P(x, x0, t) ∼
∑
P

∏
j

p(ξ(τ j), δτ j) =

∫ ∏
j

dξ j

(
δτ j

4πD

)d/2

e−
ξ(τ j)

2

4D δτi

→
1
Z

∑
P

exp
(
−

1
4D

∫ t

0
dτ ξ2(τ)

)
, (33.50)

where δτi = τi − τi, and the normalization constant is

1
Z

= lim
∏

i

(
δτi

2πD

)d/2
.

The most probable path is the one maximizing the integral inside the exponential.
If we express the noise (33.17) as

ξ(t) = ẋ(t) − v(x(t)) ,
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the probability is maximized by the variational principle

min
∫ t

0
dτ[ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a given x, x′ and t the probability is maximized by
a solution of Hamilton’s equations (33.48) that connects the two points x0 → x′

in time t. The solution is a bit boring: ẋ = v , p = 0 , and lives in the initial,
d-dimensional state space, so not much is to be made of this surprising appearance
of Hamiltonians.

Résumé

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strength D, the deterministic dynamics is recovered in the weak noise
limit D → 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Symplectic structure emerges here not as a deep principle of mechanics, but
an artifact of the leading approximation to quantum/noisy dynamics, not respected
by higher order corrections. The same is true of semiclassical quantum dynamics;
higher corrections do not respect canonical invariance.

Commentary

Remark 33.1. A brief history of noise. The theory of stochastic processes is a vast
subject, starting with the Laplace 1810 memoir [29], spanning over centuries, and over
disciplines ranging from pure mathematics to impure finance. The presentation given
here is based on the Cvitanović and Lippolis 2012 Maribor lectures [11]. The material
reviewed is standard [2, 26, 36], but needed in order to set the notation for what is new
here, the role that local Fokker-Planck operators play in defining stochastic neighborhoods
of periodic orbits. We enjoyed reading van Kampen classic [26], especially his railings
against those who blunder carelessly into nonlinear landscapes. Having committed this
careless chapter to print, we shall no doubt be cast to a special place on the long list of
van Kampen’s sinners (and not for the first time, either). A more specialized monograph
like Risken’s [36] will do just as well. Schulman’s monograph [38] contains a very read-
able summary of Kac’s [24] exposition of Wiener’s integral over stochastic paths. The
standard Langevin equation [7] is a stochastic equation for a Brownian particle, in which
one replaces the Newton’s equation for force by two counter-balancing forces: random
accelerations ξ(t) which tend to smear out a particle trajectory, and a damping term which
drives the velocity to zero. In this context D is Einstein diffusion constant, and (33.12) is
the Einstein diffusion formula [16]. Here we denote by ‘Langevin equation’ a more gen-
eral family of stochastic differential equations (33.17) with additive or multiplicative [15,
28] weak noise. Noisy discrete time dynamical systems are discussed in refs. [6, 17, 27].

In probabilist literature [4] the differential operator −∇ · (v(x)ρ(x, t)) + D∇2ρ(x, t) is
called ‘Fokker-Planck operator;’ here we reserve the term ‘Fokker-Planck evolution oper-
ator’ for the finite time, ‘Green’s function’ integral operator (33.30), i.e., the stochastic
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path (Wiener) integral [31, 36, 39] for a noisy flow, with the associated continuous time
Fokker-Planck [26, 32, 36] (or forward Kolmogorov) equation (33.24).

The cost function (33.31) appears to have been first introduced by Wiener as the exact
solution for a purely diffusive Wiener-Lévy process in one dimension, see (33.51). On-
sager and Machlup [20, 33] use it in their variational principle to study thermodynamic
fluctuations in a neighborhood of single, linearly attractive equilibrium point (i.e., without
any dynamics). It plays important role in the optimal control theory [3, 34]. Gaussians
are often rediscovered, so Onsager-Machlup seminal paper, which studies the same at-
tractive linear fixed point, is in literature often credited for being the first to introduce a
variational method -the ‘principle of least dissipation’- based on the Lagrangian of form
(33.49). They, in turn, credit Rayleigh [35] with introducing the least dissipation principle
in hydrodynamics. Onsager-Machlup paper deals only with a finite set of linearly damped
thermodynamic variables, and not with a nonlinear flow or unstable periodic orbits.

Gaspard [21] derives a trace formula for the Fokker-Planck equation associated with
Itó stochastic differential equations describing noisy time-continuous nonlinear dynamical
systems. In the weak-noise limit, the trace formula provides estimations of the eigenval-
ues of the Fokker-Planck operator on the basis of the Pollicott-Ruelle resonances of the
noiseless deterministic system, which is assumed to be non-bifurcating. At first order
in the noise amplitude, the effect of noise on a periodic orbit is given in terms of the
period and the derivative of the period with respect to the pseudo-energy of the Onsager-
Machlup-Freidlin-Wentzell scheme [20]. The dynamical ‘action’ Lagrangian in the ex-
ponent of (33.30), and the associated symplectic Hamiltonian were first written down in
1970’s by Freidlin and Wentzell [20], whose formulation of the ‘large deviation princi-
ple’ was inspired by the Feynman quantum path integral [18]. Feynman, in turn, followed
Dirac [14] who was the first to discover that in the short-time limit the quantum propa-
gator (imaginary time, quantum sibling of the Wiener stochastic distribution (33.51)) is
exact. Gaspard [21] thus refers to the ‘pseudo-energy of the Onsager-Machlup-Freidlin-
Wentzell scheme.’ M. Roncadelli [13, 37] refers to the Fokker-Planck exponent in (33.30)
as the ‘Wiener-Onsager-Machlup Lagrangian,’ constructs weak noise saddle-point expan-
sion and writes transport equations for the higher order coefficients. In our exposition
the setting is more general: we study fluctuations over a state space-varying velocity field
v(x).

Remark 33.2. Weak noise perturbation theory. DasBuch omits any discussion of the
Martin-Siggia-Rose [31] type weak noise corrections. For an overview of possible ways
for improvement of diagrammatic summation in noisy field theories, see Chaotic Field
Theory: a Sketch [8]. The details are in the three papers on trace formulas for stochastic
evolution operators (see also ref. [37]): Weak noise perturbation theory [9], smooth con-
jugation method [10], and local matrix representation approach [12]. Such corrections
have not been evaluated before, probably because one is so unsure about nature of the
noise itself that nth order correction is beyond the point. Doing continuous time flows
requires the same kind of corrections, with diagrams standing for integrals rather than
sums, though no one ever tried weakly stochastic flows in continuous time.

Remark 33.3. Covariance evolution. In quantum mechanics the linearized evolu-
tion operator corresponding to the linearized Fokker-Planck evolution operator (33.40) is
known as the Van Vleck propagator, the basic block in the semi-classical periodic orbit
quantization [22], see chapter 38. Q covariance matrix composition rule (33.45) or its
continuous time version is called ‘covariance evolution’ (for example, in ref. [41]), but it
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goes all the way back to Lyapunov’s 1892 thesis [30]. In the Kalman filter literature [1,
25] it is called ‘prediction’.

Remark 33.4. Operator ordering. According to L. Arnold [2] review of the original
literature, the derivations are much more delicate than what is presented here: the noise
is colored rather than Dirac delta function in time. He refers only to the linear case as
the ‘Langevin equation’. The δτ → 0 limit and the proper definition of ẋ(τ) are delicate
issues [2, 19, 23, 40] of no import for the applications of stochasticity studied here: Itó and
Stratanovich operator ordering issues arise in the order beyond the leading approximation
considered here.
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Example 33.1. Random walk in one dimension The white noise ξn = xn+1 − xn for a
1-dimensional diffusion process is a normally distributed random variable, with standard
normal (i.e., Gaussian) probability distribution function,

LFP(x, t; x′, t′) =
1

√
4πD(t − t′)

exp
[
−

(x − x′)2

4D(t − t′)

]
, (33.51)

of mean 0, variance 2D(t− t′), and standard deviation
√

2D(t − t′), uncorrelated in time:
click to return: p. 647

〈xn+1 − xn〉 = 0 , 〈(xm+1 − xm)(xn+1 − xn)〉 = 2D δτ δmn . (33.52)

section 33.4
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Exercises

33.1. Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2a =

√
a , a > 0 .

assuming only that you know to integrate the exponen-
tial function e−x. Hint: x2 is a radius-squared of some-
thing. π is related to the area or circumference of some-
thing.

33.2. d-dimensional Gaussian integrals. Show that the
Gaussian integral in d-dimensions is given by

Z[J] =

∫
ddx e−

1
2 x>·M−1·x+x>·J

= (2π)d/2|det M|
1
2 e

1
2 J>·M·J , (33.53)

where M is a real positive definite [d × d] matrix, i.e., a
matrix with strictly positive eigenvalues, x and J are d-
dimensional vectors, and (· · · )> denotes the transpose.

This integral you will see over and over in statistical me-
chanics and quantum field theory: it’s called ‘free field
theory’, ‘Gaussian model’, ‘Wick expansion’, etc.. This
is the starting, ‘propagator’ term in any perturbation ex-
pansion.

Here we require that the real symmetric matrix M in the
exponent is strictly positive definite, otherwise the in-
tegral is infinite. Negative eigenvalues can be accom-
modated by taking a contour in the complex plane [5],
see exercise 33.4 Fresnel integral. Zero eigenvalues
require stationary phase approximations that go be-
yond the Gaussian saddle point approximation, typically
to the Airy-function type stationary points, see exer-
cise 37.4 Airy function for large arguments.

33.3. Convolution of Gaussians.
(a) Show that the Fourier transform of the convolution

[ f ∗ g](x) =

∫
ddy f (x − y)g(y)

corresponds to the product of the Fourier transforms

[ f ∗ g](x) =
1

(2π)d

∫
ddk F(k)G(k)e−ik·x , (33.54)

where

F(k) =

∫
dd x

(2π)d/2 f (x) e−ik·x , G(k) =

∫
dd x

(2π)d/2 g(x) e−ik·x .

(b) Consider two normalized Gaussians

f (x) =
1

N1
e−

1
2 x>· 1

∆1
·x
, N1 =

√
det (2π∆1)

g(x) =
1

N2
e−

1
2 x>· 1

∆2
·x
, N2 =

√
det (2π∆2)

1 =

∫
ddk f (x) =

∫
ddk g(x) .

Evaluate their Fourier transforms

F(k) =
1

(2π)d/2 e
1
2 k>·∆1·k , G(k) =

1
(2π)d/2 e

1
2 k>·∆2·k .

Show that the convolution of two normalized Gaussians
is a normalized Gaussian

[ f ∗ g](x) =
(2π)−d/2

√
det (∆1 + ∆2)

e−
1
2 x>· 1

∆1+∆2
·x
.

In other words, covariances ∆ j add up. This is the d-
dimenional statement of the familiar fact that cumula-
tive error squared is the sum of squares of individual
errors. When individual errors are small, and you are
adding up a sequence of them in time, you get Brown-
ian motion. If the individual errors are small and added
independently to a solution of a deterministic equation,
you get Langevin and Fokker-Planck equations.

33.4. Fresnel integral.

(a) Derive the Fresnel integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2ei π4

a
|a| .

Consider the contour integral IR =∫
C(R) exp

(
iz2) dz, where C(R) is the closed cir-

cular sector in the upper half-plane with boundary
points 0, R and R exp(iπ/4). Show that IR = 0 and
that limR→∞

∫
C1(R) exp

(
iz2) dz = 0, where C1(R) is

the contour integral along the circular sector from
R to R exp(iπ/4). [Hint: use sin x ≥ (2x/π) on
0 ≤ x ≤ π/2.] Then, by breaking up the contour
C(R) into three components, deduce that

lim
R→∞

(∫ R

0
eix2

dx − eiπ/4
∫ R

0
e−r2

dr
)

vanishes, and, from the real integration∫ ∞
0 exp

(
− x2) dx =

√
π/2, deduce that∫ ∞

0
eix2

dx = eiπ/4 √π/2 .

Now rescale x by real number a , 0, and complete
the derivation of the Fresnel integral.
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(b) In exercise 33.2 the exponent in the d-dimensional
Gaussian integrals was real, so the real symmetric
matrix M in the exponent had to be strictly pos-
itive definite. However, in quantum physics one
often has to evaluate the d-dimenional Fresnel in-
tegral

1
(2π)d/2

∫
ddφ e−

1
2i φ
>·M−1·φ+i φ·J ,

with a hermitian matrix M. Evaluate it. What are
conditions on its spectrum in order that the inte-
gral be well defined?

33.5. Airy function for large arguments. Important
contributions as stationary phase points may arise from
extremal points where the first non-zero term in a Taylor
expansion of the phase is of third or higher order. Such
situations occur, for example, at bifurcation points or
in diffraction effects, (such as waves near sharp corners,
waves creeping around obstacles, etc.). In such calcu-
lations, one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3

3 ) . (33.55)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the sta-
tionary phase approximation breaks down.

33.6. Solving the Lyapunov differential equation. Con-
tinuous time Lyapunov evolution equation for a covari-
ance matrix Q(t) is given by

Q̇ = A Q + Q A> + ∆ , (33.56)

where {Q, A,∆} are [d×d] matrices. The superscript ( )>

indicates the transpose of the matrix. The stability ma-
trix A = A(x) and the noise covariance matrix ∆ = ∆(x)
are given. They are evaluated on a trajectory x(t), and
thus vary in time, A(t) = A(x(t)) and ∆(t) = ∆(x(t)).
Determine the covariance matrix Q(t) for a given initial
condition Q(0), by taking the following steps:

(a) Write the solution in the form

Q(t) = J(t)[Q(0) + W(t)]J>(t) ,

with the Jacobian matrix J(t) satisfying

J̇(t) = A(t) J(t) , J(0) = I , (33.57)

with I the [d×d] identity matrix. The Jacobian
matrix at time t,

J(t) = T̂ e
∫ t

0 dτ A(τ) , (33.58)

where T̂ denotes the ‘time-ordering’ operation,
can be evaluated by integrating (33.57).

(b) Show that W(t) satisfies

Ẇ =
1
J

∆
1
J>

, W(0) = 0 . (33.59)

(c) Integrate (33.56) to obtain

Q(t) = J(t)

Q(0) +

t∫
0

dτ
1

J(τ)
∆(τ)

1
J>(τ)

 J>(t) .

(33.60)

(d) If A(t) commutes with itself throughout the inter-
val 0 ≤ τ ≤ t, the time-ordering operation is re-
dundant, and we have the explicit solution
J(t, t′) = exp

∫ t
t′dτ A(τ). Show that in this case the

solution reduces to

Q(t) = J(t) Q(0) J(t)> (33.61)

+

t∫
0

dτ′ J(t, τ′) ∆(τ′) J(t, τ′)> .

(e) It is hard to imagine a time dependent A(t) =

A(x(t)) that would be commuting. However, in
the neighborhood of an equilibrium point x∗ one
can approximate the stability matrix with its time-
independent linearization, A = A(x∗). Show that
in that case (33.58) reduces to

J(t, t′) = e(t−t′) A ,

and (33.61) to what?

33.7. Solving the Lyapunov differential equation. Prove
that if A is stable, the continuous Lyapunov equation

AQ + QA> = −∆ < 0 .

has a solution

Q =

∞∫
0

dt etA∆etA> , (33.62)

and that this solution is unique. (P. Cvitanović)

33.8. Solving the discrete Lyapunov equation. Prove that
if M is contracting, the discrete Lyapunov equation

Q − MQM> = ∆ > 0

has a solution

Q =

∞∑
k=0

Mk∆Mk> , (33.63)

and that this solution is unique. (P. Cvitanović)
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33.9. Continuous vs. discrete time Lyapunov equation.
Show that the continuous Lyapunov equation solution
(suited to a Laplace transform),

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to the discrete Lyapunov equation solution
(suited to a Z-transform),

Q =

∞∑
k=0

Mk∆̄Mk> , |M| < 1 ,

where

M = eA , ∆̄ =

1∫
0

dt etA∆etA> .

Parenthetically, often the notation does not distinguish
∆̄ from ∆. It should. (P. Cvitanović)

33.10. Lyapunov differential equation in resolvent form.
Show that the continuous Lyapunov equation solution,

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to

Q =
1

2π

∞∫
−∞

dω
1

iω − A
∆

1
−iω − A>

.

(P. Cvitanović)

33.11. Discrete time Lyapunov equation in the resolvent
form. Show that the continuous Lyapunov equation
solution,

Q =

∞∫
0

dt etA∆etA> , A < 0 ,

is equivalent to the discrete Lyapunov equation solution
in resolvent form,

Q =
1

2π

2π∫
0

dω
1

1 − e−iωM
∆̄

1
1 − eiωM>

.

(P. Cvitanović)

33.12. Noise covariance matrix for a discrete time periodic
orbit.
(a) Prove that the covariance matrix at a periodic point
xa on a limit cycle p,

Qa = Mp,aQaMp,a
> + ∆p,a , (33.64)

where

∆p,a = ∆a + Ma−1∆a−1Ma−1
> + M2

a−2∆a−2(M2
a−2)>

+ · · · + Mnp−1
a−np+1∆a−np+1(Mnp−1

a−np+1)> (33.65)

is the noise accumulated per a single transversal of the
periodic orbit, Mp,a = Mp(xa) is the cycle Jacobian ma-
trix (4.5) evaluated on the periodic point xa, and we have
used the periodic orbit condition xa+np = xa.
(b) Derive the analogous formulas for the adjoint
Fokker-Planck covariance matrix at a periodic point xa

on a repelling cycle p.
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Chapter 34

Relaxation for cyclists

I cannot pass quietly over the relations between the theory
of solutions of the second kind [i.e. of arbitrarily long
period] and the Principle of Least Action; and it is even
because of these relations that I have written chapter 29.

— H. Poincaré, Vol. 3, chap. 31, artl. 371 of Les
méthodes nouvelles de la méchanique céleste

Cycles, i.e., solutions of the periodic orbit condition (16.1)

f t+T (x) = f t(x) , T > 0 (34.1)

are prerequisite to chapters 21 and 22 evaluation of spectra of classical evolu-
tion operators.Chapter 16 offered an introductory, hands-on guide to extraction of
periodic orbits by means of the Newton-Raphson method. Here we take a very dif-
ferent tack, drawing inspiration from variational principles of classical mechanics,
and path integrals of quantum mechanics.

In sect. 7.1.1 we converted orbits unstable forward in time into orbits stable
backwards in time. Indeed, all methods for finding unstable cycles are based on
the idea of constructing a new dynamical system such that (i) the position of the
cycle is the same for the original system and the transformed one, (ii) the unstable
cycle in the original system is a stable cycle of the transformed system.

The Newton-Raphson method for determining a fixed point x∗ for a map x′ =

f (x) is an example. The method replaces iteration of f (x) by iteration of the
Newton-Raphson map (7.4)

x′i = gi(x) = xi −

(
1

M(x) − 1

)
i j

( f (x) − x) j . (34.2)

A fixed point x∗ for a map f (x) is also a fixed point of g(x), indeed a superstable
fixed point since ∂gi(x∗)/∂x j = 0. This makes the convergence to the fixed point
super-exponential.
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CHAPTER 34. RELAXATION FOR CYCLISTS 667

We also learned in chapter 16 that methods that start with initial guesses for
a number of points along a cycle are considerably more robust and safer than
searches based on direct solution of the fixed-point condition (34.1). The relax-
ation (or variational) methods that we shall now describe take this multipoint ap-
proach to its logical extreme, and start by a guess of not a few points along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desired periodic orbit
looks like globally, and then use variational methods to drive the initial guess
toward the exact solution. Sacrificing computer memory for robustness of the
method, we replace a guess that a point is on the periodic orbit by a guess of
the entire orbit. And, sacrificing speed for safety, in sect. 34.1 we replace the
Newton-Raphson iteration by a fictitious time flow that minimizes a cost function
computed as deviation of the approximate flow from the true flow along a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic dy-
namics, or have already found a set of short cycles, you might be able to con-
struct an initial approximation to a longer cycle p as a sequence of N points
(x̃(0)

1 , x̃(0)
2 , · · · , x̃(0)

N ) with the periodic boundary condition x̃N+1 = x̃1. Suppose
you have an iterative method for improving your guess; after k iterations the cost
function

F2(x̃(k)) =

N∑
i

(
x̃(k)

i+1 − f (x̃(k)
i )

)2
(34.3)

or some other more cleverly constructed function (for classical mechanics - action)
is a measure of the deviation of the kth approximate cycle from the true cycle. This
observation motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, and one for bil-
liards. In sect. 34.1 we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing a differential flow for which
the desired fixed point is an attracting equilibrium point. Solving differential equa-
tions can be time intensive, so in sect. 34.2 we replace such flows by discrete iter-
ations. In sect. 34.3 we show that for 2D-dimensional billiard flows variation of D
coordinates (where D is the number of Hamiltonian degrees of freedom) suffices
to determine cycles in the full 2D-dimensional phase space.

34.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles is based on the observa-
tion that a trajectory of a map such as the Hénon map (3.18),

xi+1 = 1 − ax2
i + byi

yi+1 = xi , (34.4)
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Figure 34.1: “Potential” Vi(x) (34.7) for a typical
point along an initial guess trajectory. For σi = +1
the flow is toward the local maximum of Vi(x), and for
σi = −1 toward the local minimum. A large devia-
tion of xi’s is needed to destabilize a trajectory passing
through such local extremum of Vi(x), hence the basin
of attraction is expected to be large.

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dτ
= vi, i = 1, . . . , n (34.5)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ is a “ficti-
tious time" variable, unrelated to the dynamical time (in this example, the discrete
time of map iteration). As the simplest example, take vi to be the deviation of an
approximate trajectory from the exact 2-step recurrence form of the Hénon map
(3.19)

vi = xi+1 − 1 + ax2
i − bxi−1. (34.6)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These solutions
are the two extremal points of a local “potential” function (no sum on i)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a
3

x3
i . (34.7)

Assuming that the two extremal points are real, one is a local minimum of Vi(x)
and the other is a local maximum. Now here is the idea; replace (34.5) by

dxi

dτ
= σivi, i = 1, . . . , n, (34.8)

where σi = ±1.

The modified flow will be in the direction of the extremal point given by the
local maximum of Vi(x) if σi = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we take σi = −1. This is not quite what happens
in solving (34.8) - all xi and Vi(x) change at each integration step - but this is the
observation that motivates the method. The differential equations (34.8) then drive
an approximate initial guess toward the exact trajectory. A sketch of the landscape
in which xi converges towards the proper fixed point is given in figure 34.1. As
the “potential” function (34.7) is not bounded for a large |xi|, the flow diverges for
initial guesses which are too distant from the true trajectory. However, the basin
of attraction of initial guesses that converge to a given cycle is nevertheless very
large, with the spread in acceptable initial guesses for figure 34.1 of order 1, in
contrast to the exponential precision required of initial guesses by the Newton-
Raphson method.

example 34.1

p. 677
exercise 34.3
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Figure 34.2: The repeller for the Hénon map at a =

1.8, b = 0.3 .
−1.5 −0.5 0.5 1.5

−1.5

−0.5

0.5

1.5

Figure 34.3: Typical trajectories of the vector field
(34.9) for the stabilization of a hyperbolic fixed
point of the Ikeda map (34.16) located at (x, y) ≈
(0.53275, 0.24689). The circle indicates the position
of the fixed point. Note that the basin of attraction of
this fixed point is large, larger than the entire Ikeda at-
tractor.

0 1

−2

0

x

y
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The idea of the relaxation algorithm illustrated by the above Hénon map ex-
ample is that instead of searching for an unstable periodic orbit of a map, one
searches for a stable attractor of a vector field. More generally, consider a d-
dimensional map x′ = f (x) with a hyperbolic fixed point x∗. Any fixed point x∗ is
by construction an equilibrium point of the fictitious time flow

dx
dτ

= f (x) − x. (34.9)

If all eigenvalues of the Jacobian matrix J(x∗) = D f (x∗) have real parts smaller
than unity, then x∗ is a stable equilibrium point of the flow, see figure 34.3.

If some of the eigenvalues have real parts larger than unity, then one needs to
modify the vector field so that the corresponding directions of the flow are turned
into stable directions in a neighborhood of the fixed point. In the spirit of (34.8),
modify the flow by

dx
dτ

= C ( f (x) − x) , (34.10)

where C is a [d×d] invertible matrix. The aim is to turn x∗ into a stable equilib-
rium point of the flow by an appropriate choice of C. It can be shown that a set
of permutation / reflection matrices with one and only one non-vanishing entry
±1 per row or column (for d-dimensional systems, there are d!2d such matrices)
suffices to stabilize any fixed point. In practice, one chooses a particular matrix
C, and the flow is integrated. For each choice of C, one or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow, see figure 34.4.
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Figure 34.4: Typical trajectories of the vector
field (34.10) for a hyperbolic fixed point (x, y) ≈
(−0.13529,−0.37559) of f 3, where f is the Ikeda
map (34.16). The circle indicates the position of
the fixed point. For the vector field corresponding
to (a) C = 1, x∗ is a hyperbolic equilibrium point
of the flow, while for (b) C =

(
1
0

0
−1

)
, x∗ is an at-

tracting equilibrium point.
(a) (b) −0.2 −0.1

−0.38 

−0.36 

x
*
 

example 34.2

p. 677

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cycle x = (x1, x2, . . . , xn) of a
d-dimensional map x′ = f (x), we modify the multipoint shooting method of
sect. 16.2, and consider the nd-dimensional vector field

dx
dτ

= C ( f (x) − x) , (34.11)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), and C is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2n diagonal matrices
with eigenvalues ±1. Risking a bit of confusion, we denote by x, f (x) both the
d-dimensional vectors in (34.10), and nd-dimensional vectors in (34.11), as the
structure of the equations is the same.

34.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (34.2) is that it requires very
precise initial guesses. For example, the nth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of all
cycles of length n requires that the initial guess for each one of them has to be
accurate to roughly 2−n. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie in a d-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (34.8) of manually
turning instability into stability by a sign change, we now (i) abandon the Newton-
Raphson method altogether, (ii) abandon the continuous fictitious time flow (34.9)
with its time-consuming integration, replacing it by a map g with a larger basin
of attraction (not restricted to a linear neighborhood of the fixed point). The idea
is to construct a very simple map g, a linear transformation of the original f , for
which the fixed point is stable. We replace the Jacobian matrix prefactor in (34.2)
(whose inversion can be time-consuming) by a constant matrix prefactor

x′ = g(x) = x + ∆τC( f (x) − x), (34.12)
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where ∆τ is a positive real number, and C is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry ±1 per row or column. A fixed
point of f is also a fixed point of g. Since C is invertible, the inverse is also true.

This construction is motivated by the observation that for small ∆τ → dτ the
map (34.12) is the Euler method for integrating the modified flow (34.10), with
the integration step ∆τ.

The argument why a suitable choice of matrix C can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the construction
of the modified vector field in sect. 34.1. Indeed, the flow (34.8) is the simplest
example of this method, with the infinitesimal fictitious time increment ∆τ→ dτ,
the infinitesimal coordinate correction (x − x′) → dxi, and the [n×n] diagonal
matrix C→ σi = ±1.

For a given fixed point of f (x) we again chose a C such that the flow in the
expanding directions of M(x∗) is turned into a contracting flow. The aim is to
stabilize x∗ by a suitable choice of C. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing the matrix C (in general
different for each unstable fixed point) and varying initial conditions for the map
g. For example, for 2-dimensional dissipative maps it can be shown that the 3

remark 34.2
matrices

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}
suffice to stabilize all kinds of possible hyperbolic fixed points.

If ∆τ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed point x∗ in the transformed system are smaller than one, and one has a stable
fixed point. However, ∆τ should not be chosen too small: Since the convergence
is geometrical with a ratio 1 − α∆τ (where the value of constant α depends on
the stability of the fixed point in the original system), small ∆τ can slow down
the speed of convergence. The critical value of ∆τ, which just suffices to make
the fixed point stable, can be read off from the quadratic equations relating the
stability coefficients of the original system and those of the transformed system. In
practice, one can find the optimal ∆τ by iterating the dynamical system stabilized
with a given C and ∆τ. In general, all starting points converge on the attractor
provided ∆τ is small enough. If this is not the case, the trajectory either diverges
(if ∆τ is far too large) or it oscillates in a small section of the state space (if ∆τ is
close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point cho-
sen in the global neighborhood of the fixed point iterated with the transformed
dynamical system g converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a stabilized fixed point is a
rather extended connected area, by no means confined to a linear neighborhood.
At times the basin of attraction encompasses the complete state space of the attrac-
tor, so one can be sure to be within the attracting basin of a fixed point regardless
of where on the on the attractor on picks the initial condition.
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The step size |g(x)−x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points with a high precision,
one therefore needs a large number of iterations for the trajectory which is already
in the linear neighborhood of the fixed point. To speed up the convergence of the
final part of the approach to a fixed point we recommend a combination of the
above approach with the Newton-Raphson method (34.2).

The fixed points of the nth iterate f n are periodic points of a cycle of period
n. If we consider the map

x′ = g(x) = x + ∆τC( f n(x) − x) , (34.13)

the iterates of g converge to a fixed point provided that ∆τ is sufficiently small
and C is a [d×d] constant matrix chosen such that it stabilizes the flow. As n
grows, ∆τ has to be chosen smaller and smaller. In the case of the Ikeda map
example 34.2 the method works well for n ≤ 20. As in (34.11), the multipoint
shooting method is the method of preference for determining longer cycles. Con-
sider x = (x1, x2, . . . , xn) and the nd-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with period n for the d-dimensional f is equivalent to deter-
mining fixed points of the multipoint dn-dimensional f . The idea is to construct a
matrix C such that the fixed point of f becomes stable for the map:

x′ = x + ∆τC( f (x) − x),

where C is now a [nd×nd] permutation/reflection matrix with only one non-zero
matrix element ±1 per row or column. For any given matrix C, a certain fraction
of the cycles becomes stable and can be found by iterating the transformed map
which is now a nd dimensional map.

From a practical point of view, the main advantage of this method compared to
the Newton-Raphson method is twofold: (i) the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, simplifying considerably
the implementation, and (ii) empirical basins of attractions for individual C are
much larger than for the Newton-Raphson method. The price is a reduction in the
speed of convergence.

34.3 Least action method

(P. Dahlqvist)

The methods of sects. 34.1 and 34.2 are somewhat ad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in choosing
the cost function, such as (34.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis least
action principle. You yawn your way through it in every mechanics course–but as
we shall now see, it is a very hands-on numerical method for finding cycles.
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Table 34.1: All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary, its
expanding eigenvalue Λp, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles 001011 and 001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676



CHAPTER 34. RELAXATION FOR CYCLISTS 674

Indeed, the simplest and numerically most robust method for determining cy-
cles of planar billiards is given by the principle of least action, or equivalently,
by extremizing the length of an approximate orbit that visits a given sequence of
disks. In contrast to the multipoint shooting method of sect. 16.2 which requires
variation of 2n phase-space points, extremization of a cycle length requires varia-
tion of only n bounce positions si.

The problem is to find the extremum values of cycle length L(s) where s =

(s1, . . . , sn), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δs j + . . .

and use Mi j(s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
exercise 34.1

scheme of sect. 7.1.2

si 7→ si −
∑

j

(
1

M(s)

)
i j
∂ jL(s) (34.14)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that the
final extremal length orbit does not penetrate a billiard wall.

exercise 34.2
exercise 16.11

As an example, the short periods and stabilities of 3-disk cycles computed this
way are listed table 34.1.

Résumé

Unlike the Newton-Raphson method, variational methods are very robust. As each
step around a cycle is short, they do not suffer from exponential instabilities, and
with rather coarse initial guesses one can determine cycles of arbitrary length.

Commentary

Remark 34.1. Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problems [24]. The method described above was introduced
by Biham and Wenzel [2], who have also generalized it (in the case of the Hénon map)
to determination of all 2n cycles of period n, real or complex [3]. The applicability and
reliability of the method is discussed in detail by Grassberger, Kantz and Moening [12],
who give examples of the ways in which the method fails: (a) it might reach a limit
cycle rather than a equilibrium saddle point (that can be remedied by the complex Biham-
Wenzel algorithm [3]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). Furthermore, Hansen (ref. [13]
and chapter 4. of ref. [14]) has pointed out that the method cannot find certain cycles
for specific values of the Hénon map parameters. In practice, the relaxation method for
determining periodic orbits of maps appears to be effective almost always, but not always.
It is much slower than the multipoint shooting method of sect. 16.2, but also much quicker
to program, as it does not require evaluation of stability matrices and their inversion. If the
complete set of cycles is required, the method has to be supplemented by other methods.

relax - 29mar2004 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 34. RELAXATION FOR CYCLISTS 675

Remark 34.2. Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect. 34.2 was introduced by Schmelcher et al [9, 21]. The method was extended
to flows by means of the Poincaré section technique in ref. [20]. It is also possible to
combine the Newton-Raphson method and (34.12) in the construction of a transformed
map [6]. In this approach, each step of the iteration scheme is a linear superposition of
a step of the stability transformed system and a step of the Newton-Raphson algorithm.
Far from the linear neighborhood the weight is dominantly on the globally acting stability
transformation algorithm. Close to the fixed point, the steps of the iteration are dominated
by the Newton-Raphson procedure.

Remark 34.3. Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repeller (a sufficiently large), such as the one given in figure 34.2, the
signs σi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamics si ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (34.15)

For arbitrary parameter values with a finite subshift symbolic dynamics or with arbitrarily
complicated pruning, the relation of sign sequences {σ1, σ2, · · · , σn } to the itineraries
{s1, s2, · · · , sn } can be much subtler; this is discussed in ref. [12].

Remark 34.4. Ikeda map. Ikeda map (34.16) was introduced in ref. [15] is a model
which exhibits complex dynamics observed in nonlinear optical ring cavities.

Remark 34.5. Relaxation for continuous time flows. For a d-dimensional flow ẋ =

v(x), the method described above can be extended by considering a Poincaré sectionṪhe
Poincaré section yields a map f with dimension d-1, and the above discrete iterative maps
procedures can be carried out. A method that keeps the trial orbit continuous throughout
the calculation is the Newton descent, a variational method for finding periodic orbits of
continuous time flows, is described in refs. [4, 17].

Remark 34.6. Stability ordering. The parameter ∆τ in (34.12) is a key quantity
here. It is related to the stability of the desired cycle in the transformed system: The
more unstable a fixed point is, the smaller ∆τ has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobian matrix increases and therefore ∆τ

has to be reduced to achieve stabilization of all fixed points. In many cases the least
unstable cycles of a given period n are of physically most important [9]. In this context

section 23.7
∆τ operates as a stability filter. It allows the selective stabilization of only those cycles
which posses Lyapunov exponents smaller than a cut-off value. If one starts the search
for cycles within a given period n with a value ∆τ ≈ O(10−1), and gradually lowers ∆τ

one obtains the sequence of all unstable orbits of order n sorted with increasing values
of their Lyapunov exponents. For the specific choice of C the relation between ∆τ and
the stability coefficients of the fixed points of the original system is strictly monotonous.
Transformed dynamical systems with other C’s do not obey such a strict behavior but
show a rough ordering of the sequence of Floquet multipliers of the fixed points stabilized
in the course of decreasing values for ∆τ. As explained in sect. 23.7, stability ordered
cycles are needed to order cycle expansions of dynamical quantities of chaotic systems
for which a symbolic dynamics is not known. For such systems, an ordering of cycles
with respect to their stability has been proposed [5, 7, 8], and shown to yield good results
in practical applications.
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Remark 34.7. Action extremization method. The action extremization (sect. 34.3)
as a numerical method for finding cycles has been introduced independently by many
people. We have learned it from G. Russberg, and from M. Sieber’s and F. Steiner’s
hyperbola billiard computations [22, 23]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CPU seconds with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-preserving
twist maps (known in the condensed matter literature as the Frenkel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dynamical systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubry-Mather theorem [19] on
existence of quasi-periodic solutions are variational. It was quickly realized that the vari-
ational methods can also yield reliable, high precision computations of long periodic or-
bits of twist map models in 2 or more dimensions, needed for K.A.M. renormalization
studies [16].

A fictitious time gradient flow similar to the one discussed here in sect. 34.1 was
introduced by Anegent [1] for twist maps, and used by Gole [11] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M. tori
are notoriously restrictive compared to the numerical indications, and de la Llave, Fal-
colini and Tompaidis [10, 25] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. stability, as well as proving the
Aubry-Mather theorem for extended systems (for a pedagogical introduction, see the lat-
tice dynamics section of ref. [18]).

All of the twist-maps work is based on extremizing the discrete dynamics version of
the action S (in this context sometimes called a “generating function”). However, in their
investigations in the complex plane, Falcolini and de la Llave [10] do find it useful to
minimize instead S S̄ , analogous to our cost function (34.3).
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Example 34.1. Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (34.4), in principle at most 2n orbits. We start
by choosing an initial guess trajectory (x1, x2, · · · , xn ) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such as
the table 18.1. The real issue for all searches for periodic orbits, this one included, is
how large is the basin of attraction of the desired periodic orbit? There is no easy answer
to this question, but empirically it turns out that for the Hénon map such initial guess
almost always converges to the desired trajectory as long as the initial |x| is not too large
compared to 1/

√
a. Figure 34.1 gives some indication of a typical basin of attraction of

the method (see also figure 34.3).

The calculation is carried out by solving the set of n ordinary differential equations
(34.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1) until
|v| becomes smaller than a given value ε (in a typical calculation ε ∼ 10−7). Empirically,
in the case that an orbit corresponding to the desired itinerary does not exist, the initial
guess escapes to infinity since the “potential” Vi(x) grows without bound.

exercise 34.3

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3, the
method has yielded all periodic orbits to periods as long as n = 28, as well as selected
orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon map, a = 1.4
and b = 0.3, are listed in table 34.2. The number of unstable periodic orbits for periods
n ≤ 28 is given in table 34.3. Comparing this with the list of all possible 2-symbol
alphabet prime cycles, table 18.1, we see that the pruning is quite extensive, with the
number of periodic points of period n growing as e0.4645·n = (1.592)n rather than as 2n .

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 34.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.7, we note the existence of gaps in the set, cut out by
the preimages of the escaping regions.

remark 34.1

In practice, the relaxation flow (34.8) finds (almost) all periodic orbits which exist
and indicates which ones do not. For the Hénon map the method enables us to calculate
almost all unstable cycles of essentially any desired length and accuracy.

click to return: p. 667

Example 34.2. Ikeda map: We illustrate the method of (34.10) with the determination
of the periodic orbits of the Ikeda map:

x′ = 1 + a(x cos w − y sin w)
y′ = a(x sin w + y cos w) (34.16)

where w = b −
c

1 + x2 + y2 ,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow is
already stabilized with C = 1. Figure 34.3 depicts the flow of the vector field around the
fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (34.9) forward in time
(the convergence is exponential in time), using a fourth order Runge-Kutta or any other
integration routine.
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Table 34.2: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period np, the itinerary (defined in remark 34.3), a periodic point
(yp, xp), and the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles have
λp ≈ 0.5, several significantly do not. The 0 periodic point is very unstable, isolated and
transient fixed point, with no other cycles returning close to it. At period 13 one finds a
pair of cycles with exceptionally low Lyapunov exponents. The cycles are close for most
of the trajectory, differing only in the one symbol corresponding to two periodic points
straddle the (partition) fold of the attractor. As the system is not hyperbolic, there is no
known lower bound on cycle Lyapunov exponents, and the Hénon’s strange “attractor”
might some day turn out to be nothing but a transient on the way to a periodic attractor of
some long period.

n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 34.3: The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn is the total
number of periodic points of period n (including repeats of shorter prime cycles).

n Mn Nn
11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn
17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn
23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520
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In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial C
matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of the third iterate f 3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 34.4 (a), indicates a hyperbolic equilibrium point, while for
C =

(
1
0

0
−1

)
the flow of the vector field, figure 34.4 (b) indicates that x∗ is an attracting

equilibrium point, reached at exponential speed by integration forward in time.
click to return: p. 669

Exercises

34.1. Evaluation of billiard cycles by minimization∗.
Given a symbol sequence, you can construct a guess tra-
jectory by taking a point on the boundary of each disk
in the sequence, and connecting them by straight lines.
If this were a rubber band wrapped through 3 rings, it
would shrink into the physical trajectory, which mini-
mizes the action (in this case, the length) of the trajec-
tory.
Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to ex-
tremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, table 34.1.
(One such method is given in sect. 34.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
| f Tp (x) − x|?

34.2. Tracking cycles adiabatically∗. Once a cycle has been

found, orbits for different system parameters values may
be obtained by varying slowly (adiabatically) the param-
eters, and using the old orbit points as starting guesses
in the Newton method. Try this method out on the 3-
disk system. It works well for R : a sufficiently large.
For smaller values, some orbits change rather quickly
and require very small step sizes. In addition, for ratios
below R : a = 2.04821419 . . . families of cycles are
pruned, i.e. some of the minimal length trajectories are
blocked by intervening disks.

34.3. Cycles of the Hénon map. Apply the method of
sect. 34.1 to the Hénon map at the Hénon’s parameters
choice a = 1.4, b = 0.3, and compute all prime cycles
for at least n ≤ 6. Estimate the topological entropy,
either from the definition (18.1), or as the zero of a trun-
cated topological zeta function (18.17). Do your cycles
agree with the cycles listed in table 34.2?
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Part V

Quantum chaos

You have mastered part II of this book. You can play a game of pinball, and if you
are a skilled neuroscientist, you now know how to poke rat brains. You have
learned that information about chaotic dynamics can be obtained by calculating

spectra of linear operators such as the evolution operator, and that these spectra can be
expressed in terms of periodic orbits by means of cycle expansions.

But what happens if we scatter quantum mechanical waves rather than point-like
pinballs? Is there a link between quantum-mechanical spectra and the dynamics of the
underlying classical flow? The answer is yes, in a very pleasing way - essentially the same
ζ functions and cycle expansions describe the classical chaotic dynamics, the stochastic
dynamics, and the semiclassical quantum mechanics (chapter 35).

1. We start with a lightning review of quantum mechanics (chapter 36) and then discuss
the first semiclassical (or WKB) approach to quantization (chapter 37).

2. Then the semiclassical evolution operator (chapter 38) leads to the semiclassical
trace formulas and ζ functions quantization formulas (chapter 39).

3. Their simplest applications are through trace formulas for scattering (chapter 40)
and multi-scattering (chapter 41).

4. Now that we have derived the semiclassical weight associated with every unstable
periodic orbit, we are now able to put together all ingredients that make the game
of pinball unpredictable, and compute a “chaotic” part of the helium spectrum to
shocking accuracy (chapter 42).

5. A semiclassical theory in terms of classical dynamics alone cannot be exact. Waves
interfere, diffract (chapter 43), and higher ~ corrections need to be incorporated into
the periodic orbit theory.

This part is a collaborative effort of Predrag Cvitanović, Roberto Artuso, Per Dahlqvist,
Ronnie Mainieri, Gregor Tanner, Gábor Vattay, Niall Whelan, and Andreas Wirzba.
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Chapter 35

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

So far we have learned that information about chaotic dynamics can be ob-
tained by calculating spectra of linear operators such as the evolution oper-
ator of sect. 20.2 or the associated partial differential equations such as the

Liouville equation (19.33). The spectra of these operators can be expressed in
terms of periodic orbits of the deterministic dynamics by means of periodic orbit
expansions.

But what happens quantum mechanically, i.e., if we scatter waves rather than
point-like pinballs? Can we turn the problem round and study linear PDE’s in
terms of the underlying deterministic dynamics? And, is there a link between
structures in the spectrum or the eigenfunctions of a PDE and the dynamical prop-
erties of the underlying classical flow? The answer is yes, but . . . things are be-
coming somewhat more complicated when studying 2nd or higher order linear
PDE’s. We can find classical dynamics associated with a linear PDE, just take ge-
ometric optics as a familiar example. Propagation of light follows a second order
wave equation but may in certain limits be well described in terms of geometric
rays. A theory in terms of properties of the classical dynamics alone, referred

chapter 43
to here as the semiclassical theory, will not be exact, in contrast to the classi-
cal periodic orbit formulas obtained so far. Waves exhibit new phenomena, such
as interference, diffraction, and higher ~ corrections which will only be partially
incorporated into the periodic orbit theory.
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35.1 Quantum pinball

In what follows, we will restrict the discussion to the non-relativistic Schrödinger
equation. The approach will be very much in the spirit of the early days of quan-
tum mechanics, before its wave character had been fully uncovered by Schrödinger
in the mid 1920’s. Indeed, if physicists of the period were as familiar with classical
chaos as we are today, this theory could have been developed 80 years ago. It was
the discrete nature of the hydrogen spectrum which inspired the Bohr - de Broglie
picture of the old quantum theory: one places a wave instead of a particle on a
Keplerian orbit around the hydrogen nucleus. The quantization condition is that
only those orbits contribute for which this wave is stationary; from this followed
the Balmer spectrum and the Bohr-Sommerfeld quantization which eventually led
to the more sophisticated theory of Heisenberg, Schrödinger and others. Today
we are very aware of the fact that elliptic orbits are an idiosyncracy of the Kepler
problem, and that chaos is the rule; so can the Bohr quantization be generalized
to chaotic systems?

The question was answered affirmatively by M. Gutzwiller, as late as 1971; a
chaotic system can indeed be quantized by placing a wave on each of the infinity
of unstable periodic orbits. Due to the instability of the orbits the wave does not
stay localized but leaks into neighborhoods of other periodic orbits. Contributions
of different periodic orbits interfere and the quantization condition can no longer
be attributed to a single periodic orbit. A coherent summation over the infinity of
periodic orbit contributions gives the desired spectrum.

The pleasant surprise is that the zeros of the dynamical zeta function (1.10)
derived in the context of classical chaotic dynamics,

chapter 22

1/ζ(z) =
∏

p

(1 − tp) ,

also yield excellent estimates of quantum resonances, with the quantum amplitude
associated with a given cycle approximated semiclassically by the weight

tp =
1

|Λp|
1
2

e
i
~ S p−iπmp/2 , (35.1)

whose magnitude is the square root of the classical weight (22.9)

tp =
1
|Λp|

eβAp−sTp ,

and the phase is given by the Bohr-Sommerfeld action integral S p, together with
an additional topological phase mp, the number of caustics along the periodic
trajectory, points where the naive semiclassical approximation fails.

chapter 38

In this approach, the quantal spectra of classically chaotic dynamical systems
are determined from the zeros of dynamical zeta functions, defined by cycle ex-
pansions of infinite products of form

chapter 23

1/ζ =
∏

p

(1 − tp) = 1 −
∑

f

t f −
∑

k

ck (35.2)

introQM - 10jul2006 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 35. PROLOGUE 684

with weight tp associated to every prime (non-repeating) periodic orbit (or cycle)
p.

The key observation is that the chaotic dynamics is often organized around a
few fundamental cycles. These short cycles capture the skeletal topology of the
motion in the sense that any long orbit can approximately be pieced together from
the fundamental cycles. In chapter 23 it was shown that for this reason the cy-
cle expansion (35.2) is a highly convergent expansion dominated by short cycles
grouped into fundamental contributions, with longer cycles contributing rapidly
decreasing curvature corrections. Computations with dynamical zeta functions
are rather straightforward; typically one determines lengths and stabilities of a fi-
nite number of shortest periodic orbits, substitutes them into (35.2), and estimates
the zeros of 1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace formulas
(both the exact Selberg and the semiclassical Gutzwiller trace formula) fit into
a general framework of replacing phase space averages by sums over periodic
orbits. For classical hyperbolic systems this is possible since the invariant density

chapter 39
can be represented by sum over all periodic orbits, with weights related to their
instability. The semiclassical periodic orbit sums differ from the classical ones
only in phase factors and stability weights; such differences may be traced back
to the fact that in quantum mechanics the amplitudes rather than the probabilities
are added.

The type of dynamics has a strong influence on the convergence of cycle ex-
pansions and the properties of quantal spectra; this necessitates development of
different approaches for different types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, the intermittent dynamics
of chapters 23 and 29. For generic nonhyperbolic systems (which we shall not

chapter 23
chapter 29

discuss here), with mixed phase space and marginally stable orbits, periodic orbit
summations are hard to control, and it is still not clear that the periodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the book is to demonstrate
that the cycle expansions, developed so far in classical settings, are also a powerful
tool for evaluation of quantum resonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this time in a quan-
tum version. Were the game of pinball a closed system, quantum mechanically
one would determine its stationary eigenfunctions and eigenenergies. For open
systems one seeks instead complex resonances, where the imaginary part of the
eigenenergy describes the rate at which the quantum wave function leaks out of
the central scattering region. This will turn out to work well, except who truly
wants to know accurately the resonances of a quantum pinball?

chapter 40
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Figure 35.1: A typical collinear helium trajectory in
the r1 – r2 plane; the trajectory enters along the r1 axis
and escapes to infinity along the r2 axis.
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35.2 Quantization of helium

Once we have derived the semiclassical (35.1) weight associated with the periodic
orbit p, we will finally be in position to accomplish something altogether remark-
able. We are now able to put together all ingredients that make the game of pinball
unpredictable, and compute a “chaotic” part of the helium spectrum to shocking
accuracy. From the classical dynamics point of view, helium is an example of
Poincaré’s dreaded and intractable 3-body problem. Undaunted, we forge ahead
and consider the collinear helium, with zero total angular momentum, and the
two electrons on the opposite sides of the nucleus.

− −
++

We set the electron mass to 1, the nucleus mass to ∞, the helium nucleus charge
chapter 42

to 2, the electron charges to -1. The Hamiltonian is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
−

2
r2

+
1

r1 + r2
. (35.3)

Due to the energy conservation, only three of the phase space coordinates (r1, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (r1, r2), ri ≥ 0
quadrant, figure 35.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in the (r1, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb poten-
tial. The classical collinear helium is also a repeller; almost all of the classical
trajectories escape. Miraculously, the symbolic dynamics for the survivors turns
out to be binary, just as in the 3-disk game of pinball, so we know what cycles
need to be computed for the cycle expansion (1.11). A set of shortest cycles up to
a given symbol string length then yields an estimate of the helium spectrum. This

chapter 42
simple calculation yields surprisingly accurate eigenvalues; even though the cycle
expansion was based on the semiclassical approximation (35.1) which is expected
to be good only in the classical large energy limit, the eigenenergies are good to
1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulate some basic notions
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of quantum mechanics; after having defined the main quantum objects of interest,
the quantum propagator and the Green’s function, we will relate the quantum
propagation to the classical flow of the underlying dynamical system. We will then
proceed to construct semiclassical approximations to the quantum propagator and
the Green’s function. A rederivation of classical Hamiltonian dynamics starting
from the Hamilton-Jacobi equation will be offered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zeta function as a sum and as
a product over periodic orbits will be given in chapter 39. In subsequent chapters
we buttress our case by applying and extending the theory: a cycle expansion
calculation of scattering resonances in a 3-disk billiard in chapter 40, the spectrum
of helium in chapter 42, and the incorporation of diffraction effects in chapter 43.

Commentary

Remark 35.1. Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian mechanics. For that, Arnol’d
monograph [1] is the essential reference. Ozorio de Almeida’s monograph [6] offers a
compact introduction to the aspects of Hamiltonian dynamics required for the quantization
of integrable and nearly integrable systems, with emphasis on periodic orbits, normal
forms, catastrophy theory and torus quantization. The book by Brack and Bhaduri [2]
is an excellent introduction to the semiclassical methods. Gutzwiller’s monograph [3]
is an advanced introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing through for
its many insights and erudite comments on quantum and celestial mechanics even if one
is not working on problems of quantum chaos. More suitable as a graduate course text is
Reichl’s exposition [7].

This book does not discuss the random matrix theory approach to chaos in quantal
spectra; no randomness assumptions are made here, rather the goal is to milk the deter-
ministic chaotic dynamics for its full worth. The book concentrates on the periodic orbit
theory. For an introduction to “quantum chaos” that focuses on the random matrix theory
the reader is referred to the excellent monograph by Haake [4], among others.

Remark 35.2. The dates. Schrödinger’s first wave mechanics paper [8] (hydrogen
spectrum) was submitted 27 January 1926. Submission date for Madelung’s ‘quantum
theory in hydrodynamical form’ paper [5] was 25 October 1926.
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Chapter 36

Quantum mechanics
- the short short version

We start with a review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula.

In coordinate representation, the time evolution of a quantum mechanical
wave function is governed by the Schrödinger equation

i~
∂

∂t
ψ(q, t) = Ĥ

(
q,
~

i
∂

∂q

)
ψ(q, t), (36.1)

where the Hamilton operator Ĥ(q,−i~∂q) is obtained from the classical Hamilto-
nian by substituting p→ −i~∂q. Most of the Hamiltonians we shall consider here
are of the separable form

H(q, p) = T (p) + V(q) , T (p) = p2/2m , (36.2)

describing dynamics of a particle in a D-dimensional potential V(q). For time-
independent Hamiltonians we are interested in finding stationary solutions of the
Schrödinger equation of the form

ψn(q, t) = e−iEnt/~φn(q), (36.3)

where En are the eigenenergies of the time-independent Schrödinger equation

Ĥφ(q) = Eφ(q) . (36.4)

For bound systems, the spectrum is discrete and the eigenfunctions form an
orthonormal,∫

dq φn(q)φ∗m(q) = δnm , (36.5)
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and complete,∑
n

φn(q)φ∗n(q′) = δ(q − q′) , (36.6)

set of functions in a Hilbert space. Here and throughout the text,∫
dq =

∫
dq1dq2...dqD. (36.7)

For simplicity, we will assume that the system is bound, although most of the
results will be applicable to open systems, where one has complex resonances

chapter 40
instead of real energies, and the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/~φn(q) , (36.8)

where the expansion coefficient cn is given by the projection of the initial wave
function ψ(q, 0) onto the nth eigenstate

cn =

∫
dq φ∗n(q)ψ(q, 0). (36.9)

By substituting (36.9) into (36.8), we can cast the evolution of a wave function
into a multiplicative form

ψ(q, t) =

∫
dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEnt/~φ∗n(q′) (36.10)

called the quantum evolution operator, or the propagator. Applied twice, first for
time t1 and then for time t2, it propagates the initial wave function from q′ to q′′,
and then from q′′ to q

K(q, q′, t1 + t2) =

∫
dq′′ K(q, q′′, t2)K(q′′, q′, t1) (36.11)

forward in time (hence the name ‘propagator’). In non-relativistic quantum me-
chanics, the range of q′′ is infinite, so that the wave can propagate at any speed;
in relativistic quantum mechanics, this is rectified by restricting the propagation
to the forward light cone.

Because the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it too satisfies this equation

i~
∂

∂t
K(q, q′, t) = Ĥ

(
q,

i
~

∂

∂q

)
K(q, q′, t) , (36.12)

and is thus a wave function defined for t ≥ 0; from the completeness relation
(36.6), we obtain the boundary condition at t = 0:

lim
t→0+

K(q, q′, t) = δ(q − q′) . (36.13)
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The propagator thus represents the time-evolution of a wave packet starting out as
a configuration space delta-function localized at the point q′ at initial time t = 0.

For time-independent Hamiltonians, the time dependence of the wave func-
tions is known as soon as the eigenenergies En and eigenfunctions φn have been
determined. With time dependence taken care of, it makes sense to focus on the
Green’s function, which is the Laplace transform of the propagator

G(q, q′, E + iε) =
1
i~

∫ ∞

0
dt e

i
~Et− ε~ tK(q, q′, t) =

∑
n

φn(q)φ∗n(q′)
E − En + iε

. (36.14)

Here, ε is a small positive number, ensuring the existence of the integral. The
eigenenergies show up as poles in the Green’s function with residues correspond-
ing to the wave function amplitudes. If one is only interested in spectra, one may
restrict oneself to the (formal) trace of the Green’s function,

tr G(q, q′, E) =

∫
dq G(q, q, E) =

∑
n

1
E − En

, (36.15)

where E is complex, with a positive imaginary part, and we have used the eigen-
function orthonormality (36.5). This trace is formal, because the sum in (36.15)
is often divergent. We shall return to this point in sects. 39.1.1 and 39.1.2.

A useful characterization of the set of eigenvalues is given in terms of the
density of states, with a delta function peak at each eigenenergy, figure 36.1 (a),

d(E) =
∑

n

δ(E − En). (36.16)

Using the identity
exercise 36.1

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(36.17)

we can express the density of states in terms of the trace of the Green’s function.
That is,

d(E) =
∑

n

δ(E − En) = − lim
ε→0

1
π

Im tr G(q, q′, E + iε). (36.18)

As we shall see (after “some” work), a semiclassical formula for the right-hand-
section 39.1.1

side of this relation yields the quantum spectrum in terms of periodic orbits.

The density of states can be written as the derivative d(E) = dN(E)/dE of the
spectral staircase function

N(E) =
∑

n

Θ(E − En) (36.19)

which counts the number of eigenenergies below E, figure 36.1 (b). Here Θ is the
Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (36.20)

The spectral staircase is a useful quantity in many contexts, both experimental
and theoretical. This completes our lightning review of quantum mechanics.
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Figure 36.1: Schematic picture of a) the density
of states d(E), and b) the spectral staircase func-
tion N(E). The dashed lines denote the mean den-
sity of states d̄(E) and the average number of states
N̄(E) discussed in more detail in sect. 39.1.1.

Exercises

36.1. Dirac delta function, Lorentzian representation.
Derive the representation (36.17)

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(36.21)

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

36.2. Green’s function. Verify Green’s function Laplace
transform (36.14),

G(q, q′, E + iε) =
1
i~

∫ ∞

0
dt e

i
~ Et− ε

~ tK(q, q′, t)

=
∑ φn(q)φ∗n(q′)

E − En + iε
,

argue that positive ε is needed (hint: read a good quan-
tum mechanics textbook).

36.3. Scalar field propagator. [M. Srednicki, Quan-
tum Field Theory, Part I arXiv:hep-th/0409035, prob-
lem 8.2]
Starting with

∆(x − x′) =

∫
d4k

(2π)4

eik(x−x′)

k2 + m2 − iε
, (36.22)

verify

∆(x − x′) = i
∫

d̃k eik·(x−x′)−iω|t−t′ | (36.23)

= iθ(t − t′)
∫

d̃keik(x−x′) + iθ(t′ − t)
∫

d̃ke−ik(x−x′) .(36.24)

There should be an i in eq. (36.23).
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Chapter 37

WKB quantization

The wave function for a particle of energy E moving in a constant potential V
is

ψ = Ae
i
~ pq (37.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/~, and
p = ±

√
2m(E − V) is the momentum. Here we generalize this solution to the case

where the potential varies slowly over many wavelengths. This semiclassical (or
WKB) approximate solution of the Schrödinger equation fails at classical turning
points, configuration space points where the particle momentum vanishes. In such
neighborhoods, where the semiclassical approximation fails, one needs to solve
locally the exact quantum problem, in order to compute connection coefficients
which patch up semiclassical segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classi-
cal mechanics computations yield surprisingly accurate estimates of quantal spec-
tra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs of
coordinate points, and the topological phase loss at every turning point, a topolog-
ical property of the classical flow that plays no role in classical mechanics.

37.1 WKB ansatz

If the kinetic term T (p) can be separated as in (36.2), the time-independent Schrödinger
equation takes form

−
~2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) . (37.2)

Consider a time-independent Schrödinger equation in 1 spatial dimension, with
potential V(q) growing sufficiently fast as q → ±∞ so that the classical particle
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Figure 37.1: A 1-dimensional potential with two turn-
ing points at fixed energy E.

motion is confined for any E. Define the local momentum p(q) and the local
wavenumber k(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = ~k(q) . (37.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (37.4)

sugests that the wave function be written as ψ = Ae
i
~S , A and S real functions of

q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S ′)2 = p2 + ~2 A′′

A
(37.5)

S ′′A + 2S ′A′ =
1
A

d
dq

(S ′A2) = 0 . (37.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation consists
of dropping the ~2 term in (37.5). Recalling that p = ~k, this amounts to assuming
that k2 � A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical, ~ � 1 approximation to quantum mechanics.

Setting ~ = 0 and integrating (37.5) we obtain the phase increment of a wave
function initially at q, at energy E

S (q, q′, E) =

∫ q

q′
dq′′p(q′′) . (37.7)

This integral over a particle trajectory of constant energy, called the action, will
play a key role in all that follows. The integration of (37.6) is even easier

A(q) =
C

|p(q)|
1
2

, C = |p(q′)|
1
2ψ(q′) , (37.8)

where the integration constant C is fixed by the value of the wave function at the
initial point q′. The WKB (or semiclassical) ansatz wave function is given by

ψsc(q, q′, E) =
C

|p(q)|
1
2

e
i
~S (q,q′,E) . (37.9)
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Figure 37.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′, E)→ (q).

The WKB ansatz generalizes the free motion wave function (37.1), with the
probability density |A(q)|2 for finding a particle at q now inversely proportional
to the velocity at that point, and the phase 1

~q p replaced by 1
~

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except at any turning point q0,
figure 37.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (37.10)

so that the assumption that k2 � A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In the q coordinate, the turning points are defined by the zero kinetic energy con-
dition (see figure 37.1), and the motion appears singular. This is not so in the full
phase space: the trajectory in a smooth confining 1-dimensional potential is al-
ways a smooth loop (see figure 37.2), with the “special” role of the turning points
qL, qR seen to be an artifact of a particular choice of the (q, p) coordinate frame.
Maslov proceeds from the initial point (q′, p′) to a point (qA, pA) preceding the
turning point in the ψ(q) representation, then switch to the momentum represen-
tation

ψ̃(p) =
1
√

2π~

∫
dq e−

i
~qpψ(q) , (37.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1
√

2π~

∫
dp e

i
~qp ψ̃(p) , (37.12)

and so on.

The only rub is that one usually cannot evaluate these transforms exactly. But,
as the WKB wave function (37.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in ~ accuracy. This is accomplished by the
method of stationary phase.
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37.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type

I =

∫
dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (37.13)

where s is a real parameter, and Φ(x) is a real-valued function. In our applications
s = 1/~ will always be assumed large.

For large s, the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called the method of stationary phase. Consider
first the case of a 1-dimensional integral, and expand Φ(x0 + δx) around x0 to
second order in δx,

I =

∫
dx A(x) eis(Φ(x0)+ 1

2 Φ′′(x0)δx2+...) . (37.14)

Assume (for time being) that Φ′′(x0) , 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =

±1. If in the neighborhood of x0 the amplitude A(x) varies slowly over many
oscillations of the exponential function, we may retain the leading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (37.15)

The one integral that we know how to integrate is the Gaussian integral
∫

dx e−
x2
2b =

√
2πb For for pure imaginary b = i a one gets instead the Fresnel integral formula

exercise 37.1
1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (37.16)

we obtain

I ≈ A(x0)
∣∣∣∣∣ 2π
sΦ′′(x0)

∣∣∣∣∣1/2 eisΦ(x0)±i π4 , (37.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

37.3 WKB quantization

We can now evaluate the Fourier transforms (37.11), (37.12) to the same order in
~ as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C
√

2π~

∫
dq

|p(q)|
1
2

e
i
~ (S (q)−qp)

≈
C
√

2π~

e
i
~ (S (q∗)−q∗p)

|p(q∗)|
1
2

∫
dq e

i
2~ S ′′(q∗)(q−q∗)2

, (37.18)
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where q∗ is given implicitly by the stationary phase condition

0 = S ′(q∗) − p = p(q∗) − p

and the sign of S ′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(37.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)|
1
2

e
i
~ [S (q∗)−q∗p]+ iπ

4 sgn[S ′′(q∗)] . (37.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurs - p(q∗) is
finite, and so is the acceleration p′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃ (p) = S (q(p)) − q(p)p

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d
dq

q = 1 =
dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (37.20)

As the classical trajectory crosses qL, the weight in (37.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV ′(qL) , (37.21)

is finite, and S ′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, includ-
ing (qA, pA). Hence, the phase loss in (37.19) is −π4 . To go back from the p to
the q representation, just turn figure 37.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
~ (S̃ (p∗)+qp∗)− iπ

4

|q∗(p∗)|
1
2

ψ̃sc(p∗) =
C

|p(q)|
1
2

e
i
~ S (q)− iπ

2 . (37.22)

The extra |p′(q∗)|1/2 weight in (37.19) is cancelled by the |q′(p∗)|1/2 term, by the
Legendre relation (37.20).

The message is that going through a smooth potential turning point the WKB
wave function phase slips by −π2 . This is equally true for the right and the left
turning points, as can be seen by rotating figure 37.2 by 180o, and flipping co-
ordinates (q, p) → (−q,−p). While a turning point is not an invariant concept
(for a sufficiently short trajectory segment, it can be undone by a 45o turn), for a
complete period (q, p) = (q′, p′) the total phase slip is always −2 · π/2, as a loop
always has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. With the normalization (37.8),
we obtain

ψ(q′) = ψ(q) =

∣∣∣∣∣ p(q′)
p(q)

∣∣∣∣∣ 1
2

ei( 1
~

∮
p(q)dq−π)ψ(q′) .
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Figure 37.3: S p(E), the action of a periodic orbit p at
energy E, equals the area in the phase space traced out
by the 1-dof trajectory.

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must be a
multiple of 2π,

1
~

∮
p(q)dq = 2π

(
n +

m
4

)
, (37.23)

where m is the number of turning points along the trajectory - for this 1-dof prob-
lem, m = 2.

The action integral in (37.23) is the area (see figure 37.3) enclosed by the
classical phase space loop of figure 37.2, and the quantization condition says that
eigen-energies correspond to loops whose action is an integer multiple of the unit
quantum of action, Planck’s constant ~. The extra topological phase, which, al-
though it had been discovered many times in centuries past, had to wait for its
most recent quantum chaotic (re)birth until the 1970’s. Despite its derivation in a
noninvariant coordinate frame, the final result involves only canonically invariant
classical quantities, the periodic orbit action S , and the topological index m.

37.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 37.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n + 1/2) (37.24)

turns out to be the exact harmonic oscillator spectrum. The stationary phase condi-
tion (37.18) keeps V(q) accurate to order q2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the ~2 term in (37.5) as a short wavelength
approximation.
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Figure 37.4: Airy function Ai(q).

37.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by a π/2 for each turning point.
This π/2 came from a

√
i in the Fresnel integral (37.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (37.14) fails whenever Φ′′(x) = 0, or, in
our the WKB ansatz (37.18), whenever the momentum p′(q) = S ′′(q) vanishes.
In that case we have to go beyond the quadratic approximation (37.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) , 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞

dx eisΦ′′′(x0) (x−x0)3

6 . (37.25)

Airy functions can be represented by integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3
3 ) . (37.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization
condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q − q0)V ′(q0) + · · · ,

solving the Airy equation (with V ′(q0)→ z after appropriate rescalings),

ψ′′ = zψ , (37.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of the WKB connection formulas. That requires
staring at Airy functions (see (37.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization.
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The physical origin of the topological phase is illustrated by the shape of the
Airy function, figure 37.4. For a potential with a finite slope V ′(q) the wave func-
tion penetrates into the forbidden region, and accommodates a bit more of a sta-
tionary wavelength then what one would expect from the classical trajectory alone.
For infinite walls (i.e., billiards) a different argument applies: the wave function
must vanish at the wall, and the phase slip due to a specular reflection is −π, rather
than −π/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in the q-representation the WKB
ansatz at a turning point is singular, along the p direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow the classical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in the p-space until you encounter
the next p-space turning point; go back to the q-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extra e−iπ/4 phase shift, for
a total of e−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning point a, V(q) =

V(a) + (q − a)V ′(a) + · · · , and solve the quantum mechanical constant linear po-
tential V(q) = qF problem exactly, in terms of an Airy function. An approximate
wave function is then patched together from an Airy function at each turning point,
and the WKB ansatz wave-function segments in-between via the WKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such as
wedges, bifurcation points, creeping and tunneling: patch together the WKB seg-
ments by means of exact QM solutions to local approximations to singular points.

Commentary

Remark 37.1. Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso that D in (38.36) has no zero eigen-
values. The zero eigenvalue case would require going beyond the Gaussian saddle-point
approximation, which typically leads to approximations of the integrals in terms of Airy
functions [1].

exercise 37.4
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Remark 37.2. Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization con-
dition was the key result of the old quantum theory, in which the electron trajectories
were purely classical. They were lucky - the symmetries of the Kepler problem work out
in such a way that the total topological index m = 4 amount effectively to numbering the
energy levels starting with n = 1. They were unlucky - because the hydrogen m = 4
masked the topological index, they could never get the helium spectrum right - the semi-
classical calculation had to wait for until 1980, when Leopold and Percival [2] added the
topological indices.
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Exercises

37.1. WKB ansatz. Try to show that no other
ansatz other than (38.1) gives a meaningful definition of
the momentum in the ~→ 0 limit.

37.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2ei π4

a
|a| .

37.3. Sterling formula for n!. Compute an approximate
value of n! for large n using the stationary phase approx-
imation. Hint: n! =

∫ ∞
0 dt tne−t.

37.4. Airy function for large arguments. Impor-
tant contributions as stationary phase points may arise

from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-

ners, waves creeping around obstacles, etc.). In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3

3 ) . (37.28)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the sta-
tionary phase approximation breaks down.
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Chapter 38

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian, Ara-
bic, Chaldee, Syrian and sundry Indian dialects. At age
seventeen he began to think about optics, and worked out
his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanović)

Semiclassical approximations to quantum mechanics are valid in the regime
where the de Broglie wavelength λ ∼ ~/p of a particle with momentum
p is much shorter than the length scales across which the potential of the

system changes significantly. In the short wavelength approximation the particle
is a point-like object bouncing off potential walls, the same way it does in the
classical mechanics. The novelty of quantum mechanics is the interference of the
point-like particle with other versions of itself traveling along different classical
trajectories, a feat impossible in classical mechanics. The short wavelength – or

remark 38.1
semiclassical – formalism is developed by formally taking the limit ~ → 0 in
quantum mechanics in such a way that quantum quantities go to their classical
counterparts.

38.1 Hamilton-Jacobi theory

We saw in chapter 37 that for a 1-degree of freedom particle moving in a slowly
varying potential, it makes sense to generalize the free particle wave function
(37.1) to a wave function

ψ(q, t) = A(q, t)eiR(q,t)/~ , (38.1)

with slowly varying (real) amplitude A(q, t) and rapidly varying (real) phase R(q, t).
its phase and magnitude. The time evolution of the phase and the magnitude of ψ

exercise 37.1
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follows from the Schrödinger equation (36.1)(
i~
∂

∂t
+
~2

2m
∂2

∂q2 − V(q)
)
ψ(q, t) = 0 . (38.2)

Assume A , 0, and separate out the real and the imaginary parts. We get two
equations: The real part governs the time evolution of the phase

∂R
∂t

+
1

2m

(
∂R
∂q

)2

+ V(q) −
~2

2m
1
A
∂2

∂q2 A = 0 , (38.3)

and the imaginary part the time evolution of the amplitude
exercise 38.6
exercise 38.7

∂A
∂t

+
1
m

D∑
i=1

∂A
∂qi

∂R
∂qi

+
1

2m
A
∂2R
∂q2 = 0 . (38.4)

exercise 38.8

In this way a linear PDE for a complex wave function is converted into a set of
coupled non-linear PDE’s for real-valued functions R and A. The coupling term
in (38.3) is, however, of order ~2 and thus small in the semiclassical limit ~→ 0.

Now we generalize the Wentzel-Kramers-Brillouin (WKB) ansatz for 1-degree
of freedom dynamics to the Van Vleck ansatz in arbitrary dimension: we assume
the magnitude A(q, t) varies slowly compared to the phase R(q, t)/~, so we drop
the ~-dependent term. In this approximation the phase R(q, t) and the correspond-
ing “momentum field” ∂R

∂q (q, t) can be determined from the amplitude independent
equation

∂R
∂t

+ H
(
q,
∂R
∂q

)
= 0 . (38.5)

In classical mechanics this equation is known as the Hamilton-Jacobi equation.
We will refer to this step (as well as all leading order in ~ approximations to
follow) as the semiclassical approximation to wave mechanics, and from now on
work only within this approximation.

38.1.1 Hamilton’s equations

We now solve the nonlinear partial differential equation (38.5) in a way the 17
year old Hamilton might have solved it. The main step is the step leading from
the nonlinear PDE (38.9) to Hamilton’s ODEs (38.10). If you already understand
the Hamilton-Jacobi theory, you can safely skip this section.

fast track:

sect. 38.1.3, p. 706

The wave equation (36.1) describes how the wave function ψ evolves with
time, and if you think of ψ as an (infinite dimensional) vector, position q plays a
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Figure 38.1: (a) A phase R(q, t) plotted as a
function of the position q for two infinitesimally
close times. (b) The phase R(q, t) transported by
a swarm of “particles”. The Hamilton’s equations
(38.10) construct R(q, t) by transporting q0 → q(t)
and the slope of R(q0, t0), that is p0 → p(t).

f
t

0
),p(q

0

S(q,t)

+ dt0t

t0t0

q
0
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0 0
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qt
0
),p(q

0
t

0
),p(q

0

p

q
p

0

q

dS

0q
0

q + dq

slope 

(a) (b)

role of an index. In one spatial dimension the phase R plotted as a function of the
position q for two different times looks something like figure 38.1 (a): The phase
R(q, t0) deforms smoothly with time into the phase R(q, t) at time t. Hamilton’s
idea was to let a swarm of particles transport R and its slope ∂R/∂q at q at initial
time t = t0 to a corresponding R(q, t) and its slope at time t, figure 38.1 (b). For
notational convenience, define

pi = pi(q, t) :=
∂R
∂qi

, i = 1, 2, . . . ,D . (38.6)

We saw earlier that (38.3) reduces in the semiclassical approximation to the Hamilton-
Jacobi equation (38.5). To make life simple, we shall assume throughout this
chapter that the Hamilton’s function H(q, p) does not depend explicitly on time t,
i.e., the energy is conserved.

To start with, we also assume that the function R(q, t) is smooth and well
defined for every q at the initial time t. This is true for sufficiently short times;
as we will see later, R develops folds and becomes multi-valued as t progresses.
Consider now the variation of the function R(q, t) with respect to independent
infinitesimal variations of the time and space coordinates dt and dq, figure 38.1 (a)

dR =
∂R
∂t

dt +
∂R
∂q

dq . (38.7)

Dividing through by dt and substituting (38.5) we obtain the total derivative of
R(q, t) with respect to time along the as yet arbitrary direction q̇, that is,

dR
dt

(q, q̇, t) = −H(q, p) + q̇ · p . (38.8)

Note that the “momentum” p = ∂R/∂q is a well defined function of q and t.
In order to integrate R(q, t) with the help of (38.8) we also need to know how
p = ∂R/∂q changes along q̇. Varying p with respect to independent infinitesimal
variations dt and dq and substituting the Hamilton-Jacobi equation (38.5) yields

d
∂R
∂q

=
∂2R
∂q∂t

dt +
∂2R
∂q2 dq = −

(
∂H
∂q

+
∂H
∂p

∂p
∂q

)
dt +

∂p
∂q

dq .
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Note that H(q, p) depends on q also through p(q, t) = ∂R/∂q, hence the ∂H
∂p term

in the above equation. Dividing again through by dt we get the time derivative of
∂R/∂q, that is,

ṗ(q, q̇, t) +
∂H
∂q

=

(
q̇ −

∂H
∂p

)
∂p
∂q

. (38.9)

Time variation of p depends not only on the yet unknown q̇, but also on the second
derivatives of R with respect to q with yet unknown time dependence. However, if
we choose q̇ (which was arbitrary, so far) such that the right hand side of the above
equation vanishes, we can calculate the function R(q, t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary differential equations

q̇ =
∂H(q, p)
∂p

, ṗ = −
∂H(q, p)
∂q

(38.10)

with initial conditions

q(t0) = q′, p(t0) = p′ =
∂R
∂q

(q′, t0). (38.11)

We recognize (38.10) as Hamilton’s equations of motion of classical mechanics.
section 8.1

The miracle happens in the step leading from (38.5) to (38.9) – if you missed it,
you have missed the point. Hamilton derived his equations contemplating optics
- it took him three more years to realize that all of Newtonian dynamics can be
profitably recast in this form.

q̇ is no longer an independent function, and the phase R(q, t) can now be com-
puted by integrating equation (38.8) along the trajectory (q(t), p(t))

R(q, t) = R(q′, t0) + R(q, t; q′, t0)

R(q, t; q′, t0) =

∫ t

t0
dτ

[
q̇(τ) · p(τ) − H(q(τ), p(τ))

]
, (38.12)

with the initial conditions (38.11). In this way the Hamilton-Jacobi partial differ-
ential equation (38.3) is solved by integrating a set of ordinary differential equa-
tions, Hamilton’s equations. In order to determine R(q, t) for arbitrary q and t we
have to find a q′ such that the trajectory starting in (q′, p′ = ∂qR(q′, t0)) reaches
q in time t and then compute R along this trajectory, see figure 38.1 (b). The
integrand of (38.12) is known as the Lagrangian,

L(q, q̇, t) = q̇ · p − H(q, p, t) . (38.13)

A variational principle lurks here, but we shall not make much fuss about it as yet.

Throughout this chapter we assume that the energy is conserved, and that the
only time dependence of H(q, p) is through (q(τ), p(τ)), so the value of R(q, t; q′, t0)
does not depend on t0, but only on the elapsed time t− t0. To simplify notation we
will set t0 = 0 and write

R(q, q′, t) = R(q, t; q′, 0) .
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The initial momentum of the particle must coincide with the initial momentum of
the trajectory connecting q′ and q:

p′ =
∂

∂q′
R(q′, 0) = −

∂

∂q′
R(q, q′, t). (38.14)

The function R(q, q′, t) is known as Hamilton’s principal function.
exercise 38.5
exercise 38.9

To summarize: Hamilton’s achievement was to trade in the Hamilton-Jacobi
partial differential equation (38.5) describing the evolution of a wave front for a
finite number of ordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integral (38.12) evaluated along the phase space trajec-
tory (q(τ), p(τ)).

38.1.2 Action

Before proceeding, we note in passing a few facts about Hamiltonian dynamics
that will be needed for the construction of semiclassical Green’s functions. If the
energy is conserved, the

∫
H(q, p)dτ integral in (38.12) is simply Et. The first

term, or the action

S (q, q′, E) =

∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (38.15)

is integrated along a trajectory from q′ to q with a fixed energy E. By (38.12) the
action is a Legendre transform of Hamilton’s principal function

S (q, q′, E) = R(q, q′, t) + Et . (38.16)

The time of flight t along the trajectory connecting q′ → q with fixed energy E is
given by

∂

∂E
S (q, q′, E) = t . (38.17)

The way to think about the formula (38.16) for action is that the time of flight is a
function of the energy, t = t(q, q′, E). The left hand side is explicitly a function of
E; the right hand side is an implicit function of E through energy dependence of
the flight time t.

Going in the opposite direction, the energy of a trajectory E = E(q, q′, t)
connecting q′ → q with a given time of flight t is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (38.18)

and the second variations of R and S are related in the standard way of Legendre
transforms:

∂2

∂t2 R(q, q′, t)
∂2

∂E2 S (q, q′, E) = −1 . (38.19)
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A geometric visualization of what the phase evolution looks like is very helpful
in understanding the origin of topological indices to be introduced in what fol-
lows. Given an initial phase R(q, t0), the gradient ∂qR defines a D-dimensional

section 38.1.4
Lagrangian manifold (q, p = ∂qR(q)) in the full 2D dimensional phase space
(q, p). The defining property of this manifold is that any contractible loop γ in it
has zero action,

0 =

∮
γ

dq · p,

a fact that follows from the definition of p as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property and map a Lagrangian man-
ifold into a Lagrangian manifold at a later time. t

Returning back to the main line of our argument: so far we have determined
the wave function phase R(q, t). Next we show that the velocity field given by the
Hamilton’s equations together with the continuity equation determines the ampli-
tude of the wave function.

38.1.3 Density evolution

To obtain the full solution of the Schrödinger equation (36.1), we also have to
integrate (38.4).

ρ(q, t) := A2 = ψ∗ψ

plays the role of a density. To the leding order in ~, the gradient of R may be
interpreted as the semiclassical momentum density

ψ(q, t)∗(−i~
∂

∂q
)ψ(q, t) = −i~A

∂A
∂q

+ ρ
∂R
∂q

.

Evaluated along the trajectory (q(t), p(t)), the amplitude equation (38.4) is equiv-
alent to the continuity equation (19.32) after multiplying (38.4) by 2A, that is

∂ρ

∂t
+

∂

∂qi
(ρvi) = 0 . (38.20)

Here, vi = q̇i = pi/m denotes a velocity field, which is in turn determined by the
gradient of R(q, t), or the Lagrangian manifold (q(t), p(t) = ∂qR(q, t)),

v =
1
m
∂

∂q
R(q, t).

As we already know how to solve the Hamilton-Jacobi equation (38.5), we can
also solve for the density evolution as follows:

The density ρ(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectories q(t) are solutions
of Hamilton’s equations with initial conditions given by (q(0) = q′, p(0) = p′ =

∂qR(q′, 0)).
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Figure 38.2: Density evolution of an initial surface
(q′, p′ = ∂qR(q′, 0) into (q(t), p(t)) surface time t later,
sketched in 1 dimension. While the number of trajec-
tories and the phase space Liouville volume are con-
served, the density of trajectories projected on the q
coordinate varies; trajectories which started in dq′ at
time zero end up in the interval dq.

If we take a small configuration space volume dDq around some point q at time
t, then the number of particles in it is ρ(q, t)dDdq. They started initially in a small
volume dDq′ around the point q′ of the configuration space. For the moment, we
assume that there is only one solution, the case of several paths will be considered
below. The number of particles at time t in the volume is the same as the number
of particles in the initial volume at t = 0,

ρ(q(t), t)dDq = ρ(q′, 0)dDq′ ,

see figure 38.2. The ratio of the initial and the final volumes can be expressed as

ρ(q(t), t) =

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣ ρ(q′, 0) . (38.21)

As we know how to compute trajectories (q(t), p(t)), we know how to compute
section 19.2

this Jacobian and, by (38.21), the density ρ(q(t), t) at time t.

38.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at
time t. Consider first the case when our initial wave function can be written in
terms of single-valued functions A(q′, 0) and R(q′, 0). For sufficiently short times,
R(q, t) will remain a single-valued function of q, and every dDq configuration
space volume element keeps its orientation. The evolved wave function is in the
semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/~ =

√
det

∂q′

∂q
A(q′, 0)ei(R(q′,0)+R(q,q′,t))/~

=

√
det

∂q′

∂q
eiR(q,q′,t)/~ ψ(q′, 0) .

As the time progresses the Lagrangian manifold ∂qR(q, t) can develop folds, so
for longer times the value of the phase R(q, t) is not necessarily unique; in gen-
eral more than one trajectory will connect points q and q′ with different phases
R(q, q′, t) accumulated along these paths, see figure 38.3.
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We thus expect in general a collection of different trajectories from q′ to q
which we will index by j, with different phase increments R j(q, q′, t). The hy-
pothetical particles of the density flow at a given configuration space point can
move with different momenta p = ∂qR j(q, t). This is not an ambiguity, since in
the full (q, p) phase space each particle follows its own trajectory with a unique
momentum.

Whenever the Lagrangian manifold develops a fold, the density of the phase
space trajectories in the fold projected on the configuration coordinates diverges.
As illustrated in figure 38.3, when the Lagrangian manifold develops a fold at
q = q1; the volume element dq1 in the neighborhood of the folding point is pro-
portional to

√
dq′ instead of dq′. The Jacobian ∂q′/∂q diverges like 1/

√
q1 − q(t)

when computed along the trajectory going trough the folding point at q1. After
the folding the orientation of the interval dq′ has changed when being mapped
into dq2; in addition the function R, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinct trajectories starting from
different initial points q′ can now reach the same final point q2. (That is, the point
q′ may have more than one pre-image.) The projection of a simple fold, or of an
envelope of a family of phase space trajectories, is called a caustic; this expres-
sion comes from the Greek word for “capable of burning,” evoking the luminous
patterns that one observes swirling across the bottom of a swimming pool.

The folding also changes the orientation of the pieces of the Lagrangian man-
ifold (q, ∂qR(q, t)) with respect to the initial manifold, so the eigenvalues of the
Jacobian determinant change sign at each fold crossing. We can keep track of the
signs by writing the Jacobian determinant as

det
∂q′

∂q

∣∣∣∣∣
j
= e−iπm j(q,q′,t)

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣
j
,

where m j(q, q′, t) counts the number of sign changes of the Jacobian determinant
on the way from q′ to q along the trajectory indexed with j, see figure 38.3. We
shall refer to the integer m j(q, q′, t) as the topological of the trajectory. So in
general the semiclassical approximation to the wave function is thus a sum over
possible trajectories that start at any inital q′ and end in q in time t

ψsc(q, t) =

∫
dq′

∑
j

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2
j

eiR j(q,q′,t)/~−iπm j(q,q′,t)/2ψ(q′j, 0) , (38.22)

each contribution weighted by corresponding density, phase increment and the
topological index.

That the correct topological index is obtained by simply counting the number
of eigenvalue sign changes and taking the square root is not obvious - the careful
argument requires that quantum wave functions evaluated across the folds remain
single valued.
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Figure 38.3: Folding of the Lagrangian surface
(q, ∂qR(q, t)).

38.2 Semiclassical propagator

We saw in chapter 36 that the evolution of an initial wave function ψ(q, 0) is com-
pletely determined by the propagator (36.10). As K(q, q′, t) itself satisfies the
Schrödinger equation (36.12), we can treat it as a wave function parameterized
by the configuration point q′. In order to obtain a semiclassical approximation to
the propagator we follow now the ideas developed in the last section. There is,
however, one small complication: the initial condition (36.13) demands that the
propagator at t = 0 is a δ-function at q = q′, that is, the amplitude is infinite at
q′ and the phase is not well defined. Our hypothetical cloud of particles is thus
initially localized at q = q′ with any initial velocity. This is in contrast to the situ-
ation in the previous section where we assumed that the particles at a given point q
have well defined velocity (or a discrete set of velocities) given by q̇ = ∂pH(q, p).
We will now derive at a semiclassical expression for K(q, q′, t) by considering the
propagator for short times first, and extrapolating from there to arbitrary times t.

38.2.1 Short time propagator

For infinitesimally short times δt away from the singular point t = 0 we assume
that it is again possible to write the propagator in terms of a well defined phase
and amplitude, that is

K(q, q′, δt) = A(q, q′, δt)e
i
~R(q,q′,δt) .

As all particles start at q = q′, R(q, q′, δt) will be of the form (38.12), that is

R(q, q′, δt) = pq̇δt − H(q, p)δt , (38.23)

with q̇ ≈ (q−q′)/δt. For Hamiltonians of the form (36.2) we have q̇ = p/m, which
leads to

R(q, q′, δt) =
m(q − q′)2

2δt
− V(q)δt .

Here V can be evaluated any place along the trajectory from q to q′, for example
at the midway point V((q+q′)/2). Inserting this into our ansatz for the propagator
we obtain

Ksc(q, q′, δt) ≈ A(q, q′, δt)e
i
~ ( m

2δt (q−q′)2−V(q)δt) . (38.24)
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For infinitesimal times we can neglect the term V(q)δt, so Ksc(q, q′, δt) is a d-
dimensional Gaussian with width σ2 = i~δt/m. This Gaussian is a finite width
approximation to the Dirac delta function

δ(z) = lim
σ→0

1
√

2πσ2
e−z2/2σ2

(38.25)

if A = (m/2πi~δt)D/2, with A(q, q′, δt) fixed by the Dirac delta function normal-
ization condition. The correctly normalized propagator for infinitesimal times δt

exercise 38.1
is therefore

Ksc(q, q′, δt) ≈
( m
2πi~δt

)D/2
e

i
~

(
m(q−q′)2

2δt −V(q)δt
)
. (38.26)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corresponds
to the quantum propagator can now be deduced from (38.23); one obtains

∂R
∂q

= p ≈
m
δt

(q − q′) ,

i.e., is the particles start for short times on a Lagrangian manifold which is a plane
in phase space, see figure 38.4. Note, that for δt → 0, this plane is given by
the condition q = q′, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles start at q = q′ but with different
velocities for t = 0. The initial surface (q′, p′ = ∂qR(q′, 0)) is mapped into the
surface (q(t), p(t)) some time t later. The slope of the Lagrangian plane for a short
finite time is given as

∂pi

∂q j
= −

∂2R
∂q j∂q′i

= −
∂p′i
∂q j

=
m
δt
δi j .

