
Appendix A19

Implementing evolution

A19.1 Koopmania

The Koopman operator action (31.1) on a state space function a(x) is to re-
place it by its downstream value time t later, a(x) → a(x(t)), evaluated at
the trajectory point x(t):

[
K ta

]
(x) = a( f t(x)) =

∫
M

dyK t(x, y) a(y)

K t(x, y) = δ
(
y − f t(x)

)
. (A19.1)

Eq. (31.2) suggests an alternative point of view, which is to push dynamical
effects into the density. In contrast to the Koopman operator which advances the
trajectory by time t, the Perron-Frobenius operator depends on the trajectory point
time t in the past

Here we limit ourselves to a brief remark about the notion of “spectrum” of a
linear operator.

The Koopman operator K acts multiplicatively in time, so it is reasonable to
suppose that there exist constants M > 0, β ≥ 0 such that ||K t|| ≤ Metβ for all
t ≥ 0. What does that mean? The operator norm is define in the same spirit in
which we defined the matrix norms in sect. A46.2: We are assuming that no value
of K tρ(x) grows faster than exponentially for any choice of function ρ(x), so that
the fastest possible growth can be bounded by etβ, a reasonable expectation in the
light of the simplest example studied so far, the exact escape rate (20.41). If that
is so, multiplying K t by e−tβ we construct a new operator e−tβK t = et(A−β) which
decays exponentially for large t, ||et(A−β)|| ≤ M. We say that e−tβK t is an element
of a bounded semigroup with generator A − β1. Given this bound, it follows by
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the Laplace transform∫ ∞

0
dt e−stK t =

1
s −A

, Re s > β , (A19.2)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to cause
section A46.2

separation into constituents)∣∣∣∣∣∣∣∣∣∣ 1
s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−st Metβ =

M
s − β

.

If one is interested in the spectrum of K , as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief aside is that for the continu-
ous time flows the Laplace transform is the tool that brings down the generator in
(19.26) into the resolvent form (20.32) and enables us to study its spectrum.

A19.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operatorsK t. We have introduced
the generator of the semigroup (19.24) as

A =
d
dt
K t

∣∣∣∣∣
t=0

.

If we now take the derivative at arbitrary times we get

(
d
dt
K tψ

)
(x) = lim

η→0

ψ( f t+η(x)) − ψ( f t(x))
η

= vi( f t(x))
∂

∂x̃i
ψ(x̃)

∣∣∣∣∣
x̃= f t(x)

=
(
K tAψ

)
(x)

which can be formally integrated like an ordinary differential equation yielding
exercise A19.1

K t = etA . (A19.3)

This guarantees that the Laplace transform manipulations in sect. 19.5 are correct.
Though the formal expression of the semigroup (A19.3) is quite simple one has
to take care in implementing its action. If we express the exponential through the
power series

K t =

∞∑
k=0

tk

k!
Ak , (A19.4)
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we encounter the problem that the infinitesimal generator (19.24) contains non-
commuting pieces, i.e., there are i, j combinations for which the commutator does
not satisfy[

∂

∂xi
, v j(x)

]
= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects. 4.3 and 4.4 and use the semigroup property
to write

K t =

t/δτ∏
m=1

Kδτ

as the starting point for a discretized approximation to the continuous time dy-
namics, with time step δτ. Omitting terms from the second order onwards in the
expansion of Kδτ yields an error of order O(δτ2). This might be acceptable if the
time step δτ is sufficiently small. In practice we write the Euler product

K t =

t/δτ∏
m=1

(
1 + δτA(m)

)
+ O(δτ2) (A19.5)

where(
A(m)ψ

)
(x) = vi( f mδτ(x))

∂ψ

∂x̃i

∣∣∣∣∣
x̃= f mδτ(x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi


x1

·

xi

xd


→


x1

·

xi + δτvi(x)

xd


. (A19.6)

We see that the product form (A19.5) of the operator is nothing else but a pre-
exercise 2.6

scription for finite time step integration of the equations of motion - in this case
the simplest Euler type integrator which advances the trajectory by δτ×velocity at
each time step.

A19.2.1 A symplectic integrator

The procedure we described above is only a starting point for more so-
phisticated approximations. As an example on how to get a sharper bound on the
error term consider the Hamiltonian flowA = B + C, B = pi

∂
∂qi

, C = −∂iV(q) ∂
∂pi

.
Clearly the potential and the kinetic parts do not commute. We make sense of the

exercise A19.2
formal solution (A19.5) by splitting it into infinitesimal steps and keeping terms
up to δτ2 in

Kδτ = K̂δτ +
1
24
δτ3[B + 2C, [B,C]] + · · · , (A19.7)
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where

K̂δτ = e
1
2 δτBeδτCe

1
2 δτB . (A19.8)

The approximate infinitesimal Liouville operator K̂δτ is of the form that now gen-
erates evolution as a sequence of mappings induced by (19.27), a free flight by
1
2δτB, scattering by δτ∂V(q′), followed again by 1

2δτB free flight:

e
1
2 δτB

{
q
p

}
→

{
q′

p′

}
=

{
q − δτ

2 p
p

}
eδτC

{
q′

p′

}
→

{
q′′

p′′

}
=

{
q′

p′ + δτ∂V(q′)

}
e

1
2 δτB

{
q′′

p′′

}
→

{
q′′′

p′′′

}
=

{
q′ − δτ

2 p′′

p′′

}
(A19.9)

Collecting the terms we obtain an integration rule for this type of symplectic flow
which is better than the straight Euler integration (A19.6) as it is accurate up to
order δτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (A19.10)

The Jacobian matrix of one integration step is given by

M =

[
1 −δτ/2
0 1

] [
1 0

δτ∂V(q′) 1

] [
1 −δτ/2
0 1

]
. (A19.11)

Note that the billiard flow (9.9) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneous wall reflections, and can be
integrated out.

Commentary

Remark A19.1. Koopman operators. The “Heisenberg picture” in dynamical sys-
tems theory has been introduced by Koopman and Von Neumann [3, 5], see also ref. [4].
Inspired by the contemporary advances in quantum mechanics, Koopman [3] observed in
1931 that K t is unitary on L2(µ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(
iĤt/~

)
– the kernel ofLt(y, x) introduced

in (19.13) (see also sect. 20.3) is the analogue of the Green’s function discussed here in
chapter 36. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [5]. We shall not use Hilbert spaces here and
the operators that we shall study will not be unitary. For a discussion of the relation be-
tween the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [4] and Gaspard [2].
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Remark A19.2. Symplectic integration. The reviews [1] and [6] offer a good starting
point for exploring the symplectic integrators literature. For a higher order integrators of
type (A19.8), check ref. [7].
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Exercises

A19.1. Exponential form of semigroup elements. Check
that the Koopman operator and the evolution generator
commute, K tA = AK t, by considering the action of
both operators on an arbitrary state space function a(x).

A19.2. Non-commutativity. Check that the commutators in
(A19.7) are not vanishing by showing that

[B,C] = −p
(
V ′′

∂

∂p
− V ′

∂

∂q

)
.

A19.3. Symplectic leapfrog integrator. Implement (A19.10)
for 2-dimensional Hamiltonian flows; compare it with
Runge-Kutta integrator by integrating trajectories in
some (chaotic) Hamiltonian flow.

A19.4. Symplectic volume preservation. Check that the
sequence of mappings (A19.9) is volume preserving,
det Û = 1.
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