
Chapter 10

Flips, slides and turns

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the reflec-
tion and rotation symmetries of various potentials.

This chapter assumes familiarity with basic group theory, as discussed in ap-
pendix A10.1. We find the abstract notions easier to digest by working out the
examples; links to these examples are interspersed throughout the chapter. Work-
ing through these examples is essential and will facilitate your understanding of
various definitions. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly to Z2 = D1 example 11.3, example 11.8, and
C3v = D3 example 11.5, backtrack as needed.

10.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A1.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . . } (10.1)

and a group multiplication rule g j ◦ gi (often abbreviated as g jgi), satisfying
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Figure 10.1: The symmetries of three disks on an
equilateral triangle. A fundamental domain is indi-
cated by the shaded wedge. Work through exam-
ple 11.5.

1. Closure: If gi, g j ∈ G, then g j ◦ gi ∈ G

2. Associativity: gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identity e: g ◦ e = e ◦ g = g for all g ∈ G

4. Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G
such that h ◦ g = g ◦ h = e.

If the group is finite, the number of elements, |G| = n, is called the order of the
group.

The theory of finite groups is developed on two levels. There is a beautiful
theory of groups as abstract entities which yields the classification of their struc-
tures and their irreducible, orthogonal representations in terms of characters. Then
there is the considerably messier matter of group representations, in our case the
ways in which a given symmetry group acts on and stratifies the particular state
space of a problem at hand, the most familiar being the ways in which symme-
tries reduce and block-diagonalize quantum-mechanical problems. What helps us
here is that the symmetries ‘commute’ with dynamics, i.e., we can first reduce a
given state space to its irreducible components, using the symmetry alone, and
then study the action of dynamics on these subspaces. As our intuition is based
on physical manifestations of group actions, in this brief review we shall freely
switch gears between the abstract and the representation levels whenever peda-
gogically convenient.

Whatever else you must do, do work through example 11.5. Once you under-
stand how this works out for the symmetries of an equilateral triangle, or, equiv-
alently, for the three disk billiard of figure 10.1, you know almost everything you
need to know about the general, non-abelian finite groups.

example 10.1

p. 200

example 10.2

p. 200

Definition: Coordinate transformations. Consider a map x′ = f (x), x, x′ ∈
M. An active coordinate transformation Mx corresponds to a non-singular [d×
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d] matrix M that maps the initial vector x ∈ M onto another vector Mx ∈ M.
The corresponding passive coordinate transformation x′ → M−1x′ changes the
coordinate system with respect to which the final vector x′ ∈ M is measured.
Together, a passive and active coordinate transformations yield the map in the
transformed coordinates:

f̂ (x) = M−1 f (Mx) . (10.2)

(For general nonlinear coordinate transformations, see Appendix A2.)

Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-
trices A, B,C, · · · ∈ GL(d) acting in a d-dimensional vector space V ∈ Rd forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit
matrix 11 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

Definition: Matrix representation. Linear action of a group element g on
states x ∈ M is given by a finite non-singular [d×d] matrix D(g), the matrix
representation of element g ∈ G. For brevity we shall often denote by ‘g’ both the
abstract group element and its matrix representation, D(g)x→ gx.

However, when dealing simultaneously with several representations of the
same group action, the notation D(µ)(g) is preferable, where µ is a representa-
tion label (see appendix A10.1). A linear or matrix representation D(G) of the
abstract group G acting on a representation space V is a group of matrices D(G)
such that

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 is mapped onto the matrix product D(g2 ◦ g1) =

D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =

D(g)−1.

Some simple 3D representations of the group order 2 are given in example 10.4.

example 10.3

p. 200

example 10.4

p. 200

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g ∈ G there exists a number
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m ≤ |G| such that

gm ≡ g ◦ g ◦ · · · ◦ g︸          ︷︷          ︸
m times

= e → |det D(g)| = 1 . (10.3)

As the modulus of its determinant is unity, det g is an mth root of 1. This is the
reason why all finite groups have unitary representations.

Definition: Symmetry of a dynamical system.

