
Chapter 30

Turbulence?

I am an old man now, and when I die and go to Heaven

there are two matters on which I hope enlightenment. One

is quantum electro-dynamics and the other is turbulence of

fluids. About the former, I am rather optimistic.

—Sir Horace Lamb

T
here is only one honorable cause that would justify sweating through so much

formalism - this is but the sharpening of a pencil in order that we may attack

the Navier-Stokes equation,

∂u

∂t
+ u · ∇u = −

∇p

ρ
+ ν∇2u + f , (30.1)

and solve the problem of turbulence.

Being realistic, we are not so foolhardy to immediately plunge into the prob-

lem – there are too many dimensions and indices. Instead, we start small, in one

spatial dimension, u → u, u · ∇u → u∂xu, assume constant density ρ, forget

about the pressure p, and so on. This line of reasoning, as well as many other

equally sensible threads of thought, such as the amplitude equations obtained via

weakly nonlinear stability analysis of steady flows, leads to a small set of fre-

quently studied nonlinear PDE models, like the one that we turn to now. You only

need chapters 2 to 5 and chapters 14 to 15 to get started.

30.1 Configuration space: a fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’

—W. Shakespeare, Romeo and Julliet, Act I, Scene I

The Kuramoto-Sivashinsky [KS] system describes the flame front flutter of

gas burning on your kitchen stove, figure 30.1 (a), and many other problems of
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greater import, is one of the simplest nonlinear systems that exhibit ‘turbulence’

(in this context often referred to more modestly as ‘spatiotemporally chaotic be-

havior’). The time evolution of the ‘flame front velocity’ u = u(x, t) on a periodic

domain u(x, t) = u(x + L, t) is given by

ut +
1
2
(u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (30.2)

In this equation t ≥ 0 is the time and x is the spatial coordinate. The subscripts x

and t denote partial derivatives with respect to x and t: ut = ∂u/d∂, uxxxx stands

for the 4th spatial derivative of u = u(x, t) at position x and time t. In what follows

we use interchangeably the ‘dimensionless system size’ L̃, or the periodic domain

size L = 2πL̃, as the system parameter. We take note, as in the Navier-Stokes

equation (30.1), of the ‘inertial’ term u∂xu, the ‘anti-diffusive’ term ∂2
xu (with a

“wrong” sign), ‘(hyper-)viscosity’ ν, etc..

In what follows we will analyse -step by step- PDEs using methods developed

above for finite dimensional dynamical systems. First we discuss PDEs as fields

defined over configuration space. Once we go over to the state space description

the techniques developped for analysis of ODEs will go over to PDEs, as is.

30.1.1 The Ring of Fire - symmetries

The Kuramoto-Sivashinsky equation (30.2) is space translationally invariant, time

translationally invariant, and invariant under reflection x → −x, u → −u. Com-

paring ut and (u2)x terms we note that u has dimensions of [x]/[t], hence u is the

‘velocity’, rather than the ‘height’ of the flame front. Indeed, the Kuramoto-Siva-

shinsky equation is Galilean invariant: if u(x, t) is a solution, then v + u(x − vt, t),

with v an arbitrary constant velocity, is also a solution. Without loss of generality,

in our calculations we shall work in the zero mean velocity frame

∫

dx u = 0 . (30.3)

In terms of the system size L, the only length scale available, the dimensions of

terms in (30.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 . Scaling out the

“viscosity” ν by x → xν1/2 , t → tν , u → uν−1/2 , brings the Kuramoto-Siva-

shinsky equation (30.2) to a non-dimensional form

ut + u ux + uxx + uxxxx = 0 , x ∈ [0, Lν−1/2] = [0, 2πL̃] . (30.4)

In this way we trade in the “viscosity” ν and the system size L for a single dimen-

sionless system size parameter

L̃ = L/(2π
√
ν) (30.5)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky sys-

tem. Sometimes L is used as the system parameter, with ν fixed to 1, and at other

times ν is varied with L fixed to either 1 or 2π. Physically, varying L is the right

thing to do if one is interested in taking L large, and studying ‘spatio-temporal
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Figure 30.1: (a) Kuramoto-Sivashinsky dynam-

ics visualized as the Bunsen burner flame flutter,

with u = u(x, t) the “velocity of the flame front” at

position x and time t. (b) A typical “turbulent” so-

lution of the Kuramoto-Sivashinsky equation, sys-

tem size L = 20π
√

2 ≈ 88.86. The color (gray

scale) indicates the value of u at a given position

and instant in time. The x coordinate is scaled

with the most unstable wavelength 2π
√

2, which

is approximately also the mean wavelength of the

turbulent flow. The dynamics is typical of a large

system, in this case approximately 10 mean wave-

lengths wide. (from ref. [A1.84])
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chaos.’ In what follows we shall state results of all calculations in units of dimen-

sionless system size L̃. The time units also have to be rescaled; for example, if

Tp
∗ is a period of a periodic solution of (30.2) with a given ν and L = 2π, then the

corresponding solution of the non-dimensionalized (30.4) has period

Tp = Tp
∗/ν . (30.6)

The term (u2)x makes this a nonlinear system. This is one of the simplest

conceivable nonlinear PDE, playing the role in the theory of spatially extended

systems a bit like the role that the x2 nonlinearity plays in the dynamics of iterated

mappings. The time evolution of a typical solution of the Kuramoto-Sivashinsky section 3.3

system is illustrated by figure 30.1 (b). remark 30.1

G, the group of actions g ∈ G on a state space (reflections, translations, etc.)

is a symmetry of the KS flow (30.2) if g ut = F(g u). The KS equation is time

translationally invariant, and space translationally invariant on a periodic domain

under the 1-parameter group of O(2) : {τℓ/L, σ}. If u(x, t) is a solution, then

τℓ/L u(x, t) = u(x + ℓ, t) is an equivalent solution for any shift −L/2 < ℓ ≤ L/2, as

is the reflection (‘parity’ or ‘inversion’)

σ u(x) = −u(−x) . (30.7)

