
Appendix A20

Averaging

Here we review some elementary notions of probability theory that will be
useful to you no matter what you do with the rest of your life.

A20.1 Moments, cumulants

The exact mean µ (or expectation or expected value E[a]) is the integral
of the random variable a with respect to its probability measure ρ, commonly
denoted

µ = E[a] = 〈a〉 =

∫
M

dx ρ(x) a(x) . (A20.1)

In ChaosBook we use 〈· · ·〉ρ or simply 〈· · ·〉 to denote an integral over state space
weighted by ρ, while · · · denotes a time average. If the average is over a (finite
or infinite) set of states labeled by discrete labels π, each state contributing with a
weight tπ, the expectation is given by

〈a〉 =
∑
π

aπtπ , (A20.2)

with probabilities in either case normalized so that 〈1〉 = 1.

The expectation 〈ak〉 is called the kth moment. The first moment is the mean µ
defined in (A20.1). For k > 1, it is more natural to consider the moments about the
mean, 〈(a − 〈a〉)k〉, called central moments. The second, and all-important central
moment is known as the variance,

σ2 = 〈(a − 〈a〉)2〉 = 〈a2〉 − 〈a〉2 , (A20.3)

or, in probabilist notation,

E[a2] = µ2 + σ2 . (A20.4)
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Its positive square root σ is called the standard deviation σ. As a mnemonic, think
of the width of a Gaussian being ≈ 2σ.

Standardized moment

〈(a − 〈a〉)k〉/σk (A20.5)

is the kth central moment divided by σk, a dimensionless representation of the
distribution of variance 1, independent of translations and linear changes of scale.

Moments can be collected into the (exponential) moment-generating function

question A20.1

〈eβa〉 = 1 +

∞∑
k=1

βk

k!
〈ak〉 . (A20.6)

Why the prefactor 1/k! (a Taylor series), and not 1/k (a logarithmic series), or
1 (discrete Laplace transform or Z-transform) generating function? In statisti-
cal, stochastic and quantum mechanics / quantum field theory applications one is
solving linear ODEs or PDEs, and their solutions are always exponential in form.

Hardly any experiment measures ak for k > 2 -that might require a lot of data-
and raising approximate numbers to high powers is not smart: if |a| < 1, ak gets
very small very fast, and conversely If |a| > 1, ak gets very big. Still, with a bit
of hindsight, one finds that moments do play a natural, fundamental role if folded
into the cumulant-generating function

ln〈eβa〉 =

∞∑
k=1

βk

k!
〈ak〉c , (A20.7)

where the subscript c indicates a cumulant, or, in statistical mechanics and quan-
tum field theory contexts, the ‘connected Green’s function’. Were 〈ak〉 = 〈a〉k, we
would have only one term in the series (A20.7), ln〈eβa〉 = ln eβ〈a〉 = β〈a〉 , and
that would be that. So cumulants 〈ak〉c measure fluctuations about the mean 〈a〉.
Indeed, expanding the logarithm of the series (A20.6), it is easy to check that the
first cumulant is the mean, the second is the variance,

〈a2〉c = 〈(a − 〈a〉)2〉 = 〈a2〉 − 〈a〉2 = σ2 , (A20.8)

and 〈a3〉c is the third central moment, or the skewness,

〈a3〉c = 〈(a − 〈a〉)3〉 = 〈a3〉 − 3〈a2〉〈a〉 + 2〈a〉3 . (A20.9)

The higher cumulants, however, are not central moments. The fourth cumulant,

〈a4〉c = 〈(a − 〈a〉)4〉 − 3〈(a − 〈a〉)2〉2

= 〈a4〉 − 4〈a3〉〈a〉 − 3〈a2〉2 + 12〈a2〉〈a〉2 − 6〈a〉4 , (A20.10)

rewritten in terms of standardized moments, is known as the kurtosis:

1
σ4 〈a

4〉c =
1
σ4 〈(a − 〈a〉)

4〉 − 3 . (A20.11)
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The deep reason why cumulants are preferable to moments is that for a nor-
malized Gaussian distribution all cumulants beyond the second one vanish, so they
are a measure of deviation of statistics from Gaussian (see example 24.3). For a

exercise A20.1
‘free’ or ‘Gaussian’ field theory the only non-vanishing cumulant is the second
one; for field theories with interactions the derivatives of ln〈exp(βa)〉 with respect

question A20.2
to β then yield cumulants, or the Burnett coefficients (24.14), or ‘effective’ n-point
Green functions or n-point correlations.

