
Chapter 32

Irrationally winding

I don’t care for islands, especially very small ones.
—D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at

the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context of dissipative dynamical systems one of the most common and ex-
perimentally well explored routes to chaos is the two-frequency mode–locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typically first one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstable and outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode–lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio of the two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode–locked states overlap,
chaos sets in. The likelihood that a mode–locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global" theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local" renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our

574



CHAPTER 32. IRRATIONALLY WINDING 575

Figure 32.1: Unperturbed circle map (k = 0 in (32.1))
with golden mean rotation number.
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intuition is much facilitated by approximating circle maps by number-theoretic
models. The models that arise in this way are by no means mathematically triv-
ial, they turn out to be related to number-theoretic abysses such as the Riemann
conjecture, already in the context of the “trivial" models.

32.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle maps x→ x′ = f (x), restricted to the one dimensional torus,
such as the sine map

xn+1 = f (xn) = xn + Ω −
k

2π
sin(2πxn) mod 1 . (32.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a con-
tinuous second derivative at the inflection point (where the second derivative van-
ishes). For the generic, physically relevant case (the only one considered here) the
inflection is cubic. Here k parametrizes the strength of the nonlinear interaction,
and Ω is the bare frequency.

The state space of this map, the unit interval, can be thought of as the elemen-
tary cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω −
k

2π
sin(2πx̂n) . (32.2)

where ˆ is used in the same sense as in chapter 24.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (32.3)

and can be shown to be independent of the initial value x̂0.

For k = 0, the map is a simple rotation (the shift map) see figure 32.1

xn+1 = xn + Ω mod 1 , (32.4)
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Figure 32.2: The critical circle map (k = 1 in (32.1))
devil’s staircase [21]; the winding number W as func-
tion of the parameter Ω.

and the rotation number is given by the parameter Ω.

W(k = 0,Ω) = Ω .

For given values of Ω and k the winding number can be either rational or irra-
tional. For invertible maps and rational winding numbers W = P/Q the asymptotic
iterates of the map converge to a unique attractor, a stable periodic orbit of period
Q

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q − 1 .

This is a consequence of the independence of x̂0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values of Ω values for which the iterates of the circle
map are attracted to the P/Q cycle. This interval is called the P/Q mode–locked

exercise 32.1
(or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ω
right
P/Q −Ω

le f t
P/Q . (32.5)

where Ω
right
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value of Ω for which W(k,Ω) =

P/Q. Parametrizing mode lockings by the exponent µ rather than the width ∆ will
be convenient for description of the distribution of the mode–locking widths, as
the exponents µ turn out to be of bounded variation. The stability of the P/Q cycle
is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “center" of the
stability interval) and 1 (the Ω

right
P/Q , Ω

le f t
P/Q endpoints of (32.5)). For the shift map

(32.4), the stability intervals are shrunk to points. As Ω is varied from 0 to 1, the
iterates of a circle map either mode–lock, with the winding number given by a
rational number P/Q ∈ (0, 1), or do not mode–lock, in which case the winding
number is irrational. A plot of the winding number W as a function of the shift
parameter Ω is a convenient visualization of the mode–locking structure of circle
maps. It yields a monotonic “devil’s staircase" of figure 32.2 whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection point xc

(see figure 32.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (32.1)) are called critical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameter k increases, the mode–locked
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Figure 32.3: Critical circle map (k = 1 in (32.1)) with
golden mean bare rotation number.
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intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstable P/Q cycle for any rational P/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free" shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a hi-
erarchical structure. From a physical point of view, the main problem is to identify
a (number-theoretically) consistent hierarchy susceptible of experimental verifi-
cation. We will now describe a few ways of organizing rationals along the unit
interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

32.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal length Q. This is the physical motivation for partitioning mode
lockings into sets of cycle length up to Q. In number theory such sets of rationals
are called Farey series. They are denoted by FQ and defined as follows. The
Farey series of order Q is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceed Q. Thus Pi/Qi

belongs to FQ if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =

{1
5
,
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,

1
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,

2
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,

1
2
,
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5
,

2
3
,

3
4
,

4
5
,

1
1

}
A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi are
consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.