The prefactor (m/δt)D/2 in (38.26) can therefore be interpreted as the determinant
of the Jacobian of the transformation from final position coordinates q to initial
momentum coordinates p′, that is

Ksc(q, q′, δt) =
1

(2πi~)D/2

(
det

∂p′

∂q

)1/2

eiR(q,q′,δt)/~, (38.27)

where

∂p′i
∂q j

∣∣∣∣∣∣
t,q′

=
∂2R(q, q′, δt)
∂q j∂q′i

(38.28)

The subscript · · · |t,q′ indicates that the partial derivatives are to be evaluated with
t, q′ fixed.

The propagator in (38.27) has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve our short time
approximation of the propagator according to (38.22)

Ksc(q′′, q′, t′ + δt) =
∑

j

∣∣∣∣∣det
∂q
∂q′′

∣∣∣∣∣1/2
j

eiR j(q′′,q,t′)/~−iπm j(q′′,q,t′)/2K(q, q′j, δt) ,
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Figure 38.4: Evolution of the semiclassical propaga-
tor. The configuration which corresponds to the initial
conditions of the propagator is a Lagrangian manifold
q = q′, that is, a plane parallel to the p axis. The hy-
pothetical particles are thus initially all placed at q′ but
take on all possible momenta p′. The Jacobian matrix
C (38.29) relates an initial volume element in momen-
tum space dp′ to a final configuration space volume
dq.

and we included here already the possibility that the phase becomes multi-valued,
that is, that there is more than one path from q′ to q′′. The topological index m j =

m j(q′′, q′, t) is the number of singularities in the Jacobian along the trajectory j
from q′ to q′′. We can write Ksc(q′′, q′, t′ + δt) in closed form using the fact that
R(q′′, q, t′) + R(q, q′, δt) = R(q′′, q′, t′ + δt) and the multiplicativity of Jacobian
determinants, that is

det
∂q
∂q′′

∣∣∣∣∣
t
det

∂p′

∂q

∣∣∣∣∣
q′,δt

= det
∂p′

∂q′′

∣∣∣∣∣
q′,t′+δt

. (38.29)

The final form of the semiclassical or Van Vleck propagator, is thus

Ksc(q, q′, t) =
∑

j

1
(2πi~)D/2

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣1/2 eiR j(q,q′,t)/~−im jπ/2 . (38.30)

This Van Vleck propagator is the essential ingredient of the semiclassical quanti-
zation to follow.

The apparent simplicity of the semiclassical propagator is deceptive. The
wave function is not evolved simply by multiplying by a complex number of mag-
nitude

√
det ∂p′/∂q and phase R(q, q′, t); the more difficult task in general is to

find the trajectories connecting q′ and q in a given time t.

In addition, we have to treat the approximate propagator (38.30) with some
care. Unlike the full quantum propagator, which satisfies the group property
(36.11) exactly, the semiclassical propagator performs this only approximately,
that is

Ksc(q, q′, t1 + t2) ≈
∫

dq′′ Ksc(q, q′′, t2)Ksc(q′′, q′, t1) . (38.31)

The connection can be made explicit by the stationary phase approximation, sect. 37.2.
Approximating the integral in (38.31) by integrating only over regions near points
q′′ at which the phase is stationary, leads to the stationary phase condition

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q′, t1)

∂q′′i
= 0. (38.32)

Classical trajectories contribute whenever the final momentum for a path from q′

to q′′ and the initial momentum for a path from q′′ to q coincide. Unlike the
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classical evolution of sect. 20.2, the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplemented by a stationary phase
condition pout = pin that matches up the classical momenta at each evolution
step.

38.2.2 Free particle propagator

To develop some intuition about the above formalism, consider the case of a free
particle. For a free particle the potential energy vanishes, the kinetic energy is
m
2 q̇2, and the Hamilton’s principal function (38.12) is

R(q, q′, t) =
m(q − q′)2

2t
. (38.33)

The weight det ∂p′

∂q from (38.28) can be evaluated explicitly, and the Van Vleck
propagator is

Ksc(q, q′, t) =

( m
2πi~t

)D/2
eim(q−q′)2/2~t , (38.34)

identical to the short time propagator (38.26), with V(q) = 0. This case is rather
exceptional: for a free particle the semiclassical propagator turns out to be the
exact quantum propagator K(q, q′, t), as can be checked by substitution in the
Schrödinger equation (38.2). The Feynman path integral formalism uses this fact

remark 38.3
to construct an exact quantum propagator by integrating the free particle propaga-
tor (with V(q) treated as constant for short times) along all possible (not necessar-
ily classical) paths from q′ to q.

exercise 38.10
exercise 38.11
exercise 38.12

38.3 Semiclassical Green’s function

This pathetic argument was pawned off to thousands of un-
suspecting classes before the fundamental role of Green’s
functions was recognized; it is still to be found in several
textbooks, and Professor Neanderthal loves it.

— Ten Lessons, by Gian-Carlo Rota [8]

So far we have derived semiclassical formulas for the time evolution of wave func-
tions, that is, we obtained approximate solutions to the time dependent Schrödinger
equation (36.1). Even though we assumed in the calculation a time-independent
Hamiltonian of the special form (36.2), the derivation would lead to the same final
result (38.30) were one to consider more complicated or explicitly time dependent
Hamiltonians. The propagator is thus important when we are interested in finite
time quantum mechanical effects. For time-independent Hamiltonians, the time
dependence of the propagator as well as of wave functions is, however, essentially
given in terms of the energy eigen-spectrum of the system, as in (36.8). It is there-
fore advantageous to switch from a time representation to an energy representa-
tion, that is from the propagator (36.10) to the energy dependent Green’s function
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(36.14). A semiclassical approximation of the Green’s function Gsc(q, q′, E) is
given by the Laplace transform (36.14) of the Van Vleck propagator Ksc(q, q′, t):

Gsc(q, q′, E) =
1
i~

∫ ∞

0
dt eiEt/~Ksc(q, q′, t) . (38.35)

The expression as it stands is not very useful; in order to evaluate the integral, at
least to the leading order in ~, we need to turn to the method of stationary phase
again.

38.3.1 Stationary phase in higher dimensions
exercise 37.1

Generalizing the method of sect. 37.2 to d dimensions, consider stationary phase
points fulfilling

d
dxi

Φ(x)
∣∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric matrix
of second derivatives of Φ(x), that is

Di j(x0) =
∂2

∂xi∂x j
Φ(x)

∣∣∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalizes D, we can ap-
proximate the d-dimensional integral by d 1-dimensional Fresnel integrals; the
stationary phase estimate of (37.13) is then

I ≈
∑
x0

(2πi/s)d/2 |det D(x0)|−1/2A(x0) eisΦ(x0)− iπ
2 m(x0) , (38.36)

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0) counts
the number of negative eigenvalues of D(x0).

exercise 33.2
exercise 38.2
exercise 37.3The stationary phase approximation is all that is needed for the semiclassical

approximation, with the proviso that D in (38.36) has no zero eigenvalues.

38.3.2 Long trajectories

When evaluating the integral (38.35) approximately we have to distinguish be-
tween two types of contributions: those coming from stationary points of the phase
and those coming from infinitesimally short times. The first type of contributions
can be obtained by the stationary phase approximation and will be treated in this
section. The latter originate from the singular behavior of the propagator for t → 0
where the assumption that the amplitude changes slowly compared to the phase
is not valid. The short time contributions therefore have to be treated separately,
which we will do in sect. 38.3.3.
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The stationary phase points t∗ of the integrand in (38.35) are given by the
condition

∂

∂t
R(q, q′, t∗) + E = 0 . (38.37)

We recognize this condition as the solution of (38.18), the time t∗ = t∗(q, q′, E) in
which a particle of energy E starting out in q′ reaches q. Taking into account the
second derivative of the phase evaluated at the stationary phase point,

R(q, q′, t) + Et = R(q, q′, t∗) + Et∗ +
1
2

(t − t∗)2 ∂
2

∂t2 R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a classical
trajectory j in the Van Vleck propagator sum (38.30) yields

G j(q, q′, E) =
1

i~(2iπ~)(D−1)/2

∣∣∣∣∣∣∣det C j

∂2R j

∂t2

−1∣∣∣∣∣∣∣
1/2

e
i
~S j−

iπ
2 m j , (38.38)

where m j = m j(q, q′, E) now includes a possible additional phase arising from the
time stationary phase integration (37.16), and C j = C j(q, q′, t∗), R j = R j(q, q′, t∗)
are evaluated at the transit time t∗. We re-express the phase in terms of the energy
dependent action (38.16)

S (q, q′, E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′, E) , (38.39)

the Legendre transform of Hamilton’s principal function. Note that the partial
derivative of the action (38.39) with respect to qi

∂S (q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
+

(
∂R(q, q′, t)

∂t∗
+ E

)
∂t
∂qi

.

is equal to

∂S (q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
, (38.40)

due to the stationary phase condition (38.37), so the definition of momentum as a
partial derivative with respect to q remains unaltered by the Legendre transform
from time to energy domain.

exercise 38.13

Next we will simplify the amplitude term in (38.38) and rewrite it as an ex-
plicit function of the energy. Consider the [(D + 1)×(D + 1)] matrix

D(q, q′, E) =

 ∂2S
∂q′∂q

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E2

 =

 −∂p′

∂q −
∂p′

∂E
∂t
∂q

∂t
∂E

 , (38.41)

where S = S (q, q′, E) and we used (38.14–38.17) here to obtain the left hand side
of (38.41). The minus signs follow from the definition of (38.15), which implies
that that S (q, q′, E) = −S (q′, q, E). Note that D is nothing but the Jacobian matrix
of the coordinate transformation (q, E) → (p′, t) for fixed q′. We can therefore
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use the multiplication rules of determinants of Jacobians, which are just ratios of
volume elements, to obtain

det D = (−1)D+1
(
det

∂(p′, t)
∂(q, E)

)
q′

= (−1)D+1
(
det

∂(p′, t)
∂(q, t)

∂(q, t)
∂(q, E)

)
q′

= (−1)D+1
(
det

∂p′

∂q

)
t,q′

(
det

∂t
∂E

)
q′,q

= det C
(
∂2R
∂t2

)−1

.

We use here the notation (det .)q′,t for a Jacobian determinant with partial deriva-
tives evaluated at t, q′ fixed, and likewise for other subscripts. Using the relation
(38.19) which relates the term ∂t

∂E to ∂2
t R we can write the determinant of D as

a product of the Van Vleck determinant (38.28) and the amplitude factor arising
from the stationary phase approximation. The amplitude in (38.38) can thus be
interpreted as the determinant of a Jacobian of a coordinate transformation which
includes time and energy as independent coordinates. This causes the increase in
the dimensionality of the matrix D relative to the Van Vleck determinant (38.28).

We can now write down the semiclassical approximation of the contribution
of the jth trajectory to the Green’s function (38.38) in explicitly energy dependent
form:

G j(q, q′, E) =
1

i~(2iπ~)(D−1)/2

∣∣∣det D j
∣∣∣1/2 e

i
~S j−

iπ
2 m j . (38.42)

However, this is still not the most convenient form of the Green’s function.

The trajectory contributing to G j(q, q′, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constant energy, that is
H(q, p) = E. Writing this condition as a partial differential equation for S (q, q′, E),
that is

H(q,
∂S
∂q

) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H
∂p j

∂p j

∂q′i
= q̇ j

∂2S
∂q j∂q′i

∂

∂qi
H(q′, p′) = 0 =

∂2S
∂qi∂q′j

q̇′j , (38.43)

that is the sub-matrix ∂2S/∂qi∂q′j has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate the local coordinate system at the either end of the
trajectory

(q1, q2, q3, · · · , qd)→ (q‖, q⊥1, q⊥2, · · · , q⊥(D−1))

so that one axis points along the trajectory and all others are perpendicular to it

(q̇1, q̇2, q̇3, · · · , q̇d)→ (q̇, 0, 0, · · · , 0) .
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With such local coordinate systems at both ends, with the longitudinal coordinate
axis q‖ pointing along the velocity vector of magnitude q̇, the stability matrix of
S (q, q′, E) has a column and a row of zeros as (38.43) takes form

q̇
∂2S
∂q‖∂q′i

=
∂2S
∂qi∂q′

‖

q̇′ = 0 .

The initial and final velocities are non-vanishing except for points |q̇| = 0. These
are the turning points (where all energy is potential), and we assume that neither q
nor q′ is a turning point (in our application - periodic orbits - we can always chose
q = q′ not a turning point). In the local coordinate system with one axis along
the trajectory and all other perpendicular to it the determinant of (38.41) is of the
form

det D(q, q′, E) = (−1)D+1

det

0 0 ∂2S
∂E∂q′

‖

0 ∂2 S
∂q⊥∂q′⊥

∗

∂2S
∂q‖∂E ∗ ∗

 . (38.44)

The corner entries can be evaluated using (38.17)

∂2S
∂q‖∂E

=
∂

∂q‖
t =

1
q̇
,

∂2S
∂E∂q′

‖

=
1
q̇′
.

As the q‖ axis points along the velocity direction, velocities q̇, q̇′ are by construc-
tion almost always positive non-vanishing numbers. In this way the determinant
of the [(D + 1)× (D + 1)] dimensional matrix D(q, q′, E) can be reduced to the
determinant of a [(D − 1)×(D − 1)] dimensional transverse matrix D⊥(q, q′, E)

det D(q, q′, E) =
1

q̇q̇′
det D⊥(q, q′, E)

D⊥(q, q′, E)ik = −
∂2S (q, q′, E)
∂q⊥i∂q′

⊥k
. (38.45)

Putting everything together we obtain the jth trajectory contribution to the semi-
classical Green’s function

exercise 38.15

G j(q, q′, E) =
1

i~(2πi~)(D−1)/2

1

|q̇q̇′|1/2

∣∣∣∣det D j
⊥

∣∣∣∣1/2 e
i
~S j−

iπ
2 m j , (38.46)

where the topological index m j = m j(q, q′, E) now counts the number of changes
of sign of det D j

⊥ along the trajectory j which connects q′ to q at energy E.

The endpoint velocities q̇, q̇′ also depend on (q, q′, E) and the trajectory j.

38.3.3 Short trajectories

The stationary phase method cannot be used when t∗ is small, both because we
cannot extend the integration in (37.16) to −∞, and because the amplitude of
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K(q, q′, t) is divergent. In this case we have to evaluate the integral involving the
short time form of the exact quantum mechanical propagator (38.26)

G0(q, q′, E) =
1
i~

∫ ∞

0
dt

( m
2πi~t

)D/2
e

i
~ ( m(q−q′)2

2t −V(q)t+Et) . (38.47)

By introducing a dimensionless variable τ = t
√

2m(E − V(q))/m|q − q′|, the
integral can be rewritten as

G0(q, q′, E) =
m

i~2(2πi)D/2

( √
2m(E − V)
~|q − q′|

) D
2 −1 ∫ ∞

0

dτ
τD/2 e

i
2~S 0(q,q′,E)(τ+1/τ),

where S 0(q, q′, E) =
√

2m(E − V)|q − q′| is the short distance form of the action.
Using the integral representation of the Hankel function of first kind

H+
ν (z) = −

i
π

e−iνπ/2
∫ ∞

0
e

1
2 iz(τ+1/τ)τ−ν−1dτ

we can write the short distance form of the Green’s function as

G0(q, q′, E) ≈ −
im
2~2

( √
2m(E − V)

2π~|q − q′|

) D−2
2

H+
D−2

2
(S 0(q, q′, E)/~) . (38.48)

Hankel functions are stabdard, and their the short wavelength asymptotics is de-
scribed in standard reference books. The short distance Green’s function approx-
imation is valid when S 0(q, q′, E) ≤ ~.

Résumé

The aim of the semiclassical or short-wavelength methods is to approximate a
solution of the Schrödinger equation with a semiclassical wave function

ψsc(q, t) =
∑

j

A j(q, t)eiR j(q,t)/~ ,

accurate to the leading order in ~. Here the sum is over all classical trajectories
that connect the initial point q′ to the final point q in time t. “Semi–” refers to ~,
the quantum unit of phase in the exponent. The quantum mechanics enters only
through this atomic scale, in units of which the variation of the phase across the
classical potential is assumed to be large. “–classical” refers to the rest - both the
amplitudes A j(q, t) and the phases R j(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time evolution operator is
given by the semiclassical propagator

Ksc(q, q′, t) =
1

(2πi~)D/2

∑
j

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣1/2
j

e
i
~R j−

iπ
2 m j ,
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where the topological index m j(q, q′, t) counts the number of the direction reversal
along the jth classical trajectory that connects q′ → q in time t. Until very recently
it was not possible to resolve quantum evolution on quantum time scales (such as
one revolution of electron around a nucleus) - physical measurements are almost
always done at time scales asymptotically large compared to the intrinsic quantum
time scale. Formally this information is extracted by means of a Laplace trans-
form of the propagator which yields the energy dependent semiclassical Green’s
function

Gsc(q, q′, E) = G0(q, q′, E) +
∑

j

G j(q, q′, E)

G j(q, q′, E) =
1

i~(2πi~)
(D−1)

2

∣∣∣∣∣∣ 1
q̇q̇′

det
∂p′⊥
∂q⊥

∣∣∣∣∣∣1/2
j

e
i
~ S j−

iπ
2 m j (38.49)

where G0(q, q′, E) is the contribution of short trajectories with S 0(q, q′, E) ≤ ~,
while the sum is over the contributions of long trajectories (38.46) going from q′

to q with fixed energy E, with S j(q, q′, E) � ~.

Commentary

Remark 38.1. Limit ~ → 0. The semiclassical limit “~ → 0” discussed in sect. 38.1
is a shorthand notation for the limit in which typical quantities like the actions R or S in
semiclassical expressions for the propagator or the Green’s function become large com-
pared to ~. In the world that we live in the quantity ~ is a fixed physical constant whose
value is 1.054571800 10−34 Js.

Remark 38.2. Madelung’s fluid dynamics. Already Schrödinger [9–12] noted that

ρ = ρ(q, t) := A2 = ψ∗ψ

plays the role of a density, and that the gradient of R may be interpreted as a local semi-
classical momentum, as the momentum density is

ψ(q, t)∗(−i~
∂

∂q
)ψ(q, t) = −i~A

∂A
∂q

+ ρ
∂R
∂q

.

A very different interpretation of (38.3–38.4) has been given by Madelung [6], and then
built upon by Bohm [2] and others [5, 9–12]. Keeping the ~ dependent term in (38.3), the
ordinary differential equations driving the flow (38.10) have to be altered; if the Hamilto-
nian can be written as kinetic plus potential term V(q) as in (36.2), the ~2 term modifies
the p equation of motion as

ṗi = −
∂

∂qi
(V(q) + Q(q, t)) , (38.50)

where, for the example at hand,

Q(q, t) = −
~2

2m
1
√
ρ

∂2

∂q2

√
ρ (38.51)
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interpreted by Bohm [2] as the “quantum potential.” Madelung observed that Hamilton’s
equation for the momentum (38.50) can be rewritten as

∂vi

∂t
+

(
v ·

∂

∂q

)
vi = −

1
m
∂V
∂qi
−

1
mρ

∂

∂q j
σi j , (38.52)

where σi j =
~2ρ
4m

∂2 ln ρ
∂qi∂q j

is the “pressure” stress tensor, vi = pi/m, and ρ = A2 as defined [9–

12] in sect. 38.1.3. We recall that the Eulerian ∂
∂t +

∂qi
∂t

∂
∂qi

is the ordinary derivative of
Lagrangian mechanics, that is d

dt . For comparison, the Euler equation for classical hydro-
dynamics is

∂vi

∂t
+

(
v ·

∂

∂q

)
vi = −

1
m
∂V
∂qi
−

1
mρ

∂

∂q j
(pδi j) ,

where pδi j is the pressure tensor.

The classical dynamics corresponding to quantum evolution is thus that of an “hypo-
thetical fluid” experiencing ~ and ρ dependent stresses. The “hydrodynamic” interpreta-
tion of quantum mechanics has, however, not been very fruitful in practice.

Remark 38.3. Path integrals. The semiclassical propagator (38.30) can also be de-
rived from Feynman’s path integral formalism. Dirac was the first to discover that in the
short-time limit the quantum propagator (38.34) is exact. Feynman noted in 1946 that
one can construct the exact propagator of the quantum Schrödinger equation by formally
summing over all possible (and emphatically not classical) paths from q′ to q .Gutzwiller
started from the path integral to rederive Van Vleck’s semiclassical expression for the
propagator; Van Vleck’s original derivation is very much in the spirit of what has pre-
sented in this chapter. He did, however, not consider the possibility of the formation of
caustics or folds of Lagrangian manifolds and thus did not include the topological phases
in his semiclassical expression for the propagator. Some 40 years later Gutzwiller [3]
added the topological indices when deriving the semiclassical propagator from Feynman’s
path integral by stationary phase conditions.

Remark 38.4. Applications of the semiclassical Green’s function. The semiclassical
Green’s function is the starting point of the semiclassical approximation in many appli-
cations. The generic semiclassical strategy is to express physical quantities (for example
scattering amplitudes and cross section in scattering theory, oscillator strength in spec-
troscopy, and conductance in mesoscopic physics) in terms of the exact Green’s function
and then replace it with the semiclassical formula.

Remark 38.5. The quasiclassical approximation The quasiclassical approximation
was introduced by Maslov [7]. The term ‘quasiclassical’ is more appropriate than semi-
classical since the Maslov type description leads to a pure classical evolution operator in
a natural way. Following mostly ref. [1], we give a summary of the quasiclassical approx-
imation, which was worked out by Maslov [7] in this form. One additional advantage of
this description is that the wave function evolves along one single classical trajectory and
we do not have to compute sums over increasing numbers of classical trajectories as in
computations involving Van Vleck formula [4].
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EXERCISES 722

Exercises

38.1. Dirac delta function, Gaussian representation.
Consider the Gaussian distribution function

δσ(z) =
1

√
2πσ2

e−z2/2σ2
.

Show that in σ→ 0 limit this is the Dirac delta function∫
M

dx δ(x) = 1 if 0 ∈ M , zero otherwise .

38.2. Stationary phase approximation in higher dimensions.
All semiclassical approximations are based on saddle

point evaluations of integrals of type

I =

∫
dDxA(x)eiΦ(x)/~ (38.53)

for small values of ~. Obtain the stationary phase esti-
mate

I ≈
∑

n

A(xn)eiΦ(xn)/~ (2πi~)D/2√
det D2Φ(xn)

,

where D2Φ(xn) denotes the second derivative matrix.

38.3. Schrödinger equation in the Madelung form. Ver-
ify the decomposition of Schrödinger equation into real
and imaginary parts, eqs. (38.3) and (38.4).

38.4. Transport equations. Write the wave-
function in the asymptotic form

ψ(q, t) = e
i
~R(x,t)+ i

~ εt
∑
n≥0

(i~)nAn(x, t) .

Derive the transport equations for the An by substituting
this into the Schrödinger equation and then collecting
terms by orders of ~. Note that equation for Ȧn only
requires knowledge of An−1 and R.

38.5. Easy examples of the Hamilton’s principal function.
Calculate R(q, q′, t) for

a) a D-dimensional free particle

b) a 3-dimensional particle in constant magnetic field

c) a 1-dimensional harmonic oscillator.

(continuation: exercise 38.13.)

38.6. 1-dimensional harmonic oscillator. Take a 1-
dimensional harmonic oscillator U(q) = 1

2 kq2. Take a
WKB wave function of form A(q, t) = a(t) and R(q, t) =

r(t) + b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are
time dependent coefficients. Derive ordinary differen-
tial equations by using (38.3) and (38.4) and solve them.
(continuation: exercise 38.9.)

38.7. 1-dimensional linear potential. Take a 1-dimensional
linear potential U(q) = −Fq. Take a WKB wave func-
tion of form A(q, t) = a(t) and R(q, t) = r(t) + b(t)q +

c(t)q2, where r(t), a(t), b(t) and c(t) are time dependent
coefficients. Derive and solve the ordinary differential
equations from (38.3) and (38.4).

38.8. D-dimensional quadratic potentials. Generalize the
above method to general D-dimensional quadratic po-
tentials.

38.9. Time evolution of R. (continuation of exer-
cise 38.6) Calculate the time evolution of R(q, 0) =

a + bq + cq2 for a 1-dimensional harmonic oscillator us-
ing (38.12) and (38.14).

38.10. D-dimensional free particle propagator. Verify the
results in sect. 38.2.2; show explicitly that (38.34), the
semiclassical Van Vleck propagator in D dimensions,
solves the Schrödinger’s equation.

38.11. Propagator, charged particle in constant magnetic
field. Calculate the semiclassical propagator for a
charged particle in constant magnetic field in 3 dimen-
sions. Verify that the semiclassical expression coincides
with the exact solution.

38.12. 1-dimensional harmonic oscillator propagator.
Calculate the semiclassical propagator for a 1-
dimensional harmonic oscillator and verify that it is
identical to the exact quantum propagator.

38.13. Free particle action. Calculate the energy dependent
action for a free particle, a charged particle in a constant
magnetic field and for the harmonic oscillator.

38.14. Zero length orbits. Derive the classical
trace (21.1) rigorously and either add the t → 0+ zero
length contribution to the trace formula, or show that it
vanishes. Send us a reprint of Phys. Rev. Lett. with the
correct derivation.

38.15. Free particle semiclassical Green’s functions. Cal-
culate the semiclassical Green’s functions for the sys-
tems of exercise 38.13.

exerVanVleck - 20jan2005 ChaosBook.org edition16.4.8, May 25 2020



Chapter 39

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

We derive here the Gutzwiller trace formula and the semiclassical zeta func-
tion, the central results of the semiclassical quantization of classically
chaotic systems. In chapter 40 we will rederive these formulas for the

case of scattering in open systems. Quintessential wave mechanics effects such as
creeping, diffraction and tunneling will be taken up in chapter 43.

39.1 Trace formula

Our next task is to evaluate the Green’s function trace (36.15) in the semiclassical
approximation. The trace

tr Gsc(E) =

∫
dDq Gsc(q, q, E) = tr G0(E) +

∑
j

∫
dDq G j(q, q, E)

receives contributions from “long” classical trajectories labeled by j which start
and end in q after finite time, and the “zero length” trajectories whose lengths
approach zero as q′ → q.

First, we work out the contributions coming from the finite time returning
classical orbits, i.e., trajectories that originate and end at a given configuration
point q. As we are identifying q with q′, taking of a trace involves (still another!)
stationary phase condition in the q′ → q limit,

∂S j(q, q′, E)
∂qi

∣∣∣∣∣∣
q′=q

+
∂S j(q, q′, E)

∂q′i

∣∣∣∣∣∣
q′=q

= 0 ,

meaning that the initial and final momenta (38.40) of contributing trajectories
should coincide

pi(q, q, E) − p′i(q, q, E) = 0 , q ∈ jth periodic orbit , (39.1)
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Figure 39.1: A returning trajectory in the configura-
tion space. The orbit is periodic in the full phase space
only if the initial and the final momenta of a returning
trajectory coincide as well.

Figure 39.2: A romanticized sketch of S p(E) =

S (q, q, E) =
∮

p(q, E)dq landscape orbit. Unstable
periodic orbits traverse isolated ridges and saddles of
the mountainous landscape of the action S (q‖, q⊥, E).
Along a periodic orbit S p(E) is constant; in the trans-
verse directions it generically changes quadratically.

so the trace receives contributions only from those long classical trajectories which
are periodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one, with q‖
axis pointing in the q̇ direction along the orbit, and q⊥, the rest of the coordinates
transverse to q̇. The jth periodic orbit contribution to the trace of the semiclassical
Green’s function in the intrinsic coordinates is

tr G j(E) =
1

i~(2π~)(d−1)/2

∮
j

dq‖
q̇

∫
j
dd−1q⊥|det D j

⊥|
1/2e

i
~S j−

iπ
2 m j ,

where the integration in q‖ goes from 0 to L j, the geometric length of small tube
around the orbit in the configuration space. As always, in the stationary phase ap-
proximation we worry only about the fast variations in the phase S j(q‖, q⊥, E),
and assume that the density varies smoothly and is well approximated by its
value D j

⊥(q‖, 0, E) on the classical trajectory, q⊥ = 0 . The topological index
m j(q‖, q⊥, E) is an integer which does not depend on the initial point q‖ and not
change in the infinitesimal neighborhood of an isolated periodic orbit, so we set
m j(E) = m j(q‖, q⊥, E).

The transverse integration is again carried out by the stationary phase method,
with the phase stationary on the periodic orbit, q⊥ = 0. The result of the transverse
integration can depend only on the parallel coordinate

tr G j(E) =
1
i~

∮
dq‖
q̇

∣∣∣∣∣∣∣det D⊥ j(q‖, 0, E)
det D′

⊥ j(q‖, 0, E)

∣∣∣∣∣∣∣
1/2

e
i
~S j−

iπ
2 m j ,

where the new determinant in the denominator, det D′
⊥ j =

det

∂2S (q, q′, E)
∂q⊥i∂q⊥ j

+
∂2S (q, q′, E)
∂q′
⊥i∂q⊥ j

+
∂2S (q, q′, E)
∂q⊥i∂q′

⊥ j
+
∂2S (q, q′, E)
∂q′
⊥i∂q′

⊥ j

 ,
is the determinant of the second derivative matrix coming from the stationary
phase integral in transverse directions.
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The ratio det D⊥ j/det D′
⊥ j is here to enforce the periodic boundary condition

for the semiclassical Green’s function evaluated on a periodic orbit. It can be given
a meaning in terms of the monodromy matrix of the periodic orbit by following
observations

det D⊥ =

∥∥∥∥∥∥∂p′⊥
∂q⊥

∥∥∥∥∥∥ =

∥∥∥∥∥∥∂(q′⊥, p′⊥)
∂(q⊥, q′⊥)

∥∥∥∥∥∥
det D′⊥ =

∥∥∥∥∥∥∂p⊥
∂q⊥

−
∂p′⊥
∂q⊥

+
∂p⊥
∂q′⊥

−
∂p′⊥
∂q′⊥

∥∥∥∥∥∥ =

∥∥∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥),
∂(q⊥, q′⊥)

∥∥∥∥∥∥ .
Defining the 2(D − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the full
phase space we can express the ratio

det D′⊥
det D⊥

=

∥∥∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥)
∂(q′⊥, p′⊥)

∥∥∥∥∥∥ =

∥∥∥∥∥∥∂(x⊥ − x′⊥)
∂x′⊥

∥∥∥∥∥∥
= det (M − 1) , (39.2)

in terms of the monodromy matrix M for a surface of section transverse to the
orbit within the constant energy E = H(q, p) shell.

The classical periodic orbit action S j(E) =
∮

p(q‖, E)dq‖ is an integral around
a loop defined by the periodic orbit, and does not depend on the starting point q‖
along the orbit, see figure 39.2. The eigenvalues of the monodromy matrix are
also independent of where M j is evaluated along the orbit, so det (1−M j) can also
be taken out of the q‖ integral

tr G j(E) =
1
i~

∑
j

1
|det (1 − M j)|1/2

er( i
~S j−

iπ
2 m j)

∮
dq‖
q̇‖

.

Here we have assumed that M j has no marginal eigenvalues. The determinant
of the monodromy matrix, the action S p(E) =

∮
p(q‖, E)dq‖ and the topological

index are all classical invariants of the periodic orbit. The integral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a periodic orbit is also a
periodic orbit. The action and the topological index are additive along the trajec-
tory, so for rth repeat they simply get multiplied by r. The monodromy matrix of
the rth repeat of a prime cycle p is (by the chain rule for derivatives) Mr

p, where
Mp is the prime cycle monodromy matrix. Let us denote the time period of the
prime cycle p, the single, shortest traversal of a periodic orbit by Tp. The remain-
ing integral can be carried out by change of variables dt = dq‖/q̇(t)∫ Lp

0

dq‖
q̇(t)

=

∫ Tp

0
dt = Tp .

Note that the spatial integral corresponds to a single traversal. If you do not see
why this is so, rethink the derivation of the classical trace formula (21.19) - that
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derivation takes only three pages of text. Regrettably, in the quantum case we do
not know of an honest derivation that takes less than 30 pages. The final result,
the Gutzwiller trace formula

tr Gsc(E) = tr G0(E) +
1
i~

∑
p

Tp

∞∑
r=1

1
|det (1 − Mr

p)|1/2
er( i

~ S p−
iπ
2 mp) , (39.3)

an expression for the trace of the semiclassical Green’s function in terms of peri-
odic orbits, is beautiful in its simplicity and elegance.

The topological index mp(E) counts the number of changes of sign of the ma-
trix of second derivatives evaluated along the prime periodic orbit p. By now we
have gone through so many stationary phase approximations that you have surely
lost track of what the total mp(E) actually is. The rule is this: The topological
index of a closed curve in a 2D phase space is the sum of the number of times
the partial derivatives ∂pi

∂qi
for each dual pair (qi, pi), i = 1, 2, . . . ,D (no sum on i)

change their signs as one goes once around the curve.

39.1.1 Average density of states

We still have to evaluate tr G0(E), the contribution coming from the infinitesimal
trajectories. The real part of tr G0(E) is infinite in the q′ → q limit, so it makes
no sense to write it down explicitly here. However, the imaginary part is finite,
and plays an important role in the density of states formula, which we derive next.

The semiclassical contribution to the density of states (36.15) is given by
the imaginary part of the Gutzwiller trace formula (39.3) multiplied with −1/π.
The contribution coming from the zero length trajectories is the imaginary part of
(38.48) for q′ → q integrated over the configuration space

d0(E) = −
1
π

∫
dDq Im G0(q, q, E),

The resulting formula has a pretty interpretation; it estimates the number of
quantum states that can be accommodated up to the energy E by counting the
available quantum cells in the phase space. This number is given by the Weyl rule
, as the ratio of the phase space volume bounded by energy E divided by hD, the
volume of a quantum cell,

Nsc(E) =
1

hD

∫
dD pdDq Θ(E − H(q, p)) . (39.4)

where Θ(x) is the Heaviside function (36.20). Nsc(E) is an estimate of the spectral
staircase (36.19), so its derivative yields the average density of states

d0(E) =
d
dE

Nsc(E) =
1

hD

∫
dD pdDq δ(E − H(q, p)) , (39.5)

precisely the semiclassical result (39.6). For Hamiltonians of type p2/2m +

V(q), the energy shell volume in (39.5) is a sphere of radius
√

2m(E − V(q)). The
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surface of a d-dimensional sphere of radius r is πd/2rd−1/Γ(d/2), so the average
exercise 39.2

density of states is given by

d0(E) =
2m

~D2dπD2Γ(D/2)

∫
V(q)<E

dDq [2m(E − V(q))]D/2−1 , (39.6)

and

Nsc(E) =
1

hD

πD/2

Γ(1 + D/2)

∫
V(q)<E

dDq [2m(E − V(q))]D/2 . (39.7)

Physically this means that at a fixed energy the phase space can support Nsc(E)
distinct eigenfunctions; anything finer than the quantum cell hD cannot be re-
solved, so the quantum phase space is effectively finite dimensional. The average
density of states is of a particularly simple form in one spatial dimension

exercise 39.3

d0(E) =
T (E)
2π~

, (39.8)

where T (E) is the period of the periodic orbit of fixed energy E. In two spatial
dimensions the average density of states is

d0(E) =
mA(E)

2π~2 , (39.9)

whereA(E) is the classically allowed area of configuration space for which V(q) <
E.

exercise 39.4

The semiclassical density of states is a sum of the average density of states and
the oscillation of the density of states around the average, dsc(E) = d0(E)+dosc(E),
where

dosc(E) =
1
π~

∑
p

Tp

∞∑
r=1

cos(rS p(E)/~ − rmpπ/2)
|det (1 − Mr

p)|1/2
(39.10)

follows from the trace formula (39.3).

39.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (38.48) is ultraviolet
divergent in dimensions d > 1, and so is its formal trace (36.15). The short
distance behavior of the real part of the Green’s function can be extracted from
the real part of (38.48) by using the Bessel function expansion for small z

Yν(z) ≈

 − 1
πΓ(ν)

(
z
2

)−ν
for ν , 0

2
π (ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s function for
short distance is dominated by the singular part

Gsing(|q − q′|, E) =


− m

2~2π
d
2
Γ((d − 2)/2) 1

|q−q′ |d−2 for d , 2

m
2π~2 (ln(2m(E − V)|q − q′|/2~) + γ) for d = 2

.
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The regularized Green’s function

Greg(q, q′, E) = G(q, q′, E) −Gsing(|q − q′|, E)

is obtained by subtracting the q′ → q ultraviolet divergence. For the regularized
Green’s function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1
i~

∑
p

Tp

∞∑
r=1

er( i
~S p(E)− iπ

2 mp(E))

|det (1 − Mr
p)|1/2

. (39.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in
your hands. You have no clue how good is the ~ → 0 approximation, how to
take care of the sum over an infinity of periodic orbits, and whether the formula
converges at all.

39.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where we need them, at
the individual energy eigenvalues. What to do? Much of the quantum chaos
literature responds to the challenge of wrestling the trace formulas by replacing
the delta functions in the density of states (36.16) by Gaussians. But there is no
need to do this - we can compute the eigenenergies without any further ado by
remembering that the smart way to determine the eigenvalues of linear operators
is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct the spectral determin-
ant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard product of form

det (Ĥ − E) =
∏

n

(E − En),

but this product is not well defined, since for fixed E we multiply larger and larger
numbers (E − En). This problem is dealt with by regularization, discussed below
in appendix 39.1.2. Here we offer an impressionistic sketch of regularization.

The logarithmic derivative of det (Ĥ − E) is the (formal) trace of the Green’s
function

−
d

dE
ln det (Ĥ − E) =

∑
n

1
E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however, opens a
way to derive a convergent version of det (Ĥ − E)sc, by replacing the trace with
the regularized trace

−
d

dE
ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E −En) poles at the semiclassical eigenenergies,
poles which can be generated only if det (Ĥ − E)sc has a zero at E = En, see
figure 39.3. By integrating and exponentiating we obtain

traceSemicl - 2mar2004 ChaosBook.org edition16.4.8, May 25 2020



CHAPTER 39. SEMICLASSICAL QUANTIZATION 729

Figure 39.3: A sketch of how spectral determinants
convert poles into zeros: The trace shows 1/(E − En)
type singularities at the eigenenergies while the spec-
tral determinant goes smoothly through zeroes.

det (Ĥ − E)sc = exp
(
−

∫ E
dE′ tr Greg(E′)

)
Now we can use (39.11) and integrate the terms coming from periodic orbits,
using the relation (38.17) between the action and the period of a periodic orbit,
dS p(E) = Tp(E)dE, and the relation (36.19) between the density of states and the
spectral staircase, dNsc(E) = d0(E)dE. We obtain the semiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

−∑
p

∞∑
r=1

1
r

eir(S p/~−mpπ/2)

|det (1 − Mr
p)|1/2

 . (39.12)

We already know from the study of classical evolution operator spectra of chap-
chapter 23

ter 22 that this can be evaluated by means of cycle expansions. The beauty of this
formula is that everything on the right side – the cycle action S p, the topological
index mp and monodromy matrix Mp determinant – is intrinsic, coordinate-choice
independent property of the cycle p.

39.3 One-degree of freedom systems

It has been a long trek, a stationary phase upon stationary phase. Let us check
whether the result makes sense even in the simplest case, for quantum mechanics
in one spatial dimension.

In one dimension the average density of states follows from the 1-degree of
freedom form of the oscillating density (39.10) and of the average density (39.8)

d(E) =
Tp(E)
2π~

+
∑

r

Tp(E)
π~

cos(rS p(E)/~ − rmp(E)π/2). (39.13)

The classical particle oscillates in a single potential well with period Tp(E). There
is no monodromy matrix to evaluate, as in one dimension there is only the parallel
coordinate, and no transverse directions. The r repetition sum in (39.13) can be
rewritten by using the Fourier series expansion of a delta spike train

∞∑
n=−∞

δ(x − n) =

∞∑
k=−∞

ei2πkx = 1 +

∞∑
k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)
2π~

∑
n

δ(S p(E)/2π~ − mp(E)/4 − n). (39.14)
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This expression can be simplified by using the relation (38.17) between Tp and
S p, and the identity (19.7) δ(x − x∗) = | f ′(x)|δ( f (x)), where x∗ is the only zero of
the function f (x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑

n

δ(E − En),

where the energies En are the zeroes of the arguments of delta functions in (39.14)

S p(En)/2π~ = n − mp(E)/4 ,

where mp(E) = mp = 2 for smooth potential at both turning points, and mp(E) =

mp = 4 for two billiard (infinite potential) walls. These are precisely the Bohr-
Sommerfeld quantized energies En, defined by the condition∮

p(q, En)dq = h
(
n −

mp

4

)
. (39.15)

In this way the trace formula recovers the well known 1-degree of freedom quan-
tization rule. In one dimension, the average of states can be expressed from the
quantization condition. At E = En the exact number of states is n, while the aver-
age number of states is n − 1/2 since the staircase function N(E) has a unit jump
in this point

Nsc(E) = n − 1/2 = S p(E)/2π~ − mp(E)/4 − 1/2. (39.16)

The 1-degree of freedom spectral determinant follows from (39.12) by drop-
ping the monodromy matrix part and using (39.16)

det (Ĥ − E)sc = exp
(
−

i
2~

S p +
iπ
2

mp

)
exp

−∑
r

1
r

e
i
~ rS p−

iπ
2 rmp

 . (39.17)

Summation yields a logarithm by
∑

r tr/r = − ln(1 − t) and we get

det (Ĥ − E)sc = e−
i

2~S p+
imp

4 + iπ
2 (1 − e

i
~S p−i

mp
2 )

= 2 sin
(
S p(E)/~ − mp(E)/4

)
. (39.18)

So in one dimension, where there is only one periodic orbit for a given energy E,
nothing is gained by going from the trace formula to the spectral determinant. The
spectral determinant is a real function for real energies, and its zeros are again the
Bohr-Sommerfeld quantized eigenenergies (39.15).

39.4 Two-degrees of freedom systems

For flows in two configuration dimensions the monodromy matrix Mp has two
eigenvalues Λp and 1/Λp, as explained in sect. 8.3. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the
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eigenvalues are real and their absolute value is not equal to one. The determinant
appearing in the trace formulas can be written in terms of the expanding eigen-
value as

|det (1 − Mr
p)|1/2 = |Λr

p|
1/2

(
1 − 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1
|det (1 − Mr

p)|1/2
=

∞∑
k=0

1
|Λr

p|
1/2Λkr

p
.

With the 2-degrees of freedom expression for the average density of states
(39.9) the spectral determinant becomes

det (Ĥ − E)sc = ei mAE
2~2 exp

−∑
p

∞∑
r=1

∞∑
k=0

eir(S p/~−mpπ/2)

r|Λr
p|

1/2Λkr
p


= ei mAE

2~2
∏

p

∞∏
k=0

1 − e
i
~S p−

iπ
2 mp

|Λp|
1/2Λk

p

 . (39.19)

Résumé

Spectral determinants and dynamical zeta functions arise both in classical and
quantum mechanics because in both the dynamical evolution can be described by
the action of linear evolution operators on infinite-dimensional vector spaces. In
quantum mechanics the periodic orbit theory arose from studies of semi-conductors,
and the unstable periodic orbits have been measured in experiments [2] on the very
paradigm of Bohr’s atom, the hydrogen atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary phase ap-
proximation to quantum mechanics (the Gutzwiller trace formula, possibly im-
proved by including tunneling periodic trajectories, diffraction corrections, etc.)
as the point of departure. Once the stationary phase approximation is made, what
follows is classical in the sense that all quantities used in periodic orbit calcu-
lations - actions, stabilities, geometrical phases - are classical quantities. The
problem is then to understand and control the convergence of classical periodic
orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows
that some are preferable to others. Three classes of periodic orbit formulas are
frequently used:

Trace formulas. The trace of the semiclassical Green’s function

tr Gsc(E) =

∫
dq Gsc(q, q, E)
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is given by a sum over the periodic orbits (39.11). While easiest to derive, in cal-
culations the trace formulas are inconvenient for anything other than the leading
eigenvalue estimates, as they tend to be divergent in the region of physical interest.
In classical dynamics trace formulas hide under a variety of appellations such as
the f −α or multifractal formalism; in quantum mechanics they are known as the
Gutzwiller trace formulas.

Zeros of Ruelle or dynamical zeta functions

1/ζ(s) =
∏

p

(1 − tp), tp =
1

|Λp|
1/2 e

i
~ S p−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of quan-
tum resonances. For hyperbolic systems the dynamical zeta functions have good
convergence and are a useful tool for determination of classical and quantum me-
chanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determinants,
functional determinants are the natural objects for spectral calculations, with con-
vergence better than for dynamical zeta functions, but with less transparent cycle
expansions. The 2-degrees of freedom semiclassical spectral determinant (39.19)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞∏
k=0

1 − eiS p/~−iπmp/2

|Λp|
1/2Λk

p


is a typical example. Most periodic orbit calculations are based on cycle expan-
sions of such determinants.

As we have assumed repeatedly during the derivation of the trace formula that
the periodic orbits are isolated, and do not form families (as is the case for inte-
grable systems or in KAM tori of systems with mixed phase space), the formulas
discussed so far are valid only for hyperbolic and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral determinants
and zeta functions are exact. The quantum-mechanical ones, derived by the Gutzwiller
approach, are at best only the stationary phase approximations to the exact quan-
tum spectral determinants, and for quantum mechanics an important conceptual
problem arises already at the level of derivation of the semiclassical formulas; how
accurate are they, and can the periodic orbit theory be systematically improved?

Commentary

Remark 39.1. Gutzwiller quantization of classically chaotic systems. The deriva-
tion given here and in sects. 38.3 and 39.1 follows closely the excellent exposition [1] by
Martin Gutzwiller, the inventor of the trace formula. The derivation presented here is self
contained, but refs. [3, 4] might also be of help to the student.

Remark 39.2. Zeta functions. For “zeta function” nomenclature, see remark 22.4 on
page 416.
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EXERCISES 734

Exercises

39.1. Monodromy matrix from second variations of the ac-
tion. Show that

D⊥ j/D′⊥ j = (1 − M) (39.20)

39.2. Volume of d-dimensional sphere. Show that the
volume of a d-dimensional sphere of radius r equals
πd/2rd/Γ(1 + d/2). Show that Γ(1 + d/2) = Γ(d/2)d/2.

39.3. Average density of states in 1 dimension. Show that
in one dimension the average density of states is given
by (39.8)

d̄(E) =
T (E)
2π~

,

where T (E) is the time period of the 1-dimensional mo-
tion and show that

N̄(E) =
S (E)
2π~

, (39.21)

where S (E) =
∮

p(q, E) dq is the action of the orbit.

39.4. Average density of states in 2 dimensions. Show that
in 2 dimensions the average density of states is given by
(39.9)

d̄(E) =
mA(E)

2π~2 ,

whereA(E) is the classically allowed area of configura-
tion space for which U(q) < E.
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Chapter 40

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

So far the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclas-
sics of bound systems is all we need to understand the semiclassics for open,

scattering systems as well. We start by a brief review of the quantum theory of
elastic scattering of a point particle from a (repulsive) potential, and then develop
the connection to the standard Gutzwiller theory for bound systems. We do this
in two steps - first, a heuristic derivation which helps us understand in what sense
density of states is “density,” and then we sketch a general derivation of the cen-
tral result of the spectral theory of quantum scattering, the Krein-Friedel-Lloyd
formula. The end result is that we establish a connection between the scatter-
ing resonances (both positions and widths) of an open quantum system and the
poles of the trace of the Green’s function, which we learned to analyze in earlier
chapters.

40.1 Density of states

For a scattering problem the density of states (36.16) appear ill defined since for-
mulas such as (39.6) involve integration over infinite spatial extent. What we will
now show is that a quantity that makes sense physically is the difference of two
densities - the first with the scatterer present and the second with the scatterer
absent.

In non-relativistic dynamics the relative motion can be separated from the
center-of-mass motion. Therefore the elastic scattering of two particles can be
treated as the scattering of one particle from a static potential V(q). We will study
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CHAPTER 40. QUANTUM SCATTERING 736

the scattering of a point-particle of (reduced) mass m by a short-range potential
V(q), excluding inter alia the Coulomb potential. (The Coulomb potential decays
slowly as a function of q so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose the spatial coordinate
frame freely, it is advisable to place its origin somewhere near the geometrical
center of the potential. The scattering problem is solved, if a scattering solution
to the time-independent Schrödinger equation (37.2)(

−
~2

2m
∂2

∂q2 + V(q)
)
φ~k(q) = Eφ~k(q) (40.1)

can be constructed. Here E is the energy, ~p = ~~k the initial momentum of the
particle, and ~k the corresponding wave vector.

When the argument r = |q| of the wave function is large compared to the typ-
ical size a of the scattering region, the Schrödinger equation effectively becomes
a free particle equation because of the short-range nature of the potential. In the
asymptotic domain r � a, the solution φ~k(q) of (40.1) can be written as superpo-
sition of ingoing and outgoing solutions of the free particle Schrödinger equation
for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions) ,

where in 1-dimensional problems φ(−)(q), φ(+)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering problems the “incoming,” “out-
going” radial waves, with the constant matrices A, B fixed by the boundary con-
ditions. What are the boundary conditions? The scatterer can modify only the
outgoing waves (see figure 40.1), since the incoming ones, by definition, have yet
to encounter the scattering region. This defines the quantum mechanical scattering
matrix, or the S matrix

φm(r) = φ(−)
m (r) + S mm′φ

(+)
m′ (r) . (40.2)

All scattering effects are incorporated in the deviation of S from the unit matrix,
the transition matrix T

S = 1 − iT . (40.3)

For concreteness, we have specialized to two dimensions, although the final for-
mula is true for arbitrary dimensions. The indices m and m′ are the angular mo-
menta quantum numbers for the incoming and outgoing state of the scattering
wave function, labeling the S -matrix elements S mm′ . More generally, given a set
of quantum numbers β, γ, the S matrix is a collection S βγ of transition amplitudes
β → γ normalized such that |S βγ|

2 is the probability of the β → γ transition. The
total probability that the ingoing state β ends up in some outgoing state must add
up to unity∑

γ

|S βγ|
2 = 1 , (40.4)

so the S matrix is unitary: S†S = SS† = 1.
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CHAPTER 40. QUANTUM SCATTERING 737

Figure 40.1: (a) Incoming spherical waves run-
ning into an obstacle. (b) Superposition of outgo-
ing spherical waves scattered from an obstacle.

(a) (b)

We have already encountered a solution to the 2-dimensional problem; free
particle propagation Green’s function (38.48) is a radial solution, given in terms
of the Hankel function

G0(r, 0, E) = −
im
2~2 H(+)

0 (kr) ,

where we have used S 0(r, 0, E)/~ = kr for the action. The mth angular mo-
mentum eigenfunction is proportional to φ(±)

m (q) ∝ H(±)
m (kr), and given a potential

V(q) we can in principle compute the infinity of matrix elements S mm′ . We will
not need much information about H(t)

m (kr), other than that for large r its asymptotic
form is

H± ∝ e±ikr

In general, the potential V(q) is not radially symmetric and (40.1) has to be
solved numerically, by explicit integration, or by diagonalizing a large matrix in
a specific basis. To simplify things a bit, we assume for the time being that a ra-
dially symmetric scatterer is centered at the origin; the final formula will be true
for arbitrary asymmetric potentials. Then the solutions of the Schrödinger equa-
tion (37.2) are separable, φm(q) = φ(r)eimθ, r = |q|, the scattering matrix cannot
mix different angular momentum eigenstates, and S is diagonal in the radial basis
(40.2) with matrix elements given by

S m(k) = e2iδm(k). (40.5)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means
that an incoming state of the form H(−)

m (kr)eimθ gets scattered into an outgoing state
of the form S m(k)H(+)

m (kr)eimθ, where H(∓)
m (z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in a infinite cylindrical well
of radius R, and will later take R → ∞. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresponds to some value of m.
For large r � a each eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(
S m(k)H(+)

m (kr) + H(−)
m (kr)

)
≈ · · · cos(kr + δm(k) − χm) , (40.6)

where · · · is a common prefactor, and χm = mπ/2+π/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions that will play no role in
what follows.
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Figure 40.2: The “difference” of two bounded refer-
ence systems, one with and one without the scattering
system.

b b

−

The state (40.6) must satisfy the external boundary condition that it vanish at
r = R. This implies the quantization condition

knR + δm(kn) − χm = π (n + 12) .

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. Since R is large, the density of states is high, and the phase δm(k) does
not change much over such a small interval. Therefore, to leading order we can
include the effect of the change of the phase on state n + 1 by Taylor expanding,

kn+1R + δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ π + π(n + 12) .

Taking the difference of the two equations we obtain ∆k ≈ π(R + δ′m(k))−1. This
is the eigenvalue spacing which we now interpret as the inverse of the density of
states within m angular momentum subspace

dm(k) ≈
1
π

(
R + δ′m(k)

)
.

The R term is essentially the 1 − d Weyl term (39.8), appropriate to 1 − d radial
quantization. For large R, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative of the scattering phase shift,
approximation accurate to order 1/R. However, not all is well; the area under
consideration tends to infinity. We regularize this by subtracting from the result
from the free particle density of states d0(k), for the same size container, but this
time without any scatterer, figure 40.2. We also sum over all m values so that

d(k) − d0(k) =
1
π

∑
m

δ′m(k) =
1

2πi

∑
m

d
dk

log S m

=
1

2πi
tr

(
S †

dS
dk

)
. (40.7)

The first line follows from the definition of the phase shifts (40.5) while the second
line follows from the unitarity of S so that S −1 = S †. We can now take the limit
R→ ∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since for the left hand side we al-
ready have the semiclassical theory for the trace of the difference of Green’s func-
tions,

d(k) − d0(k) = −
1

2πk
Im (tr (G(k) −G0(k)) . (40.8)

There are a number of generalizations. This can be done in any number of
dimensions. It is also more common to do this as a function of energy and not
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wave number k. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumber k, we have adapted k as the natural variable in the
above discussion.

Finally, we state without proof that the relation (40.7) applies even when there
is no circular symmetry. The proof is more difficult since one cannot appeal to the
phase shifts δm but must work directly with a non-diagonal S matrix.

40.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection between the
scattering matrix and the trace of the quantum Green’s function (more formally
between the difference of the Green’s function with and without the scattering
center.) We now show how this connection can be derived in a more rigorous
manner. We will also work in terms of the energy E rather than the wavenumber
k, since this is the more usual exposition. Suppose particles interact via forces of
sufficiently short range, so that in the remote past they were in a free particle state
labeled β, and in the distant future they will likewise be free, in a state labeled γ.
In the Heisenberg picture the S -matrix is defined as S = Ω−Ω

†
+ in terms of the

Møller operators

Ω± = lim
t→±∞

eiHt/~e−iH0t/~ , (40.9)

where H is the full Hamiltonian, whereas H0 is the free Hamiltonian. In the
interaction picture the S -matrix is given by

S = Ω
†
+Ω− = lim

t→∞
eiH0t/~e−2iHt/~eiH0t/~

= T exp
(
−i

∫ +∞

−∞

dtH′(t)
)
, (40.10)

where H′ = V = H −H0 is the interaction Hamiltonian and T is the time-ordering
operator. In stationary scattering theory the S matrix has the following spectral
representation

S =

∫ ∞

0
dE S (E)δ(H0 − E)

S (E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iε)−1V , (40.11)

such that

Tr
[
S †(E)

d
dE

S (E)
]

= Tr
[

1
H0 − E − iε

−
1

H − E − iε
− (ε ↔ −ε)

]
. (40.12)

The manipulations leading to (40.12) are justified if the operators Q±(E) can be
appendix A40

linked to trace-class operators.
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We can now use this result to derive the Krein-Lloyd formula which is the
central result of this chapter. The Krein-Lloyd formula provides the connection
between the trace of the Green’s function and the poles of the scattering matrix,
implicit in all of the trace formulas for open quantum systems which will be pre-
sented in the subsequent chapters.

40.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is
provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral
density which we now derive. This derivation builds on the results of the last
section and extends the discussion of the opening section.

In chapter 38 we linked the spectral density (see (36.16)) of a bounded system

d(E) ≡
∑

n

δ(En − E) (40.13)

via the identity

δ(En − E) = − lim
ε→0

1
π

Im
1

E − En + iε

= − lim
ε→0

1
π

Im〈En|
1

E − H + iε
|En〉

=
1

2π i
lim
ε→0

〈
En

∣∣∣∣∣ 1
E − H − iε

−
1

E − H + iε

∣∣∣∣∣ En

〉
(40.14)

to the trace of the Green’s function (39.1.1). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is given by the Gutzwiller trace
formula (39.11) in terms of a smooth Weyl term and an oscillating contribution of
periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is
completed, if we can find a connection between the spectral density d(E) and the
scattering matrix S . We will see that (40.12) provides the clue. Note that the right
hand side of (40.12) has nearly the structure of (40.14) when the latter is inserted
into (40.13). The principal difference between these two types of equations is that
the S matrix refers to outgoing scattering wave functions which are not normal-
izable and which have a continuous spectrum, whereas the spectral density d(E)
refers to a bound system with normalizable wave functions with a discrete spec-
trum. Furthermore, the bound system is characterized by a hermitian operator,
the Hamiltonian H, whereas the scattering system is characterized by a unitary
operator, the S -matrix. How can we reconcile these completely different classes
of wave functions, operators and spectra? The trick is to put our scattering system
into a finite box as in the opening section. We choose a spherical container with
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radius R and with its center at the center of our finite scattering system. Our scat-
tering potential V(~r) will be unaltered within the box, whereas at the box walls we
will choose an infinitely high potential, with the Dirichlet boundary conditions at
the outside of the box:

φ(~r)|r=R = 0 . (40.15)

In this way, for any finite value of the radius R of the box, we have mapped our
scattering system into a bound system with a spectral density d(E; R) over dis-
crete eigenenergies En(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which explains why the Coulomb
potential requires special care.) The hope is that in the limit R → ∞ we will
recover the scattering system. But some care is required in implementing this.
The smooth Weyl term d̄(E; R) belonging to our box with the enclosed potential V
diverges for a spherical 2-dimensional box of radius R quadratically, as πR2/(4π)
or as R3 in the 3-dimensional case. This problem can easily be cured if the spec-
tral density of an empty reference box of the same size (radius R) is subtracted
(see figure 40.2). Then all the divergences linked to the increasing radius R in
the limit R → ∞ drop out of the difference. Furthermore, in the limit R → ∞
the energy-eigenfunctions of the box are only normalizable as a delta distribution,
similarly to a plane wave. So we seem to recover a continous spectrum. Still the
problem remains that the wave functions do not discriminate between incoming
and outgoing waves, whereas this symmetry, namely the hermiticity, is broken in
the scattering problem. The last problem can be tackled if we replace the spec-
tral density over discrete delta distributions by a smoothed spectral density with a
small finite imaginary part η in the energy E:

d(E + iη; R) ≡
1

i 2π

∑
n

{
1

E − En(R) − iη
−

1
E − En(R) + iη

}
. (40.16)

Note that d(E + iη; R) , d(E − iη; R) = −d(E + iη; R). By the introduction of the
positive finite imaginary part η the time-dependent behavior of the wave function
has effectively been altered from an oscillating one to a decaying one and the
hermiticity of the Hamiltonian is removed. Finally the limit η→ 0 can be carried
out, respecting the order of the limiting procedures. First, the limit R → ∞ has
to be performed for a finite value of η, only then the limit η → 0 is allowed. In
practice, one can try to work with a finite value of R, but then it will turn out (see
below) that the scattering system is only recovered if R

√
η � 1.

Let us summarize the relation between the smoothed spectral densities d(E +

iη; R) of the boxed potential and d(0)(E + iη; R) of the empty reference system and
the S matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(
d(E+iη; R) − d(0)(E+iη; R)

)
=

1
2πi

Tr
[
S †(E)

d
dE

S (E)
]

=
1

2πi
Tr

d
dE

ln S (E) =
1

2πi
d

dE
ln det S (E) . (40.17)

This is the Krein-Friedel-Lloyd formula. It replaces the scattering problem by
the difference of two bounded reference billiards of the same radius R which fi-
nally will be taken to infinity. The first billiard contains the scattering region or
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potentials, whereas the other does not (see figure 40.2). Here d(E + iη; R) and
d(0)(E + iη; R) are the smoothed spectral densities in the presence or in the ab-
sence of the scatterers, respectively. In the semiclassical approximation, they are
replaced by a Weyl term (39.10) and an oscillating sum over periodic orbits. As in
(39.2), the trace formula (40.17) can be integrated to give a relation between the
smoothed staircase functions and the determinant of the S -matrix:

lim
η→+0

lim
R→∞

(
N(E+iη; R) − N(0)(E+iη; R)

)
=

1
2πi

ln det S (E) . (40.18)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the energy ar-
gument E + iη can be replaced by the wavenumber argument k+ iη′. These expres-
sions only make sense for wavenumbers on or above the real k-axis. In particular,
if k is chosen to be real, η′ must be greater than zero. Otherwise, the exact left
hand sides (40.18) and (40.17) would give discontinuous staircase or even delta
function sums, respectively, whereas the right hand sides are continuous to start
with, since they can be expressed by continuous phase shifts. Thus the order of
the two limits in (40.18) and (40.17) is essential.

The necessity of the +iη prescription can also be understood by purely phe-
nomenological considerations in the semiclassical approximation: Without the iη
term there is no reason why one should be able to neglect spurious periodic or-
bits which are there solely because of the introduction of the confining boundary.
The subtraction of the second (empty) reference system removes those spurious
periodic orbits which never encounter the scattering region – in addition to the re-
moval of the divergent Weyl term contributions in the limit R→ ∞. The periodic
orbits that encounter both the scattering region and the external wall would still
survive the first limit R → ∞, if they were not exponentially suppressed by the
+iη term because of their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the length L(R) of a spurious periodic orbit grows linearly with the
radius R. The bound Rη′ � 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container if the Krein-Friedel-Lloyd
formulas (40.17) and (40.18) are evaluated at a finite value of R.

exercise 40.1

Finally, the semiclassical approximation can also help us in the interpretation
of the Weyl term contributions for scattering problems. In scattering problems the
Weyl term appears with a negative sign. The reason is the subtraction of the empty
container from the container with the potential. If the potential is a dispersing bil-
liard system (or a finite collection of dispersing billiards), we expect an excluded
volume (or the sum of excluded volumes) relative to the empty container. In other
words, the Weyl term contribution of the empty container is larger than of the
filled one and therefore a negative net contribution is left over. Second, if the
scattering potential is a collection of a finite number of non-overlapping scatter-
ing regions, the Krein-Friedel-Lloyd formulas show that the corresponding Weyl
contributions are completely independent of the position of the single scatterers,
as long as these do not overlap.
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40.4 Wigner time delay

The term d
dE ln det S in the density formula (40.17) is dimensionally time. This

suggests another, physically important interpretation of such formulas for scatter-
ing systems, the Wigner delay, defined as

d(k) =
d
dk

Argdet (S(k))

= −i
d
dk

log det (S(k)

= −i tr
(
S†(k)

dS
dk

(k)
)

(40.19)

and can be shown to equal the total delay of a wave packet in a scattering system.
We now review this fact.

A related quantity is the total scattering phase shift Θ(k) defined as

det S(k) = e+i Θ(k) ,

so that d(k) = d
dk Θ(k).

The time delay may be both positive and negative, reflecting attractive re-
spectively repulsive features of the scattering system. To elucidate the connection
between the scattering determinant and the time delay we study a plane wave:

The phase of a wave packet will have the form:

φ = ~k · ~x − ω t + Θ .

The center of the wave packet will be determined by the principle of stationary
phase:

0 = dφ = d~k · ~x − dω t + dΘ .

Hence the packet is located at

~x =
∂ω

∂~k
t −

∂Θ

∂~k
.

The first term is just the group velocity times the given time t. Thus the packet is
retarded by a length given by the derivative of the phase shift with respect to the
wave vector ~k. The arrival of the wave packet at the position ~x will therefore be
delayed. This time delay can similarly be found as

τ(ω) =
∂Θ(ω)
∂ω

.

To show this we introduce the slowness of the phase ~s = ~k/ω for which ~s ·~vg = 1,
where ~vg is the group velocity to get

d~k · ~x = ~s · ~x dω =
x
vg

dω ,
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since we may assume ~x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x
vg

+
∂Θ(ω)
∂ω

.

If the scattering matrix is not diagonal, one interprets

∆ti j = Re
(
−i S −1

i j
∂S i j

∂ω

)
= Re

(
∂Θi j

∂ω

)
as the delay in the jth scattering channel after an injection in the ith. The proba-
bility for appearing in channel j goes as |S i j|

2 and therefore the average delay for
the incoming states in channel i is

〈∆ti〉 =
∑

j

|S i j|
2∆ti j = Re (−i

∑
j

S ∗i j
∂S i j

∂ω
) = Re (−i S† ·

∂S
∂ω

)ii

= −i
(
S† ·

∂S
∂ω

)
ii
,

where we have used the derivative, ∂/∂ω, of the unitarity relation S · S† = 1 valid
for real frequencies. This discussion can in particular be made for wave packets
related to partial waves and superpositions of these like an incoming plane wave
corresponding to free motion. The total Wigner delay therefore corresponds to the
sum over all channel delays (40.19).

Commentary

Remark 40.1. Krein-Friedel-Lloyd formula. The third volume of Thirring [18],
sections 3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s thesis [15] (ap-
pendix) discusses the Levison Theorem. It helps to start with a toy example or simplified
example instead of the general theorem, namely for the radially symmetric potential in a
symmetric cavity. Have a look at Huang [8] chapter 10 (on the “second virial coefficient"),
or Beth and Uhlenbeck [2], or Friedel [4, 5]. These results for the correction to the den-
sity of states are particular cases of the Krein formula [9, 10]. The Krein-Friedel-Lloyd
formula (40.17) was derived in refs. [4, 5, 9, 10, 12, 13], see also refs. [1, 6, 7, 14–16].
The original papers are by Krein and Birman [3, 9–11] but beware, they are mathemati-
cians. Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [19]. Page
16 discusses the Beth-Uhlenbeck formula [2], the predecessor of the more general Krein
formula for spherical cases.

Remark 40.2. Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of the filled one and therefore a negative
net contribution is left over, see ref. [15].

Remark 40.3. Wigner time delay. Wigner time delay and the Wigner-Smith time
delay matrix, are powerful concepts for a statistical description of scattering. The diagonal
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elements Qaa of the lifetime matrix Q = −iS−1∂S/∂ω, where S is the [2N×2N] scattering
matrix, are interpreted in terms of the time spent in the scattering region by a wave packet
incident in one channel. As shown by Smith [17], they are the sum over all ouput channels
(both in reflection and transmission) of ∆tab = Re [(−i/S ab)(∂S ab/∂ω)] weighted by the
probability of emerging from that channel. The sum of the Qaa over all 2N channels
is the Wigner time delay τW =

∑
a Qaa, which is the trace of the lifetime matrix and is

proportional to the density of states.
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EXERCISES 747

Exercises

40.1. Spurious orbits under the Krein-Friedel-Lloyd con-
truction. Draw examples for the three types of period
orbits under the Krein-Friedel-Lloyd construction: (a)
the genuine periodic orbits of the scattering region, (b)
spurious periodic orbits which can be removed by the
subtraction of the reference system, (c) spurious peri-
odic orbits which cannot be removed by this subtraction.
What is the role of the double limit η→ 0, container size
b→ ∞?

40.2. The one-disk scattering wave function. Derive the
one-disk scattering wave function.

(Andreas Wirzba)

40.3. Quantum two-disk scattering. Compute the quasi-
classical spectral determinant

Z(ε) =
∏
p, j,l

1 − tp

Λ
j+2l
p

 j+1

for the two disk problem. Use the geometry

a
a

R

The full quantum mechanical version of this problem
can be solved by finding the zeros in k for the deter-
minant of the matrix

Mm,n = δm,n+
(−1)n

2
Jm(ka)

H(1)
n (ka)

(
H(1)

m−n(kR) + (−1)nH(1)
m+n(kR)

)
,

where Jn is the nth Bessel function and H(1)
n is the Han-

kel function of the first kind. Find the zeros of the de-
terminant closest to the origin by solving det M(k) = 0.
(Hints: note the structure M = I + A to approximate the
determinant; or read Chaos 2, 79 (1992))

40.4. Pinball topological index. Upgrade your pinball sim-
ulator so that it computes the topological index for each
orbit it finds.
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Chapter 41

Chaotic multiscattering

(A. Wirzba and P. Cvitanović)

We discuss here the semiclassics of scattering in open systems with a finite
number of non-overlapping finite scattering regions. Why is this inter-
esting at all? The semiclassics of scattering systems has five advantages

compared to the bound-state problems such as the helium quantization discussed
in chapter 42.

• For bound-state problem the semiclassical approximation does not respect
quantum-mechanical unitarity, and the semi-classical eigenenergies are not
real. Here we construct a manifestly unitary semiclassical scattering matrix.

• The Weyl-term contributions decouple from the multi-scattering system.

• The close relation to the classical escape processes discussed in chapter 1.

• For scattering systems the derivation of cycle expansions is more direct and
controlled than in the bound-state case: the semiclassical cycle expansion
is the saddle point approximation to the cumulant expansion of the determi-
nant of the exact quantum-mechanical multi-scattering matrix.

• The region of convergence of the semiclassical spectral function is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a point particle from finite
collection of non-overlapping scattering regions in terms of the standard textbook
scattering theory, and then develop the semiclassical scattering trace formulas and
spectral determinants for scattering off N disks in a plane.

748
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41.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point particle from finite collection
of N non-overlapping reflecting disks in a 2-dimensional plane. As the point par-
ticle moves freely between the static scatterers, the time-independent Schrödinger
equation outside the scattering regions is the Helmholtz equation:

(
~∇2

r + ~k2
)
ψ(~r ) = 0 , ~r outside the scattering regions. (41.1)

Here ψ(~r ) is the wave function of the point particle at spatial position ~r and E =

~2~k2/2m is its energy written in terms of its mass m and the wave vector ~k of the
incident wave. For reflecting wall billiards the scattering problem is a boundary
value problem with Dirichlet boundary conditions:

ψ(~r) = 0 , ~r on the billiard perimeter (41.2)

As usual for scattering problems, we expand the wave function ψ(~r ) in the
(2-dimensional) angular momentum eigenfunctions basis

ψ(~r ) =

∞∑
m=−∞

ψk
m(~r )e−imΦk , (41.3)

where k and Φk are the length and angle of the wave vector, respectively. A plane
wave in two dimensions expaned in the angular momentum basis is

ei~k·~r = eikr cos(Φr−Φk) =

∞∑
m=−∞

Jm(kr)eim(Φr−Φk) , (41.4)

where r and Φr denote the distance and angle of the spatial vector ~r as measured
in the global 2-dimensional coordinate system.

The mth angular component Jm(kr)eimΦr of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional spherical waves by decompos-
ing the ordinary Bessel function Jm(z) into the sum

Jm(z) =
1
2

(
H(1)

m (z) + H(2)
m (z)

)
(41.5)

of the Hankel functions H(1)
m (z) and H(2)

m (z) of the first and second kind. For |z| � 1
the Hankel functions behave asymptotically as:

H(2)
m (z) ∼

√
2
πz

e−i(z− π2 m− π4 ) incoming,

H(1)
m (z) ∼

√
2
πz

e+i(z− π2 m− π4 ) outgoing. (41.6)
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Thus for r → ∞ and k fixed, the mth angular component Jm(kr)eimΦr of the plane
wave can be written as superposition of incoming and outgoing 2-dimensional
spherical waves:

Jm(kr)eimΦr ∼
1

√
2πkr

[
e−i(kr− π2 m− π4 ) + ei(kr− π2 m− π4 )

]
eimΦr . (41.7)

In terms of the asymptotic (angular momentum) components ψk
m of the wave

function ψ(~r ), the scattering matrix (40.3) is defined as

ψk
m ∼

1
√

2πkr

∞∑
m′=−∞

[
δmm′e−i(kr− π2 m′− π4 ) + S mm′ei(kr− π2 m′− π4 )

]
eim′Φr . (41.8)

The matrix element S mm′ describes the scattering of an incoming wave with an-
gular momentum m into an outgoing wave with angular momentum m′. If there
are no scatterers, then S = 1 and the asymptotic expression of the plane wave ei~k·~r

in two dimensions is recovered from ψ(~r ).

41.1.1 1-disk scattering matrix

In general, S is nondiagonal and nonseparable. An exception is the 1-disk scat-
terer. If the origin of the coordinate system is placed at the center of the disk, by
(41.5) the mth angular component of the time-independent scattering wave func-
tion is a superposition of incoming and outgoing 2-dimensional spherical waves

exercise 40.2

ψk
m =

1
2

(
H(2)

m (kr) + S mmH(1)
m (kr)

)
eimΦr

=

(
Jm(kr) −

i
2

TmmH(1)
m (kr)

)
eimΦr .

The vanishing (41.2) of the wave function on the disk perimeter

0 = Jm(ka) −
i
2

TmmH(1)
m (ka)

yields the 1-disk scattering matrix in analytic form:

S s
mm′(k) =

1 − 2Jm(kas)

H(1)
m (kas)

 δmm′ = −
H(2)

m (kas)

H(1)
m (kas)

δmm′ , (41.9)

where a = as is radius of the disk and the suffix s indicates that we are dealing
with a disk whose label is s. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 41.3.
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41.1.2 Multi-scattering matrix

Consider next a scattering region consisting of N non-overlapping disks labeled
s ∈ {1, 2, · · · ,N}, following the notational conventions of sect. 14.6. The strategy
is to construct the full T-matrix (40.3) from the exact 1-disk scattering matrix
(41.9) by a succession of coordinate rotations and translations such that at each
step the coordinate system is centered at the origin of a disk. Then the T-matrix
in S mm′ = δmm′ − i Tmm′ can be split into a product over three kinds of matrices,

Tmm′(k) =

N∑
s,s′=1

∞∑
ls ,ls′=−∞

C s
mls

(k)M−1(k)ss′

ls ls′
Ds′

ls′m′
(k) .

The outgoing spherical wave scattered by the disk s is obtained by shifting the
global coordinates origin distance Rs to the center of the disk s, and measuring
the angle Φs with respect to direction k of the outgoing spherical wave. As in
(41.9), the matrix Cs takes form

C s
mls

=
2i
πas

Jm−ls (kRs)

H(1)
ls

(kas)
eimΦs . (41.10)

If we now describe the ingoing spherical wave in the disk s′ coordinate frame by
the matrix Ds′

Ds′

ls′m′
= −πas′ Jm′−ls′ (kRs′)Jls′ (kas′)e−im′Φs′ , (41.11)

and apply the Bessel function addition theorem

Jm(y + z) =

∞∑
`=−∞

Jm−`(y)J`(z),

we recover the T-matrix (41.9) for the single disk s = s′, M = 1 scattering. The
Bessel function sum is a statement of the completness of the spherical wave basis;
as we shift the origin from the disk s to the disk s′ by distance Rs′ , we have to
reexpand all basis functions in the new coordinate frame.

The labels m and m′ refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate system, and ls , ls′ refer to the
(angular momentum) basis fixed at the sth and s′th scatterer, respectively. Thus,
Cs and Ds′ depend on the origin and orientation of the global coordinate system
of the 2-dimensional plane as well as on the internal coordinates of the scatterers.
As they can be made separable in the scatterer label s, they describe the single
scatterer aspects of what, in general, is a multi-scattering problem.

The matrix M is called the multi-scattering matrix. If the scattering problem
consists only of one scatterer, M is simply the unit matrix Mss′

ls ls′
= δss′δls ls′ .

For scattering from more than one scatterer we separate out a “single traversal”
matrix A which transports the scattered wave from a scattering regionMs to the
scattering regionMs′ ,

Mss′

ls ls′
= δss′δls ls′ − Ass′

ls ls′
. (41.12)
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Figure 41.1: Global and local coordinates for a gen-
eral 3-disk problem.

R α
21 21

RR 1
2

Φ1

a 2

a 1

a
3

The matrix Ass′ reads:

Ass′

ls ls′
= −(1 − δss′)

as

as′

Jls (kas)

H(1)
ls′

(kas′)
H(1)

ls−ls′
(kRss′) ei(lsαs′ s−ls′ (αs s′−π)) . (41.13)

Here, as is the radius of the sth disk. Rs and Φs are the distance and angle,
respectively, of the ray from the origin in the 2-dimensional plane to the center of
disk s as measured in the global coordinate system. Furthermore, Rss′ = Rs′s is
the separation between the centers of the sth and s′th disk and αs′s of the ray from
the center of disk s to the center of disk s′ as measured in the local (body-fixed)
coordinate system of disk s (see figure 41.1).

Expanded as a geometrical series about the unit matrix 1, the inverse matrix
M−1 generates a multi-scattering series in powers of the single-traversal matrix A.
All genuine multi-scattering dynamics is contained in the matrix A; by construc-
tion A vanishes for a single-scatterer system.

41.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the spectral properties of the S-
matrix: resonances, time delays and phase shifts. The resonances are given by the
poles of the S-matrix in the lower complex wave number (k) plane; more precisely,
by the poles of the S on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its total phase shift η(k)
defined by det S = exp2iη(k). The time-delay is proportional to the derivative of
the phase shift with respect to the wave number k.

As we are only interested in spectral properties of the scattering problem, it
suffices to study det S. This determinant is basis and coordinate-system indepen-
dent, whereas the S-matrix itself depends on the global coordinate system and on
the choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, it is not clear
whether the corresponding determinant exists at all. If T-matrix is trace-class, the
determinant does exist. What does this mean?
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41.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is called trace-class if and only if,
for any choice of orthonormal basis, the sum of the diagonal matrix elements
converges absolutely; it is called “Hilbert-Schmidt,” if the sum of the absolute
squared diagonal matrix elements converges. Once an operator is diagnosed as
trace-class, we are allowed to manipulate it as we manipulate finite-dimensional
matrices. We review the theory of trace-class operators in appendix A40; here we
will assume that the T-matrix (40.3) is trace-class, and draw the conclusions.

If A is trace-class, the determinant det (1 − zA), as defined by the cumulant
expansion, exists and is an entire function of z. Furthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation (as Taylor expansion in
the book-keeping variable z) of the determinant

det (1 − zA) = exp[tr ln(1 − zA)] = exp

− ∞∑
n=1

zn

zn tr (An)

 .
That means

det (1 − zA) :=
∞∑

m=0

zmQm(A) , (41.14)

where the cumulants Qm(A) satisfy the Plemelj-Smithies recursion formula (A40.22),
a generalization of Newton’s formula to determinants of infinite-dimensional ma-
trices,

Q0(A) = 1

Qm(A) = −
1
m

m∑
j=1

Qm− j(A) tr (A j) for m ≥ 1 , (41.15)

in terms of cumulants of order n < m and traces of order n ≤ m. Because of the
trace-class property of A, all cumulants and traces exist separately.

For the general case of N < ∞ non-overlapping scatterers, the T-matrix can be
shown to be trace-class, so the determinant of the S-matrix is well defined. What
does trace-class property mean for the corresponding matrices Cs , Ds and Ass′?
Manipulating the operators as though they were finite matrices, we can perform
the following transformations:

det S = det
(
1 − iCM−1D

)
= Det

(
1 − iM−1DC

)
= Det

(
M−1(M − iDC)

)
=

Det (M − iDC)
Det (M)

. . (41.16)
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In the first line of (41.16) the determinant is taken over small ` (the angular mo-
mentum with respect to the global system). In the remainder of (41.16) the deter-
minant is evaluated over the multiple indices Ls = (s, ls). In order to signal this
difference we use the following notation: det . . . and tr . . . refer to the |`〉 space,
Det . . . and tr . . . refer to the multiple index space. The matrices in the multiple
index space are expanded in the complete basis {|Ls〉} = {|s, `s〉} which refers for
fixed index s to the origin of the sth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinants of the subsystems
from the determinant of the total system (41.16):

det S =
Det (M − iDC)

Det (M)

=
Det (M − iDC)

Det M

∏N
s=1 det Ss∏N
s=1 det Ss

=

 N∏
s=1

det Ss

 Det (M − iDC)/
∏N

s=1 det Ss

Det M
. (41.17)

The final step in the reformulation of the determinant of the S-matrix of the N-
scatterer problem follows from the unitarity of the S-matrix. The unitarity of
S†(k∗) implies for the determinant

det (S(k∗)†) = 1/det S(k) , (41.18)

where this manipulation is allowed because the T-matrix is trace-class. The uni-
tarity condition should apply for the S-matrix of the total system, S, as for the
each of the single subsystems, Ss , s = 1, · · · ,N. In terms of the result of (41.17),
this implies

Det (M(k) − iD(k)C(k))∏N
s=1 det Ss

= Det (M(k∗)†)

since all determinants in (41.17) exist separately and since the determinants det Ss

respect unitarity by themselves. Thus, we finally have

det S(k) =


N∏

s=1

(
det Ss(k)

) Det M(k∗)†

Det M(k)
, (41.19)

where all determinants exist separately.

In summary: We assumed a scattering system of a finite number of non-
overlapping scatterers which can be of different shape and size, but are all of
finite extent. We assumed the trace-class character of the T-matrix belonging to
the total system and of the single-traversal matrix A and finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering from a finite number of
scatterers of arbitrary shape and size? As long as each of N < ∞ single scatterers
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has a finite spatial extent, i.e., can be covered by a finite disk, the total system
has a finite spatial extent as well. Therefore, it too can be put insided a circular
domain of finite radius b, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of this disk is larger than the disk
size (actually larger than (e/2) × b), then the T matrix elements of the N-scatterer
problem become very small. If the wave number k is kept fixed, the modulus of
the diagonal matrix elements, |Tmm| with the angular momentum m > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

41.2.2 Quantum cycle expansions

In formula (41.19) the genuine multi-scattering terms are separated from the single-
scattering ones. We focus on the multi-scattering terms, i.e., on the ratio of the
determinants of the multi-scattering matrix M = 1 − A in (41.19), since they are
the origin of the periodic orbit sums in the semiclassical reduction. The reso-
nances of the multi-scattering system are given by the zeros of Det M(k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical reduction, we express the
determinant of the multi-scattering matrix in terms of the traces of the powers
of the matrix A, by means of the cumulant expansion (41.14). Because of the
finite number N ≥ 2 of scatterers tr (An) receives contributions corresponding to
all periodic itineraries s1s2s3 · · · sn−1sn of total symbol length n with an alphabet
si ∈ {1, 2, . . . ,N}. of N symbols,

tr As1 s2As2 s3 · · ·Asn−1 sn Asn sn (41.20)

=

+∞∑
ls1 =−∞

+∞∑
ls2 =−∞

· · ·

+∞∑
lsn =−∞

As1 s2
ls1 ls2

As2 s3
ls2 ls3
· · · Asn−1 sn

lsn−1 lsn
Asn s1

lsn ls1
.

Remember our notation that the trace tr (· · · ) refers only to the |l〉 space. By con-
struction A describes only scatterer-to-scatterer transitions, so the symbolic dy-
namics has to respect the no-self-reflection pruning rule: for admissible itineraries
the successive symbols have to be different. This rule is implemented by the factor
1 − δss′ in (41.13).

The trace tr An is the sum of all itineraries of length n,

tr An =
∑

{s1 s2···sn }

tr As1 s2As2 s3 · · ·Asn−1 sn Asn s1 . (41.21)

We will show for the N-disk problem that these periodic itineraries correspond
in the semiclassical limit, kasi � 1, to geometrical periodic orbits with the same
symbolic dynamics.
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For periodic orbits with creeping sections the symbolic alphabet has to be
extended, see sect. 41.3.1. Furthermore, depending on the geometry, there might
be nontrivial pruning rules based on the so called ghost orbits, see sect. 41.4.1.

41.2.3 Symmetry reductions

The determinants over the multi-scattering matrices run over the multiple index L
of the multiple index space. This is the proper form for the symmetry reduction
(in the multiple index space), e.g., if the scatterer configuration is characterized
by a discrete symmetry group G, we have

Det M =
∏
α

(
det MDα(k)

)dα ,

where the index α runs over all conjugate classes of the symmetry group G and
Dα is the αth representation of dimension dα. The symmetry reduction on the
exact quantum mechanical level is the same as for the classical evolution oper-
ators spectral determinant factorization (25.22) of sect. 25.4.2.

41.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. In order to be concrete, we
will consider the semiclassical reduction of the scattering of a single disk in plane.

Instead of calculating the semiclassical approximation to the determinant of
the one-disk system scattering matrix (41.9), we do so for

d(k) ≡
1

2πi
d
dk

ln det S1(ka) =
1

2πi
d
dk

tr
(

ln S1(ka)
)

(41.22)

the so called time delay.

d(k) =
1

2πi
d
dk

tr
(

ln det S1(ka)
)

=
1

2πi

∑
m

H(1)
m (ka)

H(2)
m (ka)

d
dk

H(2)
m (ka)

H(1)
m (ka)


=

a
2πi

∑
m

H(2)
m
′
(ka)

H(2)
m (ka)

−
H(1)

m
′
(ka)

H(1)
m (ka)

 . (41.23)

Here the prime denotes the derivative with respect to the argument of the Hankel
functions. Let us introduce the abbreviation

χν =
H(2)
ν
′
(ka)

H(2)
ν (ka)

−
H(1)
ν
′
(ka)

H(1)
ν (ka)

. (41.24)
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We apply the Watson contour method to (41.23)

d(k) =
a j

2πi

+∞∑
m=−∞

χm =
a j

2πi
1
2i

∮
C

dν
e−iνπ

sin(νπ)
χν . (41.25)

Here the contour C encircles in a counter-clockwise manner a small semiinfinite
strip D which completely covers the real ν-axis but which only has a small finite
extent into the positive and negative imaginary ν direction. The contour C is then
split up in the path above and below the real ν-axis such that

d(k) =
a

4πi

{∫ +∞+iε

−∞+iε
dν

e−iνπ

sin(νπ)
χν −

∫ +∞−iε

−∞−iε
dν

e−iνπ

sin(νπ)
χν

}
.

Then, we perform the substitution ν→ −ν in the second integral so as to get

d(k) =
a

4π

{∫ +∞+iε

−∞+iε
dν

e−iνπ

sin(νπ)
χν + dν

e+iνπ

sin(νπ)
χ−ν

}
=

a
2πi

{
2
∫ +∞+iε

−∞+iε
dν

e2iνπ

1 − e2iνπ χν +

∫ +∞

−∞

dν χν

}
, (41.26)

where we used the fact that χ−ν = χν. The contour in the last integral can be de-
formed to pass over the real ν-axis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassically, i.e., under the
assumption ka � 1. As the two contributions in the last line of (41.26) differ by
the presence or absence of the Watson denominator, they will have to be handled
semiclassically in different ways: the first will be closed in the upper complex
plane and evaluated at the poles of χν, the second integral will be evaluated on the
real ν-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles of χν in the upper complex
plane are given by the zeros of H(1)

ν (ka) which will be denoted by ν`(ka) and by
the zeros of H(2)

ν (ka) which we will denote by −ν̄`(ka), ` = 1, 2, 3, · · · . In the Airy
approximation to the Hankel functions they are given by

ν`(ka) = ka + iα`(ka) , (41.27)

−ν̄`(ka) = −ka + i(α`(k∗a))∗ = −
(
ν`(k∗a)

)∗ , (41.28)

with

iα`(ka) = ei π3

(
ka
6

)1/3

q` − e−i π3

(
6
ka

)1/3 q2
`

180
−

1
70ka

1 − q3
`

30


+ ei π3

(
6
ka

) 5
3 1

3150

29q`
62 −

281q4
`

180 · 63

 + · · · . (41.29)
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Here q` labels the zeros of the Airy integral

A(q) ≡
∫ ∞

0
dτ cos(qτ − τ3) = 3−1/3πAi(−3−1/3q) , (41.30)

with Ai(z) being the standard Airy function; approximately, q` ≈ 61/3[3π(` −
1/4)]2/3/2. In order to keep the notation simple, we will abbreviate ν` ≡ ν`(ka)
and ν̄` ≡ ν̄`(ka). Thus the first term of (41.26) becomes finally

a
2πi

{
2
∫ +∞+iε

−∞+iε
dν

e2iνπ

1 − e2iνπ χν

}
= 2a

∞∑
`=1

(
e2iν`π

1 − e2iν`π
+

e−2iν̄`π

1 − e−2iν̄`π

)
.

