
Chapter 37

WKB quantization

The wave function for a particle of energy E moving in a constant potential V
is

ψ = Ae
i
~ pq (37.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/~, and
p = ±

√
2m(E − V) is the momentum. Here we generalize this solution to the case

where the potential varies slowly over many wavelengths. This semiclassical (or
WKB) approximate solution of the Schrödinger equation fails at classical turning
points, configuration space points where the particle momentum vanishes. In such
neighborhoods, where the semiclassical approximation fails, one needs to solve
locally the exact quantum problem, in order to compute connection coefficients
which patch up semiclassical segments into an approximate global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classi-
cal mechanics computations yield surprisingly accurate estimates of quantal spec-
tra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs of
coordinate points, and the topological phase loss at every turning point, a topolog-
ical property of the classical flow that plays no role in classical mechanics.

37.1 WKB ansatz

If the kinetic term T (p) can be separated as in (36.2), the time-independent Schrödinger
equation takes form

−
~2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) . (37.2)

Consider a time-independent Schrödinger equation in 1 spatial dimension, with
potential V(q) growing sufficiently fast as q → ±∞ so that the classical particle
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CHAPTER 37. WKB QUANTIZATION 681

Figure 37.1: A 1-dimensional potential, location of
the two turning points at fixed energy E.

motion is confined for any E. Define the local momentum p(q) and the local
wavenumber k(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = ~k(q) . (37.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (37.4)

sugests that the wave function be written as ψ = Ae
i
~S , A and S real functions of

q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S ′)2 = p2 + ~2 A′′

A
(37.5)

S ′′A + 2S ′A′ =
1
A

d
dq

(S ′A2) = 0 . (37.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation consists
of dropping the ~2 term in (37.5). Recalling that p = ~k, this amounts to assuming
that k2 � A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical, ~ � 1 approximation to quantum mechanics.

Setting ~ = 0 and integrating (37.5) we obtain the phase increment of a wave
function initially at q, at energy E

S (q, q′, E) =

∫ q

q′
dq′′p(q′′) . (37.7)

This integral over a particle trajectory of constant energy, called the action, will
play a key role in all that follows. The integration of (37.6) is even easier

A(q) =
C

|p(q)|
1
2

, C = |p(q′)|
1
2ψ(q′) , (37.8)

where the integration constant C is fixed by the value of the wave function at the
initial point q′. The WKB (or semiclassical) ansatz wave function is given by

ψsc(q, q′, E) =
C

|p(q)|
1
2

e
i
~S (q,q′,E) . (37.9)
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CHAPTER 37. WKB QUANTIZATION 682

Figure 37.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′, E)→ (q).

The WKB ansatz generalizes the free motion wave function (37.1), with the
probability density |A(q)|2 for finding a particle at q now inversely proportional
to the velocity at that point, and the phase 1

~q p replaced by 1
~

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except at any turning point q0,
figure 37.1, where all energy is potential, and

p(q)→ 0 as q→ q0 , (37.10)

so that the assumption that k2 � A′′
A fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslov, does the job.
In the q coordinate, the turning points are defined by the zero kinetic energy con-
dition (see figure 37.1), and the motion appears singular. This is not so in the full
phase space: the trajectory in a smooth confining 1-dimensional potential is al-
ways a smooth loop (see figure 37.2), with the “special” role of the turning points
qL, qR seen to be an artifact of a particular choice of the (q, p) coordinate frame.
Maslov proceeds from the initial point (q′, p′) to a point (qA, pA) preceding the
turning point in the ψ(q) representation, then switch to the momentum represen-
tation

ψ̃(p) =
1
√

2π~

∫
dq e−

i
~qpψ(q) , (37.11)

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1
√

2π~

∫
dp e

i
~qp ψ̃(p) , (37.12)

and so on.

The only rub is that one usually cannot evaluate these transforms exactly. But,
as the WKB wave function (37.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in ~ accuracy. This is accomplished by the
method of stationary phase.

