
Chapter 13

Slice & dice

Physicists like symmetry more than Nature
— Rich Kerswell

If the symmetry is continuous, the notion of ‘fundamental domain’ is not appli-
cable. Instead, the dynamical system should be reduced to a lower-dimens-
ional, desymmetrized system, with ‘ignorable’ coordinates separated out (but

not forgotten).

We shall describe here two ways of reducing a continuous symmetry. In
the ‘method of slices’ of sect. 13.2 we slice the state space in such a way that
an entire class of symmetry-equivalent points is represented by a single point. In
the Hilbert polynomial basis approach of sect. 13.7 we replace the equivariant
dynamics by the dynamics rewritten in terms of invariant coordinates. In either
approach we retain the option of computing in the original coordinates, and then,
when done, projecting the solution onto the symmetry reduced state space, or
‘post-processing’.

In the method of slices symmetry reduction is achieved by cutting the group
orbits with a finite set of slice hyperplanes, one for each continuous group param-
eter, with each group orbit of symmetry-equivalent points represented by a single
point, its intersection with the slice. The procedure is akin to (but distinct from)
cutting across continuous-time parametrized trajectories by means of Poincaré
sections. As is the case for Poincaré sections, choosing a ‘good’ slice is a dark
art. We describe two strategies: (i) Foliation of state space by group orbits is a
purely group-theoretic phenomenon that has nothing to do with dynamics, so we
construct slices based on a decomposition of state space into irreducible linear rep-
resentations of the symmetry group G. (ii) Nonlinear dynamics strongly couples
such linear symmetry eigenmodes, so locally optimal slices should be constructed
from physically important recurrent states, or ‘templates’. Our guiding principle
is to chose a slice such that the distance between a ‘template’ state x̂′ and nearby
group orbits is minimized, i.e., we identify the point x̂ on the group orbit (12.2) of
a nearby state x which is the closest match to the template point x̂′.
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Figure 13.1: The freedom to pick a moving frame: A
point x on the full state space trajectory x(t) is equiv-
alent up to a group rotation g(t) to the point x̂ on the
curve x̂(t) if the two points belong to the same group
orbitMx, see (12.2).

We start our discussion by explaining the freedom of redefining dynamics in
a moving frame.

13.1 Only dead fish go with the flow: moving frames

The idea: As the symmetries commute with dynamics, we can evolve a solution
x(τ) for as long as we like, and then rotate it to any equivalent point (see fig-
ure 13.1) on its group orbit. We can map each point along any solution x(τ) to
the unique representative x̂(τ) of the associated group orbit equivalence class, by
a coordinate transformation

x(τ) = g(τ) x̂(τ) . (13.1)

Equivariance guarantees that the two states are physically equivalent.

Definition: Moving frame. For a given x ∈ M and a given space of ‘represen-
tative shapes’ M̂ there exists a unique group element g = g(x, τ) that at instant τ
rotates x into gx = x̂ ∈ M̂. The map that associates to a state space point x a Lie
group action g(x, τ) is called a moving frame.

exercise A2.1
exercise 13.1

Using decomposition (13.1) one can always write the full state space trajectory
as x(τ) = g(τ) x̂(τ), where the (d−N)-dimensional reduced state space trajectory
x̂(τ) is to be fixed by some condition, and g(τ) is then the corresponding curve on
the N-dimensional group manifold of the group action that rotates x̂ into x at time
τ. The time derivative is then ẋ = v(gx̂) = ġx̂ + gv̂, with the reduced state space
velocity field given by v̂ = dx̂/dt. Rewriting this as v̂ = g−1v(g x̂) − g−1ġ x̂ and
using the equivariance condition (12.14) leads to

v̂ = v − g−1ġ x̂ . (13.2)

The Lie group element (12.5) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d
dt

eφ·T = φ̇ · T .
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This is the group tangent velocity g−1ġ x̂ = φ̇ · t(x̂) evaluated at the point x̂, i.e.,
with g = 1 . The flow v̂ = dx̂/dt in the (d−N) directions transverse to the group
flow is now obtained by subtracting the flow along the group tangent direction,

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) . (13.3)

We can pick any coordinate transformation (13.1) between the ‘lab’ and ‘moving
frame’, any time, any way we like; equivariance guarantees that the states and the
equations of motion (13.3) in the two frames are physically equivalent. This is
a immense freedom, and with freedom comes responsibility, the responsibility of
choosing a good frame.

13.2 Symmetry reduction

Maybe when I’m done with grad school I’ll be able to fig-
ure it all out . . .

