
Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory ch-
aracterizes structurally stable invariant sets [...] The logic
of dynamical systems theory is subtle. The theory aban-
dons the goal of describing the qualitative dynamics of all
systems as hopeless and instead restricts its attention to
phenomena that are found in selected systems. The sub-
tlety comes in specifying the systems of interest and which
dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We define a dynamical system (M, f ) and classify its solutions as equilibria,
periodic, and aperiodic. An ‘aperiodic’ solution is either ‘wandering’ or
belongs to a non–wandering set, which in turn can be decomposed into

into chain-recurrent sets. Various cases are illustrated with concrete examples,
such as the Rössler and Lorenz systems.

fast track:

chapter 19, p. 346

2.1 Dynamical systems

I would have written a shorter book, but I didn’t have the
time.

— Channeling Blaise Pascal

1 In a dynamical system we observe the world as it evolves with time. We ex-
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Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space point x, after a
time t, the point is at f t(x).

f (x)f (x)
t

x

press our observations as numbers and record how they change; given sufficiently
detailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planets against the cele-

section 1.3
stial firmament provides an example. Against the daily motion of the stars from
East to West, the planets distinguish themselves by moving among the fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions–latitudes
and longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state spaceM (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of the totality of such points as a flow or dynamics,
and the function f t which specifies where the representative point is at time t as
the evolution rule.

remark 2.1

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of the atmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we are less hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may th-

chapter 15
ink such sets a nuisance, but it is quite the contrary–they will enable us to partition
state space, so that the dynamics can be better understood.

Locally, the state spaceM looks like Rd, meaning that a dynamical evolution
is an initial value problem, with d numbers sufficient to determine what will hap-
pen time t later. The local linear vector space (tangent space) at any given state
space point x ∈ M can be thought of as a ‘chart’ (however, we shall use this term

1 In order not to interrupt the flow of exposition, the examples are relegated to sect. 2.6. But to
understand the exposition, you have to work through the examples.

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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Figure 2.2: A flow: The evolution rule f t can be used
to map a region Mi of the state space into the region
f t(Mi). �
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in a more restricted sense, only after the continuous time and continuous sym-
metries have been ‘quotiented out’, see sects. 3.1 and 13.1). Globally, the state
space may be a more complicated manifold such as a torus, a cylinder, or some
other smooth geometric object. By manifold we mean a smooth differentiable d-
dimensional space which looks like Rd only locally. For example, the state space
of an autonomous Hamiltonian system the flow is confined to a curved constant
energy hyper-surface. When we need to stress that the dimension d ofM is gre-
ater than one, we may refer to the point x ∈ M as xi where i = 1, 2, 3, . . . , d.
If the dynamics is described by a set of PDEs (partial differential equations), the

chapter 30
state space is the infinite-dimensional function space, with a given instantaneous
state or field u = u(x) labeled by a set of continuous indices x. The evolution rule

section 2.4
f t :M→M tells us where the initial state x lands inM after the time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f t can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f (x, t) to remind
us that f is really a function of two variables: the time and a point in state space.
Note that time is relative rather than absolute, so only the time interval is neces-
sary. This follows from the fact that a point in state space completely determines
all future evolution, and to locate where it lands in the future it is not necessary to
know anything besides the elapsed time interval. The time parameter can be a real
variable (t ∈ R), in which case the evolution is called a flow, or an integer (t ∈ Z),
in which case the evolution advances in discrete steps in time, given by iteration
of a map. The evolution parameter need not be the physical time; for example, a
time-stationary solution of a partial differential equation is parameterized by spa-
tial variables. In such situations one talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their orbits: given a state x0 at initial time t0, the flow map

f t : x0 → x(x0, t)

yields the state x(t) time t later. This evolution rule traces out a sequence of
points x(t) = f t(x0), the orbit through the point x0 = x(0). We shall usually

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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omit the x0 label from x(x0, t). By extension, we can also talk of the evolution
of a regionMi of the state space. The language of continuum mechanics is quite
helpful in visualizing such deformations, not only in 3-dimensional space, but also
in state spaces of arbitrary dimension. Consider a motion f from the undeformed
(reference or initial) region (a ‘body’)Mi to the deformed (current or final) region
M f = f t(Mi). We may write the motion as a map

f t : Mi →M f , (2.1)

such that every x0 inMi is mapped to an x = f t(x0) inM f , as in figure 2.2, where
x denotes the state in the deformed region, and x0 represents the state in the initial,
undeformed region.

exercise 2.1

The subset of points Mx0 ⊂ M that belong to the infinite-time trajectory
of a given point x0 is called the orbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. In this book ‘trajectory’ refers to
a set of points or a curve segment traced out by x(t) over a finite time interval
t. ‘Orbit’ refers to the totality of states that can be reached from x0, with state
spaceM stratified into a union of such orbits (eachMx0 labeled by a single point
belonging to the set, x0 = x(0) for example). Under time evolution a trajectory
segment is mapped into another trajectory segment, but points within an orbit
are only shifted; the orbit considered as a set is unchanged. Hence an orbit is a
dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asym-
ptotic t → ∞ dynamics by a systematic hierarchy of compact time-invariant sets
or compact orbits (equilibria, periodic orbits, invariant tori, · · · ).

2.1.1 A classification of possible motions?

Ah, yes, Judgie, everything will go away someday. It’s the
waiting that’s so exquisitely wearing.

— Duke Ellington, to Robert Traver

What kinds of orbits are there? This is a grand question, and there are many
answers. The following chapters offer some. Here is a first attempt to classify all
possible orbits:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum period Tp

aperiodic: f t(x) , f t′(x) for all t , t′ .

