Appendix A24

Deterministic diffusion

lattices, lattice derivatives, lattice Laplacians. Invariance of a given the-

ory under (discrete) translations motivates us to consider periodic lattices,
and use the eigenmodes of translation generators to diagonalise (discrete Fourier
transformations) non-local operators, such as Laplacians, and invert them.

B Asic Notions of discretizing continuum are introduced: dicretized fields on

We then use these tools to study in sect. A24.5 some of the simplest examples
of deterministic systems that exhibit “deterministic diffusion,” the sawtooth and
cat maps.

A24.1 Lattice derivatives

In order to set up continuum field-theoretic equations which describe the evolution
of spatial variations of fields, we need to define lattice derivatives.

Consider a smooth function ¢(x) evaluated on a d-dimensional lattice
¢ = P(x), x = al = lattice point, £ e Z, (A24.1)

where a is the lattice spacing. Each set of values of ¢(x) (a vector ¢) is a pos-
sible lattice state (or ‘configuration’). Assume the lattice is hyper-cubic, and let
ny, € {fiy,fp,- -+ ,Aig} be the unit lattice cell vectors pointing along the d positive
directions. The forward lattice derivative is then

d(x + any) — P(x) _ Gern, — be

(Oud)e = (A24.2)
a a
The backward lattice derivative is defined as the transpose
0,07 = P(x — afy) — P(x) _ be-n, — b¢ ‘ (A24.3)

a a
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APPENDIX A24. DETERMINISTIC DIFFUSION 1182

Anything else with the correct a — 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the stepping operator in the direction u

() = O (A24.4)
As o will play a central role in what follows, it pays to understand what it does.

In computer dicretizations, the lattice will be a finite d-dimensional hyper-
cubic lattice

be = ¢p(x), x = al = lattice point, (€ (Z/N)d , (A24.5)

where « is the lattice spacing and there are N¢ points in all. For a hyper-cubic
lattice the translations in different directions commute, 0,0, = 0,0y, SO it is
sufficient to understand the action of (A24.4) on a 1-dimensional lattice.

Let us write down o for the 1-dimensional case in its full [NXN] matrix glory.
Writing the finite lattice stepping operator (A24.4) as an ‘upper shift’ matrix,

0 1
0 1
o= ) , (A24.6)

10

is no good, as o so defined is nilpotent, and after NV steps the particle marches
off the lattice edge, and nothing is left, o = 0. A sensible way to approximate
an infinite lattice by a finite one is to replace it by a lattice periodic in each 7,
direction. On a periodic lattice every point is equally far from the ‘boundary’
N/2 steps away, the ‘surface’ effects are equally negligible for all points, and the
stepping operator acts as a cyclic permutation matrix

0 1
0 1

0 1
o= _ : (A24.7)

11
with ‘1’ in the lower left corner assuring periodicity.

Applied to the lattice state ¢ = (¢, ¢2,- - , dn), the stepping operator trans-
lates the state by one site, 0@ = (¢, @3, -, dn, ¢P1). Its transpose translates the
configuration the other way, so the transpose is also the inverse, o~! = o/ . The
partial lattice derivative (A24.3) can now be written as a multiplication by a ma-
trix:

Bute = é(aﬂ -1),.9;.
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In the 1-dimensional case the [ NxN] matrix representation of the lattice deriva-
tive is:

g=1 , . (A24.8)
a t.

To belabor the obvious: On a finite lattice of N points a derivative is simply a
finite [NV X N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

A24.1.1 Lattice Laplacian

In the continuum, integration by parts moves g around, f [dx¢pT 0% — — f [dx]0¢T-
J¢; on a lattice this amounts to a matrix transposition

(7w =1)e|" [(ou 1) 8] =07 (o' = 1) (o - 1) 6.

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

6T=é(0'_1—1)= —11(0 H=-09.

The symmetric (self-adjoint) combination 0 = —3"9

RS RS
o = _22(0;1—1 = 1) —220 +o,-21)
u= =

% (T - 2d1) (A24.9)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [N X N] matrix representation of
the lattice Laplacian is:

-2 1 1
1 -2 1
1 1 -2 1
] 3 . . (A24.10)
1
1 1 -2

The lattice Laplacian measures the second variation of a field ¢, across three
neighboring sites: it is spatially non-local. You can easily check that it does what
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the second derivative is supposed to do by applying it to a parabola restricted to the
lattice, ¢, = ¢(al), where ¢(af) is defined by the value of the continuum function
$(x) = x* at the lattice point x; = af.

The Euclidean free scalar particle propagator can thus be written as

1
Az . (A24.11)
1- %azlj

In what follows it will be convenient to reinterpret and rescale this drunken-walk

propagator A, and consider instead the “free field action” of form
1

S[¢] = —§¢T M. (A24.12)

where the “free” or “bare” massive scalar propagator M is parametrized as

(A24.13)

What this parametrization says is that the mass squared m? of the Euclidean scalar
particle is proportional to m?> ~ s/h: the heavier the particle, the less likely it is to
hop, the more likely is it to stop.