— Rebecca Wilczak, undergraduate

Given Lie group G acting smoothly on a C∞ manifoldM, we can think of each
group orbit as an equivalence class. Symmetry reduction is the identification of a
unique point on a group orbit as the representative of its equivalence class. We call
the set of all such group orbit representatives the reduced state spaceM/G. This
space has many names in the literature - it is alternatively called ‘desymmetrized
state space’, ‘symmetry-reduced space’, ‘orbit space’ (because every group orbit
in the original space is mapped to a single point in the orbit space), ‘base mani-
fold’, ‘shape-changing space’ or ‘quotient space’ (because the symmetry has been
‘divided out’), obtained by mapping equivariant dynamics to invariant dynamics
(‘image’) by methods such as ‘moving frames’, ‘cross sections’, ‘slices’, ‘freez-

remark 13.1
ing’, ‘Hilbert bases’, ‘quotienting’, ‘lowering of the degree’, ‘lowering the order’,
or ‘desymmetrization’.

Symmetry reduction replaces a dynamical system (M, f ) with a symmetry by
a ‘desymmetrized’ system (M̂, f̂ ) of figure 12.2 (b), a system where each group
orbit is replaced by a point, and the action of the group is trivial, gx̂ = x̂ for all
x̂ ∈ M̂, g ∈ G. The reduced state space M̂ is sometimes called the ‘quotient space’
M/G because the symmetry has been ‘divided out’. For a discrete symmetry, the
reduced state space M/G is given by the fundamental domain of sect. 11.3. In
presence of a continuous symmetry, the reduction to M/G amounts to a change
of coordinates where the ‘ignorable angles’ {φ1, · · · , φN} that parameterize N con-
tinuous coordinate transformations are separated out.

13.3 Bringing it all back home: method of slices

In the ‘method of slices’ the reduced state space representative x̂ of a group orbit
equivalence class is picked by slicing across the group orbits by a fixed hypersur-
face. We start by describing how the method works for a finite segment of a full
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Figure 13.2: Slice M̂ is a hypersurface passing
through the slice-fixing point x̂′, and transversally to
the group tangent t′ at x̂′. It intersects all group orbits
(indicated by dotted lines here) in an open neighbor-
hood of x̂′. The full state space trajectory point x(τ)
and the reduced state space trajectory point x̂(τ) be-
long to the same group orbitMx(τ) and are equivalent
up to a group rotation g(τ), defined in (13.1).

M x(0)

x(t)

x(t)

g(t)

g

x’

t’

state space trajectory.

Definition: Equivariant state space. The full state space M, stratified by the
action of the group G into orbits, some of which contain more than one point.

Definition: Reduced state space. A spaceM/G in which every group orbit of
the equivariant state spaceM is represented by a single point.

There are many ways of constructingM/G. One can replace equivariant co-
ordinates (x1, x2, · · · , xd) by a set of invariant polynomials {u1, u2, · · · , um}, as in
sect. 13.7. Or one can stay in the original state space, but pick a random point on
each group orbit and throw away the rest. The most sensible strategy, however,
is to smoothly change the coordinates in such a way that locally the symmetry
group acts on N ‘phase’ coordinates, and leaves the smooth manifold M̂ =M/G
spanned by the remaining (d−N) transverse coordinates invariant.

Definition: Slice. Let G act regularly on a d-dimensional manifoldM, i.e., with
all group orbits N-dimensional. A slice through point x̂′ is a (d−N)-dimens-
ional submanifold M̂ such that all group orbits in an open neighborhood of the
‘template’ point x̂′ intersect M̂ transversally once and only once (see figure 13.2).

The simplest slice condition defines a linear slice as a (d−N)-dimensional
hyperplane M̂ normal to the N group rotation tangents t′a at point x̂′:

〈x̂ − x̂′|t′a〉 = 0 , t′a = ta(x̂′) = Ta x̂′ . (13.4)

In other words, ‘slice’ is a Poincaré section (3.5) for group orbits. Each ‘big circle’
–group orbit tangent to t′a– intersects the hyperplane exactly twice, with the two
solutions separated by π. As for a Poincaré section (3.4), we add an orientation
condition, and select the intersection with the clockwise rotation angle into the
slice.

As 〈x̂′|t′a〉 = 0 by the antisymmetry of Ta, the slice condition (13.4) fixes φ for
a given x by

0 = 〈x̂|t′a〉 = 〈x|g(φ)>t′a〉 , (13.5)
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where g> denotes the transpose of g. The method of moving frames can be inter-
preted as a change of variables

x̂(τ) = g−1(τ) x(τ) , (13.6)

that is passing to a frame of reference in which condition (13.5) is identically sat-
isfied, see example 13.1. Therefore the name ‘moving frame’. A moving frame
should not be confused with the comoving frame, such as the one illustrated in
figure 12.7. Each relative equilibrium, relative periodic orbit and general ergodic
trajectory has its own comoving frame. In the method of slices one fixes a station-
ary slice, and rotates all solutions back into the slice.

