
Chapter 35

Quantum mechanics

- the short short version

W
e start with a review of standard quantum mechanical concepts prereq-

uisite to the derivation of the semiclassical trace formula.

In coordinate representation, the time evolution of a quantum mechanical

wave function is governed by the Schrödinger equation

i~
∂

∂t
ψ(q, t) = Ĥ

(

q,
~

i

∂

∂q

)

ψ(q, t), (35.1)

where the Hamilton operator Ĥ(q,−i~∂q) is obtained from the classical Hamilto-

nian by substituting p→ −i~∂q. Most of the Hamiltonians we shall consider here

are of the separable form

H(q, p) = T (p) + V(q) , T (p) = p2/2m , (35.2)

describing dynamics of a particle in a D-dimensional potential V(q). For time-

independent Hamiltonians we are interested in finding stationary solutions of the

Schrödinger equation of the form

ψn(q, t) = e−iEn t/~φn(q), (35.3)

where En are the eigenenergies of the time-independent Schrödinger equation

Ĥφ(q) = Eφ(q) . (35.4)

For bound systems, the spectrum is discrete and the eigenfunctions form an

orthonormal,

∫

dqφn(q)φ∗m(q) = δnm , (35.5)
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and complete,
∑

n

φn(q)φ∗n(q′) = δ(q − q′) , (35.6)

set of functions in a Hilbert space. Here and throughout the text,
∫

dq =

∫

dq1dq2...dqD. (35.7)

For simplicity, we will assume that the system is bound, although most of the

results will be applicable to open systems, where one has complex resonances chapter 39

instead of real energies, and the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEn t/~φn(q) , (35.8)

where the expansion coefficient cn is given by the projection of the initial wave

function ψ(q, 0) onto the nth eigenstate

cn =

∫

dqφ∗n(q)ψ(q, 0). (35.9)

By substituting (35.9) into (35.8), we can cast the evolution of a wave function

into a multiplicative form

ψ(q, t) =

∫

dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEn t/~φ∗n(q′) (35.10)

called the quantum evolution operator, or the propagator. Applied twice, first for

time t1 and then for time t2, it propagates the initial wave function from q′ to q′′,

and then from q′′ to q

K(q, q′, t1 + t2) =

∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (35.11)

forward in time (hence the name ‘propagator’). In non-relativistic quantum me-

chanics, the range of q′′ is infinite, so that the wave can propagate at any speed;

in relativistic quantum mechanics, this is rectified by restricting the propagation

to the forward light cone.

Because the propagator is a linear combination of the eigenfunctions of the

Schrödinger equation, it too satisfies this equation

i~
∂

∂t
K(q, q′, t) = Ĥ

(

q,
i

~

∂

∂q

)

K(q, q′, t) , (35.12)

and is thus a wave function defined for t ≥ 0; from the completeness relation

(35.6), we obtain the boundary condition at t = 0:

lim
t→0+

K(q, q′, t) = δ(q − q′) . (35.13)
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The propagator thus represents the time-evolution of a wave packet starting out as

a configuration space delta-function localized at the point q′ at initial time t = 0.

For time-independent Hamiltonians, the time dependence of the wave func-

tions is known as soon as the eigenenergies En and eigenfunctions φn have been

determined. With time dependence taken care of, it makes sense to focus on the

Green’s function, which is the Laplace transform of the propagator

G(q, q′, E + iǫ) =
1

i~

∫

∞

0

dt e
i
~

Et− ǫ
~

tK(q, q′, t) =
∑

n

φn(q)φ∗n(q′)

E − En + iǫ
. (35.14)

Here, ǫ is a small positive number, ensuring the existence of the integral. The

eigenenergies show up as poles in the Green’s function with residues correspond-

ing to the wave function amplitudes. If one is only interested in spectra, one may

restrict oneself to the (formal) trace of the Green’s function,

tr G(q, q′, E) =

∫

dq G(q, q, E) =
∑

n

1

E − En

, (35.15)

where E is complex, with a positive imaginary part, and we have used the eigen-

function orthonormality (35.5). This trace is formal, because the sum in (35.15)

is often divergent. We shall return to this point in sects. 38.1.1 and 38.1.2.

A useful characterization of the set of eigenvalues is given in terms of the

density of states, with a delta function peak at each eigenenergy, figure 35.1 (a),

d(E) =
∑

n

δ(E − En). (35.16)

Using the identity exercise 35.1

δ(E − En) = − lim
ǫ→+0

1

π
Im

1

E − En + iǫ
(35.17)

we can express the density of states in terms of the trace of the Green’s function.

That is,

d(E) =
∑

n

δ(E − En) = − lim
ǫ→0

1

π
Im tr G(q, q′, E + iǫ). (35.18)

As we shall see (after “some” work), a semiclassical formula for the right-hand- section 38.1.1

side of this relation yields the quantum spectrum in terms of periodic orbits.

The density of states can be written as the derivative d(E) = dN(E)/dE of the

spectral staircase function

N(E) =
∑

n

Θ(E − En) (35.19)

which counts the number of eigenenergies below E, figure 35.1 (b). Here Θ is the

Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (35.20)

The spectral staircase is a useful quantity in many contexts, both experimental

and theoretical. This completes our lightning review of quantum mechanics.
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Figure 35.1: Schematic picture of a) the density

of states d(E), and b) the spectral staircase func-

tion N(E). The dashed lines denote the mean den-

sity of states d̄(E) and the average number of states

N̄(E) discussed in more detail in sect. 38.1.1.

Exercises

35.1. Dirac delta function, Lorentzian representation.

Derive the representation (35.17)

δ(E − En) = − lim
ǫ→+0

1

π
Im

1

E − En + iǫ

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative

frequency part of the delta function, the Cauchy theorem

in a good quantum mechanics textbook).

35.2. Green’s function. Verify Green’s function Laplace

transform (35.14),

G(q, q′, E + iε) =
1

i~

∫

∞

0

dt e
i
~

Et− ε
~

tK(q, q′, t)

=

∑ φn(q)φ∗n(q′)

E − En + iε

argue that positive ǫ is needed (hint: read a good quan-

tum mechanics textbook).
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