
Chapter 11

World in a mirror

Even the butterfly that started the hurricane flapped its
wings for a reason.

— Louis Menand, Thinking Sideways, New Yorker,
30 March 2015

So far we have discussed the structure of a group as an abstract entity. Now
we switch gears and describe the action of the group on the state space. This
is the key step; if a set of solutions is equivalent by symmetry (let’s say they

live on a circle), we would like to represent it by a single solution (cut the circle at
a point, or rewrite the dynamics in a ‘ symmetry reduced state space’, where the
circle of equivalent solutions is represented by a single state space point). In this
chapter we study quotienting of discrete symmetries, and in chapter 12 we study
symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapter 25.

As we shall show here and in chapter 25, discrete symmetries simplify the dy-
namics in quite a beautiful way: If dynamics is invariant under a set of discrete
symmetries G, the state space M is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile, the fundamental
domain M/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorter relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories.

section 14.1
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11.1 Symmetries of solutions

Solutions of an equivariant system can satisfy all of system’s symmetries, a sub-
group of them, or have no symmetry at all. For a generic ergodic orbit f t(x) the
trajectory and any of its images under action of g ∈ G are distinct with probability
one, f t(x) ∩ g f t′(x) = ∅ for all t, t′. For example, a typical turbulent trajectory of
pipe flow has no symmetry beyond the identity, so its symmetry group is the trivial
subgroup {e}. For compact invariant sets, such as fixed points and periodic orbits
the situation is very different. For example, the symmetry of the laminar solution
of the plane Couette flow is the full symmetry of its Navier-Stokes equations. In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space point x into itself,

Gx = {g ∈ G : gx = x} , (11.1)

is called the isotropy group (or stability subgroup or little group) of x. Think of a
point (0, 0, z), z , 0 on z axis in 3 dimensions. Its isotropy group is the O(2) group
of rotations in the {x, y} plane.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics. We

exercise 11.1
thus also need a notion of set-wise invariance, as opposed to the above point-wise
invariance under Gx.

Definition: Symmetry of a solution. We shall refer to the maximal subgroup
Gp ⊆ G of actions on state space points within a compact setMp, which leave no
point fixed but leave the set invariant, as the symmetry Gp of the solution labelled
p,

Gp = {g ∈ Gp | gx ∈ Mp, gx , x for g , e} , (11.2)

and reserve the notion of ‘isotropy’ of a setMp for the subgroup Gp that leaves
each point in it fixed.

A cycle p is Gp-symmetric (set-wise symmetric, self-dual) if the action of
elements of Gp on the set of periodic pointsMp reproduces the set. g ∈ Gp acts
as a shift in time, mapping the periodic point x ∈ Mp into another periodic point.

example 11.1

p. 216

Definition: Multiplicity. For a finite discrete group, the multiplicity of orbit p
is mp = |G|/|Gp|.
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Definition: Stratum. A stratum is the union of group orbits of the same type:
two orbits p, p′ belong to the same stratum if and only if their symmetries Gp, Gp′

are conjugate. In other words, a stratum is to state space what a class is to the set
of all group elements in G.

Definition: Gp-fixed orbits: An equilibrium xq or a compact solution p is point-
wise or Gp-fixed if it lies in the invariant points subspace Fix

(
Gp

)
, gx = x for all

g ∈ Gp, and x = xq or x ∈ Mp. A solution that is G-invariant under all group G
operations has multiplicity 1. Stability of such solutions will have to be examined
with care, as they lie on the boundaries of domains related by the action of the
symmetry group.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying that Gp is the symmetry of the solution p, or that
the orbitMp is ‘Gp-invariant’, accomplishes as much without confusing you with
all these names (see remark 10.1). In what follows we say “the symmetry of the
periodic orbit p is Z2 = {e,R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
G s̃ set-wise invariant cycles s built by repeats of relative cycle segments s̃, and
(iii) isotropy subgroup GEQ-invariant equilibria or point-wise Gp-fixed cycles b.
These are illustrated in figures of examples 11.1 to 11.3.

example 11.2

p. 216

Definition: Asymmetric (or fully asymmetric) orbits. An orbit (in particular,
an equilibrium or periodic orbit) has no symmetry if {xa} ∩ {gxa} = ∅ for any
g ∈ G, where {xa} is the set of periodic points belonging to the cycle a. Thus
g ∈ G generate |G| distinct orbits with the same number of points and the same
stability properties.