Moving frames can be utilized in post-processing methods; trajectories are
computed in the full state space, then rotated into the slice whenever desired, with
the slice condition easily implemented. The slice group tangent t′ is a given vec-
tor, and g(φ) x is another vector, linear in x and a function of group parameters φ.
Rotation parameters φ are determined numerically, by a Newton method, through
the slice condition (13.5).

Figure 13.3 illustrates the method of moving frames for an SO(2) slice normal
to the y1 axis. Looks innocent, but what happens when (x1, y1) = (0, 0)? More on
this in sect. 13.5.

How does one pick a slice point x̂′? A generic point x̂′ not in an invariant sub-
space should suffice to fix a slice. The rules of thumb are much like the ones for
picking Poincaré sections, sect. 3.1.2. The intuitive idea is perhaps best visualized
in the context of fluid flows. Suppose the flow exhibits an unstable coherent struc-
ture that –approximately– recurs often at different spatial dispositions. One can fit
a ‘template’ to one recurrence of such structure, and describe other recurrences as
its translations. A well chosen slice point belongs to such dynamically important
equivalence class (i.e., group orbit). A slice is locally isomorphic toM/G, in an
open neighborhood of x̂′. As is the case for the dynamical Poincaré sections, in
general a single slice does not suffice to reduceM→M/G globally.

The Euclidean product of two vectors x, y is indicated in (13.4) by x-transpose
times y, as in (12.6). More general bilinear norms 〈x, y〉 can be used, as long as
they are G-invariant, i.e., constant on each irreducible subspace. An example is
the quadratic Casimir (12.13).

example 13.1

p. 235

The slice condition (13.4) fixes N directions; the remaining vectors (x̂N+1 . . . x̂d)
span the slice hyperplane. They are d − N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are function-
ally independent. Thus they serve to distinguish orbits in the neighborhood of the
slice-fixing point x̂′, i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.
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Figure 13.3: Method of moving frames for the
two-modes flow SO(2)-equivariant under (12.42),
with slice through â′ = (1, 0, 0, 0), group tan-
gent t′ = (0, 1, 0, 0). The equivariant flow is
4-dimensional: shown is the projection on the
(x1, y1) plane. The clockwise orientation condi-
tion restricts the slice to the 3-dimensional half-
hyperplane x̂1 > 0, ŷ1 = 0. A trajectory started on
the slice at a(τ0) = â(τ0), evolves to a state space
point with a non-zero y1(τn). To bring this point
back to the slice, compute the polar angle φn of
a(τn) in the (x1, y1) plane. Rotate a(τn) clockwise
by φn to â(τn) = g(−φn) a(τn), so that the equiva-
lent point on the circle lies on the slice, ŷ1(τn) = 0.
See sect. 13.5.

a(τ2)

a(τ1) φ1

x1 = x̂1â(τ1) â(τ2)

y1

φ2

a(τ0)

13.4 Dynamics within a slice

We made too many wrong mistakes
—Yogi Berra

So far we have taken the post-processing approach: evolve the trajectory in the
full state space, than rotate all its points into the slice. You can also split up the
time integration into a sequence of finite time steps, each followed by a rotation
of the end point into the slice, see figure 13.3. It is tempting to see what happens
if the steps are taken infinitesimal. As we shall see, we do get a flow restricted
to the slice, but at a price. The relation (13.3) between the ‘lab’ and ‘moving
frame’ state space velocity holds for any factorization (13.1) of the flow of form
x(τ) = g(τ) x̂(τ). To integrate these equations we first have to fix a particular flow
factorization by imposing conditions on x̂(τ), and then integrate phases φ(τ) on a
given reduced state space trajectory x̂(τ).