Due to the hyperviscous damping uxxxx , long time solutions of Kuramoto-

Sivashinsky equation are smooth, ak drop off fast with k, and truncations of (30.13)

to N terms, 16 ≤ N ≤ 128, yield highly accurate solutions for system sizes con-

sidered here. Robustness of the Fourier representation of KS as a function of

the number of modes kept in truncations, a subtle issue. Adding an extra mode

to a truncation introduces a small perturbation. However, this can (and often

will) throw the dynamics into a different asymptotic state. A chaotic attractor

for N = 15 can collapse into an attractive period-3 cycle for N = 16, and so on.
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If we compute, for example, the Lyapunov exponent λN for a strange attractor of

the system (30.13), there is no reason to expect λN to smoothly converge to a limit

value λ, as N → ∞, because of the lack of structural stability both as a function

of truncation N, and the system size L̃. However, later in this chapter we explore

both equilibria and short periodic orbits, which are robust under mode truncations

and small system parameter L̃ changes. Spatial representations of PDEs (such

as figure 30.1 (b) and the 3D snapshots of velocity and vorticity fields in Navier-

Stokes) offer little insight into detailed dynamics of low-Re flows. Much more

illuminating are the state space representations.

example 30.1

p. 584

Reflection generates the dihedral subgroup D1 = {1, σ} of O(2). Let U be the

space of real-valued velocity fields periodic and square integrable on the interval

Ω = [−L/2, L/2],

U = {u ∈ L2(Ω) | u(x) = u(x + L)} . (30.8)

A continuous symmetry maps each state u ∈ U to a manifold of functions with

identical dynamic behavior. Relation σ2 = 1 induces linear decomposition u(x) =

u+(x) + u−(x), u±(x) = P±u(x) ∈ U±, into irreducible subspaces U = U+ ⊕ U−,

where

P+ = (1 + σ)/2 , P− = (1 − σ)/2 , (30.9)

are the antisymmetric/symmetric projection operators. Applying P+, P− on the

KS equation (30.2) we have [30.17]

u+t = −(u+u+x + u−u−x ) − u+xx − u+xxxx

u−t = −(u+u−x + u−u+x ) − u−xx − u−xxxx . (30.10)

If u− = 0, KS flow is confined to the antisymmetric U+ subspace,

u+t = −u+u+x − u+xx − u+xxxx , (30.11)

but otherwise the nonlinear terms in (30.10) mix the two subspaces.

example 30.2

p. 584

30.2 Constructing a state space

Spatial periodicity u(x, t) = u(x + L, t) makes it convenient to work in the Fourier

space,

u(x, t) =

+∞
∑

k=−∞
ak(t)eikx/L̃ , (30.12)
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with the 1-dimensional PDE (30.2) replaced by an infinite set of ODEs for the

complex Fourier coefficients ak(t):

ȧk = vk(a) = (q2
k − q4

k) ak − i
qk

2

+∞
∑

m=−∞
amak−m , qk = k/L̃ . (30.13)

As ȧ0 = 0, a0 is a conserved quantity, in our calculations fixed to a0 = 0 by

the vanishing mean 〈u〉 condition (30.3) for the front velocity. The velocity

field u(x, t) is real, so ak = a∗−k
, and we can replace the sum by an m > 0 sum.

This is the infinite set of ordinary differential equations promised in this chapter’s

introduction.

As ȧ0 = 0 in (30.13), a0 is a conserved quantity fixed to a0 = 0 by the condi-

tion (30.3).

The translation operator action on the Fourier coefficients (2.16), represented

here by a complex valued vector a = {ak ∈ C | k = 1, 2, . . .}, is given by

τℓ/L a = g(ℓ) a , (30.14)

where g(ℓ) = diag(eiqk ℓ) is a complex valued diagonal matrix, which amounts to

the k-th mode complex plane rotation by an angle k ℓ/L̃. The reflection acts on the

Fourier coefficients by complex conjugation,

σ a = −a∗ . (30.15)

30.2.1 Equilibria and relative equilibria

Equilibria (or the steady solutions) are the fixed profile time-invariant solutions,

u(x, t) = uq(x) . (30.16)

Due to the translational symmetry, the KS system also allows for relative equilib-

ria (traveling waves, rotating waves), characterized by a fixed profile uq(x) moving

with constant speed c, i.e.

u(x, t) = uq(x − ct) . (30.17)

Here suffix q labels a particular invariant solution. Because of the reflection sym-

metry (30.7), the relative equilibria come in counter-traveling pairs uq(x − ct),

−uq(−x + ct).

The relative equilibrium condition for the Kuramoto-Sivashinsky PDE (30.2)

is the ODE

1
2
(u2)x + uxx + uxxxx = c ux (30.18)

which can be analyzed as a dynamical system in its own right. Integrating once

we get

1
2
u2 − cu + ux + uxxx = E . (30.19)
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Figure 30.2: The energy (30.31) of the equilibria and relative equilibria that exist up to L = 22,

L̃ = 3.5014 . . ., plotted as a function of the system size L̃ = L/2π (additional equilibria, not present

at L = 22 are given in ref. [30.9]). Solid curves denote n-cell solutions EQ2 and EQ3, dotted

curves the GLMRT equilibrium EQ1, and dashed curves the relative equilibria T W±1 and T W±2.

The parameter α of refs. [30.17, 30.9] is related to the system size by L̃ =
√
α/4.

This equation can be interpreted as a 3-dimensional dynamical system with spatial

coordinate x playing the role of ‘time,’ and the integration constant E can be

interpreted as ‘energy,’ see sect. 30.3.

For E > 0 there is rich E-dependent dynamics, with fractal sets of bounded

solutions investigated in depth by Michelson [30.18]. For L̃ < 1 the only equilib-

rium of the system is the globally attracting constant solution u(x, t) = 0, denoted

EQ0 from now on. With increasing system size L the system undergoes a series

of bifurcations. The resulting equilibria and relative equilibria are described in

the classical papers of Kevrekidis, Nicolaenko and Scovel [30.17], and Greene

and Kim [30.9], among others. The relevant bifurcations up to the system size

investigated here are summarized in figure 30.2: at L̃ = 22/2π = 3.5014 · · · , the

equilibria are the constant solution EQ0, the equilibrium EQ1 called GLMRT by

Greene and Kim [?, 30.9], the 2- and 3-cell states EQ2 and EQ3, and the pairs of

relative equilibria TW±1, TW±2. All equilibria are in the antisymmetric subspace

U
+, while EQ2 is also invariant under D2 and EQ3 under D3.

In the Fourier representation the relative equilibria time dependence is

ak(t)e−itcqk = ak(0) . (30.20)

Differentiating with respect to time, we obtain the Fourier space version of the

relative equilibrium condition (30.18),

vk(a) − iqkcak = 0 , (30.21)

which we solve for (time independent) ak and c.