example 11.3

p. 216

example 11.5

p. 217

example 11.6

p. 217

In example 11.7, we illustrate the non-abelian, noncommutative group struc-
exercise 10.4

ture of the 3-disk game of pinball of sect. 1.3, which has symmetry group elements
that do not commute.

example 11.7

p. 218
exercise 11.4
exercise 11.5

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the
iconic flow of Lorenz of figure 11.2 (a). The example is long but worth work-
ing through: the symmetry-reduced dynamics is much simpler than the original
Lorenz flow.
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Figure 11.1: The 3-disk pinball cycles: (a) 12,
13, 23, 123; the clockwise 132 not drawn. (b)
Cycle 1232; the symmetry related 1213 and 1323
not drawn. (c) Cycle 12323; cycles 12123, 12132,
12313, 13131 and 13232 not drawn. (d) The
fundamental domain, i.e., the light-shaded 1/6th
wedge in (a), consisting of a section of a disk, two
segments of symmetry axes acting as straight mir-
ror walls, and the escape gap to the left. The above
14 full-space cycles restricted to the fundamental
domain and recoded in binary reduce to the two
fixed points 0, 1, 2-cycle 10, and 5-cycle 00111
(not drawn). See figure 11.3 for the 001 cycle.
Work through example 11.6.

(a) (b)

(c) (d)

example 11.8

p. 218

example 11.9

p. 219

Note: nonlinear coordinate transformations such as the doubled-polar an-
gle representation (11.13) and figure 11.2 (b) are not required to implement the
symmetry quotienting M/G. We deploy them only as a visualization aid that
might help the reader disentangle 2-dimensional projections of higher-dimension-
al flows. All numerical calculations can still be carried in the initial, full state
space formulation of a flow, with symmetry-related points identified by linear
symmetry transformations.

in depth:

appendix A25, p. 1206

11.2 Relative periodic orbits

So far we have demonstrated that symmetry relates classes of orbits. Now we
show that a symmetry reduces computation of periodic orbits to repeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to the multiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g ∈ Gp if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the sym-
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Figure 11.2: (a) Lorenz attractor of figure 3.5, the full state space coordinates [x, y, z], with the un-
stable manifold orbits Wu(EQ0). (Green) is a continuation of the unstable e(1) of EQ0, and (brown)
is its π-rotated symmetric partner. (b) Lorenz attractor plotted in [x̂, ŷ, z], the doubled-polar angle
coordinates (11.13), with points related by π-rotation in the [x, y] plane identified. Stable eigen-
vectors of EQ0: e(3) and e(2), along the z axis (11.12). Unstable manifold orbit Wu(EQ0) (green)
is a continuation of the unstable e(1) of EQ0. (c) Blow-up of the region near EQ1: The unstable
eigenplane of EQ1 defined by Re e(2) and Im e(2), the stable eigenvector e(3). The descent of the EQ0

unstable manifold (green) defines the innermost edge of the strange attractor. As it is clear from (a),
it also defines its outermost edge. Work through examples 11.8 and 11.9. (E. Siminos)

metry related segment. The cycle p can thus be subdivided into mp repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats: see figure 11.1 for examples. Thus, in the presence of a
discrete symmetry, the notion of a periodic orbit is replaced by the notion of the
shortest segment of the full state space cycle which tiles the cycle under the action
of the group. In what follows we refer to this segment as a relative periodic orbit.
In the literature this is sometimes referred to as a short periodic orbit, or, for finite
symmetry groups, as a pre-periodic orbit.

The relative periodic orbit p (or its equivariant periodic orbit) is the orbit x(t)
in state spaceM which exactly recurs

x(t) = gp x(t + T p) (11.3)

for the shortest fixed relative period T p and a fixed group action g ∈ Gp. These
group actions are referred to as ‘shifts’ or, in the case of continuous symmetries,
as ‘phases.’ For a discrete group gm = e and finite m (10.3), the period of the
corresponding full state space orbit is given by the mp × (period of the relative
periodic orbit), Tp = |Gp|T p̃, and the ith Floquet multiplier Λp,i is given by Λ

mp
p̃,i of

the relative periodic orbit. The elements of the quotient space b ∈ G/Gp generate
the copies bp, so the multiplicity of the full state space cycle p is mp = |G|/|Gp|.

example 11.10

p. 219

11.3 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson
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So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit
segments. The next step achieves much more: it replaces each class by a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state spaceM can be completely
tiled by a fundamental domain M̃ and its symmetry images M̃a = aM̃,
M̃b = bM̃, . . . under the action of the symmetry group G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| . (11.4)

See figure 10.1 for an example: the tiling of the 3-disk with 6 copies of the
fundamental domain.