In the second term of (41.26) we will insert the Debye approximations for the
Hankel functions:

H(1/2)
ν (x) ∼

√
2

π
√

x2 − ν2
exp

(
±i

√
x2 − ν2 ∓ iν arccos

ν

x
∓ i

π

4

)
for |x| > ν

(41.31)

H(1/2)
ν (x) ∼ ∓i

√
2

π
√
ν2 − x2

exp
(
−

√
ν2 − x2 + νArcCosh

ν

x

)
for |x| < ν .

Note that for ν > ka the contributions in χν cancel. Thus the second integral of
(41.26) becomes

a
2πi

∫ +∞

−∞

dν χν =
a

2πi

∫ +ka

−ka
dν

(−2i)
a

d
dk

( √
k2a2 − ν2 − ν arccos

ν

ka

)
+ · · ·

= −
1
kπ

∫ ka

−ka
dν

√
k2a2 − ν2 + · · · = −

a2

2
k + · · · , (41.32)

where · · · takes care of the polynomial corrections in the Debye approximation
and the boundary correction terms in the ν integration.

In summary, the semiclassical approximation to d(k) reads

d(k) = 2a
∞∑
`=1

(
e2iν`π

1 − e2iν`π
+

e−2iν̄`π

1 − e−2iν̄`π

)
−

a2

2
k + · · · .

Using the definition of the time delay (41.22), we get the following expression for
det S1(ka):

ln det S1(ka) − lim
k0→0

ln det S1(k0a) (41.33)

= 2πia
∫ k

0
dk̃

−ak̃
2

+ 2
∞∑
`=1

 ei2πν`(k̃a)

1 − ei2πν`(k̃a)
+

e−i2πν̄`(k̃a)

1 − e−i2πν̄`(k̃a)


 + · · ·

∼ −2πiN(k)+2
∞∑
`=1

∫ k

0
dk̃

d
dk̃

{
− ln

(
1−ei2πν`(k̃a)

)
+ ln

(
1−e−i2πν̄`(k̃a)

)}
+ · · · ,
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where in the last expression it has been used that semiclassically d
dkν`(ka) ∼

d
dk ν̄`(ka) ∼ a and that the Weyl term for a single disk of radius a goes like
N(k) = πa2k2/(4π) + · · · (the next terms come from the boundary terms in the
ν-integration in (41.32)). Note that for the lower limit, k0 → 0, we have two
simplifications: First,

lim
k0→0

S 1
mm′(k0a) = lim

k0→0

−H(2)
m (k0a)

H(1)
m (k0a)

δmm′ = 1 × δmm′ ∀m,m′

→ lim
k0→0

det S1(k0a) = 1 .

Secondly, for k0 → 0, the two terms in the curly bracket of (41.33) cancel.

41.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the determinant S1(ka) is given
by

det S1(ka) ∼ e−i2πN(k)

∏∞
`=1

(
1 − e−2iπν̄`(ka)

)2

∏∞
`=1

(
1 − e2iπν`(ka))2 , (41.34)

with

ν`(ka) = ka + iα`(ka) = ka + e+iπ/3(ka/6)1/3q` + · · ·

ν̄`(ka) = ka − i(α`(k∗a))∗ = ka + e−iπ/3(ka/6)1/3q` + · · ·
= (ν`(k∗a))∗

and N(ka) = (πa2k2)/4π + · · · the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues in the disk interior. From
the point of view of the scattering particle, the interior domains of the disks are
excluded relatively to the free evolution without scattering obstacles. Therefore
the negative sign in front of the Weyl term. For the same reason, the subleading
boundary term has here a Neumann structure, although the disks have Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. of (41.34) for a disk s as

det Ss(kas) ∼
(
e−iπN(kas )

)2 Z̃ s
`
(k∗as)

∗

Z̃ s
`
(kas)

Z̃ s
r (k∗as)

∗

Z̃ s
r (kas)

, (41.35)

where Z̃ s
`
(kas) and Z̃ s

r (kas) are the diffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functions with diffractive corrections by a
tilde) for creeping orbits around the sth disk in the left-handed sense and the right-
handed sense, respectively (see figure 41.2). The two orientations of the creeping
orbits are the reason for the exponents 2 in (41.34). Equation (41.34) describes
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Figure 41.2: Right- and left-handed diffractive
creeping paths of increasing mode number ` for
a single disk.

l

l

the semiclassical approximation to the incoherent part (= the curly bracket on the
r.h.s.) of the exact expression (41.19) for the case that the scatterers are disks.

In the following we will discuss the semiclassical resonances in the 1-disk
scattering problem with Dirichlet boundary conditions, i.e. the so-called shape
resonances. The quantum mechanical resonances are the poles of the S -matrix in
the complex k-plane. As the 1-disk scattering problem is separable, the S -matrix
is already diagonalized in the angular momentum eigenbasis and takes the sim-
ple form (41.9). The exact quantummechanical poles of the scattering matrix are
therefore given by the zeros kres

n m of the Hankel functions H(1)
m (ka) in the lower

complex k plane which can be labeled by two indices, m and n, where m denotes
the angular quantum number of the Hankel function and n is a radial quantum
number. As the Hankel functions have to vanish at specific k values, one cannot
use the usual Debye approximation as semiclassical approximation for the Hankel
function, since this approximation only works in case the Hankel function is dom-
inated by only one saddle. However, for the vanishing of the Hankel function, one
has to have the interplay of two saddles, thus an Airy approximation is needed as
in the case of the creeping poles discussed above. The Airy approximation of the
Hankel function H(1)

ν (ka) of complex-valued index ν reads

H(1)
ν (ka) ∼

2
π

e−i π3

(
6
ka

)1/3

A(q(1)) ,

with

q(1) = e−i π3

(
6
ka

)1/3

(ν − ka) + O
(
(ka)−1

)
.

Hence the zeros ν` of the Hankel function in the complex ν plane follow from the
zeros q` of the Airy integral A(q) (see (41.30). Thus if we set ν` = m (with m
integer), we have the following semiclassical condition on kres

m ∼ kresa + iα`(kresa)

= ei π3

(
kresa

6

)1/3

q` − e−i π3

(
6

kresa

)1/3 q2
`

180
−

1
70kresa

1 − q3
`

30


+ ei π3

(
6

kresa

) 5
3 1

3150

29q`
62 −

281q4
`

180 · 63

 + · · · ,

with l = 1, 2, 3, · · · . (41.36)

For a given index l this is equivalent to

0 ∼ 1 − e(ikres−α`)2πa ,
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Figure 41.3: The shape resonances of the 1-disk
system in the complex k plane in units of the disk
radius a. The boxes label the exact quantum me-
chanical resonances (given by the zeros of H(1)

m (ka)
for m = 0, 1, 2), the crosses label the diffractional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(41.36) up to the order O([ka]1/3)).
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Figure 41.4: Same as in figure 41.3. However,
the subleading terms in the Airy approximation
(41.36) are taken into account up to the order
O([ka]−1/3) (upper panel) and up to orderO([ka]−1)
(lower panel).
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the de-Broglie condition on the wave function that encircles the disk. Thus the
semiclassical resonances of the 1-disk problem are given by the zeros of the fol-
lowing product

∞∏
l=1

(
1 − e(ik−α`)2πa

)
,

which is of course nothing else than Z̃1-disk(k), the semiclassical diffraction zeta
function of the 1-disk scattering problem, see (41.35). Note that this expression
includes just the pure creeping contribution and no genuine geometrical parts.
Because of

H(1)
−m(ka) = (−1)mH(1)

m (ka) ,

the zeros are doubly degenerate if m , 0, corresponding to right- and left handed
creeping turns. The case m = 0 is unphysical, since all zeros of the Hankel func-
tion H(1)

0 (ka) have negative real value.

From figure 41.3 one notes that the creeping terms in the Airy orderO([ka]1/3),
which are used in the Keller construction, systematically underestimate the magni-
tude of the imaginary parts of the exact data. However, the creeping data become
better for increasing Re k and decreasing |Im k|, as they should as semiclassical
approximations.

In the upper panel of figure 41.4 one sees the change, when the next order
in the Airy approximation (41.36) is taken into account. The approximation is
nearly perfect, especially for the leading row of resonances. The second Airy
approximation using (41.36) up to order O([ka]−1) is perfect up to the drawing
scale of figure 41.4 (lower panel).
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Figure 41.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.
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41.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of a general periodic itinerary
(41.20) of length n is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods developed for the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

tr As1 s2 · · ·Asm s1 =

∞∑
ls1 =−∞

· · ·

∞∑
lsm =−∞

As1 s2
ls1 ls2
· · · Asm s1

lsm ls1

still has the structure of a “multi-trace” with respect to angular momentum.

Each of the sums
∑∞

lsi =−∞
– as in the 1-disk case – is replaced by a Watson

contour resummation in terms of complex angular momentum νsi . Then the paths
below the real νsi-axes are transformed to paths above these axes, and the integrals
split into expressions with and without an explicit Watson sin(νsiπ) denominator.

1. In the sin(νsiπ) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate the expression in
the saddle point approximation: either left or right specular reflection at
disk si or ghost tunneling through disk si result.

2. For the sin(νsiπ) -dependent integrals, we close the contour in the upper νsi

plane and evaluate the integral at the residua H(1)
νsi

(kasi)=0. Then we use

the Airy approximation for Jνsi
(kasi) and H(1)

νsi
(kasi): left and right creeping

paths around disk si result.

In the above we have assumed that no grazing geometrical paths appear. If
they do show up, the analysis has to be extended to the case of coinciding saddles
between the geometrical paths with π/2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contact of the point particle
with the disk si:

1. either geometrical which in turn splits into three alternatives
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(a) specular reflection to the right,
(b) specular reflection to the left,
(c) or ‘ghost tunneling’ where the latter induce the nontrivial pruning

rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns,

see figure 41.5. The specular reflection to the right is linked to left-handed creep-
ing paths with at least one knot. The specular reflection to the left matches a
right-handed creeping paths with at least one knot, whereas the shortest left- and
right-handed creeping paths in the ghost tunneling case are topologically trivial.
In fact, the topology of the creeping paths encodes the choice between the three
alternatives for the geometrical contact with the disk. This is the case for the
simple reason that creeping sections have to be positive definite in length: the
creeping amplitude has to decrease during the creeping process, as tangential rays
are constantly emitted. In mathematical terms, it means that the creeping angle
has to be positive. Thus, the positivity of the two creeping angles for the shortest
left and right turn uniquely specifies the topology of the creeping sections which
in turn specifies which of the three alternatives, either specular reflection to the
right or to the left or straight “ghost” tunneling through disk j, is realized for the
semiclassical geometrical path. Hence, the existence of a unique saddle point is
guaranteed.

In order to be concrete, we will restrict ourselves in the following to the scat-
tering from N < ∞ non-overlapping disks fixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

tr As1 s2As2 s3 · · ·Asn−1 sn Asn s1

becomes a standard periodic orbit labeled by the symbol sequence s1s2 · · · sn . De-
pending on the geometry, the individual legs si−1 → si → si+1 result either from a
standard specular reflection at disk si or from a ghost path passing straight through
disk si. If furthermore creeping contributions are taken into account, the symbolic
dynamics has to be generalized from single-letter symbols {si} to triple-letter sym-
bols {si, σi × `i} with `i ≥ 1 integer valued and σi = 0,±1 1 By definition, the
value σi = 0 represents the non-creeping case, such that {si, 0 × `i} = {si, 0} = {si}

reduces to the old single-letter symbol. The magnitude of a nonzero `i corre-
sponds to creeping sections of mode number |`i|, whereas the sign σi = ±1 signals
whether the creeping path turns around the disk si in the positive or negative sense.
Additional full creeping turns around a disk si can be summed up as a geometrical
series; therefore they do not lead to the introduction of a further symbol.

41.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, say, disk si can be shown to
have the same weight as the corresponding itinerary without the si th symbol.

1Actually, these are double-letter symbols as σi and li are only counted as a product.
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Figure 41.6: (a) The ghost itinerary (1, 2, 3, 4). (b)
The parent itinerary (1, 3, 4).

4

31 2_

4

31

Thus, semiclassically, they cancel each other in the tr ln(1 −A) expansion, where
they are multiplied by the permutation factor n/r with the integer r counting the
repeats. For example, let (1, 2, 3, 4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trace tr A4. By convention,
an underlined disk index signals a ghost passage (as in figure 41.6a), with cor-
responding semiclassical ghost traversal matrices also underlined, Ai,i+1Ai+1,i+2.
Then its semiclassical, geometrical contribution to tr ln(1 − A) cancels exactly
against the one of its “parent” itinerary (1, 3, 4) (see figure 41.6b) resulting from
the 3rd-order trace:

−
1
4

(
4 A1,2A2,3A3,4A4,1

)
−

1
3

(
3 A1,3A3,4A4,1

)
= (+1 − 1) A1,3A3,4A4,1 = 0 .

The prefactors −1/3 and −1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic permutation of the periodic
itineraries, and the cancellation stems from the rule

· · ·Ai,i+1Ai+1,i+2 · · · = · · ·
(
−Ai,i+2

)
· · · . (41.37)

The reader might study more complicated examples and convince herself that the
rule (41.37).is sufficient to cancel any primary or repeated periodic orbit with one
or more ghost sections completely out of the expansion of tr ln(1 − A) and there-
fore also out of the cumulant expansion in the semiclassical limit: Any periodic
orbit of length m with n(< m) ghost sections is cancelled by the sum of all ‘par-
ent’ periodic orbits of length m − i (with 1 ≤ i ≤ n and i ghost sections removed)
weighted by their cyclic permutation factor and by the prefactor resulting from
the trace-log expansion. This is the way in which the nontrivial pruning for the
N-disk billiards can be derived from the exact quantum mechanical expressions
in the semiclassical limit. Note that there must exist at least one index i in any
given periodic itinerary which corresponds to a non-ghost section, since other-
wise the itinerary in the semiclassical limit could only be straight and therefore
nonperiodic. Furthermore, the series in the ghost cancelation has to stop at the
2nd-order trace, tr A2, as tr A itself vanishes identically in the full domain which
is considered here.

41.5 Heisenberg uncertainty

Where is the boundary ka ≈ 2m−1L̄/a coming from?
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This boundary follows from a combination of the uncertainty principle with
ray optics and the non-vanishing value for the topological entropy of the 3-disk
repeller. When the wave number k is fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topological order n.The quantum wave
packet which explores the repelling set has to disentangle 2n different sections
of size d ∼ a/2n on the “visible” part of the disk surface (which is of order a)
between any two successive disk collisions. Successive collisions are separated
spatially by the mean flight length L̄, and the flux spreads with a factor L̄/a. In
other words, the uncertainty principle bounds the maximal sensible truncation in
the cycle expansion order by the highest quantum resolution attainable for a given
wavenumber k.

Commentary

Remark 41.1. Sources. This chapter is based in its entirety on ref. [21]; the
reader is referred to the full exposition for the proofs and discussion of details omitted
here. Sect. 41.3 is based on appendix E of ref. [21]. We follow Franz [5, 6] in applying
the Watson contour method [19] to (41.23). The Airy and Debye approximations to the
Hankel functions are given in ref. [1], the Airy expansion of the 1-disk zeros can be found
in ref. [7], see also ref. [18] for the expression of α`(ka) to leading order. (For details see
refs. [5–7, 20, 21].) That the interior domains of the disks are excluded relatively to the
free evolution without scattering obstacles was noted in refs. [3, 16].

The procedure for the semiclassical approximation of a general periodic itinerary
(41.20) of length n can be found in ref. [21] for the case of the N-disk systems. The
reader interested in the details of the semiclassical reduction is advised to consult this
reference.

The ghost orbits were introduced in refs. [2, 3].

Remark 41.2. Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [11,
16] based on ref. [2] or ref. [17]) the transition from the quantum mechanics to the
semiclassics of scattering problems has been performed via the semiclassical limit of the
left hand sides of the Krein-Friedel-Lloyd sum for the (integrated) spectral density [8, 9,
12–15]. See also ref. [4] for a modern discussion of the Krein-Friedel-Lloyd formula and
refs. [10, 17] for the connection of (40.17) to the Wigner time delay.

The order of the two limits in (40.18) and (40.17) is essential, see e.g. Balian and
Bloch [2] who stress that smoothed level densities should be inserted into the Friedel
sums.

The necessity of the +iε in the semiclassical calculation can be understood by purely
phenomenological considerations: Without the iε term there is no reason why one should
be able to neglect spurious periodic orbits which solely are there because of the introduc-
tion of the confining boundary. The subtraction of the second (empty) reference system
helps just in the removal of those spurious periodic orbits which never encounter the scat-
tering region. The ones that do would still survive the first limit b → ∞, if they were not
damped out by the +iε term.

exercise 40.1

Remark 41.3. T, Cs , Ds and As s′ matrices are trace-class In refs. [21] it has
explicitly been shown that the T-matrix as well as the Cs , Ds and As s′ -matrices of the
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scattering problem from N < ∞ non-overlapping finite disks are all trace-class. The
corresponding properties for the single-disk systems is particulary easy to prove.
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Chapter 42

Helium atom

“But,” Bohr protested, “nobody will believe me unless I
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so far

in solving real physical problems, we have good news for you. We will show
in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,
and cycle expansions are essential tools to understand and calculate classical and
quantum mechanical properties of nothing less than the helium, a dreaded three-
body Coulomb problem.

This sounds almost like one step too much at a time; we all know how rich and
complicated the dynamics of the three-body problem is – can we really jump from
three static disks directly to three charged particles moving under the influence of
their mutually attracting or repelling forces? It turns out, we can, but we have to
do it with care. The full problem is indeed not accessible in all its detail, but we
are able to analyze a somewhat simpler subsystem – collinear helium. This system
plays an important role in the classical dynamics of the full three-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to a semiclassi-
cal treatment of collinear helium lies in understanding why we are allowed to do
so. We will not worry about this too much in the beginning; after all, 80 years and
many failed attempts separate Heisenberg, Bohr and others in the 1920ties from
the insights we have today on the role chaos plays for helium and its quantum
spectrum. We have introduced collinear helium and learned how to integrate its
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Figure 42.1: Coordinates for the helium three body
problem in the plane.

Figure 42.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.

trajectories in sect. A2.2. Here we will find periodic orbits and determine the rele-
vant eigenvalues of the Jacobian matrix in sect. 42.1. We will explain in sect. 42.5
why a quantization of the collinear dynamics in helium will enable us to find parts
of the full helium spectrum; we then set up the semiclassical spectral determinant
and evaluate its cycle expansion. A full quantum justification of this treatment of
helium is briefly discussed in sect. 42.5.1.

42.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect. A2.2: the collinear helium system
consists of two electrons of mass me and charge −e moving on a line with respect
to a fixed positively charged nucleus of charge +2e, as in figure 42.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2

1

2
+

p2
2

2
−

2
r1
−

2
r2

+
1

r1 + r2
= −1 . (42.1)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem treated in sect. 42.5.

There is another classical quantity important for a semiclassical treatment of
quantum mechanics, and which will also feature prominently in the discussion in
the next section; this is the classical action (38.15) which scales with energy as

S (E) =

∮
dq(E) · p(E) =

e2m1/2
e

(−E)1/2 S , (42.2)

with S being the action obtained from (42.1) for E = −1, and coordinates q =

(r1, r2), p = (p1, p2). For the Hamiltonian (42.1), the period of a cycle and its
action are related by (38.17),

S p = 2 Tp . (42.3)
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Figure 42.3: (a) A typical trajectory in the r1 – r2

plane; the trajectory enters here along the r1 axis
and escapes to infinity along the r2 axis; (b) return
map (r2=0) for collinear helium. Strong chaos pre-
vails for small r1 near the nucleus.
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After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
, (42.4)

and reparametrization of time by dτ = dt/r1r2, the equations of motion take form
(A2.7)

exercise 42.1

Ṗ1 = 2Q1

2 − P2
2

8
− Q2

2

1 +
Q2

2

R4
12

 ; Q̇1 =
1
4

P1Q2
2 (42.5)

Ṗ2 = 2Q2

2 − P2
1

8
− Q2

1

1 +
Q2

1

R4
12

 ; Q̇2 =
1
4

P2Q2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no longer
pose a problem to a numerical integration routine. The equations (A2.7) are sin-
gular only at the triple collision R12 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (A2.6) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as a
visualization of the three-body dynamics. We will therefore refer to the old coor-
dinates r1, r2 when discussing the dynamics and the periodic orbits.

42.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium. The electrons are at-
tracted by the nucleus. During an electron–nucleus collision momentum is trans-
ferred between the inner and outer electron. The inner electron has a maximal
screening effect on the charge of the nucleus, diminishing the attractive force on
the outer electron. This electron – electron interaction is negligible if the outer
electron is far from the nucleus at a collision and the overall dynamics is regular
like in the 1-dimensional Kepler problem.
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Figure 42.4: The cycle 011 in the fundamental domain
r1 ≥ r2 (full line) and in the full domain (dashed line).
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Things change drastically if both electrons approach the nucleus nearly si-
multaneously. The momentum transfer between the electrons depends now sen-
sitively on how the particles approach the origin. Intuitively, these nearly missed
triple collisions render the dynamics chaotic. A typical trajectory is plotted in fig-
ure 42.3 (a) where we used r1 and r2 as the relevant axis. The dynamics can also
be visualized in a Poincaré section, see figure 42.3 (b). We plot here the coordinate
and momentum of the outer electron whenever the inner particle hits the nucleus,
i.e., r1 or r2 = 0. As the unstructured gray region of the Poincaré section for
small r1 illustrates, the dynamics is chaotic whenever the outer electron is close
to the origin during a collision. Conversely, regular motions dominate whenever
the outer electron is far from the nucleus. As one of the electrons escapes for al-
most any starting condition, the system is unbounded: one electron (say electron
1) can escape, with an arbitrary amount of kinetic energy taken by the fugative.
The remaining electron is trapped in a Kepler ellipse with total energy in the range
[−1,−∞]. There is no energy barrier which would separate the bound from the
unbound regions of the phase space. From general kinematic arguments one de-
duces that the outer electron will not return when p1 > 0, r2 ≤ 2 at p2 = 0, the
turning point of the inner electron. Only if the two electrons approach the nucleus
almost symmetrically along the line r1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick one of
the particles out completely. In other words, the electron escape originates from
the near triple collisions.

The collinear helium dynamics has some important properties which we now
list.

42.2.1 Z2 reflection symmetry

The Hamiltonian (A2.2) is invariant with respect to electron–electron exchange;
this Z2 symmetry corresponds to the mirror symmetry of the potential along the
line r1 = r2, figure 42.4. As a consequence, we can restrict ourselves to the dy-
namics in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonal
r1 = r2 as a hard wall reflection. The dynamics in the full domain can then be re-
constructed by unfolding the trajectory through back-reflections. As explained in
chapter 25, the dynamics in the fundamental domain is the key to the factorization
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of spectral determinants, to be implemented here in (42.16). Note also the simi-
larity between the fundamental domain of the collinear potential figure 42.4, and
the fundamental domain figure 15.13 (b) in the 3–disk system, a simpler problem
with the same binary symbolic dynamics.

in depth:

sect. 25.6, p. 484

42.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear he-
lium fully chaotic. We have no proof of the assertion, but the analysis of the
symbolic dynamics lends further credence to the claim.

The potential in (42.1) forms a ridge along the line r1 = r2. One can show
that a trajectory passing the ridge must go through at least one two-body collision
r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2. This suggests
a binary symbolic dynamics corresponding to the dynamics in the fundamental
domain r1 ≥ r2; the symbolic dynamics is linked to the return map r2 = 0 and the
symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two collisions
with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions with
the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for a return map in the fun-
damental domain, i.e., there exists a one-to-one correspondence between binary
symbol sequences and collinear trajectories in the fundamental domain, with ex-
ception of the 0 cycle.

42.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the num-
ber of periodic orbits in the fundamental domain, as in sect. 18.7.2. However,
mere existence of these cycles does not suffice to calculate semiclassical spectral
determinants. We need to determine their phase space trajectories and calculate
their periods, topological indices and stabilities. A restriction of the periodic or-
bit search to a suitable Poincaré section, i.e., r2 = 0 or r1 = r2, leaves us in
general with a 2-dimensional search. Methods to find periodic orbits in multi-
dimensional spaces have been described in chapter 16. They depend sensitively
on good starting guesses. A systematic search for all orbits can be achieved only
after combining multi-dimensional Newton methods with interpolation algorithms
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Figure 42.5: Some of the shortest cycles in
collinear helium. The classical collinear elec-
tron motion is bounded by the potential barrier
−1 = −2/r1 − 2/r2 + 1/(r1 + r2) and the condi-
tion ri ≥ 0. Orbits are shown in the full r1–r2 do-
main; itineraries refer to dynamics in the r1 ≥ r2

fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.
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based on the binary symbolic dynamics phase space partitioning.All cycles up to
symbol length 16 (some 8000 prime cycles) have been computed by such meth-
ods, with some examples shown in figure 42.5. All numerical evidence indicates
that the dynamics of collinear helium is hyperbolic, and that all periodic orbits are
unstable.

Note that the fixed point 0 cycle is not in this list. The 0 cycle would corre-
spond to the situation where the outer electron sits at rest infinitely far from the
nucleus while the inner electron bounces back and forth into the nucleus. The
orbit is the limiting case of an electron escaping to infinity with zero kinetic en-
ergy. The orbit is in the regular (i.e., separable) limit of the dynamics and is thus
marginally stable. The existence of this orbit is also related to intermittent behav-
ior generating the quasi–regular dynamics for large r1 that we have already noted
in figure 42.3 (b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to pro-
gram. There is, however, a class of periodic orbits, orbits with symmetries, which
can be easily found by a one-parameter search. The only symmetry left for the
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dynamics in the fundamental domain is time reversal symmetry; a time reversal
symmetric periodic orbit is an orbit whose trajectory in phase space is mapped
onto itself when changing (p1, p2)→ (−p1,−p2), by reversing the direction of the
momentum of the orbit. Such an orbit must be a “libration” or self-retracing cy-
cle, an orbit that runs back and forth along the same path in the (r1, r2) plane. The
cycles 1, 01 and 001 in figure 42.5 are examples of self-retracing cycles. Luckily,
the shortest cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start perpen-
dicular to the boundary of the fundamental domain, that is, on either of the axis
r2 = 0 or r1 = r2, or on the potential boundary − 2

r1
− 2

r2
+ 1′

r1+r2
= −1. By

shooting off trajectories perpendicular to the boundaries and monitoring the orbits
returning to the boundary with the right symbol length we will find time reversal
symmetric cycles by varying the starting point on the boundary as the only pa-
rameter. But how can we tell whether a given cycle is self-retracing or not? All
the relevant information is contained in the itineraries; a cycle is self-retracing if
its itinerary is invariant under time reversal symmetry (i.e., read backwards) and
a suitable number of cyclic permutations. All binary strings up to length 5 fulfill
this condition. The symbolic dynamics contains even more information; we can
tell at which boundary the total reflection occurs. One finds that an orbit starts out
perpendicular

• to the diagonal r1 = r2 if the itinerary is time reversal invariant and has an
odd number of 1’s; an example is the cycle 001 in figure 42.5;

• to the axis r2 = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cycle 0011 in figure 42.5;

• to the potential boundary if the itinerary is time reversal invariant and has
an odd number of symbols; an example is the cycle 011 in figure 42.5.

All cycles up to symbol length 5 are time reversal invariant, the first two non-time
reversal symmetric cycles are the cycle 001011 in figure 42.5 and, overlying it
in this projection, 001101. Their determination requires a two-parameter search.
The two cycles are mapped onto each other by time reversal symmetry, i.e., they
have the same trace in the r1–r2 plane, but they trace out distinct cycles in the full
phase space.

We are ready to integrate trajectories for classical collinear helium with the
help of the equations of motions (A2.7) and to find all cycles up to length 5. There

exercise 42.5
is only one thing not yet in place; we need the governing equations for the matrix
elements of the Jacobian matrix along a trajectory in order to calculate stability
indices. We will provide the main equations in the next section, with the details
of the derivation relegated to the appendix A8.2.
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42.3 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion for the Jacobian matrix
along a collinear helium trajectory. The Jacobian matrix is 4-dimensional; the
two trivial eigenvectors corresponding to the conservation of energy and displace-
ments along a trajectory can, however, be projected out by suitable orthogonal
coordinates transformations, see appendix A4. We will give the transformation to
local coordinates explicitly, here for the regularized coordinates (A2.5), and state
the resulting equations of motion for the reduced [2 × 2] Jacobian matrix.

The vector locally parallel to the trajectory is pointing in the direction of the
phase space velocity (8.3)

vm = ẋm(t) = ωmn
∂H
∂xn

= (HP1 ,HP2 ,−HQ1 ,−HQ2)>,

with HQi = ∂H
∂Qi

, and HPi = ∂H
∂Pi

, i = 1,2. The vector perpendicular to a trajec-
tory x(t) = (Q1(t),Q2(t), P1(t), P2(t)) and to the energy manifold is given by the
gradient of the Hamiltonian (A2.6)

γ = ∇H = (HQ1 ,HQ2 ,HP1 ,HP2)> .

By symmetry vmγm = ωmn
∂H
∂xn

∂H
∂xm

= 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (42.6)

=


−HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2


with R = |∇H|2 = (H2

Q1
+ H2

Q2
+ H2

P1
+ H2

P2
), which provides a transformation to

local phase space coordinates centered on the trajectory x(t) along the two vectors
(γ, v). The vectors γ1,2 are phase space vectors perpendicular to the trajectory and

exercise 42.6
to the energy manifold in the 4-dimensional phase space of collinear helium. The
Jacobian matrix (4.5) rotated to the local coordinate system by O then has the
form

m =


m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1

 , M = O>mO

The linearized motion perpendicular to the trajectory on the energy manifold is
described by the [2 × 2] matrix m; the marginal directions correspond to unit
eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced Jacobian matrix m are given by

ṁ = 1(t)m(t), (42.7)
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with m(0) = 1. The matrix l depends on the trajectory in phase space and has the
form

1 =


l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0

 ,
where the relevant matrix elements li j are given by

l11 =
1
R

[2HQ1Q2(HQ2 HP1 + HQ1 HP2) (42.8)

+(HQ1 HP1 − HQ2 HP2)(HQ1Q1 − HQ2Q2 − HP1P1 + HP2P2)]

l12 = −2HQ1Q2(HQ1 HQ2 − HP1 HP2)

+(H2
Q1

+ H2
P2

)(HQ2Q2 + HP1P1) + (H2
Q2

+ H2
P1

)(HQ1Q1 + HP2P2)

l21 =
1

R2 [2(HQ1P2 + HQ2P1)(HQ2 HP1 + HQ1 HP8)

−(H2
P1

+ H2
P2

)(HQ1Q1 + HQ2Q2) − (H2
Q1

+ H2
Q2

)(HP1P1 + HP2P2)]

l22 = −l11 .

Here HQiQ j , HPiP j , i, j = 1, 2 are the second partial derivatives of H with respect
to the coordinates Qi, Pi, evaluated at the phase space coordinate of the classical
trajectory.

42.4 Getting ready

Now everything is in place: the regularized equations of motion can be imple-
mented in a Runge–Kutta or any other integration scheme to calculate trajectories.
We have a symbolic dynamics and know how many cycles there are and how to
find them (at least up to symbol length 5). We know how to compute the Jacobian
matrix whose eigenvalues enter the semiclassical spectral determinant (39.12). By
(38.17) the action S p is proportional to the period of the orbit, S p = 2Tp.

There is, however, still a slight complication. Collinear helium is an invariant
4-dimensional subspace of the full helium phase space. If we restrict the dynamics
to angular momentum equal zero, we are left with 6 phase space coordinates. That
is not a problem when computing periodic orbits, they are oblivious to the other di-
mensions. However, the Jacobian matrix does pick up extra contributions. When
we calculate the Jacobian matrix for the full problem, we must also allow for dis-
placements out of the collinear plane, so the full Jacobian matrix for dynamics for
L = 0 angular momentum is 6 dimensional. Fortunately, the linearized dynamics
in and off the collinear helium subspace decouple, and the Jacobian matrix can
be written in terms of two distinct [2 × 2] matrices, with trivial eigen-directions
providing the remaining two dimensions. The submatrix related to displacements
off the linear configuration characterizes the linearized dynamics in the additional
degree of freedom, the Θ-coordinate in figure 42.1. It turns out that the linearized
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Table 42.1: Action S p (in units of 2π), stability exponent ln |Λp|/Tp for the motion in the collinear
plane, winding number σp for the motion perpendicular to the collinear plane, and the topological
index mp for all fundamental domain cycles up to topological length 6. Note that by (42.3), S p =

2Tp.

p S p/2π ln |Λp| σp mp
1 1.82900 0.6012 0.5393 2

01 3.61825 1.8622 1.0918 4
001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

dynamics in the Θ coordinate is stable, corresponding to a bending type motion of
the two electrons. We will need the Floquet exponents for all degrees of freedom
in evaluating the semiclassical spectral determinant in sect. 42.5.

The numerical values of the actions, Floquet exponents, stability angles, and
topological indices for the shortest cycles are listed in table 42.1. These numbers,
needed for the semiclassical quantization implemented in the next section, an also
be helpful in checking your own calculations.

42.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy levels
let us have a brief look at the overall structure of the spectrum. This will give us
a preliminary feel for which parts of the helium spectrum are accessible with the
help of our collinear model – and which are not. In order to keep the discussion as
simple as possible and to concentrate on the semiclassical aspects of our calcula-
tions we offer here only a rough overview. For a guide to more detailed accounts
see remark 42.4.
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42.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-
electron atoms. The eigenenergies form a Rydberg series

EN = −
e4me

~2

Z2

2N2 , (42.9)

where Ze is the charge of the nucleus and me is the mass of the electron. Through
the rest of this chapter we adopt the atomic units e = me = ~ = 1.

The simplest model for the helium spectrum is obtained by treating the two
electrons as independent particles moving in the potential of the nucleus neglect-
ing the electron–electron interaction. Both electrons are then bound in hydrogen
like states; the inner electron will see a charge Z = 2, screening at the same time
the nucleus, the outer electron will move in a Coulomb potential with effective
charge Z − 1 = 1. In this way obtain a first estimate for the total energy

EN,n = −
2

N2 −
1

2n2 with n > N. (42.10)

This double Rydberg formula contains already most of the information we need to
understand the basic structure of the spectrum. The (correct) ionizations thresh-
olds EN = − 2

N2 are obtained in the limit n → ∞, yielding the ground and excited
states of the helium ion He+. We will therefore refer to N as the principal quantum
number. We also see that all states EN,n with N ≥ 2 lie above the first ionization
threshold for N = 1. As soon as we switch on electron-electron interaction these
states are no longer bound states; they turn into resonant states which decay into
a bound state of the helium ion and a free outer electron. This might not come as
a big surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape after
some finite time. More remarkable is the fact that the first, N = 1 series consists
of true bound states for all n, an effect which can only be understood by quantum
arguments.

The hydrogen-like quantum energies (42.9) are highly degenerate; states with
different angular momentum but the same principal quantum number N share the
same energy. We recall from basic quantum mechanics of hydrogen atom that
the possible angular momenta for a given N span l = 0, 1 . . .N − 1. How does
that affect the helium case? Total angular momentum L for the helium three-body
problem is conserved. The collinear helium is a subspace of the classical phase
space for L = 0; we thus expect that we can only quantize helium states corre-
sponding to the total angular momentum zero, a subspectrum of the full helium
spectrum. Going back to our crude estimate (42.10) we may now attribute angular
momenta to the two independent electrons, l1 and l2 say. In order to obtain total
angular momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that is, there are
N different states corresponding to L = 0 for fixed quantum numbers N, n. That
means that we expect N different Rydberg series converging to each ionization
threshold EN = −2/N2. This is indeed the case and the N different series can
be identified also in the exact helium quantum spectrum, see figure 42.6. The
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Figure 42.6: The exact quantum helium spectrum
for L = 0. The energy levels denoted by bars
have been obtained from full 3-dimensional quan-
tum calculations [2].
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degeneracies between the different N Rydberg series corresponding to the same
principal quantum number N, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of the L = 0 spectrum
can be reproduced by the semiclassical quantization of collinear helium. In the
collinear helium, both classical electrons move back and forth along a common
axis through the nucleus, so each has zero angular momentum. We therefore
expect that collinear helium describes the Rydberg series with l = l1 = l2 = 0.
These series are the energetically lowest states for fixed (N, n), corresponding to
the Rydberg series on the outermost left side of the spectrum in figure 42.6. We
will see in the next section that this is indeed the case and that the collinear model
holds down to the N = 1 bound state series, including even the ground state
of helium! We will also find a semiclassical quantum number corresponding to
the angular momentum l and show that the collinear model describes states for
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moderate angular momentum l as long as l � N. .
remark 42.4

42.5.2 Semiclassical spectral determinant for collinear helium

Nothing but lassitude can stop us now from calculating our first semiclassical
eigenvalues. The only thing left to do is to set up the spectral determinant in terms
of the periodic orbits of collinear helium and to write out the first few terms of its
cycle expansion with the help of the binary symbolic dynamics. The semiclassic-
al spectral determinant (39.12) has been written as product over all cycles of the
classical systems. The energy dependence in collinear helium enters the classical
dynamics only through simple scaling transformations described in sect. A2.2.1
which makes it possible to write the semiclassical spectral determinant in the form

det (Ĥ−E)sc = exp

−∑
p

∞∑
r=1

1
r

eir(sS p−mp
π
2 )

(−det (1 − Mr
p⊥))1/2|det (1 − Mr

p‖)|
1/2

 , (42.11)

with the energy dependence absorbed into the variable

s =
e2

~

√
me

−E
,

obtained by using the scaling relation (42.2) for the action. As explained in
sect. 42.3, the fact that the [4 × 4] Jacobian matrix decouples into two [2 × 2]
submatrices corresponding to the dynamics in the collinear space and perpendic-
ular to it makes it possible to write the denominator in terms of a product of
two determinants. Stable and unstable degrees of freedom enter the trace formula
in different ways (see (22.9) and the discussion in sect. 23.2.2), reflected by the
absence of the modulus sign and the minus sign in front of det (1 − M⊥). The
topological index mp corresponds to the unstable dynamics in the collinear plane.
Note that the factor eiπN̄(E) present in (39.12) is absent in (42.11). Collinear he-
lium is an open system, i.e., the eigenenergies are resonances corresponding to
the complex zeros of the semiclassical spectral determinant and the mean energy
staircase N̄(E) not defined. In order to obtain a spectral determinant as an infi-

chapter 40
nite product of the form (39.19) we may proceed as in (22.8) by expanding the
determinants in (42.11) in terms of the eigenvalues of the corresponding Jacobian
matrices. The matrix representing displacements perpendicular to the collinear
space has eigenvalues of the form exp(±2πiσ), reflecting stable linearized dynam-
ics. σ is the full winding number along the orbit in the stable degree of freedom,
multiplicative under multiple repetitions of this orbit.The eigenvalues correspond-
ing to the unstable dynamics along the collinear axis are paired as {Λ, 1/Λ} with
|Λ| > 1 and real. As in (22.8) and (39.19) we may thus write

[
−det (1 − Mr

⊥)|det (1 − Mr
‖
)|
]−1/2

=
[
−(1 − Λr)(1 − Λ−r)|(1 − e2πirσ)(1 − e−2πirσ)

]−1/2
(42.12)

=

∞∑
k,`=0

1
|Λr |1/2Λrk e−ir(`+1/2)σ .
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The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits with
positive/negative eigenvalues Λ. Using the relation (42.13) we see that the sum
over r in (42.11) is the expansion of the logarithm, so the semiclassical spectral
determinant can be rewritten as a product over dynamical zeta functions, as in
(22.8):

det (Ĥ − E)sc =

∞∏
k=0

∞∏
m=0

ζ−1
k,m =

∞∏
k=0

∞∏
m=0

∏
p

(1 − t(k,m)
p ) , (42.13)

where the cycle weights are given by

t(k,mp)
p =

1
|Λ|1/2Λk ei(sS p−mp

π
2−4π(`+1/2)σp) , (42.14)

and mp is the topological index for the motion in the collinear plane which equals
twice the topological length of the cycle. The two independent directions perpen-
dicular to the collinear axis lead to a twofold degeneracy in this degree of freedom
which accounts for an additional factor 2 in front of the winding number σ. The
values for the actions, winding numbers and stability indices of the shortest cycles
in collinear helium are listed in table 42.1.

The integer indices ` and k play very different roles in the semiclassical spec-
tral determinant (42.13). A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potential in the vicinity of the
trajectory. Stable motion corresponds to a harmonic oscillator potential, unsta-
ble motion to an inverted harmonic oscillator. The index ` which contributes as
a phase to the cycle weights in the dynamical zeta functions can therefore be
interpreted as a harmonic oscillator quantum number; it corresponds to vibra-
tional modes in the Θ coordinate and can in our simplified picture developed in
sect. 42.5.1 be related to the quantum number l = l1 = l2 representing the single
particle angular momenta. Every distinct ` value corresponds to a full spectrum
which we obtain from the zeros of the semiclassical spectral determinant 1/ζ`
keeping ` fixed. The harmonic oscillator approximation will eventually break
down with increasing off-line excitations and thus increasing `. The index k cor-
responds to ‘excitations’ along the unstable direction and can be identified with
local resonances of the inverted harmonic oscillator centered on the given orbit.
The cycle contributions t(k,m)

p decrease exponentially with increasing k. Higher
appendix A39

k terms in an expansion of the determinant give corrections which become im-
portant only for large negative imaginary s values. As we are interested only in
the leading zeros of (42.13), i.e., the zeros closest to the real energy axis, it is
sufficient to take only the k = 0 terms into account.

Next, let us have a look at the discrete symmetries discussed in sect. 42.2.
Collinear helium has a Z2 symmetry as it is invariant under reflection across the
r1 = r2 line corresponding to the electron-electron exchange symmetry. As ex-
plained in example 25.9 and sect. 25.5, we may use this symmetry to factorize
the semiclassical spectral determinant. The spectrum corresponding to the states
symmetric or antisymmetric with respect to reflection can be obtained by writing
the dynamical zeta functions in the symmetry factorized form

1/ζ(`) =
∏

a

(1 − ta)2
∏

s̃

(1 − t2
s̃ ) . (42.15)
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Here, the first product is taken over all asymmetric prime cycles, i.e., cycles that
are not self-dual under the Z2 symmetry. Such cycles come in pairs, as two equiv-
alent orbits are mapped into each other by the symmetry transformation. The sec-
ond product runs over all self-dual cycles; these orbits cross the axis r1 = r2 twice
at a right angle. The self-dual cycles close in the fundamental domain r1 ≤ r2
already at half the period compared to the orbit in the full domain, and the cy-
cle weights ts̃ in (42.15) are the weights of fundamental domain cycles. The Z2
symmetry now leads to the factorization of (42.15) 1/ζ = ζ−1

+ ζ−1
− , with

section 25.5

1/ζ(`)
+ =

∏
a

(1 − ta)
∏

s̃

(1 − ts̃) ,

1/ζ(`)
− =

∏
a

(1 − ta)
∏

s̃

(1 + ts̃) , (42.16)

setting k = 0 in what follows. The symmetric subspace resonances are given
by the zeros of 1/ζ(`)

+ , antisymmetric resonances by the zeros of 1/ζ(`)
− , with the

two dynamical zeta functions defined as products over orbits in the fundamental
domain. The symmetry properties of an orbit can be read off directly from its
symbol sequence, as explained in sect. 42.2. An orbit with an odd number of 1’s
in the itinerary is self-dual under the Z2 symmetry and enters the spectral deter-
minant in (42.16) with a negative or a positive sign, depending on the symmetry
subspace under consideration.

42.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral det-
erminant and have thereby picked up two good quantum numbers; the quantum
number m has been identified with an excitation of the bending vibrations, the
exchange symmetry quantum number ±1 corresponds to states being symmetric
or antisymmetric with respect to the Z2 electron-electron exchange. We may now
start writing down the binary cycle expansion (23.8) and determine the zeros of
spectral determinant. There is, however, still another problem: there is no cycle 0
in the collinear helium. The symbol sequence 0 corresponds to the limit of an outer
electron fixed with zero kinetic energy at r1 = ∞, the inner electron bouncing back
and forth into the singularity at the origin. This introduces intermittency in our
system, a problem discussed in chapter 29. We note that the behavior of cycles
going far out in the channel r1 or r2 → ∞ is very different from those staying in the
near core region. A cycle expansion using the binary alphabet reproduces states
where both electrons are localized in the near core regions: these are the lowest
states in each Rydberg series. The states converging to the various ionization
thresholds EN = −2/N2 correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionization channel r1, r2 → ∞.
To include those states, we have to deal with the dynamics in the limit of large
r1, r2. This turns out to be equivalent to switching to a symbolic dynamics with

section 29.3
an infinite alphabet of table 29.1, a step beyond our ambition horizon right now.
With this observation in mind, we may write the cycle expansion (42.17) for a

remark 42.5
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binary alphabet without the 0 cycle as

1/ζ`(s) = 1 − t(`)
1 − t(`)

01 − [t(`)
001 + t(`)

011 − t(`)
01 t(`)

1 ]

−[t(`)
0001 + t(`)

0011 − t(`)
001t(`)

1 + t(`)
0111 − t(`)

011t(`)
1 ] − . . . . (42.17)

The weights t(`)
p are given in (42.13), with contributions of orbits and composite

orbits of the same total symbol length collected within square brackets. The cycle
expansion depends only on the classical actions, stability indices and winding
numbers, given for orbits up to length 6 in table 42.1. To get reacquainted with
the cycle expansion formula (42.17), consider a truncation of the series after the
first term

1/ζ(`)(s) ≈ 1 − t1 .

The quantization condition 1/ζ(`)(s) = 0 leads to

Em,N = −
(S 1/2π)2

[m + 1
2 + 2(N + 1

2 )σ1]2
, m,N = 0, 1, 2, . . . , (42.18)

with S 1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding number, see
table 42.1, the 1 cycle in the fundamental domain. This cycle can be described as
the asymmetric stretch orbit, see figure 42.5. The additional quantum number N in
(42.18) corresponds to the principal quantum number defined in sect. 42.5.1. The
states described by the quantization condition (42.18) are those centered closest to
the nucleus and correspond therefore to the lowest states in each Rydberg series
(for a fixed m and N values), in figure 42.6. The simple formula (42.18) gives
already a rather good estimate for the ground state of helium! Results obtained
from (42.18) are tabulated in table 42.2, see the 3rd column under j = 1 and the
comparison with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include more
orbits in the cycle expansion (42.17), covering more of the phase space dynamics
further away from the center. Taking longer and longer cycles into account, we
indeed reveal more and more states in each N-series for fixed m. This is illustrated
by the data listed in table 42.2 for symmetric states obtained from truncations of
the cycle expansion of 1/ζ+.

exercise 42.7

Results of the same quality are obtained for antisymmetric states by calculat-
ing the zeros of 1/ζ(`)

− . Repeating the calculation with ` = 1 or higher in (42.16)
reveals states in the Rydberg series which are to the right of the energetically low-
est series in figure 42.6.

Résumé

We have covered a lot of ground, starting with considerations of the classical
properties of a three-body Coulomb problem, and ending with the semiclassical
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Table 42.2: Collinear helium, real part of the symmetric subspace resonances obtained by a cycle
expansion (42.17) up to cycle length j. The exact quantum energies [2] are in the last column. The
states are labeled by their principal quantum numbers. A dash as an entry indicates a missing zero
at that level of approximation.

N m j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

helium spectrum. We saw that the three-body problem restricted to the dynamics
on a collinear appears to be fully chaotic; this implies that traditional semiclassi-
cal methods such as WKB quantization will not work and that we need the full

chapter 37
periodic orbit theory to obtain leads to the semiclassical spectrum of helium. As
a piece of unexpected luck the symbolic dynamics is simple, and the semiclassi-
cal quantization of the collinear dynamics yields an important part of the helium
spectrum, including the ground state, to a reasonable accuracy. A sceptic might
say: “Why bother with all the semiclassical considerations? A straightforward nu-
merical quantum calculation achieves the same goal with better precision.” While
this is true, the semiclassical analysis offers new insights into the structure of the
spectrum. We discovered that the dynamics perpendicular to the collinear plane
was stable, giving rise to an additional (approximate) quantum number `. We thus
understood the origin of the different Rydberg series depicted in figure 42.6, a fact
which is not at all obvious from a numerical solution of the quantum problem.

Having traversed the long road from the classical game of pinball all the way
to a credible helium spectrum computation, we could declare victory and fold
down this enterprise. Nevertheless, there is still much to think about - what about
such quintessentially quantum effects as diffraction, tunnelling, ...? As we shall

chapter 43
see, the periodic orbit theory has still much of interest to offer.

Commentary

Remark 42.1. Sources. The full 3-dimensional Hamiltonian after elimination of
the center of mass coordinates, and an account of the finite nucleus mass effects is given
in ref. [8]. The general two–body collision regularizing Kustaanheimo–Stiefel transfor-
mation [6], a generalization of Levi-Civita’s [7] Pauli matrix two–body collision regular-
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ization for motion in a plane, is due to Kustaanheimo [5] who realized that the correct
higher-dimensional generalization of the “square root removal” trick (A2.18), by intro-
ducing a vector Q with property r = |Q|2 , is the same as Dirac’s trick of getting linear
equation for spin 1/2 fermions by means of spinors. Vector spaces equipped with a prod-
uct and a known satisfy |Q · Q| = |Q|2 define normed algebras. They appear in various
physical applications - as quaternions, octonions, spinors. The technique was originally
developed in celestial mechanics [10] to obtain numerically stable solutions for planetary
motions. The basic idea was in place as early as 1931, when H. Hopf [4] used a KS trans-
formation in order to illustrate a Hopf’s invariant. The KS transformation for the collinear
helium was introduced in ref. [8].

Remark 42.2. Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinear helium cycles have been found
in numerical investigations. A proof that all cycles are unstable, that they are uniquely
labeled by the binary symbolic dynamics, and that this dynamics is complete is, however,
still missing. The conjectured Markov partition of the phase space is given by the triple
collision manifold, i.e., by those trajectories which start in or end at the singular point
r1 = r2 = 0. See also ref. [8].

Remark 42.3. Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamical effects due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Electrons are fermions and that deter-
mines the symmetry properties of the quantum states. The total wave function, including
the spin degrees of freedom, must be antisymmetric under the electron-electron exchange
transformation. That means that a quantum state symmetric in the position variables must
have an antisymmetric spin wave function, i.e., the spins are antiparallel and the total spin
is zero (singletstate). Antisymmetric states have symmetric spin wave function with total
spin 1 (tripletstates). The threefold degeneracy of spin 1 states is lifted by the spin-orbit
coupling.

Remark 42.4. Helium quantum numbers. The classification of the helium states
in terms of single electron quantum numbers, sketched in sect. 42.5.1, prevailed until the
1960’s; a growing discrepancy between experimental results and theoretical predictions
made it necessary to refine this picture. In particular, the different Rydberg series sharing
a given N-quantum number correspond, roughly speaking, to a quantization of the inter
electronic angle Θ, see figure 42.1, and can not be described in terms of single electron
quantum numbers l1, l2. The fact that something is slightly wrong with the single electron
picture laid out in sect. 42.5.1 is highlighted when considering the collinear configuration
where both electrons are on the same side of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quantum states should also belong
to single electron quantum numbers (l1, l2) = (0, 0). However, the single electron picture
breaks down completely in the limit Θ = 0 where electron-electron interaction becomes
the dominant effect. The quantum states corresponding to this classical configuration are
distinctively different from those obtained from the collinear dynamics with electrons on
different sides of the nucleus. The Rydberg series related to the classical Θ = 0 dynamics
are on the outermost rigth side in each N subspectrum in figure 42.6, and contain the
energetically highest states for given N, n quantum numbers, see also remark 42.5. A
detailed account of the historical development as well as a modern interpretation of the
spectrum can be found in ref. [11].
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Remark 42.5. Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace is discussed in refs. [1, 3, 14]. Clas-
sical and semiclassical considerations beyond what has been discussed in sect. 42.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons are on the
same side of the nucleus reveals that this configuration is fully stable both in the collinear
plane and perpendicular to it. The corresponding quantum states can be obtained with
the help of an approximate EBK-quantization which reveals helium resonances with ex-
tremely long lifetimes (quasi - bound states in the continuum). These states form the
energetically highest Rydberg series for a given principal quantum number N, see fig-
ure 42.6. Details can be found in refs. [9, 13].

In order to obtain the Rydberg series structure of the spectrum, i.e., the succession
of states converging to various ionization thresholds, we need to take into account the
dynamics of orbits which make large excursions along the r1 or r2 axis. In the chaotic
collinear subspace these orbits are characterized by itineraries of form (a0n) where a
stands for an arbitrary binary symbol sequence and 0n is a succession of n 0’s in a row.
A summation of the form

∑∞
n=0 ta0n , where tp are the cycle weights in (42.13), and cy-

cle expansion of indeed yield all Rydberg states up the various ionization thresholds, see
ref. [12]. For a comprehensive overview on spectra of two-electron atoms and semiclas-
sical treatments ref. [11].
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EXERCISES 788

Exercises

42.1. Kustaanheimo–Stiefel transformation. Check the
Kustaanheimo–Stiefel regularization for collinear he-
lium; derive the Hamiltonian (A2.6) and the collinear
helium equations of motion (A2.7).

42.2. Helium in the plane. Starting with the helium
Hamiltonian in the infinite nucleus mass approximation
mhe = ∞, and angular momentum L = 0, show that the
three body problem can be written in terms of three inde-
pendent coordinates only, the electron-nucleus distances
r1 and r2 and the inter-electron angle Θ, see figure A2.1.

42.3. Helium trajectories. Do some trial integrations of the
collinear helium equations of motion (A2.7). Due to the
energy conservation, only three of the phase space coor-
dinates (Q1,Q2, P1, P2) are independent. Alternatively,
you can integrate in 4 dimensions and use the energy
conservation as a check on the quality of your integra-
tor.
The dynamics can be visualized as a motion in the orig-
inal configuration space (r1, r2), ri ≥ 0 quadrant, or,
better still, by an appropriately chosen 2-dimensional
Poincaré section, exercise 42.4. Most trajectories will
run away, do not be surprised - the classical collinear he-
lium is unbound. Try to guess approximately the short-
est cycle of figure 42.4.

42.4. A Poincaré section for collinear Helium. Construct
a Poincaré section of figure 42.3b that reduces the he-
lium flow to a map. Try to delineate regions which cor-
respond to finite symbol sequences, i.e. initial condi-
tions that follow the same topological itinerary in fig-
ure 42.3a space for a finite number of bounces. Such
rough partition can be used to initiate 2–dimensional
Newton-Raphson method searches for helium cycles,
exercise 42.5.

42.5. Collinear helium cycles. The motion in the (r1, r2)
plane is topologically similar to the pinball motion in a
3-disk system, except that the motion is in the Coulomb
potential.
Just as in the 3-disk system the dynamics is simplified
if viewed in the fundamental domain, in this case the

region between r1 axis and the r1 = r2 diagonal. Mod-
ify your integration routine so the trajectory bounces off

the diagonal as off a mirror. Miraculously, the symbolic
dynamics for the survivors again turns out to be binary,
with 0 symbol signifying a bounce off the r1 axis, and
1 symbol for a bounce off the diagonal. Just as in the
3-disk game of pinball, we thus know what cycles need
to be computed for the cycle expansion (42.17).

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either return-
ing to the same ri axis or reflecting off the diagonal.
Now either Use special symmetries of orbits such as
self-retracing to find all orbits up to length 5 by a 1-
dimensional Newton search.

42.6. Collinear helium cycle stabilities. Compute the
eigenvalues for the cycles you found in exercise 42.5, as
described in sect. 42.3. You may either integrate the re-
duced 2 × 2 matrix using equations (42.7) together with
the generating function l given in local coordinates by
(42.8) or integrate the full 4× 4 Jacobian matrix, see ap-
pendix A8.2. Integration in 4 dimensions should give
eigenvalues of the form (1, 1,Λp, 1/Λp); The unit eigen-
values are due to the usual periodic orbit invariances;
displacements along the orbit as well as perpendicular
to the energy manifold are conserved; the latter one
provides a check of the accuracy of your computation.
Compare with table 42.1; you should get the actions and
Lyapunov exponents right, but topological indices and
stability angles we take on faith.

42.7. Helium eigenenergies. Compute the lowest eigenen-
ergies of singlet and triplet states of helium by substi-
tuting cycle data into the cycle expansion (42.17) for
the symmetric and antisymmetric zeta functions (42.16).
Probably the quickest way is to plot the magnitude of the
zeta function as function of real energy and look for the
minima. As the eigenenergies in general have a small
imaginary part, a contour plot such as figure 23.1, can
yield informed guesses. Better way would be to find the
zeros by Newton method, sect. 23.1.
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Chapter 43

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

43.1 Quantum eavesdropping

As noted in chapter 42, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenomenon - there is often
some singularity or discontinuity in the classical mechanics of physical systems.
This discontinuity can even be helpful in classifying the dynamics. The points in
phase space which have a past or future at the discontinuity form manifolds which
divide the phase space and provide the symbolic dynamics. The general rule is that
quantum mechanics smoothes over these discontinuities in a process we interpret
as diffraction. We solve the local diffraction problem quantum mechanically and
then incorporate this into our global solution. By doing so, we reconfirm the
central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat
involved. In fact, so involved that we do not have a clue how to do it. In its
place we illustrate the concept of diffractive effects with a pinball game. There
are various classes of discontinuities which a billiard can have. There may be a
grazing condition such that some trajectories hit a smooth surface while others
are unaffected - this leads to the creeping described in chapter 40. There may be a
vertex such that trajectories to one side bounce differently from those to the other
side. There may be a point scatterer or a magnetic flux line such that we do not
know how to continue classical mechanics through the discontinuities. In what
follows, we specialize the discussion to the second example - that of vertices or
wedges. To further simplify the discussion, we consider the special case of a half
line which can be thought of as a wedge of angle zero.

789



CHAPTER 43. DIFFRACTION DISTRACTION 790

Figure 43.1: Scattering of a plane wave off a half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a half line
(see figure 43.1). This is the local problem whose solution we will use to construct
a global solution of more complicated geometries. We define the vertex to be the
origin and launch a plane wave at it from an angle α. What is the total field? This
is a problem solved by Sommerfeld [17–19] in 1896 and our discussion closely
follows his.

The total field consists of three parts - the incident field, the reflected field
and the diffractive field. Ignoring the third of these for the moment, we see that
the space is divided into three regions. In region I there is both an incident and a
reflected wave. In region II there is only an incident field. In region III there is
nothing so we call this the shadowed region. However, because of diffraction the
field does enter this region. This accounts for why you can overhear a conversation
if you are on the opposite side of a thick wall but with a door a few meters away.
Traditionally such effects have been ignored in semiclassical calculations because
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,
so let us briefly consider that much simpler problem. There we know that the
problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (43.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then given by
the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (43.2)

where the negative sign ensures that the boundary condition of zero field on the
line is satisfied.

Sommerfeld then argued that v(r, ψ) can also be given a complex integral rep-
resentation

v(r, ψ) = A
∫

C
dβ f (β, ψ)e−ikr cos β. (43.3)

This is certainly correct if the function f (β, ψ) has a pole of residue 1/2πi at β =

−ψ and if the contour C encloses that pole. One choice is

f (β, ψ) =
1

2π
eiβ

eiβ − e−iψ . (43.4)
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CHAPTER 43. DIFFRACTION DISTRACTION 791

Figure 43.2: The contour in the complex β plane.
The pole is at β = −ψ (marked by × in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
β approaches infinity.

����������������������������������������������������������������������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
��������� x

0−2π −π π 2π

C

C
D

D 2

1
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2

(We choose the pole to be at β = −ψ rather than β = ψ for reasons discussed later.)
One valid choice for the contour is shown in figure 43.2. This encloses the pole
and vanishes as |Im β| → ∞ (as denoted by the shading). The sections D1 and D2
are congruent because they are displaced by 2π. However, they are traversed in
an opposite sense and cancel, so our contour consists of just the sections C1 and
C2. The motivation for expressing the solution in this complicated manner should
become clear soon.

What have we done? We extended the space under consideration by a factor
of two and then constructed a solution by assuming that there is also a source in
the unphysical space. We superimpose the solutions from the two sources and at
the end only consider the solution in the physical space to be meaningful. Fur-
thermore, we expressed the solution as a contour integral which reflects the 2π
periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is peri-
odic in 4π. This can be seen by the fact that the field can be expanded in a series
of the form {sin(φ/2), sin(φ), sin(3φ/2), · · · }. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shown in figure 43.1 and the
unphysical sheet is congruent to it. The sheets are glued together along the half
line so that a curve in the physical space which intersects the half line is continued
in the unphysical space and vice-versa. The boundary conditions are that the total
field is zero on both faces of the half line (which are physically distinct boundary
conditions) and that as r → ∞ the field is composed solely of plane waves and
outgoing circular waves of the form g(φ) exp(ikr)/

√
kr. This last condition is a

result of Huygens’ principle.

We assume that the complete solution is also given by the method of images
as

vtot = u(r, φ − α) − u(r, φ + α). (43.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
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CHAPTER 43. DIFFRACTION DISTRACTION 792

Figure 43.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The curve F
is traversed twice in opposite directions and has no
net contribution.
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interpreted as an incident field from the unphysical space and the negative sign
guarantees that the solution vanishes on both faces of the half line. Sommerfeld
then made the ansatz that u is as given in equation (43.3) with the same contour
C1 + C2 but with the 4π periodicity accounted for by replacing equation (43.4)
with

f (β, ψ) =
1

4π
eiβ/2

eiβ/2 − e−iψ/2 . (43.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.) The
integral (43.3) can be thought of as a linear superposition of an infinity of plane
waves each of which satisfies the Helmholtz equation (∇2 + k2)v = 0, and so their
combination also satisfies the Helmholtz equation. We will see that the diffracted
field is an outgoing circular wave; this being a result of choosing the pole at β =

−ψ rather than β = ψ in equation (43.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions and therefore constitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful to massage the contour.
Depending on φ there may or may not be a pole between β = −π and β = π. In
region I, both functions u(r, φ ± α) have poles which correspond to the incident
and reflected waves. In region II, only u(r, φ − α) has a pole corresponding to the
incident wave. In region III there are no poles because of the shadow. Once we
have accounted for the geometrical waves (i.e., the poles), we extract the diffracted
waves by saddle point analysis at β = ±π. We do this by deforming the contours
C so that they go through the saddles as shown in figure 43.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where the
minus sign indicates that it is traversed in a negative sense. As a result, F has no
net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D of
figure 43.2 but with a reversed sense. Since the integrand is no longer 2π periodic,
the contributions from these curves no longer cancel. We evaluate both stationary
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phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4
√

8π
sec(ψ/2)

eikr

√
kr

(43.7)

so that the total diffracted field is

vdiff = −A
eiπ/4
√

8π

(
sec

(
φ − α

2

)
− sec

(
φ + α

2

)) eikr

√
kr
. (43.8)

Note that this expression breaks down when φ ± α = π. These angles correspond
to the borders among the three regions of figure 43.1 and must be handled more
carefully - we can not do a stationary phase integral in the vicinity of a pole.
However, the integral representation (43.3) and (43.6) is uniformly valid.

exercise 43.1

We now turn to the simple task of translating this result into the language of
semiclassical Green’s functions. Instead of an incident plane wave, we assume a
source at point x′ and then compute the resulting field at the receiver position x.
If x is in region I, there is both a direct term, and a reflected term, if x is in region
II there is only a direct term and if x is in region III there is neither. In any event
these contributions to the semiclassical Green’s function are known since the free
space Green’s function between two points x2 and x1 is

Gf(x2, x1, k) = −
i
4

H(+)
0 (kd) ≈ −

1
√

8πkd
exp{i(kd + π/4)}, (43.9)

where d is the distance between the points. For a reflection, we need to multiply
by −1 and the distance is the length of the path via the reflection point. Most
interesting for us, there is also a diffractive contribution to the Green’s function.
In equation (43.8), we recognize that the coefficient A is simply the intensity at the
origin if there were no scatterer. This is therefore replaced by the Green’s function
to go from the source to the vertex which we label xV . Furthermore, we recognize
that exp(ikr)/

√
kr is, within a proportionality constant, the semiclassical Green’s

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ′)Gf(xV , x′, k), (43.10)

where, by comparison with equations (43.8) and (43.9), we have

d(θ, θ′) = sec
(
θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (43.11)

Here θ′ is the angle to the source as measured from the vertex and θ is the angle to
the receiver. They were denoted as α and φ previously. Note that there is a sym-
metry between the source and receiver as we expect for a time-reversal invariant
process. Also the diffraction coefficient d does not depend on which face of the
half line we use to measure the angles. As we will see, a very important property
of Gdiff is that it is a simple multiplicative combination of other semiclassical
Green’s functions.

exercise 43.2
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We now recover our classical perspective by realizing that we can still think of
classical trajectories. In calculating the quantum Green’s function, we sum over
the contributions of various paths. These include the classical trajectories which
connect the points and also paths which connect the points via the vertex. These
have different weights as given by equations (43.9) and (43.10) but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for
the Green’s function in the presence of a wedge of arbitrary opening angle [3]. It
can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (43.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as measured
from the vertex and the angles are measured from either face of the wedge. The
function g is given by

g(r, r′, k, ψ) =
i

8πν

∫
C1+C2

dβ
H+

0 (k
√

r2 + r′2 − 2rr′ cos β)

1 − exp
(
iβ+ψ
ν

) (43.13)

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in the case of
the half plane). The contour C1 + C2 is the same as shown in figure 43.2.

The poles of this integral give contributions which can be identified with the
geometric paths connecting x and x′. The saddle points at β = ±π give contribu-
tions which can be identified with the diffractive path connecting x and x′. The
saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sin π

ν

ν

sin θ
ν sin θ′

ν(
cos π

ν − cos θ+θ′

ν

) (
cos π

ν − cos θ−θ′

ν

) , (43.14)

which reduces to (43.11) when ν = 2. Note that the diffraction coefficient vanishes
identically if ν = 1/n where n is any integer. This corresponds to wedge angles
of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds to a right
angle). This demonstration is limited by the fact that it came from a leading
order asymptotic expansion but the result is quite general. For such wedge angles,
we can use the method of images (we will require 2n − 1 images in addition to
the actual source point) to obtain the Green’s function and there is no diffractive
contribution to any order. Classically this corresponds to the fact that for such
angles, there is no discontinuity in the dynamics. Trajectories going into the vertex
can be continued out of them unambiguously. This meshes with the discussion in
the introduction where we argued that diffractive effects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allows us to consider ge-
ometries such that the angles are near the optical boundaries or the wedge angle
is close to π/n. For these geometries the saddle point analysis leading to (43.14)
is invalid due to the existence of a nearby pole. In that event, we require a more
sophisticated asymptotic analysis of the full integral representation.
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Figure 43.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections off the faces. The top vertex induces diffrac-
tion while the bottom one is a right angle and induces
two specular geometric reflections. ������������
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Figure 43.5: The dashed line shows a simple periodic
diffractive orbit γ. Two geometric legs labeled + and -
are located between vertex V and point P. The origin
of the coordinate system is labelled R.
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43.2 An application

Although we introduced diffraction as a correction to the purely classical effects,
it is instructive to consider a system which can be quantized solely in terms of
periodic diffractive orbits. Consider the geometry shown in figure 43.4. The clas-
sical mechanics consists of free motion followed by specular reflections off faces.
The upper vertex is a source of diffraction while the lower one is a right angle and
induces no diffraction. This is an open system, there are no bound states - only
scattering resonances. However, we can still test the effectiveness of the theory
in predicting them. Formally, scattering resonances are the poles of the scattering
S matrix and by an identity of Balian and Bloch are also poles of the quantum
Green’s function. We demonstrate this fact in chapter 40 for 2-dimensional scat-
terers. The poles have complex wavenumber k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of G
which we call g(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space while stationary phase ar-
guments for large wavenumber k extract those which are periodic - just as for
classical trajectories. In general, g(k) is given by the sum over all diffractive and
geometric orbits. The contribution of the simple diffractive orbit γ (figure 43.5) to
g(k) is described below.

We consider a point P just a little off the path and determine the semiclassical
Green’s function to return to P via the vertex using (43.9) and (43.10). To leading
order in y the lengths of the two geometric paths connecting P and V are d± =

(L±x)+y2/(L±x)2/2 so that the phase factor ik(d++d−) equals 2ikL+iky2/(L2−x2).
The trace integral involves integrating over all points P and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx
√

L2 − x2

∫ ∞

−∞

dye
(
iky2 L

L2−x2

)
. (43.15)
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We introduced an overall negative sign to account for the reflection at the hard wall
and multiplied by 2 to account for the two traversal senses, VRPV and VPRV . In
the spirit of stationary phase integrals, we have neglected the y dependence ev-
erywhere except in the exponential. The diffraction constant dγ is the one corre-
sponding to the diffractive periodic orbit. To evaluate the y integral, we use the
identity∫ ∞

−∞

dξeiaξ2
= eiπ/4

√
π

a
, (43.16)

and thus obtain a factor which precisely cancels the x dependence in the x integral.
This leads to the rather simple result

gγ ≈ −
ilγ
2k

 dγ√
8πklγ

 ei(klγ+π/4) (43.17)

where lγ = 2L is the length of the periodic diffractive orbit. A more sophisticated
analysis of the trace integral has been done [16] using the integral representation
(43.13). It is valid in the vicinity of an optical boundary and also for wedges with
opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard walls
and µγ diffractions each with a diffraction constant dγ, j. The total length of the
orbit Lγ =

∑
lγ, j is the sum of the various diffractive legs and lγ is the length of

the corresponding prime orbit. For such an orbit, (43.17) generalizes to

gγ(k) = −
ilγ
2k


µγ∏
j=1

dγ, j√
8πklγ, j

 exp {i(kLγ + nγπ − 3µγπ/4)}. (43.18)

Each diffraction introduces a factor of 1/
√

k and multi-diffractive orbits are thereby
exercise 43.3

suppressed.

If the orbit γ is prime then Lγ = lγ. If γ is the r’th repeat of a prime orbit β we
have Lγ = rlβ, nγ = rpβ and µγ = rσβ, where lβ, pβ and σβ all refer to the prime
orbit. We can then write

gγ = gβ,r = −
ilβ
2k

tr
β (43.19)

where

tβ =


σβ∏
j=1

dβ, j√
8πklβ, j

 exp {i(klβ + pβπ − 3σβπ/4)}. (43.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the
prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑
β

∞∑
r=1

gβ,r = −
i

2k

∑
β

lβ
tβ

1 − tβ
. (43.21)
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Figure 43.6: The two-node transition graph with all
the diffractive processes connecting the nodes.
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We cast this as a logarithmic derivative (22.6) by noting that dtβ
dk = ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit. It
follows that

gdiff(k) ≈
1
2k

d
dk

ln
∏
β

(1 − tβ)

 . (43.22)

In the case that there are only diffractive periodic orbits - as in the geometry of
figure 43.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏
β

(1 − tβ). (43.23)

For geometric orbits, this function would be evaluated with a cycle expansion as
discussed in chapter 23. However, here we can use the multiplicative nature of the
weights tβ to find a closed form representation of the function using a transition
graph, as in chapter 17. This multiplicative property of the weights follows from
the fact that the diffractive Green’s function (43.10) is multiplicative in segment
semiclassical Green’s functions, unlike the geometric case.

There is a reflection symmetry in the problem which means that all resonances
can be classified as even or odd. Because of this, the dynamical zeta function
factorizes as 1/ζ = 1/ζ+ζ− (as explained in example 25.9) and we determine 1/ζ+

and 1/ζ− separately using the ideas of symmetry decomposition of chapter 25.

In the transition graph shown in figure 43.6, we enumerate all processes. We
start by identifying the fundamental domain as just the right half of figure 43.4.
There are two nodes which we call A and B. To get to another node from B, we
can diffract (always via the vertex) in one of three directions. We can diffract back
to B which we denote as process 1. We can diffract to B’s image point B′ and then
follow this by a reflection. This process we denote as 2̄ where the bar indicates
that it involves a reflection. Third, we can diffract to node A. Starting at A we can
also diffract to a node in three ways. We can diffract to B which we denote as 4.
We can diffract to B′ followed by a reflection which we denote as 4̄. Finally, we
can diffract back to A which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed loops
which do not intersect themselves in figure 43.6. We do it first for 1/ζ+ because
that is simpler. In that case, the processes with bars are treated on an equal footing
as the others. Appealing back to sect. 25.5 we find

1/ζ+ = 1 − t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1 − (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (43.24)
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where we have used the fact that t4 = t4̄ by symmetry. The last term has a positive
sign because it involves the product of shorter closed loops. To calculate 1/ζ−,
we note that the processes with bars have a relative negative sign due to the group
theoretic weight. Furthermore, process 5 is a boundary orbit (see sect. 25.4.3) and
only affects the even resonances - the terms involving t5 are absent from 1/ζ−. The
result is

1/ζ− = 1 − t1 + t2̄ − t3t4 + t3t4̄ ,

= 1 − (t1 − t2̄). (43.25)

Note that these expressions have a finite number of terms and are not in the form
exercise 43.4

of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (43.20) but note that
each weight involves just one diffraction constant. It is then convenient to define
the quantities

u2
A =

exp{i(2kL + 2π)}
√

16πkL
u2

B =
exp{i(2kH + π)}
√

16πkH
. (43.26)

The lengths L and H = L/
√

2 are defined in figure 43.4; we set L = 1 throughout.
Bouncing inside the right angle at A corresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor exp (i2π) in (43.26) although it is
trivially equal to one. Similarly, there is one specular reflection at point B giving
p = 1 and therefore a factor of exp (iπ). We have defined uA and uB because,
together with some diffraction constants, they can be used to construct all of the
weights. Altogether we define four diffraction coefficients: dAB is the constant
corresponding to diffracting from B to A and is found from (43.11) with θ′ = 3π/4
and θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we have dAA

and dBB = dB′B which equal 2 and 1+
√

2 respectively. di j = d ji due to the Green’s
function symmetry between source and receiver referred to earlier. Finally, there
is the diffractive phase factor s = exp (−i3π/4) each time there is a diffraction.
The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (43.27)

Each weight involves two u’s and one d. The u’s represent the contribution to
the weight from the paths connecting the nodes to the vertex and the d gives the
diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (43.25) this means that
there are no odd resonances because 1 can never equal 0. For the even resonances
equation (43.24) is an implicit equation for k which has zeros shown in figure 43.7.

For comparison we also show the result from an exact quantum calculation.
The agreement is very good right down to the ground state - as is so often the
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Figure 43.7: The even resonances of the wedge scat-
terer of figure 43.4 plotted in the complex k−plane,
with L = 1. The exact resonances are represented
as circles and their semiclassical approximations as
crosses.
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case with semiclassical calculations. In addition we can use our dynamical zeta
function to find arbitrarily high resonances and the results actually improve in that
limit. In the same limit, the exact numerical solution becomes more difficult to
find so the dynamical zeta function approximation is particularly useful in that
case.

exercise 43.5

In general a system will consist of both geometric and diffractive orbits. In
that case, the full dynamical zeta function is the product of the geometric zeta
function and the diffractive one. The diffractive weights are typically smaller by
order O(1/

√
k) but for small k they can be numerically competitive so that there is

a significant diffractive effect on the low-lying spectrum. It might be expected that
higher in the spectrum, the effect of diffraction is weaker due to the decreasing
weights. However, it should be pointed out that an analysis of the situation for
creeping diffraction [11] concluded that the diffraction is actually more important
higher in the spectrum due to the fact that an ever greater fraction of the orbits
need to be corrected for diffractive effects. The equivalent analysis has not been
done for edge diffraction but a similar conclusion can probably be expected.

To conclude this chapter, we return to the opening paragraph and discuss the
possibility of doing such an analysis for helium. The important point which al-
lowed us to successfully analyze the geometry of figure 43.4 is that when a trajec-
tory is near the vertex, we can extract its diffraction constant without reference to
the other facets of the problem. We say, therefore, that this is a “local” analysis
for the purposes of which we have “turned off” the other aspects of the prob-
lem, namely sides AB and AB′. By analogy, for helium, we would look for some
simpler description of the problem which applies near the three body collision.
However, there is nothing to “turn off.” The local problem is just as difficult as
the global one since they are precisely the same problem, just related by scaling.
Therefore, it is not at all clear that such an analysis is possible for helium.

Résumé

In this chapter we have discovered new types of periodic orbits contributing to the
semiclassical traces and determinants. Unlike the periodic orbits we had seen so
far, these are not true classical orbits. They are generated by singularities of the
scattering potential. In these singular points the classical dynamics has no unique
definition, and the classical orbits hitting the singularities can be continued in
many different directions. While the classical mechanics does not know which
way to go, quantum mechanics solves the dilemma by allowing us to continue in
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all possible directions. The likelihoods of different paths are given by the quan-
tum mechanical weights called diffraction constants. The total contribution to a
trace from such orbit is given by the product of transmission amplitudes between
singularities and diffraction constants of singularities. The weights of diffractive
periodic orbits are at least of order 1/

√
k weaker than the weights associated with

classically realizable orbits, and their contribution at large energies is therefore
negligible. Nevertheless, they can strongly influence the low lying resonances
or energy levels. In some systems, such as the N disk scattering the diffraction
effects do not only perturb semiclassical resonances, but can also create new low
energy resonances. Therefore it is always important to include the contributions of
diffractive periodic orbits when semiclassical methods are applied at low energies.

Commentary

Remark 43.1. Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smooth surface while others
are unaffected, refs. [10, 11, 20, 23]

• a vertex such that trajectories to one side bounce differently from those to the other
side, refs. [2, 9, 20–22].

• a point scatterer [14, 15] or a magnetic flux line [1, 13] such that we do not know
how to continue classical mechanics through the discontinuities.

Remark 43.2. Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extending the geometrical ray
picture of optics to cases where there is a discontinuity. He maintained that we could
hang onto that ray-tracing picture by allowing rays to strike the vertex and then leave at
any angle with amplitude (43.8). Both he and Sommerfeld were thinking of optics and not
quantum mechanics and they did not phrase the results in terms of semiclassical Green’s
functions but the essential idea is the same.

Remark 43.3. Generalizations. Consider the effect of replacing our half line by a
wedge of angle γ1 and the right angle by an arbitrary angle γ2. If γ2 > γ1 and γ2 ≥ π/2 this
is an open problem whose solution is given by equations (43.24) and (43.25) (there will
then be odd resonances) but with modified weights reflecting the changed geometry [22].
(For γ2 < π/2, more diffractive periodic orbits appear and the dynamical zeta functions
are more complicated but can be calculated with the same machinery.) When γ2 = γ1, the
problem in fact has bound states [8, 24]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwave waveguides. However we can
not use our formalism as it stands because the diffractive periodic orbits for this geometry
lie right on the border between illuminated and shadowed regions so that equation (43.7) is
invalid. Even the more uniform derivation of ref. [16] fails for that particular geometry, the
problem being that the diffractive orbit actually lives on the edge of a family of geometric
orbits and this makes the analysis still more difficult.

Remark 43.4. Diffractive Green’s functions. The result (43.17) is proportional to
the length of the orbit times the semiclassical Green’s function (43.9) to go from the
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vertex back to itself along the classical path. The multi-diffractive formula (43.18) is
proportional to the total length of the orbit times the product of the semiclassical Green’s
functions to go from one vertex to the next along classical paths. This result generalizes
to any system — either a pinball or a potential — which contains point singularities such
that we can define a diffraction constant as above. The contribution to the trace of the
semiclassical Green’s function coming from a diffractive orbit which hits the singularities
is proportional to the total length (or period) of the orbit times the product of semiclassical
Green’s functions in going from one singularity to the next. This result first appeared in
reference [20] and a derivation can be found in ref. [2]. A similar structure also exists for
creeping [20].

Remark 43.5. Diffractive orbits for hydrogenic atoms. An analysis in terms of diffrac-
tive orbits has been made in a different atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [5, 6]. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon returning to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discussed in chapter 42. However, if the
atom is not hydrogen but sodium or some other atom with one valence electron, the re-
turning electron feels the charge distribution of the core electrons and not just the charge
of the nucleus. This so-called quantum defect induces scattering in addition to the clas-
sical re-ejection present in the hydrogen atom. (In this case the local analysis consists of
neglecting the magnetic field when the trajectory is near the nucleus.) This is formally
similar to the vertex which causes both specular reflection and diffraction. There is then
additional structure in the Fourier transform of the quantum spectrum corresponding to
the induced diffractive orbits, and this has been observed experimentally [4, 7, 12].
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Exercises

43.1. Stationary phase integral. Evaluate the two station-
ary phase integrals corresponding to contours E1 and E2
of figure 43.3 and thereby verify (43.7).

(N. Whelan)

43.2. Scattering from a small disk Imagine that instead
of a wedge, we have a disk whose radius a is much
smaller than the typical wavelengths we are considering.
In that limit, solve the quantum scattering problem - find
the scattered wave which result from an incident plane
wave. You can do this by the method of partial waves -
the analogous three dimensional problem is discussed in
most quantum textbooks. You should find that only the
m = 0 partial wave contributes for small a. Following
the discussion above, show that the diffraction constant
is

d =
2π

log
(

2
ka

)
− γe + i π2

(43.28)

where γe = 0.577 · · · is Euler’s constant. Note that in
this limit d depends weakly on k but not on the scatter-
ing angle.

(N. Whelan)

43.3. Several diffractive legs. Derive equation (43.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more
diffractive arcs - however you should convince yourself

that a slight variation of the diffractive orbit only affects
one leg at a time.

(N. Whelan)

43.4. Unsymmetrized dynamical zeta function. As-
sume you know nothing about symmetry decomposi-
tion. Construct the 3-node transition graph for fig-
ure 43.1 by considering A, B and B′ to be physically
distinct. Write down the corresponding dynamical zeta
function and check explicitly that for B = B′ it factor-
izes into the product of the even and odd dynamical zeta
functions. Why is there no term t2̄ in the full dynamical
zeta function?

(N. Whelan)

43.5. Three point scatterers.
Consider the limiting case of the three disk game of pin-
ball of figure 1.1 where the disks are very much smaller
than their spacing R. Use the results of exercise 43.2 to
construct the desymmetrized dynamical zeta functions,
as in sect. 25.6. You should find 1/ζA1 = 1 − 2t where
t = dei(kR−3π/4)/

√
8πkR. Compare this formula with that

from chapter 14. By assuming that the real part of k
is much greater than the imaginary part show that the
positions of the resonances are knR = αn − iβn where
αn = 2πn + 3π/4, βn = log

(√
2παn/d

)
and n is a non-

negative integer. (See also ref. [14].)

(N. Whelan)
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Epilogue

Nowadays, whatever the truth of the matter may be (and
we will probably never know), the simplest solution is no
longer emotionally satisfying. Everything we know about
the world militates against it. The concepts of indetermi-
nacy and chaos have filtered down to us from the higher
sciences to confirm our nagging suspicions.

—L. Sante, “Review of ‘American Tabloid’ by James
Ellroy,” New York Review of Books (May 11, 1995)

A motion on a strange attractor can be approximated by shadowing long or-
bits by sequences of nearby shorter periodic orbits. This notion has here
been made precise by approximating orbits by prime cycles, and evalu-

ating associated curvatures. A curvature measures the deviation of a long cycle
from its approximation by shorter cycles; the smoothness of the dynamical system
implies exponential fall-off for (almost) all curvatures. We propose that the theo-
retical and experimental non–wandering sets be expressed in terms of the symbol
sequences of short cycles (a topological characterization of the spatial layout of
the non–wandering set) and their eigenvalues (metric structure)

Cycles as the skeleton of chaos

We wind down this all-too-long treatise by asking: why cycle?

We tend to think of a dynamical system as a smooth system whose evolu-
tion can be followed by integrating a set of differential equations. Traditionally
one used integrable motions as zeroth-order approximations to physical systems,
and accounted for weak nonlinearities perturbatively. However, when the evo-
lution is actually followed through to asymptotic times, one discovers that the
strongly nonlinear systems show an amazingly rich structure which is not at all
apparent in their formulation in terms of differential equations. In particular, the
periodic orbits are important because they form the skeleton onto which all trajec-
tories trapped for long times cling. This was already appreciated century ago by
H. Poincaré, who, describing in Les méthodes nouvelles de la méchanique céleste
his discovery of homoclinic tangles, mused that “the complexity of this figure will
be striking, and I shall not even try to draw it.” Today such drawings are cheap and
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plentiful; but Poincaré went a step further and, noting that hidden in this apparent
chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths
and self-similar structure, suggested that the cycles should be the key to chaotic
dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very differ-
ent from those for the nearly integrable systems: a good starting approximation
here is the stretching and kneading of a baker’s map, rather than the winding of a
harmonic oscillator.

For low dimensional deterministic dynamical systems description in terms of
cycles has many virtues:

1. cycle symbol sequences are topological invariants: they give the spatial
layout of a non–wandering set

2. cycle eigenvalues are metric invariants: they give the scale of each piece of
a non–wandering set

3. cycles are dense on the asymptotic non–wandering set

4. cycles are ordered hierarchically: short cycles give good approximations
to a non–wandering set, longer cycles only refinements. Errors due to ne-
glecting long cycles can be bounded, and typically fall off exponentially or
super-exponentially with the cutoff cycle length

5. cycles are structurally robust: for smooth flows eigenvalues of short cycles
vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum mechan-
ical eigenstates and other “thermodynamic” averages) can be efficiently
computed from short cycles by means of cycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant properties
of dynamical systems follows from elementary considerations. If the same dy-
namics is given by a map f in one set of coordinates, and a map g in the next,
then f and g (or any other good representation) are related by a reparametrization
and a coordinate transformation f = h−1 ◦ g ◦ h. As both f and g are arbitrary
representations of the dynamical system, the explicit form of the conjugacy h is
of no interest, only the properties invariant under any transformation h are of gen-
eral import. The most obvious invariant properties are topological; a fixed point
must be a fixed point in any representation, a trajectory which exactly returns to
the initial point (a cycle) must do so in any representation. Furthermore, a good
representation should not mutilate the data; h must be a smooth transformation
which maps nearby periodic points of f into nearby periodic points of g. This
smoothness guarantees that the cycles are not only topological invariants, but that
their linearized neighborhoods are also metrically invariant. In particular, the cy-
cle eigenvalues (eigenvalues of the Jacobian matrixs d f n(x)/dx of periodic orbits
f n(x) = x) are invariant.
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Point 5: An important virtue of cycles is their structural robustness. Many
quantities customarily associated with dynamical systems depend on the notion
of “structural stability,” i.e., robustness of non–wandering set to small parameter
variations.

Still, the sufficiently short unstable cycles are structurally robust in the sense
that they are only slightly distorted by such parameter changes, and averages com-
puted using them as a skeleton are insensitive to small deformations of the non–
wandering set. In contrast, lack of structural stability wreaks havoc with long time
averages such as Lyapunov exponents, for which there is no guarantee that they
converge to the correct asymptotic value in any finite time numerical computation.

The main recent theoretical advance is point 4: we now know how to control
the errors due to neglecting longer cycles. As we seen above, even though the
number of invariants is infinite (unlike, for example, the number of Casimir in-
variants for a compact Lie group) the dynamics can be well approximated to any
finite accuracy by a small finite set of invariants. The origin of this convergence is
geometrical, as we shall see in appendix ??, and for smooth flows the convergence
of cycle expansions can even be super-exponential.