Periods of spatially periodic equilibria are multiples of L. Every time the sys-

tem size crosses L̃ = n, n-cell states are generated through pitchfork bifurcations
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off u = 0 equilibrium. Due to the translational invariance of Kuramoto-Sivashin-

sky equation, they form invariant circles in the full state space. In the U+ subspace

considered here, they correspond to 2n points, each shifted by L/2n. For a suf-

ficiently small L the number of equilibria is small and concentrated on the low

wave-number end of the Fourier spectrum.

From (30.13) we see that the origin u(x, t) = 0 has Fourier modes as the linear

stability eigenvectors. The |k| < L̃ long wavelength perturbations of the flat-front

equilibrium are linearly unstable, while all |k| > L̃ short wavelength perturbations

are strongly contractive. The high k eigenvalues, corresponding to rapid variations

of the flame front, decay so fast that the corresponding eigendirections are physi-

cally irrelevant. The most unstable mode, nearest to |k| = L̃/
√

2, sets the scale of

the mean wavelength
√

2 of the KS ‘turbulent’ dynamics, see figure 30.1.

30.2.2 Relative periodic orbits, symmetries and periodic orbits

The KS equation (30.2) is time translationally invariant, and space translationally

invariant under the 1-d Lie group of O(2) rotations: if u(x, t) is a solution, then

u(x + ℓ, t) and −u(−x, t) are equivalent solutions for any −L/2 < ℓ ≤ L/2. As

a result of invariance under τℓ/L, KS equation can have relative periodic orbit

solutions with a profile up(x), period Tp, and a nonzero shift ℓp

τℓp/Lu(x, Tp) = u(x + ℓp, Tp) = u(x, 0) = up(x) . (30.22)

Relative periodic orbits (30.22) are periodic in vp = ℓp/Tp co-rotating frame (see

figure 12.7), but in the stationary frame their trajectories are quasiperiodic. Due to

the reflection symmetry (30.7) of KS equation, every relative periodic orbit up(x)

with shift ℓp has a symmetric partner −up(−x) with shift −ℓp.

Due to invariance under reflections, KS equation can also have relative peri-

odic orbits with reflection, which are characterized by a profile up(x) and period

Tp

σu(x + ℓ, Tp) = −u(−x − ℓ, Tp) = u(x + ℓ, 0) = up(x) , (30.23)

giving the family of equivalent solutions parameterized by ℓ (as the choice of the

reflection point is arbitrary, the shift can take any value in −L/2 < ℓ ≤ L/2).

Armbruster et al. [?, 12.16] and Brown and Kevrekidis [12.21] (see also ref. [13.60])

link the birth of relative periodic orbits to an infinite period global bifurcation in-

volving a heteroclinic loop connecting equilibria or a bifurcation of relative equi-

libria, and also report creation of relative periodic orbit branches through bifurca-

tion of periodic orbits.

As ℓ is continuous in the interval [−L/2, L/2], the likelihood of a relative

periodic orbit with ℓp = 0 shift is zero, unless an exact periodicity is enforced

by a discrete symmetry, such as the dihedral symmetries discussed above. If the

shift ℓp of a relative periodic orbit with period Tp is such that ℓp/L is a rational
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number, then the orbit is periodic with period nTp. The likelihood to find such

periodic orbits is also zero.

However, due to the KS equation invariance under the dihedral Dn and cyclic

Cn subgroups, the following types of periodic orbits are possible:

(a) The periodic orbit lies within a subspace pointwise invariant under the

action of Dn or Cn. For instance, for D1 this is the U+ antisymmetric subspace,

−up(−x) = up(x), and u(x, Tp) = u(x, 0) = up(x). The periodic orbits found in

refs. [A1.79, 30.23] are all in U+, as the dynamics is restricted to antisymmetric

subspace. For L = 22 the dynamics in U+ is dominated by attracting (within the

subspace) heteroclinic connections and thus we have no periodic orbits of this

type, or in any other of the Dn–invariant subspaces, see sect. ??.

(b) The periodic orbit satisfies

u(x, t + Tp) = γu(x, t) , (30.24)

for some group element γ ∈ O(2) such that γm = e for some integer m so that

the orbit repeats after time mTp (see ref. [12.4] for a general discussion of condi-

tions on the symmetry of periodic orbits). If an orbit is of reflection type (30.23),

στℓ/Lu(x, Tp) = −u(−x− ℓ, Tp) = u(x, 0), then it is pre-periodic to a periodic orbit

with period 2Tp. Indeed, since (στℓ/L)2 = σ2 = 1, and the KS solutions are time

translation invariant, it follows from (30.23) that

u(x, 2Tp) = στℓ/Lu(x, Tp) = (στℓ/L)2u(x, 0) = u(x, 0) .

Thus any shift acquired during time 0 to Tp is compensated by the opposite shift

during evolution from Tp to 2Tp. All periodic orbits we have found for L = 22

are of type (30.24) with γ = R. Pre-periodic orbits with γ ∈ Cn have been found

by Brown and Kevrekidis [12.21] for KS system sizes larger than ours, but we

have not found any for L = 22. Pre-periodic orbits are a hallmark of any dynam-

ical system with a discrete symmetry, where they have a natural interpretation as

periodic orbits in the fundamental domain.

30.3 Energy budget

Mathematical physics is three things: Gaussian integrals,

integration by parts and ... (nobody remembers exactly

what the third thing was, including Joel).

—Joel Lebowitz, in a seminar

In physical settings where the observation times are much longer than the dy-

namical ‘turnover’ and Lyapunov times (statistical mechanics, quantum physics,

turbulence) periodic orbit theory provides highly accurate predictions of measur-

able long-time averages such as the dissipation and the turbulent drag. Physical

predictions have to be independent of a particular choice of ODE representation

of the PDE under consideration and invariant under all symmetries of the dynam-

ics. In this section we discuss a set of such physical observables for the 1-d KS
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invariant under reflections and translations. Here we shall show that they offer

a visualization of solutions of dynamics in which the symmetries are explicitly

quotiented out.