2. Discrete symmetry can be used to restrict all computations to the funda-
mental domain M̃ = M/G, the reduced state space quotient of the full
state space M by the group actions of G. Several examples are given in
figures 11.1, 11.5 and 11.3.

We can use the invariance condition (10.4) to move the starting point x
into the fundamental domain x = ax̃, and then use the relation a−1b =

h−1 to also relate the endpoint y ∈ M̃b to its image in the fundamental
domain M̃. While the global trajectory runs over the full space M, the
restricted trajectory is brought back into the fundamental domain M̃ any
time it exits into an adjoining tile; the two trajectories are related by the
symmetry operation h which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are removed by reduction
of the full dynamics to the dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to precisely one fun-
damental domain (or relative) cycle p̃.

4. Conversely, each fundamental domain cycle p̃ traces out a segment of the
global cycle p, with the end point of the cycle p̃ mapped into the irreducible
segment of p with the group element hp̃. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elements G = {e, g2, . . . , g|G|} which map the fundamental do-
main M̃ into its copies gM̃, serve also as letters of a symbolic dynamics
alphabet.

exercise 11.3

For a symmetry reduction in presence of continuous symmetries, see sect. 13.3.

example 11.4

p. 216

example 11.11

p. 219
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Figure 11.3: (a) The pair of full-space 9-cycles,
the counter-clockwise 121232313 and the clock-
wise 131323212 correspond to (b) one fundamen-
tal domain 3-cycle 001.

(a) (b)

11.4 Life on the border

In what follows, we shall have to worry also about the boundaries that define
the fundamental domain M̃. Here we by definition include boundaries into the
fundamental tile. The state space transformation g ∈ G leaves invariant the set of
boundary points (see (11.4))

MB = M̃ ∩ M̃a ∩ M̃b · · · ∩ M̃|G| . (11.5)

Peculiar effects, however, arise for orbits that run along symmetry lines that border
a fundamental domain. For example, under reflection σ across a symmetry axis,
the axis itself remains invariant. The properties of boundary orbits that belong
to G-fixed (point-wise invariant) boundary sets will require a bit of thinking. In
our 3-disk example, no such orbits are possible, but they exist in other systems,
such as in the bounded region of the Hénon-Heiles potential (remark 11.2), in 1d
maps of example 11.3, and in Lorenz flow of example 11.8, where the z axis is
a G-invariant border. While boundary orbits are invariant under some symmetry
operations, their neighborhoods are not.

That’s is why one sometimes surgically removes boundaries, and defines

Definition: Free action. An group action on a state space submanifold M̂ is
free if all of the isotropy subgroups Gx, x ∈ M̂ are trivial.

The fact that open neighborhoods of the border are in part outside of it com-
plicates analysis (linear stability of orbits within the boundary has eigenvectors
is the full state space). This affects the Jacobian matrix Mp of the orbit and its
Floquet multipliers.

While for low-dimensional state spaces there are typically relatively few bound-
ary orbits, they tend to be among the shortest orbits, and thus play a key role in
dynamics.

section 25.4.3
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11.5 Invariant polynomials

All invariants are expressible in terms of a finite number
among them. We cannot claim its validity for every group
G; rather, it will be our chief task to investigate for each
particular group whether a finite integrity basis exists or
not; the answer, to be sure, will turn out affirmative in the
most important cases.

—Hermann Weyl, a motivational quote on the “so-
called first main theorem of invariant theory”

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
· · · ) invariant under a given set of symmetries.

Definition: G-invariant function. A function is said to be G-invariant if

f (gx) = f (x) , x ∈ M . (11.6)

A G-invariant function is constant along the group orbit of x.