The cycle expansions such as (23.8) outperform the pedestrian methods such
as extrapolations from the finite cover sums (27.2) for a number of reasons. The
cycle expansion is a better averaging procedure than the naive box counting al-
gorithms because the strange attractor is here pieced together in a topologically
invariant way from neighborhoods (“space average”) rather than explored by a
long ergodic trajectory (“time average”). The cycle expansion is co-ordinate and
reparametrization invariant - a finite nth level sum (27.2) is not. Cycles are of
finite period but infinite duration, so the cycle eigenvalues are already evaluated
in the n→ ∞ limit, but for the sum (27.2) the limit has to be estimated by numer-
ical extrapolations. And, crucially, the higher terms in the cycle expansion (23.8)
are deviations of longer prime cycles from their approximations by shorter cycles.
Such combinations vanish exactly in piecewise linear approximations and fall off

exponentially for smooth dynamical flows.

In the above we have reviewed the general properties of the cycle expansions;
those have been applied to a series of examples of low-dimensional chaos: 1-
d strange attractors, the period-doubling repeller, the Hénon-type maps and the
mode locking intervals for circle maps. The cycle expansions have also been
applied to the irrational windings set of critical circle maps, to the Hamiltonian
period-doubling repeller, to a Hamiltonian three-disk game of pinball, to the three-
disk quantum scattering resonances and to the extraction of correlation exponents,
Feasibility of analysis of experimental non–wandering set in terms of cycles is
discussed in ref. [1].
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Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies before
thy uncreating word; Thy hand, great Anarch, lets the cur-
tain fall, And universal darkness buries all.”

—Alexander Pope, The Dunciad

We conclude cautiously with a homework assignment posed May 22, 1990
(the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approximants”)
of finite subshift approximations to generic dynamical systems. Apply to
(a) the Hénon map, (b) the Lorenz flow and (c) the Hamiltonian standard
map.

2. Nonhyperbolicity Incorporate power–law (marginal stability orbits,“intermittency”)
corrections into cycle expansions. Apply to long-time tails in the Hamilto-
nian diffusion problem.

3. Phenomenology Carry through a convincing analysis of a genuine experi-
mentally extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the spectrum
of a transfer operator are the maximal set of invariants of an (physically
interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many unstable
degrees of freedom. Apply to (a) coupled lattices, (b) cellular automata, (c)
neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle expan-
sions (WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical periodic or-
bit sums. (a) Show that the zeros (energy eigenvalues) of the appropriate
Selberg products are real. (b) Find physically realistic systems for which
the “semiclassical” periodic orbit expansions yield the exact quantization.

8. Atomic spectra Compute the helium spectrum from periodic orbit expan-
sions (already accomplished by Wintgen and Tanner!).

9. Symmetries Include fermions, gauge fields into the periodic orbit theory.

10. Quantum field theory Develop quantum theory of systems with infinitely
many classically unstable degrees of freedom. Apply to (a) quark confine-
ment (b) early universe (c) the brain.
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Conclusion

Good-bye. I am leaving because I am bored.
—George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea ver-
daderamente, Se requieren la aurora y el poniente Siglos,
armas y el mar que une y separa.

—Jorge Luis Borges El Hacedor, Ariosto y los arabes

The buttler did it.
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tributions and ideas were invaluable to us but have not contributed written text to
this book, are credited in the acknowledgments.

Roberto Artuso
19 Transporting densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
21.2 A trace formula for flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
27.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
29 Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554
24 Deterministic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Appendix ??: Implementing evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??

Ronnie Mainieri
2 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.2 The Poincaré section of a flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 Local stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A2.1 Understanding flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
14.1 Temporal ordering: itineraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Appendix A1: A brief history of chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Gábor Vattay

Gregor Tanner

810

http://ChaosBook.org/version13


EXERCISES 811

29 Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554
Appendix A8.2: Jacobians of Hamiltonian flows . . . . . . . . . . . . . . . . . . .910

Arindam Basu
Rössler flow figures, tables, cycles in chapters 14, 16 and exercise 7.1

Ofer Biham
34.1 Cyclists relaxation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Daniel Borrero Oct 23 2008, soluCycles.tex

Solution 16.1

N. Burak Budanur
13.5 First Fourier mode slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.2 In-slice stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Solution 12.5
Solution 12.6

Cristel Chandre
34.1 Cyclists relaxation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
34.2 Discrete cyclists relaxation methods . . . . . . . . . . . . . . . . . . . . . . . . . 669

Freddy Christiansen

7.1 One-dimensional mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.2 Multipoint shooting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Per Dahlqvist

29 Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .554
34.3 Orbit length extremization method for billiards . . . . . . . . . . . . . . . 671

Carl P. Dettmann
23.7 Stability ordering of cycle expansions . . . . . . . . . . . . . . . . . . . . . . . . 437

Fotis K. Diakonos
34.2 Discrete cyclists relaxation methods . . . . . . . . . . . . . . . . . . . . . . . . . 669

G. Bard Ermentrout
Exercise 5.1

Mitchell J. Feigenbaum

Appendix A8.1: Symplectic invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

Sarah Flynn

solutions 3.5 and 3.6

Matjaž Gomilšek

17.3 Transition graphs: stroll from link to link . . . . . . . . . . . . . . . . . . . . . 320

Jonathan Halcrow

Example 3.3: Sections of Lorenz flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Example 4.6: Stability of Lorenz flow equilibria . . . . . . . . . . . . . . . . . . . 101
Example 4.7: Lorenz flow: Global portrait . . . . . . . . . . . . . . . . . . . . . . . . 103

contributors.tex 12feb2012 ChaosBook.org edition16.4.8, May 25 2020



EXERCISES 812

Example 11.8: Desymmetrization of Lorenz flow . . . . . . . . . . . . . . . . . . 194
Example 11.9: Lorenz flow in doubled-polar angle representation . . . 195
Example 14.4: Lorenz flow: a 1-dimensional return map . . . . . . . . . . . 266
Exercises 11.5 and figure 2.5

Kai T. Hansen
14.3 Unimodal map symbolic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 252
18.5 Topological zeta function for an infinite partition . . . . . . . . . . . . . . 341
14.5 Kneading theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
figures throughout the text

Rainer Klages

Figure 24.6

Yueheng Lan

Solutions 1.1, 2.2, 2.3, 2.4, 2.5, 11.3, 15.7, 14.6, 19.1, 19.2, 19.3, 19.5,
19.7, 19.10, 6.3 and figures 1.9, 11.4, 11.5 14.5,

Bo Li
Solutions 36.2, 36.1, 37.1

Norman Lebovitz
Example 15.1 A simple stable/unstable manifolds pair . . . . . . . . . . . . . 296

Joachim Mathiesen

6.2 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Rössler flow figures, tables, cycles in sect. 6.2 and exercise 7.1

Yamato Matsuoka
Figure 15.5

Radford Mitchell, Jr.

Example 3.4

Rytis Paškauskas

4.6 Stability of return maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Stability of return map cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Exercises 2.8, 3.1, 4.4 and solution 4.1

Adam Prügel-Bennet

Solutions 1.2, 2.11, 9.1, 20.2, 23.2 28.3, 34.1.

Lamberto Rondoni
19 Transporting densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
16.1.1 Cycles from long time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
27.2.1 Unstable periodic orbits are dense . . . . . . . . . . . . . . . . . . . . . . . . . 519
Table 18.2

Juri Rolf

Solution 28.3

contributors.tex 12feb2012 ChaosBook.org edition16.4.8, May 25 2020



EXERCISES 813

Per E. Rosenqvist

Exercises, figures throughout the text

Hans Henrik Rugh

28 Why does it work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Luis Saldana
solution 10.3

Peter Schmelcher
34.2 Discrete cyclists relaxation methods . . . . . . . . . . . . . . . . . . . . . . . . . 669

Evangelos Siminos

Example 3.3: Sections of Lorenz flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Example 4.6: Stability of Lorenz flow equilibria . . . . . . . . . . . . . . . . . . . 101
Example 4.7: Lorenz flow: Global portrait . . . . . . . . . . . . . . . . . . . . . . . . 103
Example 11.8: Desymmetrization of Lorenz flow . . . . . . . . . . . . . . . . . . 194
Example 11.9: Lorenz flow in doubled-polar angle representation . . . 195
Example 14.4: Lorenz flow: a 1-dimensional return map . . . . . . . . . . . 266
Exercise 11.5
Solution 13.1

Gábor Simon
Rössler flow figures, tables, cycles in chapters 2, 16 and exercise 7.1

Sara A. Solla
Example A20.3: Unbiased sample variance . . . . . . . . . . . . . . . . . . . . . . . 959
Example A20.4: Standard error of the mean . . . . . . . . . . . . . . . . . . . . . . . 960
Exercises 2.13, A20.2 and A20.3

Edward A. Spiegel

2 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
19 Transporting densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Luz V. Vela-Arevalo
8.1 Hamiltonian flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Exercises 8.1, 8.3, 8.5

Lei Zhang

Solutions 1.1, 2.1

index 27sep2010 ChaosBook.org edition16.4.8, May 25 2020



Index

abscissa of absolute convergence, 439
accelerator mode, 453
action, 391, 692, 705, 714

free, 186
helium, 768
relation to period, 775

adjacency matrix, 318, 351, see transi-
tion matrix

admissible
periodic points, 334
sequence, 290
trajectories, number of, 332

Airy
equation, 697
function, 663, 697, 698, 700, 756,

757, 759, 764
at a bifurcation, 663, 700

integral, 697
algebra, 886

associative, 886
Lie, 886

allowable itinerary, see admissible
alphabet, 248
alternating binary tree, 262, 270
alternative periodic orbit theories, 440
analyticity

domain, 408
angle doubling map, 262
anisotropic

diffusion, 645
Kepler potential, 190, 442, 1000

anomalous diffusion, 457
Anosov flows, 292
anti-hermitian

generator, 217, 218
antiharmonic extension, 944
arc, 320, see edge
area preserving

Hénon map, 154
map, 923

Arnoldi iteration, 96
Artin-Mazur zeta function, 340
associative algebra, 886
Atiyah-Singer

index theory, 966
atlas, 289

attractor
basin, 42
Hénon, 131
strange, 42, 62, 120

Aubry-Mather theory, 675
AUTO, 57
autonomous flow, 45
average

chaotic, 566
space, 366, 380
time, 366, 379

averaging, 28
axiom A, 440, 540, 544, 546, 905

baker’s map, 163, 281
Balmer spectrum, 682
basin of attraction, 42
basis

standard, 885
vector, 885

BER
approximation, 577

Bernoulli, 836
polynomials, 549
shift, 262, 268, 457, 526, 536, 545,

549, 553, 558, 580, 839, 841,
929, 932, 1032

shift eigenfunctions, 551
shift return times, 580

Berry-Keating conjecture, 861
Bessel function, 748

addition theorem, 750
bi-infinite itinerary, 259
bifurcation

Airy function approximation, 663,
700

bizarre, 943
generic, 163
Hopf, 621
period doubling, 927
saddle point, 928
saddle-node, 77
sequence

unimodal map, 927
billiard, 158–162

map, 159
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stability, 118, 160
stadium, 158, 163, 166, 190, 581,

998, 1000, 1017
binary

prime cycles, 287, 297, 351
symbolic dynamics

collinear helium, 771
tree, alternating, 262, 270

Birkhoff

coordinates, 159, 163, 166, 299
ergodic theorem, 366
normal form, 1044, 1053

bit shift map, 262
block

finite sequence, 259
block, pruned, 261
Bohr

helium, 767, 777
Uetli Schwur, 854

Bohr-de Broglie picture, 682
Bohr-Sommerfeld quantization, 682, 699,

729, 854
Boltzmann

equation, 24, 460
stosszahlansatz, 24

Boltzmann, L., 24, 838
boredom, 807, 1011
Borges, J.L., 807
Botox, 67
boundary orbits, 186, 482
bounded operators, 1060
Bourbaki, N., 81
Bowen, R., 30
brain, rat, 3, 32
branch cut, 562

singularity, 563
Brownian noise, 647
Bunimovich

stadium, see stadium billiard
Burke-Shaw system

symmetry, 179
Burnett coefficient, 467
Burnett coefficients, 25, 455, 460
butterfly effect, 31

C3v = D3 symmetry, 299, 484
canonical transformation, 144, 145, 910
Cartan

-Killing classification, 144
Cartan, É. , 234
Cartwright, M.L., 189, 840
Cauchy criterion, 1059
Cauchy-Green strain tensor, 122
caustic, 708
ceiling function, 403, 545

center, 99
center manifold, 598
center of mass, 140
central limit theorem, 955
central moment, 953
centralizer, 173, 201
chain rule, matrix, 1057
chain-recurrent, 43
change

of coordinates, 47
chaology, see chaos
chaos, 6, 7

caveats, 10
deterministic, 30
diagnostics, 151
quantum, 30
skeleton of, 12, 14
spatiotemporal, 50, 584
successes, 10

Character
tables, 918

character, 502, 512
orthonormality, 502
representation, 918

character table
dihedral group, 492

characteristic
equation, 895
exponent, 123
function, 359, 955
multiplier, 108, 126
polynomial, 338, 896, 920
state function, 382, 390, 955
value, 123

chart, 40, 289
section border, 71
chicken heart palpitations, 6
circle group, see SO(2)
circle map, 262, 268, 320, 355, 466, 469,

621, 622, 627, 634, 637, 805,
858, 990, 991, 1029

critical, 623, 629
class, 171
class algebra, 507
Clebsch-Gordan

coefficients, 888
series, 501

closed orbit, 116, see periodic orbit
co-moving frame, 111
coarse-graining, 359
cocyle, 95
coding, see symbolic dynamics

non-singular, 260
collective excitations, 955
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collinear helium, 684
symbolic dynamics, 771

combinatorics
teaching, 255

compact
group, 187
invariant set, 172

complete
N-ary dynamics, 326
symbolic dynamics, 326

completeness relation, 296, 887, 888, 896,
921

complex
Ginzburg Landau equation, 215

complex eigenvalues, 890, 897
complexity

algorithmic, 347, 442
computational degrees of freedom, 51,

52
confession

C.N. Yang, 365
Kepler, 836
St. Augustine, 359

configuration space, 50, 56
conjugacy, 882

invariant, 113
smooth, 47, 113, 883
topological, 255

conjugate momentum, 142
conjugate, hermitian, 916
connection formulas, 697
connection, method of, 234
conservation

equation, 644
phase-space volume, 143, 146, 147,

154, 369
continuity equation, 368, 369, 644, 649,

706
contour integral, 964
contracting

Floquet multipliers, 109, 396
flow, 42, 62, 93
map, 105, 271
state space, Rössler, 105, 448

convergence
abscissa of absolute, 439
abscissa of abysimal, 439
radius, 408
super-exponential, 533, 665

convexity, 390
coordinate

change, 47, 882
longitudinal, 715
transformations, 64

Copenhagen School, 809, 854
correlation

decay
power law, 557

function, 542
spectrum, 542
time, 520

correlation coefficients, 958
matrix, 958

coset, 171
cost function, 666
counter-clockwise rotation, 216
covariance matrix, 954
covariant Lyapunov vector, 125–127, 613
covariant vector, 107, 125, 891
covering

symbolic dynamics, 259
creeping

1-disk, 758
critical

point, 118, 253, 256, see equilib-
rium point

value, 253, 466
cross-section, 223, 234
cumulant, 443, 953, 960

expansion, 336, 338, 340, 348, 429
Plemelj-Smithies, 1064

cumulant-generating function, 953, 960
curvature

correction, 425
expansion, 28, 426

cycle, 116, see periodic orbit
expansion, 19, 425, 728

3-disk, 447
finite subshift, 436
Lyapunov exponent, 446
stability ordered, 437

fundamental, 338, 425
limit, 43, 109, 116, 120
Lyapunov exponent, 123
marginal stability, 112, 210, 505
prime, 133, 259, 302, 355, 398

3-disk, 312, 673
Hénon map, 677

pruning, 353
Rössler flow, 138, 140, 314
self-retracing, 773
stability, 106–115

Gauss map, 631
stable, 118
superstable, 118
weight, 410

cycle point, see periodic point
cyclic
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group, 176
invariance, 133, 302
permutation matrix, 970
symmetry, 350

cylinder set, 260, 363

damped Newton method, 135
Danish pastry, see symbol plane
Darboux basis, 144, 150
de Broglie wavelength, 701
Debye approximation, 764
decay

rate, 413
rate of correlations, 551

decomposition
irreducible, 922

defining
representation, 916
vector space, 915

deformation gradient, 95
degenerate

eigenvalues, 889
degree of freedom, 10, 56, 142, 599, 693
degrees of freedom

computational, 51
delta function, see Dirac delta

Dirac, 689
density, 359, 644

evolution, 24
phase space, 369

density of states
average, 725
Green’s function, 689
quantum, 689

derivative cocyle, 95
derivative, lattice, 969
desymmetrization

3-disk, 496
desymmetrized state space, 223
determinant

for flows, 409
Fredholm, 1067
graph, 348
Hadamard, 408
spectral, 23, 336, 408
trace relation, 336
trace-class operator, 1061

deterministic dynamics, 6, 39, 367
deviation

standard, 953
diagonalizing matrix, 920
diagram, see graph
diffeomorphism, 76
differential equations

almost ordinary, 63

diffraction
Green’s function, 792
Keller, 799
Sommerfeld, 799

diffusion
anisotropic, 645
anomalous, 457
constant, 392
equation, 645, 646
limited aggregate, 32
tensor, 645

digraph, see directed graph
dihedral group, 176
dike map, 257, 271
dimension

box counting, 1013
fractal, 1013
generalized, 11
information, 1013, 1014
intrisic, 10, 599
symplectic, 149

Dirac delta, 21, 23, 340, 361, 376, 383,
397, 404, 414, 537, 646, 690,
710, 721

derivatives, 376
Jacobian, 368

Dirac path integral, 719
Dirichlet series, 443
discrete

Fourier transform, 974
dissipation

rate, Kuramoto-Sivashinsky, 608
rate, Navier-Stokes, 609

dissipative
map, 105, 271

divergence rate, local, 392
divergence ultraviolet, 726
DLA, 32, see diffusion limited aggregate
dot product, 203
doubling map, 262, 268, 538
drift, along group tangent, 200
dual

representation, 885, 915, 916
space, 885, 915
vector space, 915

duality
Fourier, 987

Duffing oscillator, 56, 61, 79, 153
dyadic map, 262
dyadic transformation, 262
dynamical

localization, quantum, 151
transitivity, 318
zeta function, 18, 411
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Euler product rep., 411
dynamical system, 38, 40

axiom A, 440, 544, 905
equivalent, 879
gradient, 63
hyperbolic, 420, 539
infinite, 608
smooth, 19, 20, 28, 40, 343, 840,

1032, 1035, 1036
dynamics, 39

are, 32
deterministic, 6, 39
hyperbolic, 327
irreversible, 44
is, 32
reversible, 44
spatiotemporal, 30
stochastic, 6
symbolic, 12, 54, 247, 258
symmetry, 170, 199, 221, 503
topological, 247, 258, 260, 319

edge, 320
eigendirection, 87
eigenfunction

Perron-Frobenius operator, 529
energy, 687
Perron-Frobenius, 548

eigenstate, see eigenfunction
eigenvalue, 413

Perron-Frobenius operator, 529
complex, 890, 897
degenerate, 889
exponential spacing, 419
zero, 698, 713

Einstein diffusion formula, 646, 656
Einstein, A, 860
elastic

scattering, 734
elliptic

stability, 154
empirical mean, 954, 957, 960, 961
enemy

thy, 557
energy

Kuramoto-Sivashinsky, 608
Navier-Stokes, 609

English
plain, 212, 259

ensemble
microcanonical, 393

entire function, 529
entropy

barrier, 439, 844
Gauss map, 641

Kolmogorov, 163, 348, 1008, 1010,
1015, 1017

topological, 7, 332, 341, 348
equations of variations, 85
equilibrium, 205

Kuramoto-Sivashinsky, 607
Lorenz flow, 61, 79
point, 45, 107, 365, 595, 668
Rössler flow, 62, 63, 101, 266
relative, 206

equilibrium measure, see natural mea-
sure

equivalence
of dynamical systems, 879

equivariance, 170
two-mode flow, 219

equivariant, see relative
state space, 224

ergodic
average, 366
theorem

multiplicative, 126
theory, 366

error correlation matrix, 123, 654
error matrix, 95
escape rate, 14, 15, 376, 388, 392, 393,

412, 431, 443, 446, 447, 514,
518, 530, 553, 649, 908, 964,
1010, 1014, 1015, 1070

3-disk, 435, 447, 516
intermittency, 565
vanishing, 377, 435, 940

escape time weighting, 440
essential

spectral radius, 536, 543
spectrum, 535

Euler
formula, 89, 549
limit, 90
-MacLaurin formula, 551
product, 90, 412
product rep.

dynamical zeta function, 411
totient function, 625

Eulerian coordinates, 46, 67, 86, 505
evolution

group, 63
kernel probabilistic, 367
operator, 21, 383

quantum, 688
semigroup, 384

evolution operator, 96
expanding

Floquet multipliers, 109, 396
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expectation, 952
expectation value, 381, 393
expected value, 952
exponent

Floquet, 109
exponential

convergence, 408, 533
decay rate of correlations, 551
generating function, 379, 549, 953
of a matrix, 89
proliferation, 22, 347, 442, 844

external node, 321
extremal point, 694

factor group, 172
Faddeev, L. D., 966
false zeros, 412
Farey

map, 250, 556, 559, 577
mediant, 626
series, 624
tree, 626

Feigenbaum
δ, 404
period doubling, 841, 943

Feynman path integral, 712, 719
fiber, 45
fiber bundle, 45
Fick law, 645
field, 40
finite group, 176
finite subshift

cycle expansion, 436
first return time, 67, 290, 575
fixed point, 133, 302

maps, 82
marginally stable, 556
subspace, 173, 201
under G, 173, 181, 182, 201

Floquet
exponent, 96, 108, 109, 146, 595
matrix, 108
multiplier, 108, 109, 273, 396, 595,

613, 891
multiplier,metric invariant, 112
theorem, 891
theory, 109, 116
vector, 107

flow, 38–54
-invariant set, 106
autonomous, 45
contracting, 42, 62, 93
deterministic, 367
elliptic, 110
generator of, 368, 503, 612

Hamiltonian, 142, 923
hyperbolic, 110, 154, 413
incompressible, 93, 369
infinite-dimensional, 51, 583–601
invariant subspace, 173
inverse hyperbolic, 154
linear, 88, 95
linearized, 95
map, 41
nonhyperbolic, 110
spectral determinant, 409
stability, 89
stationary, 45
stochastic, 367
stretch & fold, 269
symplectic, 110

flow map, 56
flows, 76
Fokker-Planck equation, 648
form, normal, 877
Fourier

analysis, 415
mode, truncation, 51, 587
transform, discrete, 974
transform, duality, 987

Fréchet derivative, 95
fractal, 27, 30, 32, 68, 81, 139, 266, 291,

321, 358, 364, 375, 387, 440,
457, 460, 462, 543, 595, 606,
731, 846, 962, 991, 1011, 1017,
1029

aggregates, 32
dimension, 106, 1013
geometry of nature, 32
probabilistic, 32
science, 11

Fredholm
determinant, 1067
theory, 533, 534

free action, 186
free energy, 955
free node, see external node
freezing, 223
Frenkel-Kontorova model, 675
frequency

analysis, 151
visitation, 365

Fresnel integral, 662, 694, 700
full shift, 326
function, 76

L2 square-integrable, 543
analytic, 542
group-invariant, 187
space, piecewise constant, 406
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functional, 366
composition, 44
Lyapunov, 42

fundamental
cycle, 338
domain, 173, 287

collinear helium, 771
matrix, 95, 888, 889, 895, 1004

G-equivariant, 201
G-fixed, 173, 181, 182, 201
G-invariant

basis, see invariant polynomial ba-
sis

polynomial basis, 187, 230
G-invariant

polynomial basis, 189, 196, 197, 234
Gp-symmetric, 181
Gälerkin truncation, 51, 593
Galilean invariance, 584, 608, 610
Gatto Nero, professor, 477
gauge

fixing, 289
invariance, 289

gauge fixing, 71
Gauss map, 377, 577, 625, 635

cycle stability, 631
metric entropy, 641

Gauss shift, see Gauss map
Gaussian

integral, 376, 456, 662, 721, 955
integral, d-dimensional, 662, 710
noise, 1041
probability density, 654

general linear group, 169
generalized

period, 509
periodic orbit, 509

generating
function, 17, 334, 347, 384, 398,

466, 629, 675, 948, 990, 1026
function, exponential, 379, 549, 953
orbit, 263
partition, 260

generator
anti-hermitian, 217, 218
Lie algebra, 144, 203
of flow, 368, 503, 612

Gilmore, R., 189
Ginzburg Landau equation, complex, 215
GL(d)

general linear group, 169
GL(n,F), 914
golden mean, 320, 355

pruning, 271, 327, 351, 355, 356,
421, 930, 941, 991

renormalization, 627, 635, 858
good taste, 262
gradient

algorithm, 666
system, 63

Gram-Schmidt, 96
grammar

symbolic dynamics, 261
grandmother

of fractals, 32
graph

irreducible, 320
root, 321
rooted tree, 321
strongly connected, 320
transition, 317
tree, 321

Gray codes, 262
Green function

analogue of, 617
Green’s function, 690

analogue of, 1004
density of states, 689
diffraction, 792
energy dependent, 689, 1049
regularized, 727
scattering, 739
semiclassical, 718, 719, 721
short distance, 716, 717
trace, 689

long orbits, 716
Greene’s residue criterion, 154
group, 913

compact, 187
cyclic, 176
dihedral, 176
dynamical, 44
evolution, 63
finite, 167, 176
general linear, 914
integral, 500–502
integration, 503
Lie, 144, 202
matrix, 169
not a, 924
orbit, 172, 188, 201, 206
orbit, marginal eigenvalue, 210
orbit, slice, 224, 226, 232
orbit, velocity, 892
order of, 168, 914
representation, 168, 503, 917
semi-, 361, 612
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symmetric, 176
symmetry, reduction, 223
tangent field, 203, 205

group-invariant
function, 187

Gutzwiller
path integral, 719
trace formula, 682, 725

Gutzwiller, M., 843

Haar measure, 503, 512, 514
Hadamard determinant, 408
Hadamard product, 727
Hamilton

-Cayley theorem, 887, 896
-Jacobi equation, 655, 702, 717, 1048
equations, 702
principal function, 655, 705

Hamiltonian, 703
dynamics, 141–148
equations, 142
flow, 142, 923

spectral determinant, 419
stability, 145, 911

flows, stability, 909
Hénon map, 154
map

spectral determinant, 419
matrix, 144, 149
operator, 1056
repeller, periodic orbits, 140
separable, 687

Hankel
function, 717, 748, 764
singular values, 121

Hannay-Ozorio de Almeida sum rule, 523
harmonic oscillator, 883
Harter, W. G., 507
Harter, William G., 508
heat

equation, 645, 646
Heaviside function, 689
Heisenberg, 855

picture, 1058
Heisenberg, W., 854
helium, 767, 854

collinear, 64, 82, 153, 684, 787
cycles, 314, 787
eigenenergies, 787
fundamental domain, 771
Poincaré section, 787
stabilities, 787
stability, 140

Helmholtz equation, 748
Helmholtz free energy, 955

Hénon map
fixed points, 82

Hénon map, 76, 80, 154
attractor, 131, 375
cycles, 140, 666
fixed points, 297
Hamiltonian, 154
horseshoe, 297
inverse, 297
Lyapunov exponent, 131
natural measure, 364
prime cycles, 677, 679
pruning front, 293
stability, 104, 118
structural stability, 300
symmetries, 923
time delay map, 313
transient, 677

Hénon, M., 77
Hénon-Heiles

symbolic dynamics, 190
hermitian

conjugation, 916
matrix, 916

heroes
unsung, xv, 809

Hessian matrix, 145
heteroclinic

connection, 252, 260, 267, 848
intersection, 293
orbit, 103, 156, 189, 252, 263, 291

high-dimensional
state space, 49

Hilbert
basis, see invariant polynomial ba-

sis
space, 687

Hilbert-Schmidt
operators, 1060
condition, 534

Hilbert-Weyl theorem, 187
Holmes, P., 600
homoclinic

connection, 260
orbit, 61, 252
point, 837
tangency, 274, 285
tangle, 293, 634

Hopf bifurcation, 621
Hopf’s last hope, 850
Hopf, Ebehardt, 621, 848, 850
Hopf, Heinz, 784
horseshoe, 278

complete, 280
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hydrodynamic modes, 127, 988
hydrodynamical

interpretation of QM, 719
hyperbolic

flow, 110, 154, 413
non-, 25
orbit, partially, 110
systems, 380, 420, 431, 435, 450,

457, 518, 539, 545, 566, 683,
731, 845, 859, 1011, 1015, 1052

hyperbolicity assumption, 17, 397
hyperchaos, 8

iid, 954
image space, 223, 231
in

node, 100, 107
spiral, 100, 107

in-degree, 321
in-slice

velocity, 226
in/out nodes, 99
inadmissible symbol sequence, 260
incommensurate, 42
incompressible flow, 93
indecomposability, 318

metric, 249
independently identically distributed, 954
index

Maslov, see topological index
index summation, repeated, 93, 145, 914
index theory

Atiyah-Singer, 966
indifferent stability, 87
induced map, 569
inertial manifold, 593, 600
infinite-dimensional state space, 49
infinite-dimensional flows, 51, 583–601
inflection point, 622
information dimension, 1013, 1014
initial

conditions, sensitivity to, 7
point x0, 16, 41, 85
state x0, 16, 41

injective, 81
integrable system, 143, 872
integrated observable, 379, 380, 383, 392,

397, 412, 425
integration

by parts, lattice, 971
group, 503
Runge-Kutta, 63

intermittency, 163, 377, 437, 438, 443,
457, 463, 538, 555, 683, 781,
1015, 1023

anomalous diffusion, 457
escape rate, 565
piecewise linear model, 558
resummation, 570
stability ordering, 573

internal node, 321
invariance

cyclic, 133, 302
Galilean, 584, 608
local Galilean, 610
of flows, 111
symplectic, 142, 149, 909

invariant, 916
density, see natural measure
matrix, 916
measure, 364
measure, Gauss map, 377
metric, 108, 113
points, 173, 201, 477
polynomial basis, 187, 189, 196, 197,

223, 230–232, 234
set, compact, 172
subgroup, 172
subspace, 173
topological, 108
tori, 211
vector, 916

inverse
hyperbolic, 109, 154
iteration, 133
iteration, Hamiltonian repeller, 140

inversion, 176
involution, 176
inward/outward spirals, 99
irreducible

decomposition, 922
graph, 320
matrix, 318
representation, 476, 501
segment, 184

irrep, 476, 922
cyclic group, 491

irrep basis
dihedral group, 492

irreversibility, 24, 44
Ising model, 298, 483, 497, 1021, 1023,

1033, 1034, 1040
isotropy

subgroup, 181, 182, 188, 197, 212
isotypic decomposition, 174
iteration, 40

inverse, 133
Hamiltonian repeller, 140

map, 74
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itinerary, 12, 14, 248, 299, 312
bi-infinite, 250, 259
future, 254, 259
past, 259

Jacobi, C.G.J., 95
Jacobian

matrix, 16, 85, 95, 96, 889
jacobian, 93, 360

Hénon map, 104
jerk, 880
Jonquière function, 460, 463, 469, 559,

581
Jordan normal form, 896

KAM, 151
tori, 555

Kamiltonian, 145
Kaplan-Yorke criterion, 117
Karhunen-Loève, 277
Karhunen–Loéve transform, 620, 954
Keller diffraction, 799
Keller, J.B., 842
Kepler potential,anisotropic, 190, 442,

1000
Kepler, Johannes, 521
Keplerian orbit, 682
kernel

resolving, 534
kneading

determinant, 263
sequence, 256, 271
theory, 256
value, 256, 271

Kolmogorov entropy, 163, 348, 1008, 1010,
1015, 1017

Koopman
modes, 611–617

Koopman operator, 611, 617, 1001, 1004
Kraichnan, Robert H., 850
Kramers, 854
Krein-Friedel-Lloyd formula, 741
Kronecker delta, 885, 915
Krylov subspace, 96
KS, see Kustaanheimo-Stiefel
Kuramoto, Y., 600
Kuramoto-Sivashinsky

“derivative” form, 600
“integral” form, 600
equation, 8, 209, 235, 584, 585, 597,

600, 604–606
equilibria, 606, 607
symmetries, 584

kurtosis, 393, 467, 953

Kustaanheimo-Stiefel transformation, 769,
784, 787, 876

L2 function space, 543
Lagrangian, 704

coordinates, 46, 67, 86, 505
frame, 111
manifold, 706

laminar states, 555
Langevin equation, 647, 656, 657
Laplace

transform, 23, 340, 386, 399, 400,
407, 689, 718, 1002

transform, discrete, 336, 398, 580
Laplace, Pierre-Simon de, 5
Laplacian

diagonalization, 989
diagonalized, lattice, 978
inverse, lattice, 973
lattice, 971, 972
non-local, 989

large deviations, 955
last hope, Hopf’s, 850
lattice

configuration, 969
derivative, 969
derivative, backward, 969
derivative, forward, 969
Fourier transform, 974
integration by parts, 971
Laplacian, 971, 972
Laplacian, diagonalized, 978
Laplacian, inverse, 973
state, 969

leaf, see external node
least action principle, 312, 671
Legendre transform, 705
Leibniz, Gottfried Wilhelm, 5
Letellier, C., 189
level set, 142
Liapunov, see Lyapunov
libration orbit, 773, see self–retracing
Lie

algebra, 144, 202, 203, 886
bracket, 205
derivative, 205
group, 144, 202
product, 886

lifetime, 14
matrix, 744

limit cycle, 43, 109, 116, 120
linear

algebra, 95, 96, 99, 120, 472, 507,
884, 885

cocyle, 95
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flow, 88, 95
space, 885
stability, 84, 106, 595

linearized
flow, 95

link, 320, see edge
Liouville

equation, 370
operator, 370
theorem, 143, 146, 147, 154, 369

Liouville’s formula, 93
little group, 181, 197
Littlewood, J.E., 840
local

divergence rate, 392
stability, 84, 106, 595

localization, quantum dynamical, 151
logistic map, see unimodal
longitudinal

coordinate, 715
loop

intersecting, 338
Lorentz gas, 443, 450, 461, 462, 471,

555
Lorentzian, 690
Lorenz flow, 61, 79, 101, 103, 194, 195,

197, 266
complex, see complex Lorenz flow
polar coordinates, 197, 924
proto-Lorenz, 197
symmetry, 177, 179

Lorenz, E.N., 77, 189
loxodromic, 911

quartet, 146, 150
Lozi map, 77, 81
Lyapunov

characteristic numbers, 126
covariant vector, 125–127, 613
equation, 126, 663
exponent, 7, 106, 120–124, 880

cycle, 123
cycle expansion, 446
equilibrium, 595
natural measure, 393
numerical, 124, 127

function, 126
functional, 42
mode, 124, 126
orbit, 126
time, 7, 10, 25, 44, 67, 371, 379,

441, 460, 590
vector, 126

Lyapunov, A.M., 840

Möbius inversion, 345, 949

Madrid,Real, 52
Mandelbrot, Benoit B., xv, 32, 521
manifold, 40

unstable, 274
Manning’s multiples, 933
map, 40, 73–76

area preserving, 923
contracting, 105, 271
dike, 257, 271
dissipative, 105, 271
expanding, 249
fixed point, 82
Hénon, 80, 666, 923

Hamiltonian, 154
prime cycles, 677

Hamiltonian
Hénon, 154

iteration, 74
logistic, see unimodal
Lozi, 77, 81
once-folding, 278
order preserving, 255
orientation preserving, 923
orientation reversing, 923
quadratic, 81
return, 16, 67, 68, 138, 251, 266,

270, 276, 290, 297, 299
sawtooth, 176, 192, 493
stability, 90
tent, 269
unimodal, 253

mapping, 76
marginal

stability, 16, 87, 100, 107, 109, 210,
396, 504, 538, 555

cycle, 112, 210
fixed point, 556

marginal stability
cycle, 505

Markov
chain, 259
graph, see transition graph
matrix, 318, 375, 392, 436
partition, 456, 841

finite, 249, 327
infinite, 324
not unique, 274

Maslov index, see topological index
material invariant, 644
Mather, see Aubry-Mather theory
matrix

covariance, 954
diagonalizing, 920
exponential, 89, 1002
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group, 169
hermitian, 916
invariant, 916
irreducible, 318
negative definite, 121
of variations, see stability matrix
positive definite, 121, 662
product, 886
rep

cyclic group, 490
representation, 169, 886
stability, 85, 96, 655

Maupertuis, P.L.M. de, 150, 312, 671
mean, 952
measure, 359

continuous, 880
cylinder, 260, 363
equipartition, 260, 363
invariant, 364
natural, 77, 365, 372, 381, 449, 520,

523, 848, 859
mechanics

quantum, 687
statistical, 24

memory
m-step, 248
finite, 327

method of connections, 234
metric

entropy, 106
entropy, Gauss map, 641
indecomposability, 249
invariant, 108, 113

Floquet multiplier, 112
microcanonical ensemble, 393
Mira, C., 77
Misiurewicz, M., 77
mixing, 7, 17, 79, 151, 367, 381, 520,

551, 846
mode, normal, 924
modulated traveling wave, 212
moment, 953

-generating function, 953
central, 953
standardized, 953

moment-generating function, 566
monodromy matrix, 91, 114, 396, 910
Morse index, see topological index
mother

of fractals, 32
moving frame, 222, 223

SO(2), 242
multi-scattering matrix, 750
multifractal, 32, 1029

multiplicative cocyle, 95
multiplicative ergodic theorem, 126
multiplicative noise, 648, 651, 654, 656
multiplier, Floquet, 109, 273
multipoint shooting method, 306
multivariate normal distribution, 954

N-disk, transition matrix, 326
natural density, see natural measure
natural invariant, see natural measure
natural measure, 77, 309, 365, 372, 381,

393, 449, 520, 523, 541, 848,
859

nature, geometry of, 32
Navier-Stokes equation, 583
Navier-Stokes flow

stability, 117
negative definite matrix, 121
neighborhood, 84, 114
Nero, G., 477
neutral, see marginal
New York subway map, 274
Newton method, 134

convergence, 135
damped, 135
flows, 135
optimal section, 937

Newtonian dynamics, 141
node, 320

external, 321
in-degree, 321
internal, 321
out-degree, 321

noise
Brownian, 647
Gaussian, 654, 656, 1041
multiplicative, 648, 651, 654, 656
white, 654

non-singular coding, 260
non-wandering set, 42, 279
nonequilibrium, 449
nonhyperbolic

flow, 110, 111
systems, 523, 576, 581

norm, 1059
normal

distribution, 954
distribution, multivariate, 954
divisor, 172
form, 877

Birkhoff, 1044, 1053
mode, 924
washing machine, 167

obscure
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foundations, 854
jargon, 212, 247
topology, 596, 605

observable, 366, 371, 379, 396, 449, 457,
520, 566, 575, 611, 842, 1001,
1018, 1023, 1040

integrated, 379, 380, 383, 392, 397,
412, 425

simultaneous, 921
vector, 393

ODEs, 8, 49
almost, 63

1-disk
creeping, 758
scattering, 749
semiclassical scattering, 755

Onsager-Machlup, 657
open system, 14, 387, 388, 391, 413,

519, 683, 688, 722, 747, 779,
794

operator
camera, 52
evolution, 383
Hilbert-Schmidt, 1060
just a matrix, 971
Koopman, 611, 617, 1001, 1004
Liouville, 370
norm, 1058
Perron-Frobenius, 361, 390
positive, 1060
regularization, 1066
resolvent, 336, 386, 1002
semigroup

bounded, 386, 1002
shift, 257, 259, 970
stepping, 970
trace-class, 1059

orbit, 41, 74, 172
closed, 116
group, 206
inadmissible, 256
Keplerian, 682
periodic, 41, 259, 425, 723, 724
pseudoperiodic, 509
relative, 209
returning, 722
space, 223

order preserving map, 255
ordering

spatial, 254, 281
ordinary differential equations, see ODEs
orientation

preserving map, 923
reversing map, 923

orthogonality relation, 296, 887, 888, 896,
921

Oseledec ergodic theorem, 126
out

node, 100, 107
spiral, 100, 107

out-degree, 321

Palais slice, 235
palpitations, chicken heart, 6
paradise

this side of, 516
Parseval’s identity, 977
partial differential equations, see PDEs
partially hyperbolic

invariant tori, 211
orbit, 110

particle
image velocimetry, 47

partition, 248, 260
state space, 359
function, 390, 955
generating, 260
infinite, 271, 341, 348
Markov, 249

passive scalar, 644
past topological coordinate, 283
path integral

stochastic, see Wiener integral
PCA, 620, 954
PDEs, 8, 40, 49
period

generalized, 509
relation to action, 775
relative, 208

period doubling
bifurcation, 927

periodic
orbit, 13, 41, 110, 116, 207, 259,

425, 723, 724
condition, 132, 137, 302, 665
extraction, 132–137, 302–309, 665–

673
Hamiltonian repeller, 140
inverse iteration, 133
multipoint shooting, 306
Newton method, 134–135
relative, 208, 498, 506
relaxation algorithm, 666
short, 184, 212
theory, 212, 331, 347, 415
theory, alternative, 440
theory, The Heresy, 442

point, 13, 16, 20, 22, 41, 269, 926
admissible, 334
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count, 344
symbolic label, 259
unstable, 14

periodic orbit
generalized, 509
reduced, 509

Perron-Frobenius
matrix, 318, 348
operator, 361, 390, 548
theorem, 541, 546, 1032

phase
relative periodic orbit, 184

phase space, 39, 143, see state space
density, 369
vs. state space, 56

physical space, see configuration space
piecewise

constant function, 406
linear map, 577
linear map, intermittency, 558
linear map, repeller, 392

pinball, see 3-disk
simulator, 165

PIV, see particle image velocimetry
plain English, 212, 259
plane Couette flow

energy, 600
relative solutions, 215
stability, 892
symmetries, 178, 181, 190, 215
unstable manifold, 276

Plemelj-Smithies cumulants, 1064
POD, 277, 620, 954
Poincaré

return map, see return map
section

border, see chart border
surface of section, see Poincaré sec-

tion
Poincaré invariants, 147
Poincaré return map, 67, 68, 290

cycle, 114
polynomial, 74
stability, 91

Poincaré section, 13, 67–73, 290, 297,
299

3-disk, 159
border, 82
Hénon trick, 76
hyperplane, 296

Poincaré, H., 3, 8, 15
Poincareé section

hyperplane, 69
point

non-wandering, 42
periodic, 13

symbolic label, 259
scatterer, 802
wandering, 42

point-wise invariant, see G-fixed
Poisson

bracket, 205, 369, 370, 372, 909
resummation, 23, 571

polar coordinates, 883
polar decomposition, 122, 127, 131
Pollicott, M., 390, 575
polylogarithm, 559
polynomial

characteristic, 338
topological, 340

Pomeau, Y., 77
pornography, 8, 599
positive definite matrix, 121, 662
positive operators, 1060
post-processing, 225, 232
potential problems, 63
power law

correlation decay, 557
pressure

thermodynamic, 390
topological, 390

prime cycle, 133, 259, 302, 355, 398
3-disk, 297, 355, 673
binary, 287, 297, 351
count, 345
Hénon map, 677, 679
ternary, 298

prime periodic orbit, see prime cycle
primitive cycle, see prime cycle
principal

axes, 954
component analysis, 620, 954
directions, 122
stretches, 122

probabilistic zeta function, 575
probability

density, Gaussian, 654
matrix, 318

product
Lie, 886
matrix, 886

professor
does not know this, 423

profile, spatial, 40
projection

operators, 919
projection operator, 893, 896, 920, 974,

986
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complete, orthonormal, 974
projection operators

Cn, 986
propagator, 688

scalar, 690
semiclassical, 709
short time, 710, 717
Van Vleck, 711

proper orthogonal decomposition, 620,
954

pruned
block, 261

pruning, 12, 555
front, 284

3-disk, 250, 301
golden mean, 271, 327, 351, 355,

356, 421, 930, 941, 991
individual cycles, 353
primary interval, 257
rules, 326
symbolic dynamics, 260

pseudo-cycle, 424
pseudoperiodic orbit, 509

quadratic map, 81
quantization

Bohr-Sommerfeld, 682
semiclassical, 722
WKB, 691, 694

quantum
chaology, see chaos, quantum
chaos, 684, 685, 727
dynamical localization, 151
evolution, 688
interference, 701
mechanics, 687
potential, 719
propagator, 688
resonances, 682
theory, old, 854

quasiperiodic, 42, 509
quotient

group, 172
space, 223
state space, 71, 173, 223

radius of convergence, 408
random

walk, 646
random matrix theory, 685
Rayleigh-Benard flow, 61
real

Madrid, 52
recoding, 261, 286, 297
rectangle, 281

rectification
flows, 872
maps, 876

recurrence, 42, 247
time, see return time

reduced
periodic orbit, 509

reduced state space, 173, 223, 224
reflection, 176
regular

group action, 224
representation, 475

regular rep
cyclic group, 490
dihedral group, 491

regularization, 727, 875
Green’s function, 727
operator, 1066

relative
equilibrium, 206
orbit, 209
period, 208
periodic orbit, 208, 498, 506

phase, 184
shift, 184

solutions, 400
relaxation algorithm, 666
renormalization, 163

golden mean, 627, 635, 858
repeated index summation, 93, 145, 914
repeller, 14, 43, 387, 684

piecewise-linear, 392
single fixed point, 548

representation, 169
character, 502, 918
defining, 916
dual, 885, 915, 916
equivalent, 917
faithful, 917
irreducible, 476, 501
linear, 201
matrix, 503, 886, 917
regular, 475
space, 915
standard, 915
trivial, 501

representative point, 39
residue, 156

Greene’s, 154
stability, 151, 154

resolvent
kernel, 534
operator, 336, 386, 1002

resonances
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complex, 683
quantum, 682
Ruelle-Pollicott, 390, 575

resummation
intermittency, 570

return map, 16, 138, 290, 297, 299
Rössler flow, 266

return time, 575
distribution, 575

returning orbit, 722
reversible

dynamics, 44
Riemann zeta function, 469, 577
right-handed rotation, 216
Rolling Stones, 256
root, 321
rooted tree graph, 321
Rössler

attractor, 69, 79
cycles, 138, 140, 314
equilibria, 63, 101, 266
flow, 56, 62, 63, 69, 79, 82, 105,

124
Lyapunov exponent, 131
return map, 266
web diagram, 270

rotating wave, 206, 215
rotation

counter-clockwise, 216
right-handed, 216

Roux, Henriette, 29, 96
Ruelle

-Pollicott resonances, 390, 575
zeta function, see dynamical zeta

function
Ruelle, D., 30, 390, 416, 575
Runge-Kutta integration, 63
running orbit

Lorentz gas, 453
Rutherford, 767
Rydberg series, 777

S 1, see SO(2)
saddle, 99, 100, 107, 109
saddle node bifurcation, 927, 928
saddle point, see stationary phase
saddle-node bifurcation, 77
sample variance, 954
satisfaction, 957
sausage, (N+1)-dimensional, 200
sawtooth map, 176, 192, 262, 493
scalar

propagator, 690
scalar multiplication, 885
scattering

3-dimensional spheres, 163
elastic, 734
Green’s function, 739
matrix, 735
phase shift, 742
point, 802

schmactals, see fractal
Schrödinger

equation, 687
equation, time-independent, 687
picture, 1058

Schur’s Lemma, 501
Schwartzian derivative, 880
section

optimal, 937
stroboscopic, 66

section, Poincaré, 13, 67, 159, 290, 299
secular equation, 895, 896, 920
Selberg zeta, 394, 415, 416, 487, 683,

731, 842, 1052
self-retracing cycle, 773
self-similar, 22

fractal, 321
SEM, 960
semiclassical

approximation, 702
Green’s function, 718, 721
propagator, 709
quantization, 722
resonances

3-disk, 1054
spectral determinant

collinear helium, 779
wave function, 707
semiclassical zeta function, 728

semigroup, 361, 612
dynamical, 44, 63, 90, 91, 108, 111,

125, 160
evolution, 384
operator, 386, 1002

sensitivity to initial conditions, 7, 31, 37,
120

set, non-wandering, 279
shadowing, 19, 342, 446

3-disk, 435
shift, 259

Bernoulli, 262, 268, 545, 549, 580,
929

finite type, 261
full, 259, 326
map, 622
operator, 257, 259, 970
relative periodic orbit, 184
sub-, 260
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short periodic orbit, 184, 212
similarity transformation, 48, 113
simultaneous observables, 921
Sinai, Ya., 30
Sinai-Bowen-Ruelle measure, see natu-

ral measure
single fixed point

repeller, 548
spectral determinant, 548

singlet, 501, 511
singular

value, 954
value decomposition, 127, 620, 954
values, 121, 125, 130

singularity
branch cut, 563

sink, 43, 100, 107, 109
Sivashinsky, G.I., 600
skeleton of chaos, 12, 14
skewness, 953
slice, 201, 223, 224, 234

condition, 224
linear, 224
Palais, 235

Smale
horseshoe, 293

Smale, S., 11, 30, 273, 293, 347, 416,
840

Newton’s method, 134
wild idea, 409, 415

small divisor problem, 405
S -matrix, 735
smooth, 202

conjugacy, 47, 112, 113, 883
dynamical system, 608
dynamics, 19, 20, 28, 40, 343, 840,

1032, 1035, 1036
dynamics, spectral determinant, 545
interaction, 1038
map, 927
potential, 163

SO(2), 202, 216, 225, 242
SO(2), 100, 215, 216, 218–220, 244, 883

irreducible representation, 216
SO(3), 202, 853
solution

symmetry, 205
Sommerfeld

diffraction, 799
source, 100, 107, 109
Sp(d)

symplectic group, 144
space

analytic functions, 542

average, 366, 380
configuration, 50, 56
defining vector, 915
density functions, 406
dual, 885, 915
linear, 885
phase, 56
state, 56
vector, 885

space average, 590
spaghetto, 55
span, 885
spatial profile, 40
spatiotemporal chaos, 50, 584
spatiotemporal dynamics, 30
spectral

decomposition, 888, 897, 913, 921
determinant, 23, 336, 408

1-dimensional maps, 419
1D hyperbolic Hamiltonian map,

419
2D hyperbolic Hamiltonian flow,

419
1-degree of freedom, 729
2-degrees of freedom, 730
entire, 419, 532
for flows, 409
infinite product rep., 410
single fixed point, 548
weighted, 420

radius, 536, 548
essential, 543

stability, 457
staircase, 689

spectrum
Balmer, 682

specular reflection, 158
speed, 45
Spiegel, Edward A., 850
SRB measure, see natural measure
St. Augustine, 359
stability, 84–93

billiards, 118, 160
continuous symmetry, 209
eigenvalue, see Floquet multiplier
elliptic, 405
equations, 96
exact, 119
exponent, 86, 93, 94, 100, 102, 107,

126, see Floquet exponent
flow, 89
Hamiltonian flow, 911
Hamiltonian flows, 145, 909
in-slice, 242
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indifferent, 87
linear, 84, 106, 595
maps, 90
marginal, 87, 210, 504
matrix, 85, 96, 655
matrix, symplectic, 145
multiplier, 86, 94, 126, see Floquet

multiplier
neutral, see marginal
ordering

cycle expansions, 437
intermittent flows, 573

Poincaré map cycle, 114
Poincaré return map, 91
residue, 151, 154
spectral, 457
structural, 279, 280, 292, 343, 457
subgroup, 181, 197
window, 110

stabilizer, 181, 182, 212
stabilizer subgroup, see isotropy subgroup
stable

cycle, 118
manifold, 16, 274–276, 297

stable manifold, 296, 300
stadium billiard, 158, 163, 166, 190, 581,

998, 1000, 1017
stagnation point, see equilibrium point
staircase

mean eigenvalue density, 779
spectral, 689

standard
basis, 885
deviation, 953
map, 151, 155, 555
representation space, 915

standard error of the mean, 960
standardized moment, 953
standing orbit

Lorentz gas, 453
standing wave, 45, 215
state, 40, 247, 320

set, 248
state space, 39, 40, 143

discretization, 51, 390
equivariant, 224
Fourier representation, 51
high-dimensional, 49
infinite-dimensional, 51
partition, 359
reduced, 173, 224
visualization, 50
volumeM, 387
vs. phase space, 56

stationary
flow, 45
phase, 367, 673, 694, 697, 698, 713,

721, 747, 761, 791, 793, 1047
phase approximation, 694, 700, 711,

723, 792, 802
point, see equilibrium point
state, 364

stationary Lyapunov basis, 126
statistical mechanics, 24
steady state, see equilibrium point
stepping operator, 970
Sterling formula, 700
stochastic

dynamics, 6, 367
matrix, 318
path integral, see Wiener integral

Stokes theorem, 148, 706
stosszahlansatz, 24, 460
strange attractor, 42, 62, 120

Rössler flow, 69, 79
stratum, 182
stress, 957
stretch & fold, 80, 269
stretches, 122
stroboscopic sections method, 66
strongly connected graph, 320
structural stability, 27, 279, 280, 292,

343, 457, 461, 587, 805, 857
Hénon map, 300

structure constant, 886
subgroup

isotropy, 181, 197
subshift, 260

finite type, 261, 284, 292, 319–321,
326

super-exponential
convergence, 665

superstable
cycle, 118
fixed point, 665
point, 928

surjective, 81
survival probability, 15, see escape rate
SVD, 620, see singular value decompo-

sition, 954
symbol

sequence
inadmissible, 260

square, 282
symbol square, 281
symbolic dynamics, 12, 54, 247–261, 926–

945
3-disk, 37, 249, 301
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at a bifurcation, 163
binary

collinear helium, 771
coding, 261

transition graph, 436
complete, 262, 269, 279, 326
covering, 259
grammar, 261
Hénon-Heiles, 190
pruned, 260
recoding, 261, 286, 297
unimodal, 254

symmetric group, 176
symmetry

D3, 299, 484
3-disk, 177, 193–195, 287, 299, 484,

496
continuous, 199–210, 221–231
cyclic, 350
discrete, 187, 286, 297
dynamical system, 170, 199, 221,

503
Hénon map, 923
of a solution, 181, 182, 188, 212
solution, 205
under Gp, 181

symmetry-reduced space, 223
symplectic, 110

2-form, 144
dimension, 149
group Sp(d), 144
group S p(2D), 910
Hénon map, 154
integrator, 1003
invariance, 142, 149, 909
map, 145
transformation, 144, 145, 278, 370

system
open, 387

syzygy, 196, 197, 231

tangent
bundle, 45, 85
field, 203
field, group, 205
linear equations, 87
map, see stability matrix
space, 85, 203

tangent linear propagator, 95
tangent map, 95
Tauberian theorem, 577
teaching

combinatorics, 255
template, 69, 139, 266
tent map, 269, 880, 883

ternary
prime cycles, 298

The Heresy, 442
thermodynamical

pressure, 390
3-body problem, 684, 767, 836, 855, 873
3-dimensional sphere

scattering, 163
3-disk

boundary orbits, 186, 482
convergence, 537
cycle

analytically, 314
count, 174, 188, 486, 951
expansion, 447

escape rate, 393, 435, 447, 516
fractal dimension, 1011
geometry, 159
hyperbolicity, 397
pinball, 5, 162, 163, 165
point scatterer, 802
prime cycles, 18, 297, 312, 355, 673
pruning front, 250, 301
semiclassical resonances, 1054
shadowing, 435
simulator, 165, 166
state space, 14, 299, 1011
symbolic dynamics, 12, 37, 249, 301
symmetry, 177, 193–195, 287, 299,

484, 496
time

arrow of, 24
as parametrization, 48
average, 366, 379
ceiling function, see ceiling func-

tion
delay, Wigner, 742
ordered integration, 90, 94
turnover, 100, 102

time average, 590
time-t forward map, 56, 76, 205
topological

conjugacy, 255
dynamics, 247, 258, 260, 261, 319
entropy, 7, 332, 341
future coordinate, 255
index, 708
topological index, 725, 855
invariant, 108
Markov chain, 259
parameter, 257, 928
polynomial, 340
trace formula, 336
transitivity, 318
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zeta function, 340
torus, 42
totient function, 625
tp cycle weight, 410
trace

formula
classical, 23
flows, 399
Gutzwiller, 725
maps, 398, 548
symmetry reduced, 506
topological, 336, 340
weight, 428

local, 350
trace-class operator, 752, 1059

determinant, 1061
trajectory, 41, 88

discrete, 74
transfer

map, 150
matrix, 150, 375, 392
operator, 405, 415
spectrum, 419

transformation
canonical, 278
coordinate, 64
symplectic, 278

transient, 42, 249, 329
transition

graph, 317–324
infinite, 338

matrix, 317, 332, 348, 350
matrix, N-disk, 326

transitive, 43
transplacement gradient, 95
transversality

border of, 82, see chart border
condition, 68
Thom’s, 857

transverse stability, 716
traveling wave, 206, 215, see relative equi-

librium
tree graph, 321
trivial

representation, 501
Trotter product formula, 1058
truncation

Fourier, 51, 587
Gälerkin, 51, 593

turbulence, 8, 10, 55, 598
problem of, 583

turnback point, 277
turnover time, 100, 102
two-mode flow, 199, 212, 217, 218, 220,

244
equivariance, 219

U(1), 216, 242
Ulam map, 269, 314, 880, 883

skew, 375, 526
tent, 377, 421

ultraviolet divergence, 726
unimodal

kneading value, 271
map, 253
map, symbolic dynamics, 254
well ordered symbols, 271

unimodal map
bifurcation sequences, 927

unit sphere
volume, 64

unstable
cycle, 118
manifold, 16, 274–276, 297
periodic orbit), see periodic orbit
periodic point, 14

unstable manifold, 296, 300
unsung

heroes, xv, 809
UPO (Unstable Periodic Orbit), see pe-

riodic orbit

van Kampen, N. G., 657
Van Vleck

propagator, 711
variance, 953
variational principle, 656
vector

basis, 885
field, 44
field, singularities, 872
invariant, 916
observable, 393
space, 885

defining, 915
dual, 915

velocity, 44
in-slice, 226

velocity gradients matrix, 85, 96
vertex, 320, see node
visitation frequency, 365
visitation sequence, see itinerary
volume preservation, 162
von Neumann

ergodicity, 617, 1004

Waleffe, F., 852
walk, see itinerary
wandering point, 42
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wave function
semiclassical, 707
WKB, 708

wave, standing, 45, 215
web diagram

Rössler flow, 270
weight

multiplicative, 29
well ordered symbols

unimodal, 271
Wentzel-Kramers-Brillouin, see WKB
Weyl

rule, 725
Weyl, H., 507, 919
white noise, 654
Wiener integral, 655
Wigner

delay time, 742
winding number, 156, 622, 623
WKB, 691, 702

connection formulas, 697
quantization, 691, 694
wave function, 708

Yang, C.N., 365
Young, L.-S., 77

Z-transform, 347
zero eigenvalue, 698, 713
zero, false, 412
zeta function

Artin-Mazur, 340
dynamical, 18, 411
probabilistic , 575
Ruelle, see dynamical
topological, 340
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Part VI

Web appendices

The conceit of this treatise is to teach you all of classical, stochastic and quantum
chaos (or turbulence) in one go. There is so much to say, but when? So many trees
are obscuring the grandeur of the forest. So whenever possible, we have moved

details of a particular topic into an appendix, numbered as the corresponding chapter of
the main text. Were this monograph printed and bound, this part would be left on the
ChaosBook.org website, to be consulted if a deeper dive into a particular tangent is desired.

1. A brief history of chaos (appendix A1)

2. Smooth conjugacies (appendix A2)

3. Linear algebra, Hamiltonian Jacobians (appendix A4)

4. Lyapunov exponents done right; transport of vector fields (appendix A6)

5. Cycles (appendix A16

6. Counting (appendix A18)

7. Implementing evolution (appendix ??)

8. Diffusion (appendix A24)

9. Discrete symmetries (appendix A25)

10. Converegence of spectral determinants (appendix ??)

11. Thermodynamic formalism (appendix A32)

12. Statistical mechanics (appendix A33)

13. Quantum mechanics II (appendix A39)

14. Infinite dimensional operators (appendix A40)
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Appendix A1

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

— Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, especially a history of
something that has preoccupied at one time or other any serious thinker from
ancient Sumer to today’s Hong Kong. A mathematician, to take an example, might
see it this way: “History of dynamical systems.” Nevertheless, here comes yet
another very imperfect attempt.

A1.1 Chaos is born

I’ll maybe discuss more about its history when I learn
more about it.

— Maciej Zworski

(R. Mainieri and P. Cvitanović)

Trying to predict the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for deter-
mining the longitude of ships while traversing open seas.
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Kepler’s Rudolphine tables had been a great improvement over previous ta-
bles, and Kepler was justly proud of his achievements. He wrote in the introduc-
tion to the announcement of Kepler’s third law, Harmonice Mundi (Linz, 1619) in
a style that would not fly with the contemporary Physical Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’s Harmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if you are angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A1.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if the solar system consisted
of two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique
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for integrating problems was to find the conserved quantities, quantities that do
not change with time and allow one to relate the momenta and positions at differ-
ent times. The impossible nature of integrating the three-body problem first came
from the work of astronomer and mathematician Heinrich Bruns [26] in 1887. His
work showed that no algebraic integrals or conservation laws beyond energy and
momentum were present in the three-body problem; however, his result did not
preclude the possibility of more complicated conserved quantities. This problem
was settled by Henri Poincaré and Karl Sundman in two very different ways [13,
58].

In an attempt to promote the journal Acta Mathematica, its founder Gösta
Mittag-Leffler received permission from King Oscar II of Sweden and Norway
to establish a mathematical competition. Several questions were posed (although
the king would have preferred only one), and the prize of 2500 kroner would
go to the best submission. One of the questions was formulated by the German
mathematician Karl Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend our under-
standing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he intro-
duced methods that were very geometrical in spirit: the importance of state space
flow, the role of periodic orbits and their cross sections, as well as homoclinic
points.

The interesting thing about Poincaré’s work was that it did not solve the prob-
lem posed. He did not find a function that would give the coordinates as a function
of time for all times. He did not show that it was impossible either, but rather that
it could not be done with the Bernoulli technique of finding a conserved quantity
and trying to integrate. Integration would seem unlikely from Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-born Swedish mathe-
matician Sundman. Sundman showed that to integrate the three-body problem
one had to confront two-body collisions. He did that by making them go away
through a trick known as regularization of the collision manifold. The trick is not
to expand the coordinates as a function of time t, but rather as a function of 3√t.
To solve the problem for all times he used a conformal map into a strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for all
times, solving the problem that was proposed by Weirstrass in King Oscar II’s
competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
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through series that, although divergent, produce better numerical results. The con-
formal map and the collision regularization mean that the series are effectively in
the variable 1 − e−

3√t. Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more terms than any one has ever
wanted to compute, are needed to achieve numerical convergence. Though Sund-
man’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understand-
ing of the solar system.’ The work that followed from Poincaré did.

A1.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in order to create statistical
mechanics, deriving thermodynamics from the equations of mechanics. In order
to evaluate the heat capacity of the most basic system, Boltzmann assumed ergod-
icity, which implies that dynamical systems visit every part of the phase space al-
lowed by conservation laws equally often. This hypothesis was extended to other
averages used in statistical mechanics and was called the ergodic hypothesis. It
was reformulated by Poincaré to say that a trajectory comes as close as desired to
any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end of
the twentieth century, it was shown to be true for only a few systems and wrong for
several others. Early on, as a mathematical necessity, the proof of the hypothesis
was broken down into two parts. First one would show that the mechanical system
was ergodic (it would go near any point) and then one would show that it would go
near each point equally often and regularly so that the computed averages made
mathematical sense. Koopman took the first step in proving the ergodic hypothesis
by realizing that he could reformulate the hypothesis using recently developed
methods of Hilbert space [110]. This important step demonstrated that it was
possible to transform a finite-dimensional nonlinear problem into an infinite-dim-
ensional linear problem. This does not make the problem easier, but it does allow
one to use a different set of mathematical tools to approach the problem. Shortly
after Koopman started lecturing on his method, von Neumann proved a version
of the ergodic hypothesis, giving it the status of a theorem [135]. He proved that

chapter 19
computed averages of an ergodic mechanical system are valid mathematically.
Soon afterwards Birkhoff published a much stronger version of the theorem.

A1.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory of
chaotic dynamical systems was the work on nonlinear oscillators. The problem is
to construct mechanical models that would aid our understanding of physical sys-
tems. Lord Rayleigh came to the problem through his interest in understanding
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how musical instruments generate sound. In the first approximation one can con-
struct a model of a musical instrument as a linear oscillator. But real instruments
do not produce a simple tone forever as the linear oscillator does, so Lord Rayleigh
modified this simple model by adding friction and more realistic models for the
spring. By using negative friction, he cleverly created two basic models for mu-
sical instruments. These models have more than a pure tone and decay with time
when not stroked. In his book The Theory of Sound, Lord Rayleigh introduced
a series of methods that would prove quite general, such as the notion of a limit
cycle, which is the periodic motion of a system regardless of initial conditions.

A1.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of inquiry developed in two directions.
One direction took an abstract approach and considered dynamical systems as
transformations of measurable spaces into themselves. Could we classify these
transformations in a meaningful way? This lead Kolmogorov to the introduction
of the concept of entropy for dynamical systems. With entropy as a dynamical in-
variant it became possible to classify a set of abstract dynamical systems known as
the Bernoulli systems. The other line of inquiry that developed from the ergodic
hypothesis attempted to find mechanical systems that are ergodic. An ergodic
system could not have stable orbits, as these would break ergodicity. So in 1898
Hadamard published a paper with a playful title of ‘... billiards ...,’ where he
showed that the motion of balls on surfaces of constant negative curvature is ev-
erywhere unstable. This dynamical system was to prove very useful and it was
taken up by Birkhoff. Morse in 1923 showed that it was possible to enumerate
the orbits of a ball on a surface of constant negative curvature. He did this by
introducing a symbolic code to each orbit and showed that the number of possi-
ble codes grew exponentially with the length of the code. With contributions by
Artin, Hedlund, and H. Hopf it was eventually proven that the motion of a ball
on a surface of constant negative curvature was ergodic. The importance of this
result escaped most physicists, one exception being Krylov, who understood that
a physical billiard was a dynamical system on a surface of negative curvature, but
with the curvature concentrated along the lines of collision. Sinai, who was the
first to show that a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing, and
Hayashi. They found other systems in which the nonlinear oscillator played a role
and classified the possible motions of these systems. This concreteness of experi-
ments, and the possibility of analysis was too much of a temptation for Mary Lucy
Cartwright and J.E. Littlewood [27], who set out to prove that many of the struc-
tures conjectured by the experimentalists and theoretical physicists did indeed
follow from the equations of motion. Birkhoff had found a ‘remarkable curve’ in
a two dimensional map; it appeared to be non-differentiable and it would be nice
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to see if a smooth flow could generate such a curve. The work of Cartwright and
Littlewood lead to the work of Levinson, which in turn provided the basis for the
horseshoe construction of S. Smale.

chapter 15

In Russia, Lyapunov paralleled the methods of Poincaré and initiated the
strong Russian dynamical systems school [124]. Andronov carried on with the
study of nonlinear oscillators and in 1937 introduced together with Pontryagin
the notion of coarse systems. They were formalizing the understanding garnered
from the study of nonlinear oscillators, the understanding that many of the details
on how these oscillators work do not affect the overall picture of the state space:
there will still be limit cycles if one changes the dissipation or spring force func-
tion by a little bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse systems were
the concept that caught Smale’s attention and enticed him to study dynamical sys-
tems.

A1.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems for
which all points (as opposed to a non–wandering set) admit the hyperbolic struc-
ture, and it was in honor of this result that Smale named these systems Axiom-A.
In Kiev Smale found a receptive audience that had been thinking about these prob-
lems. Smale’s result catalyzed their thoughts and initiated a chain of developments
that persisted into the 1970’s.

Smale combined their results and developments into a 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems” [165]. There are

chapter 15
many great ideas in this paper: the global foliation of invariant sets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The paper also emphasizes global properties of dynamical systems and the topol-
ogy of orbits. Smale’s account takes you from a local differential equation (in the
form of vector fields) to the global topological description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have spo-
ken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of shift transformations. Kolmogorov went far
beyond and suggested a definition of the metric entropy of an area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken by
his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was pub-
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lished in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topological entropy and use it
as an invariant to classify continuous maps. In 1967 Anosov and Sinai applied
the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statistical me-
chanics; this has been a very fruitful relationship. It adds measure notions to the
topological framework laid down in Smale’s paper. Markov partitions divide the
state space of the dynamical system into nice little boxes that map into each other.
Each box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these pa-
pers got published. Bowen also introduced the important concept of shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to everyone. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit. The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statisti-
cal mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is 1-dimensional maps. The topology of
the orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein,
and Stein [130]. The more general 1-dimensional case was worked out in 1976
by Milnor and Thurston in a widely circulated preprint, whose extended version
eventually got published in 1988 [131].

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universal-
ity in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the study of 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum intro-
duced many new ideas into the field: the use of the renormalization group which
led him to introduce functional equations in the study of dynamical systems, the
scaling function which completed the link between dynamical systems and statis-
tical mechanics, and the presentation functions which describe the dynamics of
scaling functions.

The work in more than one dimension progressed very slowly and is still far
from complete. The first result in trying to understand the topology of the orbits
in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Milnor and
Thurston’s work) was obtained by Thurston. Around 1975 Thurston was giving
lectures “On the geometry and dynamics of diffeomorphisms of surfaces.” The
techniques discussed in those lectures have not yet been applied to physics, but
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much of the classification that Thurston developed can be obtained from the notion
of a ‘pruning front’ formulated independently by Cvitanović.

Once one develops an understanding of the topology of the orbits of a dynam-
ical system, one needs to be able to compute its properties. Ruelle had already
generalized the zeta function introduced by Artin and Mazur [3], so that it could
be used to compute the average value of observables. The difficulty with Ruelle’s
zeta function is that it does not converge very well. Starting out from Smale’s
observation that a chaotic dynamical system is dense with a set of periodic orbits,
Cvitanović used these orbits as a skeleton, on which to evaluate the averages of
observables, and organized such calculations in terms of rapidly converging cy-
cle expansions. This convergence is attained by using the shorter orbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it gives the reader an
overview of the field. It is not a fad, and it will not die anytime soon.

A1.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, asked to define applied mathematics

(P. Cvitanović)

The history of periodic orbit theory is rich and curious; recent advances are equally
inspired by more than a century of developments in three separate subjects: 1.
classical chaotic dynamics, initiated by Poincaré and put on its modern footing
by Smale [165], Ruelle [154], and many others, 2. quantum theory initiated by
Bohr, with the modern ‘chaotic’ formulation by Gutzwiller [89, 91], and 3. ana-
lytic number theory initiated by Riemann and formulated as a spectral problem by
Selberg [129, 160]. Following different lines of reasoning and driven by different
motivations, the three separate roads all arrive at trace formulas, zeta functions
and spectral determinants.

The fact that these fields are all related is far from obvious, and even today
the practitioners tend to cite papers only from their sub-speciality. In Gutzwiller’s
words [91], “The classical periodic orbits are a crucial stepping stone in the un-
derstanding of quantum mechanics, in particular when then classical system is
chaotic. This situation is very satisfying when one thinks of Poincaré who empha-
sized the importance of periodic orbits in classical mechanics, but could not have
had any idea of what they could mean for quantum mechanics. The set of energy
levels and the set of periodic orbits are complementary to each other since they are
essentially related through a Fourier transform. Such a relation had been found
earlier by the mathematicians in the study of the Laplacian operator on Rieman-
nian surfaces with constant negative curvature. This led to Selberg’s trace formula
in 1956 which has exactly the same form, but happens to be exact.” A posteriori,
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one can say that zeta functions arise in both classical and quantum mechanics be-
cause the dynamical evolution can be described by the action of linear evolution
(or transfer) operators on infinite-dimensional vector spaces. The spectra of these
operators are given by the zeros of appropriate determinants. One way to evalu-

section 22.1
ate determinants is to expand them in terms of traces, log det (L) = tr (logL). In
this way the spectrum of an evolution operator becomes related to its traces, i.e.
periodic orbits. A deeper way of restating this is to observe that the trace formu-

exercise 4.1
las perform the same role in all of the above problems; they relate the spectrum
of lengths (local dynamics) to the spectrum of eigenvalues (global eigenstates),
and for nonlinear geometries they play a role analogous to the one that Fourier
transform plays for the circle.

Distant history is easily sanitized and mythologized. As we approach the
present, our vision is inevitably more myopic; for very different accounts cov-
ering the same recent history, see V. Baladi [12] (a mathematician’s perspective),
and M. V. Berry [19] (a quantum chaologist’s perspective). We are grateful for any
comments from the reader that would help make what follows fair and balanced.

M. Gutzwiller was the first to demonstrate that chaotic dynamics is built upon
unstable periodic orbits in his 1960’s work on the quantization of classically
chaotic quantum systems, where the ‘Gutzwiller trace formula’ gives the semiclas-

chapter 39
sical quantum spectrum as a sum over classical periodic orbits [86–89]. Equally
important was D. Ruelle’s 1970’s work on hyperbolic systems, where ergodic av-

chapter 22
erages associated with natural invariant measures are expressed as weighted sums
on the infinite set of unstable periodic orbits embedded in the underlying chaotic
set [148, 149]. This idea can be traced back to the following sources: 1. the

remark 22.2
foundational 1967 review [165], where S. Smale proposed as “a wild idea in this
direction” a (technically incorrect, but prescient) zeta function over periodic or-
bits, 2. the 1965 Artin-Mazur zeta function for counting periodic orbits [3], and

chapter 18
3. the 1956 Selberg number-theoretic zeta functions for Riemann surfaces of con-
stant curvature [160]. That one could compute using these infinite sets was not
clear at all. Ruelle [154] never attempted explicit computations, and Gutzwiller
only attempted to implement summations over anisotropic Kepler periodic orbits
by treating them as Ising model configurations [90] (In retrospect, Gutzwiller was
lucky; it turns out that the more periodic orbits one includes, the worse conver-
gence one gets [28]).

For a long time the convergence of such sums bedeviled the practitioners, un-
til the mathematically rigorous spectral determinants for hyperbolic deterministic
flows, and the closely related semiclassicaly exact Gutzwiller Zeta functions were
recast in terms of highly convergent cycle expansions. Under these circumstances,
a relatively few short periodic orbits lead to highly accurate long time averages of
quantities measured in chaotic dynamics and of spectra for quantum systems. The
idea, in a nutshell, is that long orbits are shadowed by shorter orbits, and the nth
term in a cycle expansion is the difference between the shorter cycles estimate of
the period n-cycles’ contribution and the exact n-cycles sum. For unstable, hy-
perbolic flows, this difference falls off exponentially or super-exponentially [155].
Contrary to some literature, resummations of cycle expansions are not more clever

chapter A40
the Plemelj-Smithies recursion formula. Those who study cycle expansion often
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express concerns regarding the ‘abscissa of absolute convergence’, the ‘entropy
barrier’, and exponential proliferation of cycles, but these concepts are not a prob-
lem scientifically; it’s simply that practitioners of cycle expansion find their own
theories more reassuring.

Cvitanović derived ‘cycle expansions’ in 1986-87, in an effort to prove that
chapter 23

the mode-locking dimension for critical circle maps discovered by Jensen, Bak
and Bohr [102] is universal; the same kind of periodic orbits are involved in the
Hénon map, but now in renormalization ‘time’. The symbolic dynamics of the
Hénon attractor (the pruning front conjecture [46]) is coded by transition graphs,
and topological entropy is given by roots of their determinants. This observation

chapter 18
led to the study of convergence of spectral determinants for both discrete-time
(iterated maps) and continuous-time deterministic flows (both ODEs and PDEs).
Cycle expansions thus arose not from temporal dynamics, but from studies of scal-

chapter 28
ings in period-doubling and cycle-map renormalizations [6, 30, 47]. This work
was done in collaboration with R. Artuso (PhD 1987-1989), G. Gunaratne, and
E. Aurell (PhD 1984-1989), and it was written up under the watchful eye of parrot
Gaspar in Fundaçaõ de Faca, Porto Seguro, as two long Recycling of strange sets
papers [5, 6]: I. Cycle expansions and II. Applications. The main lesson was that
one should never split theory and applications into papers numbered I and II; part
II, which covers many interesting results, has barely been glanced at by anyone.

The first published paper on these developments was written by Auerbach et
al. [8] and entitled Exploring chaotic motion through periodic orbits (submitted
March 1987). Here only a ‘level sum’ approximation (23.39),

section 27.4

1 =
∑

x j∈Fix f n

t j eβA(x j,n) , t j =
e−ns(n)

Λ j
, (A1.1)

to the trace formula is presented as an nth order estimate of the leading Perron-
Frobenius eigenvalue s(n) and applied to the Hénon attractor, as shown in eq. (4) of
the above paper. (The exact weight of an unstable prime periodic orbit p (for level
sum (21.6)) had been conjectured by Kadanoff and Tang [104] in 1984.) Even as
it was written, the heuristics of this paper were rendered obsolete by exact cycle
expansions, and yet, mysteriously, this is one of the most cited periodic orbits
papers in its field.

The first attempt to make cycle expansions accessible to every person was
condensed into Phys. Rev. Letter Invariant measurement of strange sets in terms
of cycles (submitted March 1988) [40]. However, the two long papers by Artuso
et al. [5, 6] are a better read.

Several applications of the new methodology are worth mentioning. One was
the accurate calculation of the leading dozen eigenvalues of the period-doubling
operator [6, 30, 145]. Another breakthrough was the cycle expansion of deter-
ministic transport coefficients [4, 38, 45], such as diffusion constants without any

chapter 24
probabilistic assumptions. The classical Boltzmann equation for the evolution of
1-particle density is based on Stosszahlansatz, the assumption that velocities of
colliding particles are not correlated. In periodic orbit theory all correlations are

appendHist - 29apr2020 ChaosBook.org edition16.4.8, May 25 2020

http://www.cns.gatech.edu/~predrag/papers/preprints.html#Cycling


APPENDIX A1. A BRIEF HISTORY OF CHAOS 846

included in cycle averaging formulas, such as the cycle expansion for a particle
diffusing chaotically across a spatially-periodic array.

Physicists tend to obsess about matters weightier than iterating maps, so in
1989 Cvitanović and Eckhardt showed that cycle expansions reproduce quantum
resonances of Eckhardt’s 3-disk scatterer [61] to rather impressive accuracy [42].
In that same year, Gaspard and Rice published a lovely triptych of articles about
the same 3-disk system (classical, semiclassical and quantum scattering) [76–78].
In 1992, the PhD thesis of P. E. Rosenqvist [62, 147] combined the magic of
spectral determinants with their symmetry factorizations [44, 90] to take cycle
expansions to ridiculous accuracy; for example, periodic orbits up to 10 bounces
determine the classical escape rate for a 3-disk pinball to be

γ = 0.4103384077693464893384613078192 . . . .

Try to extract this from a direct numerical simulation, or a log-log plot of level
sums (A1.1)! Prior to cycle expansions, the best accuracy that Gaspard and Rice
achieved by applying Markov approximations to the spectral determinant [77] was
1 significant digit, γ ' 0.45.

A 3-disk billiard is exceptionally nice, uniformly hyperbolic repeller. More
often than not, good symbolic dynamics for a given flow is either not available,
or its grammar is not finite, or the convergence of cycle expansions is affected
by nonhyperbolic regions of state space. In those cases truncations such as the

chapter 29
stability cutoff of Dahlqvist and Russberg [52, 53] and Dettmann and Morriss [57]
might be helpful. The idea is to truncate the cycle expansion by including only the

section 23.7
shadow combinations of pseudo-cycles {p1, p2 · · · , pk}, such that |Λp1 · · ·Λpk | ≤

Λmax, with the cutoff Λmax equal to or smaller than the most unstable Λp in the
data set.

It is pedagogically easier to motivate sums over periodic orbits by starting with
discrete time dynamical systems, but most flows of physical interest are continu-
ous in time. The weighted averages of periodic orbits for continuous time flows
were introduced by Bowen, who treated them as Poincaré section suspensions
weighted by the ‘time ceiling’ function, and were incorporated into dynamical
zeta functions by Parry and Pollicott [142] and Ruelle [150]. For people steeped
in quantum mechanics it all looked very unfamiliar, so in 1991 Cvitanović and
Eckhardt reformulated spectral determinants for continuous time flows along the
lines of Gutzwiller’s derivation of the semi-classical trace formula [43]. As a con-

chapter 21
sequence, quantum mechanicians [19, 107, 111] tend to cite this paper as the first
paper on cycle expansions.

2D billiards are only toys, but quantization of helium is surely not just a game.
By implementing cycle expansions in 1991, the group of Dieter Wintgen obtained
a surprisingly accurate helium spectrum [65, 180] from a small set of its shortest
cycles. This happened 50 years after old quantum theory had failed to do so and
20 years after Gutzwiller first introduced his quantization of chaotic systems [89].

The Copenhagen group gave many conference and seminar talks about cycle
expansions. In December 1986, Cvitanović presented results on the periodic-orbit
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description of the topology of Lozi and Hénon attractors and the periodic-orbit
computation of associated dynamical averages, at the meeting on “Chaos and

section 15.4
Related Nonlinear Phenomena: Where do we go from here?.” This meeting was
organized by Moshe Shapiro and Itamar Procaccia and held in the kibutz Kiryat
Anavim. A great meeting, and Celso Grebogi was in the audience. After the
“Where do we go from here?” meeting, the Maryland group wrote a series of
papers on unstable periodic orbits, or ‘UPOs’. In the first paper [83], Unstable

remark 5.1
periodic orbits and the dimensions of multifractal chaotic attractor (submitted
September 1987), the focus was on fractal dimensions of chaotic attractors, as
was the fashion in the late 1980’s. They prove that the natural measure ρ0 of
a mixing hyperbolic attractor is given by the limit of a sum over the unstable
periodic points x j of long period n, embedded in a chaotic attractor. Each periodic
point is weighted by the inverse of the product of its periodic orbit’s expanding
Floquet multipliers Λ j, Eq. (14) in their paper:

ρ0(MS ) = lim
n→∞

∑
x j∈Fix f n

1
Λ j

, x j ∈ MS . (A1.2)

This is an approximate level sum formula for natural measure, a special case of
(A1.1), with leading Perron-Frobenius eigenvalue s = 0 (no escape), and β =

0 (observable =1). The first paper does cite Auerbach et al. [8], in which the
same approximate level sum seems to have been published for the first time. Ever
since then, various cyclist teams cite exclusively their own papers and some of the
mathematicians of the 1970’s.

So you have now written a paper that uses periodic orbits. What is one to cite?
Work by Sinai-Bowen-Ruelle is smarter and more profound than the vast major-
ity of ‘chaos’ publications from the 1980s on. If you are not actually computing
anything using periodic orbits and are reluctant to refer to recent contributions,
you can safely credit Ruelle [149, 154] for deriving the dynamical (or Ruelle)
zeta function, and Gutzwiller for formulating semiclassical quantization as a Zeta
function over unstable periodic orbits [89, 91]. There are no cycle expansions in
these papers or in Bowen’s work (see, for example, the description in Scholarpe-
dia.org). If you have computed something using sums weighted by periodic-orbit
weights, cite the first paper that introduced them, as well as a useful up-to-date
reference, which in this case is ChaosBook.org. Do not faint because this web-
book is available on (gasp!) the internet - it’s third millennium, and having a
continuously updated, hyperlinked and reliable reference has its virtues.

Depending on the context, one should also cite 1) Zoldi and Greenside [181]
for being the second to determine unstable periodic orbits for Kuramoto-Sivashin-
sky (127 of them), on a domain larger than what was studied by Christiansen et
al. [29], 2) López et al. [120] for being the first to determine relative periodic

remark 23.1
orbits in a spatio-temporal PDE (complex Landau-Ginzburg), and 3) Kazant-
sev [106] for being the first to determine periodic orbits in a weather model, and
for formulating a variational method for finding periodic orbits. We love these

chapter 34
chapter 34

authors, but not for their ‘escape-time weighting’.

While derivations of (A1.1) by Kadanoff and Tang 1984 and Auerbach et al.
1987 were heuristic, Grebogi, Ott and Yorke 1987 prove (A1.2) by taking the
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n → ∞ limit. In actual computations it would be madness to attempt to take such
a limit, as longer and longer periodic orbits become more and more unstable,
exponentially growing in number, and non-computable; and the natural measure
ρ0 is everywhere singular, with support on a fractal set, with its n→ ∞ limit even
more impossible to compute. And why would one take this limit? The whole point
of cycle expansions is that it is smarter to compute averages without constructing
ρ0.

Taking a limit to obtain a proof is good mathematics, but in statistical mechan-
ics a partition function is not a limit of anything; it is the full sum of all states.
Likewise, its ergodic theory cousin, the spectral determinant is not a long-time
limit; it is the exact sum over all periodic orbits. Cycle expansions were intro-
duced in a non-rigorous manner, on purpose [40]: the exposition was meant not
to frighten a novice, innocent of Borel measurable α to Ω sets. This was set right

chapter 28
in the elegant PhD thesis of H. H Rugh’s in 1992, The correlation spectrum for
hyperbolic analytic maps [155], which proves that the zeros of spectral deter-
minants are indeed the Ruelle-Pollicott resonances [144, 151, 152]. The proof
is well within mathematicians’ comfort zone, so they tend to cite Rugh’s paper
as the paper on ‘Fredholm determinants’, and, as always, throw in “a sense of
Grothendieck” for good measure [12, 74], without citing earlier papers on cycle
expansions.

If you intend to determine and use periodic orbits, here is the message: Heuris-
tic ‘level sums’ are approximations to the exact trace formulas (that are derived
here, in ChaosBook, and Gaspard monograph [75] with no more effort than the
heuristic approximations), not smart for computations; faster convergence is ob-
tained by utilizing the shadowing that is built into the exact cycle expansions of
dynamical zeta functions and spectral determinants. Cycle expansions are not
heuristic, in classical deterministic dynamics they are exact expansions in the un-
stable periodic orbits [5, 6, 40]; in quantum mechanics and stochastic mechanics
they are semi-classically exact. So why would one prefer a limit of a heuristic
sum such as (A1.2) to the exact spectral determinant, convergent exact periodic

section 27.4
orbits sums, and exact periodic orbits formulas for dynamical averages of observ-
ables? It is not even wrong. Perhaps if one is very fond of baker’s maps [139],
which, being piecewise linear, have no cycle expansion curvature terms, one does
not appreciate the shadowing cancelations built into the spectral determinants and
their cycle expansions. That might be the reason why linear thinkers stop at the
level sum (A1.2).

A1.5 Dynamicist’s vision of turbulence

The past is never dead. It’s not even past.
— William Faulkner, Requiem for a Nun

(P. Cvitanović and L. van Veen)

The key theoretical concepts that form the basis of dynamical theories of tur-
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bulence of chapter 30 are rooted in the work of Poincaré, Hopf, Smale, Ruelle,
Gutzwiller and Spiegel. In his 1889 analysis of the three-body problem [143],
Poincaré introduced the geometric approach to dynamical systems and methods
that lie at the core of the theory developed here: qualitative topology of state
space flows, Poincaré sections, key roles played by equilibria, periodic orbits,
heteroclinic connections, and their stable/unstable manifolds.

In a seminal 1948 paper [96], Ebehardt Hopf visualized the function space
of allowable Navier-Stokes velocity fields as an infinite-dimensional state space,
parameterized by viscosity, boundary conditions and external forces, with instan-
taneous flow states represented by points in this state space. Laminar flows cor-
respond to equilibrium points, globally stable for sufficiently large viscosity. As
the viscosity decreases (as the Reynolds number increases), turbulent states set in,
represented by chaotic state space trajectories. Hopf’s observation that viscosity
causes a contraction of state space volumes under the action of dynamics led to
his key conjecture, which states that long-term, typically observed solutions of
the Navier-Stokes equations lie on finite-dimensional manifolds embedded in the
infinite-dimensional state space of allowed states. Hopf’s manifold, known today
as the ‘inertial manifold,’ is well-studied in the mathematics of spatio-temporal
PDEs. Its finite dimensionality for non-vanishing ‘viscosity’ parameter has been
rigorously established in certain settings by Foias and collaborators [73]. Hopf
presciently noted that “the geometrical picture of the phase flow is, however, not
the most important problem of the theory of turbulence. Of greater importance is
the determination of the probability distributions associated with the phase flow”.
Hopf’s call for understanding probability distributions associated with the phase
flow has indeed proven to be a key challenge, one in which dynamical systems
theory has made the greatest progress in the last half century. In particular, the
Sinai-Ruelle-Bowen ergodic theory of ‘natural’ or SRB measures has played a
critical role in understanding dissipative systems with chaotic behavior [22, 154,
162, 165].