WKB - 4nov2010 ChaosBook.org edition16.0, Feb 13 2018



CHAPTER 37. WKB QUANTIZATION 683

37.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type

I =

∫
dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (37.13)

where s is a real parameter, and Φ(x) is a real-valued function. In our applications
s = 1/~ will always be assumed large.

For large s, the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called the method of stationary phase. Consider
first the case of a 1-dimensional integral, and expand Φ(x0 + δx) around x0 to
second order in δx,

I =

∫
dx A(x) eis(Φ(x0)+ 1

2 Φ′′(x0)δx2+...) . (37.14)

Assume (for time being) that Φ′′(x0) , 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =

±1. If in the neighborhood of x0 the amplitude A(x) varies slowly over many
oscillations of the exponential function, we may retain the leading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0)2

. (37.15)

The one integral that we know how to integrate is the Gaussian integral
∫

dx e−
x2
2b =

√
2πb For for pure imaginary b = i a one gets instead the Fresnel integral formula

exercise 37.1
1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (37.16)

we obtain

I ≈ A(x0)
∣∣∣∣∣ 2π
sΦ′′(x0)

∣∣∣∣∣1/2 eisΦ(x0)±i π4 , (37.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

37.3 WKB quantization

We can now evaluate the Fourier transforms (37.11), (37.12) to the same order in
~ as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C
√

2π~

∫
dq

|p(q)|
1
2

e
i
~ (S (q)−qp)

≈
C
√

2π~

e
i
~ (S (q∗)−q∗p)

|p(q∗)|
1
2

∫
dq e

i
2~ S ′′(q∗)(q−q∗)2

, (37.18)
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where q∗ is given implicitly by the stationary phase condition

0 = S ′(q∗) − p = p(q∗) − p

and the sign of S ′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(37.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)|
1
2

e
i
~ [S (q∗)−q∗p]+ iπ

4 sgn[S ′′(q∗)] . (37.19)

As we continue from (qA, pA) to (qB, pB), nothing problematic occurs - p(q∗) is
finite, and so is the acceleration p′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃ (p) = S (q(p)) − q(p)p

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d
dq

q = 1 =
dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (37.20)

As the classical trajectory crosses qL, the weight in (37.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV ′(qL) , (37.21)

is finite, and S ′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, includ-
ing (qA, pA). Hence, the phase loss in (37.19) is −π4 . To go back from the p to
the q representation, just turn figure 37.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
~ (S̃ (p∗)+qp∗)− iπ

4

|q∗(p∗)|
1
2

ψ̃sc(p∗) =
C

|p(q)|
1
2

e
i
~ S (q)− iπ

2 . (37.22)

The extra |p′(q∗)|1/2 weight in (37.19) is cancelled by the |q′(p∗)|1/2 term, by the
Legendre relation (37.20).

The message is that going through a smooth potential turning point the WKB
wave function phase slips by −π2 . This is equally true for the right and the left
turning points, as can be seen by rotating figure 37.2 by 180o, and flipping co-
ordinates (q, p) → (−q,−p). While a turning point is not an invariant concept
(for a sufficiently short trajectory segment, it can be undone by a 45o turn), for a
complete period (q, p) = (q′, p′) the total phase slip is always −2 · π/2, as a loop
always has m = 2 turning points.

The WKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. With the normalization (37.8),
we obtain

ψ(q′) = ψ(q) =

∣∣∣∣∣ p(q′)
p(q)

∣∣∣∣∣ 1
2

ei( 1
~

∮
p(q)dq−π)ψ(q′) .
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Figure 37.3: S p(E), the action of a periodic orbit p at
energy E, equals the area in the phase space traced out
by the 1-dof trajectory.

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must be a
multiple of 2π,

1
~

∮
p(q)dq = 2π

(
n +

m
4

)
, (37.23)

where m is the number of turning points along the trajectory - for this 1-dof prob-
lem, m = 2.

The action integral in (37.23) is the area (see figure 37.3) enclosed by the
classical phase space loop of figure 37.2, and the quantization condition says that
eigen-energies correspond to loops whose action is an integer multiple of the unit
quantum of action, Planck’s constant ~. The extra topological phase, which, al-
though it had been discovered many times in centuries past, had to wait for its
most recent quantum chaotic (re)birth until the 1970’s. Despite its derivation in a
noninvariant coordinate frame, the final result involves only canonically invariant
classical quantities, the periodic orbit action S , and the topological index m.