Here we demand that the reduced state space is confined to a slice hyperplane.
Substituting (13.3) into the time derivative of the fixed slice condition (13.5),

〈v̂(x̂)|t′a〉 = 〈v(x̂)|t′a〉 − φ̇b 〈tb(x̂)|t′a〉 = 0 ,

yields the equation for the group phase velocities φ̇a for the slice fixed by x̂′,
together with the reduced state space M̂ flow v̂(x̂). In general, the computation
of phase velocities requires inversion of the position-dependent [N ×N] matrix
〈t(x̂)b|ta〉, so from now on we specialize to the simplest, N = 1 parameter case
G = SO(2), where we set φa = φ, t′a = t′:

v̂(x̂) = v(x̂) − φ̇(x̂)t(x̂) , x̂ ∈ M̂ (13.7)

φ̇(x̂) = 〈v(x̂)|t′〉/〈t(x̂)|t′〉 . (13.8)

Each group orbit Mx = {g x | g ∈ G} is an equivalence class; method of slices
represents the class by its single slice intersection point x̂. By construction 〈v̂|t′〉 =

0, and the motion stays in the (d−N)-dimensional slice. We have thus replaced the
original dynamical system {M, f } by a reduced system {M̂, f̂ }.
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Figure 13.4: Schematic of symmetry reduction by the method of slices. The blue point is the
template x̂′. All pink points are equivalent to x̂ up to a shift, so a relative periodic orbit (green) in the
d-dimensional full state spaceM closes into a periodic orbit (blue) in the slice M̂ =M/G, a (d−1)-
dimensional slab transverse to the template group tangent t′. A typical group orbit (dotted) crosses
the slice hyperplane transversally, with a non-orthogonal group tangent t = t(x̂). A slice hyperplane
is almost never a global slice; it is valid up to the slice border, a (d−2)-dimensional hypersurface
(red) of points x̂∗ whose group orbits graze the slice, i.e. points whose tangents t∗ = t(x̂∗) lie in M̂.
Group orbits beyond the slice border do not reach the slice hyperplane: the “missing chunk” is here
indicated by the dashed lines.

In the pattern recognition and ‘template fitting’ settings (13.8) is called the
‘reconstruction equation’. Integrated together, the reduced state space trajectory

exercise 13.2
(13.7) and g(τ) = exp{φ(τ) · T}, the integrated phase (13.8), reconstruct the full
state space trajectory x(τ) = g(τ) x̂(τ) from the reduced state space trajectory x̂(τ),
so no information about the flow is lost in the process of symmetry reduction.

Slice flow equations (13.7) and (13.8) are pretty, but there is a trouble in the
paradise. The slice flow encounters singularities in subsets of state space, with
phase velocity φ̇ divergent whenever the denominator in (13.8) changes sign. We
are going to refer to the set of points x̂∗ at which the denominator of (13.8) van-
ishes as slice border

〈t(x̂∗)|t′〉 = 0 . (13.9)

See figure 13.4 for a schematic illustration. Existence of the slice border makes
the method of slices an in general local method, where one constructs a slice
by picking a template on a particularly interesting solution, and then explores
the dynamics nearby. However, this is only partially useful for our purposes,
since we would like to explore global objects, such as symmetry-reduced chaotic
attractors, interrelation of coherent solutions etc. Several attempts have been made
to overcome this problem by defining multiple slices, and interconnecting them in
such a way that the individual borders of different slices, are not visited by the
dynamics. This, however, is a very complicated task, and requires case-by-case
attention. The other option is defining a very special slice such that its border is
not visited by the dynamics. In the next section, we describe such a method which
is applicable to many problems that are of interest to us.
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13.5 First Fourier mode slice

(N.B. Budanur)

So far, we have given a general description of the method of slices, without
specifying the type of the symmetries we are reducing. We have mentioned in
sect. 2.4 and sect. 12.1 that often times we are interested in dynamics of nonlinear
fields in periodic cells. Such systems are generally referred to as ‘spatially ex-
tended systems’ and are equivariant under spatial translations. Let us assume that
u(x, τ) = u(x + L, τ) is such a scalar field over one space dimension x and time τ,
expanded in Fourier series as (2.17)

u(x, τ) =

+∞∑
k=−∞

ũk(τ) eiqk x . (13.10)

It is easy to see that spatial translations

u(x, τ)→ u(x + δx, τ) (13.11)

becomes U(1) rotations for the Fourier modes

ũk → eikθũk , where θ = 2πδx/L . (13.12)

In the state space a = (x1, y1, x2, y2, . . . , xN , yN) constructed by the real and imag-
inary parts of a finite truncation of the Fourier modes, (xi, yi) = (Re ũi, Im ũi), this
symmetry is represented by SO(2) rotations (see example 12.7)

g(θ) =


R(θ) 0 · · · 0

0 R(2θ) · · · 0
...

...
. . .