irrational - 22sep2000 ChaosBook.org edition16.0, Feb 13 2018



CHAPTER 32. IRRATIONALLY WINDING 578

The number of terms in the Farey series FQ is given by

Φ(Q) =

Q∑
n=1

φ(Q) =
3Q2

π2 + O(Q ln Q). (32.6)

Here the Euler function φ(Q) is the number of integers not exceeding and rel-
atively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) =

4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction partitioning of
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode–lockings in a circle map,
then the first level is obtained by deleting ∆[1], ∆[2], · · · ,∆[a1], · · · mode–lockings;
their complement are the covering intervals `1, `2, . . . , `a1 , . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . . ] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined as the
monotonically increasing sequence of all rationals Pi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partition-
ing labeled by S∞ = {a1a2a3 · · · }, ak ∈ Z+, i.e., the set of winding numbers with
infinite continued fraction expansions. The continued fraction labeling is particu-
larly appealing in the present context because of the close connection of the Gauss
shift to the renormalization transformation R, discussed below. The Gauss map

T (x) =
1
x
−

[
1
x

]
x , 0

0 , x = 0 (32.7)

([· · · ] denotes the integer part) acts as a shift on the continued fraction represen-
tation of numbers on the unit interval

x = [a1, a2, a3, . . . ] → T (x) = [a2, a3, . . . ] . (32.8)

into the “mother” interval `a2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode–
lockings even at the first step of the partitioning. Thus numerical and experimental
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Figure 32.4: Farey tree: alternating binary or-
dered labeling of all Farey denominators on the nth
Farey tree level.
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use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure 32.2 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by
the Farey mediant (P + P′)/(Q + Q′) of the parent mode–lockings P/Q and P′/Q′.
This kind of cycle “gluing" is rather general and by no means restricted to circle
maps; it can be attained whenever it is possible to arrange that the Qth iterate
deviation caused by shifting a parameter from the correct value for the Q-cycle is
exactly compensated by the Q′th iterate deviation from closing the Q′-cycle; in
this way the two near cycles can be glued together into an exact cycle of length
Q+Q′. The Farey tree is obtained by starting with the ends of the unit interval
written as 0/1 and 1/1, and then recursively bisecting intervals by means of Farey
mediants.

We define the nth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k −
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{
[4], [2, 2], [1, 1, 2], [1, 3]

}
=

(1
4
,

1
5
,

3
5
,

3
4

)
. (32.9)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters” in Tn,
given by

[· · · , a]
[· · · , a − 1, 2] [· · · , a + 1]

Iteration of this rule places all rationals on a binary tree, labeling each by a unique
binary label, figure 32.4.
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The smallest and the largest denominator in Tn are respectively given by

[n − 2] =
1

n − 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (32.10)

where the Fibonacci numbers Fn are defined by Fn+1 = Fn+Fn−1; F0 = 0, F1 =

1, and ρ is the golden mean ratio

ρ =
1 +
√

5
2

= 1.61803 . . . (32.11)

Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree level
will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, we now briefly sum-
marize the results of the circle-map renormalization theory.

32.2 Local theory: “Golden mean" renormalization

The way to pinpoint a point on the border of order is to recursively ad-
just the parameters so that at the recurrence times t = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the preceding ni steps, but not so strong as to force the
trajectory into a stable attracting orbit. The renormalization operation R imple-
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space (by rescaling by a factor α), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factor δ),
and by replacing the initial map f by the nth iterate f n restricted to the magnified
neighborhood

fp(x)→ R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new func-
tion, framed in a smaller box, is a rescaling of the original function, i.e., the fix-
point function of the renormalization operator R. The best known is the period
doubling renormalization, with the recurrence times ni = 2i. The simplest circle
map example is the golden mean renormalization, with recurrence times ni = Fi

given by the Fibonacci numbers (32.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generaliza-
tion of the Gauss shift (32.38); it maps a circle map (represented as a pair of
functions (g, f ), of winding number [a, b, c, . . . ] into a rescaled map of winding
number [b, c, . . . ]:

