
Chapter 18

Counting

I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This
is the simplest illustration of the raison d’etre of periodic orbit theory;

we derive a duality transformation that relates local information - in this case the
next admissible symbol in a symbol sequence - to global averages, in this case
the mean rate of growth of the number of cycles with increasing cycle period. In
chapter 17 we have transformed, by means of the transition matrices / graphs, the
topological dynamics of chapter 14 into a multiplicative operation. Here we show
that the nth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore given
by the leading eigenvalue of the transition matrix; the leading eigenvalue is in turn
given by the leading zero of the characteristic determinant of the transition matrix,
which is - in this context - called the topological zeta function.

For flows with finite transition graphs this determinant is a finite topological
polynomial which can be read off the graph. However, (a) even something as
humble as the quadratic map generically requires an infinite partition (sect. 18.5),
but (b) the finite partition approximants converge exponentially fast.

The method goes well beyond the problem at hand, and forms the core of the
entire treatise, making tangible the abstract notion of “spectral determinants” yet
to come.
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18.1 How many ways to get there from here?

In the 3-disk system of example 14.2 the number of admissible trajectories dou-
bles with every iterate: there are Kn = 3 ·2n distinct itineraries of length n. If disks
are too close and a subset of trajectories is pruned, this is only an upper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the form Kn ≥ Cenĥ. Bounded exponentially by
3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (18.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix element Ti j ∈ {0, 1} in (17.1) indicates whether the tran-
sition from the starting partition j into partition i in one step is allowed or not, and
the (i, j) element of the transition matrix iterated n times

exercise 18.1

(T n)i j =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1 j (18.2)

receives a contribution 1 from every admissible sequence of transitions, so (T n)i j

is the number of admissible n symbol itineraries starting with j and ending with i.

example 18.1

p. 346

The total number of admissible itineraries of n symbols is

Kn =
∑

i j

(T n)i j =
[
1, 1, . . . , 1

]
T n


1
1
...
1

 . (18.3)

We can also count the number of prime cycles and pruned periodic points, but
in order not to break up the flow of the argument, we relegate these pretty results
to sect. 18.7. Recommended reading if you ever have to compute lots of cycles.

A finite [N×N] matrix T has eigenvalues {λ0, λ1, · · · , λm−1} and (right) eigen-
vectors {ϕ0, ϕ1, · · · , ϕm−1} satisfying Tϕα = λαϕα. Expressing the initial vector in
(18.3) in this basis (which might be incomplete, with m ≤ N eigenvectors),

T n


1
1
...
1

 = T n
m−1∑
α=0

bαϕα =

m−1∑
α=0

bαλn
αϕα ,
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and contracting with
[
1, 1, . . . , 1

]
, we obtain

Kn =

m−1∑
α=0

cαλn
α .

The constants cα depend on the choice of initial and final partitions: In this ex-
exercise 18.3

ample we are sandwiching T n between the vector
[
1, 1, . . . , 1

]
and its transpose,

but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ϕ0. In an experiment the vector

[
1, 1, . . . , 1

]
would be re-

placed by a description of the initial state, and the right vector would describe the
measurement time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalue λ0 > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore as n increases, the sum
is dominated by the leading eigenvalue of the transition matrix, λ0 > |Re λα|,
α = 1, 2, · · · ,m − 1, and the topological entropy (18.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·

]
= ln λ0 + lim

n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·

]
= ln λ0 , (18.4)

where we have used that (λ1/λ0)n is small, and Taylor expansion ln(1 + x) =

x + O(x2).

What have we learned? The transition matrix T is a one-step, short time oper-
ator, advancing the trajectory from one partition to the next admissible partition.
Its eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly counting K1,K2,K3, . . . and estimating
(18.1) from a slope of a log-linear plot, we have the exact topological entropy if
we can compute the leading eigenvalue of the transition matrix T . This is reminis-
cent of the way free energy is computed from transfer matrices for 1-dimensional
lattice models with finite range interactions. Historically, it is this analogy with
statistical mechanics that led to introduction of evolution operator methods into
the theory of chaotic systems.

18.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by evaluating
the trace tr T n =

∑
λn
α, or by evaluating the determinant det (1 − zT ). We start by

evaluating the trace of transition matrices. The main lesson will be that the trace
receives contributions only from itineraries that return to the initial partition, i.e.,
periodic orbits.
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CHAPTER 18. COUNTING 329

Consider an M-step memory transition matrix, like the 1-step memory exam-
ple (17.11). The trace of the transition matrix counts the number of partitions that
map into themselves. More generally, each closed walk through n concatenated
entries of T contributes to tr T n the product (18.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by one symbol; the trace
ensures that the walk closes on a periodic string c. Define tc to be the product of
matrix elements along a cycle c, each term being multiplied by a book keeping
variable z.

The lower case ‘t’ indicates that the quantity tc is a ‘local trace’ associated
with the particular, ‘local’ walk c, in the sense that the trace of T n is a sum over
such quantities. In chapters that follow, the tc will take a continuum of values, so
for the remainder of this chapter we stick to the ‘tc’ notation rather than to the 0 or
zn values specific to the counting problem. The book keeping variable z is for the
moment just that, a bookkeeping device, but in the chapters to come it will assume
a much deeper role as the Laplace transform variable dual to the discrete time n
(see the discussion following (21.8), (21.10)), just as the energy is the variable
dual to time in quantum mechanics (this is made explicit by the relation between
the continuous and discrete time cases (21.20), and, deeper still, by the form of
the semiclassical zeta function (39.12)).