A periodic orbit (or a cycle) p is the set of points Mp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
periodic orbit as a periodic point, see figure 2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

chapter 5
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Figure 2.3: A periodic point returns to the initial point
after a finite time, x = f Tp (x). Periodic orbit p is the
set of periodic points p =Mp = {x1, x2, · · · } swept out
by the trajectory of any one of them in the finite time
Tp.

x
1

x(T) = x(0)

x
2

x
3

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with the notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (swept by semi-infinite curves originating at an equilibrium along each
stability eigenvector) and the most baffling of all invariant orbits, the infinite time
ergodic orbits.

section 15.1

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, what we today call ‘integrable systems’. The embarrassing truth is that
for a generic dynamical system almost all motions are aperiodic. So we refine the
classification by dividing aperiodic motions into two subtypes: those that wander
off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighborh-
oodM0 of x to which the orbit never returns

f t(x) <M0 for all t > tmin . (2.2)

In physics literature, the dynamics of such a state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time orbits, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity and replace it by the notion of recurrence. A point
is recurrent or non-wandering, if for any open neighborhood M0 of x and any
time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.3)

In other words, the orbit of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote the non–wandering set of f by Ω, i.e., the
union of all the non-wandering points ofM. This non–wandering set of f is key
to understanding the long-time behavior of a dynamical system; all calculations
undertaken here will be carried out on non–wandering sets.

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting
onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing

example 2.3
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like ‘transitive’ and ‘chain-
recurrent’ that we will be ready to discuss only in sect. 17.1.

Conversely, if we can enclose the non–wandering set Ω by a connected state
space volumeM0 and then show that almost all points withinM0, but not in Ω,
eventually exitM0, we refer to the non–wandering set Ω as a repeller. An example
of a repeller is not hard to come by–the pinball game of sect. 1.3 is a simple chaotic
repeller. Ω, the non–wandering set of f , is the union of all of the above, separately
invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from truth. If longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we can establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f t is a family
of mappings of M → M parameterized by t ∈ R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′(x) (the evolution law is the same at all times)

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’
appendix A10.1

f t+s = f t ◦ f s = f t( f s) . (2.4)

The family of mappings f t(x) thus forms a continuous (1-parameter forward Lie
semi-) group. Why ‘semi-’group? It may fail to form a group if the dynamics
is not reversible, and the rule f t(x) cannot be used to rerun the dynamics backw-
ards in time, with negative t; with no reversibility, we cannot define the inverse
f −t( f t(x)) = f 0(x) = x , in which case the family of mappings f t(x) does not form
a group. In exceedingly many situations of interest–for times beyond the Lyapu-
nov time, for asymptotic attractors, for dissipative partial differential equations,
for systems with noise, for non-invertible maps–the dynamics cannot be run ba-
ckwards in time, hence, the circumspect emphasis on semigroups. On the other
hand, there are many settings of physical interest, where dynamics is reversible
(such as finite-dimensional Hamiltonian flows), and where the family of evolution
maps f t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.5)

and express the tangent to the curve at point x(t) as
exercise 2.3

dx
dτ

∣∣∣∣∣
τ=0

= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) , (2.6)

the time derivative of the evolution rule, a vector evaluated at the point x(t). By
considering all possible orbits, we obtain the vector ẋ(t) at any point x ∈ M. This
vector field is a (generalized) velocity field:

remark 13.2

ẋ(t) = v(x) . (2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.7), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.7). At each point of the
state space a vector indicates the local direction in which the orbit evolves. The
length of the vector |v(x)| is the speed at the point x, and the direction and length
of v(x) changes from point to point (a warning: we have slipped in here a highly

remark 6.1
nontrivial notion of a “norm” or distance in the state space). When the state space
is a complicated manifold embedded in Rd, one can no longer think of the vector
field as being embedded in the state space. Instead, we have to imagine that each

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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Figure 2.4: (a) The 2-dimensional vector field for
the Duffing system (2.22), together with a short
trajectory segment. (b) The flow lines. Each ‘co-
met’ represents the same time interval of a traje-
ctory, starting at the tail and ending at the head.
The longer the comet, the faster the flow in that
region.

(a) (b)

point x of state space has a different tangent plane TMx attached to it. The vector
field lives in the union of all these tangent planes, a space called the tangent
bundle

TM =
⋃
x∈M

TMx . (2.8)

TMx is called a fiber at x, hence the whole thing is called the fiber bundle. Locally
a fiber bundle looks like the product of two Rd spaces. Just relax: we’ll do our
best not to use such words again.

A simple example of a flow defined by a 2-dimensional vector field v(x) is
afforded by the unforced Duffing system, figure 2.4. Lorenz flow of figure 2.5,
and Rössler flow of figure 2.6 , are representative 3-dimensional flows.

example 2.1

p. 56

example 2.2

p. 56

example 2.3

p. 56

The instantaneous velocity vector v is tangent to the orbit, except at the equi-
librium points, where it vanishes.

If v(xq) = 0 , (2.9)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The
orbit remains forever stuck at xq. Otherwise the orbit passing through x0 at time
t = 0 can be obtained by integrating the equations (2.7):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.10)

We shall consider here only autonomous flows, i.e., flows for which the vector
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ

= w(y, τ) , (2.11)

can always be converted into a system where time does not appear explicitly.
exercise 2.4
exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.12)

The new flow ẋ = v(x) is autonomous, and the orbit y(τ) can be read off x(t) by
ignoring the last component of x.

exercise 6.3

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
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Figure 2.6: A trajectory of the Rössler flow at time
t = 250. (G. Simon)
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2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective one only cares about what is the state
of system here and now; think of a field of grass, each grass blade the local velo-
city vector. From the Lagrangian viewpoint one cares about where a state space
point come from, and where is it going to; think of the state space foliated into a
bowl of linguini, each noodle an orbit, marked with a label x0 somewhere along
it. In the Eulerian formulation the flow is defined by specifying (2.7), the velo-
city field v(x). In the Lagrangian formulation it is given by the finite time flow
(2.10), i.e., the totality of the trajectories x(t) comprising the deformed region,
labeled by their origin x0 in the initial undeformed region. If we mark the orbit
x(t) by its initial point x0, we are describing the flow in the Lagrangian coordi-
nates. The Eulerian velocity v(x) at a fixed state space position x is equal to the
Lagrangian velocity v(x(t)) at the orbit passing through x at the instant t. Because
f t is a single-valued function, any point on the orbit can be used to label the orbit.
The transport of the ‘material point’ x0 at t = 0 to its value at the current point
x(t) = f t(x0) is a coordinate transformation from the Lagrangian coordinates to
the Eulerian coordinates.