Ra

(
g
f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (32.12)
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Acting on a map with winding number [a, a, a, . . . ], Ra returns a map with the
same winding number [a, a, . . . ], so the fixed point of Ra has a quadratic irrational
winding number W = [a, a, a, . . . ]. This fixed point has a single expanding eigen-
value δa. Similarly, the renormalization transformation Rap . . .Ra2Ra1 ≡ Ra1a2...ap

has a fixed point of winding number Wp = [a1, a2, . . . , anp , a1, a2, . . . ], with a
single expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by comparing suc-
cessive continued fraction approximants to W. Consider the Pr/Qr rational ap-
proximation to a quadratic irrational winding number Wp whose continued frac-
tion expansion consists of r repeats of a block p. Let Ωr be the parameter for which
the map (32.1) has a superstable cycle of rotation number Pr/Qr = [p, p, . . . , p].
The δp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ
−r
p . (32.13)

What this means is that the “devil’s staircase" of figure 32.2 is self-similar under
magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successive Pr/Qr mode–locked intervals
converge to universal limits. The simplest example of (32.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W = [1, 1, 1, ...] = (

√
5 − 1)/2.

When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle length Q and describing the range of possible asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks with
a power law

∆1/Q ∝ Q−3 (32.14)

For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth con-
tinued fraction approximant to the golden mean. The intuitive reason is that the
golden mean winding sits as far as possible from any short cycle mode–locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (32.15)

where P = Fn−1, Q = Fn and µ1 is related to the universal Shenker number δ1
(32.13) and the golden mean (32.11) by

µ1 =
ln |δ1|

2 ln ρ
= 1.08218 . . . (32.16)

The closeness of µ1 to 1 indicates that the golden mean approximant mode–
lockings barely feel the fact that the map is critical (in the k=0 limit this exponent
is µ = 1).
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To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218 · · · . (32.17)

32.3 Global theory: Thermodynamic averaging

Consider the following average over mode–locking intervals (32.5):

Ω(τ) =

∞∑
Q=1

∑
(P|Q)=1

∆−τP/Q. (32.18)

The sum is over all irreducible rationals P/Q, P < Q, and ∆P/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of length Q, with winding number P/Q.

The qualitative behavior of (32.18) is easy to pin down. For sufficiently neg-
ative τ, the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as for the
critical circle maps the mode–lockings fill the entire Ω range [48]. However, as τ
increases, the contributions of the narrow (large Q) mode–locked intervals ∆P/Q

get blown up to 1/∆τ
P/Q, and at some critical value of τ the sum diverges. This oc-

curs for τ < 0, as Ω(0) equals the number of all rationals and is clearly divergent.

The sum (32.18) is infinite, but in practice the experimental or numerical
mode–locked intervals are available only for small finite Q. Hence it is necessary
to split up the sum into subsets Sn = {i} of rational winding numbers Pi/Qi on
the “level" n, and present the set of mode–lockings hierarchically, with resolution
increasing with the level:

Z̄n(τ) =
∑
i∈Sn

∆−τi . (32.19)

The original sum (32.18) can now be recovered as the z = 1 value of a “gener-
ating" function Ω(z, τ) =

∑
n znZ̄n(τ). As z is anyway a formal parameter, and

n is a rather arbitrary “level" in some ad hoc partitioning of rational numbers,
we bravely introduce a still more general, P/Q weighted generating function for
(32.18):

Ω(q, τ) =

∞∑
Q=1

∑
(P|Q)=1

e−qνP/Q Q2τµP/Q . (32.20)

The sum (32.18) corresponds to q = 0. Exponents νP/Q will reflect the importance
we assign to the P/Q mode–locking, i.e., the measure used in the averaging over
all mode–lockings. Three choices of of the νP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =

∞∑
Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τµP/Q , (32.21)
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the continued fraction partitioning

Ω(q, τ) =

∞∑
n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1 ,...,an] , (32.22)

and the Farey tree partitioning

Ω(q, τ) =

∞∑
k=n

2−qn
2n∑
i=1

Q2τµi
i , Qi/Pi ∈ Tn . (32.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure" dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.