So, what’s so special about Gaussians? example A20.1

p. 950

A20.1.1 Covariance matrix

For a multi-component observable the second central moment is called the covari-
ance matrix

Qi j = 〈(ai − 〈ai〉)(a j − 〈a j〉)〉 . (A20.12)

As Q is a symmetric, diagonalizable matrix, with eigenvalues σ2
k and orthog-

onal eigenvectors e(k), you can visualize such multivariate normal distribution as
a cigar-shaped cloud of points, with orthonormal principal axes of standard devi-
ation (singular value) lengths σk. A cigar fat in a few directions, negligibly thin

section 6.1
in the remaining directions motivates reduced-dimensional, linear modeling of the
data by a retaining only a hyperplane spanned by the dominant directions; depend-
ing on the community, this is called the principal component analysis (PCA),
the proper orthogonal decomposition (POD), the singular value decomposition
(SVD), or the Karhunen–Loéve transform.

A20.1.2 Empirical means

Given a set of N iid (independently identically distributed) data samples {ai},
where “iid” means that probability measures ρ factorize,

ρ(ai, a j) = ρ(ai) ρ(a j) , i , j , (A20.13)

the empirical mean of observable a is the average

µ̂ =
1
N

N∑
i=1

ai . (A20.14)

example A20.2

p. 951

µ̂ is unbiased if E[µ̂] = µ; we verify that in example A20.3. However, the unbiased
sample variance E[σ̂2] = σ2 of observable a is defined differently, as

σ̂2 =
1

N − 1

N∑
i=1

(ai − â)2 . (A20.15)
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What’s up with the N − 1 divisor? See

example A20.3

p. 953

example A20.4

p. 953

Commentary

Question A20.1. Henriette Roux asks
Q Isn’t expectation value (A20.6) the characteristic function?
A With imaginary exponent, β → it and the observable defined in the momentum space,
a = a(p), expectation value (A20.6) does have the form of a characteristic function, i.e.,
the Fourier transform of the probability density function

E[eip x] =

∫
M

dx ρ(x) eipx . (A20.16)

Remark A20.1. Gaussian integrals. Kadanoff [2] has a nice discussion of Gaussian
integrals, the central limit theorem and large deviations in Chap. 3 Gaussian Distributions,
available online here.

section A20.1

Question A20.2. Henriette Roux muses
Q Somehow cumulants seem to fill my head with ideas — only I don’t exactly know
what they are!
A A scholarly aside, safely ignored, on where the characteristic state function s(β) (20.10)
fits into the grander scheme of things: in statistical mechanics and field theory, the parti-
tion function and the Helmholtz free energy have form

Z(β) = exp(−βF) , F(β) = −
1
β

ln Z(E) , (A20.17)

so in that sense 〈eβa〉 is a ‘partition function’, and s(β) in (20.10) is the associated ‘free
energy’. Expanding the logarithm of the series (A20.6) is easy for the first few terms,
but it quickly gets old. The smart way to do this, explained in ref. [1], is to write down
the the Dyson-Schwinger equations that generate recursively the terms in the Helmholtz
free energy expansion (connected Green’s functions), and Gibbs free energy (1-particle
irreducible Green’s functions).

References

[1] P. Cvitanović, Field Theory, Notes prepared by E. Gyldenkerne (Nordita,
Copenhagen, 1983).