The space average of a function a = a(x, t) = a(u(x, t)) periodic on the interval

L is given by

〈a〉 = 1

L

∮

dx a(x, t) , (30.25)

We note that total derivatives vanish by the spatial periodicity on the L domain,

and that by integration by parts

〈 fx〉 = 0 , 〈 fxg〉 = −〈 f gx〉 (30.26)

for any L-periodic functions f , g. In general 〈a〉 is time dependent. Its mean value

is given by the time average

a = lim
t→∞

1

t

∫ t

0

dτ 〈a〉 = lim
t→∞

1

t

∫ t

0

1

L

∮

dτ dx a(x, τ) . (30.27)

The mean value of aq = a(uq) evaluated on equilibrium or relative equilibrium

u(x, t) = uq(x − ct), is

aq = 〈a〉q = aq . (30.28)

Evaluation of the infinite time average (30.27) on a function of a periodic orbit

or relative periodic orbit up(x, t) = up(x + ℓp, t + Tp) requires only a single Tp

traversal,

ap =
1

Tp

∫ Tp

0

dτ 〈a〉 . (30.29)

Equation (30.2) can be written as

ut = −Vx , V(x, t) = 1
2
u2 + ux + uxxx , (30.30)

and E can be interpreted as the mean energy density (30.31). So, even though KS

is a phenomenological small-amplitude equation, the time-dependent L2 norm of

u (simplified using integration by parts, as in (30.26)),

E =
1

L

∮

dx V(x, t) =
1

L

∮

dx
u2

2
, (30.31)

has a physical interpretation as the average ‘energy’ density of the flame front.

This analogy to the mean kinetic energy density for the Navier-Stokes motivates

what follows.

The energy (30.31) is intrinsic to the flow, independent of the particular ODE

basis set chosen to represent the PDE. As the Fourier amplitudes are eigenvec-

tors of the translation operator, in the Fourier space the energy is a diagonalized

quadratic norm,

E =

∞
∑

k=1

Ek , Ek =
1
2
|ak |2 , (30.32)

PDEs - 25apr2015 ChaosBook.org version15.9, Jun 24 2017

CHAPTER 30. TURBULENCE? 575

Figure 30.3: Power input 〈ux
2〉 vs. dissipation 〈uxx

2〉
for L = 22 equilibria and relative equilibria, for sev-

eral periodic orbits and relative periodic orbits, and

for a typical ‘turbulent’ state. Note that (up,x)2 of the

(Tp, ℓp) = (32.8, 10.96) relative periodic orbitwhich

appears well embedded within the turbulent state, is

close to the turbulent expectation (ux)2. 0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 30.4: EQ1 (red), EQ2 (green), EQ3 (blue),

connections from EQ1 to A(L/4)EQ1 (green), from

A(L/4)EQ1 to EQ1 (yellow-green) and from EQ3 to

A(L/4)EQ1 (blue), along with a generic long-time

“turbulent” evolution (grey) for L = 22. Three dif-

ferent projections of the (E, 〈ux
2〉, 〈uxx

2〉)− 〈ux
2〉) rep-

resentation are shown.
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and explicitly invariant term by term under translations and reflections.

Take time derivative of the energy density (30.31), substitute (30.2) and inte-

grate by parts, as in (30.26):

Ė = 〈ut u〉 = −〈
(

u2/2 + ux + uxxx

)

x
u〉

= 〈ux u2/2 + ux
2 + ux uxxx〉 . (30.33)

The first term in (30.33) vanishes by integration by parts, 3〈ux u2〉 = 〈(u3)x〉 = 0 ,

and integrating the third term by parts yet again one gets that the energy variation

in the Kuramoto-Sivashinsky equation (30.2)

Ė = P − D , P = 〈ux
2〉 , D = 〈uxx

2〉 (30.34)

balances the power P pumped in by anti-diffusion uxx against the energy dissipa-

tion rate D by hyper-viscosity uxxxx .

In figure 30.3 we plot the power input 〈ux
2〉 vs. dissipation 〈uxx

2〉 for all

L = 22 equilibria and relative equilibria determined so far, several periodic orbits

and relative periodic orbits, and for a typical “turbulent” evolution. The time

averaged energy density E computed on a typical orbit goes to a constant, so the

mean values (30.27) of drive and dissipation exactly balance each other:

Ė = lim
t→∞

1

t

∫ t

0

dτ Ė = P − D = 0 . (30.35)

In particular, the equilibria and relative equilibria fall onto the diagonal in fig-

ure 30.3 (a), and so do time averages computed on periodic orbits and relative

periodic orbits:

Ep =
1

Tp

∫ Tp

0

dτ E(τ) , Pp =
1

Tp

∫ Tp

0

dτ P(τ) = Dp . (30.36)
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In the Fourier basis (30.32) the conservation of energy on average takes form

0 =

∞
∑

k=−∞
(q2

k − q4
k) Ek , Ek(t) = 1

2
|ak(t)|2 . (30.37)

The large k convergence of this series is insensitive to the system size L; Ek have

to decrease much faster than q−4
k

. Deviation of Ek from this bound for small k

determines the active modes. This may be useful to bound the number of equilib-

ria, with the upper bound given by zeros of a small number of long wavelength

modes.

30.4 Infinite-dimensional flows: Numerics

The computer is not a mere mathematical excrescence,

useful for technological ends. Rather, I believe that it

is a meta-development that might very well change what

mathematics is considered to be.

— P. J. Davis [30.13]

The trivial solution u(x, t) = 0 is an equilibrium point of (30.2), but that is basically

all we know as far as useful analytical solutions are concerned. To develop some

intuition about the dynamics we turn to numerical simulations.

How are solutions such as figure 30.1 (b) computed? The salient feature of

such partial differential equations is a theorem saying that for state space con-

tracting flows, the asymptotic dynamics is describable by a finite set of ‘inertial

manifold’ ordinary differential equations. How you solve the equation (30.2) nu-

merically is up to you. Here are some options:

Discrete mesh: You can divide the x interval into a sufficiently fine discrete grid of

N points, replace space derivatives in (30.2) by approximate discrete derivatives,

and integrate a finite set of first order differential equations for the discretized

spatial components u j(t) = u( jL/N, t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (30.13), trun-

cating the ladder of equations to a finite number of modes N, i.e., set ak = 0 for

k > N. In the applied mathematics literature more sophisticated variants of such exercise 2.6

truncations are called Gälerkin truncations, or Gälerkin projections. You need to

worry about ‘stiffness’ of the equations and the stability of your integrator. For the

parameter values explored in this chapter, truncations N in range 16 to 64 yield

sufficient accuracy.

Pseudo-spectral methods: You can mix the two methods, exploiting the speed

of Fast Fourier Transforms.

example 30.3

p. 585
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Figure 30.5: Spatiotemporally periodic solution

u0(x, t), with period T0 = 30.0118 . The antisymmetric

subspace, u(x, t) = −u(−x, t), so we plot x ∈ [0, L/2].