32.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution" is
obtained by deleting the parameter values corresponding to the mode–lockings in
the subset Sn; left behind is the set of complement covering intervals of widths

`i = Ωmin
Pr/Qr

−Ωmax
Pl/Ql

. (32.24)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode–locking
intervals ∆Pr/Qr (∆Pl/Ql) bounding `i and i is a symbolic dynamics label, for ex-
ample the entries of the continued fraction representation P/Q = [a1, a2, ..., an] of
one of the boundary mode–lockings, i = a1a2 · · · an. `i provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑
i∈Sn

`−τi (32.25)

The value of −τ for which the n → ∞ limit of the sum (32.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervals `i is optimal;
otherwise it provides an upper bound to DH . As by construction the `i intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, but a proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle maps DH = 0.870 . . .
is a (global) universal number.

exercise 32.2

32.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (32.25) from finite numbers of covering intervals
`i is a rather unilluminating chore. Fortunately, there exist considerably more
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elegant ways of extracting DH . We have noted that in the case of the “trivial"
mode–locking problem (32.4), the covering intervals are generated by iterations
of the Farey map (32.37) or the Gauss shift (32.38). The nth level sum (32.25) can
be approximated by Ln

τ, where

Lτ(y, x) = δ(x − f −1(y))| f ′(y)|τ

This amounts to approximating each cover width `i by |d f n/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1 − zLτ) = exp

−∑
p

∞∑
r=1

zrnp

r

|Λr
p|
τ

1 − 1/Λr
p


=

∏
p

∞∏
k=0

(
1 − znp |Λp|

τ/Λk
p

)
. (32.26)

The sum (32.25) is dominated by the leading eigenvalue of Lτ; the Hausdorff
dimension condition Zn(−DH) = O(1) means that τ = −DH should be such that
the leading eigenvalue is z = 1. The leading eigenvalue is determined by the
k = 0 part of (32.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the map f (x):

0 =
∏

p

(
1 − 1/|Λp|

DH
)
. (32.27)

For the Gauss shift (32.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, the xa fixed points (quadratic ir-
rationals with xa = [a, a, a . . . ] infinitely repeating continued fraction expansion)
are given by

xa =
−a +

√
a2 + 4

2
, Λa = −

a +
√

a2 + 4
2

2

(32.28)

and the xab = [a, b, a, b, a, b, . . . ] 2–cycles are given by

xab =
−ab +

√
(ab)2 + 4ab
2b

(32.29)

Λab = (xabxba)−2 =

(
ab + 2 +

√
ab(ab + 4)

2

)2

We happen to know beforehand that DH = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, the Gauss map is not a
repeller), so is the infinite product (32.27) merely a very convoluted way to com-
pute the number 1? Possibly so, but once the meaning of (32.27) has been grasped,
the corresponding formula for the critical circle maps follows immediately:

0 =
∏

p

(
1 − 1/|δp|

DH
)
. (32.30)
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CHAPTER 32. IRRATIONALLY WINDING 585

Table 32.1: Shenker’s δp for a few periodic continued fractions, from ref. [9].

p δp
[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

The importance of this formula relies on the fact that it expresses DH in terms
of universal quantities, thus providing a nice connection from local universal ex-
ponents to global scaling quantities: actual computations using (32.30) are rather
involved, as they require a heavy computational effort to extract Shenker’s scaling
δp for periodic continued fractions, and moreover dealing with an infinite alpha-
bet requires control over tail summation if an accurate estimate is to be sought. In
table 32.1 we give a small selection of computed Shenker’s scalings.

32.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode–locking phenomenology. We will consider it by means of
the thermodynamic formalism of appendix A36, by looking at the free energy.