In numerical work we are given the equations of motion (the local Eulerian
velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
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velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport.

fast track:

chapter 3, p. 64

2.3 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not alw-
ays expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but in doing so, the velocity
vector field will also change. The vector field lives in a (hyper)plane tangent to the
state space (remember the dreaded tangent bundle?), so changing the state space
coordinates affects the coordinates of the tangent space as well, in a way that we
will now describe.

Denote by h the conjugation function which maps the coordinates of the initial
state spaceM into the reparameterized state space M̃ = h(M), with a point x ∈ M
related to a point y ∈ M̃ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one, a diffeomorphism on open neigh-
borhoods inM and M̃, so given any point y we can go back to x = h−1(y). For
smooth flows the reparameterized dynamics should support the same number of
derivatives as the initial one. If h is a (piecewise) analytic function, we refer to h
as a smooth conjugacy.

What form does the velocity vector field ẋ = v(x) take in the new coordinate
system y = h(x)? Let’s compute it first for a 1-dimensional dynamical system. Let
x(t) = f t(x) be the solution to the differential equation ẋ = v(x) starting at x, and
y(t) = gt(y) be the solution to the same problem, but in the new coordinates. The
velocity vector field in the new coordinates follows from the chain rule:

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
dy
dx

dx
dt

=
dh
dx

v(x) .

To understand this transformation for a state space of arbitrary dimension, a little
geometrical intuition pays off. The evolution rule gt(y0) on M̃ can be computed
from the evolution rule f t(x0) onM by taking the initial point y0 ∈ M̃, going back
toM, evolving, and then mapping the final point x(t) back to M̃:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (2.13)

Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (2.13) is a
shorthand for y(t) = h( f t(h−1(y0))). and that why h(x) is called a ‘conjugating
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function’; it is a a similarity transformation generalized to nonlinear coordinate
transformations.

The vector field ẋ = v(x) is locally tangent to the flow f t; it is related to the
flow by differentiation (2.6) along the orbit. The vector field ẏ = w(y), y ∈ M̃
locally tangent to gt, follows by the chain rule:

exercise 2.10

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (2.14)

In order to rewrite the right-hand side as a function of y, note that the ∂y differen-
tiation of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
·
∂h−1

∂y

∣∣∣∣∣∣
y

= 1 →
∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (2.15)

so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j
v j(h−1(y)) . (2.16)

Imagine the state space as a rubber sheet with the flow lines drawn on it. A
coordinate change h corresponds to pulling and tugging on the rubber sheet smo-
othly, without cutting, gluing, or self-intersections of the distorted rubber sheet.
Trajectories that are closed loops inM will remain closed loops in the new ma-
nifold M̃, but their shapes will change. Globally, h deforms the rubber sheet in
a highly nonlinear manner, but locally it simply rescales and shears the tangent
field by the coordinate transformation Jacobian matrix ∂ jhi, yielding the simple
transformation law (2.14) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(t), with the concomitant modification of (2.16). An
example is the 2-body collision regularization of the helium Hamiltonian (8.27),
to be undertaken in appendix A2.2.

appendix A2.2

2.4 Life in extreme dimensions

Sometimes I’ve believed as many as six impossible things
before breakfast.

— Lewis Carroll

Systems described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ dynamical systems, because in order to uniquely specify the state
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Figure 2.7: (a) The Ring of Fire, visualized as a
Bunsen burner flame flutter, with u = u(x, t) the
velocity of the flame front at position x and time t.
(b) A profile of the velocity u of the flame front at
fixed time instant t folded out on a plane, with spa-
tial periodicity u(x, t) = u(x+40, t) (from ref. [22]).
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of a spatially extended ‘field’, one needs infinitely many numbers, one for the
value of the field at each configuration space point. Even though the state space

chapter 30
is infinite-dimensional, the long-time dynamics of many such systems of physical
interest is finite-dimensional, contained within a ‘strange attractor’ or an ‘inertial
manifold’. Most of us find it hard to peer into four dimensions. How are we
to visualize -and why we would have any hope of visualizing- dynamics in such
extreme dimensions? A representative point is a point, and its trajectory is a curve
in any 2- or 3-dimensional projection, so that is not so hard. What is hard is to get
an understanding of relative disposition of different states. The coordinates have
to be chosen thoughtfully, as in a randomly picked coordinate frame most orbits
of interest will appear minuscule.

A dynamical system is specified by the pair (M, f ), where d numbers uniqu-
ely determine a state of the system, or the representative point x in the state space
manifoldM. Here we focus on how one constructs such state space, and how one
visualizes a representative point x and its trajectory f t(x) time t later. We shall re-

chapter 30
turn to dynamics, i.e., the evolution rule f t that maps a state space regionMi of the
state space into the region f t(Mi) (see figure 2.2) for such systems in chapter 30,
where we describe in some detail time-evolution equations for spatially-extended
systems, and discuss ‘turbulence’ that such systems may exhibit.

2.4.1 Configuration space: a fluttering flame front

Consider the flame front flutter of gas burning on your kitchen stove. Such ‘Bun-
sen burner’, invented by Göttingen chemistry prodigy Robert Bunsen in 1855, en-
tered popular culture in 1963 as Johnny Cash et al. [5] “Ring of Fire”. Its flame
front instabilities are perhaps the most familiar example of a nonlinear system that
exhibits ‘turbulence’ (or, more modestly, ‘spatiotemporally chaotic behavior’): a
typical configuration space (or the much abused word ‘physical’ space) visuali-
zation is sketched in figure 2.7. Its state can be described by the ‘flame front
velocity’ u = u(x, t) on a periodic domain u(x, t) = u(x + L, t).