A24.1.2 Inverting the Laplacian

Evaluation of perturbative corrections requires that we come to grips with the
“free” or “bare” propagator M. While the Laplacian is a simple difference oper-
ator (A24.10), the propagator is a messier object. A way to compute is to start
expanding the propagator M as a power series in the Laplacian

(A24.14)

As O is a finite matrix, the expansion is convergent for sufficiently large m?. To
get a feeling for what is involved in evaluating such series, evaluate 0% in the
1-dimensional case:

(6 -4 1 1 -4
-4 6 -4 1 1
L I (A24.15)
o = — . .
a* 1 -4 - 1
1 6 -4
-4 1 1 -4 6]
What 03, 0%, -+ contributions look like is now clear; as we include higher and

higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other
lattice site. Due to the periodicity, these are all Toeplitz matrices, meaning that
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each successive row is a one-step cyclic shift of the preceding one. In statistical
mechanics, M is the (bare) 2-point correlation. In quantum field theory, it is called
a propagator.

These matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We show how this
works in sect. A24.2.

A24.2 Periodic lattices

Our task now is to transform M into a form suitable to explicit evaluation.

Consider the effect of a lattice translation ¢ — o¢ on the matrix polynomial
|
Slog] = _Ed) (0' M 0')(/’).

As M~ is constructed from ¢ and its inverse, M~! and o- commute, and S [¢] is
invariant under translations,

1 1
Slog]l = S[¢] = —§¢T & . (A24.16)

If a function defined on a vector space commutes with a linear operator o, then the
eigenvalues of o can be used to decompose the ¢ vector space into invariant sub-
spaces. For a hyper-cubic lattice the translations in different directions commute,
0,0y = 0,0y, so it is sufficient to understand the spectrum of the 1-dimensional
stepping operator (A24.7).

To develop a feeling for how this reduction to invariant subspaces works in
practice, let us proceed cautiously, by expanding the scope of our deliberations to
a lattice consisting of 2 points.

example A24.1
@ p. 1197
A24.3 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with N sites.

Each application of o translates the lattice one step; in N steps the lattice is

back in the original state 508
) ¥, 0?
‘0 h ol
[e] co
oV =1 ° oxr, (A24.17)
2 o o N2
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so the eigenvalues of o are the N distinct Nth roots of unity

N-1
aN—1=]_[(a—wk1):o, w=er. (A24.18)
k=0

As the eigenvalues are all distinct and N in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded in appendix A10.2)
associates with the kth eigenvalue of o a projection operator that projects a state
¢ onto kth eigenvector of o,

— w1
Pe=[]55 (A24.19)

A factor (o — w’1) kills the jth eigenvector ¢; component of an arbitrary vector
in expansion ¢ = --- + ¢¢p; + ---. The above product kills everything but the
eigen-direction ¢y, and the factor [] j ik(wk — /) ensures that Py, is normalized as
a projection operator. The set of the projection operators is complete,

Z Pi=1, (A24.20)
k

and orthonormal
PyPj = 6rjPx (no sum on k). (A24.21)

In the case of discrete translational invariance, or cyclic group Cy, it is customary
to write out the projection operator (A24.19) as a character-weighted sum, see
example A24.2.

As any matrix function M = M(o) of the translation generator o takes a scalar
value on the kth subspace,

M(0) Py = M(w") Py, (A24.22)

the projection operators diagonalize the matrix M, P; M(o) P, = M (W Pro jk -
example A24.2
E p. 1197

A24.3.1 Eigenvectors of the translation operator

While constructing explicit eigenvectors is usually not a the best way to fritter
one’s youth away, as choice of basis is largely arbitrary, and all of the content of
the theory is in the projection operators (see appendix A10.2), in case at hand the
eigenvectors are so simple that we can construct and verify the solutions of the
eigenvalue condition

o P = o (A24.23)
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by hand:

0 1 1 1

0 1 Wk wk

1 0 1 w2k ) 1 ka

— 3k | = w'— 3k
VN S |

0 1 : :

11 0] | W=Dk | (V=D |

In words: the cyclic translation generator o shifts all components by one, and the
original vector is recovered by factoring out the common factor w¥. The 1/ VN
factor normalizes ¢ to a complex unit vector,

1 N-1
go]t-gok = ¥ 1 =1, (no sum on k)
k=0
1 L v
ol = —N(l,w N A B (A24.24)

The eigenvectors are orthonormal
o ;= 61, (A24.25)

as the explicit evaluation of ‘PZ - ¢; yields the Kronecker (circular) delta function
for a periodic lattice

1 2 ;
81 = S o H k=Dt (A24.26)
4

=

Il
(=]

The sum is over the N unit vectors pointing at a uniform distribution of points on
the complex unit circle,

they cancel each other unless k = j (mod N), in which case each term in the sum
equals 1.

By the eigenvector condition (A24.23), any matrix function M = M(o) of the
translation generator o takes a scalar value on the kth subspace,

M(o) g = M) gy, (A24.27)

i.e., in the eigenvector basis, M is a diagonal matrix.
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The [N x N] projection operator matrix elements can be expressed in terms of
the eigenvectors (A24.23), (A24.24) as

1 221 p_ pr
(Poer = (g = e T O (no sum on k). (A24.28)

The completeness (A24.20) follows from (A24.26), and the orthonormality (A24.21)
from (A24.25).