The quantity zntr T n is then the sum of tc for all cycles of period n. The tc
= (product of matrix elements along cycle c) is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cycle p of period np contributes np times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting
(remember (17.1), the definition of the transition matrix), the local trace takes
values

tp =

{
znp if p is an admissible cycle
0 otherwise, (18.5)

i.e., (setting z = 1) the local trace is tp = 1 if the cycle is admissible, and tp = 0
otherwise.

example 18.2

p. 346

Hence tr T n = Nn counts the number of admissible periodic points of period
n. The nth order trace (18.28) picks up contributions from all repeats of prime
cycles, with each cycle contributing np periodic points, so Nn, the total number of
periodic points of period n is given by

znNn = zntr T n =
∑
np |n

nptn/np
p =

∑
p

np

∞∑
r=1

δnpr,ntr
p . (18.6)

Here m|n means that m is a divisor of n. An example is the periodic orbit counting
in table 18.2.

In order to get rid of the awkward divisibility constraint n = npr in the above
sum, we introduce the generating function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1 − zT
. (18.7)
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Table 18.1: Prime cycles for the binary symbolic dynamics up to length 9. The numbers
of prime cycles are given in table 18.3.

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 18.2: The total numbers Nn of periodic points of period n, expressed in terms of
prime cycles (18.6), for binary symbolic dynamics. The numbers of contributing prime
cycles illustrates the preponderance of long prime cycles of period n over the repeats of
shorter cycles of periods np, where n = rnp. Further enumerations of binary prime cycles
are given in tables 18.1 and 18.3. (L. Rondoni)

n Nn # of prime cycles of period np

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99
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The right hand side is the geometric series sum of Nn = tr T n. Substituting (18.6)
into the left hand side, and replacing the right hand side by the eigenvalue sum
tr T n =

∑
λn
α, we obtain our first example of a trace formula, the topological trace

formula∑
α=0

zλα
1 − zλα

=
∑

p

nptp

1 − tp
. (18.8)

A trace formula relates the spectrum of eigenvalues of an operator - here the tran-
sition matrix - to the spectrum of periodic orbits of a dynamical system. It is a
statement of duality between the short-time, local information - in this case the
next admissible symbol in a symbol sequence - to long-time, global averages, in
this case the mean rate of growth of the number of cycles with increasing cycle
period.

The zn sum in (18.7) is a discrete version of the Laplace transform (see sect. 21.1.2),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (21.9), (21.19), and the Gutzwiller trace formula (39.3) of semi-
classical quantum mechanics. We shall now use this result to compute the spectral
determinant of the transition matrix.

18.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an [m×m]
transition matrix

det (1 − zT ) =

m−1∏
α=0

(1 − zλα) . (18.9)

We could now proceed to diagonalize T on a computer, and get this over with. It
pays, however, to dissect det (1 − zT ) with some care; understanding this compu-
tation in detail will be the key to understanding the cycle expansion computations
of chapter 23 for arbitrary dynamical averages. For T a finite matrix, (18.9) is just
the characteristic polynomial for T . However, we shall be able to compute this ob-
ject even when the dimension of T and other such operators becomes infinite, and
for that reason we prefer to refer to (18.9) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix; we will view the
determinant as a sum over all possible permutation cycles composed of the traces
tr T k, in the spirit of the determinant–trace relation (1.16):

exercise 4.1

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

−∑
n=1

zn

n
tr T n


= 1 − z tr T −

z2

2

(
(tr T )2 − tr T 2

)
− . . . (18.10)

This is sometimes called a cumulant expansion. Formally, the right hand is a
Taylor series in z about z = 0. If T is an [m×m] finite matrix, then the characteristic
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polynomial is at most of order m. In that case the coefficients of zn must vanish
exactly for n > m.

We now proceed to relate the determinant in (18.10) to the corresponding
transition graph of chapter 17: toward this end, we start with the usual textbook
expression for a determinant as the sum of products of all permutations

det M =
∑
{π}

(−1)πM1,π1 M2,π2 · · ·Mm,πm (18.11)

where M = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations of m
symbols, πk is the permutation π applied to k, and (−1)π = ±1 is the parity of
permutation π. The right hand side of (18.11) yields a polynomial in T of order m
in z: a contribution of order n in z picks up m − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · · Tsnπsn (18.12)

where π is the permutation of the subset of n distinct symbols s1 · · · sn indexing T
matrix elements. As in (18.28), we refer to any combination tc = Ts1 sk Ts3 s2 · · · Ts2 s1 ,
for a given itinerary c = s1s2 · · · sk, as the local trace associated with a closed loop
c on the transition graph. Each term of the form (18.12) may be factored in terms
of local traces tc1 tc2 · · · tck , i.e., loops on the transition graph. These loops are non-
intersecting, as each node may only be reached by one link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
single link, as each s j must appear exactly once as a row and column index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the case of loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appear in (18.12), i.e.,
only the diagonal elements of T are picked up. We have k = m loops and an even
permutation π so the sign is given by (−1)k, where k is the number of loops. Now
take the case in which we have i single loops and j loops of length n = 2 j + i.
The parity of the permutation gives (−1) j and the first factor in (18.12) gives
(−1)n = (−1)2 j+i. So once again these terms combine to (−1)k, where k = i + j is
the number of loops. Let f be the maximal number of non-intersecting loops. We

exercise 18.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1 − zT ) =

f∑
k=0

∑′

π

(−1)ktp1 · · · tpk (18.13)

Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop tab and its shadow tatb in the case at hand
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carry the same weight zna+nb , the cancelation is exact, and the loop expansion
(18.13) is finite. In the case that the local traces count prime cycles (18.5), tp = 0
or zn , we refer to det (1 − zT ) as the topological polynomial.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tp f } as the fun-
damental cycles (for an explicit example, see the loop expansion of example 18.6).
This is not a very good definition, as transition graphs are not unique –the most we
know is that for a given finite-grammar language, there exist transition graph(s)
with the minimal number of loops. Regardless of how cleverly a transition graph
is constructed, it is always true that for any finite transition graph the number of
fundamental cycles f is finite. If the graph has m nodes, no fundamental cycle is
of period longer than m, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics tran-
sition graph of figure 17.5 is a little bit too simple, but let us start humbly and
consider it anyway.

example 18.3

p. 346

Similarly, for the complete symbolic dynamics of N symbols the transition graph
has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (18.14)

which gives the topological entropy h = ln N.

example 18.4

p. 347

example 18.5

p. 347

example 18.6

p. 347

18.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the transition graph
is infinite? If we are never sure that looking further into the future will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by its cumulant
expansion (18.10)

exercise 4.1

det (1 − zT ) = 1 −
∞∑

n=1

ĉnzn . (18.15)

example 18.7

p. 348

For finite dimensional matrices the expansion is a finite polynomial, and (18.15)
is an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ĉn define the determinant.
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Figure 18.1: (a) The region labels in the nodes
of transition graph figure 17.4 can be omitted, as
the links alone keep track of the symbolic dynam-
ics. (b)-(j) The fundamental cycles (18.35) for the
transition graph (a), i.e., the set of its non-self-
intersecting loops. Each loop represents a local
trace tp, as in (17.5).

(a) (b)

01
0

1

(c)

1

011

001

(d)

0011

01

1

(e)

0

0111

(f)

00111

01

(g)

001101

1

(h)

001011

1

(i)

0010111

(j)

0011101

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (18.9) in
terms of cycles, substitute (18.6) into (18.15) and sum over the repeats of prime
cycles using ln(1 − x) = −

∑
r xr/r ,

det (1 − zT ) = exp

−∑
p

∞∑
r=1

tr
p

r

 = exp

∑
p

ln(1 − tp)

∏
α

(1 − zλα) =
∏

p

(1 − tp) , (18.16)

where for the topological entropy the weight assigned to a prime cycle p of period
np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned. This determinant
is called the topological or the Artin-Mazur zeta function, conventionally denoted
by

1/ζtop(z) =
∏

p

(1 − znp) = 1 −
∑
n=1

ĉnzn . (18.17)

count - 10mar2018 ChaosBook.org edition16.0, Feb 13 2018

http://youtube.com/embed/OQpBvsZ6iK8


CHAPTER 18. COUNTING 335

Counting cycles amounts to giving each admissible prime cycle p weight tp = znp

and expanding the Euler product (18.17) as a power series in z. The number of
prime cycles p is infinite, but if T is an [m×m] finite matrix, then the number of
roots λα is at most m, the characteristic polynomial is at most of order m, and the
coefficients of zn vanish for n > m. As the precise expression for the coefficients ĉn

in terms of local traces tp is more general than the current application to counting,
we postpone its derivation to chapter 23.

The topological entropy h can now be determined from the leading zero z =

e−h of the topological zeta function. For a finite [m×m] transition matrix, the
number of terms in the characteristic equation (18.13) is finite, and we refer to
this expansion as the topological polynomial of order ≤ m. The utility of defining
the determinant by its cumulant expansion is that it works even when the partition
is infinite, m→ ∞; an example is given in sect. 18.5, and many more later on.

fast track:

sect. 18.5, p. 336

18.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (21.19) to the
problem of deriving the topological zeta functions for flows. The time-weighted
density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tp δ(t − rTp) . (18.18)

The Laplace transform smooths the sum over Dirac delta spikes (see (21.18))
and yields the topological trace formula

∑
p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t − rTp) =
∑

p

Tp

∞∑
r=1

e−sTpr (18.19)

and the topological zeta function for flows:

1/ζtop(s) =
∏

p

(
1 − e−sTp

)
, (18.20)

related to the trace formula by

∑
p

Tp

∞∑
r=1

e−sTpr = −
∂

∂s
ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(18.17) for maps; its leading zero s = −h yields the topological entropy for a flow.
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Figure 18.2: The logarithm ln |z(n)
0 − z0| of the dif-

ference between the leading zero of the n-th polyno-
mial approximation to topological zeta function and
our best estimate (18.23), as a function of order of the
polynomial n (the topological zeta function evaluated
for the closest value of A to A = 3.8 for which the
quadratic map has a stable cycle of period n). (from
K.T. Hansen [9])

18.5 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

To understand the need for topological zeta function (18.15), we turn a
dynamical system with (as far as we know - there is no proof) an infinite partition,
or an infinity of ever-longer pruning rules. Consider the 1-dimensional quadratic
map (14.19)

f (x) = Ax(1 − x) , A = 3.8 .