Invariant polynomial functions play a particularly important role in invariant
theory. The set of all G-invariant polynomial functions of x which is finitely gener-
ated, according to the key result of the representation theory of invariant functions
is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (11.7)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as ‘doubled-polar angle representation’ (11.13) and the 5-dimensional
example of sect. 13.7. We prefer to apply the symmetry to the system as given,
rather than undertake a series of nonlinear coordinate transformations that the the-
orem suggests. (What ‘compact’ in the above refers to will become clearer after

exercise 11.2
we have discussed continuous symmetries. For now, it suffices to know that any
finite discrete group is compact.)

example 11.12

p. 220

discrete - 18feb2019 ChaosBook.org edition16.2, Feb 19 2019



CHAPTER 11. WORLD IN A MIRROR 212

Résumé

If a dynamical system (M, f ) has a symmetry G, the symmetry should be de-
ployed to ‘quotient’ the state space to fundamental domain M̂ =M/G, i.e., iden-
tify all symmetry-equivalent x ∈ M on each group orbit, thus replacing the full
state space dynamical system (M, f ) by the symmetry-reduced (M̂, f̂ ). The main
result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space
solution p is the group of its symmetries Gp ⊆ G of order 1 ≤ |Gp| ≤ |G|, whose
elements leave the orbitMp invariant. The elements of Gp act onMp as shifts,
tiling it with |Gp| copies of its shortest invariant segment, the relative periodic
orbit p̃. The elements of the coset b ∈ G/Gp generate mp = |G|/|Gp| equivalent
copies of p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state space (fundamental domain)M/G, you will
find the life as a fundamentalist so much simpler that you will never return to your
full state space ways of yesteryear. The reduction to the fundamental domain
M̃ = M/G simplifies symbolic dynamics and eliminates symmetry-induced de-
generacies. For the short orbits the labor saving is dramatic. For example, for the
3-disk game of pinball there are 256 periodic points of length 8, but reduction to
the fundamental domain non-degenerate prime cycles reduces this number to 30.
By chapter 24, the savings will be even more dramatic: relative periodic orbits
will tile the infinite periodic state space, and replace a numerical simulation of
diffusion in the infinite domain by an exact calculation of the diffusion constant,
on a compact torus.
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Commentary

Remark 11.1. Symmetries of the Lorenz equation. (Continued from remark 2.3)
After having studied example 11.8 you will appreciate why ChaosBook.org starts out
with the symmetry-less Rössler flow (2.28), instead of the better known Lorenz flow
(2.23). Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the
baby out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds
make possible a robust heteroclinic connection absent from Rössler flow, with unstable
manifold of an equilibrium flowing into the stable manifold of another equilibrium. How
such connections are forced upon us is best grasped by perusing the chapter 13 ‘Hetero-
clinic tangles’ of the inimitable Abraham and Shaw Classics Illustrated [1]. Their beau-
tiful hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz
flow (and its high-dimensional Navier-Stokes relatives) better than any computer simu-
lation. Miranda and Stone [20] were thefirst to quotient the Z2 symmetry and explicitly
construct the desymmetrized, ‘proto-Lorenz system’, by a nonlinear coordinate transfor-
mation into the Hilbert-Weyl polynomial basis invariant under the action of the symme-
try group [6]. For in-depth discussion of symmetry-reduced (‘images’) and symmetry-
extended (‘covers’) topology, symbolic dynamics, periodic orbits, invariant polynomial
bases etc., of Lorenz, Rössler and many other low-dimensional systems there is no better
reference than the Gilmore and Letellier monograph [10]. They interpret [17] the proto-
Lorenz and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes’,
and call quotiented flows such as (Lorenz)/Z2 ‘images.’ Our ‘doubled-polar angle’ visu-
alization of figure 14.15 is a proto-Lorenz in disguise; we, however, integrate the flow and
construct Poincaré sections and return maps in the original Lorenz [x, y, z] coordinates,
without any nonlinear coordinate transformations. The return map figure 14.16 is remi-
niscent in shape both of the one given by Lorenz in his original paper, and the one plotted
in a radial coordinate by Gilmore and Letellier. Nevertheless, it is profoundly different:
our return maps are from unstable manifold → itself, and thus intrinsic and coordinate
independent. In this we follow Christiansen et al. [5]. This construction is necessary
for high-dimensional flows in order to avoid problems such as double-valuedness of re-
turn map projections on arbitrary 1-dimensional coordinates, encountered already in the
Rössler example of figure 3.4. More importantly, as we know the embedding of the un-
stable manifold into the full state space, a periodic point of our return map is - regardless
of the length of the cycle - the periodic point in the full state space, so no additional New-
ton searches are needed. In homage to Lorenz, we note that his return map was already
symmetry-reduced: as z belongs to the symmetry invariant Fix (G) subspace, one can re-
place dynamics in the full space by ż, z̈, · · · . That is G-invariant by construction [10].