Hopf noted “[t]he great mathematical difficulties of these important problems
are well known and at present the way to a successful attack on them seems hope-
lessly barred. However, there is no doubt that many characteristic features of the
hydrodynamical phase flow occur in a much larger class of similar problems gov-
erned by non-linear space-time systems. In order to gain insight into the nature
of hydrodynamical phase flows we are, at present, forced to find and to treat sim-
plified examples within that class.” Hopf’s call for geometric state space analysis
of simplified models first came to fulfillment with the influential Lorenz’s trunca-
tion [121] of the Rayleigh-Bénard convection state space. The Proper Orthogonal

example 2.2
Decomposition (POD) models of boundary-layer turbulence brought this type of
analysis closer to physical hydrodynamics [7, 95]. Further significant progress
has proved possible for systems such as the 1-spatial dimension Kuramoto-Siva-
shinsky flow [113, 163], which is a paradigmatic model of turbulent dynamics, as
well as one of the most extensively studied spatially extended dynamical systems.

Numerical methods for the computation of equilibria and periodic orbits in
dynamical systems with few computational degrees of freedom were formulated
in the 1970s, e.g. by Allgower and Georg [2], and implemented in software pack-
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ages soon after, e.g. by Sebius Doedel [59, 60]. However, these methods require
the computation, storage and decomposition of large Jacobian matrices, of the
size of the number of computational degrees of freedom. For the Lorenz model,
this could be easily accomplished on a 1981 computer, but turbulent flow is a
different, well-stirred, cup of tea. Even if one fixes the Reynolds number to the
lowest possible value that allows for irregular motion à la Hopf, if one exploits
the incompressibility condition and spatial symmetries of the flow, one still ends
up with thousands of computational degrees of freedom. Matrices that large did
not fit in 1980s Random Access Memory. Until a different method, aptly labelled
matrix-free, was introduced years later, computing invariant solutions in Navier-
Stokes flow was a matter of pushing the limits and searching for the latest and
largest computers.

Two pioneers in this development were Andrew Cliffe and Masato Nagata.
The former wrote a code called ENTWIFE [31] that had some of the functionality
of Doedel’s AUTO, but was geared towards the analysis of Navier-Stokes flow
discretized by finite elements. One of the early results was the computation of
steady, convective solutions in Taylor-Couette flow [32]. Their results filled a
number of blanks in the bifurcation diagram that starts with an instability of the
laminar state. Nagata tackled an even more challenging problem, namely that of
travelling waves in plane Couette flow. In this geometry, the laminar flow remains
stable and, when Nagata started his quest, it was not known if any interesting
invariant solutions even existed. Eventually, he managed to compute a travelling
wave solution at a marginal resolution. It took him more than two years to get the
result published in the Journal of Fluid Mechanics, forced as he was to seek out
larger computers after each round of reviewing in order to increase the resolution
and, with that, the number of computational degrees of freedom [134]. Inspired by
these results, and using essentially the same methods, Fabian Waleffe computed
equilibria and travelling waves in plane Couette flow and Poisseuile flow [176].

We hope to have convinced the reader that a successful approach to solving
the full Navier-Stokes problem is no longer “hopelessly barred.” It is now within
reach given our modern computational and experimental capabilities. We address

chapter 30
this challenge in a way Hopf could not divine, employing methodology developed
only within the past two decades, explained in depth throughout this book.

Hopf, to the best of our knowledge, never suggested that turbulent flow should
be analyzed in terms of ‘recurrent flows’, i.e. time-periodic solutions of the defin-
ing PDEs. The story so far goes like this: in 1960 Ed Spiegel was Robert Kraich-
nan’s research associate. Kraichnan told him, “Flow follows a regular solution
for a while, then another one, then switches to another one; that’s turbulence.” It
was not too clear, but Kraichnan’s vision of turbulence moved Spiegel. In 1962
Spiegel and Derek Moore investigated a set of 3rd order convection equations
which seemed to follow one periodic solution, then another, and continued going
from periodic solution to periodic solution. Ed told Derek, “This is turbulence!”
and Derek said “This is wonderful!” He gave a lecture at Caltech in 1964 and
came back very angry. They pilloried him there. “Why is this turbulence?” they
kept asking and he could not answer, so he expunged the word ‘turbulence’ from
their 1966 paper [133] on periodic solutions. In 1970 Spiegel met Kraichnan and
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told him, “This vision of turbulence of yours has been very useful to me.” Kraich-
nan said: “That wasn’t my vision, that was Hopf’s vision.” What Hopf actually
said and where he said it remains deeply obscure to this very day. There are
papers that lump him together with Landau, as the ‘Landau-Hopf’s incorrect the-
ory of turbulence,’ a proposal to deploy incommensurate frequencies as building
blocks of turbulence. This was Landau’s guess and was the only one that could be
implemented at the time.

The first paper to advocate a periodic orbit description of turbulent flows is
thus the 1966 Spiegel and Moore paper [133, 166]. Thirty years later, in 1996
Christiansen et al. [29] proposed (in what is now the gold standard for exemplary
ChaosBook.org/projects) that the periodic orbit theory be applied to infinite-dim-
ensional flows, such as the Navier-Stokes, using the Kuramoto-Sivashinsky model
as a laboratory for exploring the dynamics close to the onset of spatiotemporal
chaos. The main conceptual advance in this initial foray was the demonstration
that the high-dimensional (16-64 mode Galërkin truncations) dynamics of this
dissipative flow can be reduced to an approximately 1-dimensional return map
s → f (s), by choosing the unstable manifold of the shortest periodic orbit as
the intrinsic curvilinear coordinate from which to measure near recurrences. For
the first time for any nonlinear PDE, some 1,000 unstable periodic orbits were
determined numerically. What was novel about this work? First, dynamics on a
strange attractor embedded in a high-dimensional space was essentially reduced to
1-dimensional dynamics. Second, the solutions found provided both a qualitative
description and highly accurate quantitative predictions for the given PDE with
the given boundary conditions and system parameter values.

By the end of the century, and struggling with the same computational lim-
itations, Genta Kawahara and Shigeo Kida attempted to extend Nagata’s work
to periodic orbits. They avoided the large-matrix-problem altogether by using a
direction set method to minimize the redisual, i.e. the mismatch of the almost-
periodic orbit. The down side was, that this method converges very slowly. Their
computations ran for months on all desktop computers they could get their hands
on. Early versions of their report were held beck by the reviewers of the Journal of
Fluid Mechanics, who finally relented when the relative residual had reached the
magical number of 0.01. Thus, Kawahara and Kida became the first to compute
a periodic orbit in a turbulent flow [105]. This computation was a herald of more
exciting results to come, but also made clear that new numerical methods would
have to be developed.

In the 2000s alternatives to the computation and decomposition of Jacobian
matrices were widely adopted in the community studying fluid dynamics as a
dynamical system. These methods, collectively called matrix-free, or Krylov sub-
space methods require only a number of simulations of the flow along approx-
imations of the invariant solution and the storage of the results. The number of
simulations necessary is typically much smaller than the number of computational
degrees of freedom, especially if the Reynolds number is not too high. Krylov
methods for the computation of equilibria had been proposed as early as 1989 by
Laurette Tuckerman [169], but their use increased dramatically after a Barcelona
group worked out how to efficiently use this approach for the computation of pe-
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riodic orbits [156]. A second development that accellerated this field of study was
that of edge tracking, originally proposed by Itano and Toh [99] and successfully
used, for instance, by Skufca, Yorke and Eckhardt in a 9-variable model [164].
This method exploits the fact that in many parallel shear flows, for instance, chan-
nel and pipe flows, the laminar flow is stable and thus, if there is any other kind
of stable motion possible, there must exist an “edge” to its domain of attraction.
Orbits inside this edge can be accurately traced and often converge on interesting
invariant solutions.

The skepticism about dynamical systems-flavoured results on turbulence that
pioneers like Nagata, Kawahara and Kida met with dissipated as increasingly con-
vincing results appeared in the literature. Viswanath verified the results of Kawa-
hara and Kida with great accuracy and was first to compute relative periodic orbit
solutions [173]. Faisst and Eckhardt and Wedin and Kerswell independently pre-
sented a number of travelling wave solutions in pipe flow [66, 177] while Toh
and Itano dissected Poisseuile flow [168]. Flow on a periodic domain was studied
by van Veen, Kawahara and Kida [170]. Fuelling the developments further was
the experimental observations of traces of travelling wave solutions in pipe flow
by Björn Hof cum suis [94]. After all, fluid mechanics is an empirical field of
study, and the relevance of the computational results, exciting as they were to the
dynamicists, was not immediately clear to the larger physics and engineers.

By the end of the decade, new results were coming out every month. It is
fair to say that anyone with a sufficiently accurate simulation code, studying suffi-
ciently mild turbulence – at a Reynolds number in the hundreds, not thousands –
could compose a Newton-Krylov solver and enter the game. In fact, several stud-
ies were launched in which equilibria and periodic orbits were computed semi-
automatically to buid up a catalog of “building blocks” or “tiles” of turbulence.
Two results worth highlighting are those by Halcrow, Gibson, Cvitanović and
Viswanath [92] on plane Couette flow, who include approximate connecting or-
bits – the outlines of the behaviour envisioned by Hopf – and those by Dan Lucas
and Rich Kerswell on two-dimensional, spatially periodic flow [123].

How is it possible that the theory originally developed for low dimensional
dynamical systems can work in the ∞-dimensional PDE state spaces? For dis-
sipative flows the number of unstable, expanding directions is often finite and
even low-dimensional; perturbations along the ∞ of contracting directions heal
themselves, and play only a minor role in cycle weights - hence the long-time dy-
namics is effectively finite dimensional. For a more precise statement, see Ginelli
et al. [79].

remark 30.1

Although a general proof for three-dimensional Navier-Stokes flow is not
available, it is widely assumed that turbulent dynamics, daunting as it may seem,
is also finite-dimensional by grace of the viscous damping. If so, there is hope
that a description in terms of solutions such as equilibria, periodic orbits and trav-
elling waves, and a quasi-random trajectory careening from one to the other, is
feasible and useful. In order to prove Hopf right, one has to compute such solu-
tions - as many as needed to attain the desired accuracy for periodic orbit theory
predictions [6].
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All results described above are based on iterative methods, meaning that they
all required some initial guess for the invariant solution of interest. Obtaining
such an initial guess is a surprisingly tricky business. Some solutions spring from
others at bifurcation points and can thus be tracked. Some live on the edge of the
domain of attraction of others and can be identified using edge tracking. Some
can be tracked by creating a homotopy, i.e. by continuously connecting the flow
of interest to one with a tractable bifurcation diagram. For many, including the
above results on Couette and pipe flow, no such gangway is available. In that case,
the last resort is to start from a course approximation filtered from a turbulent
time series. The convergence of iterative methods is then far from guaranteed.
As we push the envelope, studying more and more turbulent flows and larger
and larger domains, edging closer to the reproduction of experiments, finding a
good starting point becomes more problematic. Two approaches that mitigate this
problem are globally convergent Newton iteration and variational methods. The
former were integrated with Krylov subspace methods by Viswanath [173]. The
latter were developed by Lan and Cvitanović [48, 115, 116] and further developed
by Farazmand [67].

Combining the best available methods, and using modern tools like GPU com-
puting, various groups are tackling such challenging problems as boundary lay-
ers [109] and self-similar dynamics [171]. Little by little, the fluid dynamics
community is starting to appreciate that the dynamical analysis of turbulent flows
is now feasible, and provides a valuable complement to the traditional, statistical
analysis.

A1.6 Gruppenpest

How many Tylenols should I take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Waleffe, forced to read chapter 10.

If you are not fan of chapter 10 “Flips, slides and turns,” and its elaborations,
you are not alone. Or, at least, you were not alone in the 1930s. That is when the
articles by two young mathematical physicists, Eugene Wigner and Johann von
Neumann [136], and Wigner’s 1931 Gruppentheorie [179] started Die Gruppen-
pest that plagues us to this very day.

According to John Baez [10], the American physicist John Slater, inventor of
the ‘Slater determinant,’ is famous for having dismissed groups as unnecessary to
physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture
with their ‘Gruppenpest:’ the pest of the group theory [actually, the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppenpest’ wrote papers
which were incomprehensible to those like me who had not studied group the-
ory... The practical consequences appeared to be negligible, but everyone felt that
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to be in the mainstream one had to learn about it. I had what I can only describe
as a feeling of outrage at the turn which the subject had taken ... it was obvious
that a great many other physicists were disgusted as I had been with the group-
theoretical approach to the problem. As I heard later, there were remarks made
such as ‘Slater has slain the ‘Gruppenpest”. I believe that no other piece of work
I have done was so universally popular.”

A. John Coleman writes in Groups and Physics - Dogmatic Opinions of a
Senior Citizen [33]: “The mathematical elegance and profundity of Weyl’s book
[Theory of Groups and QM] was somewhat traumatic for the English-speaking
physics community. In the preface of the second edition in 1930, after a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group pest’ is gradually being
cut out of quantum physics. This is certainly not true in so far as the rotation and
Lorentz groups are concerned; ....” In the autobiography of J. C. Slater, published
in 1975, the famous MIT physicist described the “feeling of outrage” he and other
physicists felt at the incursion of group theory into physics at the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published their highly influential
treatise on the “Theory of Atomic Spectra”, Slater was widely heralded as having
“slain the Gruppenpest”. Pages 10 and 11 of Condon and Shortley’s treatise are
fascinating reading in this context. They devote three paragraphs to the role of
group theory in their book. First they say, “We manage to get along without
it.” This is followed by a lovely anecdote. In 1928 Dirac gave a seminar, at
the end of which Weyl protested that Dirac had said he would make no use of
group theory but that in fact most of his arguments were applications of group
theory. Dirac replied, “I said that I would obtain the results without previous
knowledge of group theory!” Mackey, in the article referred to previously, argues
that what Slater and Condon and Shortley did was to rename the generators of the
Lie algebra of SO(3) as “angular momenta” and create the feeling that what they
were doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people you were working
with in Berlin, was there much interest in group theory at this time?” WIGNER:
“No. On the opposite. Schrödinger coined the expression, ‘Gruppenpest’ must
be abolished.” “It is interesting, and representative of the relations between math-
ematics and physics, that Wigner’s paper was originally submitted to a Springer
physics journal. It was rejected, and Wigner was seeking a physics journal that
might take it when von Neumann told him not to worry, he would get it into the
Annals of Mathematics. Wigner was happy to accept his offer [159].”

You would think it was all up from there for group theory. But no. In the
early 1970’s, in the nonexistent city of Bielefeld, writes M. du Sautoy [158];
“The Maoist movement decided that group theory was a reactionary subject of
the old regime, and [...] demonstrations erupted outside of the maths department
with protesters holding placards demanding ‘No more group theory’. [...] During
one demonstration, the students scaled the outside of the building and scrawled
‘Group Theory Department’ on the wall.
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A1.7 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais, Inward Bound: of Matter and Forces in
the Physical World

One afternoon in May 1991, Dieter Wintgen is sitting in his office at the Niels Bohr
Institute beaming with the unparalleled glee of a boy who has just committed a
major mischief. The starting words of the manuscript he has just penned are

The failure of the Copenhagen School to obtain a reasonable . . .

Wintgen was 34 years old at the time, a scruffy kind of guy, always wearing san-
dals and holed out jeans, the German flavor of a 90’s left winger and mountain
climber. He worked around the clock with his students Gregor Tanner and Klaus
Richter to complete the work that Bohr himself would have loved to have seen
done back in 1916: a ‘planetary’ calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to the old quantum the-
ory, but to something else. The old quantum theory was no theory at all; it was a
set of rules bringing some order to a set of phenomena which defied logic of clas-
sical theory. The electrons were supposed to describe planetary orbits around the
nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists
of the orthohelium and parahelium lines. In 1915 Bohr suggested that the two
kinds of helium lines might be associated with two distinct shapes of orbits (a
suggestion that turned out to be wrong). In 1916 he got Hans Kramers to work
on the problem, and he wrote to Rutherford, “I have used all my spare time in
the last months to make a serious attempt to solve the problem of ordinary helium
spectrum . . . I think really that at last I have a clue to the problem.” To other
colleagues he wrote that “the theory was worked out in the fall of 1916” and
of having obtained a “partial agreement with the measurements.” Nevertheless,
the Bohr-Sommerfeld theory, while by and large successful for hydrogen, was
a disaster for neutral helium. Heroic efforts of the young generation, including
Kramers and Heisenberg, were of no avail.

For a while Heisenberg thought that he had the ionization potential for he-
lium, which he had obtained by a simple perturbative scheme. He wrote enthu-
siastic letters to Sommerfeld and was drawn into a collaboration with Max Born
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to compute the spectrum of helium using Born’s systematic perturbative scheme.
To a first approximation, they reproduced the earlier calculations. The next level
of corrections turned out to be larger than the computed effect. The concluding
paragraph of Max Born’s classic “Vorlesungen über Atommechanik” from 1925
sums it up in a somber tone [21]:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanation of the helium spec-
trum. He used wave mechanics, electron spin and the Pauli exclusion principle,
none of which belonged to the old quantum theory. As a result, planetary orbits
of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24, the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [118] added the topological in-
dices in 1980, and in 1991 Wintgen and collaborators [65, 180] understood the
role of periodic orbits. Dieter had good reasons to gloat; while the rest of us
were preparing to sharpen our pencils and supercomputers in order to approach
the dreaded 3-body problem, they just went ahead and did it. What it took–and
much else–is described in this book.

One is also free to ponder what quantum theory would look like today if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would quantum
mechanics look different if in 1917 Bohr and Kramers et al. figured out how to
use the helium classical 3-body dynamics to quantize helium?"

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do the voice over your-
self):

“It would not matter at all!”
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Well, perhaps appendix A39 proves him wrong...
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Commentary

Remark A1.1. Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take the
notion of global foliations that we attribute to Smale. As far as we can trace the idea, it
goes back to René Thom; local foliations were already used by Hadamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining his notion of
transversality. One of Thom’s disciples introduced Smale to Brazilian mathematician
Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to the Andronov-Pontryagin
school. It was from Peixoto that Smale learned about structural stability, a notion that got
him enthusiastic about dynamical systems, as it blended well with his topological back-
ground. It was from discussions with Peixoto that Smale got the problems in dynamical
systems that lead him to his 1960 paper on Morse inequalities. The next year Smale pub-
lished his result on the hyperbolic structure of the non–wandering set. Smale was not the
first to consider a hyperbolic point, Poincaré had already done that; but Smale was the
first to introduce a global hyperbolic structure. By 1960 Smale was already lecturing on
the horseshoe as a structurally stable dynamical system with an infinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A1.2. A brief history of period doubling universality. Mitchell J. Feigenbaum
discovered universality in one-dimensional iterative maps in August 1975. Following
Feigenbaum’s functional formulation of the problem, in March 1976 Cvitanović derived,
in collaboration with Feigenbaum, the equation g(x) = αg(g(x/α)) for the period doubling
fixed point function (not a big step, it is the limit of Feigenbaum functional recursion
sequence), which has since played a key role in the theory of transitions to turbulence.
The first published report [68] on Feigenbaum’s discovery is dated August 1976 (Los
Alamos Theoretical Division Annual Report 1975-1976, pp. 98-102, read it here). By
that time the work had became widely known through many seminars Feigenbaum gave in
US and Europe. His first paper, submitted to Advances in Mathematics in Nov 1976 was
rejected. The second paper was submitted to SIAM Journal of Applied Mathematics in
April 1977 and rejected in October 1977. Finally, J. Lebowitz published both papers [69,
70] without further referee pain (M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) and 21,
6 (1979)).

A very informative 1976 review by May [128] describes what was known before
Feigenbaum’s contribution. The geometric parameter convergence was first noted in 1958
by Myrberg [14, 157], and independently of Feigenbaum, by Grossmann and Thomae [84]
in 1977 (without noting the universality of δ). The theory of period-doubling universal
equations and scaling functions is developed in Kenway’s notes of Feigenbaum 1984 Ed-
inburgh lectures [72] (trifle hard to track down). The elegant unstable manifold formula-
tion of universality given in ChaosBook.org is due to Vul, Khanin, Sinai and Gol’dberg [80,
174, 175] in 1982. The most thorough exposition available is the Collet and Eckmann [34]
monograph. For a more recent introduction into renormalization theory that starts out with
period doubling before moving on to Quantum Field Theory, see Gurau, Rivasseau and
Sfondrini [85].

In 1978 Coullet and Tresser [36, 37] have formulated similar equations, in 1979
Derrida, Gervois and Pomeau [56] have extracted a great many metric universalities
from the asymptotic regime, and in 1981 Daido [54] has introduced a different set of
universal equations. Grassberger [81] has computed the Hausdorff dimension of the
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asymptotic attractor. Following up on Grossmann and Thomae [84], Lorenz [122] and
Daido [55] have found a universal ratio relating bifurcations and reverse bifurcations.
If f (x) is not quadratic around the maximum, the universal numbers will be different -
see Vilela Mendés [172] and Hu and Mao [98] for their values. According to Kuramoto
and Koga [112] such mappings can arise in chemical turbulence. Nonlinear oscillator;
quadratic potential with damping and harmonic driving force exhibit cascades of period-
doubling bifurcations [114, 132]. Refs. [23–25] compute solutions of the period-doubling
fixed point equation using methods of Schöder and Abel, yielding what are so far the most
accurate δ and α. See also Weisstein [178].

Since then the universal equations have been generalized to period n-tuplings [49,
50]; universal scaling functions for all winding numbers in circle maps constructed [51],
and universality of the Hausdorff dimension of the critical staircase established [47]. A
nice discussion of circle maps and their physical applications is given in refs. [11, 101,
102]. The universality theory for golden mean scalings is developed in refs. [71, 137, 146,
161].

The theory would have remained a curiosity, were it not for the beautiful experiment
by Libchaber and Maurer [127], and many others that followed. Crucial insights came
from Collet and Eckmann [34] and Collet, Eckmann and Koch [35] who explained how
the dynamics of dissipative system (such as a viscous fluid) can become 1-dimensional.
The experimental and theoretical developments up to 1990’s are summarized in reprint
collections by Cvitanović [41] and Hao [93]. We also recommend Hu [97], Crutchfield,
Farmer and Huberman [39], Eckmann [63] and Ott [138]. The period-doubling route to
turbulence that is by no means the only way to get there; see Eckmann [63] discussion of
other routes to chaos.

Remark A1.3. Should one attach names to equations? .

Q : Name the 2nd person who invented General Relativity?
A : Who remembers?

—Professore Dottore Gatto Nero

By 1979 mathematicians understood that the numerical methods used by Feigenbaum
and Cvitanović to solve the universal equations were in fact convergent. They did what
they do; they attached various names to the equations, they changed letters around. The
re-lettering did not stick, but the renamings did.

Feigenbaum [68] discovered and formulated period-doubling universality in 1975:
you can read about it and find his 1976 report by clicking here and here. In 1981
Lanford [117] satisfied himself that the iterative method Feigenbaum and Cvitanović used
and knew was contracting was indeed contracting. Lanford refers only to the Feigenbaum
paper [69]. Coullet and Tresser [36, 37] refer to the Feigenbaum paper [69].

In 1995 Lyubich [125, 126] rechristened the equations to “Feigenbaum-Coullet-Tress-
er,” omitting Cvitanović (the first to formulate the period-doubling fixed point equation),
and adding Coullet and Tresser (who rediscovered it a couple of years later). These are
all very fine physicists / mathematicians, creative and crazy as bats. But why rename an
equation that was widely known and publicized well before 1978? Is there something
essential that is missing in the 1976 formulation?

We asked Lyubich why? He wrote back: “In 1990s, I talked to both Feigenbaum and
Tresser, and my conclusion was that Coullet-Tresser discovered the phenomenon inde-
pendently, though slightly later. Also, they seemed to recognize better importance of the
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dynamical universality (while Feigenbaum focused more on the parameter phenomenon).
I felt that Coullet-Tresser did not receive a proper credit for their insights, so I attached
all three names to the phenomenon.” That’s sweet. Turns out Feigenbaum and Cvitanović
invented but did not recognize “importance of the dynamical universality”, whatever that
might mean. While we are at it, why not credit the person who actually wrote the fixed
point equation first? Or he’s just dog meat?

People reinvent stuff all the time. For example, Myrheim and Cvitanović [49, 50]
generalized period doubling to infinity of renomalizations in the complex plane, but once
they were told that Golberg, Sinai and Khanin [80] did it first (for period tripling), they
gave credit to them, even though both groups discovered the phenomenon independently
in 1983.

Why attach names to equations anyway? Pretty soon the attribution problems will
sort themselves out by themselves - heart attacks and homicidal Atlanta drivers running
down cyclists will take care of that.

Remark A1.4. Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with sin-
gularities. They studied uniformly hyperbolic systems (as strong as Anosov’s), but with
sets of singularities. Under iterations a dense set of points hits the singularities. Even
more important are the points that never hit the singularity set. In order to establish some
control over how they approach the set, one looks at trajectories that approach the set by
some given εn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust: look at the
discontinuity set, take an ε neighborhood around it. Given that the Lebesgue measure is
εα and the stability grows not faster than (distance)n. A. Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all trouble is in differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow + singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.

3. Hénon case: The first proof was given by M. Benedicks and L. Carleson [15–17].
A more readable proof is given in M. Benedicks and L.-S. Young [18].

Remark A1.5. Is the geometry of nature fractal? By 1983 some physicists were
starting to learn that there is a thing called “chaos” [119], a thing stressful, nasty and hard
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to understand (see this book), so they tried to bypass this whole bit of unpleasantness by
getting instead an easy, diagnostic number out of it [103]. They were told that Hausdorff
dimension is the way to go. Dimension of the canonical 1/3’s Cantor set can be explained
to a school child, so they tried it out for size on many low-dimensional chaotic attractors,
and some crazy high-dimenional ones as well. Our all-time favorite (beyond the ‘Untitled
5’ of figure 1.5) was the claim that the dimension of climate is 3.1 (remember, the policy
of ChaosBook is not to pump up citation numbers for silly or plainly wrong papers): In
Deterministic chaos: the science and the fiction, David Ruelle [153] comments: “[...] one
should not believe dimension estimates that are not well below 2 log10 N. [Authors of ...]
claim to find a dimension 3.1 for a ‘climatic attractor’ with N = 500 data points. [...] The
‘dimensions’ of the order 6 that are obtained are very close to the upper bound 2 log10 N
permitted by the Grassberger-Procaccia algorithm [82] (N is the length of the time series
used, of the order of 103). The ‘proof’ that one has low dimensional dynamics is therefore
inconclusive, and the suspicion is that the time evolutions under discussion do not corre-
spond to low-dimensional dynamics. [...] Readers of The Ultimate Hitchhiker’s Guide to
the Galaxy, that masterpiece of British literature by D. Adams [1], know that a huge su-
percomputer has answered ‘the great problem of life, the universe, and everything’. The
answer obtained after many years of computation is 42. Unfortunately, one does not know
to what precise question this is the answer, and what to make of it. It think that what hap-
pened is this. The supercomputer took a very long time series describing all it knew about
‘life, the universe, and everything’ and proceeded to compute the correlation dimension of
the corresponding dynamics, using the Grassberger-Procaccia algorithm. This time series
had a length N somewhat larger than 1021. And you can imagine what happened. After
many years of computation the answer came: dimension is approximately 2 log10 ≈ 42.”
In 1998 Avnir, Biham, Lidar, and Malcai [9] explored how much support for the fractal
self-similarity hypothesis was there, actually. They found that “the majority of the data
that was interpreted in terms of fractality in the surveyed Physical Review journals does
not seem to be linked (at least in an obvious way) to existing models and, in fact, does
not have theoretical backing. Most of the data represent results from nonequilibrium pro-
cesses. The common situation is this: An experimentalist performs a resolution analysis
and finds a limited-range power law with a value of D smaller than the embedding di-
mension. Without necessarily resorting to special underlying mechanistic arguments, the
experimentalist then often chooses to label the object for which she or he finds this power
law a ‘fractal’. This is the fractal geometry of nature.” Their plot says it all: the number
of decades (factors of 10) spanned by experimentally derived scaling exponents peaks at
10 (i.e., one decade).

Remark A1.6. Einstein did it? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [64]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deemed sufficient to give him the
credit for being the pioneer of quantum chaos [91, 167]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais; neither had any recollection
of the 1917 article. However, Theo Geisel has unearthed a reference that shows that
in early 20s Born did have a study group meeting in his house that studied Poincaré’s
Méchanique Céleste [143]. In 1954 Fritz Reiche, who had previously followed Einstein
as professor of physics in Breslau (now Wroclaw, Poland), pointed out to J.B. Keller
that Keller’s geometrical semiclassical quantization was anticipated by the long forgotten
paper by A. Einstein [64]. In this way an important paper written by the physicist who
at the time was the president of German Physical Society, and the most famous scientist
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of his time, came to be referred to for the first time by Keller [108], 41 years later. But
before Ian Percival included the topological phase, and Wintgen and students recycled the
Helium atom, knowing Méchanique Céleste was not enough to complete Bohr’s original
program.

Remark A1.7. Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. Keating [20]. The idea is to im-
prove cycle expansions by imposing unitarity as a functional equation ansatz. The cycle
expansions that they use are the same as the original ones described above [5], but the
philosophy is quite different; the claim is that the optimal estimate for low eigenvalues of
classically chaotic quantum systems is obtained by taking the real part of the cycle expan-
sion of the semiclassical zeta function, cut off at the appropriate cycle length. M. Sieber,
G. Tanner and D. Wintgen, and P. Dahlqvist find that their numerical results support this
claim; F. Christiansen and P. Cvitanović do not find any evidence in their numerical re-
sults. The usual Riemann-Siegel formulas exploit the self-duality of the Riemann and
other zeta functions, but there is no evidence of such symmetry for generic Hamiltonian
flows. Also from the point of hyperbolic dynamics discussed above, proposal in its cur-
rent form belongs to the category of crude cycle expansions; the cycles are cut off by a
single external criterion, such as the maximal cycle time, with no regard for the topology
and the curvature corrections. While the functional equation conjecture is not in its final
form yet, it is very intriguing and fruitful research inspiration.

The real life challenge are generic dynamical flows, which fit neither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riemann zet function on the other.

Remark A1.8. Sources. The tale of appendix A1.7, aside from a few personal
recollections, is in large part lifted from Abraham Pais’ accounts of the demise of the old
quantum theory [140, 141], as well as Jammer’s account [100]. In August 1994 Dieter
Wintgen died in a climbing accident in the Swiss Alps. Remark A1.4 is based on Ya.B.
Pesin’s comments.
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[29] F. Christiansen, P. Cvitanović, and V. Putkaradze, “Hopf’s last hope: Spa-
tiotemporal chaos in terms of unstable recurrent patterns”, Nonlinearity
10, 55–70 (1997).
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[50] P. Cvitanović and J. Myrheim, “Complex universality”, Commun. Math.
Phys. 121, 225–254 (1989).
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Appendix A2

Go straight

A Hamiltonian system is said to be integrable if one can find a change of
coordinates to an action-angle coordinate frame where the phase-space
dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbolas.
Achieving this globally for anything but a handful of contrived examples is a pipe
dream. Nevertheless, as we shall now show, we can make some headway on
straightening out the flow locally.

There is much more to this story than what we touch upon here: other tricks
and methods to construct regularizations, what kind of singularities could be reg-
ularized, etc.. Even though such nonlinear coordinate transformations are very
important, especially in celestial mechanics, we shall not use them much in what
follows, so you can safely skip this chapter on the first reading. Except, perhaps,
you might like transformations that turn a Keplerian ellipse into a harmonic oscil-
lator (example A2.2) and regularize the 2-body Coulomb collisions (sect. A2.2)
in classical helium.

A2.1 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies is
to use it to pick out the simplest possible representative of an equivalence class.
These are just words, as we have no clue how to pick such ‘canonical’ represen-
tations, but for smooth flows we can always do it locally and for sufficiently short
time, by appealing to the rectification theorem, a fundamental theorem of ordi-
nary differential equations. The theorem tells us that a solution exists (at least for
a short time interval) and what it looks like. The rectification theorem holds in the
neighborhood of points of the vector field v(x) that are not singular, that is, ev-
erywhere except for the equilibrium points (2.9), and points at which v is infinite.
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Figure A2.1: Coordinates for the helium three body
problem in a plane.

According to the theorem, in a small neighborhood of a non-singular point there
exists a change of coordinates y = h(x) such that ẋ = v(x) in the new, canonical
coordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 , (A2.1)

with unit velocity flow along yd, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transformations, with the finite
time τ action

exercise 11.4
exercise A2.1

y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

example A2.1

p. 882

A2.2 Collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and other
curious but rather idealized dynamical systems. If you have become impatient and
started wondering what good are the methods learned so far in solving real life
physical problems, good news are here. We will apply here concepts of nonlinear
dynamics to nothing less than the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
not accessible in all its detail, but we are able to analyze a somewhat simpler
subsystem–collinear helium. This system plays an important role in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass me and charge
−e moving about a positively charged nucleus of mass mhe and charge +2e.
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Figure A2.2: Collinear helium, with two electrons on
opposite sides of the nucleus.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that we
may work in the infinite nucleus mass approximation mhe = ∞, fixing the nucleus
at the origin. Finite nucleus mass effects can be taken into account without any
substantial difficulty. We are now left with two electrons moving in three spatial
dimensions around the origin. The total angular momentum of the combined elec-
tron system is still conserved. In the special case of angular momentum L = 0, the
electrons move in a fixed plane containing the nucleus. The three body problem
can then be written in terms of three independent coordinates only, the electron-
nucleus distances r1 and r2 and the inter-electron angle Θ, see figure A2.1.

This looks like something we can lay our hands on; the problem has been
reduced to three degrees of freedom, six phase-space coordinates in all, and the
total energy is conserved. But let us go one step further; the electrons are attracted
by the nucleus but repelled by each other. They will tend to stay as far away from
each other as possible, preferably on opposite sides of the nucleus. It is thus worth
having a closer look at the situation where the three particles are all on a line with
the nucleus being somewhere between the two electrons. If we, in addition, let the
electrons have momenta pointing towards the nucleus as in figure A2.2, then there
is no force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspace Θ = π, d

dt Θ = 0,
the three particles will remain in this collinear configuration for all times.

A2.2.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2

1 + p2
2

)
−

2e2

r1
−

2e2

r2
+

e2

r1 + r2
= E , (A2.2)

where E is the total energy. As the dynamics is restricted to the fixed energy shell,
the four phase-space coordinates are not independent; the energy shell dependence
can be made explicit by writing

(r1, r2, p1, p2)→ (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells us that if the energy is
positive both electrons can escape to ri → ∞, i = 1, 2. More interestingly, a
single electron can still escape even if E is negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remaining inner electron has no
lower bound. Not only that, but one electron will escape eventually for almost all
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starting conditions. The overall dynamics thus depends critically on whether E >

0 or E < 0. But how does the dynamics change otherwise with varying energy?
Fortunately, not at all. Helium dynamics remains invariant under a change of
energy up to a simple scaling transformation; a solution of the equations of motion
at a fixed energy E0 = −1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–
dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
−

2
r1
−

2
r2

+
1

r1 + r2
= −1 . (A2.3)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem.

A2.2.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (A2.3). When-
ever two bodies come close to each other, accelerations become large, numerical
routines require lots of small steps, and numerical precision suffers. No numerical
routine will get us through the singularity itself, and in collinear helium electrons
have no option but to collide with the nucleus. Hence a regularization of the dif-
ferential equations of motions is a necessary prerequisite to any numerical work
on such problems, both in celestial mechanics (where a spaceship executes close
approaches both at the start and its destination) and in quantum mechanics (where
much of semiclassical physics is dominated by returning classical orbits that probe
the quantum wave function at the nucleus).

There is a fundamental difference between two–body collisions r1 = 0 or r2 =

0, and the triple collision r1 = r2 = 0. Two–body collisions can be regularized,
with the singularities in equations of motion removed by a suitable coordinate
transformation together with a time transformation preserving the Hamiltonian
structure of the equations. Such regularization is not possible for the triple colli-
sion, and solutions of the differential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in collinear helium originates
from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the Kust-
aanheimo–Stiefel (KS) transformation, which consists of a coordinate dependent
time transformation which stretches the time scale near the origin, and a canonical
transformation of the phase-space coordinates. In order to motivate the method,
we apply it first to the 1-dimensional Kepler problem

H =
1
2

p2 −
2
x

= E . (A2.4)
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example A2.2

p. 882

We now apply this method to collinear helium. The basic idea is that one seeks
a higher-dimensional generalization of the ‘square root removal’ trick (A2.18), by
introducing a new vector Q with property r = |Q|2 . In this simple 1-dimensional
example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(A2.5)

and reparameterization of time by dτ = dt/r1r2. The singular behavior in the
original momenta at r1 or r2 = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions with
respect to the new time τ is conserved, if we consider the Hamiltonian

Hko =
1
8

(Q2
2P2

1 + Q2
1P2

2) − 2R2
12 + Q2

1Q2
2(−E + 1/R2

12) = 0 (A2.6)

with R12 = (Q2
1 + Q2

2)1/2, and we will take E = −1 in what follows. The equations
of motion now have the form

Ṗ1 = 2Q1

2 − P2
2

8
− Q2

2

1 +
Q2

2

R4
12

 ; Q̇1 =
1
4

P1Q2
2 (A2.7)

Ṗ2 = 2Q2

2 − P2
1

8
− Q2

1

1 +
Q2

1

R4
12

 ; Q̇2 =
1
4

P2Q2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no longer
pose a problem to a numerical integration routine. The equations (A2.7) are sin-
gular only at the triple collision R12 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (A2.6) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as a
visualization of the three-body dynamics. We will therefore refer to the old coor-
dinates r1, r2 when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phase-space trajectories
computable numerically. To appreciate the full beauty of what has been attained,
you have to study the quantum chaos part of ChaosBook.org; chapter 42; we are
already ‘almost’ ready to quantize helium by semiclassical methods.

A2.3 Rectification of maps

In sect. A2.1 we argued that nonlinear coordinate transformations can be prof-
itably employed to simplify the representation of a flow. We shall now apply the
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Figure A2.3: (a) A typical trajectory in the [r1, r2]
plane; the trajectory enters here along the r1 axis
and escapes to infinity along the r2 axis; (b) return
map (r2=0) for collinear helium. Strong chaos pre-
vails for small r1 near the nucleus.
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same idea to nonlinear maps, and determine a smooth nonlinear change of coor-
dinates that flattens out the vicinity of a fixed point and makes the map linear in
an open neighborhood. In its simplest form the idea can be implemented only
for an isolated nondegenerate fixed point (otherwise one needs the normal form
expansion around the point), and only in a finite neighborhood of a point, as the
conjugating function in general has a finite radius of convergence. In sect. A2.4
we will extend the method to periodic orbits.

A2.3.1 Rectification of a fixed point in one dimension
exercise A2.2

Consider a 1-dimensional map xn+1 = f (xn) with a fixed point at x = 0, with
stability Λ = f ′(0). If |Λ| , 1, one can determine the power series for a smooth
conjugation h(x) centered at the fixed point, h(0) = 0, that flattens out the neigh-
borhood of the fixed point

f (x) = h−1(Λh(x)) (A2.8)

and replaces the nonlinear map f (x) by a linear map yn+1 = Λyn.

To compute the conjugation h we use the functional equation h−1(Λx) =

f (h−1(x)) and the expansions

f (x) = Λx + x2 f2 + x3 f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (A2.9)

Equating the coefficients of xk on both sides of the functional equation yields hk

order by order as a function of f2, f3, . . . . If h(x) is a conjugation, so is any
scaling h(bx) of the function for a real number b. Hence the value of h′(0) is not
determined by the functional equation (A2.8); it is convenient to set h′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In any
case, for the time being we will not use much beyond the first, linear term in these
expansions.

Here we have assumed |Λ| , 1. If the fixed point has vanishing k−1 derivatives,
the conjugacy is to the kth normal form.
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In multiple dimensions, Λ is replaced by the Jacobian matrix, and one has to
check that the eigenvalues M are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.5).

remark A2.3

A2.4 Rectification of a periodic orbit

In sect. A2.3.1 we have constructed the conjugation function for a fixed point.
Here we turn to the problem of constructing it for periodic orbits. Each point
around the cycle has a differently distorted neighborhood, with differing second
and higher order derivatives, so we need to compute a different conjugation func-
tion ha at each periodic point xa. We expand the map f around each periodic point
along the cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ2 fa,2 + . . . (A2.10)

where xa is a point on the cycle, fa(φ) = f (xa + φ) is centered on the periodic
orbit, and the index k in fa,k refers to the kth order in the expansion (A2.9).

For a periodic orbit the conjugation formula (A2.8) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same way as
before, by equating coefficients of the expansion (A2.9), and assuming that the
cycle Floquet multiplier Λ =

∏n−1
a=0 f ′(xa) is not marginal, |Λ| , 1. The explicit

expressions for ha in terms of f are obtained by iterating around the whole cycle,

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (A2.11)

evaluated at each periodic point a. Again we have the freedom to set h′a(0) = 1 for
remark A2.2

all a.

A2.4.1 Repeats of cycles

We have traded our initial nonlinear map f for a (locally) linear map Λy and an
equally complicated conjugation function h. What is gained by rewriting the map
f in terms of the conjugacy function h? Once the neighborhood of a fixed point
is linearized, the iterates of f are trivialized; from the conjugation formula (A2.9)
one can compute the derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for an arbitrary iterate; the an-
swer will depend on the conjugacy function h(x) computed for a single application
of mapping f , and all the dependence on the iterate number will be carried by fac-
tors that are polynomial functions of Λr, a considerable simplification. The beauty
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of the idea is difficult to gauge at this stage–an appreciation only sets in when one
starts computing perturbative corrections, whether in celestial mechanics (where
the method was born), or quantum or stochastic corrections to ‘semiclassical’ ap-
proximations.

in depth:

appendix A8.1, p. 909

Résumé

The dynamical system (M, f ) is invariant under the group of all smooth conjuga-
cies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the flow and
(ii) identify a set of invariants, numbers computed within a particular choice of
(M, f ), but invariant under allM→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully stratified by D-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system, one would like to transform to a coordinate
frame in which the stable and unstable manifolds form a set of transversally in-
tersecting hyper-planes, with the flow everywhere locally hyperbolic. That cannot
be achieved in general: Fully globally integrable and fully globally chaotic flows
are a very small subset of all possible flows, a ‘set of measure zero’ in the world
of all dynamical systems.

What we really care about is developing invariant notions for a given dynam-
ical system. The totality of smooth one-to-one nonlinear coordinate transforma-
tions h that map all trajectories of a given dynamical system (M, f t) onto all tra-
jectories of dynamical systems (M′, gt) gives us a huge equivalence class, much
larger than the equivalence classes familiar from the theory of linear transforma-
tions. In the theory of Lie groups, the full invariant specification of an object is
given by a finite set of Casimir invariants. What a good full set of invariants for a
group of general nonlinear smooth conjugacies might be is not known, but the set
of all periodic orbits and their Floquet multipliers turns out to be a good start.

Commentary

Remark A2.1. Rectification of flows. Consult Bluman and Kumei [4] Section 2.2.5
for a pedagogical introduction to smooth coordinate reparameterizations. Explicit exam-
ples of transformations into canonical coordinates for a group of scalings and a group of
rotations are worked out.
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Remark A2.2. Rectification of maps. The methods outlined above are standard in
the analysis of fixed points and the construction of normal forms for bifurcations, see for
example refs. [3, 5, 6, 8–10, 14–16]. The geometry underlying such methods is elegant,
and we enjoyed reading, for example, Percival and Richards [13], chaps. 2 and 4 of Ozorio
de Almeida’s monograph [11], and, as always, Arnol’d [2].

Recursive formulas for the evaluation of derivatives needed to evaluate (A2.9) are
given, for example, in Appendix A of ref. [7]. Section 10.6 of ref. [12] describes in detail
the smooth conjugacy that relates the Ulam map (14.22) to the tent map (14.21). For
‘negative Schwartzian derivatives,’ families of conjugacies of Ulam-type maps, associated
Lyapunov exponents, continuous measures and further pointers to literature, see ref. [1].

Question A2.1. Is there an interpretation of different dimensions?
Q Any 3rd order equation can be written as three first order equations, the minimum
needed to get chaos. Conversely, the Rössler flow can be written as a 3rd order, or jerk
equation (do it for the Rössler equation to see what

...
x looks like). The axes will be ac-

celeration, velocity, and position. My question is, which axis is acceleration, velocity and
position, or could these be interchangeable (since I could have solved for

...
y and had the

same jerk equation)?
A Oh, our first formal introduction to jerks and jounces. In dynamical systems we al-
ways express higher order derivatives as towers of first order ones, in order to be able to
formulate the problem at hand as a state space + time-independent vector field at each
state space point. Usually there is no interpretation of different coordinates. The passage
from nth derivative to n ODEs is just a reformulation of a given problem as a dynamical
systems problem, and it might be followed by any number of further linear and/or non-
linear coordinate transformations, with individual coordinates retaining little or no initial
physical interpretation. An example are the ‘ time delay embeddings’, where one trades
in (infinitesimal) derivatives for finite-time delays.

To be concrete, consider ChaosBook chapter 30 Turbulence?, example 30.6 Equilib-
ria of equilibria. There we rewrite a 3rd order “jerk" ODE as a set of 3 coupled 1st order
ODEs. As the original PDE equation is a 1-dimensional relative of Navier-Stokes, we
make some attempts to give a physical interpretation to the new coordinates, but not very
convincingly. indexjounce

Remark A2.3. A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet exponents may be related by ratios of
integers. That is, if Λp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the Jacobian matrix,
then they are in resonance if there exist integers n1, . . . , nd such that

(Λp,1)n1 (Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, one may get corrections to the basic conjugation formulas in the
form of monomials in the variables of the map. (R. Mainieri)
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A2.5 Examples

Example A2.1. Harmonic oscillator, rectified: As a simple example of global
rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (A2.12)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the system
would have a simpler representation in polar coordinates y = (r, θ):

h−1 :
{

q = h−1
1 (r, θ) = r cos θ

p = h−1
2 (r, θ) = r sin θ . (A2.13)

The Jacobian matrix, ∂hi/∂x j, of the transformation is

h′ =

 cos θ sin θ

−
sin θ

r
cos θ

r

 (A2.14)

resulting in (2.16) of rectified form
exercise 5.1(

ṙ
θ̇

)
=

 cos θ sin θ

−
sin θ

r
cos θ

r

 ( q̇
ṗ

)
=

(
0
−1

)
. (A2.15)

In the new coordinates the radial coordinate r is constant, and the angular coordinate θ
wraps around a cylinder with constant angular velocity. There is a subtle point in this
change of coordinates: the domain of the map h−1 is not the plane R2, but rather the
plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-
tions should not change the topology of the space in which the dynamics takes place; the
coordinate transformation is not defined on the equilibrium point x = (0, 0), or r = 0.

click to return: p. 873

Example A2.2. Keplerian ellipse, rectified: To warm up, consider the E = 0 case,
starting at x = 0 at t = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1
2

ẋ2 −
2
x

= 0

by means of separation of variables

√
xdx = 2 dt , x = (3t)

2
3 , (A2.16)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian H(q, p) =

E leaves the Hamiltonian structure of the equations of motion unaltered, if the Hamilto-
nian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For the 1– dimensional
Coulomb problem with (A2.4) we choose the time transformation dt = xdτ which lifts
the |x| → 0 singularity in (A2.4) and leads to a new Hamiltonian

H =
1
2

xp2 − 2 − Ex = 0. (A2.17)
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The solution (A2.16) is now parameterized by the fictitous time dτ through a pair of
equations

x = τ2 , t =
1
3
τ3 .

The equations of motion are, however, still singular as x→ 0:

d2x
dτ2 = −

1
2x

dx
dτ

+ xE .

Appearance of the square root in (A2.16) now suggests a canonical transformation of form

x = Q2 , p =
P

2Q
(A2.18)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q, P) =
1
8

P2 − EQ2 = 2, (A2.19)

with all singularities completely removed.
click to return: p. 876

Exercises

A2.1. Harmonic oscillator in polar coordinates: Given
a harmonic oscillator (A2.12) that follows ṗ = −q and
q̇ = p, use (A2.14) to rewrite the system in polar coor-
dinates (A2.13) and find equations for r and θ.

1. Show that the 1-dimensional state space of the
rewritten system is the quotient spaceM/SO(2).

2. Construct a Poincaré section of the quotiented
flow.

A2.2. Linearization for maps. Let f : C → C be a map
from the complex numbers into themselves, analytic at
the origin with a fixed point. By manipulating power se-
ries, find the first few terms of the map h that conjugates
f to αz, that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin
to assure that the conjugation is always possible. For-
mulate these conditions by examining the series

(difficulty: medium) (R. Mainieri)

A2.3. Ulam and tent maps. Show that the smooth conju-
gacy (2.13)

g(y0) = h ◦ f ◦ h−1(y0)
y = h(x) = sin2(πx/2) ,

conjugates the tent map f (x) = 1 − 2|x − 1/2| into the
Ulam map g(y) = 4y(1−y) . (continued as exercise 16.1)
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Appendix A4

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolu-
tions

The subject of linear algebra generates innumerable tomes of its own, and is
way beyond what we can exhaustively cover. Here we recapitulate a few
essential concepts that ChaosBook relies on.

The key result of is the spectral decomposition (A4.18)

f (M) =
∑

i

f (λi) Pi ,

where

Pi =
∏
j,i

M − λ j1
λi − λ j

.

is the projection operator (A4.17) onto ith vector subspace, one for each distinct
root λi of a matrix M. In our applications this matrix is typically either (5.2),
the equilibrium stability matrix A, or (4.24), the periodic orbit Jacobian matrix Ĵ
restricted to a Poincaré section. Once the distinct non-zero eigenvalues {λ(i)} are
computed, the associated projection operators then afford an economical descrip-
tion of neighborhoods of equilibria and periodic orbits, as projection operators
are polynomials in M which need no further diagonalizations or orthogonaliza-
tions. For each distinct eigenvalue λ(i), the colums/rows of Pi are the right/left
eigenvectors e( j), e( j) which span the corresponding linearized subspace, and are
a convenient starting seed for tracing out the global unstable/stable manifolds.

While usually not phrased in language of projection operators, the requisite
linear algebra is standard. We start by collecting a few standard definitions in
sect. A4.1. The reader might prefer going straight to sect. A4.2.

885
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A4.1 Linear algebra

Vector space. A set V of elements x, y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under
addition, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

(a + b)x = ax + bx
a(bx) = (ab)x

1 x = x , 0 x = 0 . (A4.1)

Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of
V0, or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.
The number of basis elements d is the dimension of the vector space V.

Standard basis consists of d vectors {e(1), · · · , e(d)} of form e(1) = (1, 0, 0, · · · , 0),
e(2) = (0, 1, 0, · · · , 0), · · · , e(d) = (0, 0, 0, · · · , 1). The standard basis for [d×d] ma-

section A10.1
trices consists of d2 matrices with 1 as one matrix elements, the rest zero, and
similarly for dr tensors of rank r.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n,F), the
row of basis vectors transforms by right multiplication as e( j) =

∑
k(g−1) j

k e(k),
and the column of xa’s transforms by left multiplication as x′ = gx. Under
left multiplication the column (row transposed) of basis vectors e(k) transforms
as e( j) = (g†) j

ke(k), where the dual rep g† = (g−1)> is the transpose of the inverse
of g. This observation motivates introduction of a dual representation space V̄ ,
the space on which GL(n,F) acts via the dual rep g†.

Definition. If V is a vector representation space, then the dual space V̄ is the set
of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e( j) · e(k) = δk
j ,
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where δk
j is the Kronecker symbol, δk

j = 1 if j = k, and zero otherwise. The
components of dual representation space vectors ȳ ∈ V̄ will here be distinguished
by upper indices

(y1, y2, . . . , yn) . (A4.2)

They transform under GL(n,F) as

y′a = (g†)a
byb . (A4.3)

For GL(n,F) no complex conjugation is implied by the † notation; that interpre-
tation applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation,
g can be distinguished from g† by keeping track of the relative ordering of the
indices,

(g)b
a → ga

b , (g†)b
a → gb

a . (A4.4)

Algebra. A set of r elements tα of a vector space T forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any
two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =

r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (A4.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβγ are called the structure constants. They form a matrix
rep of the algebra,

(tα)βγ ≡ ταβγ , (A4.6)

whose dimension is the dimension r of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)c
a = (tα)b

a(tβ)c
b , tα ∈ V ⊗ V̄ , (A4.7)

and the Lie product

(tα · tβ)c
a = (tα)b

a(tβ)c
b − (tα)b

c(tβ)a
b , tα ∈ V ⊗ V̄ (A4.8)

which defines a Lie algebra.
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A4.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (A4.9)

Given a nonsingular matrix M, with all λi , 0, acting on d-dimensional vectors
x, we would like to determine eigenvectors e(i) of M on which M acts by scalar
multiplication by eigenvalue λi

M e(i) = λie(i) . (A4.10)

If λi , λ j, e(i) and e( j) are linearly independent. There are at most d distinct
eigenvalues which we order by their real parts, Re λi ≥ Re λi+1.

If all eigenvalues are distinct e( j) are d linearly independent vectors which can
be used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (A4.11)

From (A4.10) it follows that

(M − λi1) e( j) = (λ j − λi) e( j) ,

matrix (M − λi1) annihilates e(i), thus the product of all such factors annihilates
any vector, and the matrix M satisfies its characteristic equation (A4.9),

d∏
i=1

(M − λi1) = 0 . (A4.12)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one
term from this product, we find that the remainder projects x from (A4.11) onto
the corresponding eigenspace:∏

j,i

(M − λ j1)x =
∏
j,i

(λi − λ j)xie(i) .

Dividing through by the (λi − λ j) factors yields the projection operators

Pi =
∏
j,i

M − λ j1
λi − λ j

, (A4.13)

which are orthogonal and complete:

PiP j = δi jP j , (no sum on j) ,
r∑

i=1

Pi = 1 . (A4.14)

It follows from the characteristic equation (A4.12) that λi is the eigenvalue of M
on Pi subspace:

M Pi = λiPi (no sum on i) . (A4.15)
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Using M = M 1 and completeness relation (A4.14) we can rewrite M as

M = λ1P1 + λ2P2 + · · · + λdPd . (A4.16)

with the dimension of the ith subspace given by di = tr Pi . For each distinct
eigenvalue λi of M,

(M − λ j1)P j = P j(M − λ j1) = 0 , (A4.17)

the colums/rows of Pi are the right/left eigenvectors e(k), e(k) of M which (provided
M is not of Jordan type, see example A4.2) span the corresponding linearized
subspace.

The main take-home is that once the distinct non-zero eigenvalues {λi} are
computed, projection operators are polynomials in M which need no further di-
agonalizations or orthogonalizations. Any matrix function f (M) takes the scalar
value f (λi) on the Pi subspace, f (M) Pi = f (λi) Pi , and is thus easily evaluated
through its spectral decomposition

f (M) =
∑

i

f (λi)Pi . (A4.18)

This, of course, is the reason why anyone but a fool works with irreducible reps:
they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (A4.10) every column of Pi is proportional to a right eigenvector e(i), and
its every row to a left eigenvector e(i). In general, neither set is orthogonal, but by
the idempotence condition (A4.14), they are mutually orthogonal,

e(i) · e( j) = c j δ
j
i . (A4.19)

The non-zero constant c j is convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan coefficients. We shall set c j = 1. Then it is
convenient to collect all left and right eigenvectors into a single matrix as follows.

Fundamental matrix (take 1). As the system is a linear, a superposition of any
two solutions to x(t) = Jt x(0) is also a solution. One can take any d independent
initial states, x(1)(0), x(2)(0), . . . , x(d)(0), assemble them as columns of a matrix
Φ(0), and formally write the solution for an arbitrary initial condition projected
onto this basis,

x(t) = Φ(t)Φ(0)−1x(0) (A4.20)

where Φ(t) = [x(1)(t), x(2)(t), · · · , x(d)(t)]. Φ(t) is called the fundamental matrix of
the system, and the Jacobian matrix Jt = Φ(t)Φ(0)−1 can thus be fashioned out of
d trajectories {x( j)(t)}. Numerically this works for sufficiently short times.
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Fundamental matrix (take 2). The set of solutions x(t) = Jt(x0)x0 for a system
of homogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and dimen-
sion d forms a d-dimensional vector space. A basis {e(1)(t), . . . , e(d)(t)} for this
vector space is called a fundamental system. Every solution x(t) can be written as

x(t) =

d∑
i=1

ci e(i)(t) .

The [d×d] matrix F−1
i j = e( j)

i whose columns are the right eigenvectors of Jt

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (A4.21)

is the inverse of a fundamental matrix.

Jacobian matrix. The Jacobian matrix Jt(x0) is the linear approximation to a
differentiable function f t(x0), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation and shearing caused
by the transformation. The inverse of the Jacobian matrix of a function is the
Jacobian matrix of the inverse function. If f is a map from d-dimensional space
to itself, the Jacobian matrix is a square matrix, whose determinant we refer to as
the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t0 to
the basis at time t1,

Jt1−t0(x0) = F(t1)F(t0)−1 . (A4.22)

Then the matrix form of (A4.19) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian
matrix is the identity.

example A4.1

p. 895

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true in presence of symmetries,
or spacial parameter values (bifurcation points). What can one say about situation
where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1? Hamilton-
Cayley (A4.12) now takes form

r∏
α=1

(M − λα1)dα = 0 ,
∑
α

dα = d . (A4.23)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (A4.23) can
be replaced by the minimal polynomial,

r∏
α=1

(M − λα1) = 0 , (A4.24)
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where the product includes each distinct eigenvalue only once. Matrix M acts
multiplicatively

M e(α,k) = λie(α,k) , (A4.25)

on a dα-dimensional subspace spanned by a linearly independent set of basis
eigenvectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion we
continue in appendix A10.2.1. Luckily, if the degeneracy is due to a finite or
compact symmetry group, relevant M matrices can always be brought to such
hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy
case, so we only illustrate the key idea in example A4.2.

example A4.2

p. 895

example A4.3

p. 896

example A4.4

p. 897

Complex eigenvalues. As in most of our applications M has only real entries, it
will in general have either real eigenvalues (over-damped oscillator, for example),
or complex conjugate pairs of eigenvalues (under-damped oscillator, for example).
The corresponding eigenvectors can be either real or complex. All coordinates
used in defining the flow are real numbers, so what is the meaning of a complex
eigenvector?

If two eigenvalues form a complex conjugate pair, {λ(k), λ(k+1)} = {µ + iω, µ −
iω}, they are in a sense degenerate: while a real λ(k) characterizes a motion along
a line, a complex λ(k) characterizes a spiralling motion in a plane. We determine
this plane by replacing the corresponding complex eigenvectors by their real and
imaginary parts, {e(k), e(k+1)} → {Re e(k), Im e(k)}, or, in terms of projection opera-
tors:

Pk =
1
2

(R + iQ) , Pk+1 = P∗k ,

where R = Pk + Pk+1 is the subspace decomposed by the kth complex eigenvalue
pair, and Q = (Pk − Pk+1)/i, both matrices with real elements. Substitution[

Pk
Pk+1

]
=

1
2

[
1 i
1 −i

] [
R
Q

]
,

brings the λ(k)Pk + λ(k+1)Pk+1 complex eigenvalue pair in the spectral decomposi-
tion (A4.16) into the real form,[

Pk
Pk+1

] [
λ 0
0 λ∗

] [
Pk

Pk+1

]
=

[
R
Q

] [
µ −ω
ω µ

] [
R
Q

]
, (A4.26)

where we have dropped the superscript (k) for notational brevity.
exercise A4.1

To summarize, spectrally decomposed matrix M (A4.16) acts along lines on
subspaces corresponding to real eigenvalues, and as a [2×2] rotation in a plane on
subspaces corresponding to complex eigenvalue pairs.
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A4.2.1 Floquet theory

When dealing with periodic orbits, some of the quantities already introduced in
chapter 4 inherit names from the Floquet theory of differential equations with
time-periodic coefficients. Consider the equation of variations (4.2) evaluated on
a periodic orbit p of period T , at point x(t) ∈ Mp,

δ̇x = A(t) δx , A(t) = A(t + T) ,

with A(t) = A(x(t)). The periodicity of the stability matrix implies that if δx(t)
is a solution, then also δx(t + T) satisfies the same equation: moreover the two
solutions are related by (4.5)

δx(t + T) = Jp(x) δx(t) , x ∈ Mp . (A4.27)

Even though the Jacobian matrix Jp(x) depends upon x (the ‘starting’ point of the
periodic orbit), we shall show in sect. 5.3 that its eigenvalues do not, so we may
write the eigenvalue equation as

Jp(x) e( j)(x) = Λ j e( j)(x) , (A4.28)

where Λ j are independent of x, and we refer to eigenvectors e( j) as ‘covariant
vectors’, or, for periodic orbits, as ‘Floquet vectors’.

Expand δx in the (A4.28) eigenbasis, δx(t) =
∑
δx j(t) e( j) , e( j) = e( j)(x(0)) .

Taking into account (A4.27), we get that δx j(t) is multiplied by Λ j per each period

δx(t + T) =
∑

j

δx j(t + T) e( j) =
∑

j

Λ j δx j(t) e( j) .

We can absorb this exponential growth / contraction by rewriting the coefficients
δx j(t) as δx j(t) = exp(λ( j)t) u j(t) , u j(0) = δx j(0) . Thus each solution of the
equation of variations (4.2) may be expressed in the Floquet form,

δx(t) =
∑

j

eλ
( j)t u j(t) e( j) , u j(t + T) = u j(t) , (A4.29)

with u j(t) periodic with period T . The exp(λ( j)t) factor is not an eigenvalue of the
Jacobian matrix Jt, it is only an interpolation between x and f T (x). The continu-
ous time t in (A4.29) does not imply that eigenvalues of the Jacobian matrix enjoy
any multiplicative property for t , rT : exponents λ( j) refer to a full traversal of
the periodic orbit. Indeed, while u j(t) describes the variation of δx(t) with respect
to the stationary eigen-frame fixed by eigenvectors at the point x(0), the object of
dynamical significance is the co-moving eigen-frame defined below in (5.11).

A4.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King
I got forty red white and blue shoe strings
And a thousand telephones that don’t ring
Do you know where I can get rid of these things?

— Bob Dylan, Highway 61 Revisited
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Table A4.1: The first 27 least stable Floquet exponents λ = µ ± iω of equilibrium EQ5 for plane
Couette flow, Re = 400. Exponents are ordered by decreasing real part. The two zero exponents,
to the numerical precision of our computation, arise from the two translational symmetries. For
details, see ref. [6].

j µ
( j)
EQ5 ω

( j)
EQ5 s1s2s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A

5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA

8,9 0.009654012 0.04551274 AA S
10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S

16 -0.006178861 A S A
17,18 -0.007785718 0.1372092 AA S

19 -0.01064716 S AA
20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

Table A4.1, taken from ref. [6], is an example of how to tabulate the leading
Floquet eigenvalues of the stability matrix of an equilibrium or relative equilib-
rium. The isotropy subgroup G( j)

EQ of the corresponding eigenfunction should be

indicated. If the isotropy is trivial, G( j)
EQ = {e}, it is omitted from the table. The

isotropy subgroup GEQ of the solution itself needs to be noted, and for relative
equilibrium (12.19) the velocity c along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is complex, it is helpful to state the
period of the spiral-out motion (or spiral-in, if stable), TEQ = 2π/ω(1)

EQ .

Table A4.2, taken from ref. [12], is an example of how to tabulate the leading
Floquet exponents of the monodromy matrix of an periodic orbit or relative pe-
riodic orbit. For a periodic orbit one states the period Tp, Λp =

∏
Λp,e, and the

isotropy group Gp of the orbit; for a relative periodic orbit (12.23) one states in
addition the shift parameters φ = (φ1, φ2, · · · φN). Λp, the product of expanding
Floquet multipliers (5.7) is useful, as 1/|Λp| is the geometric weight of cycle p
in a cycle expansion (remember that each complex eigenvalue contributes twice).
We often do care about σ( j)

p = Λp, j/|Λp, j| ∈ {+1,−1}, the sign of the jth Floquet
multiplier, or, if Λp, j is complex, its phase Tpω

( j)
p .

Surveying this multitude of equilibrium and Floquet exponents is aided by a
plot of the complex exponent plane (µ, ω). An example are the eigenvalues of
equilibrium EQ8 from ref. [5], plotted in figure A4.1. To decide how many of
the these are “physical” in the PDE case (where number of exponents is always
infinite, in principle), it is useful to look at the ( j, µ( j)) plot. However, intelligent
choice of the j-axis units can be tricky for high-dimensional problems. For Kura-
moto-Sivashinsky system the correct choice are the wave-numbers which, due to
the O(2) symmetry, come in pairs. For plane Couette flow the good choice is not
known as yet; one needs to group O(2)×O(2) wave-numbers, as well as take care
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Figure A4.1: Eigenvalues of the plane Couette flow
equilibrium EQ8, plotted according to their isotropy
groups: • + + +, the S -invariant subspace, I + − −,
J − + −, and N − − +, where ± symbols stand for
symmetric/antisymmetric under symmetry operation
s1, s2, and s3 respectively, defined in ref. [5]. For ta-
bles of numerical values of stability eigenvalues see
Channelflow.org.

−0.05 0 0.05 0.1
−0.4

−0.2

0

0.2

0.4

EQ
8

Table A4.2: The first 13 least stable Floquet exponents λ = µ ± iω of periodic orbit p = 59.77 for
plane Couette flow, Re = 400, together with the symmetries of corresponding eigenvectors. The
eigenvalues are ordered by decreasing real part. The one zero eigenvalue, to the numerical precision
of our computation, arises from the spanwise translational SO(2) symmetry of this periodic orbit.
For details, see ref. [12].

j σ
( j)
p µ

( j)
p ω

( j)
p G( j)

p

1,2 0.07212161 0.04074989 D1
3 1 0.06209526 ?
4 -1 0.06162059

5,6 0.02073075 0.07355143
7 -1 0.009925378

8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

of the wall-normal node counting.

Commentary

Remark A4.1. Projection operators. The construction of projection operators given
in sect. A4.2 is taken from refs. [2, 3]. Who wrote this down first we do not know, lineage
certainly goes all the way back to Lagrange polynomials [11], but projection operators
tend to get drowned in sea of algebraic details. Arfken and Weber [1] ascribe spectral
decomposition (A4.18) to Sylvester. Halmos [7] is a good early reference - but we like
Harter’s exposition [8–10] best, for its multitude of specific examples and physical il-
lustrations. In particular, by the time we get to (A4.17) we have tacitly assumed full
diagonalizability of matrix M. That is the case for the compact groups one studies in the
theory of finte groups, and of compact Lie groups [4] (they are all subgroups of U(n))
but not necessarily in other applications. A bit of what happens then (nilpotent blocks)
is touched upon in example A4.2. In his lecture lecture 5 (starts about min. 31 into the
lecture) Harter explains this in great detail - its well worth your time.
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A4.4 Examples

Example A4.1. Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is

x(t) = eA t x(0) ,

where exp(A t) is defined by the Taylor series for exp(x). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

x(t) = F(t) F(0)−1x(0) = eAt x(0) ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system. (J. Halcrow)
click to return: p. 889

Example A4.2. Decomposition of 2-dimensional vector spaces. Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest case,
a general [2×2] non-singular matrix

A =

[
A11 A12
A21 A22

]
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1
2

tr A ±
1
2

√
(tr A)2 − 4 det A (A4.30)

are the roots of the characteristic (secular) equation (A4.9):

det (A − λ 1) = (λ1 − λ)(λ2 − λ)
= λ2 − tr A λ + det A = 0 .

For any linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has one
of the following forms:

B =

[
λ 0
0 µ

]
, B =

[
λ 1
0 λ

]
, B =

[
µ −ω
ω µ

]
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

[
eλt 0
0 eµt

]
, eBt = eλt

[
1 t
0 1

]
, eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
,

where the corresponding Jacobian matrix is eAt = UeBtU−1. What we have done is classify
all [2×2] matrices as belonging to one of three classes of geometrical transformations. The
first case is scaling, the second is a shear, and the third is a combination of rotation and
scaling. The generalization of these normal forms to Rd is called the Jordan normal form.
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Distinct eigenvalues case has already been described in sect. 4.8, and in the full gen-
erality for arbitrary dimension in sect. 5.1. The left/right eigenvectors are (up to overall
multiplicate factors) the rows/columns of projection operators

P1 =
A − λ21
λ1 − λ2

, P2 =
A − λ11
λ2 − λ1

, λ1 , λ2 . (A4.31)

Complex eigenvalues pair case is discussed in example 4.4.

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) A can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix A10.2.1. (b) A can be brought to Jordan form, with zeros everywhere
except for the diagonal, and some 1’s directly above it; for a [2×2] matrix the Jordan form
is

A =

[
λ 1
0 λ

]
, e(1) =

[
1
0

]
, v(2) =

[
0
1

]
.

v(2) helps span the 2-dimensional space, (A − λ)2v(2) = 0, but is not an eigenvector, as
Av(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one eigenvector
per block. Noting that

Am =

[
λm mλm−1

0 λm

]
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etA
(
u
v

)
= etλ

(
u + tv

v

)
(A4.32)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent). Do we care? Yes, stability matrices at bifurcation points,
and for “integrable" cases such as the stadium stability (9.9) can be of this form.

(J. Halcrow)
click to return: p. 890

Example A4.3. Projection operator decomposition in 2 dimensions. Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix

M =

[
4 1
3 2

]
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (A4.30):

det (M − λ1) = λ2 − 6 λ + 5 = (5 − λ)(1 − λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:[

4 1
3 2

]2

− 6
[

4 1
3 2

]
+ 5

[
1 0
0 1

]
=

[
0 0
0 0

]
.

Associated with each root λi is the projection operator (A4.31)

P1 =
1
4

(M − 1) =
1
4

[
3 1
3 1

]
(A4.33)

P2 =
1
4

(M − 5 · 1) =
1
4

[
1 −1
−3 3

]
. (A4.34)

appendStability - 10dec2019 ChaosBook.org edition16.4.8, May 25 2020



EXERCISES 898

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given by
di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the characteristic equa-
tion it follows that Pi satisfies the eigenvalue equation M Pi = λiPi . Two consequences
are immediate. First, we can easily evaluate any function of M by spectral decomposition,
for example

M7 − 3 · 1 = (57 − 3)P1 + (1 − 3)P2 =

[
58591 19531
58593 19529

]
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} =

{[
1
1

]
,

[
1
−3

]}
{e(1), e(2)} =

{[
3
1

]
,

[
1
−1

]}
,

with overall scale arbitrary. The matrix is not hermitian , so {e( j)} do not form an orthogo-
nal basis. The left-right eigenvector dot products e( j) · e(k), however, are orthogonal as in
(A4.19), by inspection. (Continued in example 15.1.)

click to return: p. 890

Example A4.4. Computing matrix exponentials. If A is diagonal (the system is
uncoupled), then etA is given by

exp


λ1t

λ2t
. . .

λdt

 =


eλ1t

eλ2t

. . .

eλd t

 .
If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigenval-
ues of A and F is the matrix of corresponding eigenvectors, the result is simple: An =

(FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor series for ex

gives eAt = FeDtF−1. But A may not have d linearly independent eigenvectors, forcing us
to take a different, Jordan route, explained in example A4.2.

click to return: p. 890

Exercises

A4.1. Real representation of complex eigenvalues. (Ver-
ification of example 4.4.) λk, λk+1 eigenvalues form a
complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}.
Show that

(a) corresponding projection operators are complex
conjugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1
2

(R + iQ) ,

where R = Pk + Pk+1 and Q are matrices with real
elements.
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(c) [
Pk Pk+1

]
=

1
2

[
1 i
1 −i

] [
R Q

]
.

(d) · · ·+ λkPk + λ∗kPk+1 + · · · complex eigenvalue pair
in the spectral decomposition (A4.16) is now re-

placed by a real [2×2] matrix

· · · +

[
µ −ω
ω µ

] [
R Q

]
+ · · ·

or whatever you find the clearest way to write this
real representation.
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Appendix A6

Lyapunov exponents

Man who says it cannot be done should not interrupt man
doing it.

—Sayings of Vattay Gábor

In this appendix we show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields can be expressed in terms
of leading eigenvalues of appropriate evolution operators.

A6.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-dimensional
maps in sect. 20.4. For higher-dimensional flows only the Jacobian matrices are
multiplicative, not individual eigenvalues, and the construction of the evolution
operator for evaluation of the Lyapunov spectra requires the extension of evolution
equations to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (A6.4) whose spectral
determinant (A6.8) yields the leading Lyapunov exponent of a d-dimensional flow
(and is entire for Axiom A flows).

The key idea is to extend the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start at x0 with an initial infinitesimal tangent space vector in the d-
dimensional tangent space η(0) ∈ TMx, and let the flow transport it along the
trajectory x(t) = f t(x0).

The dynamics in the tangent bundle (x, δx) ∈ TM is governed by the system
of equations of variations (4.2):

ẋ = v(x) , η̇ = A(x) η .

900
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Here A(x) is (4.3), the stability matrix (velocity gradients matrix) of the flow. We
write the solution as

x(t) = f t(x0) , η(t) = Jt(x0) η0 , (A6.1)

with the tangent space vector η transported by the Jacobian matrix Jt(x0) = ∂x(t)/∂x0
(4.5).

As explained in sect. 4.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented as η(t) = |η(t)|/|η(0)| u(t) where u(t) is a
“unit" vector in some norm ||.||. For asymptotic times and for almost every initial
(x0, η(0)), this factor converges to the leading eigenvalue of the linearized stability
matrix of the flow.

We implement this multiplicative evaluation of Floquet multipliers by adjoin-
ing the d-dimensional transverse tangent space η ∈ TMx; η(x) · v(x) = 0 to the
(d+1)-dimensional dynamical evolution space x ∈ M ⊂ Rd+1. In order to deter-
mine the length of the vector η we introduce a homogeneous differentiable scalar
function g(η) = ||η||. It has the property g(Λη) = |Λ| g(η) for any Λ. An example
is the projection of a vector to its dth component

g


η1
η2
· · ·

ηd

 = |ηd | .

Any vector η(0) ∈ TMx can now be represented by the product η = Λu, where
u is a “unit" vector in the sense that its norm is ||u|| = 1, and the factor

Λt(x0, u0) = g(η(t)) = g(Jt(x0)u0) (A6.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multi-
plicative along the trajectory:

Λt′+t(x0, u0) = Λt′(x(t), u(t)) Λt(x0, u0).

The u evolution constrained to ETg,x, the space of unit transverse tangent vectors,
exercise A6.1

is given by rescaling of (A6.1):

u′ = Rt(x, u) =
1

Λt(x, u)
Jt(x)u . (A6.3)

Eqs. (A6.1), (A6.2) and (A6.3) enable us to define a multiplicative evolution
operator on the extended space U × ETg,x

Lt(x′, u′; x, u) = δ
(
x′ − f t(x)

) δ(u′ − Rt(x, u)
)

|Λt(x, u)|β−1 , (A6.4)

where β is a variable.
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To evaluate the expectation value of log |Λt(x, u)| which is the Lyapunov ex-
ponent we again have to take the proper derivative of the leading eigenvalue of
(A6.4). In order to derive the trace formula for the operator (A6.4) we need to
evaluate tr Lt =

∫
dxduLt(u, x; u, x). The

∫
dx integral yields a weighted sum

over prime periodic orbits p and their repetitions r:

tr Lt =
∑

p

Tp

∞∑
r=1

δ
(
t − rTp

)
| det (1 − Mr

p) |
∆p,r,

∆p,r =

∫
g

du
δ
(
u − RTpr(xp, u)

)
|ΛTpr(xp, u)|β−1

, (A6.5)

where Mp is the prime cycle p transverse stability matrix. As we shall see below,
∆p,r is intrinsic to cycle p, and independent of any particular periodic point xp.

We note next that if the trajectory f t(x) is periodic with period T , the tangent
space contains d periodic solutions

e(i)(x(T + t)) = e(i)(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e(1), e(2), · · · , e(d)} of the transverse sta-
bility matrix, with “stretching" factors (A6.2) given by its eigenvalues

Mp(x)e(i)(x) = Λp,i e(i)(x) , i = 1, ..., d. (no summation on i)

The
∫

du integral in (A6.5) picks up contributions from these periodic solutions.
In order to compute the stability of the ith eigen-direction solution, it is convenient
to expand the variation around the eigenvector e(i) in the stability matrix eigenbasis
δu =

∑
δu` e(`) . The variation of the map (A6.3) at a complete period t = T is

then given by

δRT (e(i)) =
Mδu

g(Me(i))
−

Me(i)

g(Me(i))2

(
∂g(e(i))
∂u

Mδu
)

=
∑
k,i

Λp,k

Λp,i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
δuk . (A6.6)

The δui component does not contribute to this sum since g(e(i) + duie(i)) = 1 + dui

implies ∂g(e(i))/∂ui = 1. Indeed, infinitesimal variations δu must satisfy

g(u + δu) = g(u) = 1 =⇒

d∑
`=1

δu`
∂g(u)
∂u`

= 0 ,

so the allowed variations are of form

δu =
∑
k,i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
ck , |ck| � 1 ,
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and in the neighborhood of the e(i) eigenvector the
∫

du integral can be expressed
as ∫

g
du =

∫ ∏
k,i

dck .

Inserting these variations into the
∫

du integral we obtain

∫
g

du δ
(
e(i) + δu − RT (e(i)) − δRT (e(i)) + . . .

)
=

∫ ∏
k,i

dck δ((1 − Λk/Λi)ck + . . .)

=
∏
k,i

1
|1 − Λk/Λi|

,

and the
∫

du trace (A6.5) becomes

∆p,r =

d∑
i=1

1
| Λr

p,i |
β−1

∏
k,i

1
| 1 − Λr

p,k/Λ
r
p,i |

. (A6.7)

The corresponding spectral determinant is obtained by observing that the Laplace
transform of the trace (21.19) is a logarithmic derivative tr L(s) = − d

ds log F(s) of
the spectral determinant:

F(β, s) = exp

−∑
p,r

esTpr

r | det (1 − Mr
p) |

∆p,r(β)

 . (A6.8)

This determinant is the central result of this section. Its zeros correspond to the
eigenvalues of the evolution operator (A6.4), and can be evaluated by the cycle
expansion methods.

The leading zero of (A6.8) is called “pressure" (or free energy)

P(β) = s0(β). (A6.9)

The average Lyapunov exponent is then given by the first derivative of the pressure
at β = 1:

λ = P′(1). (A6.10)

The simplest application of (A6.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The Floquet multipliers are related by Λ1 = 1/Λ2 = Λ, and the spectral
determinant is given by

F(β, z) = exp

−∑
p,r

zrnp

r | Λr
p |

1
(1 − 1/Λr

p)2 ∆p,r(β)


∆p,r(β) =

| Λr
p |

1−β

1 − 1/Λ2r
p

+
| Λr

p |
β−3

1 − 1/Λ2r
p
. (A6.11)
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The dynamics (A6.3) can be restricted to a u unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi matrix. On this neighbor-
hood the largest eigenvalue of the Jacobi matrix is the only fixed point, and the
spectral determinant obtained by keeping only the largest term the ∆p,r sum in
(A6.7) is also entire.

In case of maps it is practical to introduce the logarithm of the leading zero
and to call it “pressure"

P(β) = log z0(β).

The average of the Lyapunov exponent of the map is then given by the first deriva-
tive of the pressure at β = 1:

λ = P′(1).

By factorizing the determinant (A6.11) into products of zeta functions we can
conclude that the leading zero of the (A6.4) can also be recovered from the leading
zeta function

1/ζ0(β, z) = exp

−∑
p,r

zrnp

r|Λr
p|
β

 . (A6.12)

This zeta function plays a key role in thermodynamic applications, see appendix A32.

A6.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the mag-
netic field of the Sun which is “frozen" in the fluid motion. A passively evolving
vector field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (A6.13)

where u(x, t) represents the velocity field of the fluid. The strength of the vector
field can grow or decay during its time evolution. The amplification of the vector
field in such a process is called the "dynamo effect.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (A6.14)

where ν is called the fast dynamo rate. The goal of this section is to show that
periodic orbit theory can be developed for such a highly non-trivial system as
well.

We can write the solution of (A6.13) formally, as shown by Cauchy. Let x(t, a)
be the position of the fluid particle that was at the point a at t = 0. Then the field
evolves according to

V(x, t) = J(a, t)V(a, 0) , (A6.15)
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where J(a, t) = ∂(x)/∂(a) is the Jacobian matrix of the transformation that moves
the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions of the
fluid particles into their positions at time t. Its inverse, a = f −t(x), maps particles
at time t and position x back to their initial positions. Then we can write (A6.15)

Vi(x, t) =
∑

j

∫
d3a Lt

i j(x, a)V j(a, 0) , (A6.16)

with

Lt
i j(x, a) = δ(a − f −t(x))

∂xi

∂a j
. (A6.17)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t with
Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the fast
dynamo rate, ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contribu-
tions, with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞∑
r=1

tr Mr
p∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣δ(t − rTp). (A6.18)

We can construct the corresponding spectral determinant as usual

F(s) = exp

−∑
p

∞∑
r=1

1
r

tr Mr
p∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣esrTp

 . (A6.19)

Note that in this formuli we have omitted a term arising from the Jacobian trans-
formation along the orbit which would give 1 + tr Mr

p in the numerator rather
than just the trace of Mr

p. Since the extra term corresponds to advection along the
orbit, and this does not evolve the magnetic field, we have chosen to ignore it. It
is also interesting to note that the negative powers of the Jacobian occur in the
denominator, since we have f −t in (A6.17).

In order to simplify F(s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigenvalues. For a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalue Λp (with |Λp| > 1),
and one contracting eigenvalue λp (with |λp| < 1) the determinant may be ex-
panded as follows:∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣−1
= |(1−Λ−r

p )(1− λ−r
p )|−1 = |λp|

r
∞∑
j=0

∞∑
k=0

Λ
− jr
p λkr

p . (A6.20)

With this decomposition we can rewrite the exponent in (A6.19) as

∑
p

∞∑
r=1

1
r

(λr
p + Λr

p)esrTp∣∣∣∣det
(
1 − M−r

p

)∣∣∣∣ =
∑

p

∞∑
j,k=0

∞∑
r=1

1
r

(
|λp|Λ

− j
p λ

k
pesTp

)r
(λr

p+Λr
p) , (A6.21)
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which has the form of the expansion of a logarithm:∑
p

∑
j,k

[
log

(
1 − esTp |λp|Λ

1− j
p λk

p

)
+ log

(
1 − esTp |λp|Λ

− j
p λ

1+k
p

)]
. (A6.22)

The spectral determinant is therefore of the form,

F(s) = Fe(s)Fc(s) , (A6.23)

where

Fe(s) =
∏

p

∞∏
j,k=0

(
1 − t( jk)

p Λp
)

, (A6.24)

Fc(s) =
∏

p

∞∏
j,k=0

(
1 − t( jk)

p λp
)
, (A6.25)

with

t( jk)
p = esTp |λp|

λk
p

Λ
j
p

. (A6.26)

The two factors present in F(s) correspond to the expanding and contracting ex-
ponents. (Had we not neglected a term in (A6.19), there would be a third factor
corresponding to the translation.)

For 2-dimensional Hamiltonian volume preserving systems, λ = 1/Λ and
(A6.24) reduces to

Fe(s) =
∏

p

∞∏
k=0

1 − tp

Λk−1
p

k+1

, tp =
esTp

| Λp |
. (A6.27)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of the
product (A6.25)) is given by

1/ζdyn(s) =
∏

p

(
1 − σpesTp

)
. (A6.28)

This is a curious formula — the zeta function depends only on the return times,
not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1 − Λ)(1 − 1/Λ)|

= σ +
2

|(1 − Λ)(1 − 1/Λ)|
,

when substituted into (A6.23), leads to a relation between the vector and scalar
advection spectral determinants:

Fdyn(s) = F2
0(s)/ζdyn(s) . (A6.29)

The spectral determinants in this equation are entire for hyperbolic (axiom A)
systems, since both of them correspond to multiplicative operators.
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In the case of a flow governed by a map, we can adapt the formulas (A6.27)
and (A6.28) for the dynamo determinants by simply making the substitution

znp = esTp , (A6.30)

where np is the integer order of the cycle. Then we find the spectral determinant
Fe(z) given by equation (A6.27) but with

tp =
znp

|Λp|
(A6.31)

for the weights, and

1/ζdyn(z) = Πp
(
1 − σpznp

)
(A6.32)

for the zeta-function

For maps with finite Markov partition the inverse zeta function (A6.32) re-
duces to a polynomial for z since curvature terms in the cycle expansion vanish.
For example, for maps with complete binary partition, and with the fixed point
stabilities of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (A6.33)

For such maps the dynamo spectral determinant is simply the square of the scalar
advection spectral determinant, and therefore all its zeros are double. In other
words, for flows governed by such discrete maps, the fast dynamo rate equals the
scalar advection rate.

In contrast, for 3-dimensional flows, the dynamo effect is distinct from the
scalar advection. For example, for flows with finite symbolic dynamical gram-
mars, (A6.29) implies that the dynamo zeta function is a ratio of two entire deter-
minants:

1/ζdyn(s) = Fdyn(s)/F2
0(s) . (A6.34)

This relation implies that for flows the zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zeros of the dynamo spectral
determinant no longer coinciding with the zeros of the scalar advection spectral
determinant; Usually the leading zero of the dynamo spectral determinant is larger

exercise A6.2
than the scalar advection rate, and the rate of decay of the magnetic field is no
longer governed by the scalar advection.

Commentary

Remark A6.1. Lyapunov exponents. Sect. A6.1 is based on ref. [3].

Remark A6.2. Dynamo zeta. The dynamo zeta (A6.32) has been introduced by
Aurell and Gilbert [1] and reviewed in ref. [4]. Our exposition follows ref. [2].
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Exercises

A6.1. Stretching factor. Prove the multiplicative property
of the stretching factor (A6.2). Why should we extend
the phase space with the tangent space?

A6.2. Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the
piecewise linear map

f (x) =

{
1 + ax if x < 0,
1 − bx if x > 0, (A6.35)

on an appropriate surface of section (a, b > 2). Suppose
also that the return time is constant Ta for x < 0 and Tb

for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1 − esTa + esTb . (A6.36)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1 − esTa/a − esTb/b. (A6.37)

Calculate the dynamo and the escape rates analytically
if b = a2 and Tb = 2Ta. Do the calculation for the case
when you reverse the signs of the slopes of the map.
What is the difference?
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Appendix A8

Hamiltonian dynamics

The symplectic structure of Hamilton’s equations buys us much more than
the incompressibility, or the phase space volume conservation alluded to in
sect. 8.1.