Spatial, ‘configuration’ or ‘physical’ space visualization of a state of such
system, figure 2.7, or a fixed time snapshot of velocity and vorticity fields in 3D
Navier-Stokes, or a visualization of the flame front flutter in time, figure 2.8, or
a time-evolving video of a fluid, offer little insight into detailed dynamics of
such systems. To understand the dynamics, one must turn to the complementary,
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Figure 2.8: A spatiotemporal plot of the Ring of
Fire “turbulent" solution, periodic domain u(x, t) =

u(x + 20π
√

2, t) is obtained by plotting the profile
of figure 2.7 (b) for successive time instants (ver-
tical axes). The color indicates the value of u at a
given position and instant in time (from ref. [8]). 0 1 2 3 4 5 6 7 8 9 10
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and often much more illuminating state space representations. In this context
‘flow’ refers to a d-dimensional flow in the dynamical state space, not the flow
of a fluid, and ‘velocity’ to the state space tangent field ẋ = v(x), not to the 3D
configuration space fluid velocity field u(x, t) ∈ R3. A ‘representative point’ is
a full specification of the state x ∈ M of the system, In today’s experiments or
numerical simulations, this is a set of anything from 16 to 106 numbers needed to
specify a complete snapshot of the flame front figure 2.7, or the state of volume

chapter 30
of turbulent fluid in a pipe at an instant in time.

2.4.2 Constructing a state space

Think globally, act locally.
— Patrick Geddes

At this juncture, our everyday, plumber’s visual intuition actually interferes
with dynamical visualization of state space of a spatially-extended systems: while
the spatial dimension of the Ring of Fire is 1, its dimension as a dynamical system
is ∞. Absorbing this simple fact of life is the same rite of passage as going from
the 1 degree of freedom quantum mechanical oscillator to the ‘second quantiza-
tion’ of quantum field theory, with its infinitely many quantum oscillator degrees
of freedom.

To develop some intuition about such dynamics we turn to experiments, or
numerical simulations, such as the Ring of Fire time evolution, figure 2.8. The
first thing we note is that while the dynamics might be ‘turbulent’, for many such
systems the long-time solutions tend to be smooth. That suggests that a discreti-
zation, perhaps aided by interpolations such as n-point spatial derivatives might
give us a representation of the dynamics of reasonable accuracy.

Discrete mesh: You can subdivide the configuration domain into a sufficiently
fine discrete grid of N boxes, replace space derivatives in the governing equations
by approximate discrete derivatives, and integrate a finite set of first order diffe-
rential equations for the discretized spatial components u j(t) = u( jL/N, t), by any
integration routine you trust. Most often that’s the best you can do.
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The next thing we note is that the solutions for many physical systems of
physical interest tend to be not only smooth, but also that the laws that govern
them are invariant in form under operations such as translations. For example,
in configuration space the fluttering flame front governing equations should be
invariant in their form under rotations, time translations, and reflection x → −x,
u→ −u.

Spectral methods: The spatial periodicity u(x, t) = u(x + L, t) then suggests that
it might be convenient to work in the Fourier space,

u(x, t) =

+∞∑
k=−∞

ũk(t) eiqk x , (2.17)

where ũk = xk + i yk = |ũk|eiφk , qk = 2πk/L, L is the domain size, x is the spatial
coordinate and τ is time. Thus a state of a spatially 1-dimensional extended system
can described by an infinite set of complex Fourier coefficients ũk(t). The velocity
field u(x, t) is real, so ũk = ũ∗

−k, and we can replace the sum by an k ≥ 0 sum,
with u writtan as its reflection-symmetric part (sum of cosines) plus its reflection-
antisymmetric part (sum of sines). This is an example of an infinite-dimensional
state space alluded to on page 46, in this section’s introduction.

example 12.7

Intuitively the flame front is smooth, so Fourier coefficients ũk drop off fast
with k, and truncations of (2.17) to finite numbers of terms can yield highly accu-
rate states. In numerical computations this state space is truncated to a finite
number of real dimensions. For example, a state might be specified by 2N real
Fourier coefficients, or ‘computational degrees of freedom’

x = (x1, y1, x2, y2, . . . , xN , yN)T . (2.18)

More sophisticated variants of such truncations are called in the literature Gälerkin
truncations, or Gälerkin projections.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space, as in
figure 2.7 and figure 2.8, by inverting (2.17). Spatiotemporal patterns give us a
qualitative picture of the flow and a physical intuition about the energetics of the
flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space is much more informative.

2.4.3 State space, as visualized by dummies

This is dedicated to Student X
— Professore Dottore Gatto Nero

So the simplest way to construct (in practice a finite dimensional approximation
to) state space coordinates is by a discrete mesh u(x, t) → u j(t) or ‘spectral’ co-
efficients u(x, t) → ũk(t). We shall refer to such coordinates as ‘computational
degrees of freedom’. The same dynamics can look very different in different choi-
ces of coordinates. And when we say that the dynamics is ‘61,506-dimensional’,
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we mean that in order to capture a particular physical observable to so many si-
gnificant digits of accuracy, we need at least 61,506 degrees of freedom.

The question is: how is one to look at such state space flow? The laziest
thing to do is to examine the trajectory’s projections onto any three computatio-
nal degrees of freedom, let’s say the first three Fourier modes (ũ1, ũ2, ũ3). Why
would you do that? Well, that’s what computer spews out. This won’t do. Let’s
accept that you do not know much about high dimensions, but you have been born
someplace where they force you to watch grown men kick a ball, for hours on
end. Your choice of (ũ1, ũ2, ũ3) coordinates means that you (or the TV camera)
are standing at a corner of the field. Far, far away, at the opposite end of the field,
there is action - but you only see a few little moving silhouettes, and can hardly
see the ball.