Remark 11.2. Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a Z2 symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [4,
11, 22], a D4 = C4v symmetry in quartic oscillators [7, 18], in the pure x2y2 potential [3,
19] and in hydrogen in a magnetic field [8], and a D2 = C2v = V4 = Z2 × Z2 symmetry
in the stadium billiard [21]. A number of nontrivial desymmetrizations are carried out in
the Balasz and Voros review [2]. An example of a system with D3 = C3v symmetry is
provided by the motion of a particle in the Hénon-Heiles potential [12–15], as well as in
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the Chernoff-Barrow-Lifshitz-Khalatnikov-,Sinai-Khanin-Shchur cosmology [16].

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axis cannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require
the special treatment. A partial classification of the 67 possible symmetries of solutions
of the plane Couette flow of example 10.9, and their reduction to 5 conjugate classes is
given in ref. [9].
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Figure 11.4: The D1-equivariant bimodal sawtooth map of figure 10.2 has three types of periodic
orbits: (a) D1-fixed fixed point C, asymmetric fixed points pair {L,R}. (b) D1-symmetric (setwise
invariant) 2-cycle LR, composed of the relative cycle segment from L to R and its repeat from R to
L. (c) Asymmetric 2-cycles pair {LC,CR}. (study example 11.3; continued in figure 11.5) (Y.
Lan)

11.6 Examples

Example 11.1. D1-symmetric cycles. For D1 the period of a set-wise symmetric cycle
is even (ns = 2ns̃), and the mirror image of the xs periodic point is reached by traversing
the relative periodic orbit segment s̃ of length ns̃, f ns̃ (xs) = σxs, see figure 11.4 (b).
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Example 11.2. D1-invariant cycles. In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 11.4 (a).
As reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 11.4, and work out the symbolic dynamics of
such reflection symmetric systems in example 15.6.
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Example 11.3. Group D1 - a reflection symmetric 1d map. Consider the bi-
modal ‘sawtooth’ map of figure 11.4, with the state space M = [−1, 1] split into three
regions M = {ML,MC ,MR} which we label with a 3-letter alphabet L(eft), C(enter),
and R(ight). The symbolic dynamics is complete ternary dynamics, with any sequence
of letters A = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no
additional grammar rules required, see example 14.7 below). The D1-equivariance of the
map, D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.

Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just this
fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, σ maps it
into the reflected cycle σa, with the same period and the same stability properties, see the
fixed points pair {L,R} and the 2-cycles pair {LC,CR} in figure 11.4 (c).
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Example 11.4. Group D1 and reduction to the fundamental domain. Consider again
the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of example 11.3,
with symmetry group D1 = {e, σ}. The state spaceM = [−1, 1] can be tiled by half-line
M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point. The
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Figure 11.5: The bimodal Ulam sawtooth map of
figure 11.4 with the D1 symmetry f (−x) = − f (x),
restricted to the fundamental domain. f (x) is in-
dicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
point C is the fixed point 0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point 2,
and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. (b) The asymmetric
2-cycle pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-cycles.
(work through example 11.4 ) (Y. Lan)
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dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every time a
trajectory leaves this interval, it is mapped back using σ.

In figure 11.5 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 11.5:

In (a) the boundary fixed point C is also the fixed point 0. The asymmetric fixed point
pair {L,R} is reduced to the fixed point 2, and the full state space symmetric 2-cycle LR
is reduced to the fixed point 1. (b) The asymmetric 2-cycle pair {LC,CR} is reduced to
the 2-cycle 01. Finally, the symmetric 4-cycle LCRC is reduced to the 2-cycle 02. This
completes the conversion from the full state space for all fundamental domain fixed points
and 2-cycles, frame (c).
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Example 11.5. C3v = D3 symmetry of the 3-disk game of pinball. If the three
unit-radius disks in figure 10.1 are equidistantly spaced, our game of pinball has a sixfold
symmetry. The symmetry group of relabeling the 3 disks is the permutation group S3;
however, it is more instructive to think of this group geometrically, as C3v, also known as
the dihedral group