A8.1 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

The evolution equations for any p, q dependent quantity Q = Q(q, p) are given
by (19.28). In terms of the Poisson brackets, the time-evolution equation for Q =

Q(q, p) is given by (19.30). We now recast the symplectic condition (8.6) in a form
convenient for using the symplectic constraints on M. Writing x(t) = x′ = [p′, q′]
and the Jacobian matrix and its inverse

M =

 ∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

 , M−1 =

 ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

 , (A8.1)

we can spell out the symplectic invariance condition (8.6):

∂q′k
∂qi

∂p′k
∂q j
−
∂p′k
∂qi

∂q′k
∂q j

= 0

∂q′k
∂pi

∂p′k
∂p j
−
∂p′k
∂pi

∂q′k
∂p j

= 0

∂q′k
∂qi

∂p′k
∂p j
−
∂p′k
∂qi

∂q′k
∂p j

= δi j . (A8.2)

From (8.20) we obtain

∂qi

∂q′j
=
∂p′j
∂pi

,
∂pi

∂p′j
=
∂q′j
∂qi

,
∂qi

∂p′j
= −

∂q′j
∂pi

,
∂pi

∂q′j
= −

∂p′j
∂qi

. (A8.3)
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Taken together, (A8.3) and (A8.2) imply that the flow conserves the {p, q} Poisson
brackets

{qi, q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi, p j} = 0 , {pi, q j} = δi j , (A8.4)

i.e., the transformations induced by a Hamiltonian flow are canonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yield D(D − 1)/2 constraints each; the last relation yields D2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1) elements of M
are linearly independent, as it behooves group elements of the symplectic group
S p(2D).

We have now succeeded in making the full set of constraints explicit - as we
shall see in appendix ??, this will enable us to implement dynamics in such a way
that the symplectic invariance will be automatically preserved.

A8.2 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrix J of the flow (4.5), but the monodromy matrix M,
which enters the trace formula. This matrix gives the time dependence of a dis-
placement perpendicular to the flow on the energy manifold. Indeed, we discover
some trivial parts in the Jacobian matrix J. An initial displacement in the direc-
tion of the flow x = ω∇H(x) transfers according to δx(t) = xt(t)δt with δt time
independent. The projection of any displacement on δx on ∇H(x) is constant, i.e.,
∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system on the orbit x(t) in form of
the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (A8.5)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (A8.6)

Note that the properties a) – c) are only fulfilled for J̃ and L̃ if U itself is symplec-
tic.

Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (A8.5) at any time t. Setting
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U = (xt
>, xE

>, x1
>, . . . , x2d−2

>) gives

J̃ =


1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... M
0 ∗

 ; L̃ =


0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

 , (A8.7)

The matrix M is now the monodromy matrix and the equation of motion are given
by

Ṁ = l M. (A8.8)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE , x2) =


ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

 (A8.9)

with x> = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and
symplectic at every phase space point x, except the equilibrium points ẋ = 0. The
matrix elements for l are given (A8.11). One distinguishes 4 classes of eigenvalues
of M.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±µ±iω with µ and ω real. This is the most general case,
possible only in systems with 3 or more degrees of freedom.

For 2 degrees of freedom, i.e., M is a [2×2] matrix, the eigenvalues are determined
by

λ =
tr (M) ±

√
tr (M)2 − 4
2

, (A8.10)

i.e., tr (M) = 2 separates stable and unstable behavior.
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The l matrix elements for the local transformation (A8.9) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1
q2 [(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (A8.11)

with hi, hi j is the derivative of the Hamiltonian H with respect to the phase space
coordinates and q = |∇H|2.
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Flips, slides and turns

Basic group-theoretic notions are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct sums
of lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (A10.20):

Pi =
∏
j,i

M − λ j1
λi − λ j

.

Sects. A24.1 and A24.2 develop Fourier analysis as an application of the gen-
eral theory of invariance groups and their representations.

A10.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

We define group, representation, symmetry of a dynamical system, and invariance.

Group axioms. A group G is a set of elements g1, g2, g3, . . . for which compo-
sition or group multiplication g2 ◦ g1 (which we often abbreviate as g2g1) of any
two elements satisfies the following conditions:

914
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1. If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

2. The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The group G contains identity element e such that g◦e = e◦g = g for every
element g ∈ G.

4. For every element g ∈ G, there exists a unique h == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where |G|, the number of elements, is the order of the group.

Groups are defined and classified as abstract objects by their multiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us in
applications is their action as groups of transformations on a given space, usually
a vector space (see appendix A4.1), but sometimes an affine space, or a more
general manifoldM.

Repeated index summation. Throughout this text, the repeated pairs of up-
per/lower indices are always summed over

Ga
bxb ≡

n∑
b=1

Ga
bxb , (A10.1)

unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(n,F) =
{
g : F n → F n | det (g) , 0

}
. (A10.2)

Under GL(n,F) a basis set of V is mapped into another basis set by multiplication
with a [n×n] matrix g with entries in field F (F is either R or C),

e′ a = eb(g−1)b
a .

As the vector x is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′a = ga
bxb .
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section A4.1

Standard rep. We shall refer to the set of [n×n] matrices g as a standard rep
of GL(n,F), and the space of all n-tuples (x1, x2, . . . , xn)>, xi ∈ F on which these
matrices act as the standard representation space V .

Under a general linear transformation g ∈ GL(n,F), the row of basis vectors
transforms by right multiplication as e′ = e g−1, and the column of xa’s trans-
forms by left multiplication as x′ = gx. Under left multiplication the column
(row transposed) of basis vectors e> transforms as e′> = g†e>, where the dual
rep g† = (g−1)> is the transpose of the inverse of g. This observation motivates
introduction of a dual representation space V̄ , the space on which GL(n,F) acts
via the dual rep g†.

Dual space. If V is a vector representation space, then the dual space V̄ is the
set of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a (right) basis of V , then V̄ is spanned by the dual basis
(left basis) {e(1), · · · , e(d)}, the set of n linear forms e( j) such that

e(i) · e( j) = δ
j
i ,

where δb
a is the Kronecker symbol, δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (A10.3)

They transform under GL(n,F) as

y′a = (g†)b
ayb . (A10.4)

For GL(n,F) no complex conjugation is implied by the † notation; that interpre-
tation applies only to unitary subgroups of GL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

gb
a → ga

b , (g†)b
a → gb

a . (A10.5)

Defining space, dual space. In what follows V will always denote the defining
n-dimensional complex vector representation space, that is to say the initial, “el-
ementary multiplet” space within which we commence our deliberations. Along
with the defining vector representation space V comes the dual n-dimensional
vector representation space V̄ . We shall denote the corresponding element of V̄
by raising the index, as in (A10.3), so the components of defining space vectors,
resp. dual vectors, are distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (A10.6)
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Defining rep. Let G be a group of transformations acting linearly on V , with the
action of a group element g ∈ G on a vector x ∈ V given by an [n×n] matrix g

x′a = ga
bxb a, b = 1, 2, . . . , n . (A10.7)

We shall refer to ga
b as the defining rep of the group G. The action of g ∈ G on a

vector q̄ ∈ V̄ is given by the dual rep [n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (A10.8)

In the applications considered here, the group G will almost always be assumed
to be a subgroup of the unitary group, in which case g−1 = g†, and † indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (A10.9)

Hermitian conjugation is effected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and lower indices; transposition
reverses their order. A matrix is hermitian if its elements satisfy

(M†)a
b = Ma

b . (A10.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as Mb

a = (M†)b
a = Ma

b.

Invariant vectors. The vector q ∈ V is an invariant vector if for any transfor-
mation g ∈ G

q = gq . (A10.11)

If a bilinear form M(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = ga

cgb
d Mc

d (A10.12)

is an invariant matrix. Multiplying with gb
e and using the unitary condition

(A10.9), we find that the invariant matrices commute with all transformations
g ∈ G:

[g,M] = 0 . (A10.13)

Invariants. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄ , which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyaserdzc , (A10.14)

as an invariant in Vq ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients hab

cde are components of invariant tensor h ∈ V3 ⊗ V̄2.
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Matrix representation of a group. Let us now map the abstract group G homeo-
morphically on a group of matrices D(G) acting on the vector space V , i.e., in such
a way that the group properties, especially the group multiplication, are preserved:

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 ∈ G is mapped onto the matrix product D(g2 ◦

g1) = D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication:
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

[D(g)]−1 ≡ D−1(g).

We call this matrix group D(G) a linear or matrix representation of the group G
in the representation space V . We emphasize here ‘linear’ in order to distinguish
the matrix representations from other representations that do not have to be linear,
in general. Throughout this appendix we only consider linear representations.

If the dimensionality of V is d, we say the representation is an d-dimensional
representation. We will often abbreviate the notation by writing matrices D(g) ∈
D(G) as g, i.e., x′ = gx corresponds to the matrix operation x′i =

∑d
j=1 D(g)i jx j.

Faithful representations, factor group. If the mapping G on D(G) is an iso-
morphism, the representation is said to be faithful. In this case the order of the
group of matrices D(G) is equal to the order |G| of the group. In general, how-
ever, there will be several elements h ∈ G that will be mapped on the unit matrix
D(h) = 11. This property can be used to define a subgroup H ⊂ G of the group
G consisting of all elements h ∈ G that are mapped to the unit matrix of a given
representation. Then the representation is a faithful representation of the factor
group G/H.

Equivalent representations, equivalence classes. A representation of a group
is by no means unique. If the basis in the d-dimensional vector space V is changed,
the matrices D(g) have to be replaced by their transformations D′(g), with the new
matrices D′(g) and the old matrices D(g) are related by an equivalence transfor-
mation through a non-singular matrix C

D′(g) = C D(g) C−1 .

The group of matrices D′(g) form a representation D′(G) equivalent to the rep-
resentation D(G) of the group G. The equivalent representations have the same
structure, although the matrices look different.
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Character of a representation. The character of χµ(g) of a d-dimensional rep-
resentation D(g) of the group element g ∈ G is defined as trace

χµ(g) = tr D(g) =

d∑
i=1

Dii(g) .

Note that χ(e) = d, since Di j(e) = δi j for 1 ≤ i, j ≤ d.

Because of the cylic nature of the trace the character of equivalent representa-
tions is the same

χ(g) =

n∑
i=1

D′ii(g) = tr D′(g) = tr
(
CD(g)C−1

)
.

Definition: Character tables. Finding a transformation S which simultane-
ously block-diagonalizes the regular representation of each group element sounds
difficult. However, suppose it can be achieved, and we obtain a set of irreps
D(µ)(g), then according to Schur’s lemmas, D(µ)(g) must satisfy a set of orthogo-
nality rations:

dµ
|G|

∑
g

D(µ)
il (g)D(ν)

m j(g
−1) = δµνδi jδlm . (A10.15)

Denote the trace of irrep D(µ)
il as χ(µ), and we call it the character of D(µ). Proper-

ties of irreps can be derived from (A10.15), and we list them as follows:

1. The number of irreps is the same as the number of classes.

2. Dimensions of irreps satisfy
∑r
µ=1 d2

µ = |G|

3. orthonormal relation I :
∑r

i |Ki|χ
(µ)
i χ(ν)∗

i = |G|δµν.
Here, the summation goes through all classes of this group, and |Ki| is the
number of elements in class i. This weight comes from the fact that ele-
ments in the same class have the same character.

4. orthonormal relation II :
∑r
µ χ

(µ)
i χ

(µ)∗
j =

|G|
|Ki |
δi j.

The characters for all classes and irreps of a finite group are conventionally ar-
ranged into a character table, a square array whose rows represent different classes
and columns represent different irreps (as usual, 50% of authors, including Chaos-
Book, will use columns and rows instead). Rules 1 and 2 help determine the num-
ber of irreps and their dimensions. As matrix representation of class {e} is always
the identity matrix, the first column is always the dimension of the corresponding
representation. All entries of the first row are always 1, because the symmetric
irrep is always 1-dimensional. To compute the remaining entries, use properties
3, 4 and the class multiplication tables.
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Definition: Projection operators. We have listed the properties of irreps and
the techniques of constructing character table, but we still do not know how to
construct the similarity transformation S which takes a regular representation into
a block-diagonal form.

One of these invariant subspace is |G|−1 ∑
g ρ(gx), which is the basis of the 1-d

symmetric irrep A. For C3, it is (25.38). But how to get others? We need to resort
to the projection operator:

P(µ)
i =

dµ
|G|

∑
g

D(µ)
ii (g)U(g) (A10.16)

It projects an arbitrary function into the ith basis of irrep D(µ) provided the diagonal
elements of this representation D(µ)

ii is known. P(µ)
i ρ(x) = ρ

(µ)
i .

For 1-dimensional representations, this projection operator is known after we
obtain the character table, since character of 1-d matrix is the matrix itself. But
for 2-dimensional or higher dimensional representations, we need to know the
diagonal elements D(µ)

ii in order to get the bases of invariant subspaces.

Summing i in (A10.16) gives

P(µ) =
dµ
|G|

∑
g

χ(µ)(g)U(g) (A10.17)

This is also a projection operator which projects an arbitrary function onto the
sum of basis of irrep D(µ). We will use this operator to split the trace of evolution
operator into sum over all different irreps.

A10.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows, we
specialize to unitary and hermitian matrices.
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A10.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =



λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .



. (A10.18)

Here λi , λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (A10.19)

In the matrix C(M − λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .


,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j,1

(M − λ j1)C† =
∏
j,1

(λ1 − λ j)



1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .


.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j,i

M − λ j1
λi − λ j

, (A10.20)
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which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†



1
. . .

1
0

0
. . .

0


C . (A10.21)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (A10.22)

and satisfy the completeness relation

r∑
i=1

Pi = 1 . (A10.23)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (A10.24)

It follows from the characteristic equation (A10.19) and the form of the projection
operator (A10.20) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (A10.25)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (A10.26)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

A10.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · · . Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (A10.27)
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or, equivalently, if projection operators P j constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (A10.28)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .

That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M(i)
2 , P j] = 0 . (A10.29)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrix M induces a decomposition only if its diagonalized form
(A10.18) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

According to (A10.13), an invariant matrix M commutes with group trans-
formations [G,M] = 0. Projection operators (A10.20) constructed from M are
polynomials in M, so they also commute with all g ∈ G:

[G, Pi] = 0 (A10.30)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (A10.31)

In the diagonalized rep (A10.21), the matrix g has a block diagonal form:

CgC† =


g1 0 0
0 g2 0

0 0
. . .

 , g =
∑

i

CigiCi . (A10.32)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors Piq,
q ∈ V . In this way an invariant [d×d] hermitian matrix M with r distinct eigenval-
ues induces a decomposition of a d-dimensional vector space V into a direct sum
of di-dimensional vector subspaces Vi:

V
M
→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (A10.33)
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A10.3 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.18). For b , 0 the
Hénon map is reversible: the backward iteration of (3.19) is given by

xn−1 = −
1
b

(1 − ax2
n − xn+1) . (A10.34)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the param-
eter plane, together with x → −x/b in the coordinate plane, and there is no need
to explore the (a, b) parameter plane outside the strip b ∈ {−1, 1}. For b = −1 the
map is orientation and area preserving ,

xn−1 = 1 − ax2
n − xn+1 , (A10.35)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across the xn+1 = xn diagonal. This is one of the simplest models
of a return map for a Hamiltonian flow. For the orientation reversing b = 1 case
we have

xn−1 = 1 − ax2
n + xn+1 , (A10.36)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.
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Exercises

A10.1. Am I a group? Show that multiplication table

e a b c d f
e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix A10.1.)

From W.G. Harter [1]

A10.2. Three coupled pendulums with a C2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same mass m and length l, the one midway of same
length but different mass M, with the tip coupled to the
tips of the outer ones with springs of stiffness k. Assume
displacements are small, xi/l � 1.
(a) Show that the acceleration matrix ẍ = −a x is ẍ1

ẍ2
ẍ3

 = −

 a + b −a 0
−c 2c + b −c
0 −a a + b


 x1

x2
x3

 ,
where a = k/ml, c = k/Ml and b = g/l.
(b) Check that [a,R] = 0, i.e., that the dynamics is
invariant under C2 = {e,R}, where R interchanges the
outer pendulums,

R =

 0 0 1
0 1 0
1 0 0

 .
(c) Construct the corresponding projection operators P+

and P−, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue
(ω(−))2 = a + b, and a 2-dimensional subspace, with
acceleration matrix (trust your own algebra, if it strays
from what is stated here)

a(+) =

[
a + b −

√
2a

−
√

2c c + b

]
.

The exercise is simple enough that you can do it with-
out using the symmetry, so: construct P+, P− first, use
them to reduce a to irreps, then proceed with computing
remaining eigenvalues of a.
(d) Does anything interesting happen if M = m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimension d gets reduced to a set of subspaces
whose dimensions d(α) satisfy

∑
d(α) = d. Beyond that,

love many, trust few, and paddle your own canoe.

From W.G. Harter [1]

A10.3. Lorenz system in polar coordinates: dynamics.
(continuation of exercise 11.4)

1. Show that (11.15) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined
(r1, θ1, z1) = (

√
2b(ρ − 1), π/4, ρ − 1) .(A10.37)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here
the precise numbers to help you check your pro-
grams):
EQ1 = (0, 12, 27) equilibrium: (and its C1/2-
rotation EQ2) has one stable real eigenvalue
λ(1) = −13.854578,
and the unstable complex conjugate pair
λ(2,3) = µ(2) ± iω(2) = 0.093956 ± i10.194505.
The unstable eigenplane is defined by eigen-
vectors
Re e(2) = (−0.4955,−0.2010,−0.8450)
Im e(2) = (0.5325,−0.8464, 0)
with period T = 2π/ω(2) = 0.6163306,
radial expansion multiplier
Λr = exp(2πµ(2)/ω(2)) = 1.059617,
and the contracting multiplier
Λc = exp(2πµ(1)/ω(2)) ≈ 1.95686 × 10−4

along the stable eigenvector of EQ1,
e(3) = (0.8557,−0.3298,−0.3988).
EQ0 = (0, 0, 0) equilibrium: The stable eigen-
vector e(1) = (0, 0, 1) of EQ0, has contraction rate
λ(2) = −b = −2.666 . . . .
The other stable eigenvector is
e(2) = (−0.244001,−0.969775, 0), with contract-
ing eigenvalue
λ(2) = −22.8277. The unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the
Lorenz coordinates figure 2.5, and in the doubled-
polar angle coordinates (11.13) for the Lorenz pa-
rameter values σ = 10, b = 8/3, ρ = 28. Topolog-
ically, does it resemble the Lorenz butterfly, the
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Rössler attractor, or neither? The Poincaré section
of the Lorenz flow fixed by the z-axis and the equi-
librium in the doubled polar angle representation,
and the corresponding return map (sn, sn + 1) are
plotted in figure 14.14.

4. Construct the return map (sn, sn+1),

−40 −20 0 20

−40

−20

0

20

S
n

S
n+

1

 

 

where s is arc-length measured along the unstable
manifold of EQ0, lower Poincaré section of fig-
ure 14.14 (b). Elucidate its relation to the return
map of figure 14.15. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar represen-
tation Lorenz is also periodic orbit of the Lorenz
flow, their Floquet multipliers are the same. How
do the Floquet multipliers of relative periodic or-
bits of the representations relate to each other?

6. What does the volume contraction formula (4.42)
look like now? Interpret.
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Appendix A14

Charting the state space

Periodic orbits of unimodal mappings are studied in sect. A14.1. Pruning
theory for Bernoulli shifts is discussed in sect. A14.3.

A14.1 Periodic orbits of unimodal maps

A periodic point (cycle point) xk belonging to a cycle of period n is a real solution
of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (A14.1)

The nth iterate of a unimodal map has at most 2n monotone segments, and there-
fore there will be 2n or fewer periodic points of length n. Similarly, the backward
and the forward Smale horseshoes intersect at most 2n times, and therefore there
will be 2n or fewer periodic points of length n. A periodic orbit of length n cor-
responds to an infinite repetition of a length n = np symbol string, customarily
indicated by a line over the string:

S p = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string itinerary
S p = s1s2s3 . . . sn stands for infinite repetition of a finite block, and routinely omit
the overline. x0, its cyclic permutation sksk+1 . . . sn s1 . . . sk−1 corresponds to the
point xk−1 in the same cycle. A cycle p is called prime if its itinerary S cannot be
written as a repetition of a shorter block S ′.

Here we give explicit formulas for the topological coordinate of a periodic
point, given its itinerary. For the purpose of what follows it is convenient to com-
pactify the itineraries by replacing the binary alphabet si = {0, 1} by the infinite
alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (A14.2)

927
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In this notation the itinerary S = aia jakal · · · and the corresponding topological
coordinate (14.4) are related by γ(S ) = .1i0 j1k0l · · · . For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .
γ(S ) = .101101001110000 . . . = .1101120111021304 . . .

Cycle points whose itineraries start with w1 = w2 = · · · = wi = 0, wi+1 = 1 remain
on the left branch of the tent map for i iterations, and satisfy γ(0 . . . 0S ) = γ(S )/2i.

Periodic points correspond to rational values of γ, but we have to distinguish
even and odd cycles. The even (odd) cycles contain even (odd) number of ai in
the repeating block, with periodic points given by

γ(aia j · · · aka`) =

 2n

2n−1 .1
i0 j · · · 1k even

1
2n+1

(
1 + 2n × .1i0 j · · · 1`

)
odd ,

(A14.3)

where n = i + j + · · ·+ k + ` is the cycle period. The maximal value periodic point
is given by the cyclic permutation of S with the largest ai as the first symbol,
followed by the smallest available a j as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value
periodic point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

For the full tent map the periodic points are computed in example 14.10. The
maximal values of unimodal map cycles up to length 5 are listed in table 14.1.

A14.2 Unimodal map bifurcation sequences

(K.T. Hansen and P. Cvitanović)

Periodic orbits in smooth unimodal maps are generically created either as a pair
with one stable and one unstable length n orbit in a saddle node bifurcation point,
or as a period 2n orbit in a bifurcation where a period n orbit becomes unstable.

Immediately after a saddle node bifurcation the two created orbits both have the
same itinerary s1s2 . . . sn with an even number of symbols 1 and with the topolog-
ical parameter value κ(s1s2 . . . sn) = γ̂(s1s2 . . . sn). Orbits with this itinerary exist
for all unimodal maps with κ ≥ γ̂(s1s2 . . . sn). As the parameter in the smooth
unimodal map increases the stable orbit passes a superstable point and changes
its symbolic dynamics. If we now assume that the symbol string s1s2 . . . sn is
the cyclic permutation giving the maximum γ value, then the itinerary of the sta-
ble orbit after the superstable point is s1s2 . . . sn−1(1 − sn), since the point clos-
est to the critical point passes through the critical point. The topological pa-
rameter value of the map is then κ(s1s2 . . . sn−1(1 − sn)). The inadmissible topo-
logical parameter interval (κ(s1s2 . . . sn), κ(s1s2 . . . sn−1(1 − sn))) is then uniquely
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S γ̂(S ) S γ̂(S )
0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table A14.1: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

Figure A14.1: Bifurcation points from ta-
ble A14.1 plotted as a function of the topological
parameter κ. Gray areas are inadmissible intervals
of κ corresponding to stable windows in a smooth
unimodal map. As a shorthand notation for pairs
of orbits we use the letter ε to denote either a 0 or
a 1. (K.T. Hansen)

1001ε

100ε

10 1000ε

1011

10ε

1011ε

0.8 0.85 0.9 0.95 1.0

related to the parameter interval in a between the saddle node bifurcation and
the superstable point, or more loosely speaking; to the a interval where the orbit
s1s2 . . . sn−1(1 − sn) is stable.

In the same way there will be an interval

(κ(s1s2 . . . sn−1(1 − sn)), κ(s1s2 . . . sn−1(1 − sn)s1s2 . . . sn))

corresponding to the interval in a from where the orbit s1s2 . . . sn−1(1 − sn) is
superstable to the point where the orbit s1s2 . . . sn−1(1 − sn)s1s2 . . . sn is super-
stable. This interval includes the period doubling bifurcation where the 2n orbit
s1s2 . . . sn−1(1 − sn)s1s2 . . . sn is created.

From table A14.1 we can find some of the largest intervals in κ corresponding
to the stability windows in a smooth unimodal map. The stable period 3 orbit
window on the parameter a-axis corresponds to the interval (6/7, 8/9) on the κ
line and so on, see figure A14.1.

A14.3 Pruned Bernoulli shift

In this section we illustrate extraction of a symbolic dynamics on a piecewise
linear repeller for which the itinerary of a repeller point x is given by its binary
expansion. The main result is the Algorithm 1 which converts recursively a given
value of the “pruning point" xp into the symbolic dynamics of the map. We shall
apply this symbolic dynamics in the next section to construction of explicit exam-
ples of zeta functions.
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The simplest example of a map with complete binary dynamics is the Bernoulli
shift

xn+1 = 2xn mod 1 . (A14.4)

The map acts by shifting the binary point to the right, so the itinerary of x = x0
(if xn < 1/2, then sn = 0; if xn > 1/2, then sn=1) is simply its binary expansion
x = .s1s2s3 · · · . The periodic points s1s2 · · · sn correspond to rational x:

xs1 s2···sn =

n∑
k=1

sk

2k

∞∑
m=0

1
2nm =

2n

2n − 1
.s1s2 · · · sn =

∑n
k=1 sk2n−k

2n − 1
. (A14.5)

This is just the binary version of the familiar fact that the decimal expansion of a
rational number is (eventually) periodic.

The clipped Bernoulli shift obtained by slicing off all x ≥ xp is a two-branch
linear map of form

f0(x) = 2x 0 ≤ x ≤ 1/2
f1(x) = 2x − 1 1/2 ≤ x < xp .

(A14.6)

We shall refer to xp as the pruning point. All trajectories that land in the xp <

x ≤ 1 interval escape; only those x whose binary expansion contains no sub-
sequence _smsm+1sm+2 · · · sm+n_ such that .smsm+1sm+2 · · · sm+n > xp survive the
pruning. The surviving trajectories are unstable (with the Floquet multiplier Λc =

2nc , where nc is the length of the trajectory c), and form a repelling strange set.
The symbolic dynamics of the clipped Bernoulli shift is specified by the binary
expansion of xp, in the same sense that the symbolic dynamics of a unimodal
map is specified by the trajectory (the kneading invariant [3]) of its critical value
xp = f (xc).

We find this map pedagogically convenient, as the technique for extracting
the symbolic dynamics is essentially the same as for the unimodal maps, but the
conversion of the parameter xp into symbolic dynamics is somewhat simpler (as
the itineraries are ordered monotonically by the ordinary binary tree rather than
the alternating binary tree).

Our strategy for converting xp into symbolic dynamics is to check recursively
whether the xp falls into a window at successive levels of resolution. If it does, we
obtain the exact alphabet; if it does not, the last letter in the approximate alphabet
has to be refined, and the procedure repeated. We first phrase this recursive pro-
cedure as a general algorithm and then illustrate it by a few examples (the reader
might prefer to glance at those first).

Algorithm 1: Pruning the symbolic dynamics from above

Given the pruning point xp, the symbolic dynamics is determined recursively
as follows:

1. expand xp = .s1s2s3 · · · in binary si = {0, 1}.
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2. compactify the binary symbol sequences by rewriting them in the alphabet
{a1, a2, a3, a4, · · · } = {0, 10, 110, 1110, · · · } where an stands for a block of n-1
binary 1’s followed by 0. At this level of resolution xp is bracketed by

.an < xp ≤ .an+1

and the approximate alphabet is {a1, a2, a3, a4, · · · , an}.

2. prohibition of an+1 implies that the rightmost surviving point is .an. If
the pruning point xp is in the window ∆an = (.an, .an+1], the exact alphabet is
{a1, a2, a3, · · · , an}, and the algorithm stops.

3. If xp < .an, the pruning point falls somewhere within the lan = (.an, .an]
interval, and not all sequences starting with .an are allowed. Subdivide the .an in-
terval into finer subintervals by appending to .an all allowed basic blocks: {an} =

{ana1, ana2, ana3, · · · , anam}. Here m ≤ n is determined by the value of xp, .anam <

xp ≤ .anam+1. The refined approximate alphabet is given by
{a1, a2, a3, · · · , an−1, b1, b2, , · · · , bm} = {a1, a2, a3, · · · , an−1, ana1, ana2, · · · , anam}.

4. repeat step 2: if xp ∈ ∆bm = (.bm, .bm+1], the above alphabet is exact,
otherwise continue refining the lbm = (.bm, .bm] interval by replacing bm by new
letters {c1, c2, , · · · , ck}, as in step 3.

Clearly any xp whose binary expansion is finite yields a finite alphabet, and
so does any xp that falls into a ∆cn window. Otherwise the algorithm generates a
monotone sequence of lcn = (.cn, .cn] covering intervals, xp ∈ lcn , together with
the associated approximate alphabets.

Example 1: the “golden mean" pruning xp = .11

The simplest example of pruning for the clipped Bernoulli shift is given by
the xp = .11 pruning point value. As the substring _11_ is forbidden, 1 must
always be followed by 0, so the allowed sequences can be built from any number
of consecutive 0’s and 10 blocks, and the alphabet is simply {0, 10}. Note that
if xp is set to .11, the rightmost surviving point of the repeller is not .11, but
.10101010· · · , ie. the periodic point .10. Hence any xp value in the window
∆10 = (.10, .11] = (2/3, 3/4] leads to the same symbolic dynamics.

Example 2: The right ascending staircase ∆0, ∆10, ∆110, . . . ,

By the same argument as the above, xp = .11 . . . 1 (n binary “1”s, followed by
a “0”) pruning leads to the n letter alphabet

{a1, a2, a3, · · · , an} = {0, 10, 110, 1110, . . . , 11 · · · 10},

and the symbolic dynamics unchanged over windows

∆11···10 = (.11 · · · 10, .11 · · · 1] = (
2n−1 − 2
2n − 1

,
2n − 1

2n ] , (A14.7)
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whose width is shrinking as |∆11···10| =
1

2n(2n−1) .

Example 3: a “typical" pruning front value: xp = .11101101110

1. At the first level of resolution xp is bracketed by

.111 < xp ≤ .1111

so 1 can appear only within blocks 10, 110 and 1110. Rewrite xp in the new
alphabet {a1, a2, a3, a4} = {0, 10, 110, 1110}, where an stands for a block of n − 1
binary 1’s followed by 0: xp = .a4a3a4a2

2. As in the above example, prohibition of a5 = 11110 implies that the right-
most surviving point is .a4 = .1110. Were xp ∈ ∆a4 = (.a4, .a5], the alphabet
{a1, a2, a3, a4} would be exact, and we would be finished. However, as xp < .a4,
the pruning point falls somewhere within .a4 < xp ≤ .a4, and not all sequences
starting with a4 are allowed.

3. Therefore we subdivide the .1110 interval into finer subintervals by ap-
pending to .a4 all allowed basic blocks: {a4} = {a4a1, a4a2, a4a3, a4a4}. As xp =

.a4a3a4a2 < .a4a4 , the .a4a4 interval is pruned. xp can be rewritten in the new
alphabet {a1, a2, a3, b1, b2, b3} = {a1, a2, a3, a4a1, a4a2, a4a3} as xp = .b3b2.

4. repeat step 2: is xp > .b3? It is not, so

5. repeat step 3: subdivide {b3} = {b3a1, b3a2, b3a3, b3b1, b3b2}. The b3b2
block is forbidden by the pruning point value, so we are done; the alphabet con-
sists of 9 letters

{a1, a2, a3, b1, b2, c1, c2, c3, c4} = {a1, a2, a3, b1, b2, b3a1, b3a2, b3a3, b3b1}

We could have kept the binary notation throughout, but a two-letter alphabet
makes for rather rather tedious reading; in the binary notation the fundamental
blocks are

{0, 10, 110, 11100, 111010, 11101100, 111011010, 1110110110, 111011011100}
.

This finishes the list of examples.

For the clipped Bernoulli map the fraction of the xp parameter values for
which the alphabet is finite can be estimated analytically. If c is a sequence corre-
sponding to one of the windows unfolded recursively in the above, the symbolic
dynamics is unchanged over the window

∆c = (.c, .c1] = (
.c

1 − 2−nc
, .c1] (A14.8)

whose width shrinks with nc, the length of the binary string c, as

|∆c| = .c1 − .c =
1 − .cn+1

2nc − 1
=

.c+1
2nc − 1

, (A14.9)
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where c+ is the binary complement of c. This follows from summing the succes-
sive images of the pruned interval 1 − .c1 within the (.c, .c1) interval.

The widths of the fatest c = .1000 · · · 0 and the thinest c = .11 · · · 1 steps in
the devil staircase corresponding to strings of length n are, respectively,

2n−1 − 1
2n(2n − 1)

≥ ∆c ≥
1

2n(2n − 1)
.

The lower bound follows from (A14.7) and the upper bound from 1 − .c1 = 1 −
.10 . . . 01 = 1/2 − 1/2n.

We leave the evaluation of the total measure
∑

∆c taken up by finite alpha-
bets as an exercise for the student. What is the measure taken up by the infinite
alphabets? Is there a set of non-integer Hausdorff dimension, and what is its sig-
nificance?

A14.3.1 Topological entropy

The symbolic dynamics considered in the preceeding section gives a class of
rather simple topological polynomials. If the symbolic dynamics can be written
as a complete (unrestricted, unpruned) alphabet in N symbols, then t f = 1 if f ∈
alphabet, t f = 0 otherwise. According to the results of the preceeding section, for
the clipped Bernoulli shift the symbolic dynamics is given by a finite (or infinite
alphabet) built up of blocks of increasing binary length:

{a1, a2, a3, · · · , an, b1, b2, , · · · , bm, c1, c2, · · · }

For a finite unrestricted alphabet, the topological entropy is given by the smallest
root of the corresponding topological polynomial:

0 = 1 − zna1 − zna2 − zna3 − · · · − znan

−znb1 − znb2 − · · · − znbm

−znc1 − znc2 − · · · − znck . (A14.10)

The simplest example of a not entirely trivial topological polynomial follows from
the 3-cycle pruning example 1. The fundamental cycles 0, 01 are of length 1 and
2, so the topological polynomial is simply∏

p

(
1 − znp

)
= 1 − z − z2 , (A14.11)

and the topological entropy is h = log 1+
√

5
2 .

The topological polynomial for the example 2. is given by∏
p

(
1 − znp

)
= 1 − z − z2 − · · · − zn =

1 − 2z + zn+1

1 − z
. (A14.12)
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The topological entropy is h = log λ0, where λ0 is the leading eigenvalue 1 < λ0 ≤

2. The remaining roots of (A14.12) lie (for large n) close to the unit circle in the
complex plane and are of no physical interest.

The alphabet above was generated by resolving the longest fundamental string
at a given level by a set of longer strings; so even if the grammar is not finite and
the cycle expansion is not a polynomial, the convergence of the cycle expansion
should be good, as the errors are bounded from below and above by truncating
the expansions with terms zn and zn+1, where n is the length of the longest binary
string in the alphabet. With increasing resolution n typically grows in leaps and
bounds. The entropy is given by the isolated real zero 1/2 ≤ z < 1; the remaining
zeros of the polynomial approximations to the entropy function for infinite gram-
mar bunch on the unit circle. The rate of convergence depends on the separation
of the leading, entropy eigenvalue from the non-leading eigenvalues; as long as
there is a gap, the convergence will be exponential, though situations without gap
also arise and are interesting (cf. period doubling 1/ζ in ref. [3]).

The above considerations, in spite of the restriction to mere cycle counting,
reveal a great deal about the spectra of more general transfer operators. For linear
systems with a single scale Λ, 1/ζ0(z) is given by (A14.10), simply by rescaling
z → z/|Λ|. For nonlinear mappings, polynomial approximations to 1/ζk have a
rather similar structure; there is a physically significant λ(k)

0 , together with a family
of unphysical poles in the complex plane, placed roughly on a circle of radius |1/c|,
where c controls the asymptotic behavior of curvatures, cn ≈ cn. The extraneous
zeros delineate the boundary of the convergence of the cycle expansion of 1/ζk;
and for longer and longer truncated Selberg products 1/ζ0ζ1 · · · ζk this boundary
is pushed further and further out, allowing determination of a finite number of
leading eigenvalues of L.

Commentary

Remark A14.1. What are Manning’s multiples? According to Viviane Baladi, the
Red Book [4], Proposition 2.4 explains Manning’s argument to count periodic points. The
idea is that you have to be careful with the boundary of the Markov partition and all of
its iterates, as the preimages of the boundary are everywhere dense. Manning’s paper [2]
is explained in a very un-Bourbaki way in Bowen [1], middle of page 14. This is pure
combinatorics and x~i0,...,~im−1

is simply a point inM. If you agree that x~i0,...,~im−1
is simply a

way to name a point x inM, then you should not be surprised that T ∗x f −m of Red Book,
Proposition 7.1 denotes the linear bundle map over f m on the cotangent bundle T ∗M.
(This map already appeared in Proposition 6.2 with its `-forms brothers and sisters).

In words that mere mortals have a chance of understanding, if Mi ∩ M j , ∅, you
are double-counting the border points. Therefore you first count all periodic points in
{M0,M1, . . . ,Mm−1}, then subtract all double counts in all pairs of border overlapsMi ∩

M j, then add all triple counts inMi ∩M j ∩Mk 3-tuples, and so on.
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Appendix A16

Finding cycles

(C. Chandre)

A16.1 Newton-Raphson method

A16.1.1 Contraction rate

Consider a d-dimensional map x′ = f (x) with an unstable fixed point x∗. The
Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x − (J(x) − 1)−1 ( f (x) − x) .

The linearization of g near x∗ leads to

x∗ + ε′ = x∗ + ε − (J(x∗) − 1)−1 ( f (x∗) + J(x∗)ε − x∗ − ε) + O
(
‖ε‖2

)
,

where ε = x − x∗. Therefore,

x′ − x∗ = O
(
(x − x∗)2

)
.

After n steps and if the initial guess x0 is close to x∗, the error decreases super-
exponentially

gn(x0) − x∗ = O
(
(x0 − x∗)2n)

.

A16.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional mappings
using the multi-shooting method reduces to the following equation

1 −D f (xn)
−D f (x1) 1

· · · 1
−D f (xn−1) 1



δ1
δ2
· · ·

δn

 = −


F1
F2
· · ·

Fn

 , (A16.1)
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where D f (x) is the [d × d] Jacobian matrix of the map evaluated at the point x,
and δm = x′m − xm and Fm = xm − f (xm−1) are d-dimensional vectors. By some
starightforward algebra, the vectors δm are expressed as functions of the vectors
Fm:

δm = −

m∑
k=1

βk,m−1Fk − β1,m−1
(
1 − β1,n

)−1

 n∑
k=1

βk,nFk

 , (A16.2)

for m = 1, . . . , n, where βk,m = D f (xm)D f (xm−1) · · ·D f (xk) for k < m and βk,m = 1
for k ≥ m. Therefore, finding n-cycles by a Newton-Raphson method with multi-
ple shooting requires the inversing of a [d×d] matrix 1−D f (xn)D f (xn−1) · · ·D f (x1).

A16.2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map x′ = f (x) with an unstable fixed point x∗.
The transformed map is the following one:

x′ = g(x) = x + γC( f (x) − x),

where γ > 0 and C is a d × d invertible constant matrix. We note that x∗ is also a
fixed point of g. Consider the stability matrix at the fixed point x∗

Ag =
dg
dx

∣∣∣∣∣
x=x∗

= 1 + γC(A f − 1).

The matrix C is constructed such that the eigenvalues of Ag are of modulus less
than one. Assume that A f is diagonalizable: In the basis of diagonalization, the
matrix writes:

Ãg = 1 + γC̃(Ã f − 1),

where Ã f is diagonal with elements µi. We restrict the set of matrices C̃ to diag-
onal matrices with C̃ii = εi where εi = ±1. Thus Ãg is diagonal with eigenvalues
γi = 1 + γεi(µi − 1). The choice of γ and εi is such that |γi| < 1. It is easy to see
that if Re(µi) < 1 one has to choose εi = 1, and if Re(µi) > 1, εi = −1. If λ is
chosen such that

0 < γ < min
i=1,...,d

2|Re(µi) − 1|
|µi − 1|2

,

all the eigenvalues of Ag have modulus less that one. The contraction rate at the
fixed point for the map g is then maxi |1 + γεi(µi − 1)|. If Re(µi) = 1, it is not
possible to stabilize x∗ by the set of matrices γC.
From the construction of C, we see that 2d choices of matrices are possible. For
example, for 2-dimensional systems, these matrices are

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)
,

(
−1
0

0
−1

)}
.

For 2-dimensional dissipative maps, the eigenvalues satisfy Re(µ1)Re(µ2) ≤ det D f <
1. The case (Re(µ1) > 1,Re(µ2) > 1) which is stabilized by

(
−1
0

0
−1

)
has to be dis-

carded. The minimal set is reduced to three matrices.
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Figure A16.1: Illustration of the optimal Poincaré sec-
tion. The original section y = 0 yields a large distance
x− f (x) for the Newton iteration. A much better choice
is y = 0.7. -1.5
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A16.2.1 Newton method with optimal section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for a fixed point.
This can happen, for example, if the topology and/or the symbolic dynamics of
the flow is not well understood. By changing the Poincaré section one might get
a better initial guess in the sense that x and f (x) are closer together. We illustrate
this in figure A16.1. The figure shows a Poincaré section, y = 0, an initial guess
x, the corresponding f (x) and pieces of the trajectory near these two points.

If Newton iteration does not converge for the initial guess x we might have to
work very hard to find a better guess, particularly if this is in a high-dimensional
system (high-dimensional in this context might mean a Hamiltonian system with 3
or more degrees of freedom). Clearly, we could easily obtain a much better guess
by simply shifting the Poincaré section to y = 0.7 where the distance x − f (x)
would be much smaller. Naturally, one cannot so easily determine by inspection
the best section for a higher dimensional system. Rather, the way to proceed is
as follows: We want to have a minimal distance between our initial guess x and
its image f (x). We therefore integrate the flow looking for a minimum in the
distance d(t) = | f t(x) − x|. d(t) is now a minimum with respect to variations in
f t(x), but not necessarily with respect to x. We therefore integrate x either forward
or backward in time. Doing this minimizes d with respect to x, but now it is no
longer minimal with respect to f t(x). We therefore repeat the steps, alternating
between correcting x and f t(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector ( f (x) − x) connecting the two end
points is perpendicular to the flow at both points. We can now define a Poincaré
section as the hyper-plane that goes through x and is normal to the flow at x,
(x′ − x) · v(x) = 0.

The image f (x) lies in the section. This section is optimal in the sense that
a close return on the section is a local minimum of the distance between x and
f t(x). More important, the part of the stability matrix that describes linearization
perpendicular to the flow is exactly the stability of the flow in the section when

appendCycles - 3jun2008 ChaosBook.org edition16.4.8, May 25 2020



APPENDIX A16. FINDING CYCLES 939

f (x) is close to x. With this method, the Poincaré section changes with each New-
ton iteration. Should we later want to put the fixed point on a specific Poincaré
section, it will only be a matter of moving along the trajectory.
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Counting

The generating functions of sects. 18.2 and A20.1 are really Laplace trans-
forms in disguise, or Z-transforms explained in sect. ??. Kneading theory
for unimodal mappings is developed in sect. A18.1. The prime factoriza-

tion for dynamical itineraries of sect. A18.2 illustrates the sense in which prime
cycles are “prime” - the product structure of zeta functions is a consequence of
the unique factorization property of symbol sequences.

A18.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The transition graph methods outlined in chapter 14 are well suited for
symbolic dynamics of finite subshift type. A sequence of well defined rules leads
to the answer, the topological zeta function, which turns out to be a polynomial.
For infinite subshifts one would have to go through an infinite sequence of graph
constructions and it is of course very difficult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the goal can be reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal
maps with one external parameter fΛ(x) = Λg(x). As usual, symbolic dynamics is
introduced by mapping a time series . . . xi−1xixi+1 . . . onto a sequence of symbols
. . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (A18.1)
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I(C) ζ−1
top(z)/(1 − z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1 − z2n

)
10111C
1011111C
101∞ (1 − 2z2)/(1 + z)
10111111C
101111C
1011C
101101C
10C (1 − z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1 − z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1 − 2z)/(1 − z)

Table A18.1: All ordered kneading sequences up to length seven, as well as some longer kneading
sequences. Harmonic extension H∞(1) is defined below.

and xc is the critical point of the map (i.e., maximum of g). In addition to the usual
binary alphabet we have added a symbol C for the critical point. The kneading
sequence KΛ is the itinerary of the critical point (14.5). The crucial observation is
that no periodic orbit can have a topological coordinate (see sect. A14.1) beyond
that of the kneading sequence. The kneading sequence thus inserts a border in
the list of periodic orbits (ordered according to maximal topological coordinate),
cycles up to this limit are allowed, all beyond are pruned. All unimodal maps
(obeying some further constraints) with the same kneading sequence thus have the
same set of periodic orbitsand the same topological zeta function. The topological
coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt the
convention to terminate the kneading sequence with a C, and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose the tent map

x 7→ f (x) =

{
Λx x ∈ [0, 1/2]
Λ(1 − x) x ∈ (1/2, 1] , (A18.2)

where the parameter Λ ∈ (1, 2]. The topological entropy is h = log Λ. This
follows from the fact any trajectory of the map is bounded, the escape rate is
strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(
1 −

znp

|Λp|

)
=

∏
p

(
1 −

( z
Λ

)np
)

= 1/ζtop(z/Λ)

has its leading zero at z = 1.
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The set of periodic points of the tent map is countable. A consequence of this
fact is that the set of parameter values for which the kneading sequence (14.5) is
periodic or preperiodic are countable and thus of measure zero and consequently
the kneading sequence is aperiodic for almost all Λ. For general unimodal maps
the corresponding statement is that the kneading sequence is aperiodic for almost
all topological entropies.

For a given periodic kneading sequence of period n, KΛ = PC =

s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then
the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏

p

(1 − zn
p) = (1 − z)

n−1∑
i=0

aizi , ai =

i∏
j=1

(−1)s j (A18.3)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply
replacing n by∞.

Example. Consider as an example the kneading sequence KΛ = 10C. From
(A18.3) we get the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2), see
table A18.1. This can also be realized by redefining the alphabet. The only for-
bidden subsequence is 100. All allowed periodic orbits, except 0, can can be built
from an alphabet with letters 10 and 1. We write this alphabet as {10, 1; 0}, yield-
ing the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2). The leading zero
is the inverse golden mean z0 = (

√
5 − 1)/2.

Example. As another example we consider the preperiodic kneading se-
quence KΛ = 101∞. From (A18.3) we get the topological zeta function 1/ζtop(z) =

(1 − z)(1 − 2z2)/(1 + z), see table A18.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forbidden subsequences,
namely 1012n0 where n ≥ 0. These pruning rules are respected by the alphabet
{012n+1; 1, 0}, yielding the topological zeta function above. The pole in the zeta
function ζ−1

top(z) is a consequence of the infinite alphabet.

An important consequence of (A18.3) is that the sequence {ai} has a periodic
tail if and only if the kneading sequence has one (however, their period may differ
by a factor of two). We know already that the kneading sequence is aperiodic for
almost all Λ.

The analytic structure of the function represented by the infinite series
∑

aizi

with unity as radius of convergence, depends on whether the tail of {ai} is periodic
or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1 − zN ,

for some polynomials p(z) and q(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. An aperiodic sequence of
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coefficients would formally correspond to infinite N and it is natural to assume
that the singularities will fill the unit circle. There is indeed a theorem ensuring
that this is the case [3], provided the ai’s can only take on a finite number of
values. The unit circle becomes a natural boundary, already apparent in a finite
polynomial approximations to the topological zeta function, as in figure 18.2. A
function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the
unit circle as a natural boundary for almost all topological entropies and for the
tent map (A18.2), for almost all Λ.

Let us now focus on the relation between the analytic structure of the topolo-
gical zeta function and the number of periodic orbits, or rather (18.6), the number
Nn of fixed points of f n(x). The trace formula is (see sect. 18.4)

Nn = tr T n =
1

2πi

∮
γr

dz z−n d
dz

log ζ−1
top

where γr is a (circular) contour encircling the origin z = 0 in clockwise direction.
Residue calculus turns this into a sum over zeros z0 and poles zp of ζ−1

top

Nn =
∑

z0:r<|z0 |<R

z−n
0 −

∑
zp:r<|zp |<R

z−n
0 +

1
2πi

∮
γR

dz z−n d
dz

log ζ−1
top

and a contribution from a large circle γR. For meromorphic topological zeta func-
tions one may let R → ∞ with vanishing contribution from γR, and Nn will be a
sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in
chapter 18.

We have also seen that for preperiodic kneading there will be poles on the unit
circle.

To appreciate the role of natural boundaries we will consider a (very) special
example. Cascades of period doublings is a central concept for the description of
unimodal maps. This motivates a close study of the function

Ξ(z) =

∞∏
n=0

(1 − z2n
) . (A18.4)

This function will appear again when we derive (A18.3).

The expansion of Ξ(z) begins as Ξ(z) = 1− z− z2 + z3 − z4 + z5 . . .. The radius
of convergence is obviously unity. The simple rule governing the expansion will
effectively prohibit any periodicity among the coefficients making the unit circle
a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and n.
(Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from inside).
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periodic orbits finite kneading sequences
P1 = A∞(P)

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓

H∞(P) H∞(P)

Table A18.2: Relation between periodic orbits and finite kneading sequences in a harmonic cas-
cade. The string P is assumed to contain an odd number of 1’s.

Consequently, zeros are dense on the unit circle. One can also show that singular
points are dense on the unit circle, for instance |Ξ(z)| → ∞when z→ exp(2πm/3n)
for any integer m and n.

As an example, the topological zeta function at the accumulation point of
the first Feigenbaum cascade is ζ−1

top(z) = (1 − z)Ξ(z). Then Nn = 2l+1 if n =

2l, otherwise Nn = 0. The growth rate in the number of cycles is anything but
exponential. It is clear that Nn cannot be a sum of exponentials, the contour γR

cannot be pushed away to infinity, R is restricted to R ≤ 1 and Nn is entirely
determined by

∫
γR

which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we
know that the unit circle is a natural boundary for almost all Λ. But how does
it look out there in the complex plane for some typical parameter values? To
explore that we will imagine a journey from the origin z = 0 out towards the unit
circle. While traveling we let the parameter Λ change slowly. The trip will have a
distinct science fiction flavor. The first zero we encounter is the one connected to
the topological entropy. Obviously it moves smoothly and slowly. When we move
outward to the unit circle we encounter zeros in increasing densities. The closer
to the unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyed through bizarre
bifurcations. For some special values of the parameter the unit circle suddenly gets
transparent and and we get (infinitely) short glimpses of another world beyond the
horizon.

We end this section by deriving eqs (A18.5) and (A18.6). The impenetrable
prose is hopefully explained by the accompanying tables.

We know one thing from chapter 14, namely for that finite kneading sequence
of length n the topological polynomial is of degree n. The graph contains a node
which is connected to itself only via the symbol 0. This implies that a factor
(1 − z) may be factored out and ζtop(z) = (1 − z)

∑n−1
i=0 aizi. The problem is to find

the coefficients ai.

The ordered list of (finite) kneading sequences table A18.1 and the ordered
list of periodic orbits (on maximal form) are intimately related. In table A18.2
we indicate how they are nested during a period doubling cascade. Every finite
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I(C) ζ−1
top(z)/(1 − z)

P1 = 100C 1 − z − z2 − z3

H∞(P1) = 10001001100 . . . 1 − z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .

P′ = 10001C 1 − z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1 − z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1 − z − z2 − z3 − z4

Table A18.3: Example of a step in the iterative construction of the list of kneading sequences PC.

kneading sequence PC is bracketed by two periodic orbits, P1 and P0. We have
P1 < PC < P0 if P contains an odd number of 1’s, and P0 < PC < P1 otherwise.
From now on we will assume that P contains an odd number of 1’s. The other case
can be worked out in complete analogy. The first and second harmonic of PC are
displayed in table A18.2. The periodic orbit P1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antiharmonic extension of PC
(denoted A∞(P)) and the accumulation point of the cascade is called the harmonic
extension of PC [4] (denoted H∞(P)).

A central result is the fact that a period doubling cascade of PC is not in-
terfered by any other sequence. Another way to express this is that a kneading
sequence PC and its harmonic are adjacent in the list of kneading sequences to
any order.

Table A18.3 illustrates another central result in the combinatorics of kneading
sequences. We suppose that P1C and P2C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequence P′C between P1C and P2C is
longer than 5.) The important result is that P′ (of length n′ = 6) has to coincide
with the first n′ − 1 letters of both H∞(P1) and A∞(P2). This is exemplified in
the left column of table A18.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation point H∞(P1) is

ζ−1
P1

(z)Ξ(zn1) , (A18.5)

and just before A∞(P2)

ζ−1
P2

(z)/(1 − zn2) . (A18.6)

A short calculation shows that this is exactly what one would obtain by applying
(A18.3) to the antiharmonic and harmonic extensions directly, provided that it
applies to ζ−1

P1
(z) and ζ−1

P2
(z). This is the key observation.

Recall now the product representation of the zeta function ζ−1 =
∏

p(1 −
znp). We will now make use of the fact that the zeta function associated with
P′C is a polynomial of order n′. There is no periodic orbit of length shorter than
n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the coefficients of this
polynomial coincides with those of (A18.5) and (A18.6), see Table A18.3. We
can thus conclude that our rule can be applied directly to P′C.

This can be used as an induction step in proving that the rule can be applied
to every finite and infinite kneading sequences.
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A18.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be
used to manipulate ordered sets of noncommuting objects such as symbol strings.
Let P = {p1, p2, p3, · · · } be an ordered set of prime strings, and

N = {n} =

{
pk1

1 pk2
2 pk3

3 · · · p
k j
j

}
,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered concatenation of
the “primes” pi. By construction, every string n has a unique prime factorization.
We say that a string has a divisor d if it contains d as a substring, and define the
string division n/d as n with the substring d deleted. Now we can do things like
this: defining tn := tk1

p1 tk2
p2 · · · t

k j
p j we can write the inverse dynamical zeta function

(23.3) as∏
p

(1 − tp) =
∑

n

µ(n)tn ,

and, if we care (we do in the case of the Riemann zeta function), the dynamical
zeta function as .∏

p

1
1 − tp

=
∑

n

tn (A18.7)

A striking aspect of this formula is its resemblance to the factorization of natu-
ral numbers into primes: the relation of the cycle expansion (A18.7) to the product
over prime cycles is analogous to the Riemann zeta (exercise 22.7) represented as
a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively
binary strings into ordered concatenations of prime strings. There are 2 strings of
length 1, both prime: p1 = 0, p2 = 1. There are 4 strings of length 2: 00, 01,
11, 10. The first three are ordered concatenations of primes: 00 = p2

1, 01 = p1 p2,
11 = p2

2; by ordered concatenations we mean that p1 p2 is legal, but p2 p1 is not.
The remaining string is the only prime of length 2, p3 = 10. Proceeding by
discarding the strings which are concatenations of shorter primes pk1

1 pk2
2 · · · p

k j
j ,

with primes lexically ordered, we generate the standard list of primes, in agree-
ment with table 18.1: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 10001,
10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100110, 100111,
101100, 101110, 101111, . . . . This factorization is illustrated in table A18.4.

A18.2.1 Prime factorization for spectral determinants

Following sect. A18.2, the spectral determinant cycle expansions is ob-
tained by expanding F as a multinomial in prime cycle weights tp

F =
∏

p

∞∑
k=0

Cpk tk
p =

∞∑
k1k2k3···=0

τ
pk1

1 pk2
2 p

k3
3 ···

(A18.8)
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factors string
p1 0
p2 1

p2
1 00

p1 p2 01
p2

2 11
p3 10

p3
1 000

p2
1 p2 001

p1 p2
2 011

p3
2 111

p1 p3 010
p2 p3 110
p4 100
p5 101

factors string
p4

1 0000
p3

1 p2 0001
p2

1 p2
2 0011

p1 p3
2 0111

p4
2 1111

p2
1 p3 0010

p1 p2 p3 0110
p2

2 p3 1110
p2

3 1010
p1 p4 0100
p2 p4 1100
p1 p5 0101
p2 p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5

1 00000
p4

1 p2 00001
p3

1 p2
2 00011

p2
1 p3

2 00111
p1 p4

2 01111
p5

2 11111
p3

1 p3 00010
p2

1 p2 p3 00110
p1 p2

2 p3 01110
p3

2 p3 11110
p1 p2

3 01010
p2 p2

3 11010
p2

1 p4 00100
p1 p2 p4 01100
p2

2 p4 11100
p3 p4 10100

factors string
p2

1 p5 00101
p1 p2 p5 01101
p2

2 p5 11101
p3 p5 10101
p1 p6 01000
p2 p6 11000
p1 p7 01001
p2 p7 11001
p1 p8 01011
p2 p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table A18.4: Factorization of all periodic points strings up to length 5 into ordered con-
catenations pk1

1 pk2
2 · · · p

kn
n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . . ,

p14 = 10111.

where the sum goes over all pseudo-cycles. In the above we have defined

τ
pk1

1 pk2
2 p

k3
3 ···

=

∞∏
i=1

Cpi
ki t

ki
pi . (A18.9)

exercise 22.7

A striking aspect of the spectral determinant cycle expansion is its resem-
blance to the factorization of natural numbers into primes: as we already noted
in sect. A18.2, the relation of the cycle expansion (A18.8) to the product formula
(22.8) is analogous to the Riemann zeta represented as a sum over natural numbers
vs. its Euler product representation.

This is somewhat unexpected, as the cycle weights factorize exactly with re-
spect to r repetitions of a prime cycle, tpp...p = tr

p, but only approximately (shad-
owing) with respect to subdividing a string into prime substrings, tp1 p2 ≈ tp1 tp2 .

The coefficients Cpk have a simple form only in one dimension, given by the
Euler formula (28.20). In higher dimensions Cpk can be evaluated by expanding
(22.8), F(z) =

∏
p Fp, where

Fp = 1 −

 ∞∑
r=1

tr
p

rdp,r

 +
1
2

 ∞∑
r=1

tr
p

rdp,r

2

− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the mo-
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ment, we obtain

Fp =

∞∑
r=1

Cktk, Ck = (−)kck/Dk,

Dk =

k∏
r=1

dr =

d∏
a=1

k∏
r=1

(1 − ur
a) (A18.10)

where evaluation of ck requires a certain amount of not too luminous algebra:

c0 = 1

c1 = 1

c2 =
1
2

(
d2

d1
− d1

)
=

1
2

 d∏
a=1

(1 + ua) −
d∏

a=1

(1 − ua)


c3 =

1
3!

d2d3

d2
1

+ 2d1d2 − 3d3


=

1
6

 d∏
a=1

(1 + 2ua + 2u2
a + u3

a)

+2
d∏

a=1

(1 − ua − u2
a + u3

a) − 3
d∏

a=1

(1 − u3
a)


etc.. For example, for a general 2-dimensional map we have

Fp = 1−
1

D1
t +

u1 + u2

D2
t2 −

u1u2(1 + u1)(1 + u2) + u3
1 + u3

2

D3
t3 + . . . . (A18.11)

We discuss the convergence of such cycle expansions in sect. ??.

With τ
pk1

1 pk2
2 ···p

kn
n

defined as above, the prime factorization of symbol strings is
unique in the sense that each symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Möbius inversion, sect. A18.2.

How is the factorization of sect. A18.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) all prime cycles up to
length n, i.e., we have a list of tp’s and the corresponding Jacobian matrix eigen-
values Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained
by generating all strings in order of increasing length j allowed by the symbolic
dynamics and constructing the multinomial

F =
∑

n

τn (A18.12)

where n = s1s2 · · · s j, si range over the alphabet, in the present case {0, 1}. Fac-
torizing every string n = s1s2 · · · s j = pk1

1 pk2
2 · · · p

k j
j as in table A18.4, and sub-

stituting τ
pk1

1 pk2
2 ···

we obtain a multinomial approximation to F. For example,
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τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013 , τ0012 are known functions of
the corresponding cycle eigenvalues. The zeros of F can now be easily determined
by standard numerical methods. The fact that as far as the symbolic dynamics is
concerned, the cycle expansion of a Selberg product is simply an average over all
symbolic strings makes Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings as
concatenations of prime factors. We start by computing Nn, the number of terms
in the expansion (A18.8) of the total cycle length n. Setting Cpk tk

p = znpk in
(A18.8), we obtain

∞∑
n=0

Nnzn =
∏

p

∞∑
k=0

znpk =
1∏

p(1 − znp)
.

So the generating function for the number of terms in the Selberg product is the
topological zeta function. For the complete binary dynamics we have Nn = 2n

contributing terms of length n:

ζtop =
1∏

p(1 − znp)
=

1
1 − 2z

=

∞∑
n=0

2nzn

Hence the number of distinct terms in the expansion (A18.8) is the same as the
number of binary strings, and conversely, the set of binary strings of length n
suffices to label all terms of the total cycle length n in the expansion (A18.8).

A18.3 Counting curvatures

One consequence of the finiteness of topological polynomials is that the con-
tributions to curvatures at every order are even in number, half with posi-
tive and half with negative sign. For instance, for complete binary labeling

(23.8),

c4 = −t0001 − t0011 − t0111 − t0t01t1
+ t0t001 + t0t011 + t001t1 + t011t1 . (A18.13)

We see that 23 terms contribute to c4, and exactly half of them appear with a
negative sign - hence if all binary strings are admissible, this term vanishes in the
counting expression.

exercise A18.2

Such counting rules arise from the identity

∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp
. (A18.14)
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Substituting tp = znp and using (18.14) we obtain for unrestricted symbol dynam-
ics with N letters

∞∏
p

(
1 + znp

)
=

1 − Nz2

1 − Nz
= 1 + Nz +

∞∑
k=2

zk
(
Nk − Nk−1

)
The zn coefficient in the above expansion is the number of terms contributing to
cn curvature, so we find that for a complete symbolic dynamics of N symbols and
n > 1, the number of terms contributing to cn is (N − 1)Nk−1 (of which half carry
a minus sign).

exercise A18.4

We find that for complete symbolic dynamics of N symbols and n > 1, the
number of terms contributing to cn is (N − 1)Nn−1. So, superficially, not much
is gained by going from periodic orbits trace sums which get Nn contributions of
n to the curvature expansions with Nn(1 − 1/N). However, the point is not the
number of the terms, but the cancelations between them.

Commentary

Remark A18.1. Proving the kneading sequence – topological zeta function relations.
The explicit relation between the kneading sequence and the coefficients of the topo-
logical zeta function is not commonly seen in the literature. The result can proven by
combining some theorems of Milnor and Thurston [5]. That approach is hardly instructive
in the context of sect. A18.1. Our derivation was inspired by Metropolis, Stein and Stein
classical paper [4]. For further details, consult ref. [1]. (P. Dahlqvist)

Remark A18.2. The XXX inversion formula. One gray day in 1990, in the Bristol Uni-
versity library a graduate student whose name was Jon Keating found an interesting Phys-
ical Review Letter by Dr. XXX (the policy of ChaosBook.org is not to up citation counts
for plagiarized or wrong papers), entitled “Modified Möbius inverse formula and its ap-
plications in physics.” The article starts with the Theorem 268 of Hardy and Wright [2],
then derives the generalized inversion formula. By stroke of luck Keating owned the same
edition of Hardy and Wright; the generalized inversion formula turned out to be precisely
the Theorem 269, the page overleaf. By the evening Keating penned and faxed off a com-
ment to Phys. Rev. Letters. The editors response was that Phys. Rev. Letters “does not
publish comments that are mere factual corrections,” and got instead Dr. XXX to publish
an erratum saying that “Equation (7) in the text is equivalent to Theorem 270 in Hardy and
Wright [...]. If one starts from this theorem, instead of from the original Möbius theorem,
the paper becomes more concise.”

Two weeks later Sir John Maddox, Nature editor, wrote an entire page editorial on
the XXX inversion formula, and how marvelous it was that a physicist discovered all this
new mathematics. Six months later, Physical Review A published a Rapid Communication
entitled “On XXX’s inversion formula” by a group from New Zealand. Keating requested
Physical Review to equip all its referees with a copy of Hardy and Wright, but the proposal
was turned down, and ever since there has been a stream of papers on the subject; as of
2017, the paper had over 170 citations.
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Exercises

A18.1. Lefschetz zeta function. Elucidate the relation
betveen the topological zeta function and the Lefschetz
zeta function.

A18.2. Counting the 3-disk pinball counterterms. Verify
that the number of terms in the 3-disk pinball curvature
expansion (25.53) is given by∏

p

(
1 + tp

)
=

1 − 3z4 − 2z6

1 − 3z2 − 2z3 = 1 + 3z2 + 2z3 +
z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(A18.15)

This means that, for example, c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(25.54).

A18.3. Cycle expansion denominators. Prove
that the denominator of ck is indeed Dk, as asserted
(A18.10).

A18.4. Counting subsets of cycles. The techniques de-
veloped above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynam-
ical system with a complete binary tree, a repeller map
(14.21) with two straight branches, which we label 0 and
1. Every cycle weight for such map factorizes, with a
factor t0 for each 0, and factor t1 for each 1 in its symbol
string. The transition matrix traces (18.29) collapse to
tr(T k) = (t0 + t1)k, and 1/ζ is simply∏

p

(
1 − tp

)
= 1 − t0 − t1 (A18.16)

Substituting into the identity

∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1
= 1 + t0 + t1 +

2t0t1
1 − t0 − t1

= 1 + t0 + t1 +

∞∑
n=2

n−1∑
k=1

2
(
n − 2
k − 1

)
tk
0tn−k

1 .(A18.17)

Hence for n ≥ 2 the number of terms in the expansion
?! with k 0’s and n − k 1’s in their symbol sequences is
2
(

n−2
k−1

)
. This is the degeneracy of distinct cycle eigenval-

ues in fig.?!; for systems with non-uniform hyperbolicity
this degeneracy is lifted (see fig. ?!).

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =

{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros, use bi-
nomial string counting and Möbius inversion and obtain

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣∣ n

k

µ(m)
(
n/m
k/m

)
, n ≥ 2 , k = 1, . . . , n − 1

where the sum is over all m which divide both n and k.
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Appendix A20

Averaging

Here we review some elementary notions of probability theory that will be
useful to you no matter what you do with the rest of your life.

A20.1 Moments, cumulants

The exact mean µ (or expectation or expected value E[a]) is the integral
of the random variable a with respect to its probability measure ρ, commonly
denoted

µ = E[a] = 〈a〉 =

∫
M

dx ρ(x) a(x) . (A20.1)

In ChaosBook we use 〈· · ·〉ρ or simply 〈· · ·〉 to denote an integral over state space
weighted by ρ, while · · · denotes a time average. If the average is over a (finite
or infinite) set of states labeled by discrete labels π, each state contributing with a
weight tπ, the expectation is given by

〈a〉 =
∑
π

aπtπ , (A20.2)

with probabilities in either case normalized so that 〈1〉 = 1.

The expectation 〈ak〉 is called the kth moment. The first moment is the mean µ
defined in (A20.1). For k > 1, it is more natural to consider the moments about the
mean, 〈(a − 〈a〉)k〉, called central moments. The second, and all-important central
moment is known as the variance,

σ2 = 〈(a − 〈a〉)2〉 = 〈a2〉 − 〈a〉2 , (A20.3)

or, in probabilist notation,

E[a2] = µ2 + σ2 . (A20.4)

953
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Its positive square root σ is called the standard deviation σ. As a mnemonic, think
of the width of a Gaussian being ≈ 2σ.

Standardized moment

〈(a − 〈a〉)k〉/σk (A20.5)

is the kth central moment divided by σk, a dimensionless representation of the
distribution of variance 1, independent of translations and linear changes of scale.

Moments can be collected into the (exponential) moment-generating function

question A20.1

〈eβa〉 = 1 +

∞∑
k=1

βk

k!
〈ak〉 . (A20.6)

Why the prefactor 1/k! (a Taylor series), and not 1/k (a logarithmic series), or 1
(discrete Laplace transform or Z-transform)? In statistical, stochastic and quan-
tum mechanics / quantum field theory applications one is solving linear ODEs or
PDEs, and their solutions are always exponential in form.

Hardly any experiment measures ak for k > 2 -that might require a lot of data-
and raising approximate numbers to high powers is not smart: if |a| < 1, ak gets
very small very fast, and conversely if |a| > 1, ak gets very big. Still, with a bit
of hindsight, one finds that moments do play a natural, fundamental role if folded
into the cumulant-generating function

ln〈eβa〉 =

∞∑
k=1

βk

k!
〈ak〉c , (A20.7)

where the subscript c indicates a cumulant, or, in statistical mechanics and quan-
tum field theory contexts, the ‘connected Green’s function’. Were 〈ak〉 = 〈a〉k, we
would have only one term in the series (A20.7), ln〈eβa〉 = ln eβ〈a〉 = β〈a〉 , and
that would be that. So cumulants 〈ak〉c measure fluctuations about the mean 〈a〉.
Indeed, expanding the logarithm of the series (A20.6), it is easy to check that the
first cumulant is the mean, the second is the variance,

〈a2〉c = 〈(a − 〈a〉)2〉 = 〈a2〉 − 〈a〉2 = σ2 , (A20.8)

and 〈a3〉c is the third central moment, or the skewness,

〈a3〉c = 〈(a − 〈a〉)3〉 = 〈a3〉 − 3〈a2〉〈a〉 + 2〈a〉3 . (A20.9)

The higher cumulants, however, are not central moments. The fourth cumulant,

〈a4〉c = 〈(a − 〈a〉)4〉 − 3〈(a − 〈a〉)2〉2

= 〈a4〉 − 4〈a3〉〈a〉 − 3〈a2〉2 + 12〈a2〉〈a〉2 − 6〈a〉4 , (A20.10)

rewritten in terms of standardized moments, is known as the kurtosis:

1
σ4 〈a

4〉c =
1
σ4 〈(a − 〈a〉)

4〉 − 3 . (A20.11)
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The deep reason why cumulants are preferable to moments is that for a nor-
malized Gaussian distribution all cumulants beyond the second one vanish, so they
are a measure of deviation of statistics from Gaussian (see example 24.3). For a

exercise A20.1
‘free’ or ‘Gaussian’ field theory the only non-vanishing cumulant is the second
one; for field theories with interactions the derivatives of ln〈exp(βa)〉 with respect

question A20.2
to β then yield cumulants, or the Burnett coefficients (24.14), or ‘effective’ n-point
Green functions or n-point correlations.

So, what’s so special about Gaussians? example A20.1

p. 956

A20.1.1 Covariance matrix

For a multi-component observable, the second central moment is called the co-
variance matrix

Qi j = 〈(ai − 〈ai〉)(a j − 〈a j〉)〉 . (A20.12)

As Q is a symmetric, diagonalizable matrix, with eigenvalues σ2
k and orthog-

onal eigenvectors e(k), you can visualize such multivariate normal distribution as
a cigar-shaped cloud of points, with orthonormal principal axes of standard devi-
ation (singular value) lengths σk. A cigar fat in a few directions, negligibly thin

section 6.1
in the remaining directions motivates reduced-dimensional, linear modeling of the
data by a retaining only a hyperplane spanned by the dominant directions; depend-
ing on the community, this is called the principal component analysis (PCA),
the proper orthogonal decomposition (POD), the singular value decomposition
(SVD), or the Karhunen–Loéve transform.

A20.1.2 Empirical means

Given a set of N iid (independently identically distributed) data samples {ai},
where “iid” means that probability measures ρ factorize,

ρ(ai, a j) = ρ(ai) ρ(a j) , i , j , (A20.13)

the empirical mean of observable a is the average

µ̂ =
1
N

N∑
i=1

ai . (A20.14)

example A20.2

p. 957

µ̂ is unbiased if E[µ̂] = µ; we verify that in example A20.3. However, the unbiased
sample variance E[σ̂2] = σ2 of observable a is defined differently, as

σ̂2 =
1

N − 1

N∑
i=1

(ai − â)2 . (A20.15)
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What’s up with the N − 1 divisor? See

example A20.3

p. 959

example A20.4

p. 960

Commentary

Question A20.1. Henriette Roux asks
Q Isn’t expectation value (A20.6) the characteristic function?
A With imaginary exponent, β → it and the observable defined in the momentum space,
a = a(p), the expectation value (A20.6) does have the form of a characteristic function,
i.e., the Fourier transform of the probability density function

E[eip x] =

∫
M

dx ρ(x) eipx . (A20.16)

Remark A20.1. Gaussian integrals. Kadanoff [2] has a nice discussion of Gaussian
integrals, the central limit theorem and large deviations in Chap. 3 Gaussian Distributions,
available online here.

section A20.1

Question A20.2. Henriette Roux muses
Q Somehow cumulants seem to fill my head with ideas — only I don’t exactly know
what they are!
A A scholarly aside, safely ignored, on where the characteristic state function s(β) (20.10)
fits into the grander scheme of things: in statistical mechanics and field theory, the parti-
tion function and the Helmholtz free energy have form

Z(β) = exp(−βF) , F(β) = −
1
β

ln Z(E) , (A20.17)

so in that sense 〈eβa〉 is a ‘partition function’, and s(β) in (20.10) is the associated ‘free
energy’. Expanding the logarithm of the series (A20.6) is easy for the first few terms,
but it quickly gets old. The smart way to do this, explained in ref. [1], is to write down
the the Dyson-Schwinger equations that generate recursively the terms in the Helmholtz
free energy expansion (connected Green’s functions) and Gibbs free energy (1-particle
irreducible Green’s functions).

References

[1] P. Cvitanović, Field Theory, Notes prepared by E. Gyldenkerne (Nordita,
Copenhagen, 1983).

[2] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormaliza-
tion (World Scientific, Singapore, 2000).
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A20.2 Examples

Example A20.1. Gaussian minimizes information. Shannon information entropy is
given by

S [ρ] = −〈ln ρ〉 = −

∫
M

dx ρ(x) ln ρ(x) , (A20.18)

where ρ is a probability density. Shannon thought of − ln ρ as ‘information’, very roughly
in the sense that if -for example- ρ(x) = 2−6, it takes − ln ρ = 6 binary bits of ‘information’
to specify the probability density ρ at the point x. Information entropy (A20.18) is the
expectation value (or average) of information.

A function ρ ≥ 0 is an arbitrary function, of which we only require that it is normal-
ized as a probability,∫

M

dx ρ(x) = 1 , (A20.19)

has a mean value,∫
M

dx x ρ(x) = µ , (A20.20)

and has a variance∫
M

dx x2ρ(x) = µ2 + σ2 . (A20.21)

As ρ can be arbitrarily wild, it might take much “information” to describe it. Is there
a function ρ(x) that contains the least information, i.e., that minimizes the information
entropy (A20.18)?

To find it, we minimize (A20.18) subject to constraints (A20.19)-(A20.21), imple-
mented by adding Lagrange multipliers λ j

C[ρ] =

∫
M

dx ρ(x) ln ρ(x)

+λ0

(∫
M

dx ρ(x) − 1
)

+ λ1

(∫
M

dx x ρ(x) − µ
)

+λ2

(∫
M

dx x2ρ(x) − µ2 − σ2
)
, (A20.22)

and looking for the extremum δC = 0,

δC[ρ]
δρ(x)

= (ln ρ(x) + 1) + λ0 + λ1x + λ2x2 = 0 , (A20.23)

so

ρ(x) = e−(1+λ0+λ1 x+λ2 x2) . (A20.24)

The Lagrange multipliers λ j can be expressed in terms of distribution parameters µ and σ
by substituting this ρ(x) into the constraint equations (A20.19)-(A20.21). We find that the
probability density that minimizes information entropy is the Gaussian

ρ(x) =
1
√

2πσ
e−

(x−µ)2

2σ2 . (A20.25)
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Participant Stress (X) Satisfaction (Y)
1 11 7
2 25 1
3 19 4
4 7 9
5 23 2
6 6 8
7 11 8
8 22 3
9 25 3
10 10 6

Table A20.1: Stress (1 to 30 scale) vs. happiness (1 to 10 scale) for a sample of 10 participants.

In what sense is that the distribution with the ‘least information’? As we saw in the
derivation of the cumulant expansion eq. (20.17), for a Gaussian distribution all cumu-
lants but the mean µ and the variance σ2 vanish, it is a distribution specified by only two
‘informations’, the location of its peak and its width.

click to return: p. 954

Sara A. Solla

Example A20.2. I get stress, but I can’t get no satisfaction. A group of participants
in a study of the correlation between stress and life satisfaction completed a questionnaire
on how stressed they felt, and how satisfied they felt with their lives. Participants’ scores
are given in table A20.1.

We start our statistical analysis in the usual way, by evaluating the empirical means
(A20.14) of the stress and satisfaction,

µ̂X =
1
10

10∑
i=1

Xi = 15.9 , µ̂Y =
1
10

10∑
i=1

Yi = 5.1 ,

and the unbiased variances (A20.15) and standard deviations,

σ̂2
X =

1
10 − 1

10∑
i=1

(Xi − µ̂X)2 = 58.1 , σ̂X = 7.6 .

σ̂2
Y =

1
10 − 1

10∑
i=1

(Yi − µ̂Y )2 = 8.1 , σ̂Y = 2.8 .

The means are halfway their respective ranges, but the standard deviations are huge, they
span across the available ranges. To figure out what is going on, one should always start
with visualizing the data:

10 15 20 25
0

2

4

6

8
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So the empirical means are meaningless - the subjects are either unhappy or happy,
there is nobody in between. Standard deviations of such bimodal distributions are not
helpful either, as they are measuring deviations from the non-existent average participant.
However, the linear fit

Y = 11 − .36 X (A20.26)

is pretty good. Clearly this is 2-dimensional data set, so we compute the stressed/happy
covariance

QXY =
1

10 − 1

10∑
i=1

(Xi − µ̂X)(Yi − µ̂Y ) = −20.8 .

Note that the covariance between X and Y is negative. The ellipsoid given by the covari-
ance matrix

Q =

(
σ̂2

X QXY
QXY σ̂2

Y

)
,

with singular values (square roots of eigenvalues) and eigenvectors

{σ1, σ2} = {8.10, 0.76} : e(1) = (0.94,−0.34) , e(2) = (0.34, 0.94) ,

gives a good description of the data, aligned along e(1) (of slope close to the linear fit
(A20.26)), with small transverse fluctuations along e(2). The only problem is that we are
plotting lemons vs. roses.

For this reason, statisticians like to study pairwise Pearson correlation coefficients,
such as

ρXY =
QXY

σ̂Xσ̂Y
= −0.9573 ,

for which the deviation 1 − |ρXY | is a measure for how well the data is fit by a linear fit.

One might be tempted to study the full correlation coefficients matrix, a somewhat
contrived “standardized” or “whitened” rescaling (A20.5) of the covariance matrix (A20.12),

Corr(X,Y) =

(
1 ρXY
ρXY 1

)
=

(
σ̂X 0
0 σ̂Y

)−1 (
σ̂2

X QXY
QXY σ̂2

Y

) (
σ̂X 0
0 σ̂Y

)−1

.

Its eigenvalues {1 + ρXY , 1− ρXY } and eigenvectors are a dimensionless least-squares fit to
the data, with the ellipsoid’s principal axes along the diagonals

{σ1, σ2} = {1.40, 0.207} : e(1) =
1
√

2
(1,−1) , e(2) =

1
√

2
(1, 1) .

The pairwise correlation coefficients have some utility in singling out the signs of slopes
in which data is nearly linear (ρXiX j close to ±1). The transformation from the covariance
matrix to the correlations matrix is not a similarity transformation, so while the covariance
matrix is a fundamental object in the multivariate cumulant expansions, the correlation
matrices are not used in physics, only the 2-dimensional planes spanned by ρXiX j are
informative.

Bonus reading: “The Economist” May 2, 2013 article (if you can get past the pay-
wall), or, more seriously, D. Kahneman and A. Deaton -the 2002 Nobel Memorial Prize
in Economic Sciences- about the correlation between income and happiness.

Citing from the Economist: “THE Easterlin paradox, named for economist Richard
Easterlin, reckons that higher incomes do not necessarily make people happier. Since Mr
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Easterlin first made his conjecture in 1974, economists’ views have evolved: money mat-
ters, studies suggest, but only up to a point. Become rich enough, and a bigger paycheque
no longer leads to more happiness. Yet a new NBER working paper by economists Bet-
sey Stevenson and Justin Wolfers, both of the University of Michigan, casts doubt on this
chestnut. They use a trove of data generated by Gallup, a polling firm, from its World
Poll. Gallup asked respondents around the world to imagine a ‘satisfaction ladder’ in
which the top step represents a respondent’s best possible life. Those being polled are
then asked where on the ladder they stand (from zero to a maximum of 10), and how
much they earn. Though some countries seem happier than others, people everywhere
report more satisfaction as they grow richer. Even more striking, the relationship between
income and happiness hardly changes as incomes rise. Moving from rich to richer seems
to raise happiness just as much as moving from poor to less poor. One never really grows
tired of earning more.”

Table A20.1 is at odds with this conclusion. Maybe Ignacio just made it up? Penny
for your thoughts.

click to return: p. 954

I. Taboada, P. Cvitanović & S.A. Solla

Example A20.3. Unbiased sample variance.

Why is the empirical estimate for the unbiased sample variance

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 (A20.27)

defined with the N − 1 divisor?

At this point your instructor mumbled something about “degrees of freedom” and
moved on, but why mumble if you can compute? By the definition (A20.1), expectations
of unbiased estimates are exact,

E[µ̂] = µ , E[σ̂2] = σ2 . (A20.28)

That is true of the empirical mean (A20.14),

E[µ̂] =
1
N

N∑
i=1

E[ai] =
1
N

N∑
i=1

µ = µ ,

but the empirical estimate for the sample variance written as average over the sum of
deviations square does not quite work out. Assume first that the empirical variance is
given by the usual average

σ̄2 =
1
N

N∑
i=1

(ai − µ̂)2 =
1
N

N∑
i=1

(
a2

i − 2µ̂ai + µ̂2
)

=
1
N

N∑
i=1

a2
i −

1
N2

 N∑
i=1

ai

2

=
1
N

N∑
i=1

a2
i −

1
N2

N∑
i=1

N∑
j=1

aia j =
N − 1

N2

N∑
i=1

a2
i −

1
N2

N∑
i, j

aia j . (A20.29)

By the iid independence of individual measurements (A20.13), and σ2 = E[a2] − µ2

relation (A20.4), the expectation of σ̄2 is
exercise A20.2
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E
[
σ̄2

]
=

N − 1
N2

N∑
i=1

E
[
a2

i

]
−

1
N2

N∑
i, j

E
[
aia j

]
=

N − 1
N

(
E

[
a2

i

]
− E [ai]E

[
a j

])
=

N − 1
N

(
E

[
a2

]
− µ2

)
=

N − 1
N

σ2 . (A20.30)

This attempt at a definition of empirical variance σ̄2 thus violates the ‘unbiased’ condition
(A20.28). The unbiased empirical variance (A20.15), σ̂2 = Nσ̄2/(N − 1) , is correct for
any sample size, not only in the N → ∞ limit. What happened? ai, a j are idd only for
the N2 − N off-diagonal covariance elements; the squares a2

j along the diagonal do not
contribute to “covariance.”

click to return: p. 955

(continued in example A20.4) Sara A. Solla

Example A20.4. Standard error of the mean. (Continued from example A20.3)

Think now of estimating the empirical mean (A20.14) of observable a as j = 1, 2, · · · ,N
attempts to estimate the mean µ̂ j, each based on M data samples

µ̂ j =
1
M

M∑
i=1

ai . (A20.31)

Every attempt yields a different sample mean, so µ̂ j itself is an idd random variable, with
unbiased expectation E[µ̂] = µ. What is its variance

Var[µ̂] = E[(µ̂ − µ)2] = E[µ̂2] − µ2 ?

This calculation is very much the same as the one carried out in example A20.3, resulting
in

exercise A20.3

Var[µ̂] =
1
N
σ2

The quantity
√

Var[µ̂] = σ/
√

N is called the standard error of the mean (SEM); it tells
us that the accuracy of the determination of the mean µ increases as the 1/

√
N, where N

is the number of estimate attempts, each based on the same number of data points.
click to return: p. 955

Sara A. Solla

Exercises

A20.1. Cumulants. Show that for a Gaussian probability
distribution (a) all odd moments vanish, and (b) all cu-
mulants in (A20.7) vanish for n ≥ 3, 〈an〉c = 0 .

(P. Cvitanović)

A20.2. Unbiased sample variance. Empirical estimates of
the mean µ̂ and the variance σ̂2 are said to be “unbiased”

if their expectations equal the exact values,

E[µ̂] = µ , E[σ̂2] = σ2 . (A20.32)

(a) Verify that the empirical mean

µ̂ =
1
N

N∑
i=1

ai (A20.33)
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is unbiased.
(b) Show that the naive empirical estimate for the sam-
ple variance

σ̄2 =
1
N

N∑
i=1

(ai − µ̂)2 =
1
N

N∑
i=1

a2
i −

1
N2

 N∑
i=1

ai

2

is biased. Hint: note that in evaluating E[· · · ] you have
to separate out the diagonal terms in N∑

i=1

ai

2

=

N∑
i=1

a2
i +

N∑
i, j

aia j . (A20.34)

(c) Show that the empirical estimate of form

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 , (A20.35)

is unbiased.
(d) Is this empirical sample variance unbiased for any
finite sample size, or is it unbiased only in the N → ∞
limit?

Sara A. Solla

A20.3. Standard error of the mean.

Now, estimate the empirical mean (A20.33) of observ-
able a by j = 1, 2, · · · ,N attempts to estimate the mean
µ̂ j, each based on M data samples

µ̂ j =
1
M

M∑
i=1

ai . (A20.36)

Every attempt yields a different sample mean.

(a) Argue that µ̂ j itself is an idd random variable, with
unbiased expectation E[µ̂] = µ.

(b) What is its variance

Var[µ̂] = E[(µ̂ − µ)2] = E[µ̂2] − µ2

as a function of variance expectation (A20.32) and N,
the number of µ̂ j estimates? Hint; one way to do this is
to repeat the calculations of exercise A20.2, this time for
µ̂ j rather than ai.

(c) The quantity
√

Var[µ̂] = σ/
√

N is called the stan-
dard error of the mean (SEM); it tells us about the ac-
curacy of the determination of the mean µ. How does
the SEM decrease as the N, the number of estimate at-
tempts, increases?

Sara A. Solla

exerAppAver - 3dec2019 ChaosBook.org edition16.4.8, May 25 2020



Appendix A22

Spectral determinants

We rederive here the dynamical zeta function (22.11) by the transfer oper-
ator technique. This is done only to accommodate the reader versed in
statistical mechanics transfer operators; this appendix can be skipped in

good conscience by anybody else.

A22.1 Transfer operators

Consider Mandelbrot’s favorite example of a fractal, the Cantor set. The
set is generated by a single rule: replace a “mother” interval l by two “daughters”
of length l/3; repeat this replacement ad infinitum. Given the rule, one can imme-
diately compute the Hausdorff dimension; at nth level the set can be covered with
2n intervals of size 3−n, hence D = log 2/ log 3.

A transfer operator is a generalization of such rule to non–wandering sets for
which the dynamics generates an infinity of scales, not just a single scale as in the
Cantor set case. For example, for a repeller like the one illustrated in figure 14.9
the dynamics associates with each “mother" interval Mm, m = s2s3 · · · sn, two
“daughter" intervalsMd, d = 0s2 · · · sn, 1s2 · · · sn, at the next level of resolution.
The transfer operator appropriate to the evaluation of (27.2) is defined by the set
of daughter/mother ratios

Tdm =Md/Mm (A22.1)

For the Cantor set Tdm = 1/3 for all d; for a generic dynamical non–wandering
set Tdm takes on infinity of values. The sum (27.2) can now be expressed in terms
of products of transfer operators:

Γn =
∑

s1 s2···sn

Ts1 s2···sn,s2···snTs2···sn,s3···sn · · · Tsn,. (A22.2)
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As it stands, this is a purely formal rewrite of (27.2); the “mother" to “daughters"
relations place the pieces of a non–wandering set onto a hierarchical tree, and
that can be done in various ways. To proceed, we require that the tree provide
a hierarchical nesting of the scaling ratios in the following sense: the value of
Ts1 s2···sn,s2···sn should depend strongly on the head of the symbol sequence s1s2 · · · ,
and weakly on the tail · · · sn−1sn. More precisely, we assume that the specification
of first k symbols determines Ts1 s2···sn,s2···sn , n > k, within accuracy ∆k

Ts1 s2···sn,s2···sn = T̃ (k)
s1 s2···sk ,s2···sk+1 + O(∆k), (A22.3)

and that |∆k| decrease monotonically towards zero with increasing k. Here T̃ (k) is
an approximate “mean" scaling for all Tdm with the same first k symbols. Replac-
ing the infinite number of scaling ratios (A22.1) by a finite matrix T̃ (k) amounts
to approximating the non–wandering set by a Cantor set with a finite number of
scales.