&x, the projection of the N-dimensional state (i.e., vector) ¢ on the kth sub-
space is given by

(Pe-®)e = dr(@e, (no sum on k)
i ) =
= ¢ ¢ = ﬁ{;e Sy (A24.29)

The N-dimensional vector ¢ of “wavenumbers” (discretized spatial coordinates),
or “frequencies,” “eigen-energies” (discretized time evolution steps) @ is the dis-
crete Fourier transform of state (vector) ¢. Hopefully rediscovering it this way
helps you a little toward understanding why Fourier transforms are full of ¢'*7
factors (they are eigenvalues of generators of translations; ¢ for a discrete lattice,
0 /0x for continuum), and that they are the natural set of basis functions when a
theory is translationally invariant.

example A24.2
E p. 1197
A24.3.2 Discrete Fourier transform operator

The [NXN] matrix ¥ = N‘%wﬂ‘ , ,k=0,1,2,--- N — 1, formed from column
eigenvectors (A24.23),

1 1 1 1 1
1 w wz wN—Z wN—l
F = L\/_ 1w W Nk W=Dk , (A24.30)
N|.
i wzx}—z wZ(I'V—Z) L w(N_é)(N_Z) w(N—l')(N—Z)
»1 wN—l wZ(N—l) L w(N—Z)(N—l) w(N—l)(N—l)_

is the discrete Fourier transform operator (remember, in the discretized world
‘operator’ is a synonym for ‘matrix’). From the orthogonality of eigenvectors
(A24.25) it follows that F is a unitary matrix, with det ¥ = 1, and

FF =1. (A24.31)

The operator 7 is thus the inverse Fourier transform. The discrete Fourier trans-
form (A24.29) of a state (vector) ¢ is given by

d=75"¢, (A24.32)
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i.e., Fourier transformation rearranges components of vector ¢ into averages over
all components (A24.29), weighted by complex phases exp(i27{/N) in all possible
ways.

W example A24.3
p. 1198

The complex function ¢ is can sometimes be interpreted as an ‘amplitude
function’, with the square of its magnitude (¢ ¢) then interpreted as the corre-
sponding ‘total probability’

o p=¢"-9. (A24.33)

The fact that this is the same if evaluated with ¢ or with its Fourier transform ¢ is
known as the “Parseval’s identity.”

Furthermore, by (A24.27), discrete Fourier transform diagonalizes every trans-
lationally invariant matrix function M, i.e., any matrix that commutes with the
translation operator, [0, M] = 0. To show that, sandwich M with the identity
1=FF"

M =1M1=F (F'MF)F" = FmF".
The matrix
M= FMF (A24.34)

is the Fourier transform of M. The form of any translation-invariant function, such
as (A24.33), or the invariant function (A24.16) does not change under ¢ — ¢
transformation, and it does not matter whether we compute in the Fourier space,
or in the configuration space that we started out with. For example, the trace of M
is the same in either representation

rM=tuFMF =uMF'F=uM,

but, if M commutes with the translation operator o, the Fourier transform tr M
is diagonal and trivial to compute. By same reasoning it follows that tr M" =
tr M", and from the tr In = Intr relation that det M = det M. In fact, any scalar
combination of ¢’s, J’s and couplings, such as the partition function Z[J], has
exactly the same form in the configuration and the Fourier space.

Suppose you have two translationally invariant matrices A, B. Evaluating
their product AB is a matrix computation. However, evaluating the product in
the Fourier space is a simple scalar multiplication of their diagonal elements:

(AB)ww = (F'ABF ) = AxBiow (A24.35)

The continuum Fourier transform version of this relation is called the “convolution
theorem.”

OK. But what’s the payback?
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A24.3.3 Lattice Laplacian diagonalized

We can now use the Fourier transform (A24.34) to convert matrix functions of the
o matrix into scalars. If M commutes with o, then (M) = My is a diagonal
matrix, where the matrix M acts as a multiplication by the scalar M on the kth
subspace. For example, for the 1-dimensional version of the lattice Laplacian ma-
trix (A24.9), the eigenvalue condition (A24.23) yields the diagonalized Laplacian
in the Fourier space,

O = (F O F

2 (1 _
> (E(w ki Wy - 1)5,(,(,

2 2
= 5 (cos (N"k) - 1)5kk, : (A24.36)

In the kth subspace the bare propagator is simply a number, and, in contrast to the
mess generated by the configuration space inversion (A24.14), there is nothing to
inverting M to M~

4 _ 6kk’
(oM™ i) = , (A24.37)
m? =254 (cos(%k,) - 1)
where k = (ki, ko, - -+ , kg) is a d-dimensional vector in the N¢-dimensional dual

lattice, i.e., the discretized “momentum” or “frequency” space.

Going back to the partition function and sticking in the factors of 1 into the
bilinear part of the interaction, we replace the spatial source field J by its Fourier
transform J, and the spatial propagator M by the diagonalized Fourier transformed
Go

JM-J=J - F(FMF)FT-J=J"-Go-J. (A24.38)

A24.4 Continuum field theory

The lattice Laplacian kth Fourier component (A24.36) is

2 2n
m] — —k]-1

2\ 1 {2x\*
=) B+ — =] & -0k5. A24.3
(aN) " 12(aN) @k - 0k (624.39)

The quartic term can be neglected for low wave numbers k <« N, i.e., low mo-
menta, p,, = 2nk, /L, where aN = L is the lattice size.