Numerically the kneading sequence (the itinerary of the critical point x = 1/2
(14.5)) is

exercise 18.20

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of figure 14.9. How this
kneading sequence is converted into a series of pruning rules is a dark art.For the
moment it suffices to state the result, to give you a feeling for what a “typical”
infinite partition topological zeta function looks like. For example, approximating
the dynamics by a transition graph corresponding to a repeller of the period 29
attractive cycle close to the A = 3.8 strange attractor yields a transition graph with
29 nodes and the characteristic polynomial

1/ζ(29)
top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (18.21)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (18.22)

Constructing finite transition graphs of increasing length corresponding to A →
3.8 we find polynomials with better and better estimates for the topological en-
tropy. For the closest stable period 90 orbit we obtain our best estimate of the
topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (18.23)
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Figure 18.3: The 90 zeroes of the topological zeta
function for the quadratic map for A = 3.8 approxi-
mated by the nearest topological zeta function with a
stable cycle of length 90. (from K.T. Hansen [9])

Figure 18.2 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (18.23), plotted as a function of the
period of the stable periodic orbit. The error of the estimate (18.22) is expected
to be of order z29 ≈ e−14 because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nodes giving terms ±z29

and of higher order in the polynomial. Hence the convergence is exponential,
with an exponent of −0.47 = −h, the topological entropy itself. In figure 18.3
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin. Most
of the other zeroes are close to the unit circle; we conclude that for infinite state
space partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeed λ1/λ0 = 1/eh = e−h.

18.6 Shadowing

The topological zeta function is a pretty function, but the infinite product (18.16)
should make you pause. For finite transition matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; so why is the right hand
side an infinite product over the infinitely many prime periodic orbits of all peri-
ods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (23.8) of chapter 23; all cycles beyond the fundamental t0
and t1 appear in the shadowing combinations such as

ts1 s2···sn − ts1 s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we are
counting cycles as we do in (18.29) and (18.36), or if the dynamics is piecewise
linear, as in exercise 22.2. As we argue in sect. 1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combina-
tions almost cancel, and the spectral determinant is dominated by the fundamental
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cycles from (18.13), with longer cycles contributing only small “curvature” cor-
rections.

These exact or nearly exact cancelations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
an infinite state space partition, with pruning rules for blocks of increasing length,
most of the shadowing combinations still cancel, but the few corresponding to new
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant, as depicted in figure 18.3.

One striking aspect of the pruned cycle expansion (18.21) compared to the
trace formulas such as (18.7) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergence e−h, in
the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (18.15) increases the analyticity domain:
the pole in the trace (18.8) at z = e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

This sensitive dependence of spectral determinants on whether or not the sym-
bolic dynamics is a subshift of finite type is bad news. If the system is generic and
not structurally stable (see sect. 15.2), a smooth parameter variation is in no sense
a smooth variation of topological dynamics - infinities of periodic orbits are cre-
ated or destroyed, and transition graphs go from being finite to infinite and back.
That will imply that the global averages that we intend to compute are generi-
cally nowhere differentiable functions of the system parameters, and averaging
over families of dynamical systems can be a highly nontrivial enterprise; a simple
illustration is the parameter dependence of the diffusion constant computed in a
remark in chapter 24.

You might well ask: What is wrong with computing the entropy from (18.1)?
Does all this theory buy us anything? An answer: If we count Kn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure 17.6, or
the cycle expansion of (18.37) - and the finite estimates of hn = ln Kn/n converge
nonuniformly to h, and on top of that with a slow rate of convergence, |h − hn| ≈

O(1/n) as in (18.4). The determinant (18.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yields the asymptotic value of h
with no need for any finite n extrapolations.

fast track:

sect. 19, p. 352

18.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramago, The Double
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Table 18.3: Number of prime cycles for various alphabets and grammars up to period
10. The first column gives the cycle period, the second gives the formula (18.26) for the
number of prime cycles for complete N-symbol dynamics, and columns three through five
give the numbers of prime cycles for N = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

In what follows, we shall occasionally need to compute all cycles up to
topological period n, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the street, and probably best
skipped on the first reading.