Or, if you scholarly kind, and would rather while hours away evaluating Meijer
G-functions, here is a precise way of saying the same: chose a direction in a high-
dimensional state space, call it your basis vector e(1). Now pick a state u in state
space at random. That gives you a second vector. What is the angle between these
two vectors? The cosine of that angle you compute by evaluating the ‘dot’ product
(or L2 norm)

〈u|e(1)〉 =
1
V

∫
Ω

dx u · e(1) , ‖u‖2 = 〈u|u〉 . (2.19)

Once you finish the exercise 2.12 you will know what every computer scientist
exercise 2.12

knows: the expectation value of the angle between any two high-dimensional
vectors picked at random is 90o, with a very small variance. In other words, in
high dimension and with a random coordinate system, every distant silhouette of
Cristiano Ronaldo is vanishingly small. And as your lazy (ũ1, ũ2, ũ3) coordinates
are a random choice, your turbulent state might require 105 such coordinates to be
accurately resolved.

So, if you were a referee, or a camera operator, would your really just stand
there, in the far corner of the field?

2.4.4 Exact state-space portraiture: go where the action is

(J.F. Gibson and P. Cvitanović)

You are interested into dynamics and especially the recurrent dynamics, so
scan the soccer field and identify, by long-time numerical simulations or other
means, prominent states that characterize the observed recurrent coherent structu-
res of interest to you. If you form a basis set from them, and project the evolving
state x(t) onto this basis, coordinates so formed will capture close recurrences to
these states. That is, form orthonormal basis functions {e(1), e(2), . . . , e(n)} from a
set of linearly independent fluid states and produce a state-space trajectory

x(t) = (x1(t), x2(t), · · · , xn(t), · · · ) , xn(t) = 〈u(t)|e(n)〉 (2.20)
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in the {e(n)} coordinate frame. The projection of the trajectory can be viewed by a
human in any of the 2d planes {e(m), e(n)} or in 3d perspective views {e(`), e(m), e(n)}.
The dimensionality is lower than the full state space, so in such projections tra-
jectories can appear to cross. It is important to understand that this is a low-
dimensional visualization, not low-dimensional modeling, a truncation to fewer
computational degrees of freedom. The dynamics are computed with fully-resolved
direct numerical simulations and then projected onto basis sets to produce low-
dimensional state-space portraits, tailored to specific purposes and specific regions
of state space. The resulting portraiture depends on the physical states involved
and not on the (arbitrary) choice of a numerical representation. Such well-chosen
portraits reveal dynamical information visually, providing insight into dynamics
that can guide further analysis.

At first glance, turbulent dynamics visualized in state space might appear ho-
pelessly complex, but many detailed studies suggest it might be much less so than
feared: turbulent dynamics appears to be pieced together from near visitations
to exact invariant solutions. interspersed by transient interludes. Equilibria, trave-

appendix A1.5
ling waves, and periodic solutions embody Hopf’s vision: a repertoire of recurrent
spatio-temporal patterns explored by turbulent dynamics. We conceive of turbu-
lence as a walk through a repertoire of unstable recurrent patterns. As a turbulent
flow evolves, every so often we catch a glimpse of a familiar pattern. For any
finite spatial resolution, the flow approximately follows for a finite time a pattern
belonging to a finite alphabet of admissible fluid states, represented in ChaosBook
by a set of exact invariant solutions.

There is an infinity of possible basis sets, but two types of bases appear parti-
cularly natural: (a) a global basis, determined by a set of dynamically important
states, or (b) a local basis, defined, for example, in terms of a given equilibrium
and its linear stability eigenvectors.

section 4.8

With this road map in hand, we can take a stroll through the state space of a
spatiotemporally turbulent flow. Like many dynamical narratives, this might turn
into a long trek through unfamiliar landscapes with many landmarks of local inte-
rest. It is amazing that such a promenade is possible even in 105 dimensions. But
a detailed road map is a necessary prerequisite for solving at least three of your
outstanding problems: (a) uncovering the interrelations between (in principle in-
finite number of) unstable invariant solutions of a turbulent flow, (b) a partition of
state space (symbolic dynamics) is a needed for a systematic exploration of tur-
bulent dynamics, and (c) linear stability eigenvectors and their unstable-manifold
continuations will be needed to control and chaperon a given spatiotemporal state
to a desired target state.

In summary, when dealing with spatiotemporally extended systems, you’ll
need dual vision - you will have to think both in the configuration space, and in
the state space.
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2.5 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion (2.7).
The simplest is the Euler integrator which advances the trajectory by adding a
small vector δτ× velocity at each time step:

xi → xi + vi(x) δτ . (2.21)

This might suffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If you are interested in Hamiltonian flows you might want
to implement a symplectic integrator of type discussed in appendix A19.2.1. If a

exercise 2.6
‘sophisticated’ integration routine takes days and gobbles up terabits of memory,
you are using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you absolu-

exercise 2.7
tely need to master the requisite numerical methods, this is neither the time nor
the place to expound upon them; how you learn them is your business. And if you

exercise 2.9
have developed some nice routines for solving problems in this text or can point
another student to some, let us know.

exercise 2.11

In chapter 30 we shall dispose of the fear of ‘infinite-dimensional’ dynamical
systems–you might prefer to skip sect. 2.4 on first reading.

Résumé

Start from a state space point and evolve it for a finite time, you trace out its
trajectory. Evolve it forward and backward for infinite time, you get the orbit, the
set of all states reachable by evolution from a given state space point. An orbit is
a time-invariant notion: time evolution marches points along it, but the set itself
does not change. The flow describes the time evolution of all state space points,
i.e., the totality of all orbits: the evolution law f turns the state space into a bowl
of spaghetti, with each individual spaghetto an orbit.

Chaotic dynamics with a low-dimensional attractor can be visualized as a su-
ccession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal
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patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time, the system follows approximately a pattern belonging to a finite
repertoire of possible patterns. The long-term dynamics can be thought of as a
walk through the space of such patterns. Recasting this image into mathematics is
the subject of this book.