Consider the Farey tree partition sum (32.23): the narrowest mode–locked
interval (32.15) at the nth level of the Farey tree partition sum (32.23) is the golden
mean interval

∆Fn−1/Fn ∝ |δ1|
−n. (32.31)

It shrinks exponentially, and for τ positive and large it dominates q(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|

ln 2
= 1.502642 . . . (32.32)

However, for τ large and negative, q(τ) is dominated by the interval (32.14) which
shrinks only harmonically, and q(τ) approaches 0 as

q(τ)
τ

=
3 ln n
n ln 2

→ 0. (32.33)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n → ∞ limit, the
q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but is a non-trivial
function of τ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
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picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial" Farey level thermodynamics is given by the
“Farey model,” in which the intervals `P/Q are replaced by Q−2:

Zn(τ) =

2n∑
i=1

Q2τ
i . (32.34)

Here Qi is the denominator of the ith Farey rational Pi/Qi. For example (see
figure 32.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (32.38) of the Gauss shift on rationals, the nth Farey
level sum Zn(−1) can be written as the integral

Zn(−1) =

∫
dx δ( f n(x)) =

∑
1/| f ′a1...ak

(0)| ,

and in general

Zn(τ) =

∫
dxLn

τ(0, x) ,

with the sum restricted to the Farey level a1 + · · · + ak = n + 2. It is easily checked
that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages of x = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (32.26). The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluate q(τ) exactly for τ = k/2,
k a nonnegative integer. First, one observes that Zn(0) = 2n. It is also easy to check
that Zn(1/2) =

∑
i Qi = 2 · 3n. More surprisingly, Zn(3/2) =

∑
i Q3 = 54 · 7n−1.

A few of these “sum rules” are listed in the table 32.2, they are consequence of
the fact that the denominators on a given level are Farey sums of denominators on
preceding levels.

exercise 32.3

A bound on DH can be obtained by approximating (32.34) by

Zn(τ) = n2τ + 2nρ2nτ. (32.35)

In this approximation we have replaced all `P/Q, except the widest interval `1/n,
by the narrowest interval `Fn−1/Fn (see (32.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at the τ value for which
the two terms in (32.35) contribute equally:

Dn = D̂ + O
(
ln n
n

)
, D̂ =

ln 2
2 ln ρ

= .72 . . . (32.36)

For negative τ the sum (32.35) is the lower bound on the sum (32.25) , so D̂ is
a lower bound on DH .
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 32.2: Partition function sum rules for the Farey model.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systems there are orbits that
stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic tangles. Thus the considerations of chapter 29
are important also in the analysis of renormalization at the onset of chaos.

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 32.1. The physics of circle maps. Mode–locking phenomenology is re-
viewed in ref. [18], a more theoretically oriented discussion is contained in ref. [21].
While representative of dissipative systems we may also consider circle maps as a crude
approximation to Hamiltonian local dynamics: a typical island of stability in a Hamil-
tonian 2-dimensional map is an infinite sequence of concentric KAM tori and chaotic
regions. In the crudest approximation, the radius can here be treated as an external pa-
rameter Ω, and the angular motion can be modeled by a map periodic in the angular
variable [45, 46]. By losing all of the ‘island-within-island’ structure of real systems, cir-
cle map models skirt the problems of determining the symbolic dynamics for a realistic
Hamiltonian system, but they do retain some of the essential features of such systems,
such as the golden mean renormalization [19, 46] and non-hyperbolicity in form of se-
quences of cycles accumulating toward the borders of stability. In particular, in such
systems there are orbits that stay “glued" arbitrarily close to stable regions for arbitrarily
long times. As this is a generic phenomenon in physically interesting dynamical sys-
tems, such as the Hamiltonian systems with coexisting elliptic islands of stability and
hyperbolic homoclinic tanglees, development of good computational techniques is here
of utmost practical importance.
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Remark 32.2. Critical mode–locking set The fact that mode–lockings completely fill
the unit interval at the critical point has been proposed in refs. [21, 30]. The proof that the
set of irrational windings is of zero Lebesgue measure in given in ref. [48].