[2] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization
(World Scientific, Singapore, 2000).
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A20.2 Examples

Example A20.1. Gaussian minimizes information. Shannon information entropy is
given by

S [ρ] = −〈ln ρ〉 = −

∫
M

dx ρ(x) ln ρ(x) , (A20.18)

where ρ is a probability density. Shannon thought of − ln ρ as ‘information’, very roughly
in the sense that if -for example- ρ(x) = 2−6, it takes − ln ρ = 6 binary bits of ‘information’
to specify the probability density ρ at the point x. Information entropy (A20.18) is the
expectation value of (or average) information.

A function ρ ≥ 0 is an arbitrary function, of which we only require that it is normal-
ized as a probability,∫

M

dx ρ(x) = 1 , (A20.19)

has a mean value,∫
M

dx x ρ(x) = µ , (A20.20)

and has a variance∫
M

dx x2ρ(x) = µ2 + σ2 . (A20.21)

As ρ can be arbitrarily wild, it might take much “information” to describe it. Is there
a function ρ(x) that contains the least information, i.e., that minimizes the information
entropy (A20.18)?

To find it, we minimize (A20.18) subject to constraints (A20.19)-(A20.21), imple-
mented by adding Lagrange multipliers λ j

C[ρ] =

∫
M

dx ρ(x) ln ρ(x)

+λ0

(∫
M

dx ρ(x) − 1
)

+ λ1

(∫
M

dx x ρ(x) − µ
)

+λ2

(∫
M

dx x2ρ(x) − µ2 − σ2
)
, (A20.22)

and looking for the extremum δC = 0,

δC[ρ]
δρ(x)

= (ln ρ(x) + 1) + λ0 + λ1x + λ2x2 = 0 , (A20.23)

so

ρ(x) = e−(1+λ0+λ1 x+λ2 x2) . (A20.24)

The Lagrange multipliers λ j can be expressed in terms of distribution parameters µ and σ
by substituting this ρ(x) into the constraint equations (A20.19)-(A20.21). We find that the
probability density that minimizes information entropy is the Gaussian

ρ(x) =
1
√

2πσ
e−

x−µ)2

2σ2 . (A20.25)
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Participant Stress (X) Satisfaction (Y)
1 11 7
2 25 1
3 19 4
4 7 9
5 23 2
6 6 8
7 11 8
8 22 3
9 25 3
10 10 6

Table A20.1: Stress (1 to 30 scale) vs. happiness (1 to 10 scale) for a sample of 10 participants.

In what sense is that the distribution with the ‘least information’? As we saw in the
derivation of the cumulant expansion eq. (20.17), for a Gaussian distribution all cumu-
lants but the mean µ and the variance σ2 vanish, it is a distribution specified by only two
‘informations’, the location of its peak and its width.

click to return: p. 948

Sara A. Solla

Example A20.2. I get stress, but I can’t get no satisfaction. A group of participants
in a study of the correlation between stress and life satisfaction completed a questionnaire
on how stressed they felt, and how satisfied they felt with their lives. Participants’ scores
are given in table A20.1.

We start our statistical analysis in the usual way, by evaluating the empirical means
(A20.14) of the stress and satisfaction,

µ̂X =
1
10

10∑
i=1

Xi = 15.9 , µ̂Y =
1
10

10∑
i=1

Yi = 5.1 ,

and the unbiased variances (A20.15) and standard deviations,

σ̂2
X =

1
10 − 1

10∑
i=1

(Xi − µ̂X)2 = 58.1 , σ̂X = 7.6 .

σ̂2
Y =

1
10 − 1

10∑
i=1

(Yi − µ̂Y )2 = 8.1 , σ̂Y = 2.8 .

The means are halfway their respective ranges, but the standard deviations are huge, they
span across the available ranges. To figure out what is going on, one should always start
with visualizing the data:

10 15 20 25
0

2

4

6

8
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So the empirical means are meaningless - the subjects are either unhappy or happy,
there is nobody in between. Standard deviations of such bimodal distributions are not
helpful either, as they are measuring deviations from the non-existent average participant.
However, the linear fit

Y = 11 − .36 X (A20.26)

is pretty good. Clearly this is 2-dimensional data set, so we compute the stressed/happy
covariance

QXY =
1

10 − 1

10∑
i=1

(Xi − µ̂X)(Yi − µ̂Y ) = −20.8 .