In the continuum limit the probability to land in the kth cell is replaced by a
probability density, ¢; = ap(xx) — (dx)?¢(x). After rescaling the wave-number
k into momentum p, we obtain the continuum version of the scalar propagator

44 p eir(x=y)

— . A24.40
Qr)d m? + p? ( )

Ax,y) =
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A24.5 Diffusion in sawtooth and cat maps

(R. Artuso)

N THIS SECTION we will deal with the prototype example of chaotic Hamilto-

I nian maps, hyperbolic toral automorphisms. Diffusive properties will arise in

considering such maps acting on the cylinder or over R?, while the dynam-

ics restricted to the fundamental domain involves maps on T? (two—dimensional

torus). An Anosov map thus corresponds to the action of a matrix in S Ly (IN) with
unit determinant and absolute value of the trace bigger than 2.

Maps of this kind are as examples of genuine Hamiltonian chaotic evolution.
They admit simple finite Markov partitions, which paves the way to a good sym-
bolic dynamics. Within the framework of Hamiltonian dynamical systems the
role of hyperbolic linear automorphisms is analogous to piecewise linear Markov
maps: their symbolic dynamics can be encoded in a grammatically simple way,
and their linearity leads to uniformity of cycle stabilities.

We will consider the “two-coordinates” representation for them

with

0 1

M:[—l K+2

which allows considering their extension on a cylinder phase space ([-1/2, 1/2) X
R) in a natural way. So it is natural to study diffusion properties along the y
direction.

Though Markov partitions encode the symbolic dynamics in the simplest pos-
sible way, they are not well suited to deal with diffusion, as the jumping factor
is not related in a simple way to the induced symbol sequence. To this end the
following linear code is quite natural: before describing it let us fix the notations:
x will denote the trace of the map (y = K + 2): the leading eigenvalue will be
denoted by A = (y + D)/2, where D = x? — 4. In principle the code (and the
problem of diffusion) can be also considered for real values of K (thus loosing
continuity of the torus map when K in not an integer): we will remark in what
follows that results which are exact for K € N are only approximate for generic
K.

The cardinality of the alphabet is determined by the parameter K: the letters
are integer numbers, whose absolute values does not exceed In#(1 + y/2) (see fig-
ure A24.1 for the case K = 2). The code is linear, as, given a bi-infinite sequence
{xi}ien

1
by (K +2)x, — xiy + 5l (A24.41)
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Figure A24.1: The elementary cell for the torus
map [-1/2, 1/2] (checkered yellow) together with
its image, in green (K = 2): symbols refer to
the linear code. The dashed line through the ori-
gin gives the direction of the unstable manifold.
Though hardly understandable from the scale of
the picture the unstable manifold is not parallel to
the image sides.

[...] denoting the integer part, while the inversion formula (once a bi-infinite
symbolic string {b;}ien is given), reads

1
X = —— Z sl (A24.42)
\/D seN

As the x coordinate lives in the interval [-1/2, 1/2), (A24.42) induces a condition
of allowed symbol sequences: {b;};en Will be an admissible orbit if

1 1
< — /l_lt_slb, <
2~ 4D ;{, '

——

(A24.43)

| =

By (A24.41) and (A24.42) it is easy to observe that periodic orbits and allowed
periodic symbol sequences are in one-to-one correspondence. From (A24.43) we
get the condition that a {b;};=1 1 sequence corresponds to a T—periodic orbit of
the map

.....

B
|Anbr + Ap—1(brs1 + bi—1) + - - + Ag(Dran + bi—p)| < 7n Vi=1,...,T
whenT =2n+ 1, and
D
|Cubs + Cr1(bys1 + bi—1) + -+ + Co(brin)| < 7 Vi=1,...,T (A24.44)

when T = 2n where

/lk+] +/1—k
B, = -1+ 17k -1 Ay = —
& ( ) ( ) k 171
Dp = X =1Ha-1hH Cp = A+ 27% (A24.45)

The pruning rules (A24.44) admit a simple geometric interpretation: a lattice point
b € N7 identifies a T—periodic point of the map if b € Pr where

laixy + -+ arxy| < er
def T .
Pr ={xeR": : (A24.46)
|a2x1 + -+ a1xT| <er
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and

ay...ar =A0A1...An_1AnAn_1...Ao eT:Bn/Z
ay...ar = Cl ‘e C,,_lCnCn_l e C1C0 er = Dn/2 (A2447)

forT = 2n+1orT = 2n, respectively, Thus Pr is a measure polytope [7], obtained
by deforming a 7—cube. This is the key issue of this appendix: though the map
is endorsed with a most remarkable symbolic dynamics, the same is hardly fit
to deal with transport properties, as the rectangles that define the partition are
not directly connected to translations once the map is unfolded to the cylinder.
The partition connected to the linear code (see figure A24.1) on the other side
is most natural when dealing with transport, though its not being directly related
to invariant manifolds leads to a multitude of pruning rules (which in the present
example bear a remarkable geometric interpretation, which is not to be expected
as a generic feature).

We will denote by N, ; the number of periodic points of period n with jumping
number s. A way to compute D for cat maps is provided by

. 1 p@n) )
D= lim D, Dy= ; K2 N i (A24.48)

where N, is the number of periodic points of period n, p(n) is the highest jumping
number of n—periodic orbits and we employed

|det (1-J%)

= @' =DA =" = N,
which is valid for cat maps.