18.7.1 Counting periodic points

The number of periodic points of period n is denoted Nn. It can be computed from
(18.15) and (18.7) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnzn = tr
(
−z

d
dz

ln(1 − zT )
)

= −z
d
dz

ln det (1 − zT )

=
−z d

dz (1/ζtop)

1/ζtop
. (18.24)

Observe that the trace formula (18.8) diverges at z→ e−h, because the denomina-
tor has a simple zero there.

example 18.8

p. 348

example 18.9

p. 349

18.7.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number of prime cycles Mn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of finding Mn is classical in combinatorics
(counting necklaces made out of n beads of N different kinds) and is easily solved.
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There are Nn possible distinct strings of length n composed of N letters. These
Nn strings include all Md prime d-cycles whose period d equals or divides n. A
prime cycle is a non-repeating symbol string: for example, p = 011 = 101 =

110 = . . . 011011 . . . is prime, but 0101 = 010101 · · · = 01 is not. A prime d-
cycle contributes d strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of period n
is therefore related to the number of prime cycles by

Nn =
∑
d|n

dMd , (18.25)

where Nn equals tr T n. The number of prime cycles can be computed recursively

Mn =
1
n

Nn −

d<n∑
d|n

dMd

 ,
or by the Möbius inversion formula

exercise 18.10

Mn = n−1
∑
d|n

µ
(n
d

)
Nd . (18.26)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1 p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to period 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 18.3, obtained by Möbius inversion (18.26).

exercise 18.11

example 18.10

p. 349

example 18.11

p. 349

example 18.12

p. 349

Résumé

The main result of this chapter is the cycle expansion (18.17) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkzk .

For subshifts of finite type, the transition matrix is finite, and the topological zeta
function is a finite polynomial evaluated by the loop expansion (18.13) of det (1−
zT ). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropy h is given by the leading zero z = e−h. This
expression for the entropy is exact; in contrast to the initial definition (18.1), no
n→ ∞ extrapolations of ln Kn/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another region to the leading eigen-
value of the transition matrix T . The spectrum of T is given by topological zeta
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Table 18.4: List of 3-disk prime cycles up to period 10. Here n is the cycle period, Mn is
the number of prime cycles, Nn is the number of periodic points, and S n the number of
distinct prime cycles under D3 symmetry (see chapter 25 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of periods that divide n.
The prefactors in the fifth column indicate the degeneracy mp of the cycle; for example,
3·12 stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative p̂ which is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by time reversal symmetry, but not by
any D3 transformation.

n Mn Nn S n mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 18.5: The 4-disk prime cycles up to period 8. The symbols is the same as shown
in table 18.4. Orbits related by time reversal symmetry (but no C4v symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn S n mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108
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function, a certain sum over traces tr T n, and in this way the periodic orbit theory
has entered the arena through the trace formula (18.8), already at the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson that will be constantly
reaffirmed, is that while trace formulas are a conceptually essential step in deriving
and understanding periodic orbit theory, the spectral determinant is the right object
to use in actual computations. Instead of summing all of the exponentially many
periodic points required by trace formulas at each level of truncation, spectral det-
erminants incorporate only the small incremental corrections to what is already
known - and that makes them a more powerful tool for computations.

Contrary to claims one all too often encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules, or the “algorithmic
complexity,” as illustrated by sect. 18.5, and figure 18.3 in particular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammar leads to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to the problem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter 21, a weighted generalization of the topological
zeta function.

Commentary

Remark 18.1. Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function
for the Frobenius map [17], Artin and Mazur [2] introduced the zeta function (18.17)
that counts periodic points for diffeomorphisms (see also ref. [14] for their evaluation for
maps of the interval). Smale [16] conjectured rationality of the zeta functions for Axiom
A diffeomorphisms, later proved by Guckenheimer [8] and Manning [13]: Every subshift
of finite type has a rational zeta function. However, most subshifts have irrational zeta
functions [4]. See remark 22.4 on page 413 for more zeta function history.

Remark 18.2. “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of the
dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat ap-
plies to other entropies.In order to obtain invariant characterizations we will have to work
harder. Mathematicians like to define the (impossible to evaluate) supremum over all pos-
sible partitions. The key point that eliminates the need for such searches is the existence
of generators, i.e., partitions that under the dynamics are able to probe the whole state
space on arbitrarily small scales. A generator is a finite partitionM = {M1 . . .MN} with
the following property: consider the partition built upon all possible intersections of sets
f n(Mi), where f is dynamical evolution and n takes all possible integer values (positive
as well as negative), then the closure of such a partition coincides with the ‘algebra of all
measurable sets.’ For a thorough (and readable) discussion of generators and how they
allow a computation of the Kolmogorov entropy, see ref. [1].
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Remark 18.3. Perron-Frobenius matrices. For a proof of the Perron theorem on the
leading eigenvalue see ref. [11]. Appendix A4.1 of Zinn-Justin monograph [18] offers a
clear discussion of the spectrum of the transition (or Perron-Frobenius) matrix.

Remark 18.4. Determinant of a graph. Many textbooks offer derivations of the
loop expansions of characteristic polynomials for transition matrices and their transition
graphs, see for example refs. [6, 10, 15].

Remark 18.5. Ordering periodic orbit expansions. In sect. 23.7 we will introduce
an alternative way of hierarchically organizing cumulant expansions, in which the order
is dictated by stability rather than cycle period: such a procedure may be better suited to
perform computations when the symbolic dynamics is not well understood.

Remark 18.6. T is not trace class. Note to the erudite reader: the transition matrix
T (in the infinite partition limit (18.15)) is not trace class. Still the trace is well defined in
the n→ ∞ limit.