System size L̃ = 2.89109, N = 16 Fourier modes trun-

cation. (From ref. [A1.79])

Figure 30.6: Projections of a typical 16-

dimensional trajectory onto different 3-

dimensional subspaces, coordinates (a) {a1, a2, a3},
(b) {a1, a2, a4}. System size L̃ = 2.89109, N = 16

Fourier modes truncation. (From ref. [A1.79].)
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30.5 Visualization

The ultimate goal, however, must be a rational theory of

statistical hydrodynamics where [· · · ] properties of turbu-

lent flow can be mathematically deduced from the funda-

mental equations of hydromechanics.

—E. Hopf

The problem with high-dimensional representations, such as truncations of the

infinite tower of equations (30.13), is that the dynamics is difficult to visualize.

The best we can do without much programming is to examine the trajectory’s example 30.4

projections onto any three axes ai, a j, ak, as in figure 30.6.

The question is: how is one to look at such a flow? It is not clear that restricting

the dynamics to a Poincaré section necessarily helps - after all, a section reduces

a (d + 1)-dimensional flow to a d-dimensional map, and how much is gained by

replacing a continuous flow in 16 dimensions by a set of points in 15 dimensions?

The next example illustrates the utility of visualization of dynamics by means of

Poincaré sections.

example 30.4

p. 585

The example 30.4 illustrates why a Poincaré section gives a more informative

snapshot of the flow than the full flow portrait. While no fine structure is dis-

cernible in the full state space flow portraits of the Kuramoto-Sivashinsky dynam-

ics, figure 30.6, the Poincaré return map figure 30.7 reveals the fractal structure in

the asymptotic attractor.

In order to find a better representation of the dynamics, we now turn to its
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Figure 30.7: The attractor of the Kuramoto-Sivashin-

sky system (30.13), plotted as the a6 component of

the a1 = 0 Poincaré section return map. Here 10,000

Poincaré section returns of a typical trajectory are plot-

ted. Also indicated are the periodic points 0, 1, 01 and

10. System size L̃ = 2.89109, N = 16 Fourier modes

truncation. (From ref. [A1.79].)

topological invariants.

30.6 Equilibria of equilibria

(Y. Lan and P. Cvitanović)

The set of equilibria and their stable / unstable manifolds form the coarsest topo-

logical framework for organizing state space orbits.

The equilibrium condition ut = 0 for the Kuramoto-Sivashinsky equation PDE

(30.4) is the ODE

1

2
(u2)x + uxx + uxxxx = 0

which can be analyzed as a dynamical system in its own right. Integrating once

we get

1

2
u2 + ux + uxxx = c , (30.38)

where c is an integration constant whose value strongly influences the nature of the

solutions. Written as a 3-dimensional dynamical system with spatial coordinate x

playing the role of “time,” this is a volume preserving flow

ux = v , vx = w , wx = u2 − v − c , (30.39)

with the “time” reversal symmetry,

x→ −x, u→ −u, v→ v, w→ −w .

From (30.39) we see that

(u + w)x = u2 − c .

If c < 0, u + w increases without bound with x → ∞, and every solution escapes

to infinity. If c = 0, the origin (0, 0, 0) is the only bounded solution.
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For c > 0 there is much c-dependent interesting dynamics, with complicated

fractal sets of bounded solutions. The sets of the solutions of the equilibrium

condition (30.39) are themselves in turn organized by the equilibria of the equi-

librium condition, and the connections between them. For c > 0 the equilibrium

points of (30.39) are c+ = (
√

c, 0, 0) and c− = (−
√

c, 0, 0). Linearization of the

flow around c+ yields Floquet multipliers [2λ ,−λ ± iθ] with

λ =
1
√

3
sinh φ , θ = cosh φ ,

and φ fixed by sinh 3φ = 3
√

3c. Hence c+ has a 1-dimensional unstable manifold

and a 2-dimensional stable manifold along which solutions spiral in. By the x →
−x “time reversal” symmetry, the invariant manifolds of c− have reversed stability

properties.

The non–wandering set of this dynamical system is quite pretty, and surpris-

ingly hard to analyze. However, we do not need to explore the fractal set of the

Kuramoto-Sivashinsky equilibria for infinite size system here; for a fixed system

size L with periodic boundary condition, the only surviving equilibria are those

with periodicity L. They satisfy the equilibrium condition for (30.13)

q2
k

(

1 − q2
k

)

ak − i
qk

2

+∞
∑

m=−∞
amak−m = 0 . (30.40)

Periods of spatially periodic equilibria are multiples of L. Every time L̃ crosses

an integer value L̃ = n, new n-cell states are generated through pitchfork bifurca-

tions. In the full state space they form an invariant circle due to the translational

invariance of (30.4). In the antisymmetric subspace (see example 30.1), they cor-

responds to two points, half-period translates of each other of the form

u(x, t) = −2
∑

k

akn sin(knx) ,

where akn ∈ R.

For any fixed spatial period L the number of spatially periodic solutions is fi-

nite up to a spatial translation. This observation can be heuristically motivated as

follows. Finite dimensionality of the inertial manifold bounds the size of Fourier

components of all solutions. On a finite-dimensional compact manifold, an ana-

lytic function can only have a finite number of zeros. So, the equilibria, i.e., the

zeros of a smooth velocity field on the inertial manifold, are finitely many.

For a sufficiently small L the number of equilibria is small, mostly concen-

trated on the low wave number end of the Fourier spectrum. These solutions may

be obtained by solving the truncated versions of (30.40).

example 30.7

p. 586
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Figure 30.8: Lyapunov exponents λ1,k versus k for the

least unstable spatio-temporally periodic orbit 1 of the

Kuramoto-Sivashinsky system, compared with the Flo-

quet exponents of the u(x, t) = 0 stationary solution,

λk = k2 − νk4 . The eigenvalue λ1,k for k ≥ 8 falls be-

low the numerical accuracy of integration and are not

meaningful. The cycle 1 was computed using meth-

ods of chapter 16. System size L̃ = 2.89109, N = 16

Fourier modes truncation. (From ref. [A1.79])
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30.7 Why does a flame front flutter?

I understood every word.

—Fritz Haake

section 21.2

We start by considering the case where aq is an equilibrium point (2.8). Ex-

panding around the equilibrium point aq, and using the fact that the matrix A =

A(aq) in (4.2) is constant, we can apply the simple formula (5.1) also to the Jaco-

bian matrix of an equilibrium point of a PDE,

Jt(aq) = eAt A = A(aq) .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium. As the

system size L̃ is increased, the “flame front” becomes increasingly unstable and

turbulent, the dynamics goes through a rich sequence of bifurcations on which we

shall not dwell here.