Sums can be converted into integrals by using Poisson summation formula:
we define

_ (I’ll+"'+l’lT)2 nEPTﬂNT
Sr(n) = { 0 otherwise

and
e = [ dxd™ prco

From Poisson summation formula we have that

1

Dr =
T TNt

> Fr(2mn) (A24.49)

neNT

The quasilinear estimate for D7 amounts to considering the n = 0 contribution to
(A24.49):

D) = f dx(x1 + X0 + -+ x7)> (A24.50)
Pr
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The evaluation of (A24.50) requires introducing a coordinate transformation in
symbolic space in which Pr is transformed in a 7—cube. This is equivalent to
finding the inverse of the matrix A:

ay az ar-1 ar
ar ai ar-2 dar-i
def . .
A= : : : : (A24.51)
az  ag ay 17)
a as ar aj

First of all let us observe that A is a circulant matrix, so that its determinant is the
product of T factors, each of the form f(€;) = a1 + €jar + -+ + aTejT‘l, where €;
is a T'th root of unity. By using (A24.45) it is possible to see that

AL N W
fle) = G
Ae—D(1-1Te;) T =2n
so that
(2er)”
detA| = ———— A24.52
et Al = T2 ( )

By using the results coming from the former exercise we can finally express A~
via

x -1 - 0 -1
| -1 x -~ 0 O
CA™! i (A24.53)
"I 0 0 x -1
-1 0 -1 x
where
~ 0 L+t
-(n )
if T =2n+1and
x -1 0 -1
| -1 x 0 O
Ra7=—z| ¢+ Lo (A24.54)
"1'0 O x -1
-1 0 -1 x
where
= (0 1,
(07

if T = 2n. As a first check of quasilinear estimates let’s compute the volume of

PTI
1 er er
dér...d
\det Al f f §1...dér

(A24.55)

Vol(Pr)

f dx;dxy...dxy =
Pr

ALsaT-2
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In an anal m m h ilinear estimate for
an analogous way we may compute the quasilinear estimate for N7 exercise A24.7

N;qlf-) f dxy...dxpo6(x1 +...x7 — k)
, -~

T -T _ o0 . eT eT i
A"+ A . 2 f da e~ 2riak f . f déy .. .dér eTTX(§|+~~-+§T)
(2er) —o0 —er —er

2 0 2 iny\"
il LD b ) f dy cos(ﬂ) (W) (A24.56)
Y 0 x )\ y

where we have used x1+- - -+x7 = (v/(Qer))(&1+- - -+&7) (cfr. (A24.53),(A24.54)).

We are now ready to evaluate the quasilinear estimate fo the diffusion coeffi-

cient

1 Tx2 00 2 iny\”

e [ [omfS] s
mxT J-1y)2 0 X y

(where the bounds on the jumping number again come easily from (A24.53),(A24.54)).
By dropping terms vanishing as 7' + oo, and using [10]

f o0 (sin x)" sin(mx) «
dx | — =—m2=n
0 X X 2

we can evaluate

(q.l) X

plat) — X A24.58
24 ( )

which is the correct result [5] (and again for cat maps (A24.58) is not the quasi-

linear estimate but the exact value of the diffusione coeflicient). .
exercise A24.8

Commentary

Remark A24.1. Who has talked about it? ~ Maps of this kind have been extensively
analyzed as examples of genuine Hamiltonian chaotic evolution: in particular they admit
simple Markov partitions [2, 9], which lead to simple analytic expressions for topological
zeta functions [11]. The linear code was introduced by Percival and Vivaldi [4, 15].
Measure polytopes are discussed in ref. [7]. The quasilinear estimate (A24.50) was given
in ref. [5]. (A24.50) was evaluated in ref. [3, 16]. Circulant matrix are discussed in
ref. [1]. The result (A24.58) agrees with the saw-tooth result of ref. [5]; for the cat maps
(A24.58) is the exact value of the diffusion coefficient. This result was obtained, by using
periodic orbits also in ref. [8], where Gaussian nature of the diffusion process is explicitly
assumed.

Remark A24.2. Discrete Fourier software.  Wolfram Mathematica has an extensive
and pedagogical suite of discrete Fourier transform modules.

Remark A24.3. Phase space. The cylinder phase is [-1/2, 1/2) X R: the map is orig-
inally defined on [-1/2, 1/2)?, and is unfolded over the cylinder by symmetry (24.22).
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A24.6 Examples

Example A24.1. A 2-point lattice diagonalized.

The action of the stepping operator o (A24.7) on a 2-point lattice ¢ = (¢g, ¢1) is to
permute the two lattice sites

As exchange repeated twice brings us back to the original state, o> = 1, the characteristic
polynomial of o is

(c+1)(oc-1)=0,

with eigenvalues wy = 1,w; = —1. The symmetrization, antisymmetrization projection
operators are

o-wl 1 111 1
P — = —(1 = — A24.59
0 00 — W 2( +0) ) [1 1] ( )
o-1 1 I{1 -1
P, = -1 5(1 -0) = 5 [_1 1] . (A24.60)

Noting that Py + P; = 1, we can project a lattice state ¢ onto the two normalized eigen-
vectors of o

¢ = 1¢p=Py-¢+ P -9,

&l @o+é) 1 |1 (Po—¢1) 1 |1

[qu = % v 1]+—‘/§ $[_1] (A24.61)
= dogo+ . (A24.62)

As PyP; = 0, the symmetric and the antisymmetric states transform separately under any
linear transformation constructed from o~ and its powers.

In this way the characteristic equation o> = 1 enables us to reduce the 2-dimensional
lattice state to two 1-dimensional ones, on which the value of the stepping operator o is a
number, w; € {1, -1}, and the normalized eigenvectors are ¢y = %(1, D, ¢ = \%(1, -1).