D3 = {e, σ12, σ13, σ23,C1/3,C2/3} , (11.8)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}.
(continued in example 11.6)
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Example 11.6. 3-disk game of pinball - symmetry-related orbits. (Continued from
example 11.5) Applying an element (identity, rotation by ±2π/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory. For
instance, σ23, the flip across the symmetry axis going through disk 1 interchanges the
symbols 2 and 3; it maps the cycle 12123 into 13132, figure 11.1 (c). Cycles 12, 23, and
13 in figure 11.1 (a) are related to each other by rotation by ±2π/3, or, equivalently, by a
relabeling of the disks. (continued in example 10.7)
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Figure 11.6: Cycle 121212313 has multiplicity 6;
shown here is 121313132 = σ23121212313. How-
ever, 121231313 which has the same stability and
period is related to 121313132 by time reversal,
but not by any C3v symmetry.

Example 11.7. 3-disk game of pinball - cycle symmetries. (Continued from
example 10.8) The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by the two
cycles 123 and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped
into each other by any reflection, figure 11.6 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the symmetries of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant subgroup is
G p̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 11.6 (b).

A cycle of no symmetry, such as 12323, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
figure 11.6 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may be related
by time reversal symmetry. An example are the cycles 121212313 and 313212121 =

121213132 which have the same periods and stabilities, but are related by no space sym-
metry, see figure 11.6. (continued in example 11.11)
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Example 11.8. Desymmetrization of Lorenz flow. (Continuation of exam-
ple 10.6) Lorenz equation (10.14) is equivariant under (10.15), the action of order-2
group Z2 = {e,C1/2}, where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z)→ C1/2(x, y, z) = (−x,−y, z) . (11.9)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible subspaces
M = M+ ⊕M−, the z-axisM+ and the [x, y] planeM−, with projection operators onto
the two subspaces given by

P+ =
1
2

(1 + C1/2) =

 0 0 0
0 0 0
0 0 1

 , P− =
1
2

(1 −C1/2) =

 1 0 0
0 1 0
0 0 0

 . (11.10)

As the flow is Z2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-
mutes with C1/2, and, as we have already seen in example 4.6, the EQ0 stability matrix
decomposes into [x, y] and z blocks.

The 1-dimensional M+ subspace is the fixed-point subspace, with the z-axis points
left point-wise invariant under the group action

M+ = Fix (Z2) = {x ∈ M | g x = x for g ∈ {e,C1/2}} (11.11)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A Z2-fixed point x(t) in
Fix (Z2) moves with time, but according to (10.10) remains within x(t) ∈ Fix (Z2) for all
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times; the subspaceM+ = Fix (Z2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (10.14) is
reduced to the exponential contraction to the EQ0 equilibrium,

ż = −b z . (11.12)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dimens-
ional, with interesting dynamics of their own. Even in this simple case this subspace plays
an important role as a topological obstruction: the orbits can neither enter it nor exit it, so
the number of windings of a trajectory around it provides a natural, topological symbolic
dynamics.

TheM− subspace is, however, not flow-invariant, as the nonlinear terms ż = xy − bz
in the Lorenz equation (10.14) send all initial conditions withinM− = (x(0), y(0), 0) into
the full, z(t) , 0 state spaceM/M+. (continued in example 11.9)
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(E. Siminos and J. Halcrow)

Example 11.9. Lorenz flow in doubled-polar angle representation. By taking as
a Poincaré section any C1/2-equivariant, non-self-intersecting surface that contains the z
axis, the state space is divided into a half-space fundamental domain M̃ =M/Z2 and its
180o rotation C1/2M̃. An example is afforded by the P plane section of the Lorenz flow
in figure 3.5. Take the fundamental domain M̃ to be the half-space between the viewer
and P. Then the full Lorenz flow is captured by re-injecting back into M̃ any trajectory
that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental domain’
is here largely mater of taste. For purposes of visualization it is convenient to make
the double-cover nature of the full state space by M̃ explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (x, y) in polar coordinates (x, y) =

(r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar angle representation:’
section 11.5
exercise 11.4(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (11.13)

as in figure 11.2 (b). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant, see example 11.12.
In this representation the M̃ = M/Z2 fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [x̂, ŷ] plane. (continued in example 14.4)
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(E. Siminos and J. Halcrow)

Example 11.10. Relative periodic orbits of Lorenz flow. (Continuation of exam-
ple 11.8) The relation between the full state space periodic orbits, and the fundamental
domain (11.13) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rp maps into a single cycle p̃ in the fundamental domain, and
any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a relative periodic orbit p̃.
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Example 11.11. 3-disk game of pinball in the fundamental domain.