1. A group G is a symmetry of the dynamics if for every solution f (x) ∈ M
and g ∈ G, g f (x) is also a solution.

2. Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M →M
(a discrete time map f , or the continuous flow f t map from the d-dimens-
ional manifoldM into itself) commutes with all actions of G,

f (gx) = g f (x) . (10.4)

3. In the language of physicists: The ‘law of motion’ is invariant, i.e., retains
its form in any symmetry-group related coordinate frame (10.2),

f (x) = g−1 f (gx) , (10.5)

for x ∈ M and any finite non-singular [d×d] matrix representation g of
element g ∈ G. As this are true for any state x, one can state this more
compactly as f ◦ g = g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar function h(x) is said to be G-invariant if h(x) =

h(gx) for all g ∈ G. The group actions map the solution f :M→M into different
(but equivalent) solutions g f (x), hence the invariance condition f (x) = g−1 f (gx)
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant.
It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases by in/equi-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms of invariant coordinates, see sects. 11.5 and 13.3.

example 10.5

p. 200

example 10.6

p. 201

example 10.9

p. 202

10.2 Subgroups, cosets, classes

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter
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Inspection of figure 11.1 indicates that various 3-disk orbits are the same up to
a symmetry transformation. Here we set up some group-theoretic notions needed
to describe such relations. The reader might prefer to skip to sect. 11.1, backtrack
as needed.

Definition: Subgroup. A set of group elements H = {e, b2, b3, . . . , bh} ⊆ G
closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order h =

|H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not in H, is called left
coset cH. For a given subgroup H the group elements are partitioned into H and
m − 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
not include the identity element. A nontrival subgroup can exist only if |G|, the
order of the group, is divisible by |H|, the order of the subgroup, i.e., only if |G| is
not a prime number.

example 10.7

p. 201

Next we need a notion that will, for example, identify the three 3-disk 2-cycles
in figure 11.1 as belonging to the same class.

Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where c is
some other group element. If b and c are both conjugate to a, they are conjugate
to each other. Application of all conjugations separates the set of group elements

exercise 10.1
into mutually not-conjugate subsets called classes, types or conjugacy classes.
The identity e is always in the class {e} of its own. This is the only class which is

exercise 10.4
a subgroup, all other classes lack the identity element.

example 10.8

p. 201

The geometrical significance of classes is clear from (10.5); it is the way co-
ordinate transformations act on mappings. The action, such as a reflection or
rotation, of an element is equivalent to redefining the coordinate frame.

Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group Gp of orbitMp and mp − 1 cosets cGp relates the orbitMp to
mp−1 other distinct orbits cMp. All of them have equivalent symmetry subgroups,

exercise 10.2
or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gc p = c Gp c−1 , (10.6)

i.e., if Gp is the symmetry of orbit Mp, elements of the coset space c ∈ G/Gp

generate the mp − 1 distinct copies ofMp.
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Definition: Invariant subgroup. A subgroup H ⊆ G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as equiv-
alent. This leads to the notion of the factor group or quotient group G/H of G,
with respect to the invariant subgroup H. H thus divides G into H and m − 1
cosets, each of order |H|. The order of G/H is m = |G|/|H|, and its multiplication
table can be worked out from the G multiplication table class by class, with the
subgroup H playing the role of identity. G/H is homeomorphic to G, with |H|
elements in a class of G represented by a single element in G/H.

10.3 Orbits, quotient space
section 2.1

Definition: Orbit. The subset Mx0 ⊂ M traversed by the infinite-time trajec-
tory of a given point x0 is called the orbit (or time orbit, or solution) x(t) = f t(x0).
An orbit is a dynamically invariant notion: it refers to the set of all states that can
be reached in time from x0, thus as a set it is invariant under time evolution. The
full state spaceM is a union of such orbits. We label a generic orbitMx0 by any
point belonging to it, x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets (equilibria, periodic orbits, invariant tori, . . . ), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non–wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loop p = Mp for a prime periodic orbit p, etc.
(note also discussion on page 235, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (10.7)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutions Mp. So we
also need to describe the symmetry of a solution, as opposed to (10.5), the sym-
metry of the system.
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Definition: Reduced state space. The action of group G partitions the state
spaceM into a union of group orbits. This set of group orbits, denotedM/G, has
many names: reduced state space, quotient space or any of the names listed on
page 250.

Definition: Fundamental domain. The images of a single point x under all
actions of a discrete group G form a G-orbit Mx. A fundamental domain M̂ =

M/G is a subset of the state spaceM which contains exactly one point from each
G-orbit. It is an explicit state space realization of the abstract notion of the reduced
state spaceM/G in the case that G is a discrete group.

A fundamental domain can be defined in different ways, here exemplified by
figures 10.1, 11.1, 11.5, 11.3, 11.2 (b) and 24.2. Ideally it is a connected subset
with restrictions on its boundary that ensure the no points are double-counted. The
set of images of a fundamental domain under the group action then tiles the entire
state space.