As we shall now see, (¢g, @) is the 2-site periodic lattice discrete Fourier transform of the

field (41, ¢2).

Example A24.2. Projection operators for discrete Fourier transform / cyclic group

Cy. (It’s OK to skip this example on the first reading - the explicit Fourier eigenvectors

and eigenvalues (A24.23) are all that we need to carry out discrete Fourier transforms.)
Consider a cyclic group

Cy=fe,g, 8% -¢" ", &

If M = D(g) is a [dxd] matrix representation of the one-step shift g, it must satisfy
MY —1 = 0, with eigenvalues given by the zeros of the characteristic polynomial

Gx) =" —1=(x=A)x=A)(x = A2) -+ (x = Ay_1). (A24.63)
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For the cyclic group the N distinct eigenvalues are the Nth roots of unity 1, = ", w =
exp(i2n/N),n=0,...N — 1.

In the projection operator formulation (A10.20), they split the d-dimensional space
into d/N-dimensional subspaces by means of projection operators

M-wml 1 P
P, = ]—[ = n(w_”M —w"), (A24.64)

no_ ym N-1
m#n w w I—[m=l(1 - wm) m=1

where we have multiplied all denominators and numerators by w™.

The denominator is a polynomial of form G(x)/(x—A) , with the zeroth root (x—w") =
(x — 1) quotiented out from the characteristic polynomial,

KN —

N-1
x—1 ).

=(x-wx-w) - (x-w

Consider a sum of the first N terms of a geometric series, multiplied by (x — 1)/(x — 1):

1 N-1 = W1

L+ x 4+ =mZ=:‘)xm=mn;)(x—l)xm=ﬁ. (A24.65)
So, the products in (A24.64) can be written as sums

(x—a))(x—wz)---(x—wN’l) =14+x+-+x7". (A24.66)

The P, projection operator (A24.64) denominator is evaluated by substituting x — 1 into
(A24.66); that adds up to N. The numerator is evaluated by substituting x — w™M. We
obtain the projection operator as a discrete Fourier weighted sum of matrices M™,

N-1
1 —i Znm m
Py= ;‘)e wm (A24.67)

instead of the product form (A24.64).

This is the simplest example of the key group theory tool, the projection operator
expressed as a sum over characters,

1
Pu = G 2 n(@D().

geG

As Cy irreps are all 1-dimensional, for the discrete Fourier transform all characters are
simply ,(g") = w™™", the Nth complex roots of unity.

(B. Gutkin and P. Cvitanovic)

Example A24.3. ‘Configuration-momentum’ Fourier space duality.
What does a projection on the kth Fourier subspace mean? The discrete Fourier trans-
form (A24.67) of a state (vector) ¢ rearranges components of vector ¢ into averages over

all its components, weighted by complex phases exp(i27€/N) in all possible ways.

Consider first the projection on the Oth Fourier mode

PO:%ZM’".
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Applied to a lattice state ¢ = (¢, P2, - , dn), the shift matrix M translates the state by
one site, M¢ = (¢2, 3, -+, dn, 1), and so on for all powers M™. The result is the space
average (here correctly normalized, so that (1) = 1) over all values of the periodic lattice
field ¢,

—¢0 - Z@— @),

see (A24.17) and (A24.26). Every finite discrete group has such fully-symmetric rep-
resentation, and in statistical mechanics and quantum mechanics this is often the most
important state (the ‘ground’ state).

@, is the average weighted by one oscillation over the N-periodic lattice, and ¢, the
projection of the N-dimensional state (i.e., vector) ¢ on the kth subspace

. 15 .
h=Pid=— D ety (A24.68)
=0

is the average weighted by complex rotatlng phase w*” which advances by «* in every
step, and pulls out oscillating feature @; out of the field ¢. For large N, modes ¢, with
k < N (or (N — k) < N, that is just a counter-rotation)) are called hydrodynamic modes,
corresponding to “configuration” lattice fields ¢ which vary slowly and smoothly over
many lattice spacings. Modes with k ~ N/2 are suspect, they are lattice discretization
artifacts.

If the lattice state is ¢ is localized, its Fourier transform will be global, and vice versa
for a localized Fourier state ¢. For example, if the field ¢ is concentrated on the first
site, ¢o = 1, rest zero, it’s Fourier transform will be uniformly distributed over all Fourier

modes, ¢, = 1/ VN.
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Exercises

A24.1.

A24.2.

Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonal difference
operator (A24.10), its inverse (the “free” propagator
of statistical mechanics and quantum field theory) is a
messier object. A way to compute is to start expanding
propagator as a power series in the Laplacian

1
ml-o m2

00

Z m12nD".

(A24.69)

As O is a finite matrix, the expansion is convergent for
sufficiently large m>. To get a feeling for what is in-

volved in evaluating such series, show that 02 is:
6 -4 1 1 -4
-4 6 -4 1
1 1 -4 6 -4 1
0? = —
a 1 -4
6 -4
-4 1 1 -4 6
(A24.70)
What 0%, 0%, - - - contributions look like is now clear; as

we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while the inverse propa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connect-
ing every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer-
cise A24.2.