Remark 18.7. Counting prime cycles. Duval [3, 7] has an efficient algorithm for
generating Lyndon words [5, 12] (non-periodic necklaces, i.e., prime cycle itineraries).
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18.8 Examples

Example 18.1. 3-disk itinerary counting. The (T 2)13 = T12T23 = 1 element of T 2 for
the 3-disk transition matrix (17.9)0 1 1

1 0 1
1 1 0


2

=

2 1 1
1 2 1
1 1 2

 . (18.27)

corresponds to path 3→ 2→ 1, the only 2-step path from 3 to 1, while (T 2)33 = T31T13 +

T32T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace tr T 2 =

(T 2)11 + (T 2)22 + (T 2)33 = 2T13T31 + 2T21T12 + 2T32T23 has a contribution from each
2-cycle 12, 13, 23 twice, one contribution from each periodic point.

click to return: p. 327

Example 18.2. Traces for binary symbolic dynamics. For example, for the [8×8] tran-
sition matrix Ts1 s2 s3,s0 s1 s2 version of (17.11), or any refined partition [2n×2n] transition ma-
trix, n arbitrarily large, the periodic point 100 contributes t100 = z3T100,010T010,001T001,100
to z3tr T 3. This product is manifestly cyclically invariant, t100 = t010 = t001, so a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its orbit.

exercise 14.7

For the binary labeled non–wandering set the first few traces are given by (consult
tables 18.1 and 18.2)

z tr T = t0 + t1,

z2tr T 2 = t2
0 + t2

1 + 2t10,

z3tr T 3 = t3
0 + t3

1 + 3t100 + 3t101,

z4tr T 4 = t4
0 + t4

1 + 2t2
10 + 4t1000 + 4t1001 + 4t1011. (18.28)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0 +

T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
M → ∞, in which case the contributing partitions are shrunk to the fixed points, tr T =

T0,0 + T1,1.

If there are no restrictions on symbols, the symbolic dynamics is complete, and all
binary sequences are admissible (or allowable) itineraries. As this type of symbolic dy-
namics pops up frequently, we list the shortest binary prime cycles in table 18.1.

exercise 14.2
click to return: p. 329

Example 18.3. Topological polynomial for complete binary dynamics. (Continua-
tion of example 17.1) There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 − (t01 − t0t1) = 1 − 2z (18.29)

0 1 = 1 − 0 − 1 −

(
0 1 − 1 0

)
.

Due to the symmetry under 0 ↔ 1 interchange, this is a redundant graph (the 2-cycle t01
is exactly shadowed by the 1-cycles). Another way to see is that itineraries are labeled
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by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links and 2 out-
links, they can be identified, and a more economical presentation is in terms of the [1×1]
adjacency matrix (17.12)

det (1 − zA) = 1 − t0 − t1 = 1 − 2z (18.30)
= 1 − 0 − 1 .

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no surprise.

click to return: p. 333

Example 18.4. Golden mean pruning. The “golden mean" pruning of example 17.5
has one grammar rule: the substring _11_ is forbidden. The corresponding transition

exercise 18.5graph non-intersecting loops are of length 1 and 2, so the topological polynomial is given
by

det (1 − zT ) = 1 − t0 − t01 = 1 − z − z2 (18.31)

0 1 = 1 − 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (18.4) is the loga-
rithm of the golden mean, h = ln 1+

√
5

2 .
click to return: p. 333

Example 18.5. Nontrivial pruning. The non-self-intersecting loops of the transition
graph of figure 17.3 (d) are indicated in figure 17.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (18.32)

With tp = znp , where np is the period of the p-cycle, the smallest root of

0 = 1 − z − 2z4 + z8 (18.33)

yields the topological entropy h = − ln z, z = 0.658779 . . . , h = 0.417367 . . . , significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropy h = ln 2 = 0.693 . . .

exercise 18.9
click to return: p. 333

Example 18.6. Loop expansion of a transition graph. (Continued from exam-
ple 17.3) Consider a state space covered by 7 neighborhoods (17.8), with the topological
time evolution given by the transition graph of figure 17.4.

The determinant det (1 − zT ) of the transition graph in figure 17.4 can be read off the
graph, and expanded as a polynomial in z, with coefficients given by products of non-
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intersecting loops (traces of powers of T ) of the transition graph figure 18.1:

det (1 − zT ) = 1 − (t0 + t1)z − (t01 − t0t1) z2 − (t001 + t011 − t01t0 − t01t1) z3

− (t0011 + t0111 − t001t1 − t011t0 − t011t1 + t01t0t1) z4

− (t00111 − t0111t0 − t0011t1 + t011t0t1) z5 (18.34)
− (t001011 + t001101 − t0011t01 − t001t011) z6

− (t0010111 + t0011101 − t001011t1 − t001101t1 − t00111t01 + t0011t01t1 + t001t011t1) z7 .