The ellipsoid given by the covariance matrix

Q =

(
σ̂2

X QXY
QXY σ̂2

Y

)
,

with singular values (square roots of eigenvalues) and eigenvectors

{σ1, σ2} = {8.10, 0.76} : e(1) = (0.94,−0.34) , e(2) = (0.34, 0.94) ,

gives a good description of the data, aligned along e(1) (of slope close to the linear fit
(A20.26)), with small transverse fluctuations along e(2). The only problem is that we are
plotting lemons vs. roses.

For this reason, statisticians like to study pairwise Pearson correlation coefficients,
such as

ρXY =
QXY

σ̂Xσ̂Y
= −0.9573 ,

for which are the deviation 1− |ρXY | is a measure for how well the data is fit by a linear fit.

One might be tempted to study the full correlation coefficients matrix, a somewhat
contrived “standardized” or “whitened” rescaling (A20.5) of the covariance matrix (A20.12),

Corr(X,Y) =

(
1 ρXY
ρXY 1

)
=

(
σ̂X 0
0 σ̂Y

)−1 (
σ̂2

X QXY
QXY σ̂2

Y

) (
σ̂X 0
0 σ̂Y

)−1

.

Its eigenvalues {1 + ρXY , 1− ρXY } and eigenvectors are a dimensionless least-squares fit to
the data, with the ellipsoid’s principal axes along the diagonals

{σ1, σ2} = {1.40, 0.207} :
1
√

2
e(1) = (1,−1) ,

1
√

2
e(2) = (1, 1) .

The pairwise correlation coefficients have some utility in singling out directions and signs
of slopes in which data is nearly linear (ρXiX j close to ±1), The transformation from the
covariance matrix to the correlations matrix is not a similarity transformation, so while
the covariance matrix is a fundamental object in the multivariate cumulant expansions,
the correlation matrices are not used in physics, only the 2-dimensional planes spanned
by ρXiX j are informative.

Bonus reading: the article on “The Economist” (if you can get past the paywall),
or, more seriously, D. Kahneman and A. Deaton -the 2002 Nobel Memorial Prize in
Economic Sciences- about the correlation between income and happiness. Penny for your
thoughts.

click to return: p. 948
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Example A20.3. Unbiased sample variance.

Why is the empirical estimate for the unbiased sample variance

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 (A20.27)

defined with the N − 1 divisor?

At this point your instructor mumbled something about “degrees of freedom” and
moved on, but why mumble if you can compute? By the definition (A20.1), expectations
of unbiased estimates are exact,

E[µ̂] = µ , E[σ̂2] = σ2 . (A20.28)

That is true of the empirical mean (A20.14),

E[µ̂] =
1
N

N∑
i=1

E[ai] =
1
N

N∑
i=1

µ = µ ,

but the empirical estimate for the sample variance written as average over the sum of
deviations square does not quite work out. Assume first that the empirical variance is
given by the usual average

σ̄2 =
1
N

N∑
i=1

(ai − µ̂)2 =
1
N

N∑
i=1

(
a2

i − 2µ̂ai + µ̂2
)

=
1
N

N∑
i=1

a2
i −

1
N2

 N∑
i=1

ai

2

=
1
N

N∑
i=1

a2
i −

1
N2

N∑
i=1

N∑
j=1

aia j =
N − 1

N2

N∑
i=1

a2
i −

1
N2

N∑
i, j

aia j . (A20.29)

By the iid independence of individual measurements (A20.13), and σ2 = E[a2] − µ2

relation (A20.4), the expectation of σ̄2 is
exercise A20.2

E
[
σ̄2

]
=

N − 1
N2

N∑
i=1

E
[
a2

i

]
−

1
N2

N∑
i, j

E
[
aia j

]
=

N − 1
N

(
E

[
a2

i

]
− E [ai]E

[
a j

])
=

N − 1
N

(
E

[
a2

]
− µ2

)
=

N − 1
N

σ2 . (A20.30)