An example of such hierarchy is the 1-dimensional repeller of figure 14.9,
for which Tdm ≈ 1/| f ′(x)|, where f ′(x) is a slope of the mapping evaluated at a
point x inside the dth neighborhood. With the labeling conventions of figure 14.9,
the points whose itineraries have the same head s1s2 . . . sn are spatially close, and
hence the associated derivatives and transfer matrix elements are close.

Now we can study the transfer operator T as a limit of T̃ (k) finite matrix ap-
proximations. For example, for the binary labeled repeller of figure 14.9, k = 2
level approximation to T is given by

T̃ (2) =


T̃00.00 T̃00.01 0 0

0 0 T̃01.10 T̃01.11
T̃10.00 T̃10.01 0 0

0 0 T̃11.10 T̃11.11


For binary symbolic dynamics T̃ is in general a sparse matrix, as the only nonvan-
ishing entries in the m = s2s3 . . . sk+1 column of T̃dm are in the rows 0s2 . . . sk and
1s2 . . . sk.

In the kth order approximation the sums in (A22.2) reduce to matrix multipli-
cation

Γn ≈ Γ
(k)
n =

∑
s1 s2···sn

T̃ (k)
s1 s2···sk ,s2···sk+1 T̃ (k)

s2···sk+1,s3···sk+2 · · · Tsn,.

=
∑

s1 s2···sk

∑
δ1···δk

(
T̃n−k

(k)

)
s1 s2···sk ,δ1···δk

Mδ1···δk , . (A22.4)

Here ~l is the vector of all intervalsMi at the kth level. It plays the same role as
the prefactors ai in (1.5); in the n � k limit, the kth level approximation (A22.4)
is dominated by the leading eigenvalue of T̃ (k)

Γ
(k)
n ∝ [λ(k)

max]n

and, as far as the n → ∞ limit is concerned, the pre-asymptotic intervals ~l (k)

contribute only an irrelevant prefactor (unless ~l (k) happens to be normal to the
leading eigen-direction of T̃ (k)). This method of evaluating sums is familiar from
statistical mechanics, whence the designation “transfer operator.”
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Figure A22.1: The survival probability Γn can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

A22.1.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta func-
tions with richer analytic structure than just zeros and poles, as in the case of
intermittency (chapter 29): Γn , the trace sum (21.22), can be expressed in terms
of the dynamical zeta function (22.11)

1/ζ(z) =
∏

p

(
1 −

znp

|Λp|

)
. (A22.5)

as a contour integral

Γn =
1

2πi

∮
γ−r

z−n
(

d
dz

log ζ−1(z)
)

dz , (A22.6)

where a small contour γ−r encircles the origin in negative (clockwise) direction.
exercise A22.1

If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
write the logarithmic derivative of ζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (21.22) is recovered. For hyperbolic maps, cycle

chapter 23
expansions or other techniques provide an analytical continuation of the dynam-
ical zeta function beyond the leading zero; we may therefore deform the original
contour into a larger circle with radius R which encircles both poles and zeros of
ζ−1(z), as depicted in figure A22.1. Residue calculus turns this into a sum over the
zeros zα and poles zβ of the dynamical zeta function, that is

Γn =

zeros∑
|zα |<R

1
zn
α
−

poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (A22.7)

where the last term gives a contribution from a large circle γ−R . It would be a
miracle if you still remember this, but in sect. 1.4.3 we interpreted Γn as fraction
of survivors after n bounces, and defined the escape rate γ as the rate of the find
exponential decay of Γn. We now see that this exponential decay is dominated by
the leading zero or pole of ζ−1(z).
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A22.1.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the topo-
logical zeta function (18.17) to a function that assigns different weights to different

chapter 18
cycles:

ζ(z) = exp
∞∑

n=1

zn

n

 ∑
xi∈Fix f n

tr
n−1∏
j=0

g( f j(xi))

 .
Here we sum over all periodic points xi of period n, and g(x) is any (matrix

exercise A22.2
valued) weighting function, where the weight evaluated multiplicatively along the
trajectory of xi.

By the chain rule (4.43) the stability of any n-cycle of a 1-dimensional map
is given by Λp =

∏n
j=1 f ′(xi), so the 1-dimensional map cycle stability is the

simplest example of a multiplicative cycle weight g(xi) = 1/| f ′(xi)|, and indeed -
via the Perron-Frobenius evolution operator (19.9) - the historical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition such as
the map of example 19.1, the dynamical zeta function is given by a finite polyno-
mial, a straightforward generalization of the topological transition matrix deter-
minant (17.1). As explained in sect. 18.3, for a finite [N×N] dimensional matrix
the determinant is given by∏

p

(1 − tp) =

N∑
n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total length n.

example A22.1

p. 967
chapter 18

More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are the
stabilities of the two fixed points. Clearly the information carried by the infinity
of longer cycles is highly redundant; we have learned in chapter 23 how to exploit
this redundancy systematically.

A22.1.3 Perron-Frobenius-Ruelle theory

The transfer operators were introduced by Ruelle [2] as a generalization of the
transfer matrices of equilibrium statistical mechanics. For β = 0 the evolution
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operator (20.14) is the kernel of the Perron-Frobenius operator (19.25). For the
generalized evolution operators it presumably suffices to refer to Ruelle, who in-
troduced [3] the Ruelle-Araki operator(

Lt ◦ ρ
)

(x) =
∑

y= f −t(x)

eA(y)ρ(y) . (A22.8)

and who always defines his dynamical zeta functions weighted by multiplicative
factors; later papers only rediscover that.

In the mathematical literature, the dominant eigenvalue of the L operator is
related to the averages of the dynamical system by using a theorem of Ruelle
(or one of its extensions). Inspired by the statistical mechanics of spin systems,
Ruelle extended the Perron-Frobenius theorem for matrices to operators in Banach
spaces of bounded functions. He uses the evolution operator introduced in (20.15)
with β = 0 and shows that it can be used to compute the averages of the function
h the operator acts on. To do that he assumes that the operator has an isolated
largest eigenvalue. With that assumption, he shows that the operator has an adjoint
operator acting on the space of measures and that the measure associated with the
largest eigenvalue is the invariant measure of the system. A theorem (the Perron-
Frobenius-Ruelle theorem) shows that averages of h with this measure can be
computed by projecting the function onto the eigenspace of this largest eigenvalue.

The method we use is slightly different. We do not use the action of the
operator to compute the averages, but rather rely on the eigenvalue having a few
derivatives around β = 0. The function we want to average is incorporated directly
into the definition of the evolution operator; different averages require different
operators. The approach is more in the spirit of statistical mechanics, in that we
compute a function s(β) that is assumed to have a few derivatives with respect to
β. That this function exists can be derived from an application of the extensions
of Ruelle-Bowen results.

Commentary

Remark A22.1. spectral determinants vs. resolvents. In 30 years in mathematical
physics [1], L. D. Faddeev writes: “For a finite-dimensional operator A the characteristic
determinant ∆(s) = det (A − sI) satisfies the equation

d
ds

ln ∆(s) = −tr R(s) ,

where R(s) is the resolvent of the operator A, R(s) = (A− sI)−l. This equation can be taken
as the basis of the general definition of ∆(s); however, this requires regularization of the
trace of the resolvent, which is less trivial if A has a continuous spectrum. The evolution of
the concept of the characteristic determinant is connected with the development of devices
for this regularization. From a technical viewpoint I regard ∆(s) as more convenient
than the ζ-function ζ(s) = tr A−s, popularized in the work of Atiyah and Singer on index
theory.”
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A22.2 Examples

Example A22.1. A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (19.37) factorizes as Λs1 s2...sn = Λm

0 Λn−m
1 ,

where m is the total number of times the letter s j = 0 appears in the p symbol sequence,
so the traces in the sum (21.24) take the particularly simple form

tr T n = Γn =

(
1
|Λ0|

+
1
|Λ1|

)n

.

The dynamical zeta function (22.10) evaluated by resumming the traces,
exercise A22.3

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| , (A22.9)

is indeed the determinant det (1 − zT ) of the transfer operator (19.39), which is almost as
simple as the topological zeta function (18.24).

click to return: p. 965

Exercises

A22.1. Contour integral for survival probability. Perform
explicitly the contour integral appearing in (A22.6).

A22.2. General weights. (easy) Let f t be a flow and Lt the
operator

Ltg(x) =

∫
dy δ(x − f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will
try and determine some of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the
most general form of w is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · · g( f n−1(x)) ,

for some g that can be multiplied. Could g be a
function from Rn1 7→ Rn2 ? (ni ∈ N.)

A22.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-
tion

1/ζ(z) =
∏

p

(
1 −

znp

|Λp|

)

exerAppDet - 6dec2019 ChaosBook.org edition16.4.8, May 25 2020

http://mi.mathnet.ru/eng/tm2122
http://mi.mathnet.ru/eng/tm2122
http://mi.mathnet.ru/eng/tm2122
http://dx.doi.org/10.1007/BF01654281
http://dx.doi.org/10.1007/BF01654281
http://dx.doi.org/10.1007/BF01654281
http://dx.doi.org/10.1007/bf01403069
http://dx.doi.org/10.1007/bf01403069
http://dx.doi.org/10.1007/bf01403069


EXERCISES 969

for the piecewise-linear map (19.37) with the left
branch slope Λ0, the right branch slope Λ1.

x

f (x)

f0 f1

x

f (x)

s10s00

s01 s11

(b) What if there are four different slopes s00, s01, s10,
and s11 instead of just two, with the preimages
of the gap adjusted so that junctions of branches
s00, s01 and s11, s10 map in the gap in one iteration?
What would the dynamical zeta function be?
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Appendix A24

Deterministic diffusion

Basic notions of discretizing continuum are introduced: dicretized fields on
lattices, lattice derivatives, lattice Laplacians. Invariance of a given the-
ory under (discrete) translations motivates us to consider periodic lattices,

and use the eigenmodes of translation generators to diagonalise (discrete Fourier
transformations) non-local operators, such as Laplacians, and invert them.

We then use these tools to study in sect. A24.5 some of the simplest examples
of deterministic systems that exhibit “deterministic diffusion,” the sawtooth and
cat maps.

A24.1 Lattice derivatives

In order to set up continuum field-theoretic equations which describe the evolution
of spatial variations of fields, we need to define lattice derivatives.

Consider a smooth function φ(x) evaluated on a d-dimensional lattice

φ` = φ(x) , x = a` = lattice point , ` ∈ Zd , (A24.1)

where a is the lattice spacing. Each set of values of φ(x) (a vector φ`) is a pos-
sible lattice state (or ‘configuration’). Assume the lattice is hyper-cubic, and let
n̂µ ∈ {n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d positive
directions. The forward lattice derivative is then

(∂µφ)` =
φ(x + an̂µ) − φ(x)

a
=
φ`+n̂µ − φ`

a
. (A24.2)

The backward lattice derivative is defined as the transpose

(∂µφ)>` =
φ(x − an̂µ) − φ(x)

a
=
φ`−n̂µ − φ`

a
. (A24.3)
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Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the shift operator (or stepping operator) in the direction µ(

σµ
)
` j

= δ`+n̂µ, j . (A24.4)

As σ will play a central role in what follows, it pays to understand what it does.

In computer dicretizations, the lattice will be a finite d-dimensional hyper-
cubic lattice

φ` = φ(x) , x = a` = lattice point , ` ∈ (Z/L)d , (A24.5)

where a is the lattice spacing and there are Ld points in all. For a hyper-cubic
lattice the translations in different directions commute, σµσν = σνσµ, so it is
sufficient to understand the action of (A24.4) on a 1-dimensional lattice.

Let us write down σ for the 1-dimensional case in its full [L×L] matrix glory.
Writing the finite lattice shift operator (A24.4) as an ‘upper shift’ matrix,

σ =



0 1
0 1

0 1
. . .
0 1

0 0


, (A24.6)

is no good, as σ so defined is nilpotent, and after L steps the particle marches
off the lattice edge, and nothing is left, σL = 0. The right way to approximate
an infinite lattice by a finite one is to insist that the discretization preserve the
translational invariance, and replace (A24.6) by a lattice operator periodic in each
n̂µ direction. On a periodic lattice every point is equally far from the ‘boundary’
L/2 steps away, the ‘surface’ effects are equal for all points, and the shift operator
acts as a cyclic permutation matrix

σ =



0 1
0 1

0 1
. . .
0 1

1 0


, (A24.7)

with ‘1’ in the lower left corner assuring periodicity.

Applied to the lattice state φ = (φ1, φ2, · · · , φL), the shift operator translates
the state by one site, σφ = (φ2, φ3, · · · , φL , φ1). Its transpose translates the config-
uration the other way, so the transpose is also the inverse, σ−1 = σT . The partial
lattice derivative (A24.3) can now be written as a multiplication by a matrix:

∂µφ` =
1
a

(
σµ − 1

)
` j
φ j ,
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and higher derivatives follow by the binomial theorem

∂i = σi − 1
∂2

i = σ2
i − 2σi + 1

∂k
i =

k∑
j=0

(−1) j
(
k
j

)
σ

k− j
i . (A24.8)

In the 1-dimensional case the [L×L] matrix representation of the lattice derivative
is:

∂ =
1
a



−1 1
−1 1

−1 1
. . .

1
1 −1


. (A24.9)

To belabor the obvious: On a finite lattice of L points a derivative is simply a finite
[L×L] matrix. Continuum field theory is a world in which the lattice is so fine that
it looks smooth to us. Whenever someone calls something an “operator,” think
“matrix.” For finite-dimensional spaces a linear operator is a matrix; things get
subtler for infinite-dimensional spaces.

A24.1.1 Lattice Laplacian

In the continuum, integration by parts moves ∂ around,∫
[dx]φ>∂2φ→ −

∫
[dx]∂φ> · ∂φ ;

on a lattice this amounts to a matrix transposition[(
σµ − 1

)
φ
]
> ·

[(
σµ − 1

)
φ
]

= φ> ·
(
σ−1
µ − 1

) (
σµ − 1

)
φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂> =
1
a

(
σ−1 − 1

)
= −σ−1 1

a
(σ − 1) = −σ−1∂ .

Integrating by parts is now “summing by parts.” Let ai and bi be n-periodic vec-
tors, and (∂a)i = ai − ai−1 be the difference operator. Then

n∑
i=1

(∂a)ibi = −

n∑
i=1

ai(∂b)i+1 . (A24.10)
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The symmetric (self-adjoint) combination � = −∂>∂

� = −
1
a2

d∑
µ=1

(
σ−1
µ − 1

) (
σµ − 1

)
=

1
a2

d∑
µ=1

(
σ−1
µ + σµ − 2 1

)
=

1
a2 (T − 2d1) (A24.11)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [L×L] matrix representation of the
lattice Laplacian is:

� =
1
a2



−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2


. (A24.12)

The lattice Laplacian measures the second variation of a field φ` across three
neighboring sites: it is spatially non-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
lattice, φ` = φ(a`), where φ(a`) is defined by the value of the continuum function
φ(x) = x2 at the lattice point x` = a`.

The Euclidean free scalar particle propagator can thus be written as

∆ =
1

1 − h
s a2�

. (A24.13)

In what follows it will be convenient to reinterpret and rescale this drunken-walk
propagator ∆, and consider instead the “free field action” of form

S [φ] = −
1
2
φ> · M−1 · φ . (A24.14)

where the “free” or “bare” massive scalar propagator M is parametrized as

M =
1

m2 − �
. (A24.15)

What this parametrization says is that the mass squared m2 of the Euclidean scalar
particle is proportional to m2 ∼ s/h: the heavier the particle, the less likely it is to
hop, the more likely is it to stop.

A24.1.2 Inverting the Laplacian

Evaluation of perturbative corrections requires that we come to grips with the
“free” or “bare” propagator M. While the Laplacian is a simple difference oper-
ator (A24.12), the propagator is a messier object. A way to compute is to start
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expanding the propagator M as a power series in the Laplacian

M =
1

m2 − �
=

1
m2

∞∑
k=0

1
m2k�

k . (A24.16)

As � is a finite matrix, the expansion is convergent for sufficiently large m2. To
get a feeling for what is involved in evaluating such series, evaluate �2 in the
1-dimensional case:

�2 =
1
a4



6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6


. (A24.17)

What �3, �4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other
lattice site. Due to the periodicity, these are all Toeplitz matrices, meaning that
each successive row is a one-step cyclic shift of the preceding one. In statistical
mechanics, M is the (bare) 2-point correlation. In quantum field theory, it is called
a propagator.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We show how this
works in sect. A24.2.

A24.2 Periodic lattices

Our task now is to transform M into a form suitable to explicit evaluation.

Consider the effect of a lattice translation φ→ σφ on the matrix polynomial

S [σφ] = −
1
2
φ>

(
σ>M−1σ

)
φ .

As M−1 is constructed from σ and its inverse, M−1 and σ commute, and S [φ] is
invariant under translations,

S [σφ] = S [φ] = −
1
2
φ> ·

1
M
· φ . (A24.18)

If a function defined on a vector space commutes with a linear operator σ, then the
eigenvalues of σ can be used to decompose the φ vector space into invariant sub-
spaces. For a hyper-cubic lattice the translations in different directions commute,
σµσν = σνσµ, so it is sufficient to understand the spectrum of the 1-dimensional
shift operator (A24.7).
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To develop a feeling for how this reduction to invariant subspaces works in
practice, let us proceed cautiously, by expanding the scope of our deliberations to
a lattice consisting of 2 points.

example A24.1

p. 986

A24.3 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with L sites.

Each application of σ translates the lattice one step; in L steps the lattice is
back in the original state

σL = 1 , (A24.19)

so the eigenvalues of σ are the L distinct Lth roots of unity

σL − 1 =

L−1∏
k=0

(σ − ωk1) = 0 , ω = ei 2π
L . (A24.20)

As the eigenvalues are all distinct and L in number, the space is decomposed into
L 1-dimensional subspaces. The general theory (expounded in appendix A10.2)
associates with the kth eigenvalue of σ a projection operator that projects a state
φ onto kth eigenvector of σ,

Pk =
∏
j,k

σ − ω j1
ωk − ω j . (A24.21)

A factor (σ − ω j1) kills the jth eigenvector ϕ j component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · · . The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j,k(ωk − ω j) ensures that Pk is normalized as

a projection operator. The set of the projection operators is complete,∑
k

Pk = 1 , (A24.22)

and orthonormal

PkP j = δk jPk (no sum on k) . (A24.23)

In the case of discrete translational invariance, or cyclic group CL , it is customary
to write out the projection operator (A24.21) as a character-weighted sum, see
example A24.2.

As any matrix function M = M(σ) of the translation generator σ takes a scalar
value on the kth subspace,

M(σ) Pk = M(ωk) Pk , (A24.24)

the projection operators diagonalize the matrix M, P j M(σ) Pk = M(ωk) Pk δ jk .

example A24.2

p. 986
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A24.3.1 Eigenvectors of the translation operator

While constructing explicit eigenvectors is usually not a the best way to fritter
one’s youth away, as choice of basis is largely arbitrary, and all of the content of
the theory is in the projection operators (see appendix A10.2), in case at hand the
eigenvectors are so simple that we can construct and verify the solutions of the
eigenvalue condition

σϕk = ωkϕk (A24.25)

by hand:

1
√

L



0 1
0 1

0 1
. . .
0 1

1 0





1
ωk

ω2k

ω3k

...
ω(L−1)k


= ωk 1

√
L



1
ωk

ω2k

ω3k

...
ω(L−1)k


In words: the cyclic translation generator σ shifts all components by one, and the
original vector is recovered by factoring out the common factor ωk. The 1/

√
L

factor normalizes ϕk to a complex unit vector,

ϕ†k · ϕk =
1
L

L−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1
√

L

(
1, ω−k, ω−2k, · · · , ω−(L−1)k

)
. (A24.26)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (A24.27)

as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker (circular) delta function
for a periodic lattice

δk j =
1
L

L−1∑
`=0

ei 2π
L (k− j)` . (A24.28)

The sum is over the L unit vectors pointing at a uniform distribution of points on
the complex unit circle,

,
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they cancel each other unless k = j (mod L), in which case each term in the sum
equals 1.

By the eigenvector condition (A24.25), any matrix function M = M(σ) of the
translation generator σ takes a scalar value on the kth subspace,

M(σ)ϕk = M(ωk)ϕk , (A24.29)

i.e., in the eigenvector basis, M is a diagonal matrix.

The [L×L] projection operator matrix elements can be expressed in terms of
the eigenvectors (A24.25), (A24.26) as

(Pk)``′ = (ϕk)`(ϕ
†

k)`′ =
1
L

ei 2π
L (`−`′)k , (no sum on k) . (A24.30)

The completeness (A24.22) follows from (A24.28), and the orthonormality (A24.23)
from (A24.27).

φ̃k, the projection of the L-dimensional state (i.e., vector) φ on the kth subspace
is given by

(Pk · φ)` = φ̃k (ϕk)` , (no sum on k)

φ̃k = ϕ†k · φ =
1
√

L

L−1∑
`=0

e−i 2π
L k`φ` (A24.31)

The L-dimensional vector φ̃ of “wavenumbers” (discretized spatial coordinates),
or “frequencies,” “eigen-energies” (discretized time evolution steps) φ̃k is the dis-
crete Fourier transform of state (vector) φ. Hopefully rediscovering it this way
helps you a little toward understanding why Fourier transforms are full of eix·p

factors (they are eigenvalues of generators of translations; σ for a discrete lattice,
∂ /∂x for continuum), and that they are the natural set of basis functions when a
theory is translationally invariant.

example A24.2

p. 986

A24.3.2 Discrete Fourier transform operator

The [L×L] matrix F jk = L−
1
2ω jk , j, k = 0, 1, 2, · · · , L − 1, formed from column

eigenvectors (A24.25),

F =
1
√

L



1 1 1 . . . 1 1
1 ω ω2 . . . ωL−2 ωL−1

...
...

...
. . .

...
...

1 ωk ω2k . . . ω(L−2)k ω(L−1)k

...
...

...
. . .

...
...

1 ωL−2 ω2(L−2) . . . ω(L−2)(L−2) ω(L−1)(L−2)

1 ωL−1 ω2(L−1) . . . ω(L−2)(L−1) ω(L−1)(L−1)


, (A24.32)
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is the discrete Fourier transform operator (remember, in the discretized world
‘operator’ is a synonym for ‘matrix’). From the orthogonality of eigenvectors
(A24.27) it follows that F is a unitary matrix, with det F = 1, and

F F † = 1 . (A24.33)

The operator F † is thus the inverse Fourier transform. The discrete Fourier trans-
form (A24.31) of a state (vector) φ is given by

φ̃ = F †φ , (A24.34)

i.e., Fourier transformation rearranges components of vector φ into averages over
all components (A24.31), weighted by complex phases exp(i2π`/L) in all possible
ways.

example A24.3

p. 987

The complex function φ̃ is can sometimes be interpreted as an ‘amplitude
function’, with the square of its magnitude (φ̃† · φ̃) then interpreted as the corre-
sponding ‘total probability’

φ† · φ = φ̃† · φ̃ . (A24.35)

The fact that this is the same if evaluated with φ or with its Fourier transform φ̃ is
known as the “Parseval’s identity.”

Furthermore, by (A24.29), discrete Fourier transform diagonalizes every trans-
lationally invariant matrix function M, i.e., any matrix that commutes with the
translation operator, [σ, M] = 0. To show that, sandwich M with the identity
1 = F F †:

M = 1M1 = F
(
F †MF

)
F † = F M̃F † .

The matrix

M̃ = F †MF (A24.36)

is the Fourier transform of M. The form of any translation-invariant function, such
as (A24.35), or the invariant function (A24.18) does not change under φ → φ̃

transformation, and it does not matter whether we compute in the Fourier space,
or in the configuration space that we started out with. For example, the trace of M
is the same in either representation

tr M = trF M̃F † = tr M̃F †F = tr M̃ ,

but, if M commutes with the translation operator σ, the Fourier transform tr M̃
is diagonal and trivial to compute. By same reasoning it follows that tr Mn =

tr M̃n, and from the tr ln = ln tr relation that det M = det M̃. In fact, any scalar
combination of φ’s, J’s and couplings, such as the partition function Z[J], has
exactly the same form in the configuration and the Fourier space.
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Suppose you have two translationally invariant matrices A, B. Evaluating
their product AB is a matrix computation. However, evaluating the product in
the Fourier space is a simple scalar multiplication of their diagonal elements:

(ÃB)kk′ = (F †A BF )kk′ = Ãk B̃kδkk′ (A24.37)

The continuum Fourier transform version of this relation is called the “convolution
theorem.”

OK. But what’s the payback?

A24.3.3 Lattice Laplacian diagonalized

We can now use the Fourier transform (A24.36) to convert matrix functions of
the σ matrix into scalars. If M commutes with σ, then (M̃)kk′ = M̃kδkk′ is a di-
agonal matrix, where the matrix M acts as a multiplication by the scalar M̃k on
the kth subspace. For example, for the 1-dimensional version of the lattice Lapla-
cian matrix (A24.11), the eigenvalue condition (A24.25) yields the diagonalized
Laplacian in the Fourier space,

�̃kk′ = (F †�F )kk′ =
2
a2

(
1
2

(ω−k + ωk) − 1
)
δkk′

=
2
a2

(
cos

(
2π
L

k
)
− 1

)
δkk′ . (A24.38)

In the kth subspace the bare propagator is simply a number, and, in contrast to the
mess generated by the configuration space inversion (A24.16), there is nothing to
inverting M to M−1:

(ϕ†k · M
−1 · ϕk′) =

δkk′

m2 − 2
∑d
µ=1

(
cos

(
2π
L kµ

)
− 1

) , (A24.39)

where k = (k1, k2, · · · , kd) is a d-dimensional vector in the Ld-dimensional dual
lattice, i.e., the discretized “momentum” or “frequency” space.

Going back to the partition function and sticking in the factors of 1 into the
bilinear part of the interaction, we replace the spatial source field J by its Fourier
transform J̃, and the spatial propagator M by the diagonalized Fourier transformed
G̃0

J† · M · J = J† · F
(
F †MF

)
F † · J = J̃† · G̃0 · J̃ . (A24.40)
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A24.4 Continuum field theory

The lattice Laplacian kth Fourier component (A24.38) is

�̃kk =
2
a2

(
cos

(
2π
L

k
)
− 1

)
= −

(
2π
aL

)2

k2 +
1
12

(
2π
aL

)4

a2k4 − O(k6) . (A24.41)

The quartic term can be neglected for low wave numbers k � L, i.e., low mo-
menta, pµ = 2πkµ/LL, where aL = LL is the lattice size.

In the continuum limit the probability to land in the kth cell is replaced by a
probability density, φk = adφ(xk) → (dx)dφ(x). After rescaling the wave-number
k into momentum p, we obtain the continuum version of the scalar propagator

∆(x, y) =

∫
dd p

(2π)d

eip·(x−y)

m2 + p2 . (A24.42)

A24.5 Diffusion in sawtooth and cat maps

(R. Artuso)

In this section we will deal with the prototype example of chaotic Hamilto-
nian maps, hyperbolic toral automorphisms. Diffusive properties will arise in
considering such maps acting on the cylinder or over R2, while the dynam-

ics restricted to the fundamental domain involves maps on T2 (two–dimensional
torus). An Anosov map thus corresponds to the action of a matrix in S L2(N) with
unit determinant and absolute value of the trace bigger than 2.

Maps of this kind are as examples of genuine Hamiltonian chaotic evolution.
They admit simple finite Markov partitions, which paves the way to a good sym-
bolic dynamics. Within the framework of Hamiltonian dynamical systems the

chapter 28
role of hyperbolic linear automorphisms is analogous to piecewise linear Markov
maps: their symbolic dynamics can be encoded in a grammatically simple way,
and their linearity leads to uniformity of cycle stabilities.

We will consider the “two-coordinates” representation for them[
x′
y′

]
= M

[
x
y

]
with

M =

[
0 1
−1 K + 2

]
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Figure A24.1: The elementary cell for the torus
map [−1/2, 1/2] (checkered yellow) together with
its image, in green (K = 2): symbols refer to
the linear code. The dashed line through the ori-
gin gives the direction of the unstable manifold.
Though hardly understandable from the scale of
the picture the unstable manifold is not parallel to
the image sides.

+1

+2

0

−1

−2

which allows considering their extension on a cylinder phase space ([−1/2, 1/2)×
R) in a natural way. So it is natural to study diffusion properties along the y
direction.

Though Markov partitions encode the symbolic dynamics in the simplest pos-
sible way, they are not well suited to deal with diffusion, as the jumping factor
is not related in a simple way to the induced symbol sequence. To this end the
following linear code is quite natural: before describing it let us fix the notations:
χ will denote the trace of the map (χ = K + 2): the leading eigenvalue will be
denoted by λ = (χ +

√
D)/2, where D = χ2 − 4. In principle the code (and the

problem of diffusion) can be also considered for real values of K (thus loosing
continuity of the torus map when K in not an integer): we will remark in what
follows that results which are exact for K ∈ N are only approximate for generic
K.

The cardinality of the alphabet is determined by the parameter K: the letters
are integer numbers, whose absolute values does not exceed Int(1 + χ/2) (see fig-
ure A24.1 for the case K = 2). The code is linear, as, given a bi-infinite sequence
{xi}i∈N

bt
def
=

[
(K + 2)xt − xt−1 +

1
2

]
, (A24.43)

[. . . ] denoting the integer part, while the inversion formula (once a bi-infinite
symbolic string {bi}i∈N is given), reads

xt =
1
√

D

∑
s∈N

λ−|t−s|bs , (A24.44)

As the x coordinate lives in the interval [−1/2, 1/2), (A24.44) induces a condition
of allowed symbol sequences: {bi}i∈N will be an admissible orbit if

1
2
≤

1
√

D

∑
s∈N

λ−|t−s|bs <
1
2

. (A24.45)
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By (A24.43) and (A24.44) it is easy to observe that periodic orbits and allowed
periodic symbol sequences are in one-to-one correspondence. From (A24.45) we
get the condition that a {bi}i=1,...,T sequence corresponds to a T–periodic orbit of
the map

|Anbt + An−1(bt+1 + bt−1) + · · · + A0(bt+n + bt−n)| <
Bn

2
∀t = 1, . . . ,T

when T = 2n + 1, and

|Cnbt + Cn−1(bt+1 + bt−1) + · · · + C0(bt+n)| <
Dn

2
∀t = 1, . . . ,T (A24.46)

when T = 2n where
exercise A24.3
exercise A24.4

Bk = λk(λ − 1) + λ−k(λ−1 − 1) Ak =
λk+1 + λ−k

λ + 1
Dk = (λk − λ−k)(λ − λ−1) Ck = λk + λ−k (A24.47)

The pruning rules (A24.46) admit a simple geometric interpretation: a lattice point
b ∈ NT identifies a T–periodic point of the map if b ∈ PT where

PT
def
= {x ∈ RT :


|a1x1 + · · · + aT xT | < eT

...
|a2x1 + · · · + a1xT | < eT

 (A24.48)

and

a1 . . . aT = A0A1 . . . An−1AnAn−1 . . . A0 eT = Bn/2

a1 . . . aT = C1 . . .Cn−1CnCn−1 . . .C1C0 eT = Dn/2 (A24.49)

for T = 2n+1 or T = 2n, respectively, ThusPT is a measure polytope [7], obtained
by deforming a T–cube. This is the key issue of this appendix: though the map

exercise A24.5
is endorsed with a most remarkable symbolic dynamics, the same is hardly fit
to deal with transport properties, as the rectangles that define the partition are
not directly connected to translations once the map is unfolded to the cylinder.
The partition connected to the linear code (see figure A24.1) on the other side
is most natural when dealing with transport, though its not being directly related
to invariant manifolds leads to a multitude of pruning rules (which in the present
example bear a remarkable geometric interpretation, which is not to be expected
as a generic feature).

We will denote byNn,s the number of periodic points of period n with jumping
number s. A way to compute D for cat maps is provided by

D = lim
n→∞

Dn Dn =
1

nNn

p(n)∑
k=1

k2Nn,k (A24.50)
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whereNn is the number of periodic points of period n, p(n) is the highest jumping
number of n–periodic orbits and we employed∣∣∣∣det

(
1 − J (n)

x

)∣∣∣∣ = (λn − 1)(1 − λ−n) = Nn

which is valid for cat maps.

Sums can be converted into integrals by using Poisson summation formula:
we define

fT (n) =

{
(n1 + · · · + nT )2 n ∈ PT

⋂
NT

0 otherwise

and

f̃T (ξ) =

∫
RT

dx ei(x,ξ) fT (x)

From Poisson summation formula we have that

DT =
1

TNT

∑
n∈NT

f̃T (2πn) (A24.51)

The quasilinear estimate for DT amounts to considering the n = 0 contribution to
(A24.51):

D(q.l.)
T =

∫
PT

dx (x1 + x2 + · · · + xT )2 (A24.52)

The evaluation of (A24.52) requires introducing a coordinate transformation in
symbolic space in which PT is transformed in a T–cube. This is equivalent to
finding the inverse of the matrix A:

A def
=


a1 a2 · · · aT−1 aT
aT a1 · · · aT−2 aT−1
...

...
. . .

...
...

a3 a4 · · · a1 a2
a2 a3 · · · aT a1

 . (A24.53)

First of all let us observe that A is a circulant matrix, so that its determinant is the
product of T factors, each of the form f (ε j) = a1 + ε ja2 + · · · + aT ε

T−1
j , where ε j

is a T th root of unity. By using (A24.47) it is possible to see that

f (ε j) =


εn+1

j Bn

(λε j−1)(1−λ−1ε j)
T = 2n + 1

εn
j Dn

(λε j−1)(1−λ−1ε j)
T = 2n

so that

|det A| =
(2eT )T

λT + λ−T − 2
(A24.54)

By using the results coming from the former exercise we can finally express A−1
exercise A24.6
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via

C̃A−1 =
1

BT
n


χ −1 · · · 0 −1
−1 χ · · · 0 0
...

...
. . .

...
...

0 0 · · · χ −1
−1 0 · · · −1 χ

 (A24.55)

where

C̃ =

(
0 11n+1
11n 0

)
.

if T = 2n + 1 and

K̃A−1 =
1

DT
n


χ −1 · · · 0 −1
−1 χ · · · 0 0
...

...
. . .

...
...

0 0 · · · χ −1
−1 0 · · · −1 χ

 (A24.56)

where

K̃ =

(
0 11n
11n 0

)
.

if T = 2n. As a first check of quasilinear estimates let’s compute the volume of
PT :

Vol(PT ) =

∫
PT

dx1 dx2 . . . dxT =
1

|det A|

∫ eT

−eT

· · ·

∫ eT

eT

dξ1 . . . dξT

= λT + λ−T − 2 (A24.57)

In an analogous way we may compute the quasilinear estimate for NT,k exercise A24.7

N
(q.l.)
T,k =

∫
PT

dx1 . . . dxT δ(x1 + . . . xT − k)

=
λT + λ−T − 2

(2eT )T

∫ ∞

−∞

dα e−2πiαk
∫ eT

−eT

· · ·

∫ eT

−eT

dξ1 . . . dξT e
2πiαχ
2eT

(ξ1+···+ξT )

=
2
πχ

(λT + λ−T − 2)
∫ ∞

0
dy cos

(
2qy
χ

) (
sin y

y

)T

(A24.58)

where we have used x1+· · ·+xT = (χ/(2eT ))(ξ1+· · ·+ξT ) (cfr. (A24.55),(A24.56)).

We are now ready to evaluate the quasilinear estimate fo the diffusion coeffi-
cient

D(q.l.)
T =

1
πχT

∫ Tχ/2

−Tχ/2
dz z2

∫ ∞

0
dy cos

(
2zy
χ

) (
sin y

y

)T

(A24.59)
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(where the bounds on the jumping number again come easily from (A24.55),(A24.56)).
By dropping terms vanishing as T 7→ ∞, and using [10]∫ ∞

0
dx

(
sin x

x

)n sin(mx)
x

=
π

2
m ≥ n

we can evaluate

D(q.l.) =
χ2

24
(A24.60)

which is the correct result [5] (and again for cat maps (A24.60) is not the quasi-
linear estimate but the exact value of the diffusione coefficient).

exercise A24.8

Commentary

Remark A24.1. Who has talked about it? Maps of this kind have been extensively
analyzed as examples of genuine Hamiltonian chaotic evolution: in particular they admit
simple Markov partitions [2, 9], which lead to simple analytic expressions for topological
zeta functions [11]. The linear code was introduced by Percival and Vivaldi [4, 15].
Measure polytopes are discussed in ref. [7]. The quasilinear estimate (A24.52) was given
in ref. [5]. (A24.52) was evaluated in ref. [3, 16]. Circulant matrix are discussed in
ref. [1]. The result (A24.60) agrees with the saw-tooth result of ref. [5]; for the cat maps
(A24.60) is the exact value of the diffusion coefficient. This result was obtained, by using
periodic orbits also in ref. [8], where Gaussian nature of the diffusion process is explicitly
assumed.

Remark A24.2. Discrete Fourier software. Wolfram Mathematica has an extensive
and pedagogical suite of discrete Fourier transform modules.

Remark A24.3. Phase space. The cylinder phase is [−1/2, 1/2)×R: the map is orig-
inally defined on [−1/2, 1/2)2, and is unfolded over the cylinder by symmetry (24.22).
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A24.6 Examples

Example A24.1. A 2-point lattice diagonalized.

The action of the shift operator σ (A24.7) on a 2-point lattice φ = (φ0, φ1) is to
permute the two lattice sites

σ =

[
0 1
1 0

]
.

As exchange repeated twice brings us back to the original state, σ2 = 1, the characteristic
polynomial of σ is

(σ + 1)(σ − 1) = 0 ,

with eigenvalues ω0 = 1, ω1 = −1. The symmetrization, antisymmetrization projection
operators are

P0 =
σ − ω11
ω0 − ω1

=
1
2

(1 + σ) =
1
2

[
1 1
1 1

]
(A24.61)

P1 =
σ − 1
−1 − 1

=
1
2

(1 − σ) =
1
2

[
1 −1
−1 1

]
. (A24.62)

Noting that P0 + P1 = 1, we can project a lattice state φ onto the two normalized eigen-
vectors of σ:

φ = 1 φ = P0 · φ + P1 · φ ,[
φ1
φ2

]
=

(φ0 + φ1)
√

2

1
√

2

[
1
1

]
+

(φ0 − φ1)
√

2

1
√

2

[
1
−1

]
(A24.63)

= φ̃0 ϕ0 + φ̃1 ϕ1 . (A24.64)

As P0P1 = 0, the symmetric and the antisymmetric states transform separately under any
linear transformation constructed from σ and its powers.

In this way the characteristic equation σ2 = 1 enables us to reduce the 2-dimensional
lattice state to two 1-dimensional ones, on which the value of the shift operator σ is a
number, ω j ∈ {1,−1}, and the normalized eigenvectors are ϕ0 = 1

√
2
(1, 1), ϕ1 = 1

√
2
(1,−1).

As we shall now see, (φ̃0, φ̃1) is the 2-site periodic lattice discrete Fourier transform of the
field (φ1, φ2).

click to return: p. 974

Example A24.2. Projection operators for discrete Fourier transform / cyclic group
CN . (It’s OK to skip this example on the first reading - the explicit Fourier eigenvectors
and eigenvalues (A24.25) are all that we need to carry out discrete Fourier transforms.)

Consider a cyclic group

CN = {e, g, g2, · · · gN−1} , gN = e .

If M = D(g) is a [d×d] matrix representation of the one-step shift g, it must satisfy
MN − 1 = 0, with eigenvalues given by the zeros of the characteristic polynomial

G(x) = xN − 1 = (x − λ0)(x − λ1)(x − λ2) · · · (x − λN−1) . (A24.65)
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For the cyclic group the N distinct eigenvalues are the Nth roots of unity λn = ωn, ω =

exp(i 2π/N), n = 0, . . .N − 1.

In the projection operator formulation (A10.20), they split the d-dimensional space
into d/N-dimensional subspaces by means of projection operators

Pn =
∏
m,n

M − ωm I
ωn − ωm =

1∏N−1
m=1(1 − ωm)

N−1∏
m=1

(ω−nM − ωm I) , (A24.66)

where we have multiplied all denominators and numerators by ω−n.

The denominator is a polynomial of form G(x)/(x−λ0) ,with the zeroth root (x−ω0) =

(x − 1) quotiented out from the characteristic polynomial,

xN − 1
x − 1

= (x − ω)(x − ω2) · · · (x − ωN−1) .

Consider a sum of the first N terms of a geometric series, multiplied by (x − 1)/(x − 1):

1 + x + · · · + xN−1 =

N−1∑
m=0

xm =
1

x − 1

N−1∑
m=0

(x − 1) xm =
xN − 1
x − 1

. (A24.67)

So, the products in (A24.66) can be written as sums

(x − ω)(x − ω2) · · · (x − ωN−1) = 1 + x + · · · + xN−1 . (A24.68)

The Pn projection operator (A24.66) denominator is evaluated by substituting x→ 1 into
(A24.68); that adds up to N. The numerator is evaluated by substituting x → ω−nM. We
obtain the projection operator as a discrete Fourier weighted sum of matrices Mm,

Pn =
1
N

N−1∑
m=0

e−i 2π
N nm Mm , (A24.69)

instead of the product form (A24.66).

This is the simplest example of the key group theory tool, the projection operator
expressed as a sum over characters,

Pn =
1
|G|

∑
g∈G

χ̄n(g)D(g) .

As CN irreps are all 1-dimensional, for the discrete Fourier transform all characters are
simply χ̄n(gm) = ω−nm, the Nth complex roots of unity.

(B. Gutkin and P. Cvitanović)
click to return: p. 976

Example A24.3. ‘Configuration-momentum’ Fourier space duality.

What does a projection on the kth Fourier subspace mean? The discrete Fourier trans-
form (A24.69) of a state (vector) φ rearranges components of vector φ into averages over
all its components, weighted by complex phases exp(i2π`/L) in all possible ways.

Consider first the projection on the 0th Fourier mode

P0 =
1
L

L−1∑
m=0

σm .
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Applied to a lattice state φ = (φ1, φ2, · · · , φL ), the shift matrix σ translates the state by
one site, σφ = (φ2, φ3, · · · , φL , φ1), and so on for all powers σm. The result is the space
average (here correctly normalized, so that 〈1〉 = 1) over all values of the periodic lattice
field φm,

1
√

L
φ̃0 =

1
L

L−1∑
`=0

φ` = 〈φ〉 ,

see (A24.19) and (A24.28). Every finite discrete group has such fully-symmetric rep-
resentation, and in statistical mechanics and quantum mechanics this is often the most
important state (the ‘ground’ state).

φ̃1 is the average weighted by one oscillation over the L-periodic lattice, and φ̃k, the
projection of the L-dimensional state (i.e., vector) φ on the kth subspace

φ̃k = Pk · φ =
1
√

L

L−1∑
`=0

e−i 2π
L k`φ` , (A24.70)

is the average weighted by complex rotating phase ωkm which advances by ωk in every
step, and pulls out oscillating feature φ̃k out of the field φ. For large L, modes φ̃k with
k � L (or (L − k) � L, that is just a counter-rotation)) are called hydrodynamic modes,
corresponding to “configuration” lattice fields φ which vary slowly and smoothly over
many lattice spacings. Modes with k ' L/2 are suspect, they are lattice discretization
artifacts.

If the lattice state is φ is localized, its Fourier transform will be global, and vice versa
for a localized Fourier state φ̃. For example, if the field φ is concentrated on the first
site, φ0 = 1, rest zero, its Fourier transform will be uniformly distributed over all Fourier
modes, φ̃k = 1/

√
L.

click to return: p. 977
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Exercises

A24.1. Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference
operator (A24.12), its inverse (the “free” propagator
of statistical mechanics and quantum field theory) is a
messier object. A way to compute is to start expanding
propagator as a power series in the Laplacian

1
m21 − �

=
1

m2

∞∑
n=0

1
m2n�

n . (A24.71)

As � is a finite matrix, the expansion is convergent for
sufficiently large m2. To get a feeling for what is in-
volved in evaluating such series, show that �2 is:

�2 =
1
a4



6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6


.

(A24.72)

What �3, �4, · · · contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while the inverse propa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.
This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer-
cise A24.2.

A24.2. Lattice Laplacian diagonalized. Insert the
identity

∑
P(k) = 1 wherever you profitably can, and

use the eigenvalue equation (A24.25) to convert shift
σ matrices into scalars. If M commutes with σ, then
(ϕ†k ·M · ϕk′ ) = M̃(k)δkk′ , and the matrix M acts as a mul-
tiplication by the scalar M̃(k) on the kth subspace. Show
that for the 1-dimensional version of the lattice Lapla-
cian (A24.12) the projection on the kth subspace is

(ϕ†k · � · ϕk′ ) =
2
a2

(
cos

(
2π
N

k
)
− 1

)
δkk′ . (A24.73)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (A24.71), there
is nothing to evaluating:

ϕ†k ·
1

m21 − �
· ϕk′ =

δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

,

(A24.74)

where k is a site in the N-dimensional dual lattice, and
a = L/N is the lattice spacing.

A24.3. Recursion relations. Verify that the following recur-
sion relations are satisfied

uk+2 = χuk+1 − uk

where uk = Ak, Bk,Ck,Dk.

A24.4. Arnol’d cat map. Show that for χ = 3, Ak = F2k+1,
Bk = L2k+1, Ck = L2k and Dk = 5F2k, where Fn and Ln

are the Fibonacci and Lucas numbers..

A24.5. Pruning rules for substrings of length 2. Take K = 8
and draw the region determined by (A24.46).

A24.6. Diagonalization of A. Show that A can be diagonal-
ized by considering the auxiliary matrix U

U def
=


1 1 · · · 1 1
ε0 ε1 · · · εT−2 εT−1
...

...
. . .

...
...

εT−2
0 εT−2

1 · · · εT−2
T−2 εT−2

T−1
εT−1

0 εT−1
1 · · · εT−1

T−2 εT−1
T−1


.

In fact U−1AU is a diagonal matrix (the diagonal ele-
ments coinciding with f (ε j)).

A24.7. Periodic points of cat maps. Verify that (A24.57)
is exactly the number of T–periodic points of the map
when K is an integer.

A24.8. Probability distribution. Higher order moments can
be computed easily for integer K (or generic K within
the quasilinear approximation), by generalizations of
(A24.59): show that the results prove that, given a pe-
riod T , the distribution of periodic orbits with respect to
their jumping number is asymptotically Gaussian, with
parameter D(q.l.).

A24.9. Deterministic diffusion, zig-zag map.
To illustrate the main idea of chapter 24, tracking of a
globally diffusing orbit by the associated confined orbit
restricted to the fundamental cell, we consider a class
of simple 1-dimensional dynamical systems, chains of
piecewise linear maps, where all transport coefficients
can be evaluated analytically. The translational symme-
try (24.22) relates the unbounded dynamics on the real
line to the dynamics restricted to a “fundamental cell” -
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in the present example the unit interval curled up into a
circle. An example of such map is the sawtooth map

f̂ (x) =


Λx x ∈ [0, 1/4 + 1/4Λ]
−Λx + (Λ + 1)/2 x ∈ [1/4 + 1/4Λ, 3/4 − 1/4Λ]
Λx + (1 − Λ) x ∈ [3/4 − 1/4Λ, 1]

.

(A24.75)

The corresponding circle map f (x) is obtained by mod-
ulo the integer part. The elementary cell map f (x) is
sketched in figure ??. The map has the symmetry prop-
erty

f̂ (x̂) = − f̂ (−x̂) , (A24.76)

so that the dynamics has no drift, and all odd derivatives
of the generating function (24.4) with respect to β eval-
uated at β = 0 vanish.
The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (A24.77)

The diffusion constant formula for 1-dimensional maps
is

D =
1
2
〈n̂2〉ζ

〈n〉ζ
(A24.78)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
,

(A24.79)

the mean cycle displacement squared by

〈n̂2〉ζ =
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
,

(A24.80)

and the sum is over all distinct non-repeating combina-
tions of prime cycles. Most of results expected in this
projects require no more than pencil and paper compu-
tations.
Implementing the symmetry factorization (24.19) is
convenient, but not essential for this project, so if you
find example 25.9 too long a read, skip the symmetriza-
tion.

A24.10. The full shift sawtooth map. Take the map (A24.75)
and extend it to the real line. As in example of fig-
ure 24.4, denote by a the critical value of the map (the
maximum height in the unit cell)

a = f̂ (
1
4

+
1

4Λ
) =

Λ + 1
4

. (A24.81)

Describe the symbolic dynamics that you obtain when
a is an integer, and derive the formula for the diffusion
constant:

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a − 1, a ∈ Z .

(A24.82)

If you are going strong, derive also the fromula for the
half-integer a = (2k + 1)/2, Λ = 4a + 1 case and email it
to predrag@nbi.dk. You will need to partitionM2 into
the left and right half,M2 =M8 ∪M9, as in the deriva-
tion of (24.29). See exercise 24.1.

A24.11. Sawtooth map subshifts of finite type. We now
work out an example when the partition is Markov, al-
though the slope is not an integer number. The key step
is that of having a partition where intervals are mapped
onto unions of intervals. Consider for example the case
in which Λ = 4a − 1, where 1 ≤ a ≤ 2. A first par-
tition is constructed from seven intervals, which we la-
bel {M1,M4,M5,M2,M6,M7,M3}, with the alphabet
ordered as the intervals are laid out along the unit in-
terval. In general the critical value a will not corre-
spond to an interval border, but now we choose a such
that the critical point is mapped onto the right border
of M1, as in figure ?? (a). The critical value of f () is
f ( Λ+1

4Λ
) = a−1 = (Λ − 3)/4. Equating this with the right

border of M1, x = 1/Λ, we obtain a quadratic equa-
tion with the expanding solution Λ = 4. We have that
f (M4) = f (M5) = M1, so the transition matrix (17.1)
is given by

φ′ = Tφ =



1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1





φ1
φ4
φ5
φ2
φ6
φ7
φ3


(A24.83)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (A24.83) on the computer, but, as
we saw in chapter 17, the transition graph figure ?? (b)
corresponding to figure ?? (a) offers more insight into
the dynamics. The dynamical zeta function

1/ζ = 1 − (t1 + t2 + t3) − 2(t14 + t37)

1/ζ = 1 − 3
z
Λ
− 4 cosh β

z2

Λ2 . (A24.84)

follows from the loop expansion (18.13) of sect. 18.3.
The material flow conservation sect. 23.4 and the sym-
metry factorization (24.19) yield

0 =
1

ζ(0, 1)
=

(
1 +

1
Λ

) (
1 −

4
Λ

)
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which indeed is satisfied by the given value of Λ. Con-
versely, we can use the desired Markov partition topol-
ogy to write down the corresponding dynamical zeta
function, and use the 1/ζ(0, 1) = 0 condition to fix Λ.
For more complicated transition matrices the factoriza-
tion (24.19) is very helpful in reducing the order of the
polynomial condition that fixes Λ.
The diffusion constant follows from (24.20) and
(A24.78)

〈n〉ζ = −

(
1 +

1
Λ

) (
−

4
Λ

)
, 〈n̂2〉ζ =

4
Λ2

D =
1
2

1
Λ + 1

=
1

10
Think up other non-integer values of the parameter
for which the symbolic dynamics is given in terms of
Markov partitions: in particular consider the cases illus-
trated in figure ?? and determine for what value of the
parameter a each of them is realized. Work out the tran-
sition graph, symmetrization factorization and the diffu-
sion constant, and check the material flow conservation
for each case. Derive the diffusion constants listed in ta-
ble ??. It is not clear why the final answers tend to be so
simple. Numerically, the case of figure ?? (c) appears to
yield the maximal diffusion constant. Does it? Is there
an argument that it should be so?

The seven cases considered here (see table ??, figure ??
and (A24.82)) are the 7 simplest complete Markov parti-
tions, the criterion being that the critical points map onto
partition boundary points. This is, for example, what
happens for unimodal tent map; if the critical point is
preperiodic to an unstable cycle, the grammar is com-
plete. The simplest example is the case in which the
tent map critical point is preperiodic to a unimodal map
3-cycle, in which case the grammar is of golden mean
type, with _00_ substring prohibited (see figure 17.6).
In case at hand, the “critical” point is the junction of
branches 4 and 5 (symmetry automatically takes care of
the other critical point, at the junction of branches 6 and
7), and for the cases considered the critical point maps
into the endpoint of each of the seven branches.
One can fill out parameter a axis arbitrarily densely with
such points - each of the 7 primary intervals can be sub-
divided into 7 intervals obtained by 2-nd iterate of the
map, and for the critical point mapping into any of those
in 2 steps the grammar (and the corresponding cycle ex-
pansion) is finite, and so on.

A24.12. Sawtooth map diffusion coefficient, numerically.
(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n
〈x̂2

n〉 . (A24.85)

Study the convergence by comparing your numerical re-
sults to the exact answers derived above. Is it better to
use few initial x̂ and average for long times, or to use
many initial x̂ for shorter times? Or should one fit the
distribution of x̂2 with a Gaussian and get the D this
way? Try to plot dependence of D on Λ; perhaps blow
up a small region to show that the dependance of D on
the parameter Λ is fractal. Compare with figure 24.6 and
figures in refs. [6, 12–14, 17].

A24.13. Sawtooth D is a nonuniform function of the parame-
ters. (optional:)
The dependence of D on the map parameter Λ is rather
unexpected - even though for larger Λ more points are
mapped outside the unit cell in one iteration, the diffu-
sion constant does not necessarily grow. An interpreta-
tion of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the
sawtooth map (A24.75) for a random “generic” value
of the parameter Λ, for example Λ = 6. The idea
is to bracket this value of Λ by the nearby ones, for
which higher and higher iterates of the critical value
a = (Λ+1)/4 fall onto the partition boundaries, compute
the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward
the value of D for Λ = 6. Judging how difficult such
problem is already for a tent map (see sect. 18.5 and
appendix A18.1), this is too ambitious for a week-long
exam.

A24.14. Deterministic diffusion, sawtooth map.
To illustrate the main idea of chapter 24, tracking of a
globally diffusing orbit by the associated confined or-
bit restricted to the fundamental cell, we consider in
more detail the class of simple 1-dimensional dynamical
systems, chains of piecewise linear maps (24.21). The
translational symmetry (24.22) relates the unbounded
dynamics on the real line to the dynamics restricted to
a “fundamental cell” - in the present example the unit
interval curled up into a circle. The corresponding circle
map f (x) is obtained by modulo the integer part. The
elementary cell map f (x) is sketched in figure 24.4. The
map has the symmetry property

f̂ (x̂) = − f̂ (−x̂) , (A24.86)

so that the dynamics has no drift, and all odd derivatives
of the generating function (24.4) with respect to β eval-
uated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (A24.87)

The diffusion constant formula for 1-dimensional maps
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is

D =
1
2
〈n̂2〉ζ

〈n〉ζ
(A24.88)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
,

(A24.89)

the mean cycle displacement squared by

〈n̂2〉ζ =
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
,

(A24.90)

and the sum is over all distinct non-repeating combina-
tions of prime cycles. Most of results expected in this
projects require no more than pencil and paper compu-
tations.
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Discrete symmetry factorization

A25.1 C4v factorization

If an N-disk arrangement has CN symmetry, and the disk visitation sequence is
given by disk labels {ε1ε2ε3 . . . }, only the relative increments ρi = εi+1 − εi mod N
matter. Symmetries under reflections across axes increase the group to CNv and
add relations between symbols: {εi} and {N − εi} differ only by a reflection. As
a consequence of this reflection increments become decrements until the next re-
flection and vice versa. Consider four equal disks placed on the vertices of a
square (figure A25.1). The symmetry group consists of the identity e, the two
reflections σx, σy across x, y axes, the two diagonal reflections σ13, σ24, and the
three rotations C4, C2 and C3

4 by angles π/2, π and 3π/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4}
by relative increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new sym-
bol will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation sequence
1+12+13+21 · · · = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle 112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle 112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1 corresponds to a flip in orientation after the second and fifth symbols);
this time the period in the full space is twice that of the fundamental domain. In
particular, the fundamental domain fixed points correspond to the following 4-disk
cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2
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Figure A25.1: Symmetries of four disks on a square.
A fundamental domain indicated by the shaded wedge.
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13
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Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table A25.1.

This symbolic dynamics is closely related to the group-theoretic structure
of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,
where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table A25.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

The C4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (25.20) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1 − t p̃)8 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃) (1 − tp̃)4

C2: (1 − t2
p̃)4 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃) (1 + tp̃)4

C4,C3
4: (1 − t4

p̃)2 = (1 − t p̃) (1 − tp̃) (1 + t p̃) (1 + tp̃) (1 + t2
p̃)2

σaxes: (1 − t2
p̃)4 = (1 − t p̃) (1 + tp̃) (1 − t p̃) (1 + tp̃) (1 − t2

p̃)2

σdiag: (1 − t2
p̃)4 = (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 − tp̃) (1 − t2

p̃)2
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Table A25.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labeled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For
typographical convenience, the symbol 1 of sect. A25.1 has been replaced by 0, so that
the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np. Orbit 2
is the sole boundary orbit, invariant both under a rotation by π and a reflection across a
diagonal. The two pairs of cycles marked by (a) and (b) are related by time reversal, but
cannot be mapped into each other by C4v transformations.

p̃ p h p̃
0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy
12 12 41 34 23 C3

4
001 121 232 343 414 C4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C4

p̃ p hp̃
0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2
0012 1212 4141 3434 2323 C3

4
0021 (a) 1213 4142 3431 2324 C3

4
0022 1213 e
0102 (a) 1214 2321 3432 4143 C4
0111 1214 3234 σ13
0112 (b) 1214 2123 σx
0121 (b) 1213 2124 σx
0122 1213 1413 σ24
0211 1243 2134 σx
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 3412 4123 C4
1122 1231 3413 C2
1222 1242 4131 3424 2313 C3

4

The possible irreducible segment group elements hp̃ are listed in the first column;
σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag denotes
a reflection across a diagonal (see figure A25.1). In addition, degenerate pairs
of boundary orbits can run along the symmetry lines in the full space, with the
fundamental domain group theory weights hp = (C2 + σx)/2 (axes) and hp =

(C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0t p̃)(1 − tp̃)(1 − 0t p̃)(1 + tp̃)2

diagonals: (1 − t2
p̃)2 = (1 − tp̃)(1 − 0t p̃)(1 − 0t p̃)(1 − tp̃)(1 + tp̃)2(A25.1)

(we have assumed that t p̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits 13, 24
occur; they correspond to the 2 fixed point in the fundamental domain.
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The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.2)

(for typographical convenience, 1 is replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characters can be read off the symbol
strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 , where n0 and
n1 are the number of times symbols 0, 1 appear in the p̃ symbol string. For B2 all
tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.3)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (A25.1) the orbit t2 does not contribute to A2
and B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)

(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A25.4)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(A25.5)
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Figure A25.2: Symmetries of four disks on a rectan-
gle. A fundamental domain indicated by the shaded
area.

In the above we have assumed that t2 does not change sign under C4v reflections.
For the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = 1 + t2 + (−t02 + t12) + (2t002 − t2t02 − 2t112 + t2t12)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t02t12) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t02t12

+2t002(−t02 + t12) − 2t112(−t02 + t12)) (A25.6)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (18.47).
exercise 23.8

A25.2 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C2v sym-
metry, see figure A25.2. C2v consists of {e, σx, σy,C2}, i.e., the reflections across
the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
on that axis; with these symmetry operations g0 = σx and g1 = σy we associate
labels 1 and 0, respectively. Orbits going to the diagonally opposed disk cross the
boundaries of the fundamental domain twice; the product of these two reflections
is just C2 = σxσy, to which we assign the label 2. For example, a ternary string
0 0 1 0 2 0 1 . . . is converted into 12143123. . . , and the associated group-theory
weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in table A25.2.
Note that already at length three there is a pair of cycles (012 = 143 and 021 = 142)
related by time reversal, but not by any C2v symmetries.
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Table A25.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The de-
generacy of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other by C2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect. A25.2, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σx
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σx
0121 1431 2342 σx
0122 1431 3213 C2
0211 1421 2312 σx
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σx
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics.

The group C2v has four 1-dimensional representations, distinguished by their
behavior under axis reflections. The A1 representation is symmetric with respect
to both reflections; the A2 representation is antisymmetric with respect to both.
The B1 and B2 representations are symmetric under one and antisymmetric under
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (25.19), the contributions of peri-
odic orbits split as follows

appendSymm - 25oct2017 ChaosBook.org edition16.4.8, May 25 2020



APPENDIX A25. DISCRETE SYMMETRY FACTORIZATION 1000

gp̃ A1 A2 B1 B2
e: (1 − t p̃)4 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − t p̃)

C2: (1 − t2
p̃)2 = (1 − t p̃) (1 − tp̃) (1 − t p̃) (1 − tp̃)

σx: (1 − t2
p̃)2 = (1 − t p̃) (1 + tp̃) (1 − t p̃) (1 + tp̃)

σy: (1 − t2
p̃)2 = (1 − tp̃) (1 + tp̃) (1 + t p̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
table A25.2. For A1 all characters are +1, and the corresponding cycle expansion
is given in (A25.2). Similarly, the totally antisymmetric subspace factorization A2
is given by (A25.3), the B2 factorization of C4v. For B1 all tp with an odd total
number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.7)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)

+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (A25.8)

Note that all of the above cycle expansions group long orbits together with their
pseudo-orbit shadows, so that the shadowing arguments for convergence still ap-
ply.

The topological polynomial factorizes as
1
ζA1

= 1 − 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1 + z,

consistent with the 4-disk factorization (18.47).

Commentary

Remark A25.1. C4v labeling conventions While there is a variety of labeling con-
ventions [2, 3] for the reduced C4v dynamics, we prefer the one introduced here because
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of its close relation to the group-theoretic structure of the dynamics: the global 4-disk
trajectory can be generated by mapping the fundamental domain trajectories onto the full
4-disk space by the accumulated product of the C4v group elements.

Remark A25.2. C2v symmetry C2v is the symmetry of several systems studied in
the literature, such as the stadium billiard [1], and the 2-dimensional anisotropic Kepler
potential [4].
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Appendix A31

Koopman modes

A31.1 Koopmania

The Koopman operator action (31.1) on a state space function a(x) is to re-
place it by its downstream value time t later, a(x) → a(x(t)), evaluated at
the trajectory point x(t):

[
K ta

]
(x) = a( f t(x)) =

∫
M

dyK t(x, y) a(y)

K t(x, y) = δ
(
y − f t(x)

)
. (A31.1)

Eq. (31.2) suggests an alternative point of view, which is to push dynamical
effects into the density. In contrast to the Koopman operator which advances the
trajectory by time t, the Perron-Frobenius operator depends on the trajectory point
time t in the past

Here we limit ourselves to a brief remark about the notion of “spectrum” of a
linear operator.

The Koopman operator K acts multiplicatively in time, so it is reasonable to
suppose that there exist constants M > 0, β ≥ 0 such that ||K t|| ≤ Metβ for all
t ≥ 0. What does that mean? The operator norm is define in the same spirit in
which we defined the matrix norms in sect. A40.2: We are assuming that no value
of K tρ(x) grows faster than exponentially for any choice of function ρ(x), so that
the fastest possible growth can be bounded by etβ, a reasonable expectation in the
light of the simplest example studied so far, the exact escape rate (20.31). If that
is so, multiplying K t by e−tβ we construct a new operator e−tβK t = et(A−β) which
decays exponentially for large t, ||et(A−β)|| ≤ M. We say that e−tβK t is an element
of a bounded semigroup with generator A − β1. Given this bound, it follows by
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the Laplace transform∫ ∞

0
dt e−stK t =

1
s −A

, Re s > β , (A31.2)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to cause
section A40.2

separation into constituents)
remark A22.1∣∣∣∣∣∣∣∣∣∣ 1

s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−st Metβ =

M
s − β

.

If one is interested in the spectrum of K , as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief aside is that for the continu-
ous time flows the Laplace transform is the tool that brings down the generator in
(19.26) into the resolvent form (20.22) and enables us to study its spectrum.

A31.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operatorsK t. We have introduced
the generator of the semigroup (19.24) as

A =
d
dt
K t

∣∣∣∣∣
t=0

.

If we now take the derivative at arbitrary times we get

(
d
dt
K tψ

)
(x) = lim

η→0

ψ( f t+η(x)) − ψ( f t(x))
η

= vi( f t(x))
∂

∂x̃i
ψ(x̃)

∣∣∣∣∣
x̃= f t(x)

=
(
K tAψ

)
(x)

which can be formally integrated like an ordinary differential equation yielding
exercise A31.1

K t = etA . (A31.3)

This guarantees that the Laplace transform manipulations in sect. 19.5 are correct.
Though the formal expression of the semigroup (A31.3) is quite simple one has
to take care in implementing its action. If we express the exponential through the
power series

K t =

∞∑
k=0

tk

k!
Ak , (A31.4)
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we encounter the problem that the infinitesimal generator (19.24) contains non-
commuting pieces, i.e., there are i, j combinations for which the commutator does
not satisfy[

∂

∂xi
, v j(x)

]
= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects. 4.3 and 4.4 and use the semigroup property
to write

K t =

t/δτ∏
m=1

Kδτ

as the starting point for a discretized approximation to the continuous time dy-
namics, with time step δτ. Omitting terms from the second order onwards in the
expansion of Kδτ yields an error of order O(δτ2). This might be acceptable if the
time step δτ is sufficiently small. In practice we write the Euler product

K t =

t/δτ∏
m=1

(
1 + δτA(m)

)
+ O(δτ2) (A31.5)

where(
A(m)ψ

)
(x) = vi( f mδτ(x))

∂ψ

∂x̃i

∣∣∣∣∣
x̃= f mδτ(x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi


x1

·

xi

xd


→


x1

·

xi + δτvi(x)

xd


. (A31.6)

We see that the product form (A31.5) of the operator is nothing else but a pre-
exercise 2.6

scription for finite time step integration of the equations of motion - in this case
the simplest Euler type integrator which advances the trajectory by δτ×velocity at
each time step.

A31.2.1 A symplectic integrator

The procedure we described above is only a starting point for more so-
phisticated approximations. As an example on how to get a sharper bound on the
error term consider the Hamiltonian flowA = B + C, B = pi

∂
∂qi

, C = −∂iV(q) ∂
∂pi

.
Clearly the potential and the kinetic parts do not commute. We make sense of the

exercise A31.2
formal solution (A31.5) by splitting it into infinitesimal steps and keeping terms
up to δτ2 in

Kδτ = K̂δτ +
1
24
δτ3[B + 2C, [B,C]] + · · · , (A31.7)
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where

K̂δτ = e
1
2 δτBeδτCe

1
2 δτB . (A31.8)

The approximate infinitesimal Liouville operator K̂δτ is of the form that now gen-
erates evolution as a sequence of mappings induced by (19.27), a free flight by
1
2δτB, scattering by δτ∂V(q′), followed again by 1

2δτB free flight:

e
1
2 δτB

{
q
p

}
→

{
q′

p′

}
=

{
q − δτ

2 p
p

}
eδτC

{
q′

p′

}
→

{
q′′

p′′

}
=

{
q′

p′ + δτ∂V(q′)

}
e

1
2 δτB

{
q′′

p′′

}
→

{
q′′′

p′′′

}
=

{
q′ − δτ

2 p′′

p′′

}
(A31.9)

Collecting the terms we obtain an integration rule for this type of symplectic flow
which is better than the straight Euler integration (A31.6) as it is accurate up to
order δτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (A31.10)

The Jacobian matrix of one integration step is given by

M =

[
1 −δτ/2
0 1

] [
1 0

δτ∂V(q′) 1

] [
1 −δτ/2
0 1

]
. (A31.11)

Note that the billiard flow (9.10) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneous wall reflections, and can be
integrated out.

Commentary

Remark A31.1. Koopman operators. The “Heisenberg picture” in dynamical sys-
tems theory has been introduced by Koopman and Von Neumann [3, 5], see also ref. [4].
Inspired by the contemporary advances in quantum mechanics, Koopman [3] observed in
1931 that K t is unitary on L2(µ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(
iĤt/~

)
– the kernel ofLt(y, x) introduced

in (19.13) (see also sect. 20.2) is the analogue of the Green’s function discussed here in
chapter 36. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [5]. We shall not use Hilbert spaces here and
the operators that we shall study will not be unitary. For a discussion of the relation be-
tween the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [4] and Gaspard [2].
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Remark A31.2. Symplectic integration. The reviews [1] and [6] offer a good starting
point for exploring the symplectic integrators literature. For a higher order integrators of
type (A31.8), check ref. [7].
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Exercises

A31.1. Exponential form of semigroup elements. Check
that the Koopman operator and the evolution generator
commute, K tA = AK t, by considering the action of
both operators on an arbitrary state space function a(x).

A31.2. Non-commutativity. Check that the commutators in
(A31.7) are not vanishing by showing that

[B,C] = −p
(
V ′′

∂

∂p
− V ′

∂

∂q

)
.

A31.3. Symplectic leapfrog integrator. Implement (A31.10)
for 2-dimensional Hamiltonian flows; compare it with
Runge-Kutta integrator by integrating trajectories in
some (chaotic) Hamiltonian flow.

A31.4. Symplectic volume preservation. Check that the
sequence of mappings (A31.9) is volume preserving,
det Û = 1.
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Appendix A32

Thermodynamic formalism

Being Hungarian is not sufficient. You also must be tal-
ented.

— Zsa Zsa Gabor

(G. Vattay)

In the preceding chapters we characterized chaotic systems via global quanti-
ties such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods of individual periodic

orbits. In statistical mechanics a similar duality exists. Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemical
potential) which are averages over fine details of the system called microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made the analogy between
these two subjects explicit. Later this “Thermodynamic Formalism" of dynam-
ical systems became widely used making it possible to calculate various fractal
dimensions. We sketch the main ideas of this theory and show how periodic orbit
theory helps to carry out calculations.

A32.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting points Ms1 s2...sn of trajectories whose symbol sequence starts
with a given set of n symbols s1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V(s1s2...sn), the
area A(s1s2...sn) or the length l(s1s2...sn) of this set. Or in general we can have
some measure µ(Ms1 s2...sn) = µ(s1s2...sn) of this set. As we have seen in (27.10)
the most important is the natural measure, which is the probability that an ergodic
trajectory visits the set µ(s1s2...sn) = P(s1s2...sn). The natural measure is additive.
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Summed up for all possible symbol sequences of length n it gives the measure of
the whole state space:∑

s1 s2...sn

µ(s1s2...sn) = 1 (A32.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it de-
creases typically with an exponential rate. It is then useful to introduce the expo-
nents

λ(s1s2...sn) = −
1
n

log µ(s1s2...sn). (A32.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol se-
quences of length n with exponents between λ and λ + dλ be given by Nn(λ)dλ.
For large n the number of such sequences increases exponentially. The rate of this
exponential growth can be characterized by g(λ) such that

Nn(λ) ∼ exp(ng(λ)) .

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully character-
izes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are called partition sums

Zn(β) =
∑

s1 s2...sn

µβ(s1s2...sn), (A32.3)

as they are obviously motivated by Gibbs type partition sums of statistical me-
chanics. The parameter β plays the role of inverse temperature 1/kBT and E(s1s2...sn) =

− log µ(s1s2...sn) is the energy associated with the microstate labeled by s1s2...sn

We are tempted also to introduce something analogous with the Free energy. In
dynamical systems this is called the Rényi entropy [1] defined by the growth rate
of the partition sum

Kβ = lim
n→∞

1
n

1
1 − β

log

 ∑
s1 s2...sn

µβ(s1s2...sn)

 . (A32.4)

In the special case β→ 1 we get Kolmogorov entropy

K1 = lim
n→∞

1
n

∑
s1 s2...sn

−µ(s1s2...sn) log µ(s1s2...sn),
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while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

log N(n),

where N(n) is the number of existing length n sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =

∫
dλNn(λ) exp(−nλβ),

where we used the definition (A32.2). For large n we can replace Nn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which maxi-
mize the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (A32.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (A32.4) we can now connect the Rényi entropies and g(λ)

(β − 1)Kβ = λ∗(β)β − g(λ∗(β)). (A32.6)

Equations (A32.5) and (A32.6) define the Legendre transform of g(λ). This equa-
tion is analogous with the thermodynamic equation connecting the entropy and the
free energy. As we know from thermodynamics we can invert the Legendre trans-
form. In our case we can express g(λ) from the Rényi entropies via the Legendre
transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (A32.7)

where now β∗(λ) can be determined from

d
dβ∗

[(β∗ − 1)Kβ∗] = λ. (A32.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (A32.7) and (A32.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (27.10)

µ(s1, ..., sn) ≈
enγ

|Λs1 s2...sn |
. (A32.9)
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The partition sum (A32.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|
β
, (A32.10)

where the summation goes for periodic orbits of length n. We can define the
characteristic function

Ω(z, β) = exp

−∑
n

zn

n
Zn(β)

 . (A32.11)

According to (A32.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (A32.12)

Substituting this into (A32.11) we can see that the leading zero of the characteris-
tic function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (A32.10) into
(A32.11) and introducing prime and repeated periodic orbits as usual we get

Ω(z, β) = exp

−∑
p,r

znpreβγnpr

r|Λr
p|
β

 .
We can see that the characteristic function is the same as the zeta function we
introduced for Lyapunov exponents (A6.12) except we have zeβγ instead of z.
Then we can conclude that the Rényi entropies can be expressed with the pressure
function directly as

P(β) = (β − 1)Kβ + βγ, (A32.13)

since the leading zero of the zeta function is the pressure. The Rényi entropies Kβ,
hence the distribution of the exponents g(λ) as well, can be calculated via finding
the leading eigenvalue of the operator (A6.4).

From (A32.13) we can get all the important quantities of the thermodynamic
formalism. For β = 0 we get the topological entropy

P(0) = −K0 = −htop. (A32.14)

For β = 1 we get the escape rate

P(1) = γ. (A32.15)

Taking the derivative of (A32.13) in β = 1 we get Pesin’s formula [5] connecting
Kolmogorov entropy and the Lyapunov exponent

P′(1) = λ = K1 + γ. (A32.16)

It is important to note that, as always, these formulas are strictly valid for nice
exercise A32.1
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Figure A32.1
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Figure A32.2: g(λ) and P(β) for the map of exer-
cise A32.4 at a = 3 and b = 3/2.
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hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in nonhyperbolic cases.

On figure A32.2 we show a typical pressure and g(λ) curve computed for the
two scale tent map of Exercise A32.4. We have to mention, that all typical hy-
perbolic dynamical system produces a similar parabola like curve. Although this
is somewhat boring we can interpret it like a sign of a high level of universality:
The exponents λ have a sharp distribution around the most probable value. The
most probable value is λ = P′(0) and g(λ) = htop is the topological entropy. The
average value in closed systems is where g(λ) touches the diagonal: λ = g(λ) and
1 = g′(λ).

Next, we are looking at the distribution of trajectories in real space.

A32.2 Fractal dimensions

Hentschel and Procaccia rediscovered a small part of my
theory. Generalized dimensions are not useful at all.

—Benoit B. Mandelbrot

By looking at the repeller we can recognize an interesting spatial structure.
In the 3-disk case the starting points of trajectories not leaving the system after
the first bounce form two strips. Then these strips are subdivided into an infinite
hierarchy of substrings as we follow trajectories which do not leave the system
after more and more bounces. The finer strips are similar to strips on a larger
scale. Objects with such self similar properties are called fractals.

We can characterize fractals via their local scaling properties. The first step is
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to draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid ε the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the ith box is proportional with the dimension of the
section

µi ∼ ε
d.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

µi ∼ ε
αi ,

where αi is the local “dimension" or Hölder exponent of the object. As α is not
necessarily an integer here we are dealing with objects with fractional dimensions.
We can study the distribution of the measure on the surface of section by looking
at the distribution of these local exponents. We can define

αi =
log µi

log ε
,

the local Hölder exponent and then we can count how many of them are between
α and α + dα. This is Nε(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nε(α) ∼ ε−d,

while for hairy objects we expect an α dependent scaling exponent

Nε(α) ∼ ε− f (α).

f (α) can be interpreted as the dimension of the points on the surface of section
with scaling exponent α. [A note to the reader: Even though the thermodynamic
formalism is of older vintage (we refer the reader to ref. [6] for a comprehensive
overview), we adhere here to the notational conventions of ref. [4] which are more
current in the physics literature: we strongly recommend also ref. [8], dealing with
period doubling universality.] We can calculate f (α) with the help of partition
sums as we did for g(λ) in the previous section. First, we define

Zε(q) =
∑

i

µ
q
i . (A32.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by the τ(q) exponent

Zε(q) ∼ ε−τ(q).

The partition sum can be written in terms of the distribution function of α-s

Zε(q) =

∫
dαNε(α)εqα.
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Using the asymptotic form of the distribution we get

Zε(q) ∼
∫

dαεqα− f (α).

As ε goes to zero the integral is dominated by the term maximizing the exponent.
This α∗ can be determined from the equation

d
dα∗

(qα∗ − f (α∗)) = 0,

leading to

q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f (α∗).

In a uniform fractal characterized by a single dimension both α and f (α) col-
lapse to α = f (α) = D. The scaling exponent then has the form τ(q) = (q − 1)D.
In case of non uniform fractals we can introduce generalized dimensions [3] Dq

via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum
(A32.17) counts the number of non empty boxes N̄ε . Consequently

D0 = − lim
ε→0

log N̄ε

log ε
,

is called the box counting dimension. For q = 1 the dimension can be determined
as the limit of the formulas for q→ 1 leading to

D1 = lim
ε→0

∑
i

µi log µi/ log ε.

This is the scaling exponent of the Shannon information entropy [7] of the distri-
bution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (A32.17) into the more convenient form

∑
i

µ
q
i

ετ(q)
∼ 1. (A32.18)

If we cover the ith branch of the fractal with a grid of size li instead of ε we can
use the relation [4]

∑
i

µ
q
i

liτ(q)
∼ 1, (A32.19)
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the non-uniform grid generalization of A32.18. Next we show how can we use
the periodic orbit formalism to calculate fractal dimensions. We have already seen
that the width of the strips of the repeller can be approximated with the stabilities
of the periodic orbits placed within them

li ∼
1
|Λi|

.

Then using this relation and the periodic orbit expression of the natural measure
we can write (A32.19) into the form∑

i

eqγn

|Λi|
q−τ(q) ∼ 1, (A32.20)

where the summation goes for periodic orbits of length n. The sum for stabilities
can be expressed with the pressure function again∑

i

1
|Λi|

q−τ(q) ∼ e−nP(q−τ(q)),

and (A32.20) can be written as

eqγne−nP(q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P(q − (q − 1)Dq) = qγ. (A32.21)

Solving this equation directly gives us the partial dimensions of the fractal repeller
along the stable direction. We can see again that the pressure function alone con-
tains all the relevant information. Setting q = 0 in (A32.21) we can prove that the
zero of the pressure function is the box-counting dimension of the repeller

P(D0) = 0.

Taking the derivative of (A32.21) in q = 1 we get

P′(1)(1 − D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1 − γ/λ. (A32.22)

If the system is bound (γ = 0) the information dimension and all other dimen-
sions are Dq = 1. Also since D10 is positive (A32.22) proves that the Lyapunov
exponent must be larger than the escape rate λ > γ in general.

exercise A32.4
exercise A32.5

Résumé

In this chapter we have shown that thermodynamic quantities and various frac-
tal dimensions can be expressed in terms of the pressure function. The pressure
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function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov case β is just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter is that the distribution of
locally fluctuating exponents should not be computed via making statistics. We
can use cyclist formulas for determining the pressure. Then the pressure can be
found using short cycles + curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories coded in g(λ) and P(β) can be
calculated from short cycles. To use this intimate relation between long and short
trajectories effectively is still a research level problem.

Commentary

Remark A32.1. Mild phase transition. In nonhyperbolic systems the formulas derived
in this chapter should be modified. As we mentioned in remark 27.1 in nonhyperbolic
systems the periodic orbit expression of the measure can be

µ0 = eγn/|Λ0|
δ ,

where δ can differ from 1. Usually it is 1/2. For sufficiently negative β the corresponding
term 1/|Λ0|

β can dominate (A32.10) while in (A32.3) eγn/|Λ0|
δβ plays no dominant role.

In this case the pressure as a function of β can have a kink at the critical point β = βc

where βc log |Λ0| = (βc − 1)Kβc + βcγ. For β < βc the pressure and the Rényi entropies
differ

P(β) , (β − 1)Kβ + βγ .

This phenomena is called phase transition. This is however not a very deep problem. We
can fix the relation between pressure and the entropies by replacing 1/|Λ0| with 1/|Λ0|

δ in
(A32.10).

Remark A32.2. Hard phase transition. The really deep trouble of thermodynamics
is caused by intermittency. In that case we have periodic orbits with |Λ0| → 1 as n → ∞.
Then for β > 1 the contribution of these orbits dominate both (A32.10) and (A32.3). Con-
sequently the partition sum scales as Zn(β) → 1 and both the pressure and the entropies
are zero. In this case quantities connected with β ≤ 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
D0 and D1. This phase transition cannot be fixed. It is probably fair to say that quanti-
ties which depend on this phase transition are only of mathematical interest and not very
useful for characterization of realistic dynamical systems.
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Exercises

A32.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the Jacobian matrix J

µ(k) = lim
t→∞

1
t

log |Λt
k(x0)|, (A32.23)

as a generalization of (6.11).
Show that in d dimensions Pesin’s formula is

K1 =

d∑
k=1

µ(k) − γ, (A32.24)

where the summation goes for the positive µ(k)-s only.
Hint: Use the d-dimensional generalization of (A32.9)

µp = enγ/|
∏

k

Λp,k |,

where the product goes for the expanding eigenvalues of
the Jacobian matrix of p-cycle. (G. Vattay)

A32.2. Stadium billiard Kolmogorov entropy. (con-
tinuation of exercise 9.6) Take a = 1.6 and d = 1 in
figure 9.1, and estimate the Lyapunov exponent by aver-
aging over a very long trajectory. Biham and Kvale [2]
estimate the discrete time Lyapunov to λ ≈ 1.0 ± .1,
the continuous time Lyapunov to λ ≈ 0.43 ± .02, the
topological entropy (for their symbolic dynamics) h ≈
1.15 ± .03.

A32.3. Entropy of rugged-edge billiards. Take a semi-circle
of diameter ε and replace the sides of a unit square by
b1/εc semi-circle arcs.

(a) Is the billiard ergodic as ε→ 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → −
2
π

ln ε + const ,

as ε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, say L, the entropy
for the flow decays as

K1 →
2 ln L
πL

.

A32.4. Two scale map. Compute all those quantities - dimen-
sions, escape rate, entropies, etc. - for the repeller of the
one dimensional map

f (x) =

{
1 + ax if x < 0,
1 − bx if x > 0. (A32.25)

where a and b are larger than 2. Compute the fractal di-
mension, plot the pressure and compute the f (α) spec-
trum of singularities.

A32.5. Transfer matrix. Take the unimodal map f (x) =

sin(πx) of the interval I = [0, 1]. Calculate the four
preimages of the intervals I0 = [0, 1/2] and I1 =

[1/2, 1]. Extrapolate f (x) with piecewise linear func-
tions on these intervals. Find a1, a2 and b of the previous
exercise. Calculate the pressure function of this linear
extrapolation. Work out higher level approximations by
linearly extrapolating the map on the 2n-th preimages of
I.
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Appendix A33

Statistical mechanics recycled

(R. Mainieri)

A spin system with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The thermo-
dynamic limit quantities of the spin system are then equivalent to long time

averages of the dynamical system. In this way the spin system averages can be
recast as the cycle expansions. If the resulting dynamical system is analytic, the
convergence to the thermodynamic limit is faster than with the standard transfer
matrix techniques.

A33.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better control
over the thermodynamic limit and one gets detailed information on how one is
converging to it. From this information, most other quantities of physical interst
can be computed.

In statistical mechanics one computes the averages of observables. These are
functions that return a number for every state of the system; they are an abstraction
of the process of measuring the pressure or temperature of a gas. The average of
an observable is computed in the thermodynamic limit — the limit of system with
an arbitrarily large number of particles. The thermodynamic limit is an essential
step in the computation of averages, as it is only then that one observes the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamic properties of
matter could not be derived within the framework of statistical mechanics. There
would be no extensive quantities, no equivalence of ensembles, and no phase tran-
sitions. From experiments it is known that certain quantities are extensive, that is,
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they are proportional to the size of the system. This is not true for an interact-
ing set of particles. If two systems interacting via pairwise potentials are brought
close together, work will be required to join them, and the final total energy will
not be the sum of the energies of each of the parts. To avoid the conflict between
the experiments and the theory of Hamiltonian systems, one needs systems with
an infinite number of particles. In the canonical ensemble the probability of a
state is given by the Boltzman factor which does not impose the conservation of
energy; in the microcanonical ensemble energy is conserved but the Boltzmann
factor is no longer exact. The equality between the ensembles only appears in the
limit of the number of particles going to infinity at constant density. The phase
transitions are interpreted as points of non-analyticity of the free energy in the
thermodynamic limit. For a finite system the partition function cannot have a zero
as a function of the inverse temperature β, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in the study of field
theories. A field theory can be first defined on a lattice and then the lattice spac-
ing is taken to zero as the correlation length is kept fixed. This continuum limit
corresponds to the thermodynamic limit. In lattice spacing units the correlation
length is going to infinity, and the interacting field theory can be thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermodynamic limit is slow.
If the thermodynamic limit exists for an interaction, the convergence of the free
energy per unit volume f is as an inverse power in the linear dimension of the
system.

f (β)→
1
n

(A33.1)

where n is proportional to V1/d, with V the volume of the d-dimensional system.
Much better results can be obtained if the system can be described by a transfer
matrix. A transfer matrix is concocted so that the trace of its nth power is exactly
the partition function of the system with one of the dimensions proportional to
n. When the system is described by a transfer matrix then the convergence is
exponential,

f (β)→ e−αn (A33.2)

and may only be faster than that if all long-range correlations of the system are
zero — that is, when there are no interactions. The coefficient α depends only on
the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that they seem
at first limited to systems with finite range interactions. Phase transitions can
happen only when the interaction is long range. One can try to approximate the
long range interaction with a series of finite range interactions that have an ever
increasing range. The problem with this approach is that in a formally defined
transfer matrix, not all the eigenvalues of the matrix correspond to eigenvalues of
the system (in the sense that the rate of decay of correlations is not the ratio of
eigenvalues).
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Knowledge of the correlations used in conjunction with finite size scaling to
obtain accurate estimates of the parameters of systems with phase transitions. (Ac-
curate critical exponents are obtained by series expansions or transfer matrices,
and infrequently by renormalization group arguments or Monte Carlo.) In a phase
transition the coefficient α of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example of a functional inte-
gral. For most interactions these integrals are ill-defined and require some form
of normalization. In the spin models case the functional integral is very simple,
as “space” has only two points and only “time” being infinite has to be dealt with.
The same problem occurs in the computation of the trace of transfer matrices of
systems with infinite range interactions. If one tries to compute the partition func-
tion Zn

Zn = tr T n

when T is an infinite matrix, the result may be infinite for any n. This is not to
say that Zn is infinite, but that the relation between the trace of an operator and the
partition function breaks down. We could try regularizing the expression, but as
we shall see below, that is not necessary, as there is a better physical solution to
this problem.

What will described here solves both of these problems in a limited context:
it regularizes the transfer operator in a physically meaningful way, and as a con-
sequence, it allows for the faster than exponential convergence to the thermody-
namic limit and complete determination of the spectrum. The steps to achieve this
are:

• Redefine the transfer operator so that there are no limits involved except for
the thermodynamic limit.

• Note that the divergences of this operator come from the fact that it acts on
a very large space. All that is needed is the smallest subspace containing
the eigenvector corresponding to the largest eigenvalue (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The eigen-
vector is like that, and the operator restricted to this space is trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

A33.2 Ising models

The Ising model is a simple model to study the cooperative effects of many small
interacting magnetic dipoles. The dipoles are placed on a lattice and their interac-
tion is greatly simplified. There can also be a field that includes the effects of an
external magnetic field and the average effect of the dipoles among themselves.
We will define a general class of Ising models (also called spin systems) where the
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dipoles can be in one of many possible states and the interactions extend beyond
the nearest neighboring sites of the lattice. But before we extend the Ising model,
we will examine the simplest model in that class.