Twelve cycles up to period 7 are fundamental cycles:

0, 1, 01, 001, 011, 0011, 0111, 00111, 001011, 001101, 0010111, 0011101 , (18.35)

out of the total of 41 prime cycles (listed in table 18.1) up to cycle period 7. The topolog-
ical polynomial tp → znp

1/ζtop(z) = 1 − 2 z − z7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological entropy
is only a bit smaller than the binary h = ln 2. Not exactly obvious from the partition (17.8).

click to return: p. 333

Example 18.7. Complete binary det (1 − zT ) expansion. (Continuation of exam-
ple 17.6) Consider the loop expansion of the binary 1-step memory transition graph
(17.11)

01

10

1100 = 1 − 0 − 1 −

(
0 1 − 1 0

)
= 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]
−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]

= 1 −
∑

f

t f −
∑

n

ĉn = 1 − 2z . (18.36)

click to return: p. 333

Example 18.8. Complete N-ary dynamics. To check formula (18.24) for the finite-
grammar situation, consider the complete N-ary dynamics (17.7) for which the number of
periodic points of period n is simply tr T n

c = Nn. Substituting

∞∑
n=1

zn

n
tr T n

c =

∞∑
n=1

(zN)n

n
= − ln(1 − zN) ,

into (18.15) we verify (18.14). The logarithmic derivative formula (18.24) in this case
does not buy us much either, it simply recovers∑

n=1

Nnzn =
Nz

1 − Nz
.

click to return: p. 339
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Example 18.9. Nontrivial pruned dynamics. Consider the pruning of figure 17.3 (e).
Substituting (18.24) we obtain∑

n=1

Nnzn =
z + 8z4 − 8z8

1 − z − 2z4 + z8 . (18.37)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Nn; it actually yields the exact numbers of periodic points. In case at hand it yields a
nontrivial recursive formula N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, N8 = 25,
and Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

click to return: p. 339

Example 18.10. Counting N-disk periodic points. A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = tr T n. The
pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the number
of the N-disk periodic points is

Nn = tr T n
N−disk = (N − 1)n + (−1)n(N − 1) . (18.38)

Here Tc is the complete symbolic dynamics transition matrix (17.7). For the N-disk
pruned case (18.38), Möbius inversion (18.26) yields

MN−disk
n =

1
n

∑
d|n

µ
(n
d

)
(N − 1)d +

N − 1
n

∑
d|n

µ
(n
d

)
(−1)d

= M(N−1)
n for n > 2 . (18.39)

There are no fixed points, so MN−disk
1 = 0. The number of periodic points of period 2

is N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of period 2; for periods

n > 2, the number of prime cycles is the same as for the complete (N − 1)-ary dynamics
of table 18.3.

click to return: p. 340

Example 18.11. Pruning individual cycles. Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (18.39). To obtain the topological zeta function, just divide out the binary 1-
and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles
(1 − z2t12)(1 − z2t13)(1 − z2t23):

exercise 18.14
exercise 18.15

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)
= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (18.40)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (25.32).
As we shall see in chapter 25, symmetries lead to factorizations of topological polynomi-
als and topological zeta functions.

click to return: p. 340

Example 18.12. Alphabet {a, cbk; b}. (Continuation of exercise 18.16) In the cycle
counting case, the dynamics in terms of a → z, cbk → z + z2 + z3 + · · · = z/(1 − z) is a
complete binary dynamics with the explicit fixed point factor (1 − tb) = (1 − z):

exercise 18.19

1/ζtop = (1 − z)
(
1 − z −

z
1 − z

)
= 1 − 3z + z2 .

click to return: p. 340

count - 10mar2018 ChaosBook.org edition16.0, Feb 13 2018



EXERCISES 349

Exercises

18.1. A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transi-
tion matrix results in two coupled linear differ-
ence equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate tr T n to
tr T n−1 + . . . .)

b) Solve the above difference equation and obtain the
number of periodic orbits of length n. Compare
your result with table 18.4.

c) Find the eigenvalues of the transition matrix T for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics {0, 1}.

18.2. 3-disk prime cycle counting. A prime cycle p
of length np is a single traversal of the orbit; its label is
a non-repeating symbol string of np symbols. For ex-
ample, 12 is prime, but 2121 is not, since it is 21 = 12
repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · · .

18.3. Sum of Ai j is like a trace. Let A be a matrix with
eigenvalues λk. Show that

Γn :=
∑
i, j

[An]i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln |tr An| and ln |Γn| have
the same asymptotic behavior as n→ ∞, i.e., their
ratio converges to one?

(b) Do eigenvalues λk need to be distinct, λk , λl for
k , l? How would a degeneracy λk = λl affect
your argument for (a)?

18.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (18.13):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1 tp2 · · · tpk .

18.5. Transition matrix and cycle counting. Suppose you
are given the transition graph

0 1a b
c

This diagram can be encoded by a matrix T , where the
entry Ti j means that there is a link connecting node i to
node j. The value of the entry is the weight of the link.

(a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a b
c 0

]
.

(b) Enumerate all the walks of length three on the
transition graph. Now compute T 3 and look at the
entries. Is there any relation between the terms in
T 3 and all the walks?

(c) Show that T n
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

(d) Estimate the number Kn of walks of length n for
this simple transition graph.

(e) The topological entropy h measures the rate of ex-
ponential growth of the total number of walks Kn

as a function of n. What is the topological entropy
for this transition graph?

18.6. Alphabet {0,1}, prune _00_ . The transition graph
example 17.8 implements this pruning rule which im-
plies that “0" must always be bracketed by “1"s; in terms
of a new symbol 2 := 10, the dynamics becomes unre-
stricted symbolic dynamics with with binary alphabet
{1,2}. The cycle expansion (18.13) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .
= 1 − t1 − t2 − (t12 − t1t2) (18.41)
−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10) (18.42)
−(t1110 − t110t1) − (t11010 − t110t10) . . .