The long wavelength perturbations of the flat-front equilibrium are linearly

unstable, while all short wavelength perturbations are strongly contractive. The

high k eigenvalues, corresponding to rapid variations of the flame front, decay so

fast that the corresponding eigen-directions are physically irrelevant. To illustrate

the rapid contraction in the non-leading eigen-directions we plot in figure 30.8 the

eigenvalues of the equilibrium in the unstable regime, for relatively small system

size, and compare them with the Floquet multipliers of the least unstable cycle

for the same system size. The equilibrium solution is very unstable, in 5 eigen-

directions, the least unstable cycle only in one. Note that for k > 7 the rate of

contraction is so strong that higher eigen-directions are numerically meaningless

for either solution; even though the flow is infinite-dimensional, the attracting set

must be rather thin.

While in general for L̃ sufficiently large one expects many coexisting attractors

in the state space, in numerical studies most random initial conditions seem to

settle on the same chaotic attractor.

From (30.13) we see that the equilibrium u(x, t) = 0 has Fourier modes as

the linear stability eigenvectors. For |k| < L̃, the corresponding Fourier modes
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are unstable. The most unstable mode has k = L̃/
√

2 and defines the scale of

basic building blocks of the spatiotemporal dynamics of the Kuramoto-Sivashin-

sky equation in large system size limit.

Consider now the case of initial ak sufficiently small that the bilinear amak−m

terms in (30.13) can be neglected. Then we have a set of decoupled linear equa-

tions for ak whose solutions are exponentials, at most a finite number for which

k2 > νk4 is growing with time, and infinitely many with νk4 > k2 decaying in

time. The growth of the unstable long wavelengths (low |k|) excites the short

wavelengths through the amak−m nonlinear term. The excitations thus transferred

are dissipated by the strongly damped short wavelengths, and a “chaotic equilib-

rium” can emerge. The very short wavelengths |k| ≫ 1/
√
ν remain small for all

times, but the intermediate wavelengths of order |k| ∼ 1/
√
ν play an important role

in maintaining the dynamical equilibrium. As the damping parameter decreases,

the solutions increasingly take on shock front character poorly represented by the

Fourier basis, and many higher harmonics may need to be kept in truncations of

(30.13).

Hence, while one may truncate the high modes in the expansion (30.13), care

has to be exercised to ensure that no modes essential to the dynamics are chopped

away.

In other words, even though our starting point (30.2) is an infinite-dimensional

dynamical system, the asymptotic dynamics unfolds on a finite-dimensional at-

tracting manifold, and so we are back on the familiar territory of sect. 2.2: the

theory of a finite number of ODEs applies to this infinite-dimensional PDE as

well.

We can now start to understand the remark on page 43 that for infinite di-

mensional systems time reversibility is not an option: evolution forward in time

strongly damps the higher Fourier modes. There is no turning back: if we re-

verse the time, the infinity of high modes that contract strongly forward in time

now explodes, instantly rendering evolution backward in time meaningless. As so

much you are told about dynamics, this claim is also wrong, in a subtle way: if

the initial u(x, 0) is in the non–wandering set (2.3), the trajectory is well defined

both forward and backward in time. For practical purposes, this subtlety is not of

much use, as any time-reversed numerical trajectory in a finite-mode truncation

will explode very quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria

play:

“Hole” in the natural measure. The more unstable eigen-directions it has (for

example, the u = 0 solution), the more unlikely it is that an orbit will recur in its

neighborhood.

Unstable manifold of a “least unstable” equilibrium. Asymptotic dynamics

spends a large fraction of time in neighborhoods of a few equilibria with only a

few unstable eigen-directions.
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Figure 30.9: The Poincaré return map of the Kura-

moto-Sivashinsky system (30.13) figure 30.7, from the

unstable manifold of the 1 fixed point to the (neighbor-

hood of) the unstable manifold. Also indicated are the

periodic points 0 and 01. 0
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30.8 Intrinsic parametrization

Both in the Rössler flow of example 3.3, and in the Kuramoto-Sivashinsky system

of example 30.4 we have learned that the attractor is very thin, but otherwise the

return maps that we found were disquieting – neither figure 3.3 nor figure 30.7

appeared to be one-to-one maps. This apparent loss of invertibility is an artifact of

projection of higher-dimensional return maps onto lower-dimensional subspaces.

As the choice of lower-dimensional subspace is arbitrary, the resulting snapshots

of return maps look rather arbitrary, too. Other projections might look even less

suggestive.

Such observations beg a question: Does there exist a ‘natural’, intrinsically

optimal coordinate system in which we should plot of a return map?

As we shall now argue (see also sect. 16.1), the answer is yes: The intrinsic

coordinates are given by the stable/unstable manifolds, and a return map should

be plotted as a map from the unstable manifold back onto the immediate neigh-

borhood of the unstable manifold.

Examination of numerical plots such as figure 30.6 suggests that a more thought-

ful approach would be to find a coordinate transformation y = h(x) to a ‘center

manifold’, such that in the new, curvilinear coordinates large-scale dynamics takes

place in (y1, y2) coordinates, with exponentially small dynamics in y3, y4 · · · . But

- thinking is extra price - we do not know how to actually accomplish this, and we

do not believe it can be accomplished globally.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky

system we sketched the attractors by running a long chaotic trajectory, and noted

that the attractors are very thin, but otherwise the return maps that we plotted were

disquieting – neither figure 3.3 nor figure 30.7 appeared to be 1-to-1 maps. In this

section we show how to use such information to approximately locate cycles.

Résumé

Turbulence is the graveyard of theories

— Hans W. Liepmann
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We have learned that an instanton is an analytic solution of Yang-Mills equa-

tions of motion, but shouldn’t a strongly nonlinear field theory dynamics be dom-

inated by turbulent solutions? How are we to think about systems where every

spatiotemporal solution is unstable?

Here we think of turbulence in terms of recurrent spatiotemporal patterns.

Pictorially, dynamics drives a given spatially extended system through a repertoire

of unstable patterns; as we watch a turbulent system evolve, every so often we

catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For a finite spatial resolution and a finite time, a pattern belonging to a finite al-

phabet of admissible patterns is observed; the long term dynamics can be thought

of as a walk through the space of such patterns. Recasting this image into mathe-

matics is what ChaosBook is about.