A33.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One imag-
ines that one has a 1-dimensional lattice with small magnets at each site that can
point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in the same
direction, then they contribute an energy −J to the total energy of the system; and
if they point in opposite directions, then they contribute +J. The signs are chsen
so that they prefer to be aligned. Let us suppose that we have n small magnets
arranged in a line: A line is drawn between two sites to indicate that there is an
interaction between the small magnets that are located on that site

. (A33.3)

(This figure can be thought of as a graph, with sites being vertices and interacting
magnets indicated by edges.) To each of the sites we associate a variable, that we
call a spin, that can be in either of two states: up (↑) or down (↓). This represents
the two states of the small magnet on that site, and in general we will use the
notation Σ0 to represent the set of possible values of a spin at any site; all sites
assume the same set of values. A configuration consists of assigning a value to
the spin at each site; a typical configuration is

. (A33.4)

The set of all configurations for a lattice with n sites is called Ωn
0 and is formed

by the Cartesian product Ω0 × Ω0 · · · × Ω0, the product repeated n times. Each
configuration σ ∈ Ωn is a string of n spins

σ = {σ0, σ1, . . . σn} , (A33.5)

In the example configuration (A33.4) there are two pairs of spins that have the
same orientation and six that have the opposite orientation. Therefore the total
energy H of the configuration is J × 6 − J × 2 = 4J. In general we can associate
an energy H to every configuration

H(σ) =
∑

i

Jδ(σi, σi+1) , (A33.6)

where

δ(σ1, σ2) =

{
+1 if σ1 = σ2
−1 if σ1 , σ2

. (A33.7)
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One of the problems that was avoided when computing the energy was what to
do at the boundaries of the 1-dimensional chain. Note that as written, (A33.6)
requires the interaction of spin n with spin n + 1. In the absence of phase transi-
tions the boundaries do not matter much to the thermodynamic limit and we will
connect the first site to the last, implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function Z(n) as
the size n of the system becomes very large. For example, the free energy per site
f at inverse temperature β is given by

−β f (β) = lim
n→∞

1
n

ln Z(n) . (A33.8)

The partition function Z(n) is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configuration contributes with
its Gibbs factor exp(−βH(σ)) and the partition function Z(n) is

Z(n)(β) =
∑
σ∈Ωn

0

e−βH(σ) . (A33.9)

The partition function can be computed using transfer matrices. This is a
method that generalizes to other models. At first, it is a little mysterious that
matrices show up in the study of a sum. To see where they come from, we can
try and build a configuration on the lattice site by site. The first thing to do is to
expand out the sum for the energy of the configuration

Z(n)(β) =
∑
σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn,σ1) . (A33.10)

Let us use the configuration in (A33.4). The first site is σ1 =↑. As the second
site is ↑, we know that the first term in (A33.10) is a term eβJ . The third spin is
↓, so the second term in (A33.10) is e−βJ . If the third spin had been ↑, then the
term would have been eβJ but it would not depend on the value of the first spin σ1.
This means that the configuration can be built site by site and that to compute the
Gibbs factor for the configuration just requires knowing the last spin added. We
can then think of the configuration as being a weighted random walk where each
step of the walk contributes according to the last spin added. The random walk
take place on the transition graph

eβJ

e−βJ

e−βJ

eβJ

.

Choose one of the two sites as a starting point. Walk along any allowed edge
making your choices randomly and keep track of the accumulated weight as you
perform the n steps. To implement the periodic boundary conditions make sure
that you return to the starting node of the transition graph. If the walk is carried
out in all possible 2n ways then the sum of all the weights is the partition function.
To perform the sum we consider the matrix

T (β) =

[
eβJ e−βJ

e−βJ eβJ

]
. (A33.11)
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As in chapter 14 the sum of all closed walks is given by the trace of powers of the
matrix. These powers can easily be re-expressed in terms of the two eigenvalues
λ1 and λ2 of the transfer matrix:

Z(n)(β) = tr T n(β) = λ1(β)n + λ2(β)n . (A33.12)

A33.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of the
transfer matrix. Alternatively, one can introduce a modified transfer matrix and
compute the averages through derivatives. Sounds familiar?

A33.2.3 General spin models

The more general version of the Ising model — the spin models — will be defined
on a regular lattice, ZD. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by the set Ω0.

The transfer operator T was introduced by Kramers and Wannier [11] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition function Zn of system when one of its dimensions is n. The method
can be generalized to deal with any finite-range interaction. If the range of the
interaction is L, then T is a matrix of size 2L×2L. The longer the range, the larger
the matrix.

A33.3 Fisher droplet model

In a series of articles [7], Fisher introduced the droplet model. It is a model for a
system containing two phases: gas and liquid. At high temperatures, the typical
state of the system consists of droplets of all sizes floating in the gas phase. As the
temperature is lowered, the droplets coalesce, forming larger droplets, until at the
transition temperature, all droplets form one large one. This is a first order phase
transition.

Although Fisher formulated the model in 3-dimensions, the analytic solution
of the model shows that it is equivalent to a 1-dimensional lattice gas model with
long range interactions. Here we will show how the model can be solved for an
arbitrary interaction, as the solution only depends on the asymptotic behavior of
the interaction.

The interest of the model for the study of cycle expansions is its relation to
intermittency. By having an interaction that behaves asymptotically as the scaling
function for intermittency, one expects that the analytic structure (poles and cuts)
will be same.
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Fisher used the droplet model to study a first order phase transition [7]. Gallavotti [8]
used it to show that the zeta functions cannot in general be extended to a mero-
morphic functions of the entire complex plane. The droplet model has also been
used in dynamical systems to explain features of mode locking, see Artuso [1].
In computing the zeta function for the droplet model we will discover that at low
temperatures the cycle expansion has a limited radius of convergence, but it is
possible to factorize the expansion into the product of two functions, each of them
with a better understood radius of convergence.

A33.3.1 Solution

The droplet model is a 1-dimensional lattice gas where each site can have two
states: empty or occupied. We will represent the empty state by 0 and the occupied
state by 1. The configurations of the model in this notation are then strings of
zeros and ones. Each configuration can be viewed as groups of contiguous ones
separated by one or more zeros. The contiguous ones represent the droplets in the
model. The droplets do not interact with each other, but the individual particles
within each droplet do.

To determine the thermodynamics of the system we must assign an energy
to every configuration. At very high temperatures we would expect a gaseous
phase where there are many small droplets, and as we decrease the temperature
the droplets would be expected to coalesce into larger ones until at some point
there is a phase transition and the configuration is dominated by one large drop.
To construct a solvable model and yet one with a phase transition we need long
range interaction among all the particles of a droplet. One choice is to assign a
fixed energy θn for the interactions of the particles of a cluster of size n. In a
given droplet one has to consider all the possible clusters formed by contiguous
particles. Consider for example the configuration 0111010. It has two droplets,
one of size three and another of size one. The droplet of size one has only one
cluster of size one and therefore contributes to the energy of the configuration with
θ1. The cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing a θn term to the energy.
The total energy of the configuration is then

H(0111010) = 4θ1 + 2θ2 + 1θ3 . (A33.13)

If there where more zeros around the droplets in the above configuration the en-
ergy would still be the same. The interaction of one site with the others is assumed
to be finite, even in the ground state consisting of a single droplet, so there is a
restriction on the sum of the cluster energies given by

a =
∑
n>0

θn < ∞ . (A33.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the function θn we can computed the energy of any config-
uration, and from that determine the thermodynamics. Here we will evaluate the

statmech - 1dec2001 ChaosBook.org edition16.4.8, May 25 2020



APPENDIX A33. STATISTICAL MECHANICS RECYCLED 1026

cycle expansion for the model by first computing the generating function

G(z, β) =
∑
n>0

zn Zn(β)
n

(A33.15)

and then considering its exponential, the cycle expansion. Each partition function
Zn must be evaluated with periodic boundary conditions. So if we were computing
Z3 we must consider all eight binary sequences of three bits, and when computing
the energy of a configuration, say 011, we should determine the energy per three
sites of the long chain

. . . 011011011011 . . .

In this case the energy would be θ2 + 2θ1. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the configuration would have
been the same. To compute the partition function we only need to consider one
of the configurations and multiply by the length of the configuration to obtain the
contribution of all its rotated shifts. The factor 1/n in the generating function can-
cels this multiplicative factor. This reduction will not hold if the configuration
has a symmetry, as for example 0101 which has only two rotated shift configura-
tions. To compensate this we replace the 1/n factor by a symmetry factor 1/s(b)
for each configuration b. The evaluation of G is now reduced to summing over
all configurations that are not rotated shift equivalent, and we call these the basic
configurations and the set of all of them B. We now need to evaluate

G(z, β) =
∑
b∈B

z|b|

s(b)
e−βH(b) . (A33.16)

The notation | · | represents the cardinality of the set.

Any basic configuration can be built by considering the set of droplets that
form it. The smallest building block has size two, as we must also put a zero next
to the one so that when two different blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(A33.17)

Each droplet of size n contributes with energy

Wn =
∑

1≤k≤n

(n − k + 1)θk . (A33.18)

So if we consider the sum

∑
n≥1

1
n

(
z2e−βH(01) + z3(e−βH(001) + e−βH(011)) +

+ z4(e−βH(0001) + e−βH(0011) + e−βH(0111)) + · · ·
)n

(A33.19)
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then the power in n will generate all the configurations that are made from many
droplets, while the z will keep track of the size of the configuration. The factor
1/n is there to avoid the over-counting, as we only want the basic configurations
and not its rotated shifts. The 1/n factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can be simplified by noticing
that it is a logarithmic series

− ln
(
1 − (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·

)
, (A33.20)

where the H(b) factors have been evaluated in terms of the droplet energies Wn. A
proof of the equality of (A33.19) and (A33.20) can be given, but we there was not
enough space on the margin to write it down. The series that is subtracted from
one can be written as a product of two series and the logarithm written as

− ln
(
1 − (z1 + z2 + z3 + · · · )(ze−βW1 + z2e−βW2 + · · · )

)
(A33.21)

The product of the two series can be directly interpreted as the generating function
for sequences of droplets. The first series adds one or more zeros to a configuration
and the second series add a droplet.

There is a whole class of configurations that is not included in the above sum:
the configurations formed from a single droplet and the vacuum configuration.
The vacuum is the easiest, as it has zero energy it only contributes a z. The sum
of all the null configurations of all sizes is∑

n>0

zn

n
. (A33.22)

The factor 1/n is here because the original G had them and the null configurations
have no rotated shifts. The single droplet configurations also do not have rotated
shifts so their sum is

∑
n>0

zne−βH(

n︷   ︸︸   ︷
11 . . . 11)

n
. (A33.23)

Because there are no zeros in the above configuration clusters of all size exist and
the energy of the configuration is n

∑
θk which we denote by na.

From the three sums (A33.21), (A33.22), and (A33.23) we can evaluate the
generating function G to be

G(z, β) = − ln(1 − z) − ln(1 − ze−βa) − ln(1 −
z

1 − z

∑
n≥1

zne−βWn) . (A33.24)

The cycle expansion ζ−1(z, β) is given by the exponential of the generating
function e−G and we obtain

ζ−1(z, β) = (1 − ze−βa)(1 − z(1 +
∑
n≥1

zne−βWn)) (A33.25)
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To pursue this model further we need to have some assumptions about the
interaction strengths θn. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, that is, θn = −1/n2. With this we
can estimate that the energy of a droplet of size n is asymptotically

Wn ∼ −n + ln n + O(
1
n

) . (A33.26)

If the power chosen for the polynomially decaying interaction had been other than
inverse square we would still have the droplet term proportional to n, but there
would be no logarithmic term, and the O term would be of a different power.
The term proportional to n survives even if the interactions falls off exponentially,
and in this case the correction is exponentially small in the asymptotic formula.
To simplify the calculations we are going to assume that the droplet energies are
exactly

Wn = −n + ln n (A33.27)

in a system of units where the dimensional constants are one. To evaluate the
cycle expansion (A33.25) we need to evaluate the constant a, the sum of all the
θn. One can write a recursion for the θn

θn = Wn −
∑

1≤k<n

(n − k + 1)θk (A33.28)

and with an initial choice for θ1 evaluate all the others. It can be verified that in-
dependent of the choice of θ1 the constant a is equal to the number that multiplies
the n term in (A33.27). In the units used

a = −1 . (A33.29)

For the choice of droplet energy (A33.27) the sum in the cycle expansion can
be expressed in terms of a special function: the Lerch transcendental φL. It is
defined by

φL(z, s, c) =
∑
n≥0

zn

(n + c)s , (A33.30)

excluding from the sum any term that has a zero denominator. The Lerch function
converges for |z| < 1. The series can be analytically continued to the complex
plane and it will have a branch point at z = 1 with a cut chosen along the pos-
itive real axis. In terms of Lerch transcendental function we can write the cycle
expansion (A33.25) using (A33.27) as

ζ−1(z, β) =
(
1 − zeβ

) (
1 − z(1 + φL(zeβ, β, 1))

)
(A33.31)

This serves as an example of a zeta function that cannot be extended to a mero-
morphic function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root of
(A33.31). The root can come from any of the two factors. For large value of β (low
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temperatures) the smallest root is determined from the (1− zeβ) factor, which gave
the contribution of a single large drop. For small β (large temperatures) the root is
determined by the zero of the other factor, and it corresponds to the contribution
from the gas phase of the droplet model. The transition occurs when the smallest
root of each of the factors become numerically equal. This determines the critical
temperature βc through the equation

1 − e−βc(1 + ζR(βc)) = 0 (A33.32)

which can be solved numerically. One finds that βc = 1.40495. The phase tran-
sition occurs because the roots from two different factors get swapped in their
roles as the smallest root. This in general leads to a first order phase transition.
For large β the Lerch transcendental is being evaluated at the branch point, and
therefore the cycle expansion cannot be an analytic function at low temperatures.
For large temperatures the smallest root is within the radius of convergence of
the series for the Lerch transcendental, and the cycle expansion has a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a function of β the smallest root
and the branch point get closer together until at exactly the phase transition they
collide. This is a sufficient condition for the existence of a first order phase transi-
tions. In the literature of zeta functions [12] there have been speculations on how
to characterize a phase transition within the formalism. The solution of the Fisher
droplet model suggests that for first order phase transitions the factorized cycle
expansion will have its smallest root within the radius of convergence of one of
the series except at the phase transition when the root collides with a singularity.
This does not seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider separate
cycle expansions for each of the phases of the system. If we separate the two terms
of ζ−1 in (A33.31), each of them is an analytic function and contains the smallest
root within the radius of convergence of the series for the relevant β values.

A33.4 Scaling functions

There is a relation between general spin models and dynamical system. If one
thinks of the boxes of the Markov partition of a hyperbolic system as the states
of a spin system, then computing averages in the dynamical system is carrying
out a sum over all possible states. One can even construct the natural measure of
the dynamical system from a translational invariant “interaction function” call the
scaling function.

There are many routes that lead to an explanation of what a scaling function
is and how to compute it. The shortest is by breaking away from the histori-
cal development and considering first the presentation function of a fractal. The
presentation function is a simple chaotic dynamical system (hyperbolic, unlike
the circle map) that generates the fractal and is closely related to the definition
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Figure A33.1: Construction of the steps of the scal-
ing function from a Cantor set. From one level to the
next in the construction of the Cantor set, each par-
ent segment changes into two children segments. The
shrinkage of the last level of the construction is plotted
and by removing the gaps one has an approximation to
the scaling function of the Cantor set.
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of fractals of Hutchinson [10] and the iterated dynamical systems introduced by
Barnsley and collaborators [3]. From the presentation function one can derive the
scaling function, but we will not do it in the most elegant fashion, rather we will
develop the formalism in a form that is directly applicable to the experimental
data.

In the upper part of figure A33.1 we have the successive steps of the construc-
tion similar to the middle third Cantor set. The construction is done in levels, each
level being formed by a collection of segments. From one level to the next, each
“parent” segment produces smaller “children” segments by removing the middle
section. As the construction proceeds, the segments better approximate the Can-
tor set. In the figure not all the segments are the same size, some are larger and
some are smaller, as is the generic case for a fractal (sometimes referred to as a
‘multifractal’). In the middle third Cantor set, the ratio between a segment and the
one it was generated from is exactly 1/3, but in the case shown in the figure the
ratios differ from 1/3. If we went through the last level of the construction and
made a plot of the segment number and its ratio to its parent segment we would
have a scaling function, as indicated in the figure. A function giving the ratios
in the construction of a fractal is the basic idea for a scaling function. Much of
the formalism that we will introduce is to be able to give precise names to every
segments and to arrange the “lineage” of segments so that the children segments
have the correct parent. If we do not take these precautions, the scaling func-
tion would be a “wild function,” varying rapidly and not approximated easily by
simple functions.

To describe the formalism we will use a variation on the quadratic map that
appears in the theory of period doubling. This is because the combinatorial ma-
nipulations are much simpler for this map than they are for the circle map. The
scaling function will be described for a one dimensional map F as shown in fig-
ure A33.2. Drawn is the map

F(x) = 5x(1 − x) (A33.33)

restricted to the unit interval. We will see that this map is also a presentation
function.

It has two branches separated by a gap: one over the left portion of the unit
interval and one over the right. If we choose a point x at random in the unit interval
and iterate it under the action of the map F, (A33.33), it will hop between the
branches and eventually get mapped to minus infinity. An orbit point is guaranteed
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Figure A33.2: A Cantor set presentation function.
The Cantor set is the set of all points that under iter-
ation do not leave the interval [0, 1]. This set can be
found by backwards iterating the gap between the two
branches of the map. The dotted lines can be used to
find these backward images. At each step of construc-
tion, a set of segments exists that forms a cover for the
Cantor set.

to go to minus infinity if it lands in the gap. The hopping of the point defines the
orbit of the initial point x: x 7→ x1 7→ x2 7→ · · · . For each orbit of the map F we
can associate a symbolic code. The code for this map is formed from 0s and 1s
and is found from the orbit by associating a 0 if xt < 1/2 and a 1 if xt > 1/2, with
t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two branches.
We then say that the orbit point has escaped the unit interval. The points that do
not escape form a Cantor set C (or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describing all the points that do not
escape, the map F can be used as a presentation of the Cantor set C, and has been
called a presentation function by Feigenbaum [6].

How does the map F “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escape the unit interval in one
iteration of the map. These are the points that are not part of the gap. These points
determine two segments, which are an approximation to the Cantor set. In the
next step we determine the points that do not escape in two iterations. These are
the points that get mapped into the gap in one iteration, as in the next iteration
they will escape; these points form the two segments ∆

(1)
0 and ∆

(1)
1 at level 1 in

figure A33.2. The processes can be continued for any number of iterations. If we
observe carefully what is being done, we discover that at each step the pre-images
of the gap (backward iterates) are being removed from the unit interval. As the
map has two branches, every point in the gap has two pre-images, and therefore
the whole gap has two pre-images in the form of two smaller gaps. To generate all
the gaps in the Cantor set one just has to iterate the gap backwards. Each iteration
of the gap defines a set of segments, with the nth iterate defining the segments
∆

(n)
k at level n. For this map there will be 2n segments at level n, with the first few

drawn in figure A33.2. As n → ∞ the segments that remain for at least n iterates
converge to the Cantor set C.

The segments at one level form a cover for the Cantor set and it is from a cover
that all the invariant information about the set is extracted (the cover generated
from the backward iterates of the gap form a Markov partition for the map as a
dynamical system). The segments {∆(n)

k } at level n are a refinement of the cover
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formed by segments at level n − 1. From successive covers we can compute the
trajectory scaling function, the spectrum of scalings f (α), and the generalized
dimensions.

To define the scaling function we must give labels (names) to the segments.
The labels are chosen so that the definition of the scaling function allows for sim-
ple approximations. As each segment is generated from an inverse image of the
unit interval, we will consider the inverse of the presentation function F. Be-
cause F does not have a unique inverse, we have to consider restrictions of F. Its
restriction to the first half of the segment, from 0 to 1/2, has a unique inverse,
which we will call F−1

0 , and its restriction to the second half, from 1/2 to 1, also
has a unique inverse, which we will call F−1

1 . For example, the segment labeled
∆(2)(0, 1) in figure A33.2 is formed from the inverse image of the unit interval by
mapping ∆(0), the unit interval, with F−1

1 and then F−1
0 , so that the segment

∆(2)(0, 1) = F−1
0

(
F−1

1

(
∆(0)

))
. (A33.34)

The mapping of the unit interval into a smaller interval is what determines its
label. The sequence of the labels of the inverse maps is the label of the segment:

∆(n)(ε1, ε2, . . . , εn) = F−1
ε1
◦ F−1

ε2
◦ · · · F−1

εn

(
∆(0)

)
.

The scaling function is formed from a set of ratios of segments length. We use
| · | around a segment ∆(n)(ε) to denote its size (length), and define

σ(n)(ε1, ε2, . . . , εn) =
|∆(n)(ε1, ε2, . . . , εn)|
|∆(n−1)(ε2, . . . , εn)|

.

We can then arrange the ratios σ(n)(ε1, ε2, . . . , εn) next to each other as piecewise
constant segments in increasing order of their binary label ε1, ε2, . . . , εn so that the
collection of steps scan the unit interval. As n → ∞ this collection of steps will
converge to the scaling function.

A33.5 Geometrization

The L operator is a generalization of the transfer matrix. It gets more by consid-
ering less of the matrix: instead of considering the whole matrix it is possible to
consider just one of the rows of the matrix. The L operator also makes explicit
the vector space in which it acts: that of the observable functions. Observables are
functions that to each configuration of the system associate a number: the energy,
the average magnetization, the correlation between two sites. It is in the average
of observables that one is interested in. Like the transfer matrix, the L operator
considers only semi-infinite systems, that is, only the part of the interaction be-
tween spins to the right is taken into account. This may sound un-symmetric, but
it is a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To define the L operator one
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needs the interaction energy between one spin and all the rest to its right, which is
given by the function φ. The L operators defined as

Lg(σ) =
∑
σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value in Ω0 that the spinσ0 can assume, an average of the observ-
able g is computed weighed by the Boltzmann factor e−βφ. The formal relations
that stem from this definition are its relation to the free energy when applied to the
observable ι that returns one for any configuration:

−β f (β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞

‖Lng‖
‖Lnι‖

.

Both relations hold for almost all configurations. These relations are part of the-
orem of Ruelle that enlarges the domain of the Perron-Frobenius theorem and
sharpens its results. The theorem shows that just as the transfer matrix, the largest
eigenvalue of theL operator is related to the free-energy of the spin system. It also
hows that there is a formula for the eigenvector related to the largest eigenvalue.
This eigenvector |ρ〉 (or the corresponding one for the adjointL∗ ofL) is the Gibbs
state of the system. From it all averages of interest in statistical mechanics can be
computed from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the inter-
actions, but it is of little computational value as it involves the Gibbs state for a
related spin system. Even then it does have an enormous theoretical value. Later
we will see how the formula can be used to manipulate the space of observables
into a more convenient space.

The geometrization of a spin system converts the shift dynamics (necessary
to define the Ruelle operator) into a smooth dynamics. This is equivalent to the
mathematical problem in ergodic theory of finding a smooth embedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk such that

Fσk (0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interaction is to be converted into
a dynamical systems. In most examples Fσk is a collection of maps from a subset
of RD to itself.
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If the interaction is complicated, then the dimension of the set of maps may
be infinite. If the resulting dynamical system is infinite have we gained anything
from the transformation? The gain in this case is not in terms of added speed of
convergence to the thermodynamic limit, but in the fact that the Ruelle operator
is of trace-class and all eigenvalues are related to the spin system and not artifacts
of the computation.

The construction of the higher dimensional system is done by borrowing the
state space reconstruction technique from dynamical systems. State space recon-
struction can be done in several ways: by using delay coordinates, by using deriva-
tives of the position, or by considering the value of several independent observ-
ables of the system. All these may be used in the construction of the equivalent
dynamics. Just as in the study of dynamical systems, the exact method does not
matter for the determination of the thermodynamics ( f (α) spectra, generalized di-
mension), also in the construction of the equivalent dynamics the exact choice of
observable does not matter.

We will only consider configurations for the half line. This is because for
translational invariant interactions the thermodynamic limit on half line is the
same as in the whole line. One can prove this by considering the difference in
a thermodynamic average in the line and in the semiline and compare the two as
the size of the system goes to infinity.

When the interactions are long range in principle one has to specify the bound-
ary conditions to be able to compute the interaction energy of a configuration in a
finite box. If there are no phase transitions for the interaction, then which bound-
ary conditions are chosen is irrelevant in the thermodynamic limit. When com-
puting quantities with the transfer matrix, the long range interaction is truncated
at some finite range and the truncated interaction is then use to evaluate the trans-
fer matrix. With the Ruelle operator the interaction is never truncated, and the
boundary must be specified.

The interaction φ(σ) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

φ(σ) =
∑
n>0

δσ0,σn J(n)

with different choices of J(n) leading to different models. If J(n) = 1 only if n = 1
and ) otherwise, then one has the nearest neighbor Ising model. If J(n) = n−2, then
one has the inverse square model relevant in the study of the Kondo problem.

Let us say that each site of the lattice can assume two values +,− and the set
of all possible configurations of the semiline is the set Ω. Then an observable g
is a function from the set of configurations Ω to the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to think of the configuration as
a string of spins. One can append a spin η0 to its beginning, η ∨ σ, in which case
η is at site 0, ω0 at site 1, and so on.
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The Ruelle operator L is defined as

Lg(η) =
∑
ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observables.
There is a generalization of the Perron-Frobenius theorem by Ruelle that estab-
lishes that the largest eigenvalue of L is isolated from the rest of the spectrum and
gives the thermodynamics of the spin system just as the largest eigenvalue of the
transfer matrix does. Ruelle also gave a formula for the eigenvector related to the
largest eigenvalue.

The difficulty with it is that the relation between the partition function and the
trace of its nth power, trLn = Zn no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables {x1(σ), . . . , x1(σ)}. The idea
is to choose the observables in such a way that from their values on a particular
configuration σ the configuration can be reconstructed. We also introduce the
interaction observables hσ0 .

To geometrize spin systems, the interactions are assumed to be translationally
invariant. The spins σk will only assume a finite number of values. For simplic-
ity, we will take the interaction φ among the spins to depend only on pairwise
interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑
n>0

δσ0,σn J1(n) , (A33.35)

and limit σk to be in {+,−}. For the 1-dimensional Ising model, J0 is the external
magnetic field and J1(n) = 1 if n = 1 and 0 otherwise. For an exponentially decay-
ing interaction J1(n) = e−αn. Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spins of L × ∞ with helical boundary
conditions is modeled by the potential J1(n) = δn,1 + δn,L.

The transfer operator T was introduced by Kramers and Wannier [11] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
partition function Zn of system when one of its dimensions is n. The method can be
generalized to deal with any finite-range interaction. If the range of the interaction
is L, then T is a matrix of size 2L×2L. The longer the range, the larger the matrix.
When the range of the interaction is infinite one has to define the T operator by
its action on an observable g. Just as the observables in quantum mechanics, g
is a function that associates a number to every state (configuration of spins). The
energy density and the average magnetization are examples of observables. From
this equivalent definition one can recover the usual transfer matrix by making all
quantities finite range. For a semi-infinite configuration σ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (A33.36)

By + ∨ σ we mean the configuration obtained by prepending + to the beginning
of σ resulting in the configuration {+, σ0, σ1, . . .}. When the range becomes in-
finite, trT n is infinite and there is no longer a connection between the trace and
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the partition function for a system of size n (this is a case where matrices give
the wrong intuition). Ruelle [14] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactions the largest eigenvalue
of the T operator is related to the free-energy of the spin system and the corre-
sponding eigenvector is related to the Gibbs state. By applying T to the constant
observable u, which returns 1 for any configuration, the free energy per site f is
computed as

−β f (β) = lim
n→∞

1
n

ln ‖T nu‖ . (A33.37)

To construct a smooth dynamical system that reproduces the properties of T ,
one uses the phase space reconstruction technique of Packard et al. [13] and Tak-
ens [17], and introduces a vector of state observables x(σ) = {x1(σ), . . . , xD(σ)}.
To avoid complicated notation we will limit the discussion to the example x(σ) =

{x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ) and x−(σ) = φ(− ∨ σ); the more general
case is similar and used in a later example. The observables are restricted to those
g for which, for all configurations σ, there exist an analytic function G such that
G(x1(σ), . . . , xD(σ)) = g(σ). This at first seems a severe restriction as it may ex-
clude the eigenvector corresponding to the Gibbs state. It can be checked that this
is not the case by using the formula given by Ruelle [15] for this eigenvector. A
simple example where this formalism can be carried out is for the interaction φ(σ)
with pairwise exponentially decaying potential J1(n) = an (with |a| < 1). In this
case φ(σ) =

∑
n>0 δσ0,σnan and the state observables are x+(σ) =

∑
n>0 δ+,σnan and

x−(σ) =
∑

n>0 δ−,σnan. In this case the observable x+ gives the energy of + spin at
the origin, and x− the energy of a − spin.

Using the observables x+ and x−, the transfer operator can be re-expressed as

TG (x(σ)) =
∑

η∈{+,−}

G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (A33.38)

In this equation the only reference to the configuration σ is when computing the
new observable values x+(η ∨σ) and x−(η ∨σ). The iteration of the function that
gives these values in terms of x+(σ) and x−(σ) is the dynamical system that will
reproduce the properties of the spin system. For the simple exponentially decaying
potential this is given by two maps, F+ and F−. The map F+ takes {x+(σ), x+(σ)}
into {x+(+∨σ), x−(+∨σ)} which is {a(1+ x+), ax−} and the map F− takes {x+, x−}
into {ax+, a(1 + x−)}. In a more general case we have maps Fη that take x(σ) to
x(η ∨ σ).

We can now define a new operator L

LG (x) def
= TG(x(σ)) =

∑
η∈{+,−}

G
(
Fη(x)

)
e−βxη , (A33.39)

where all dependencies on σ have disappeared — if we know the value of the state
observables x, the action of L on G can be computed.

A dynamical system is formed out of the maps Fη. They are chosen so
that one of the state variables is the interaction energy. One can consider the
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two maps F+ and F− as the inverse branches of a hyperbolic map f , that is,
f −1(x) = {F+(x), F−(x)}. Studying the thermodynamics of the interaction φ is
equivalent to studying the long term behavior of the orbits of the map f , achiev-
ing the transformation of the spin system into a dynamical system.

Unlike the original transfer operator, the L operator — acting in the space
of observables that depend only on the state variables — is of trace-class (its
trace is finite). The finite trace gives us a chance to relate the trace of Ln to the
partition function of a system of size n. We can do better. As most properties of
interest (thermodynamics, fall-off of correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholm determinant det (1−zL)
by the technique of cycle expansions developed for dynamical systems [2]. A
cycle expansion consists of finding a power series expansion for the determinant
by writing det (1 − zL) = exp(tr ln(1 − zL)). The logarithm is expanded into a
power series and one is left with terms of the form trLn to evaluate. For evaluating
the trace, the L operator is equivalent to

LG(x) =

∫
RD

dy δ(y − f (x))e−βyG(y) (A33.40)

from which the trace can be computed:

trLn =
∑

x= f (◦n)(x)

e−βH(x)

|det
(
1 − ∂x f (◦n)(x)

)
|

(A33.41)

with the sum running over all the fixed points of f (◦n) (all spin configurations of a
given length). Here f (◦n) is f composed with itself n times, and H(x) is the energy
of the configuration associated with the point x. In practice the map f is never
constructed and the energies are obtained directly from the spin configurations.

To compute the value of trLn we must compute the value of ∂x f (◦n); this
involves a functional derivative. To any degree of accuracy a number x in the
range of possible interaction energies can be represented by a finite string of spins
ε, such as x = φ(+, ε0, ε1, . . . ,−, −, . . .). By choosing the sequence ε to have a
large sequence of spins −, the number x can be made as small as needed, so in
particular we can represent a small variation by φ(η). As x+(ε) = φ(+ ∨ ε), from
the definition of a derivative we have:

∂x f (x) = lim
m→∞

φ(ε ∨ η(m)) − φ(ε)
φ(η(m))

, (A33.42)

where η(m) is a sequence of spin strings that make φ(η(m)) smaller and smaller. By
substituting the definition of φ in terms of its pairwise interaction J(n) = nsanγ

and taking the limit for the sequences η(m) = {+,−,−, . . . , ηm+1, ηm+2, . . .} one
computes that the limit is a if γ = 1, 1 if γ < 1, and 0 if γ > 1. It does not
depend on the positive value of s. When γ < 1 the resulting dynamical system is
not hyperbolic and the construction for the operator L fails, so one cannot apply
it to potentials such as (1/2)

√
n. One may solve this problem by investigating the

behavior of the formal dynamical system as γ → 0.

The manipulations have up to now assumed that the map f is smooth. If
the dimension D of the embedding space is too small, f may not be smooth.
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Figure A33.3: The spin adding map F+ for the po-
tential J(n) =

∑
n2aαn. The action of the map takes

the value of the interaction energy between + and the
semi-infinite configuration {σ1, σ2, σ3, . . .} and returns
the interaction energy between + and the configuration
{+, σ1, σ2, σ3, . . .}.
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Determining under which conditions the embedding is smooth is a complicated
question [18]. But in the case of spin systems with pairwise interactions it is
possible to give a simple rule. If the interaction is of the form

φ(σ) =
∑
n≥1

δσ0,σn

∑
k

pk(n)anγ
k (A33.43)

where pk are polynomials and |ak| < 1, then the state observables to use are
xs,k(σ) =

∑
δ+,σnnsan

k . For each k one uses x0,k, x1,k, . . . up to the largest power
in the polynomial pk. An example is the interaction with J1(n) = n2(3/10)n. It
leads to a 3-dimensional system with variables x0,0, x1,0, and x2,0. The action of
the map F+ for this interaction is illustrated figure A33.3. Plotted are the pairs
{φ(+ ∨ σ), φ(+ ∨ + ∨ σ)}. This can be seen as the strange attractor of a chaotic
system for which the variables x0,0, x1,0, and x2,0 provide a good (analytic) em-
bedding.

The added smoothness and trace-class of the L operator translates into faster
convergence towards the thermodynamic limit. As the reconstructed dynamics is
analytic, the convergence towards the thermodynamic limit is faster than exponen-
tial [5, 16]. We will illustrate this with the polynomial-exponential interactions
(A33.43) with γ = 1, as the convergence is certainly faster than exponential if
γ > 1, and the case of an has been studied in terms of another Fredholm deter-
minant by Gutzwiller [9]. The convergence is illustrated in figure A33.4 for the
interaction n2(3/10)n. Plotted in the graph, to illustrate the transfer matrix conver-
gence, are the number of decimal digits that remain unchanged as the range of the
interaction is increased. Also in the graph are the number of decimal digits that
remain unchanged as the largest power of trLn considered. The plot is effectively
a logarithmic plot and straight lines indicate exponentially fast convergence. The
curvature indicates that the convergence is faster than exponential. By fitting, one
can verify that the free energy is converging to its limiting value as exp(−n(4/3)).
Cvitanović [5] has estimated that the Fredholm determinant of a map on a D di-
mensional space should converge as exp(−n(1+1/D)), which is confirmed by these
numerical simulations.
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Figure A33.4: Number of digits for the Fredholm
method (•) and the transfer function method (×). The
size refers to the largest cycle considered in the Fred-
holm expansions, and the truncation length in the case
of the transfer matrix.
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Résumé

The geometrization of spin systems strengthens the connection between statistical
mechanics and dynamical systems. It also further establishes the value of the
Fredholm determinant of the L operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and semiclassical mechanics. The
example above emphasizes the high accuracy that can be obtained: by computing
the shortest 14 periodic orbits of period 5 or less it is possible to obtain three digit
accuracy for the free energy. For the same accuracy with a transfer matrix one
has to consider a 256 × 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

Commentary

Remark A33.1. Presentation functions. The best place to read about Feigenbaum’s
work is in his review article published in Los Alamos Science (reproduced in several
reprint collections and conference proceedings, such as ref. [4]). Feigenbaum’s J. Stat.
Phys. article [6] is the easiest place to learn about presentation functions.

Remark A33.2. Interactions are smooth In most computational schemes for thermo-
dynamic quantities the translation invariance and the smoothness of the basic interaction
are never used. In Monte Carlo schemes, aside from the periodic boundary conditions,
the interaction can be arbitrary. In principle for each configuration it could be possible
to have a different energy. Schemes such as the Sweneson-Wang cluster flipping algo-
rithm use the fact that interaction is local and are able to obtain dramatic speed-ups in
the equilibration time for the dynamical Monte Carlo simulation. In the geometrization
program for spin systems, the interactions are assumed translation invariant and smooth.
The smoothness means that any interaction can be decomposed into a series of terms that
depend only on the spin arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1 , σn2 )J2(n1, n2) + · · ·

where the Jk are symmetric functions of their arguments and the δ are arbitrary discrete
functions. This includes external constant fields (J0), but it excludes site dependent fields
such as a random external magnetic field.
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Exercises

A33.1. Not all Banach spaces are also Hilbert. If we are
given a norm ‖·‖ of a Banach space B, it may be possible
to find an inner product 〈· , · 〉 (so that B is also a Hilbert
space H) such that for all vectors f ∈ B, we have

‖ f ‖ = 〈 f , f 〉1/2 .

This is the norm induced by the scalar product. If we
cannot find the inner product how do we know that we
just are not being clever enough? By checking the paral-
lelogram law for the norm. A Banach space can be made
into a Hilbert space if and only if the norm satisfies the
parallelogram law. The parallelogram law says that for
any two vectors f and g the equality

‖ f + g‖2 + ‖ f − g‖2 = 2‖ f ‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the
norm given by ‖a‖ = supσ∈ΩN |a(σ)|. Show that there
is no scalar product that will induce this norm.

A33.2. Automaton for a droplet. Find the transition graph
and the weights on the edges so that the energies of
configurations for the droplet model are correctly gen-
erated. For any string starting in zero and ending in zero
your diagram should yield a configuration the weight
eH(σ), with H computed along the lines of (A33.13) and
(A33.18).

Hint: the transition graph is infinite.

A33.3. Spectral determinant for an interactions. Compute
the spectral determinant for 1-dimensional Ising model
with the interaction

φ(σ) =
∑
k>0

akδ(σ0, σk) .

Take a as a number smaller than 1/2.

(a) What is the dynamical system this generates? That
is, find F+ and F− as used in (A33.39).

(b) Show that

d
dx

F{+ or−} =

[
a 0
0 a

]

A33.4. Ising model on a thin strip. Compute the transfer ma-
trix for the Ising model defined on the graph

Assume that whenever there is a bond connecting two
sites, there is a contribution Jδ(σi, σ j) to the energy.

A33.5. Infinite symbolic dynamics. Let σ be a func-
tion that returns zero or one for every infinite binary
string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ε1, ε2, . . .) where the εi are either 0 or 1. We will
now define an operator T that acts on observables on the
space of binary strings. A function a is an observable if
it has bounded variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)
+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .(A33.44)

The function σ is assumed such that any of T ’s “matrix
representations” in (a) have the Markov property (the
matrix, if read as an adjacency graph, corresponds to
a graph where one can go from any node to any other
node).

(a) (easy) Consider a finite version Tn of the operator
T :

Tna(ε1, ε2, . . . , εn) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show thatT is not trace-class. (Hint: check
if T is compact).

Classes of operators are nested; trace-class ≤ compact ≤
bounded.
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Semiclassical quantization, with
corrections

In fact I’m Vattay Gábor, just these Indo-Europeans mix
up the right order.

(G. Vattay)

The Gutzwiller trace formula is only a good approximation to the quantum
mechanics when ~ is small. Can we improve the trace formula by adding
quantum corrections to the semiclassical terms? A similar question can

be posed when the classical deterministic dynamics is disturbed by some way
Gaussian white noise with strength D. The deterministic dynamics then can be
considered as the weak noise limit D → 0. The effect of the noise can be taken
into account by adding noise corrections to the classical trace formula. A formal
analogy exists between the noise and the quantum problem. This analogy allows
us to treat the noise and quantum corrections together.

A39.1 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more con-
venient to visualize the results there. Where it is necessary we will discuss the
difference between noise and quantum cases.

First, we introduce periodic orbits from an unusual point of view, which can
convince you, that chaotic and integrable systems are in fact not as different from
each other, than we might think. If we start orbits in the neighborhood of a pe-
riodic orbit and look at the picture on the Poincaré section we can see a regular
picture. For stable periodic orbits the points form small ellipses around the center
and for unstable orbits they form hyperbolas (see figure A39.1).
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Figure A39.1: Poincaré section close to a stable and an unstable periodic orbit.

The motion close to a periodic orbit is regular in both cases. This is due to the
fact, that we can linearize the Hamiltonian close to an orbit, and linear systems
are always integrable. The linearized Hamilton’s equations close to the periodic
orbit (qp(t) + q, pp(t) + p) are of the form

q̇ = + ∂2
pqH(qp(t), pp(t)) q + ∂2

ppH(qp(t), pp(t)) p

ṗ = − ∂2
qqH(qp(t), pp(t)) q − ∂2

qpH(qp(t), pp(t)) p ,

where the new coordinates q and p are relative to a periodic orbit. This linearized
equation can be regarded as a D-degrees of freedom oscillator with time periodic
frequencies. These equations are representing the equation of motion in a redun-
dant way since more than one combination of q, p and t determines the same point
of the phase space. This can be cured by an extra restriction on the variables, a
constraint the variables should fulfill. This constraint can be derived from the time
independence or stationarity of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (A39.1)

Using the linearized form of this constraint we can eliminate one of the linearized
equations. It is very useful, although technically difficult, to do one more transfor-
mation and to introduce a coordinate, which is parallel with the Hamiltonian flow
(x‖) and others which are orthogonal. In the orthogonal directions we again get
linear equations. These equations with x‖ dependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillators in the new coordinates
with constant frequencies. This result has first been derived by Poincaré for equi-
librium points and later it was extended for periodic orbits by V.I. Arnol’d and
co-workers. In the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2

p2
‖

+ U(x‖) +

D−1∑
n=1

1
2

(p2
n ± ω

2
nx2

n) , (A39.2)

which is the general form of the Hamiltonian in the neighborhood of a periodic
orbit. The ± sign denotes, that for stable modes the oscillator potential is posi-
tive while for an unstable mode it is negative. For the unstable modes, ω is the
Lyapunov exponent of the orbit

ωn = ln Λp,n/Tp, (A39.3)

where Λp,n is the expanding eigenvalue of the Jacobi matrix. For the stable direc-
tions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp . (A39.4)

The Hamiltonian close to the periodic orbit is integrable and can be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld quantization for
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the oscillators gives the energy spectra

En = ~ωn

(
jn +

1
2

)
for stable modes

En = −i~ωn

(
jn +

1
2

)
for unstable modes , (A39.5)

where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable and
sn = −i for unstable directions. The parallel mode can be quantized implicitly
trough the classical action function of the mode:

1
2π

∮
p‖dx‖ =

1
2π

S ‖(Em) = ~
(
m +

mpπ

2

)
, (A39.6)

where mp is the topological index of the motion in the parallel direction. The latter
condition can be rewritten by a very useful trick into the equivalent form (39.18)

1 − eiS ‖(Em)/~−impπ/2 = 0 . (A39.7)

The eigenenergies of a semiclassically quantized periodic orbit are all the possible
energies

E = Em +

D−1∑
n=1

En. (A39.8)

This relation allows us to change in (A39.7) Em with the full energy minus the
oscillator energies Em = E −

∑
n En. All the possible eigenenergies of the periodic

orbit then are the zeroes of the expression

∆p(E) =
∏

j1,..., jD−1

(1 − eiS ‖(E−
∑

n ~snωn( jn+1/2))/~−impπ/2). (A39.9)

If we Taylor expand the action around E to first order

S ‖(E + ε) ≈ S ‖(E) + T (E)ε, (A39.10)

where T (E) is the period of the orbit, and use the relations ofω and the eigenvalues
of the Jacobi matrix, we get the expression of the Selberg product

∆p(E) =
∏

j1,..., jD−1

1 − eiS p(E)/~−impπ/2∏
n Λ

(1/2+ jn)
p,n

 . (A39.11)

If we use the right convention for the square root we get exactly the D-degrees of
freedom expression of the Selberg product formula we derived from the Gutzwiller
trace formula in (39.19). Just here we derived it in a different way! The function
∆p(E) is the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a function
which is zero, whenever the energy coincides with the Bohr-Sommerfeld quan-
tized energy of one of the periodic orbits, we have to take the product of these
determinants:

∆(E) =
∏

p

∆p(E). (A39.12)
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The miracle of the semiclassical zeta function is, that if we take infinitely many
periodic orbits, the infinite product will have zeroes not at these energies, but close
to the eigenenergies of the whole system!

So we have learned that both stable and unstable orbits are integrable systems,
and can be individually quantized semiclassically by the old Bohr-Sommerfeld
rules. We have thus almost completed the program of Sommerfeld to quantize
general systems with the method of Bohr. A remark: In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximation (A39.10). Sommerfeld
would never do this! At that point we loose some important precision compared
to the Bohr-Sommerfeld rules and we get somewhat worse results than a semi-
classical formula is able to do. We will come back to this point in sect. A39.4,
when we discuss the quantum corrections. To complete the program of full scale
Bohr-Sommerfeld quantization of chaotic systems we have to go beyond the linear
approximation around the periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel and normal coordi-
nates can be written as the ‘harmonic’ plus ‘anaharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (A39.13)

where the anaharmonic part can be written as a sum of homogeneous polynomials
of xn and pn with x‖ dependent coefficients,

remark A39.1

HA(x‖, xn, pn) =
∑
k=3

Hk(x‖, xn, pn)

Hk(x‖, xn, pn) =
∑

∑
`n+mn=k

Hk
`n,mn

(x‖)x`n
n pmn

n . (A39.14)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view, since it is
non integrable. However, Birkhoff in 1927 introduced the concept of normal form,
which gives successive integrable approximations to a non-integrable problem. 3

A39.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium point of
a Hamiltonian. Equilibrium point is where the potential has a minimum ∇U = 0
and small perturbations lead to oscillatory motion. We can linearize the problem
and by introducing normal coordinates xn and conjugate momenta pn the quadratic
part of the Hamiltonian will be a set of oscillators

H0(xn, pn) =

D∑
n=1

1
2

(p2
n + ω2

nx2
n). (A39.15)

3 It is a pity that in 1926 Schrödinger introduced wave mechanics, thus blocking the development
of Sommerfeld’s concept.
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The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (A39.16)

where HA is the anaharmonic part of the potential in the new coordinates. The
anaharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =

∞∑
j=3

H j(xn, pn)

H j(xn, pn) =
∑
|`|+|m|= j

h j
`mx`pm,

where h j
`m are real constants and we used the multi-indices ` := (`1, ..., `D) with

definitions

|`| =
∑

`n, x` := x`1
1 x`2

2 ...x
`D
D .

Birkhoff showed, that that by successive canonical transformations one can intro-
duce new momenta and coordinates such, that in the new coordinates the anahar-
monic part of the Hamiltonian up to any given n polynomial will depend only on
the variable combination

τn =
1
2

(p2
n + ω2

nx2
n), (A39.17)

where xn and pn are the new coordinates and momenta, but ωn is the original
frequency. This is called the Birkhoff normal form of degree N:

H(xn, pn) =

N∑
j=2

H j(τ1, ..., τD), (A39.18)

where H j are homogeneous degree j polynomials of τ’s. This is an integrable
Hamiltonian, the non-integrability is pushed into the remainder, which consists of
polynomials of degree higher than N. We run into trouble only when the oscillator
frequencies are commensurate, i.e., when it is possible to find a set of integers mn

such that the linear combination

D∑
n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in 1966 and we
call the object Birkhoff-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized and can be carried out up to
high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to degree
N. For a non-integrable system the high order terms behave quite wildly and the
series is not convergent. Therefore we have to use this tool carefully. Now, we
learned how to approximate a non-integrable system with a sequence of integrable
systems and we can go back and carry out the Bohr-Sommerfeld quantization.
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A39.3 Bohr-Sommerfeld quantization of periodic orbits

There is some difference between equilibrium points and periodic orbits. The
Hamiltonian (A39.2) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an oscillator Hamiltonian, but this
would make the problem extremely difficult. Therefore, we carry out the canonical
transformations dictated by the Birkhoff procedure only in the orthogonal direc-
tions. The x‖ coordinate plays the role of a parameter. After the transformation up
to order N the Hamiltonian (A39.14) is

H(x‖, p‖, τ1, ...τD−1) = H0(x‖, p‖, τ1, ..., τD−1)+
N∑

j=2

U j(x‖, τ1, ..., τD−1), (A39.19)

where U j is a jth order homogeneous polynomial of τ’s with x‖ dependent coeffi-
cients. The orthogonal part can be Bohr-Sommerfeld quantized by quantizing the
individual oscillators, replacing τ’s as we did in (A39.5). This leads to a 1-dimen-
sional effective potential indexed by j1, ..., jD−1

H(x‖, p‖, j1, ..., jD−1) =
1
2

p2
‖

+ U(x‖) +

D−1∑
n=1

~snωn( jn + 1/2)

+

N∑
k=2

Uk(x‖, ~s1ω1( j1 + 1/2), ~s2ω2( j2 + 1/2), ..., ~sD−1ωD−1( jD−1 + 1/2)) ,(A39.20)

where jn can be any non-negative integer. The term with index k is proportional
with ~k due to the homogeneity of the polynomials.

The parallel mode now can be Bohr-Sommerfeld quantized for any given set
of j’s

S p(E, j1, ..., jD−1) =

∮
dx‖ p‖

=

∮
dx‖

√√√
E −

D−1∑
n=1

~snωn( jn + 1/2) − U(x‖, j1, ..., jD−1)

= 2π~(m + mp/2) ,

where U contains all the x‖ dependent terms of the Hamiltonian. The spectral
determinant becomes

∆p(E) =
∏

j1,..., jD−1

(1 − eiS p(E, j1,..., jD−1)/~−mpπ/2) .

This expression completes the Sommerfeld method and tells us how to quantize
chaotic or general Hamiltonian systems. Unfortunately, Schrödinger’s wave me-
chanics postponed this nice formula until our book.
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The formula has been derived with the help of the semiclassical Bohr-Sommer-
feld quantization rule and the classical normal form theory. Indeed, if we expand
S p in the exponent in the powers of ~

S p =

N∑
k=0

~kS k,

we get more than just a constant and a linear term. This formula already gives
us corrections to the semiclassical zeta function in all powers of ~. There is a
very attractive feature of this semiclassical expansion. ~ in S p shows up only
in the combination ~snωn( jn + 1/2). A term proportional with ~k can only be a
homogeneous expression of the oscillator energies snωn( jn + 1/2). For example
in two dimensions there is only one possibility of the functional form of the order
k term

S k = ck(E) · ωk
n( j + 1/2)k,

where ck(E) is the only function to be determined.

The corrections derived sofar are doubly semiclassical, since they give semi-
classical corrections to the semiclassical approximation. What can quantum me-
chanics add to this? As we have stressed in the previous section, the exact quan-
tum mechanics is not invariant under canonical transformations. In other context,
this phenomenon is called the operator ordering problem. Since the operators x̂
and p̂ do not commute, we run into problems, when we would like to write down
operators for classical quantities like x2 p2. On the classical level the four possible
orderings xpxp, ppxx, pxpx and xxpp are equivalent, but they are different in
the quantum case. The expression for the energy (A39.20) is not exact. We have
to go back to the level of the Schrödinger equation in order to obtain the exact
expression.

A39.4 Quantum calculation of ~ corrections

The Gutzwiller trace formula has originally been derived from the saddle point
approximation of the Feynman path integral form of the propagator. The exact
trace is a path-sum for all closed paths of the system

tr G(x, x′, t) =

∫
dx G(x, x, t) =

∫
Dx eiS (x,t)/~, (A39.21)

where
∫
Dx denotes the discretization and summation for all paths of time length

t in the limit of the infinite refinement and S (x, t) is the classical action calculated
along the path. The trace in the saddle point calculation is a sum for classical
periodic orbits and zero length orbits, since these are the extrema of the action
δS (x, t) = 0 for closed paths:

tr G(x, x′, t) = g0(t) +
∑

p∈PO

∫
Dξp eiS (ξp+xp(t),t)/~, (A39.22)
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where g0(t) is the zero length orbit contribution. We introduced the new coordi-
nate ξp with respect to the periodic orbit xp(t), x = ξp + xp(t). Now, each path
sum

∫
Dξp is computed in the vicinity of periodic orbits. Since the saddle points

are taken in the configuration space, only spatially distinct periodic orbits, the so
called prime periodic orbits, appear in the summation. Sofar nothing new has
been invented. If we continue the standard textbook calculation scheme, we have
to Taylor expand the action in ξp and keep the quadratic term in the exponent whi-
le treating the higher order terms as corrections. Then we can compute the path
integrals with the help of Gaussian integrals. The key point here is that we do not
compute the path sum directly. We use the correspondence between path integrals
and partial differential equations. This idea comes from Maslov, and a good sum-
mary is given in ref. [2]. We search for that Schrödinger equation, which leads to
the path sum∫

Dξp eiS (ξp+xp(t),t)/~, (A39.23)

where the action around the periodic orbit is in a multi-dimensional Taylor ex-
panded form:

S (x, t) =

∞∑
n

sn(t)(x − xp(t))n/n! (A39.24)

The symbol n = (n1, n2, ..., nD) denotes the multi index for D-degrees of freedom,
n! =

∏D
i=1 ni! the multi factorial and (x−xp(t))n =

∏D
i=1(xi−xp,i(t))ni , respectively.

The expansion coefficients of the action can be determined from the Hamilton-
Jacobi equation

∂tS +
1
2

(∇S )2 + U = 0 , (A39.25)

in which the potential is expanded in a multidimensional Taylor series around the
orbit

U(x) =
∑

n
un(t)(x − xp(t))n/n!. (A39.26)

The Schrödinger equation

i~∂tψ = Ĥψ = −
~2

2
∆ψ + Uψ, (A39.27)

with this potential also can be expanded around the periodic orbit. Using the WKB
ansatz

ψ = ϕeiS/~, (A39.28)

we can construct a Schrödinger equation corresponding to a given order of the
Taylor expansion of the classical action. The Schrödinger equation induces the
Hamilton-Jacobi equation (A39.25) for the phase and the transport equation of
Maslov and Fjedoriuk [14] for the amplitude:

∂tϕ + ∇ϕ∇S +
1
2
ϕ∆S −

i~
2

∆ϕ = 0. (A39.29)
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This partial differential equation, solved in the neighborhood of a periodic orbit
with the expanded action (A39.24), belongs to the local path-sum (A39.23).

If we know the Green’s function Gp(ξ, ξ′, t) corresponding to the local equa-
tion (A39.29), then the local path sum can be converted back into a trace:∫

Dξp ei/~
∑

n S n(xp(t),t)ξn
p/n! = tr Gp(ξ, ξ′, t). (A39.30)

The saddle point expansion of the trace in terms of local traces then becomes

tr G(x, x′, t) = tr GW(x, x′, t) +
∑

p

tr Gp(ξ, ξ′, t), (A39.31)

where GW(x, x′, t) denotes formally the Green’s function expanded around zero
length orbits, known as the Weyl term [3–5]. Each Green’s function can be
Fourier-Laplace transformed independently and by definition we get in the energy
domain

tr G(x, x′, E) = g0(E) +
∑

p

tr Gp(ξ, ξ′, E). (A39.32)

Note that we do not need here to take further saddle points in time, since we are
dealing with exact time and energy domain Green’s functions.

The spectral determinant is a function which has zeroes at the eigenenergies
En of the Hamilton operator Ĥ. Formally it is

∆(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the energy
domain Green’s function:

tr G(x, x′, E) =
∑

n

1
E − En

=
d

dE
log ∆(E). (A39.33)

We can define the spectral determinant ∆p(E) also for the local operators, writing

tr Gp(ξ, ξ′, E) =
d

dE
log ∆p(E). (A39.34)

Using (A39.32) we can express the full spectral determinant as a product for the
sub-determinants

∆(E) = eW(E)
∏

p

∆p(E),

where W(E) =
∫ E

g0(E′) dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done easily. We
have to consider the stationary eigenvalue problem of the local Schrödinger prob-
lem and keep in mind, that we are in a coordinate system moving together with
the periodic orbit. If the classical energy of the periodic orbit coincides with an
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eigenenergy E of the local Schrödinger equation around the periodic orbit, then
the corresponding stationary eigenfunction fulfills

ψp(ξ, t + Tp) =

∫
dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/~ ψp(ξ, t), (A39.35)

where Tp is the period of the prime orbit p. If the classical energy of the periodic
orbit is not an eigenenergy of the local Schrödinger equation, the non-stationary
eigenfunctions fulfill

ψ`p(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ′, t+Tp)ψp(ξ′, t) = e−iETp/~λ`p(E)ψ`p(t) , (A39.36)

where ` = (`1, `2, ...) is a multi-index of the possible quantum numbers of the local
Schrödinger equation. If the eigenvalues λ`p(E) are known the local functional
determinant can be written as

∆p(E) =
∏
`

(1 − λ`p(E)), (A39.37)

since ∆p(E) is zero at the eigenenergies of the local Schrödinger problem. We can
insert the ansatz (A39.28) and reformulate (A39.36) as

e
i
~S (t+Tp)ϕ`p(t + Tp) = e−iETp/~λ`p(E)e

i
~S (t)ϕ`p(t) . (A39.38)

The phase change is given by the action integral for one period S (t + Tp)− S (t) =∫ Tp

0 L(t) dt. Using this and the identity for the action S p(E) of the periodic orbit

S p(E) =

∮
p dq =

∫ Tp

0
L(t) dt + ETp, (A39.39)

we get

e
i
~S p(E)ϕ`p(t + Tp) = λ`p(E)ϕ`p(t). (A39.40)

Introducing the eigenequation for the amplitude

ϕ`p(t + Tp) = R`,p(E)ϕ`p(t) , (A39.41)

the local spectral determinant can be expressed as a product for the quantum num-
bers of the local problem,

∆p(E) =
∏
`

(
1 − R`,p(E) e

i
~ S p(E)

)
.

Since ~ is a small parameter we can develop a perturbation series for the ampli-
tudes

ϕ`p(t) =

∞∑
m=0

(
i~
2

)m

ϕ`(m)
p (t)

which can be inserted into the equation (A39.29) and we get an iterative scheme
starting with the semiclassical solution ϕ`(0):

∂tϕ
`(0) + ∇ϕ`(0)∇S +

1
2
ϕ`(0)∆S = 0, (A39.42)

∂tϕ
`(m+1) + ∇ϕ`(m+1)∇S +

1
2
ϕ`(m+1)∆S = ∆ϕ`(m).
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The eigenvalue can also be expanded in powers of i~/2:

R`,p(E) = exp

 ∞∑
m=0

(
i~
2

)m

C(m)
`,p

 =

eC(0)
`,p

1 +
i~
2

C(1)
`,p +

(
i~
2

)2 (
1
2

(C(1)
`,p)2 + C(2)

`,p

)
+ . . .

 . (A39.43)

The eigenvalue equation (A39.41) in ~ expanded form reads as

ϕ`(0)
p (t + Tp) = eC(0)

`,p ϕ`(0)
p (t)

ϕ`(1)
p (t + Tp) = eC(0)

`,p
[
ϕ`(1)

p (t) + C(1)
`,pϕ

`(0)
p (t)

]
ϕ`(2)

p (t + Tp) = eC(0)
`,p

[
ϕ`(2)

p (t) + C(1)
`,pϕ

`(1)
p (t) + (C(2)

`,p +
1
2

(C(1)
`,p)2)ϕ`(0)

p (t)
]
,

and so on. These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for all t.

It is convenient to expand the functions ϕ`(m)
p (x, t) in Taylor series around the

periodic orbit and to solve the equations (A39.43) in this basis [9], since only
a couple of coefficients should be computed to derive the first corrections. One
can derive in general the zero order term C(0)

` = iπνp +
∑D−1

i=1

(
`i + 1

2

)
up,i, where

up,i = log Λp,i are the logarithms of the eigenvalues of the monodromy matrix Mp

and νp is the topological index of the periodic orbit. The first correction is given
by the integral

C(1)
`,p =

∫ Tp

0
dt

∆ϕ`(0)
p (t)

ϕ`(0)
p (t)

.

When the theory is applied for billiard systems, the wave function should
fulfill the Dirichlet boundary condition on hard walls, e.g. it should vanish on
the wall. The wave function determined from (A39.29) behaves discontinuously
when the trajectory xp(t) hits the wall. For the simplicity we consider a 2-degrees
of freedom billiard system here. The wave function on the wall before the bounce
(t−0 ) is given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0) eiS (x,y(x),t−0)/~, (A39.44)

where y(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave function on the wall after the
bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS (x,y(x),t+0)/~. (A39.45)

The sum of these wave functions should vanish on the hard wall. This implies that
the incoming and the outgoing amplitudes and the phases are related as

S (x, y(x), t−0) = S (x, y(x), t+0), (A39.46)
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and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (A39.47)

The minus sign can be interpreted as the topological phase coming from the hard
wall.

Now we can reexpress the spectral determinant with the local eigenvalues:

∆(E) = eW(E)
∏

p

∏
`

(
1 − R`,p(E) e

i
~S p(E)

)
. (A39.48)

This expression is the quantum generalization of the semiclassical Selberg-product
formula [18]. A similar decomposition has been found for quantum baker maps
in refs. [17, 19]. The functions

ζ−1
` (E) =

∏
p

(
1 − R`,p(E) e

i
~ S p(E)

)
(A39.49)

are the generalizations of the Ruelle type [16] zeta functions. The trace formula
can be recovered from (A39.33):

tr G(E) = g0(E)+
1
i~

∑
p,`

(
Tp(E) − i~

d log R`,p(E)
dE

)
R`,p(E)e

i
~S p(E)

1 − R`,p(E)e
i
~ S p(E)

. (A39.50)

We can rewrite the denominator as a sum of a geometric series and we get

tr G(E) = g0(E)+
1
i~

∑
p,r,`

(
Tp(E) − i~

d log R`,p(E)
dE

)
(R`,p(E))r e

i
~ rS p(E). (A39.51)

The new index r can be interpreted as the repetition number of the prime orbit
p. This expression is the generalization of the semiclassical trace formula for
the exact quantum mechanics. We would like to stress here, that the perturbation
calculus introduced above is just one way to compute the eigenvalues of the local
Schrödinger problems. Non-perturbative methods can be used to calculate the
local eigenvalues for stable, unstable and marginal orbits. Therefore, our trace
formula is not limited to integrable or hyperbolic systems, it can describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-leading
term−i~d log R`,p(E)/dE and using the semiclassical eigenvalue R(0)

`,p(E) = eC`(0)
p =

e−iνpπe−
∑

i(`i+1/2)up,i . Summation for the indexes `i yields the celebrated semiclas-
sical amplitude∑

`

(R(0)
`,p(E))r =

e−irνpπ

| det (1 − Mr
p) |1/2

. (A39.52)

example A39.1

p. 1054
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Commentary

Remark A39.1. Birkhoff normal form. Normal forms of equilibria stability manifolds
for 1D Hamiltonian (are-preserving) systems were introduced by Birkhoff [6]. Their con-
vergence is discussed by Moser [15]. In 1927 Birkhoff [7] extended the concept of normal
form to give successive integrable approximations to a non-integrable problem.
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A39.5 Examples

Example A39.1. The first correction C(1)
p,` to 2-degrees of freedom billiards. To

have an impression about the improvement caused by the quantum corrections we have
developed a numerical code which calculates the first correction C(1)

p,` for general 2-degrees
of freedom billiard systems. The first correction depends only on some basic data of
the periodic orbit such as the lengths of the free flights between bounces, the angles of
incidence and the first three Taylor expansion coefficients Y2,Y3,Y4 of the wall in the
point of incidence. To check that our new local method gives the same result as the
direct calculation of the Feynman integral, we computed the first ~ correction C(1)

p,0 for
the periodic orbits of the 3-disk scattering system [11–13] where the quantum corrections
have been found to agree up to the fifth decimal digit, while our method generates these
numbers with any desired precision. Unfortunately, the ` , 0 coefficients cannot be
compared to ref. [1], since the ` dependence was not realized there due to the lack of
general formulas (A39.48) and (A39.49). However, the ` dependence can be checked on
the 2 disk scattering system [20, 21]. On the standard example [1, 8, 10–13, 20, 21], when
R, the distance of the centers, is 6 times the disk radius a, we obtain

C(1)
`

=
1
√

2E
(−0.625 `3 − 0.3125 `2 + 1.4375 ` + 0.625).

For ` = 0 and 1 this has been confirmed by A. Wirzba, who was able to compute C(1)
0 from

his exact quantum calculation. Our method makes it possible to utilize the Cvitanović–
Eckhardt [8] symmetry reduction and to repeat the fundamental domain cycle expansion
calculation of ref. [8] with the first quantum correction. We computed the correction to
the leading 226 prime periodic orbits with 10 or less bounces in the fundamental do-
main. Table A39.1 shows the numerical values of the exact quantum calculation [20,
21], the semiclassical cycle expansion [9] and our corrected calculation. The error of
the corrected calculation vs. the error of the semiclassical calculation decreases with the
wavenumber. Besides the improved results, a convergence up to six decimal digits is ob-
served, in contrast to just three decimal digits obtained in the full domain calculation [1,
10].
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Figure A39.2: A typical bounce off a billiard wall. The wall can be characterized by the local
expansion y(x) = Y2 x2/2! + Y3 x3/3! + Y4 x4/4! + ....

Table A39.1: Real part of the resonances (Re k) of the 3-disk scattering system at disk separation
6:1. Semiclassical and first corrected cycle expansion versus exact quantum calculation and the
error of the semiclassical δS C divided by the error of the first correction δCorr. The magnitude of the
error in the imaginary part of the resonances remains unchanged.

Quantum Semiclassical First correction δS C/δCorr
0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0



Appendix A40

Infinite dimensional operators

What is a matrix?
—Werner Heisenberg (1925)

What is the matrix?
—-Keanu Reeves (1999)

(A. Wirzba)

This appendix, taken from ref. [11], summarizes the definitions and properties
of trace-class and Hilbert-Schmidt matrices, the determinants over infinite
dimensional matrices and regularization schemes for matrices or operators

which are not of trace-class.

Why should a working physicist care about linear algebra? Physicists were
blissfully ignorant of it until 1920’s, but with Heisenberg’s sojourn in Helgoland,
everything changed. Quantum Mechanics was formulated as

φ(t) = Û tφ(0) , Û t = e−
i
~ tĤ , (A40.1)

where φ(t) is the quantum wave function t, Û t is the unitary quantum evolution
operator, and Ĥ is the Hamiltonian operator.

How are we to think of the quantum operator

Ĥ = T̂ + V̂ , T̂ = p̂2/2m , V̂ = V(q̂) , (A40.2)

corresponding to a classical Hamiltonian H = T + V , where T is kinetic energy,
and V is the potential? What does equation (A40.1) mean? In sect. 4.4 we have
deconstructed it, by making Û t computationally explicit as a the time-ordered
product (4.19).

Whenever you are confused about an “operator”, think “matrix”. Expressed in
terms of basis functions, the quantum evolution operator is an infinite-dimensional
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matrix; if we happen to know the eigenbasis of the Hamiltonian, the problem is
solved already. The matrices that have to be evaluated are very high-dimensional,
in principle infinite dimensional, and the numerical challenges can quickly get out
of hand. What made it possible to solve these equations analytically in 1920’s for
a few iconic problems, such as the hydrogen atom, are the symmetries, or in other
words group theory. In real life we have to guess that some complete basis set
is good starting point for solving the problem, and go from there. In practice we
truncate such operator representations to finite-dimensional matrices, so it pays to
recapitulate a few relevant facts about matrix algebra and some of the properties
of functions of finite-dimensional matrices.

A40.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j(x) =

d
dx

Ai j(x) . (A40.3)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (A40.4)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A + A
dA
dx

. (A40.5)

The derivative of the inverse of a matrix, if the inverse exists, follows from d
dx (AA−1) =

0:

d
dx

A−1 = −
1
A

dA
dx

1
A
. (A40.6)

A function of a single variable that can be expressed in terms of additions and
multiplications generalizes to a matrix-valued function by replacing the variable
by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1
k!

Ak , A0 = 1 (A40.7)

= lim
N→∞

(
1 +

1
N

A
)N

(A40.8)
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The first equation follows from the second one by the binomial theorem, so these
indeed are equivalent definitions. That the terms of order O(N−2) or smaller do
not matter follows from the bound(

1 +
x − ε

N

)N
<

(
1 +

x + δxN

N

)N
<

(
1 +

x + ε

N

)N
,

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)
)N

= etr A (A40.9)

Due to non-commutativity of matrices, generalization of a function of several
variables to a function of several matrices is not as straightforward. Expression
involving several matrices depend on their commutation relations. For example,
the Baker-Campbell-Hausdorff commutator expansion

etABe−tA = B + t[A, B] +
t2

2
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + · · · (A40.10)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivatives

d
dt

(
etABe−tA

)
= etA[A, B]e−tA .

Expanding exp(A + B), exp A, exp B to first few orders using (A40.7) yields

e(A+B)/N = eA/NeB/N −
1

2N2 [A, B] + O(N−3) , (A40.11)

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(A40.12)

A40.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators in
vector spaces - rather than numbers, and its convergence can be checked using
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tools familiar from calculus. We briefly review those tools here, as throughout the
text we will have to consider many different operators and how they converge.

The n→ ∞ convergence of partial products

En =
∏

0≤m<n

(
1 +

t
m

A
)

can be verified using the Cauchy criterion, which states that the sequence {En}

converges if the differences ‖Ek −E j‖ → 0 as k, j→ ∞. To make sense of this we
need to define a sensible norm ‖ · · · ‖. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matrix M a norm that is the largest
possible change it can cause to the length of a unit vector n̂:

‖M‖ = sup
n̂
‖Mn̂‖ , ‖n̂‖ = 1 . (A40.13)

We say that ‖ · ‖ is the operator norm induced by the vector norm ‖ · ‖. Construct-
ing a norm for a finite-dimensional matrix is easy, but had M been an operator in
an infinite-dimensional space, we would also have to specify the space n̂ belongs
to. In the finite-dimensional case, the sum of the absolute values of the compo-
nents of a vector is also a norm; the induced operator norm for a matrix M with
components Mi j in that case can be defined by

‖M‖ = max
i

∑
j

|Mi j| . (A40.14)

The operator norm (A40.14) and the vector norm (A40.13) are only rarely distin-
guished by different notation, a bit of notational laziness that we shall uphold.

Now that we have learned how to make sense out of norms of operators, we
can check that

exercise A40.1

‖etA‖ ≤ et‖A‖ . (A40.15)

As ‖A‖ is a number, the norm of etA is finite and therefore well defined. In
exercise 2.9

particular, the exponential of a matrix is well defined for all values of t, and the
linear differential equation (4.11) has a solution for all times.

A40.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [8]. Refs. [1, 3, 7, 9] should be con-
sulted for more details and proofs. The trace class and Hilbert-Schmidt property
will be defined here for linear, in general non-hermitian operators A ∈ L(H):
H → H (where H is a separable Hilbert space). The transcription to matrix
elements (used in the prior chapters) is simply ai j = 〈φi,Aφ j〉 where {φn} is an
orthonormal basis ofH and 〈 , 〉 is the inner product inH (see sect. A40.5 where
the theory of von Koch matrices of ref. [5] is discussed). So, the trace is the gen-
eralization of the usual notion of the sum of the diagonal elements of a matrix; but
because infinite sums are involved, not all operators will have a trace:

Definition:
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(a) An operator A is called trace class, A ∈ J1, if and only if, for every or-
thonormal basis, {φn}:∑

n

|〈φn,Aφn〉| < ∞ . (A40.16)

The family of all trace class operators is denoted by J1.

(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if, for every
orthonormal basis, {φn}:∑

n

‖Aφn‖
2 < ∞ .

The family of all Hilbert-Schmidt operators is denoted by J2.

Bounded operators are dual to trace class operators. They satisfy the following
condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H . If they have eigenval-
ues, these are bounded too. The family of bounded operators is denoted by B(H)
with the norm ‖B‖ = supφ,0

‖Bφ‖
‖φ‖ for φ ∈ H . Examples for bounded operators are

unitary operators and especially the unit matrix. In fact, every bounded operator
can be written as linear combination of four unitary operators.

A bounded operator C is compact, if it is the norm limit of finite rank opera-
tors.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H . Note that
A†A ≥ 0. We define |A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes are
summarized in (see refs. [7, 8]):

(a) J1 and J2 are ∗ideals., i.e., they are vector spaces closed under scalar mul-
tiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖
2 < ∞ for a single basis.

For any operator A ≥ 0 we have A ∈ J1 if
∑

n |〈φn,Aφn〉| < ∞ for a single
basis.

(e) If A ∈ J1, Tr(A) =
∑
〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either A ∈ J1
and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert space.
If ‖A‖2 = [ Tr(A†A) ]

1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the ‖ ‖2-closure of the

finite rank operators.
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(h) J1 endowed with the norm ‖A‖1 = Tr(
√

A†A) is a Banach space. ‖A‖1 ≥
‖A‖2 ≥ ‖A‖ andJ1 is the ‖ ‖1-norm closure of the finite rank operators. The
dual space of J1 is B(H), the family of bounded operators with the duality
〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H), then
‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class is the
decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt prop-
erty can easily be verified in one single orthonormal basis (see (d)). Property (e)
ensures then that the trace is the same in any basis. Properties (a) and (f) show
that trace class operators behave in complete analogy to finite rank operators. The
proof whether a matrix is trace-class (or Hilbert-Schmidt) or not simplifies enor-
mously for diagonal matrices, as then the second part of property (d) is directly
applicable: just the moduli of the eigenvalues (or – in case of Hilbert-Schmidt –
the squares of the eigenvalues) have to be summed up in order to answer that ques-
tion. A good strategy in checking the trace-class character of a general matrix A is
therefore the decomposition of that matrix into two matrices B and C where one,
say C, should be chosen to be diagonal and either just barely of Hilbert-Schmidt
character leaving enough freedom for its partner B or of trace-class character such
that one only has to show the boundedness for B.

A40.4 Determinants of trace class operators

This section is mainly based on refs. [6, 9] which should be consulted for more
details and proofs. See also refs. [1, 3].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert spaceH , ⊗nH is defined as the vector space of multi-linear func-
tionals onH with φ1 ⊗ · · · ⊗ φn ∈ ⊗

nH in case φ1, . . . , φn ∈ H .
∧n(H) is defined

as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1
√

n!

∑
π∈Pn

ε(π)[φπ(1) ⊗ · · · ⊗ φπ(n)]

where Pn is the group of all permutations of n letters and ε(π) = ±1 depending
on whether π is an even or odd permutation, respectively. The inner product in∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det
{
(φi, η j)

}
where det{ai j} =

∑
π∈Pn ε(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor (a functor
satisfies

∧n(AB) =
∧n(A)

∧n(B)) on
∧n(H) with∧n

(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧ Aφn .

When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.
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Properties: If A trace class, i.e., A ∈ J1, then for any k,
∧k(A) is trace class, and

for any orthonormal basis {φn} the cumulant

Tr
(∧k

(A)
)

=
∑

i1<···<ik

(
(φi1 ∧ · · · ∧ φik ), (Aφi1 ∧ · · · ∧ Aφik )

)
< ∞

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det (1 + A) is defined as

det(1 + A) =

∞∑
k=0

Tr
(∧k

(A)
)

(A40.17)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φ j}
∞
1 an or-

thonormal basis.

(a)
∑∞

k=0 Tr
(∧k(A)

)
converges for each A ∈ J1.

(b) |det(1 + A)| ≤
∏∞

j=1

(
1 + µ j(A)

)
where µ j(A) are the singular values of A,

i.e., the eigenvalues of |A| =
√

A†A.

(c) |det(1 + A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 7→ det
(
1 +

∑n
i=1 ziAi

)
is an entire

analytic function.

(e) If A,B ∈ J1, then

det(1 + A)det(1 + B) = det (1 + A + B + AB)

= det ((1 + A)(1 + B))

= det ((1 + B)(1 + A)) . (A40.18)

If A ∈ J1 and U unitary, then

det
(
U−1(1 + A)U

)
= det

(
1 + U−1AU

)
= det(1 + A) .

(f) If A ∈ J1, then (1 + A) is invertible if and only if det(1 + A) , 0.

(g) If λ , 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1 + zA) has
a zero of order n at z = −1/λ.

(h) For any ε, there is a Cε(A), depending on A ∈ J1, so that |det(1 + zA)| ≤
Cε(A) exp(ε|z|).
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(i) For any A ∈ J1,

det(1 + A) =

N(A)∏
j=1

(
1 + λ j(A)

)
(A40.19)

where here and in the following {λ j(A)}N(A)
j=1 are the eigenvalues of A counted

with algebraic multiplicity .

(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =

N(A)∑
j=1

λ j(A) < ∞ .

(k) If A ∈ J1, then

Tr
(∧k

(A)
)

=

N
(∧k(A)

)∑
j=1

λ j

(∧k
(A)

)
=

∑
1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk (A) < ∞.

(l) If A ∈ J1, then

det(1 + zA) =

∞∑
k=0

zk
∑

1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk (A) < ∞. (A40.20)

(m) If A ∈ J1, then for |z| small (i.e., |z|max|λ j(A)| < 1) the series
∑∞

k=1 zkTr
(
(−A)k

)
/k

converges and

det(1 + zA) = exp

− ∞∑
k=1

zk

k
Tr

(
(−A)k

)
= exp (Tr ln(1 + zA)) . (A40.21)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1 + zA) =

∞∑
m=0

zmαm(A)
m!

. (A40.22)

Then αm(A) is given by the m × m determinant:

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tr(A) m − 1 0 · · · 0
Tr(A2) Tr(A) m − 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0
...

...
...

...
...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A40.23)
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with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus the cumu-
lants cm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1
m

m∑
k=1

(−1)k+1cm−k(A) Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (A40.24)

Note that in the context of quantum mechanics formula (A40.22) is the quantum
analog to the curvature expansion of the semiclassical zeta function with Tr(Am)
corresponding to the sum of all periodic orbits (prime and also repeated ones) of
total topological length m, i.e., let cm(s.c.) denote the m th curvature term, then the
curvature expansion of the semiclassical zeta function is given by the recursion
relation

cm(s.c.) =
1
m

m∑
k=1

(−1)k+m+1cm−k(s.c.)
∑
p;r>0

with [p]r=k

[p]
tp(k)r

1 −
(

1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (A40.25)

In fact, in the cumulant expansion (A40.22) as well as in the curvature expansion
there are large cancelations involved. Let us order – without lost of generality –
the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1| ≥ · · ·

(This is always possible because of
∑N(A)

i=1 |λi| < ∞.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (A40.22), we have
enormous cancelations of big numbers, e.g. at the k th cumulant order (k > 3), all
the intrinsically large ‘numbers’ λk

1, λk−1
1 λ2, . . . , λk−2

1 λ2λ3, . . . and many more
have to cancel out exactly until only

∑
1≤ j1<···< jk≤N(A) λ j1 · · · λ jk is finally left over.

Algebraically, the fact that there are these large cancelations is of course of no
importance. However, if the determinant is calculated numerically, the big cance-
lations might spoil the result or even the convergence. Now, the curvature expan-
sion of the semiclassical zeta function, as it is known today, is the semiclassical
approximation to the curvature expansion (unfortunately) in the Plemelj-Smithies
form. As the exact quantum mechanical result is approximated semiclassically,
the errors introduced in the approximation might lead to big effects as they are
done with respect to large quantities which eventually cancel out and not – as it
would be of course better – with respect to the small surviving cumulants. Thus
it would be very desirable to have a semiclassical analog to the reduced cumulant
expansion (A40.20) or even to (A40.19) directly. It might not be possible to find a
direct semiclassical analog for the individual eigenvalues λ j. Thus the direct con-
struction of the semiclassical equivalent to (A40.19) is rather unlikely. However,
in order to have a semiclassical “cumulant” summation without large cancelations
– see (A40.20) – it would be just sufficient to find the semiclassical analog of each
complete cumulant (A40.20) and not of the single eigenvalues. Whether this will
eventually be possible is still an open question.
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A40.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch
matrices [1, 2, 5]: An infinite matrix 1 − A = ‖δ jk − a jk‖

∞
1 , consisting of complex

numbers, is called a matrix with an absolutely convergent determinant, if the series∑
|a j1k1a j2k2 · · · a jn,kn | converges, where the sum extends over all pairs of systems

of indices ( j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ from each other only by
a permutation, and j1 < j2 < · · · jn (n = 1, 2, · · · ). Then the limit

lim
n→∞

det‖δ jk − a jk‖
n
1 = det(1 − A)

exists and is called the determinant of the matrix 1 − A. It can be represented in
the form

det(1 − A) = 1 −
∞∑
j=1

a j j +
1
2!

∞∑
j,k=1

∣∣∣∣∣ a j j a jk
ak j akk

∣∣∣∣∣ − 1
3!

∞∑
j,k,m=1

∣∣∣∣∣∣∣∣
a j j a jk a jm
ak j akk akm
am j amk amm

∣∣∣∣∣∣∣∣ + · · · ,

where the series on the r.h.s. will remain convergent even if the numbers a jk ( j, k =

1, 2, · · · ) are replaced by their moduli and if all the terms obtained by expanding
the determinants are taken with the plus sign. The matrix 1−A is called von Koch
matrix, if both conditions

∞∑
j=1

|a j j| < ∞ , (A40.26)

∞∑
j,k=1

|a jk|
2 < ∞ (A40.27)

are fulfilled. Then the following holds (see ref. [1, 2]): (1) Every von Koch matrix
has an absolutely convergent determinant. If the elements of a von Koch matrix
are functions of some parameter µ (a jk = a jk(µ), j, k = 1, 2, · · · ) and both series in
the defining condition converge uniformly in the domain of the parameter µ, then
as n→ ∞ the determinant det‖δ jk−a jk(µ)‖n1 tends to the determinant det(1+A(µ))
uniformly with respect to µ, over the domain of µ. (2) If the matrices 1 − A and
1 − B are von Koch matrices, then their product 1 − C = (1 − A)(1 − B) is a von
Koch matrix, and

det(1 − C) = det(1 − A) det(1 − B) .

Note that every trace-class matrix A ∈ J1 is also a von Koch matrix (and that
any matrix satisfying condition (A40.27) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matrices are not automati-
cally trace-class. The caveat is that the definition of von Koch matrices is basis-
dependent, whereas the trace-class property is basis-independent. As the traces
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involve infinite sums, the basis-independence is not at all trivial. An example for
an infinite matrix which is von Koch, but not trace-class is the following:

Ai j =


2/ j for i − j = −1 and j even ,
2/i for i − j = +1 and i even ,
0 else ,

i.e.,

A =



0 1 0 0 0 0 · · ·

1 0 0 0 0 0 · · ·

0 0 0 1/2 0 0 · · ·

0 0 1/2 0 0 0 · · ·

0 0 0 0 0 1/3
. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .


. (A40.28)

Obviously, condition (A40.26) is fulfilled by definition. Second, the condition
(A40.27) is satisfied as

∑∞
n=1 2/n2 < ∞. However, the sum over the moduli of

the eigenvalues is just twice the harmonic series
∑∞

n=1 1/n which does not con-
verge. The matrix (A40.28) violates the trace-class definition (A40.16), as in its
eigenbasis the sum over the moduli of its diagonal elements is infinite. Thus the
absolute convergence is traded for a conditional convergence, since the sum over
the eigenvalues themselves can be arranged to still be zero, if the eigenvalues with
the same modulus are summed first. Absolute convergence is of course essential,
if sums have to be rearranged or exchanged. Thus, the trace-class property is in-
dispensable for any controlled unitary transformation of an infinite determinant,
as then there will be necessarily a change of basis and in general also a re-ordering
of the corresponding traces. Therefore the claim that a Hilbert-Schmidt operator
with a vanishing trace is automatically trace-class is false. In general, such an
operator has to be regularized in addition (see next chapter).

A40.6 Regularization

Many interesting operators are not of trace class (although they might be in some
Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any orthonormal basis).
In order to compute determinants of such operators, an extension of the cumulant
expansion is needed which in fact corresponds to a regularization procedure [6,
9]:
E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1 + zA) exp

n−1∑
k=1

(−z)k

k
Ak

 − 1

as the regulated version of the operator zA. Then the regulated operator Rn(zA) is
trace class, i.e., Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)). Then
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the regulated determinant

detn(1 + zA) =

N(zA)∏
j=1

(1 + zλ j(A)
)

exp

n−1∑
k=1

(
−zλ j(A)

)k

k


 < ∞. (A40.29)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [9]:

detn(1 + zA) =

∞∑
m=0

zmα
(n)
m (A)
m!

. (A40.30)

with α(n)
m (A) given by the m × m determinant:

α(n)
m (A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ(n)
1 m − 1 0 · · · 0

σ(n)
2 σ(n)

1 m − 2 · · · 0
σ(n)

3 σ(n)
2 σ(n)

1 · · · 0
...

...
...

...
...
1

σ(n)
m σ(n)

m−1 σ(n)
m−2 · · · σ(n)

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A40.31)

where

σ(n)
k =

{
Tr(Ak) k ≥ n
0 k ≤ n − 1

As Simon [9] says simply, the beauty of (A40.31) is that we get detn(1 + A) from
the standard Plemelj-Smithies formula (A40.22) by simply setting Tr(A), Tr(A2),
. . . , Tr(An−1) to zero.

See also Voros [10] where {λ j} are the eigenvalues of an elliptic (pseudo)-
differential operator H of order m on a compact or bounded manifold of dimension
d, 0 < λ0 ≤ λ1 ≤ · · · and λk ↑ +∞, and the Fredholm determinant

∆(λ) =

∞∏
k=0

(
1 −

λ

λk

)
is regularized in the case µ ≡ d/m > 1 as the Weierstrass product

∆(λ) =

∞∏
k=0

(1 − λ

λk

)
exp

 λλk
+
λ2

2λ2
k

+ · · · +
λ[µ]

[µ]λ[µ]
k


 (A40.32)

where [µ] denotes the integer part of µ. This is the unique entire function [10] of
order µ having zeros at {λk}, and subject to the normalization conditions

ln ∆(0) =
d

dλ
ln ∆(0) = · · · =

d[µ]

dλ[µ] ln ∆(0) = 0 .

Clearly (A40.32) is the same as (A40.29); one just has to identify z = −λ, A =

1/H and n− 1 = [µ]. An example is the regularization of the spectral determinant

∆(E) = det [(E −H)] (A40.33)
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which –as it stands– would only make sense for a finite dimensional basis (or
finite dimensional matrices). In ref. [4] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (thus d = 2, m = 2 and hence
µ = 1) is given as

∆(E) = det [(E −H)Ω(E,H)]

where

Ω(E,H) = −H−1eEH−1

such that the spectral determinant in the eigenbasis of H (with eigenvalues En , 0)
reads

∆(E) =
∏

n

(
1 −

E
En

)
eE/En < ∞ .

Note that H−1 is for this example of Hilbert-Schmidt character.
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Exercises

A40.1. Norm of exponential of an operator. Verify inequality (A40.15):

‖etA‖ ≤ et‖A‖ .
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Appendix A41

Projects

You are urged to work through the essential steps in a project that combines
the techniques learned in the course with some application of interest to
you for other reasons. It is OK to share computer programs and such, but

otherwise each project should be distinct, not a group project. The essential steps
are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct transition graphs if appropri-
ate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like the
escape rate,

2. or check the flow conservation, compute something like the Lyapunov
exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if the
system is closed

3. implement desymmetrization, factorization of zeta functions, if dy-
namics possesses a discrete symmetry
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4. compute a quantity like the escape rate as a leading zero of a spectral
determinant or a dynamical zeta function.

5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conductance

7. compute some number of the classical and/or quantum eigenvalues, if
appropriate
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