If the dynamics is equivariant under interchanges of disks, the absolute disk labels
εi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk increments
gi, where gi is the discrete group element that maps disk i−1 into disk i. For 3-disk system
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gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation by C to the next
disk (symbol ‘1’). An immediate gain arising from symmetry invariant relabeling is that
N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions on the admissible
sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 11.1(d)). A set of orbits related in the full space by discrete symme-
tries maps onto a single fundamental domain orbit. The reduction to the fundamental
domain desymmetrizes the dynamics and removes all global discrete symmetry-induced
degeneracies: rotationally symmetric global orbits (such as the 3-cycles 123 and 132)
have multiplicity 2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have
multiplicity 3, and global orbits with no symmetry are 6-fold degenerate. Table 15.2 lists
some of the shortest binary symbols strings, together with the corresponding full 3-disk
symbol sequences and orbit symmetries. Some examples of such orbits are shown in
figures 11.6 and 11.3. (continued in example 15.7)
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Example 11.12. Polynomials invariant under discrete operations on R3. (Continued
from example 10.3) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant
function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.

C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant function
can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one syzygy
between the basis polynomials, (x2)(y2) − (xy)2 = 0.

P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzygies
between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2, P} the G-invariant polynomial basis is
{u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0.
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Exercises

11.1. Gx ⊂ G. The maximal set of group actions which maps
a state space point x into itself,

Gx = {g ∈ G : gx = x} , (11.14)

is called the isotropy group (or stability subgroup or
little group) of x. Prove that the set Gx as defined in
(11.14) is a subgroup of G.

11.2. Polynomials invariant under discrete operations on
R3. Prove that the {e, σ}, {e,C1/2}, {e, P} and
{e, σ,C1/2, P}-invariant polynomial basis and syzygies
are those listed in example 11.12.

11.3. Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.},
· · · ,
correspond to the fundamental domain cycles 0, 1,
01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 15.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 11.3.

(c) Optional: Can you see how the group elements
listed in table 15.2 relate irreducible segments to
the fundamental domain periodic orbits?

(continued in exercise 15.7)

11.4. Lorenz system in polar coordinates: group theory.
Use (A2.13), (A2.14) to rewrite the Lorenz equa-

tion (10.18) in polar coordinates (r, θ, z), where (x, y) =

(r cos θ, r sin θ).

1. Show that in the polar coordinates Lorenz flow
takes form

ṙ =
r
2

(−σ − 1 + (σ + ρ − z) sin 2θ

+(1 − σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z + (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (11.15)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

3. Show that this is the (Lorenz)/Z2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation in the [x, y] plane.

4. Rewrite (10.18) in the invariant polynomial basis
of example 11.12 and exercise 11.15.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (11.15) is either a periodic or-
bit or a relative periodic orbit (11.3) of the Lorenz
flow in the (x, y, z) representation.

By going to polar coordinates we have quotiented out the
π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

11.5. Proto-Lorenz system. Here we quotient out the Z2
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [20].

1. Rewrite the Lorenz equation (10.14) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (11.16)

show that it takes form u̇
v̇
ż

 =

 −(σ + 1)u + (σ − r)v + (1 − σ)N + vz
(r − σ)u − (σ + 1)v + (r + σ)N − uz − uN

v/2 − bz


N =

√
u2 + v2 . (11.17)

2. Show that this is the (Lorenz)/Z2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation (11.9).

3. Show that (11.16) is invertible. Where does the
inverse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(10.14) and in the proto-Lorenz form (11.17)
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for the Lorenz parameter values σ = 10, b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.42)
look like now? Interpret.

10. Show that the coordinate change (11.16) is the
same as rewriting (11.15) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x + iy, z2 =

u + iv.

11. How is (11.17) related to the invariant polynomial
basis of example 11.12 and exercise 11.15?
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