The problem one faces with high-dimensional flows is that their topology is

hard to visualize, and that even with a decent starting guess for a point on a peri-

odic orbit, methods like the Newton-Raphson method are likely to fail. Methods chapter 33

that start with initial guesses for a number of points along the cycle, such as the

multipoint shooting method of sect. 16.2, are more robust. The relaxation (or

variational) methods take this strategy to its logical extreme, and start by a guess

of not a few points along a periodic orbit, but a guess of the entire orbit. As

these methods are intimately related to variational principles and path integrals,

we postpone their introduction to chapter 33.

At present the theory is in practice applicable only to systems with a low

intrinsic dimension – the minimum number of coordinates necessary to capture

its essential dynamics. If the system is very turbulent (a description of its long

time dynamics requires a space of very high intrinsic dimension) we are out of

luck.

Commentary

Remark 30.1 A brief history of dynamicist’s vision of turbulence. Dynamical ap-

proaches to study of turbulence are - surprisingly - still a cutting-edge research area. You

might find Appendix A1.5 amusing. The Kuramoto-Sivashinsky equation was introduced

in refs. [A1.75, A1.76]. Holmes, Lumley and Berkooz [A1.74] offer a delightful dis-

cussion of why this system deserves study as a staging ground for studying turbulence in

full-fledged Navier-Stokes equation. How good a description of a flame front this equation

is not a concern here; suffice it to say that such model amplitude equations for interfacial

instabilities arise in a variety of contexts - see e.g. ref. [30.17] - and this one is perhaps

the simplest physically interesting spatially extended nonlinear system.
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The work described in this chapter was initiated by Putkaradze’s 1996 ChaosBook

term project (see ChaosBook.org/extras), and continued by Budanur, Christiansen, Cvi-

tanović, Davidchack, Ding, Lan, and Siminos [A1.79, 32.70, A1.83, 33.16, 33.15, A1.84,

30.5, 30.23].

30.9 Examples

Example 30.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier co-

efficients ak are in general complex numbers. We can isolate the antisymmetric sub-

space u(x, t) = −u(−x, t) by considering the case of ak pure imaginary, ak → iak, where

ak = −a−k are real, with the evolution equations

ȧk = q2
k

(

1 − q2
k

)

ak +
qk

2

+∞
∑

m=−∞
amak−m . (30.41)

By picking this subspace we eliminate the continuous translational symmetry from our

considerations; that is not an option for an experimentalist, but will do for our purposes.

In the antisymmetric subspace the translational invariance of the full system reduces

to the invariance under discrete translation by half a spatial period L. In the Fourier

representation (30.41) this corresponds to invariance under

a2m → a2m , a2m+1 → −a2m+1 . (30.42)

click to return: p. ??

Example 30.2 Cyclic subgroups of SO(2): Any rational shift τ1/mu(x) = u(x +

L/m) generates a discrete cyclic subgroup Cm of O(2), also a symmetry of KS system.

Reflection together with Cm generates another symmetry of KS system, the dihedral

subgroup Dm of O(2). The only non-zero Fourier components of a solution invariant

under Cm are a jm , 0, j = 1, 2, · · · , while for a solution invariant under Dm we also

have the condition Re a j = 0 for all j. Dm reduces the dimensionality of state space and

aids computation of equilibria and periodic orbits within it. For example, the 1/2-cell

translations

τ1/2 u(x) = u(x + L/2) (30.43)

and reflections generate O(2) subgroup D2 = {1, σ, τ, τσ}, which reduces the state

space into four irreducible subspaces (for brevity, here τ = τ1/2):

τ σ τσ

P(1) =
1

4
(1 + τ + σ + τσ) S S S

P(2) =
1

4
(1 + τ − σ − τσ) S A A

P(3) =
1

4
(1 − τ + σ − τσ) A S A (30.44)

P(4) =
1

4
(1 − τ − σ + τσ) A A S .

P( j) is the projection operator onto u( j) irreducible subspace, and the last 3 columns

refer to the symmetry (or antisymmetry) of u( j) functions under reflection and 1/2-cell
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shift. By the same argument that identified (30.11) as the invariant subspace of KS,

here the KS flow stays within the US = U(1) + U(2) irreducible D1 subspace of u profiles

symmetric under 1/2-cell shifts.

While in general the bilinear term (u2)x mixes the irreducible subspaces of Dn,

for D2 there are four subspaces invariant under the flow [30.17]:

{0}: the u(x) = 0 equilibrium

U
+ = U(1) + U(3): the reflection D1 irreducible space of antisymmetric u(x)

U
S = U(1) + U(2): the shift D1 irreducible space of L/2 shift symmetric u(x)

U
(1): the D2 irreducible space of u(x) invariant under x 7→ L/2 − x, u 7→ −u.

With the continuous translational symmetry eliminated within each subspace, there are

no relative equilibria and relative periodic orbits, and one can focus on the equilibria and

periodic orbits only, as was done for U+ in refs. [A1.79, A1.83, 30.23]. In the Fourier

representation, the u ∈ U+ antisymmetry amounts to having purely imaginary coeffi-

cients, since a−k = a∗
k
= −ak. The 1/2 cell-size shift τ1/2 generated 2-element discrete

subgroup {1, τ1/2} is of particular interest because in the U+ subspace the translational

invariance of the full system reduces to invariance under discrete translation (30.43) by

half a spatial period L/2.

Each of the above dynamically invariant subspaces is unstable under small

perturbations, and generic solutions of Kuramoto-Sivashinsky equation belong to the

full space. Nevertheless, since all equilibria of the KS flow studied in this paper lie in

the U+ subspace (see sect. ??), U+ plays important role for the global geometry of the

flow. However, linear stability of these equilibria has eigenvectors both in and outside

of U+, and needs to be computed in the full state space. click to return: p. ??

Example 30.3 Kuramoto-Sivashinsky simulation, antisymmetric subspace: To

get started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (30.2),

or, equivalently, ν = 1, L = 36.33052 in the non-dimensionalized (30.41). Consider

the antisymmetric subspace (30.41), so the non-dimensionalized system size is L̃ =

L/2π = 2.89109. Truncate (30.41) to 0 ≤ k ≤ 16, and integrate an arbitrary initial

condition. Let the transient behavior settle down.

Why this L̃? For this system size L̃ the dynamics appears to be chaotic, as

far as can be determined numerically. Why N = 16? In practice one repeats the

same calculation at different truncation cutoffs N, and makes sure that the inclusion of

additional modes has no effect within the desired accuracy. For this system size N = 16

suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the

corresponding spatiotemporal pattern u(x, t) over the configuration space using (2.16),

as in figure 30.1 (b) and figure 30.5. Such patterns give us a qualitative picture of the

flow, but no detailed dynamical information; for that, tracking the evolution in a high-

dimensional state space, such as the space of Fourier modes, is much more informa-

tive. click to return: p. ??