Remark 32.3. Counting noise for Farey series. The number of rationals in the Farey
series of order Q is φ(Q), which is a highly irregular function of Q: incrementing Q by 1
increases Φ(Q) by anything from 2 to Q terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations to Q → ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields the best
numerical value of the Hausdorff dimension (32.25) of any methods used so far; for ex-
ample the computation in ref. [3] for critical sine map (32.1), based on 240 ≤ Q ≤ 250
Farey series partitions, yields DH = .87012 ± .00001. The quoted error refers to the vari-
ation of DH over this range of Q; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a large factor.

Remark 32.4. Farey tree presentation function. The Farey tree rationals can be
generated by backward iterates of 1/2 by the Farey presentation function [15]:

f0(x) = x/(1 − x) 0 ≤ x < 1/2
f1(x) = (1 − x)/x 1/2 < x ≤ 1 . (32.37)

The Gauss shift (32.7) corresponds to replacing the binary Farey presentation function
branch f0 in (32.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a − 1

< x ≤
1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (32.38)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the Gauss shift, fa1a2···ak (x) =

0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by (32.37) and by its
non-trivial circle-map generalizations will turn out to be a renormalization group flow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as “flipping heads and
tails" relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [11].

An alternative labeling of Farey denominators has been introduced by Knauf [29]
in context of number-theoretical modeling of ferromagnetic spin chains: it allows for a
number of elegant manipulations in thermodynamic averages connected to the Farey tree
hierarchy.

Remark 32.5. Circle map renormalization The idea underlying golden mean renor-
malization goes back to Shenker [45]. A renormalization group procedure was formu-
lated in refs. [16, 40, 44], where moreover the uniqueness of the relevant eigenvalue is
claimed. This statement has been confirmed by a computer–assisted proof [37], and in the
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following we will always assume it. There are a number of experimental evidences for
local universality, see refs. [20, 47].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [11, 22–24]) is derived by methods akin to those used in describing
intermittency [42]: 1/Q cycles accumulate toward the edge of 0/1 mode–locked inter-
val, and as the successive mode–locked intervals 1/Q, 1/(Q − 1) lie on a parabola, their
differences are of order Q−3.

Remark 32.6. Farey series and the Riemann hypothesis The Farey series thermo-
dynamics is of a number theoretical interest, because the Farey series provide uniform
coverings of the unit interval with rationals, and because they are closely related to the
deepest problems in number theory, such as the Riemann hypothesis [13, 49] . The dis-
tribution of the Farey series rationals across the unit interval is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has motivated a compilation of an
entire handbook of Farey series [38]. A quantitative measure of the non-uniformity of the
distribution of Farey rationals is given by displacements of Farey rationals for Pi/Qi ∈ FQ

from uniform spacing:

δi =
i

Φ(Q)
−

Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complex s plane, and would seem to have nothing to do with
physicists’ real mode–locking widths that we are interested in here. However, there is
a real–line version of the Riemann hypothesis that lies very close to the mode–locking
problem. According to the theorem of Franel and Landau [13, 17, 49], the Riemann
hypothesis is equivalent to the statement that∑

Qi≤Q

|δi| = o(Q
1
2 +ε)

for all ε as Q → ∞. The mode–lockings ∆P/Q contain the necessary information for
constructing the partition of the unit interval into the `i covers, and therefore implicitly
contain the δi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjecture about the thermodynam-
ics of irrational windings is equivalent to (or harder than) the Riemann hypothesis, but the
danger lurks.

Remark 32.7. Farey tree partitioning. The Farey tree partitioning was introduced
in refs. [10, 11, 51] and its thermodynamics is discussed in detail in refs. [3, 15]. The
Farey tree hierarchy of rationals is rather new, and, as far as we are aware, not previously
studied by number theorists. It is appealing both from the experimental and from the
golden-mean renormalization point of view, but it has a serious drawback of lumping
together mode–locking intervals of wildly different sizes on the same level of the Farey
tree.

Remark 32.8. Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [21]. The question was reexamined in ref. [3], where
it was pointed out how a high-precision numerical estimate is in practice very hard to
obtain. It is not at all clear whether this is the optimal global quantity to test but at least
the Hausdorff dimension has the virtue of being independent of how one partitions mode–
lockings and should thus be the same for the variety of thermodynamic averages in the
literature.
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The formula (32.30), linking local to global behavior, was proposed in ref. [9].