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For uni-
modal maps this symbolic dynamics is realized by the
tent map of exercise 14.6.
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18.7. “Golden mean” pruned map. (continuation of exer-
cise 14.6) Show that the total number of periodic orbits
of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n .

Continued in exercise 22.1. See also exercise 18.8.

18.8. A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations, S + = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of 0 fixed point, and
_00_ pruned from the recurrent set. (K.T. Hansen)

18.9. Glitches in shadowing. (medium difficulty) Note
that the combination t00011 minus the “shadow” t0t0011 in
(18.32) cancels exactly, and does not contribute to the
topological zeta function (18.33). Are you able to con-
struct a smaller transition graph than figure 17.3 (e)?

18.10. Whence Möbius function? To understand the origin
of the Möbius function (18.26), consider the function

f (n) =
∑
d|n

g(d) (18.43)

where d|n stands for sum over all divisors d of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑
d|n

µ(n/d) f (d) . (18.44)

18.11. Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of
the second column of table 18.3.
Write a program that determines the number of prime
cycles of length n. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

18.12. Counting subsets of cycles. The techniques devel-
oped above can be generalized to counting subsets of cy-
cles. Consider the simplest example of a dynamical sys-
tem with a complete binary tree, a repeller map (14.20)

with two straight branches, which we label 0 and 1. Ev-
ery cycle weight for such map factorizes, with a factor t0
for each 0, and factor t1 for each 1 in its symbol string.
Prove that the transition matrix traces (18.28) collapse
to tr(T k) = (t0 + t1)k, and 1/ζ is simply∏

p

(
1 − tp

)
= 1 − t0 − t1 (18.45)

Substituting (18.45) into the identity∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1
= 1 + t0 + t1

+

∞∑
n=2

n−1∑
k=1

2
(
n − 2
k − 1

)
tk
0tn−k

1 .

Hence for n ≥ 2 the number of terms in the cumulant
expansion with k 0’s and n − k 1’s in their symbol se-
quences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =

{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n − 1

nMn,k =
∑
m
∣∣∣ n

k

µ(m)
(
n/m
k/m

)

where the sum is over all m which divide both n and k.
(continued as exercise 23.7)

18.13. Logarithmic periodicity of ln Nn. (medium diffi-
culty) Plot (ln Nn, nh) for a system with a nontrivial fi-
nite transition graph. Do you see any periodicity? If yes,
why?

18.14. Symmetric 4-disk pinball topological zeta function.
Show that the 4-disk pinball topological zeta function
(the pruning affects only the fixed points and the 2-
cycles) is given by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (18.46)
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18.15. Symmetric N-disk pinball topological zeta function.
Show that for an N-disk pinball, the topological zeta
function is given by

1/ζN−disk
top = (1 − (N − 1)z) ×

(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 .(18.47)

The topological zeta function has a root z−1 = N − 1,
as we already know it should from (18.38) or (18.14).
We shall see in sect. 25.4 that the other roots reflect the
symmetry factorizations of zeta functions.

18.16. Alphabet {a, b, c}, prune _ab_ . Write down the
topological zeta function for this pruning rule.

18.17. Alphabet {0,1}, prune n repeats of “0" _000 . . . 00_ .
This is equivalent to the n symbol alphabet {1, 2, . . . ,
n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 10. . . 00 block lengths: 2:=10,
3:=100, . . . , n:=100. . . 00. Show that the cycle expan-
sion (18.13) becomes

1/ζ = 1 − t1 − t2 · · · − tn − (t12 − t1t2) . . .
−(t1n − t1tn) . . . .

18.18. Alphabet {0,1}, prune _1000_, _00100_, _01100_.
Show that the topological zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (18.48)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}.
Here 2 and 3 refer to 10 and 100 respectively, as in ex-
ercise 18.17.

18.19. Alphabet {0,1}, prune _1000_, _00100_, _01100_,
_10011_. (This grammar arises from Hénon map

pruning, see remark 15.3.) The first three pruning rules
were incorporated in the preceeding exercise.
(a) Show that the last pruning rule _10011_ leads (in a
way similar to exercise 18.18) to the alphabet {21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23 + t1t23− t2113) . (18.49)

Note that this says that 1, 23, 2, 2113 are the fundamen-
tal cycles; not all cycles up to length 7 are needed, only
2113.
(b) Show that the topological zeta function is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (18.50)

and that it yields the entropy h = 0.522737642 . . . .

18.20. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to the infinite alphabet {1, 2, 3, 4, . . . }
unrestricted symbolic dynamics. The prime cycles are
labeled by all non-repeating sequences of integers, or-
dered lexically: tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m > 0, . . . (see sect. 29.3). Now the num-
ber of fundamental cycles is infinite as well:

1/ζ = 1 −
∑
n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn)

−
∑

n>m>0

(tmnn − tmntn) (18.51)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr

− tmrtn − tmtnr + tmtntr) · · ·

. As shown in table 29.1, this grammar plays an im-
portant role in description of fixed points of marginal
stability.
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