Reduction of the dynamical state space is discussed in sect. 11.3 for discrete
symmetries, and in sect. 13.3 for continuous symmetries.

Definition: Fixed-point subspace. MH is the set of all state space points left
H-fixed, point-wise invariant under subgroup or ‘centralizer’ H ⊆ G action

MH = Fix (H) = {x ∈ M | h x = x for all h ∈ H} . (10.8)

Points in state space subspaceMG which are fixed points of the full group action
are called invariant points,

MG = Fix (G) = {x ∈ M | g x = x for all g ∈ G} . (10.9)

Definition: Flow invariant subspace. A typical point in fixed-point subspace
MH moves with time, but, due to equivariance (10.4), its trajectory x(t) = f t(x)
remains within f (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (10.10)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smallerMH , easing the numerical searches, so start with the largest subgroups H
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is an invariant subspace if

{Mα | gx ∈ Mα for all g ∈ G and x ∈ Mα} . (10.11)

{0} andM are always invariant subspaces. So is any Fix (H) which is point-wise
invariant under action of G.
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Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
under the action of G are {0} andMα is called irreducible.

Definition: Reducibility. If state space M on which G acts can be written as
a direct sum of irreducible subspaces, then the representation of G on state space
M is completely reducible.

This being group theory, definitions could go on forever. But we stop here,
hopefully having defined everything that we need at the moment, and we pile on
a few more definitions in sect. 11.1, chapter 12, chapter 25 and chapter 26. There
are also chapter 30, appendix A10, and beyond that the n → ∞ group theory
textbooks, if you thirst for more.

Résumé

A group G is a symmetry of the dynamical system (M, f ) if its ‘law of motion’
retains its form under all symmetry-group actions, f (x) = g−1 f (gx) . A mapping f
is said to be invariant if g f = f , where g is any element of G. If the mapping and
the group actions commute, g f = f g, f is said to be equivariant. The governing
dynamical equations are equivariant with respect to the symmetry group G.

Commentary

Remark 10.1. Literature. We found Tinkham [12] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Slightly longer, but perhaps student-
friendlier is Part I Basic Mathematics of Dresselhaus et al. [4]. Byron and Fuller [1], the
last chapter of volume two, offers an introduction even more compact than Tinkham’s.
For a summary of the theory of discrete groups see, for example, Johnson [9]. Chapter 3
of Rebecca Hoyle [8] is a very student-friendly overview of the group theory a nonlinear
dynamicist might need, with exception of the quotienting, reduction of dynamics to a
fundamental domain, which is not discussed at all. For that, Fundamental domain wiki
is very clear. We also found Quotient group wiki helpful. Curiously, we have not read
any of the group theory books that Hoyle recommends as background reading, which just
confirms that there are way too many group theory books out there. For example, one that
you will not find useful at all is ref. [3]. The reason is presumably that in the 20th century
physics (which motivated much of the work on the modern group theory) the focus was on

appendix A1.6the linear representations used in quantum mechanics, crystallography and quantum field
theory. We shall need these techniques in Chapter 25, where we reduce the linear action
of evolution operators to irreducible subspaces. However, in ChaosBook we are looking
at nonlinear dynamics, and the emphasis is on the symmetries of orbits, their reduced state
space sisters, and the isotypic decomposition of their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the
landscape between the boredom of regular motions and the thrills of chaos. Landau [10]
was the first to discuss the role symmetries play in constraining types of possible bifurca-
tions, in the context to weak nonlinear theory of the instabilities in fluid flows. Chapter
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4 of Rebecca Hoyle [8] is a student-friendly introduction to the treatment of bifurca-
tions in presence of symmetries, worked out in full detail and generality in monographs
by Golubitsky, Stewart and Schaeffer [6], Golubitsky and Stewart [5] and Chossat and
Lauterbach [2]. Sartori [11] Sect. 1.3 offers a concise summary of group-theoretical def-
initions. Chap. 8 of Govaerts [7] reviews numerical methods that employ equivariance
with respect to compact, and mostly discrete groups. (continued in remark 12.1)
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10.4 Examples

Example 10.1. Finite groups. Some finite groups that frequently arise in applications:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• S n: the symmetric group of all permutations of n symbols, order n!.
click to return: p. 192

Example 10.2. Cyclic and dihedral groups. The cyclic group Cn ⊂ SO(2) of order
n is generated by one element. For example, this element can be rotation through 2π/n.