The derivation of (32.30) relies only on the following aspects of the “hyperbolicity
conjecture" of refs. [11, 14, 27, 31, 43]:

1. limits for Shenker δ’s exist and are universal. This should follow from the renor-
malization theory developed in refs. [16, 37, 40, 44], though a general proof is still
lacking.

2. δp grow exponentially with np, the length of the continued fraction block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n grows as a power
of n. According to (32.14), limn→∞ δp ∝ n3. In the calculation of ref. [9] the
explicit values of the asymptotic exponents and prefactors were not used, only the
assumption that the growth of δp with n is not slower than a power of n.

Remark 32.9. Farey model. The Farey model (32.33) has been proposed in ref. [3];
though it might seem to have been pulled out of a hat, the Farey model is as sensible
description of the distribution of rationals as the periodic orbit expansion (32.26).

Remark 32.10. Symbolic dynamics for Hamiltonian rotational orbits. The rotational
codes of ref. [12] are closely related to those for maps with a natural angle variable, for
example for circle maps [50, 52] and cat maps [41]. Ref. [12] also offers a systematic rule
for obtaining the symbolic codes of “islands around islands” rotational orbits [35]. These
correspond, for example, to orbits that rotate around orbits that rotate around the elliptic
fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [1, 2]; however in these cases the entire set of orbits in an island was assigned
the same sequence and the motivation was to study the transport implications for chaotic
orbits outside the islands [35, 36].

Remark 32.11. Three-frequency mode locking. P. Cvitanović (notes available
upon request) has extended the two-frequency mode–locking golden-mean renormaliza-
tion to the three-frequency mode–locking ‘spiral mean’ renormalization theory, where
the golden and metal means (solutions of quadratic equations) are generalized to Pisot--
Vijayaraghauan (PV) numbers (solutions of cubic or higher order equations). Kim and
Ostlund discuss this problem in refs. [25, 26, 28]. See also refs. [4–6, 33].
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Exercises

32.1. Mode-locked intervals. Check that when k , 0 the
interval ∆P/Q have a non-zero width (look for instance
at simple fractions, and consider k small). Show that for
small k the width of ∆0/1 is an increasing function of k.

32.2. Bounds on Hausdorff dimension. By making use of
the bounds (32.17) show that the Hausdorff dimension
for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240 . . .

32.3. Farey model sum rules. Verify the sum rules reported
in table 32.2. An elegant way to get a number of sum
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf [7].

32.4. Metric entropy of the Gauss shift. Check that the
Lyapunov exponent of the Gauss map (32.7) is given by
π2/6 ln 2. This result has been claimed to be relevant in
the discussion of “mixmaster" cosmologies, see ref. [8].

32.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2) + (1 − z) log(1 − z) − (1 − z)

and

F(z, s) ∼ ζ(s) + Γ(1 − s)(1 − z)s−1 − S (s)(1 − z)

for s ∈ (1, 2) (S (s) being expressed by a converging
sum). You may use either more detailed estimate for
ζ(s, a) (via Euler summation formula) or keep on sub-
tracting leading contributions.

32.6. jn and αcr. Look at the integration region and how it
scales by plotting it for increasing values of n.

32.7. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s = 2, 4, 6 using different acceleration algorithms: check
your results with refs. [32, 39].

32.8. Farey tree and continued fractions I. Consider the
Farey tree presentation function f : [0, 1] 7→ [0, 1], such
that if I = [0, 1/2) and J = [1/2, 1], f |I = x/(1 − x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss map g(x) = 1/x − [1/x].

32.9. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approxima-
tion to the Farey tree presentation function (hint: sub-
stitute first the righmost, hyperbolic branch with a lin-
ear one): consider then the spectral determinant of the
induced map ĝ, and calculate the first two eigenvalues
besides the probability conservation one. Compare the
results with the rigorous bound deduced in ref. [34].
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