Example 30.4 Kuramoto-Sivashinsky Poincaré return maps: Consider the Kura-

moto-Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily)

the hyperplane a1 = 0 as the Poincaré section, and integrate (30.13) with a1 = 0, and

an arbitrary initial point (a2, . . . , aN). When the flow crosses the a1 = 0 hyperplane in

the same direction as initially, the initial point is mapped into (a′
2
, . . .a′

N
) = P(a2, . . . , aN).
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Table 30.1: Important Kuramoto-Sivashinsky equilibria: the first few Floquet exponents

S µ(1) ± iω(1) µ(2) ± iω(2) µ(3) ± iω(3)

C1 0.04422 ± i 0.26160 -0.255 ± i 0.431 -0.347 ± i 0.463
R1 0.01135 ± i 0.79651 -0.215 ± i 0.549 -0.358 ± i 0.262
T 0.25480 -0.07 ± i 0.645 -0.264

This defines P, the Poincaré return map (3.1) of the (N − 1)-dimensional a1 = 0 hyper-

plane into itself.

Figure 30.7 is a typical result. We have picked - again arbitrarily - a subspace

such as a6(n+ 1) vs. a6(n) in order to visualize the dynamics. While the topology of the

attractor is still obscure, one thing is clear: even though the flow state space is infinite

dimensional, the attractor is finite and thin, barely thicker than a line. click to return: p. ??

Example 30.5 Stability matrix, antisymmetric subspace: The Kuramoto-Siva-

shinsky flat flame front u(x, t) = 0 is an equilibrium point of (30.2). The stability matrix

(4.3) follows from (30.13)

Ak j(a) =
∂vk(a)

∂a j

= (q2
k − q4

k)δk j + qk(ak− j − ak+ j) . (30.45)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, the eigenvec-

tors are Fourier modes, and – as in (4.32) – the Jacobian matrix is diagonal, Jt
k j

(0) =

δk je
(q2

k
−q4

k
)t .

Example 30.6 Stability of Kuramoto-Sivashinsky equilibria:

spiraling out in a plane, all other directions contracting

Stability of ‘center’ equilibrium

linearized Floquet exponents:

(µ(1) ± iω(1), µ(2) ± iω(2), · · · ) = (0.044 ± i 0.262 , −0.255 ± i 0.431 , · · · )

The plane spanned by µ(1) ± iω(1) eigenvectors rotates with angular period

T ≈ 2π/ω(1) = 24.02.

a trajectory that starts near the C1 equilibrium point spirals away per one rota-

tion with multiplier Λradial ≈ exp(µ(1)T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of

Λ2 ≈ exp(µ(2)T) = 0.002

The local Poincaré return map is in practice 1 − dimensional click to return: p. ??

Example 30.7 Some Kuramoto-Sivashinsky equilibria:

See figure 30.10. click to return: p. ??
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Figure 30.10: The non–wandering set under study

appears to consist of three patches: the left part

(S L), the center part (S C) and the right part (S R),

each centered around an unstable equilibrium: (a)

central C1 equilibrium, (b) side R1 equilibrium on

the interval [0, L].
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Exercises

30.1. Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is

Galilean invariant: if u(x, t) is a solution, then

v + u(x + 2vt, t), with v an arbitrary constant ve-

locity, i s also a solution.

(b) Verify that mean

〈u〉 = 1

L

∫

L

dx u

is conserved by the flow.

(c) Argue that the choice (30.3) of the vanishing mean

velocity, 〈u〉 = 0 leads to no loss of generality in

calculations that follow.

(d) [thinking is extra cost] Inspection of

various “turbulent” solutions of Kuramoto-Siva-

shinsky equation reveals subregions of “traveling

waves” with locally nonzero 〈u〉. Is there a way

to use Galilean invariance locally, even though we

eliminated it by the 〈u〉 = 0 condition?

30.2. Infinite dimensional dynamical systems are not

smooth. Many of the operations we consider natural

for finite dimensional systems do not have smooth be-

havior in infinite dimensional vector spaces. Consider,

as an example, a concentration φ diffusing on R accord-

ing to the diffusion equation

∂tφ =
1

2
∇2φ .

(a) Interpret the partial differential equation as an infi-

nite dimensional dynamical system. That is, write

it as ẋ = F(x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =
∫

R

dx φ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R
|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is

not the cause of our difficulties.

(e) Do you see a way of generalizing these results?

30.3. Kuramoto-Sivashinsky energy transfer rates.

(a) Derive (30.31) from (30.30). Now that you have

your integration by parts skills hone, also show

that

〈uxxxu
2〉 = 〈ux

3〉
〈uxxxxxu

2〉 = −5〈uxuxx
2〉 . (30.46)

(b) Derive the power - dissipation rate relation

(30.34).

(c) Prove that for an equilibrium E is constant.

(d) Derive formulas for Ṗ, Ḋ, Ë and d
dt
〈ux

3〉 in terms

of space averages 〈· · ·〉. You will note that higher

derivatives of u appear. The guiding principle is to

use integration by parts until the number of such

derivatives is minimized.

(e) Invent another such formula.

30.4. Navier-Stokes energy transfer rates. The Mil-

lenium Prize tempts you to ponder the Navier-Stokes

equations

∂tvi + v j∂ jvi = −∂i p + ν∂ j jvi (30.47)

in the utterly unphysical setting, a periodic 3D box of

size [L × L × L]. The space average of a function

a = a(x, t) = a(v(x, t)) on the interval L is given by

〈a〉 = 1

L3

∮

dx3a(x, t) . (30.48)
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(a) Prove conservation of momentum

d

dt
〈vi〉 = 0 (30.49)

(b) Prove power-dissipation rate relation

1

2

d

dt
〈v2〉 = −ν〈|ω2|〉 (30.50)

(c) Prove conservation of helicity.

1

2

d

dt
〈v · ω〉 = −ν〈ω · ∇ × ω〉 (30.51)

(d) While you are on the roll: derive another such

formula. Pipe or plane Couette flow power-

dissipation relation Ė = P − D would be partic-

ularly useful.

30.5. Local Galilean invariance of Kuramoto-Sivashinsky?

Inspection of various “turbulent” solutions of

Kuramoto-Sivashinsky equation reveals subregions of

“traveling waves” with locally nonzero 〈u〉. Is there a

way to use Galilean invariance locally, even though we

eliminated it by the 〈u〉 = 0 condition?

References
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