Lattice Laplacian diagonalized. Insert the
identity 3, P = 1 wherever you profitably can, and
use the eigenvalue equation (A24.23) to convert shift
o matrices into scalars. If M commutes with o, then
(goz "M - @) = MP§y, and the matrix M acts as a mul-
tiplication by the scalar M® on the kth subspace. Show
that for the 1-dimensional version of the lattice Lapla-
cian (A24.10) the projection on the kth subspace is

2 2r
(o) O ) = = (cos(ﬁk) - 1)5kk, . (A24.71)
In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (A24.69), there
is nothing to evaluating:
1 Okkr
gl ’
m-1 -0 m —W(cos%rk/N—l)

¢
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A24.3.

A24.4.

A245.

A24.6.

A24.7.

A24.8.

A24.9.

(A24.72)

where k is a site in the N-dimensional dual lattice, and
a = L/N is the lattice spacing.

Recursion relations.  Verify that the following recur-
sion relations are satisfied

Ur+2 = XUk+1 — Uk
where Up = Ak, Bk, Ck, Dk.

Arnol’d cat map. Show that for y = 3, Ay = Foyq,
By = Logy1, Cr = Ly, and Dy = 5Fy;, where F,, and L,
are the Fibonacci and Lucas numbers..

Pruning rules for substrings of length 2. Take K = 8
and draw the region determined by (A24.44).

Diagonalization of A.  Show that A can be diagonal-
ized by considering the auxiliary matrix U

1 1 1 1
€ €] €r-2  €r-1
def . . . .
U= : : : :
T-2  _T-2 T2 T2
9 S =
€ S €r2 €

In fact U'AU is a diagonal matrix (the diagonal ele-
ments coinciding with f(e;)).

Periodic points of cat maps.  Verify that (A24.55)
is exactly the number of T—periodic points of the map
when K is an integer.

Probability distribution. Higher order moments can
be computed easily for integer K (or generic K within
the quasilinear approximation), by generalizations of
(A24.57): show that the results prove that, given a pe-
riod T, the distribution of periodic orbits with respect to
their jumping number is asymptotically Gaussian, with
parameter D),

Deterministic diffusion, zig-zag map.

To illustrate the main idea of chapter 24, tracking of a
globally diffusing orbit by the associated confined orbit
restricted to the fundamental cell, we consider a class
of simple 1-dimensional dynamical systems, chains of
piecewise linear maps, where all transport coefficients
can be evaluated analytically. The translational symme-
try (24.22) relates the unbounded dynamics on the real
line to the dynamics restricted to a “fundamental cell” -
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in the present example the unit interval curled up into a
circle. An example of such map is the sawtooth map

x€[0,1/4+ 1/4A]
x€[1/4+1/4A,3/4 — 1/4A]
x €[3/4-1/4A,1]

(A24.73)

Ax
f(x)=2 =Ax+(A+1)/2
Ax+(1=A)

The corresponding circle map f(x) is obtained by mod-
ulo the integer part. The elementary cell map f(x) is
sketched in figure ??. The map has the symmetry prop-
erty

fG&) = -f(=3),

so that the dynamics has no drift, and all odd derivatives
of the generating function (24.4) with respect to 5 eval-
uated at 8 = 0 vanish.

The cycle weights are given by

i
Al

t, = 2" (A24.75)

The diffusion constant formula for 1-dimensional maps
is
1@
2 (n)¢
where the “mean cycle time” is given by

n c+n
( )k Pl Pk ,
== 2D

Pk|

(A24.77)

(A24.76)

<n>g

“oz é“(O 2)

z=1

the mean cycle displacement squared by

’ 1 @ et Ay,
~2 kP Pk
T I M Ty

(A24.78)

and the sum is over all distinct non-repeating combina-
tions of prime cycles. Most of results expected in this
projects require no more than pencil and paper compu-
tations.

Implementing the symmetry factorization (24.19) is
convenient, but not essential for this project, so if you
find example 25.9 too long a read, skip the symmetriza-
tion.

A24.10. The full shift sawtooth map. Take the map (A24.73)

and extend it to the real line. As in example of fig-
ure 24.4, denote by a the critical value of the map (the
maximum height in the unit cell)

A+1
S ALy A

A24.
4 4A 4 ( )
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Describe the symbolic dynamics that you obtain when
a is an integer, and derive the formula for the diffusion
constant:

(A’ = 1)(A-3)

D =
96A

forA=4a-1, aeZ.
(A24.80)

If you are going strong, derive also the fromula for the
half-integer a = (2k + 1)/2, A = 4a + 1 case and email it
to predrag@nbi.dk. You will need to partition M, into
the left and right half, M, = Mg U Mo, as in the deriva-
tion of (24.29). See exercise 24.1.

Sawtooth map subshifts of finite type. We now
work out an example when the partition is Markov, al-
though the slope is not an integer number. The key step
is that of having a partition where intervals are mapped
onto unions of intervals. Consider for example the case
in which A = 4a — 1, where 1 < a < 2. A first par-
tition is constructed from seven intervals, which we la-
bel {M;, My, Ms, My, Mg, M7, M3}, with the alphabet
ordered as the intervals are laid out along the unit in-
terval. In general the critical value a will not corre-
spond to an interval border, but now we choose a such
that the critical point is mapped onto the right border
of M, as in figure ?? (a). The critical value of f() is
(&) = a—1 = (A - 3)/4. Equating this with the right
border of Ml, x = 1/A, we obtain a quadratic equa-
tion with the expanding solution A = 4. We have that
fMy) = f(Ms) = M, so the transition matrix (17.1)
is given by

&1
b4
&5
o | (A24.81)
o
7
&3

and the dynamics is unrestricted in the alphabet

{1,41,51,2,663,73,3,}.

ot
coocoo~
cocoococo~
—_—
—ocoooo
N ===X=X=)
———

One could diagonalize (A24.81) on the computer, but, as
we saw in chapter 17, the transition graph figure ?? (b)
corresponding to figure ?? (a) offers more insight into
the dynamics. The dynamical zeta function

1/ = 1=(t +tr+13)—2(t14 + 137)
2
¢ = 1—3%—4coshﬁ%. (A24.82)

follows from the loop expansion (18.13) of sect. 18.3.