This attempt at a definition of empirical variance σ̄2 thus violates the ‘unbiased’ condition
(A20.28). The unbiased empirical variance (A20.15), σ̂2 = Nσ̄2/(N − 1) , is correct for
any sample size, not only in the n → ∞ limit. What happened? ai, a j are idd only for
the N2 − N off-diagonal covariance elements, the squares a2

j along the diagonal do not
contribute to “covariance.”

click to return: p. 949

(continued in example A20.4) Sara A. Solla

Example A20.4. Standard error of the mean. (Continued from example A20.3)

Think now of estimating the empirical mean (A20.14) of observable a as j = 1, 2, · · · ,N
attempts to estimate the mean µ̂ j, each based on M data samples

µ̂ j =
1
M

M∑
i=1

ai . (A20.31)
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Every attempt yields a different sample mean, so µ̂ j itself is an idd random variable, with
unbiased expectation E[µ̂] = µ. What is its variance

Var[µ̂] = E[(µ̂ − µ)2] = E[µ̂2] − µ2 ?

This calculation is very much the same as the one carried out in example A20.3, resulting
in

exercise A20.3

Var[µ̂] =
1
N
σ2

The quantity
√

Var[µ̂] = σ/
√

N is called the standard error of the mean (SEM); it tells
us that the accuracy of the determination of the mean µ increases as the 1/

√
N, where N

is the number of estimate attempts, each based on the same number of data points.
click to return: p. 949

Sara A. Solla

Exercises

A20.1. Cumulants. Show that for a Gaussian probability
distribution (a) all odd moments vanish, and (b) all cu-
mulants in (A20.7) vanish for n ≥ 3, 〈an〉c = 0 .

(P. Cvitanović)

A20.2. Unbiased sample variance. Empirical estimates of
the mean µ̂ and the variance σ̂2 are said to be “unbiased”
if their expectations equal the exact values,

E[µ̂] = µ , E[σ̂2] = σ2 . (A20.32)

(a) Verify that the empirical mean

µ̂ =
1
N

N∑
i=1

ai (A20.33)

is unbiased.
(b) Show that the naive empirical estimate for the sam-
ple variance

σ̄2 =
1
N

N∑
i=1

(ai − µ̂)2 =
1
N

N∑
i=1

a2
i −

1
N2

 N∑
i=1

ai

2

is biased. Hint: note that in evaluating E[· · · ] you have
to separate out the diagonal terms in N∑

i=1

ai

2

=

N∑
i=1

a2
i +

N∑
i, j

aia j . (A20.34)

(c) Show that the empirical estimate of form

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 , (A20.35)

is unbiased.
(d) Is this empirical sample variance unbiased for any
finite sample size, or is it unbiased only in the n → ∞
limit?

Sara A. Solla

A20.3. Standard error of the mean.
Now, estimate the empirical mean (A20.33) of observ-
able a by j = 1, 2, · · · ,N attempts to estimate the mean
µ̂ j, each based on M data samples

µ̂ j =
1
M

M∑
i=1

ai . (A20.36)

Every attempt yields a different sample mean.
(a) Argue that µ̂ j itself is an idd random variable, with
unbiased expectation E[µ̂] = µ.
(b) What is its variance

Var[µ̂] = E[(µ̂ − µ)2] = E[µ̂2] − µ2

as a function of variance expectation (A20.32) and N,
the number of µ̂ j estimates? Hint; one way to do this is
to repeat the calculations of exercise A20.2, this time for
µ̂ j rather than ai.

(c) The quantity
√

Var[µ̂] = σ/
√

N is called the stan-
dard error of the mean (SEM); it tells us that the accu-
racy of the determination of the mean µ. How does SEM
decrease as the N, the number of estimate attempts, in-
creases?

Sara A. Solla
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