The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take σ corresponding to reflection in the
x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n, then
Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.

click to return: p. 192

Example 10.3. Discrete groups of order 2 on R3. Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidean space R3:

reflections: σ(x, y, z) = (x, y,−z)
rotations: C1/2(x, y, z) = (−x,−y, z) (10.12)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0, 0, 0). Singly, each operation generates a group of
order 2: D1 = {e, σ}, Z2 = {e,C1/2}, and D1 = {e, P}. Together, they form the dihedral
group D2 = {e, σ,C1/2, P} of order 4. (continued in example 10.4)

click to return: p. 193

Example 10.4. Discrete operations on R3. (Continued from example 10.3) The matrix
representation of reflections, rotations and inversions defined by (10.12) is

D(σ) =

 1 0 0
0 1 0
0 0 −1

 , D(C1/2) =

 −1 0 0
0 −1 0
0 0 1

 , D(P) =

 −1 0 0
0 −1 0
0 0 −1

 ,
(10.13)

with det D(C1/2) = 1, det D(σ) = det D(P) = −1; that is why we refer to C1/2 as a
rotation, and σ, P as inversions. As g2 = e in all three cases, these are groups of order 2.
(continued in example 10.6)

click to return: p. 193

Example 10.5. A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 10.2, piecewise-
linear on the state space M = [−1, 1], a compact 1-dimensional line interval, split into
three regionsM = ML ∪MC ∪MR. Denote the reflection operation by σx = −x. The
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Figure 10.2: The bimodal Ulam sawtooth map
with the D1 symmetry f (−x) = − f (x). If the tra-
jectory (a) x0 → x1 → x2 → · · · is a solution, so
is its reflection (b) σx0 → σx1 → σx2 → · · · .
(work through example 10.5; continued in fig-
ure 11.4).
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x
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x
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x
2

x
3

(b)

f(x)

2
x

σ

σ

σ

xσ

x

3
x
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0

2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall refer
to it as D1, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent trajectory
because σxn+1 = σ f (xn) = f (σxn) (continued in example 11.3)

click to return: p. 194

Example 10.6. Equivariance of the Lorenz flow. (Continued from example 10.4) The
velocity field in Lorenz equations (2.23)

exercise 10.3 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (10.14)

is equivariant under the action of cyclic group Z2 = {e,C1/2} acting on R3 by a π rotation
about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (10.15)

(continued in example 11.8)
click to return: p. 194

Example 10.7. Subgroups, cosets of D3. (Continued from example 11.6)
The 3-disks symmetry group, the D3 dihedral group (11.8) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C1/3,C2/3}, D3 . (10.16)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C1/3}, {σ23,C2/3}. The coset of sub-
group C3 = {e,C1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is D3, then all
elements in a coset act on it the same way, for example {σ12, σ13, σ23}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and any
one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible cycle
multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has full sym-
metry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-disk billiard.
Examples of other multiplicities are given in figure 11.1 and figure 11.6. (continued in
example 10.8)
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Example 10.8. Classes of D3. (Continued from example 10.7)
The three classes of the 3-disk symmetry group D3 = {e,C1/3,C2/3, σ, σC1/3, σC2/3}, are
the identity, any one of the reflections, and the two rotations,

{e} ,


σ12
σ13
σ23

 ,

{
C1/3

C2/3

}
. (10.17)

In other words, the group actions either flip or rotate. (continued in example 11.7)
click to return: p. 195
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Example 10.9. Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in streamwise
and spanwise directions. The Navier-Stokes equations for the plane Couette flow have
two discrete symmetries: reflection through the (streamwise , wall-normal) plane, and
rotation by π in the (streamwise , wall-normal) plane. That is why the system has equi-
librium and periodic orbit solutions, as well as relative equilibrium and relative periodic
orbit solutions discussed in chapter 12). They belong to discrete symmetry subspaces.
(continued in example 12.2)
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Exercises

10.1. Transitivity of conjugation. Assume that g1, g2, g3 ∈

G and both g1 and g2 are conjugate to g3. Prove that g1
is conjugate to g2.

10.2. Isotropy subgroup of gx. Prove that for g ∈ G, x and
gx have conjugate isotropy subgroups:

Ggx = g Gx g−1

10.3. Z2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (10.14)

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (10.18)

is equivariant under the action of cyclic group Z2 =

{e,C1/2} acting on R3 by a π rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 10.6. (continued in exer-
cise 11.4)

10.4. D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral
triangle:

1

2  3 .

(a) List the group elements and the corresponding ge-
ometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the def-
inition of a class.

(d) List the conjugacy classes of subgroups of D3.
(continued as exercise 12.2 and exercise 25.3)
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