The state-space portraits are dynamically intrinsic, since the projections are
defined in terms of solutions of the equations of motion, and representation inde-
pendent, since the L2 product (2.19) is independent of the numerical representa-
tion. The method can be applied to any high-dimensional dissipative flow. Produ-
ction of state-space portraits requires numerical data of configuration space fields
evolving in time (obtained obtained from simulation or experiment), estimates of
important physical states (such as equilibria and their linear stability eigenfuncti-
ons), and a method of computing the inner product between velocity fields over
the physical domain.

Commentary

Remark 2.1. ‘State space’ or ‘phase space?’ In ChaosBook, state space is the
set of admissible states in a general d- or ∞-dimensional dynamical system. The term
phase space is reserved for Hamiltonian state spaces of 2D-dimensions, where D is the
number of Hamiltonian degrees of freedom. If the state space is a continuous smooth
manifold much of the literature [17, 24] refers to it as ‘phase space,’ but we find the
control engineering usage sharper: in the state space (or ‘time-domain’) description of
an autonomous physical system, the instantaneous state of the system is represented as a
point within the ‘state space,’ space whose axes are the state variables, and the evolution
of a state is given by differential equations which are first-order in time. Hopf [18] would
refer to such a state as an ‘instantaneous phase’ of the system obeying a ‘differential law
of the phase motion’. The distinction made here is needed in a text where one treats
deterministic dynamical systems, stochastic systems and quantum-mechanical systems
on equal footing. The term ‘phase’ has a precise meaning in wave mechanics, quantum
mechanics and dynamics of integrable systems at the heart of Hamilton’s formulation of
Newtonian mechanics, while ‘state space’ is more descriptive of the way the notion is
used in the general theory of dynamical systems. Further confusion arises when prefix
spatio- as in ‘spatiotemporal’ is used in reference to states extended in the (1, 2, or 3-dim-
ensional) physical configuration space. They may exhibit spatial wave-like behaviors, but
their state space is∞-dimensional.

Much of the literature denotes the vector field in a first order differential equation
(2.7) by f (x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’
or ‘flow map’ x(x0, t) = Φ(x0, t), or φt(x0), or something else. Here we treat maps and
flows on an equal footing, and we save Greek letters for matters quantum-mechanical. We
reserve the notation f t(x) for maps such as (2.10) and refer to a state space velocity vector
field as v(x). We come to regret this choice very far into the text, only by the time we
delve into Navier-Stokes equations.

Remark 2.2. Rössler and Duffing flows. The Duffing system (2.22) arises in
the study of electronic circuits [9]. The Rössler flow (2.28) is the simplest flow which
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exhibits many of the key aspects of chaotic dynamics. It was introduced in ref. [29] as
a set of equations describing no particular physical system, but capturing the essence
of Lorenz chaos in the most simple of smooth flows. Otto Rössler, a man of classical
education, was inspired in this quest by that rarely cited grandfather of chaos, Anaxagoras
(456 B.C.). This and references to earlier work can be found in refs. [13, 27, 35]. We
recommend in particular the inimitable Abraham and Shaw illustrated classic [1] for its
beautiful sketches of many flows, including the Rössler flow. Timothy Jones [20] has a
number of interesting simulations on a Drexel website.

Remark 2.3. Lorenz equation. The Lorenz equation (2.23) is the most celebrated
early illustration of “deterministic chaos” [24] (but not the first - that honor goes to Dame
Cartwright [4] in 1945). Lorenz’s 1963 paper, which can be found in reprint collections
refs. [7, 15], is a pleasure to read, and it is still one of the best introductions to the physics
motivating such models (read more about Lorenz here). The equations, a set of ODEs in
R3, exhibit strange attractors. W. Tucker [36–38] has proven rigorously (via interval ari-
thmetic) that the Lorenz attractor is strange for the original parameters (no stable orbits)
and that it has a long stable periodic orbit for slightly different parameters. In contrast
to the hyperbolic strange attractors such as the weakly perturbed cat map [6], the Lorenz
attractor is structurally unstable. Frøyland [10] has a nice brief discussion of Lorenz flow.
Frøyland and Alfsen [11] plot many periodic and heteroclinic orbits of the Lorenz flow;
some of the symmetric ones are included in ref. [10]. Guckenheimer-Williams [14] and
Afraimovich-Bykov-Shilnikov [2] offer an in-depth discussion of the Lorenz equation.
The most detailed study of the Lorenz equation was undertaken by Sparrow [32]. For a
geophysics derivation, see Rothman course notes [30]. For a physical interpretation of ρ as
“Rayleigh number,” see Jackson [19] and Seydel [31]. The Lorenz truncation to 3 modes,
however, is so drastic that the model bears no relation to the geophysical hydrodynamics
problem that motivated it. For detailed pictures of Lorenz invariant manifolds consult
Vol II of Jackson [19] and “Realtime visualization of invariant manifolds” by Ronzan.
The Lorenz attractor is a very thin fractal – as we shall see, stable manifold thickness
is of the order 10−4 – whose fractal structure has been accurately resolved by D. Viswa-
nath [39, 40]. If you wonder what analytic function theory has to say about Lorenz, check
ref. [41]. Modular flows are your thing? E. Ghys and J. Leys have a beautiful tale for
you. Refs. [23, 25] might also be of interest. (continued in remark 11.1 and remark ??)

Remark 2.4. High-dimensional flows and their visualizations. Dynamicist’s vision of
turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [17], see appen-
dix A1.5. Much about high-dimensional state spaces is counterintuitive. The literature

appendix A1.5on why the expectation value of the angle between any two high-dimensional vectors pi-
cked at random is 90o is mostly about spikey spheres: see the draft of the Hopcroft and
Kannan [16] book and Ravi Kannan’s course; lecture notes by Hermann Flaschka on
Some geometry in high-dimensional spaces; Wegman and Solka [42] visualizations of
high-dimensional data; Spruill paper [33]; a lively mathoverflow.org thread on “Intuitive
crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [12] and described here are akin in spirit
to the low-dimensional projections of the POD modeling [3], in that both methods aim
to capture key features and dynamics of the system in just a few dimensions. But the
method described here is very different from POD in a key way: we construct basis sets
from exact solutions of the fully-resolved dynamics rather than from the empirical eigen-
functions of the POD. Exact solutions and their linear stability modes (a) characterize the
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spatially-extended states precisely, as opposed to the truncated expansions of the POD, (b)
allow for different basis sets and projections for different purposes and different regions of
state space, (c) our low-dimensional projections are not meant to suggest low-dimensional
ODE models; they are only visualizations, every point in these projections is still a point
the full state space, and (d) the method is not limited to Fourier mode bases.