The material flow conservation sect. 23.4 and the sym-
metry factorization (24.19) yield

el
20, 1) A A
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A24.12.

which indeed is satisfied by the given value of A. Con-
versely, we can use the desired Markov partition topol-
ogy to write down the corresponding dynamical zeta
function, and use the 1/£(0,1) = 0 condition to fix A.
For more complicated transition matrices the factoriza-
tion (24.19) is very helpful in reducing the order of the
polynomial condition that fixes A.

The diffusion constant follows from (24.20) and

(A24.76)
1 4 - 4 A24.13.
(n); = —(1 + X)(_X) , %)= A2
11 1
T2A+1° 10

Think up other non-integer values of the parameter
for which the symbolic dynamics is given in terms of
Markov partitions: in particular consider the cases illus-
trated in figure ?? and determine for what value of the
parameter a each of them is realized. Work out the tran-
sition graph, symmetrization factorization and the diffu-
sion constant, and check the material flow conservation
for each case. Derive the diffusion constants listed in ta-
ble ??. It is not clear why the final answers tend to be so
simple. Numerically, the case of figure ?? (c) appears to
yield the maximal diffusion constant. Does it? Is there
an argument that it should be so?

The seven cases considered here (see table ??, figure ??
and (A24.80)) are the 7 simplest complete Markov parti-
tions, the criterion being that the critical points map onto
partition boundary points. This is, for example, what
happens for unimodal tent map; if the critical point is
preperiodic to an unstable cycle, the grammar is com-
plete. The simplest example is the case in which the
tent map critical point is preperiodic to a unimodal map
3-cycle, in which case the grammar is of golden mean
type, with _00_ substring prohibited (see figure 17.7).
In case at hand, the “critical” point is the junction of
branches 4 and 5 (symmetry automatically takes care of
the other critical point, at the junction of branches 6 and
7), and for the cases considered the critical point maps
into the endpoint of each of the seven branches.

One can fill out parameter a axis arbitrarily densely with
such points - each of the 7 primary intervals can be sub-
divided into 7 intervals obtained by 2-nd iterate of the
map, and for the critical point mapping into any of those
in 2 steps the grammar (and the corresponding cycle ex-
pansion) is finite, and so on.

Sawtooth map diffusion coefficient, numerically.
(optional:)
Attempt a numerical evaluation of

1 1
D= 3 lim —(%2).

n—oo n

(A24.83)
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Study the convergence by comparing your numerical re-
sults to the exact answers derived above. Is it better to
use few initial ¥ and average for long times, or to use
many initial X for shorter times? Or should one fit the
distribution of %> with a Gaussian and get the D this
way? Try to plot dependence of D on A; perhaps blow
up a small region to show that the dependance of D on
the parameter A is fractal. Compare with figure 24.6 and

figures in refs. [6, 12—14, 17].
Sawtooth D is a nonuniform function of the parame-
ters. (optional:)

The dependence of D on the map parameter A is rather
unexpected - even though for larger A more points are
mapped outside the unit cell in one iteration, the diffu-
sion constant does not necessarily grow. An interpreta-
tion of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the
sawtooth map (A24.73) for a random “generic” value
of the parameter A, for example A = 6. The idea
is to bracket this value of A by the nearby ones, for
which higher and higher iterates of the critical value
a = (A+1)/4 fall onto the partition boundaries, compute
the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward
the value of D for A = 6. Judging how difficult such
problem is already for a tent map (see sect. 18.5 and
appendix A18.2), this is too ambitious for a week-long
exam.

Deterministic diffusion, sawtooth map.

To illustrate the main idea of chapter 24, tracking of a
globally diffusing orbit by the associated confined or-
bit restricted to the fundamental cell, we consider in
more detail the class of simple 1-dimensional dynamical
systems, chains of piecewise linear maps (24.21). The
translational symmetry (24.22) relates the unbounded
dynamics on the real line to the dynamics restricted to
a “fundamental cell” - in the present example the unit
interval curled up into a circle. The corresponding circle
map f(x) is obtained by modulo the integer part. The
elementary cell map f(x) is sketched in figure 24.4. The
map has the symmetry property

f = -f(-%, (A24.84)
so that the dynamics has no drift, and all odd derivatives
of the generating function (24.4) with respect to 5 eval-
uated at S = O vanish.

The cycle weights are given by

7l
e
IAp

ty=2z (A24.85)

The diffusion constant formula for 1-dimensional maps
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is the mean cycle displacement squared by
1(A? 2
/s (A24.86) = 21 = T I (””' +"”*) ,
2 (n); B LB, 1) 50 Al

where the “mean cycle time” is given by (A24.88)

and the sum is over all distinct non-repeating combina-

() = 9 Z (k= Mpy oty tions of prime cycles. Most of results expected in this
‘T %0z (0 2l |Ap1 s Ayl projects require no more than pencil and paper compu-
(A24.87) tations.
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