37.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 37.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = ~ω(n + 1/2) (37.24)

turns out to be the exact harmonic oscillator spectrum. The stationary phase condi-
tion (37.18) keeps V(q) accurate to order q2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the ~2 term in (37.5) as a short wavelength
approximation.
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Figure 37.4: Airy function Ai(q).

37.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by a π/2 for each turning point.
This π/2 came from a

√
i in the Fresnel integral (37.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

The stationary phase approximation (37.14) fails whenever Φ′′(x) = 0, or, in
our the WKB ansatz (37.18), whenever the momentum p′(q) = S ′′(q) vanishes.
In that case we have to go beyond the quadratic approximation (37.15) to the first
nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) , 0, then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞

dx eisΦ′′′(x0) (x−x0)3

6 . (37.25)

Airy functions can be represented by integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3
3 ) . (37.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization
condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q − q0)V ′(q0) + · · · ,

solving the Airy equation (with V ′(q0)→ z after appropriate rescalings),

ψ′′ = zψ , (37.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of the WKB connection formulas. That requires
staring at Airy functions (see (37.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization.
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The physical origin of the topological phase is illustrated by the shape of the
Airy function, figure 37.4. For a potential with a finite slope V ′(q) the wave func-
tion penetrates into the forbidden region, and accommodates a bit more of a sta-
tionary wavelength then what one would expect from the classical trajectory alone.
For infinite walls (i.e., billiards) a different argument applies: the wave function
must vanish at the wall, and the phase slip due to a specular reflection is −π, rather
than −π/2.

Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in the q-representation the WKB
ansatz at a turning point is singular, along the p direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow the classical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in the p-space until you encounter
the next p-space turning point; go back to the q-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extra e−iπ/4 phase shift, for
a total of e−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning point a, V(q) =

V(a) + (q − a)V ′(a) + · · · , and solve the quantum mechanical constant linear po-
tential V(q) = qF problem exactly, in terms of an Airy function. An approximate
wave function is then patched together from an Airy function at each turning point,
and the WKB ansatz wave-function segments in-between via the WKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such as
wedges, bifurcation points, creeping and tunneling: patch together the WKB seg-
ments by means of exact QM solutions to local approximations to singular points.

Commentary

Remark 37.1. Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso that D in (38.36) has no zero eigen-
values. The zero eigenvalue case would require going beyond the Gaussian saddle-point
approximation, which typically leads to approximations of the integrals in terms of Airy
functions [1].

exercise 37.4
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Remark 37.2. Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization con-
dition was the key result of the old quantum theory, in which the electron trajectories
were purely classical. They were lucky - the symmetries of the Kepler problem work out
in such a way that the total topological index m = 4 amount effectively to numbering the
energy levels starting with n = 1. They were unlucky - because the hydrogen m = 4
masked the topological index, they could never get the helium spectrum right - the semi-
classical calculation had to wait for until 1980, when Leopold and Percival [2] added the
topological indices.
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Exercises

37.1. WKB ansatz. Try to show that no other
ansatz other than (38.1)gives a meaningful definition of
the momentum in the ~→ 0 limit.

37.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞

dx e−
x2
2ia =

√
ia = |a|1/2ei π4

a
|a| .

37.3. Sterling formula for n!. Compute an approximate
value of n! for large n using the stationary phase approx-
imation. Hint: n! =

∫ ∞
0 dt tne−t.

37.4. Airy function for large arguments. Impor-
tant contributions as stationary phase points may arise

from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-

ners, waves creeping around obstacles, etc.). In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1

2π

∫ +∞

−∞

dy ei(xy− y3

3 ) . (37.28)

Calculate the Airy function Ai(x) using the stationary
phase approximation. What happens when considering
the limit x → 0. Estimate for which value of x the sta-
tionary phase approximation breaks down.
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