(J.F. Gibson and P. Cvitanović)

Remark 2.5. Dynamical systems software: J.D. Meiss [26] has maintained for
many years Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynami-
cal Systems website www.dynamicalsystems.org. The website glossary contains most
of Meiss’s FAQ plus new ones, as well as an up-to-date software list [34] with links to
DSTool, xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics maintains
links to dynamical systems software packages on eom.springer.de/D/d130210.htm (dor-
mant since 2000, though). Kuznetsov [21] Appendix D.9 gives an exhaustive overview of
software available in 2004. (see also remark 15.1)
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2.6 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

Example 2.1. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)
ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.22)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of state space M, but they belong to a different space (2.8), the
tangent bundle TM.

Example 2.2. Lorenz strange attractor. Edward Lorenz arrived at the equation
remark 2.3

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx − y − xz

xy − bz

 (2.23)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
located at

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.24)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows, but
here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a homo-
clinic orbit at ρ = 13.56 . . . . Beyond that, an infinity of associated periodic orbits are
generated, until ρ = 24.74 . . . , where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice σ =

10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined to
the strange attractor depicted in figure 2.5, and the positions of its equilibria are marked
in figure 11.4. (continued in example 3.3)

click to return: p. 43

Example 2.3. Rössler strange attractor. The Duffing flow of figure 2.4 is bit of a
bore–every orbit ends up in one of the two attractive equilibrium points. Let’s construct
a flow that does not die out, but exhibits a recurrent dynamics. Start with a harmonic
oscillator

ẋ = −y , ẏ = x . (2.25)

The solutions are reit, re−it, and the whole x-y plane rotates with constant angular velocity
θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.26)
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or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1 + (a/2) sin 2θ. The plane is still rotating
with the same average angular velocity, but trajectories are now spiraling out. Any flow
in the plane either escapes, falls into an attracting equilibrium point, or converges to a
limit cycle. Richer dynamics requires at least one more dimension. In order to prevent
the trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value
c by adding

ż = b + z(x − c) , c > 0 . (2.27)

As x crosses c, z shoots upwards exponentially, z ' e(x−c)t. In order to bring it back, start
decreasing x by modifying its equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct kicks
in, and the trajectory drops back toward the x-y plane. This frequently studied example of
an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.28)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is as
exercise 2.8simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for so

‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.9):

x± = (
1
2
±

1
2

√
1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)
(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )

(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) (2.29)

One is close to the origin by construction. The other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.6 (see also
figure 14.7 (a)). Trajectories that start out sufficiently close to the origin seem to converge
to a strange attractor. We say ‘seem’ as there exists no proof that such an attractor is
asymptotically aperiodic–it might well be that what we see is but a long transient on a
way to an attractive periodic orbit. For now, accept that figure 2.6 and similar figures in
what follows are examples of ‘strange attractors.’

The Rössler flow is the simplest flow which exhibits many of the key aspects of chao-
tic dynamics; we shall use it and the 3-pinball systems throughout ChaosBook to motivate

chapter 9
introduction of Poincaré sections, return maps, symbolic dynamics, cycle expansions, and
much else. Rössler flow is integrated in exercise 2.7, its equilibria are determined in exe-
rcise 2.8, its Poincaré sections constructed in exercise 3.1, and the corresponding return
return map computed in exercise 3.2. Its volume contraction rate is computed in exe-
rcise 4.3, its topology investigated in exercise 4.4, the shortest Rössler flow cycles are
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computed and tabulated in exercise 7.1, and its Lyapunov exponents evaluated in exe-
rcise 6.4. (continued in exercise 2.8 and example 3.2) (R.

click to return: p. 43
Paškauskas)

flows - 26jan2015 ChaosBook.org edition16.0, Jan 13 2018



EXERCISES 61

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Orbits do not intersect. An orbit in the state spaceM
is the set of points one gets by evolving x ∈ M forwards
and backwards in time:

Mx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolution f t is
a one-parameter semigroup, where (2.4)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the semigroup
of evolution functions comes from the commutative ch-
aracter of the time parameter under addition. Can you
think of any other semigroup replacing time?

2.3. Almost ODE’s.

(a) Consider the point x on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function φ.

(b) Show that all extrema of φ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [28]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)
k3 = δτ v(xn + k2/2)
k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.28). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the Röss-
ler system (2.28). How many are there?

(b) Assume that b = a. As we shall see, some surpri-
singly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

ε = a/c , D = 1 − 4ε2 , p± = (1 ±
√

D)/2 .

Express all the equilibria in terms of (c, ε,D, p±),
expand to the first order in ε, and evaluate for
a = b = 0.2, c = 5.7 in (2.28). In the case studied
ε ≈ 0.03, so these estimates are quite accurate.
(continued in exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
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possible to establish that a set of nonlinear ordinary dif-
ferential equations has a solution for all times and th-
ere are many cases were the solution only exists for a
limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise 2.6.
The equation

ẍ = x (2.30)

with initial conditions x(0) = 2 and ẋ = 0 has the
solution x(t) = e−t(1 + e2 t) . Can your integrator
reproduce this solution for the interval t ∈ [0, 10]?
Check your solution by plotting the error as com-
pared to the exact result.

(c) Test your integrator for

ẍ = −x (2.31)

with the same initial conditions and integration in-
terval.

