
Appendix A16

Finding cycles

(C. Chandre)

A16.1 Newton-Raphson method

A16.1.1 Contraction rate

C
onsider a d-dimensional map x′ = f (x) with an unstable fixed point x∗. The

Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x − (J(x) − 1)−1 ( f (x) − x) .

The linearization of g near x∗ leads to

x∗ + ǫ
′ = x∗ + ǫ − (J(x∗) − 1)−1 ( f (x∗) + J(x∗)ǫ − x∗ − ǫ) + O

(

‖ǫ‖2
)

,

where ǫ = x − x∗. Therefore,

x′ − x∗ = O
(

(x − x∗)
2
)

.

After n steps and if the initial guess x0 is close to x∗, the error decreases super-

exponentially

gn(x0) − x∗ = O
(

(x0 − x∗)
2n
)

.

A16.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional mappings

using the multi-shooting method reduces to the following equation
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where D f (x) is the [d × d] Jacobian matrix of the map evaluated at the point x,

and δm = x′m − xm and Fm = xm − f (xm−1) are d-dimensional vectors. By some

starightforward algebra, the vectors δm are expressed as functions of the vectors

Fm:

δm = −

m
∑

k=1

βk,m−1Fk − β1,m−1

(

1 − β1,n

)−1
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for m = 1, . . . , n, where βk,m = D f (xm)D f (xm−1) · · ·D f (xk) for k < m and βk,m = 1

for k ≥ m. Therefore, finding n-cycles by a Newton-Raphson method with multi-

ple shooting requires the inversing of a [d×d] matrix 1−D f (xn)D f (xn−1) · · ·D f (x1).

A16.2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map x′ = f (x) with an unstable fixed point x∗.

The transformed map is the following one:

x′ = g(x) = x + γC( f (x) − x),

where γ > 0 and C is a d × d invertible constant matrix. We note that x∗ is also a

fixed point of g. Consider the stability matrix at the fixed point x∗

Ag =
dg

dx
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x=x∗

= 1 + γC(A f − 1).

The matrix C is constructed such that the eigenvalues of Ag are of modulus less

than one. Assume that A f is diagonalizable: In the basis of diagonalization, the

matrix writes:

Ãg = 1 + γC̃(Ã f − 1),

where Ã f is diagonal with elements µi. We restrict the set of matrices C̃ to diag-

onal matrices with C̃ii = ǫi where ǫi = ±1. Thus Ãg is diagonal with eigenvalues

γi = 1 + γǫi(µi − 1). The choice of γ and ǫi is such that |γi| < 1. It is easy to see

that if Re(µi) < 1 one has to choose ǫi = 1, and if Re(µi) > 1, ǫi = −1. If λ is

chosen such that

0 < γ < min
i=1,...,d

2|Re(µi) − 1|

|µi − 1|2
,

all the eigenvalues of Ag have modulus less that one. The contraction rate at the

fixed point for the map g is then maxi |1 + γǫi(µi − 1)|. If Re(µi) = 1, it is not

possible to stabilize x∗ by the set of matrices γC.

From the construction of C, we see that 2d choices of matrices are possible. For

example, for 2-dimensional systems, these matrices are

C ∈

{(

1

0

0

1

)

,

(
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0

0

1

)

,

(

1

0

0

−1

)

,

(
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0

0

−1

)}

.

For 2-dimensional dissipative maps, the eigenvalues satisfy Re(µ1)Re(µ2) ≤ det D f <

1. The case (Re(µ1) > 1,Re(µ2) > 1) which is stabilized by
(

−1
0

0
−1

)

has to be dis-

carded. The minimal set is reduced to three matrices.
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Figure A16.1: Illustration of the optimal Poincaré sec-

tion. The original section y = 0 yields a large distance

x− f (x) for the Newton iteration. A much better choice

is y = 0.7.
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A16.2.1 Newton method with optimal section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for a fixed point.

This can happen, for example, if the topology and/or the symbolic dynamics of

the flow is not well understood. By changing the Poincaré section one might get

a better initial guess in the sense that x and f (x) are closer together. We illustrate

this in figure A16.1. The figure shows a Poincaré section, y = 0, an initial guess

x, the corresponding f (x) and pieces of the trajectory near these two points.

If Newton iteration does not converge for the initial guess x we might have to

work very hard to find a better guess, particularly if this is in a high-dimensional

system (high-dimensional in this context might mean a Hamiltonian system with 3

or more degrees of freedom). Clearly, we could easily obtain a much better guess

by simply shifting the Poincaré section to y = 0.7 where the distance x − f (x)

would be much smaller. Naturally, one cannot so easily determine by inspection

the best section for a higher dimensional system. Rather, the way to proceed is

as follows: We want to have a minimal distance between our initial guess x and

its image f (x). We therefore integrate the flow looking for a minimum in the

distance d(t) = | f t(x) − x|. d(t) is now a minimum with respect to variations in

f t(x), but not necessarily with respect to x. We therefore integrate x either forward

or backward in time. Doing this minimizes d with respect to x, but now it is no

longer minimal with respect to f t(x). We therefore repeat the steps, alternating

between correcting x and f t(x). In most cases this process converges quite rapidly.

The result is a trajectory for which the vector ( f (x) − x) connecting the two end

points is perpendicular to the flow at both points. We can now define a Poincaré

section as the hyper-plane that goes through x and is normal to the flow at x,

(x′ − x) · v(x) = 0.

The image f (x) lies in the section. This section is optimal in the sense that

a close return on the section is a local minimum of the distance between x and

f t(x). More important, the part of the stability matrix that describes linearization

perpendicular to the flow is exactly the stability of the flow in the section when

f (x) is close to x. With this method, the Poincaré section changes with each New-

ton iteration. Should we later want to put the fixed point on a specific Poincaré

section, it will only be a matter of moving along the trajectory.
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