(d) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chao-
tic. For initial conditions, we will always use
ẍ(0) = ẋ(0) = x(0) = 0 . Can you reproduce
the result x(12) = 0.8462071873 (all digits are
significant)? Even though the equation being in-
tegrated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fa-
ctor is ≈ 2.4).

(e) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from confu-
sing functional relationships, such as x(t) = h−1(y(t))
with numerical relationships, such as w(y) = h′(x)v(x).
Working through an example will clear this up.

(a) The differential equation in M is ẋ = {2x1, x2}

and the change of coordinates from M to M′ is
h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t). Find
h−1.

(b) Show that in the transformed spaceM′, the diffe-
rential equation is

d
dt

[
y1
y2

]
=

1
3

[
5y1 + 2y2
y1 + 4y2

]
.

Solve this system. Does it match the solution in
theM space?

2.11. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we
shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (8.27)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
−

Z
r2

+
1

r1 + r2
.

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (r1, r2), ri ≥ 0 qu-
adrant. In (r1, r2)-coordinates the potential is singular
for ri → 0 nucleus-electron collisions. These 2-body
collisions can be regularized by rescaling the coordina-
tes, with details given in sect. A2.2. In the transformed
coordinates (x1, x2, p1, p2) the Hamiltonian equations of
motion take the form

Ṗ1 = 2Q1

2 − P2
2

8
− Q2

2(1 +
Q2

2

R4 )


Ṗ2 = 2Q2

2 − P2
1

8
− Q2

1(1 +
Q2

1

R4 )


Q̇1 =
1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.32)

where R = (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A co-
nvenient way to visualize the 3-dimensional state
space orbit is by projecting it onto the 2-dimen-
sional (r1(t), r2(t)) plane. (continued in exe-
rcise 3.4)

(Gregor Tanner, Per Rosenqvist)

2.12. In high dimensions any two vectors are (nearly) or-
thogonal. Among humble plumbers laboring with ex-
tremely high-dimensional ODE discretizations of fluid
and other PDEs, there is an inclination to visualize the
∞-dimensional state space flow by projecting it onto a
basis constructed from a few random coordinates, let’s
say the 2nd Fourier mode along the spatial x direction
against the 4th Chebyshev mode along the y direction.
It’s easy, as these are typically the computational de-
grees of freedom. As we will now show, it’s easy but
not smart, with vectors representing the dynamical states

exerFlows - 23jan2015 ChaosBook.org edition16.0, Jan 13 2018



EXERCISES 63

of interest being almost orthogonal to any such random
basis.
Suppose your state space M is a real 10 247-dimen-
sional vector space, and you pick from it two vectors
x1, x2 ∈ M at random. What is the angle between them
likely to be?
By asking for ‘angle between two vectors’ we have im-
plicitly assumed that there exist is a dot product

x1
> · x2 = ‖ x1 ‖ ‖ x2 ‖ cos(θ12) ,

so let’s make these vectors unit vectors,
wwwww x j

wwwww = 1 .
When you think about it, you would be hard put to
say what ’uniform probability’ would mean for a vector
x ∈ M = R10 247, but for a unit vector it is obvious: pro-
bability that x direction lies within a solid angle dΩ is
dΩ/(unit hyper-sphere surface).
So what is the surface of the unit sphere (or, the total
solid angle) in d dimensions? One way to compute it is
to evaluate the Gaussian integral

Id =

∫ ∞

−∞

dx1 · · · dxd e−
1
2 (x2

1+···+x2
d) (2.33)

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Recast the integrals in polar coordinate form. You
know how to compute this integral in 2 and 3
dimensions. Show by induction that the surface
S d−1 of unit d-ball, or the total solid angle in even
and odd dimensions is given by

S 2k =
2(2π)k

(2k − 1)!!
, S 2k+1 =

2πk+1

k!
. (2.34)

(c) Show, by examining the form of the integrand in
the polar coordinates, that for arbitrary, perhaps
even complex dimension d ∈ C

S d−1 = 2πd/2/Γ(d/2) .

In Quantum Field Theory integrals over 4-
momenta are brought to polar form and evaluated
as functions of a complex dimension parameter d.
This procedure is called the ‘dimensional regula-
rization’.

(d) Check your formula for d = 2 (1-sphere, or the
circle) and d = 3 (2-sphere, or the sphere).

(e) What limit does S d does tend to for large d? (Hint:
it’s not what you think. Try Sterling’s formula).

So now that we know the volume of a sphere, what is a
the most likely angle between two vectors x1, x2 picked
at random? We can rotate coordinates so that x1 is ali-
gned with the ‘z-axis’ of the hypersphere. An angle θ
then defines a meridian around the ‘z-axis’.

(f) Show that probability P(θ)dθ of finding two ve-
ctors at angle θ is given by the area of the meridi-
onal strip of width dθ, and derive the formula for
it:

P(θ) =
1
√
π

Γ(d/2)
Γ((d − 1)/2)

.

(One can write analytic expression for this in
terms of beta functions, but it is unnecessary for
the problem at hand).

(g) Show that for large d the probability P(θ) tends
to a normal distribution with mean θ = π/2 and
variance 1/d.

So, in d-dimensional vector space the two random ve-
ctors are nearly orthogonal, within accuracy of θ =

π/2 ± 1/d.

If you are a humble plumber, and the notion of a vector
space is some abstract hocus-pocus to you, try thinking
this way. Your 2nd Fourier mode basis vector is someth-
ing that wiggles twice along your computation domain.
Your turbulent state is very wiggly. The product of the
two functions integrated over the computational domain
will average to zero, with a small leftover. We have just
estimated that with dumb choices of coordinate bases
this leftover will be of order of 1/10 247, which is em-
barrassingly small for displaying a phenomenon of order
≈ 1.

Several intelligent choices of coordinates for state space
projections are described in Gibson et al. [12] and the
web tutorial ChaosBook.org/tutorials.

Sara A. Solla and P. Cvitanović
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