...
0 0 · · · R(Nθ)

 , (13.13)

where R(nθ) =

(
cos nθ − sin nθ
sin nθ cos nθ

)
,

with the Lie algebra element

T =



0 −1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 −2 · · · 0 0
0 0 2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −N
0 0 0 0 · · · N 0


. (13.14)

The two-modes system is an example of a system with this kind of symmetry with
modes truncated at N = 2. We define the first Fourier mode slice as the slice
hyperplane in this state space with template

â′ = (1, 0, 0, . . . , 0) , (13.15)
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Figure 13.5: Two-modes flow before (a) and af-
ter (b) symmetry reduction by first Fourier mode
slice. Here a long trajectory (red and blue) starting
on the unstable manifold of the TW1 (red), until it
falls on to the strange attractor (blue) and the short-
est relative periodic orbit 1 (magenta). Note that
the relative equilibrium becomes an equilibrium,
and the relative periodic orbit becomes a periodic
orbit after the symmetry reduction. (N.B.
Budanur)
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Figure 13.6: SO(2) group orbits of state space points
(0.75, 0, 0.1, 0.1) (orange), (0.5, 0, 0.5, 0.5) (green)
(0.1, 0, 0.75, 0.75) (pink) and the first mode slice hy-
perplane (blue). The group tangents at the intersec-
tions with the slice hyperplane are shown as red ar-
rows. As the magnitude of the first Fourier mode de-
creases relative to the magnitude of the second one, so
does the group tangent angle to the slice hyperplane.
(from ref. [13]).

and the directional constraint

x̂1 ≥ 0 (13.16)

(see figure 13.3). We can write the equation (13.7) and (13.8), which describe the
dynamics within the slice hyperplane explicitly for the template (13.15) as

v̂(â) = v(â) −
ẏ1 (â)

x̂1
t(â) , (13.17)

φ̇(â) =
ẏ1(â)

x̂1
. (13.18)

We see from (13.17) and (13.18) that they become singular when x̂1 = 0, i.e.
when the amplitude of the first Fourier mode exactly vanishes. In sect. 13.4 we
argued that the slice singularity happens when the dot product t(â) · t′ vanishes, in
other words, when the group tangent t(â) evaluated at the state space point â has no
component perpendicular to the slice hyperplane. We visualize this in figure 13.6
by showing three dimensional projections of the slice hyperplane, three group
orbits and group tangents for the two-modes system.

Our experience from working with spatially extended systems had been that
the first Fourier mode amplitude can get very small, but it does not exactly vanish,
unless a specific initial condition is set. We can deal with the situations when x̂1
is arbitrarily small by defining the in-slice time as

dτ̂ = dτ/x̂1 (13.19)

slice - 9feb2015 ChaosBook.org edition16.0, Jan 28 2018



CHAPTER 13. SLICE & DICE 225

(a) (b) (c)

(d) (e) (f)

Figure 13.7: Traveling wave TW1 with phase velocity c = 0.737 in configuration space: (a) the full
state space solution, (b) symmetry-reduced solution with respect to the lab time, and (c) symmetry-
reduced solution with respect to the in-slice time. Relative periodic orbit Tp = 33.50 in configura-
tion space: (d) the full state space solution, (e) symmetry-reduced solution with respect to the lab
time, and (f) symmetry-reduced solution with respect to the in-slice time. (from ref. [14])

and re-writing (13.17) and (13.18) in terms of dτ̂ as

dâ/dτ̂ = x̂1v(â) − ẏ1(â) t(â) , (13.20)

dθ(â)/dτ̂ = ẏ1(â) . (13.21)

One ensures to obtain a smooth flow by integrating (13.20) to obtain symmetry-
invariant dynamics. Figure 13.7 illustrates the importance of the time rescaling on
the application of first Fourier mode slice to the Kuramoto-Sivashinsky system.

13.6 Stability within a slice

(N.B. Budanur)

As we have managed to formulate a relatively simple symmetry reduction
method that is applicable to many problem of interest, we can now take a step
forward and ask questions such as ‘Can we compute the linear stability of a rela-
tive equilibrium within a slice?’ The answer is yes. We compute the reduced
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stability matrix by taking partial derivatives of (13.7)

∂v̂(x̂)i

∂x̂ j
=

∂

∂x̂ j

{
v(x̂)i −

〈v(x̂)|t′〉
〈t(x̂)|t′〉

t(x̂)i

}
(13.22)

Â(x̂)i j = A(x̂)i j −
t(x̂)i {(〈t(x̂)|t′〉A(x̂)T − 〈v(x̂)|t′〉TT )t′} j

〈t(x̂)|t′〉2

−
〈v(x̂)|t′〉
〈t(x̂)|t′〉

Ti j , (13.23)

which in matrix notation becomes

Â(x̂) = A(x̂) −
|t(x̂)〉 〈 (〈t(x̂)|t′〉A(x̂)T − 〈v(x̂)|t′〉TT )t′|

〈t(x̂)|t′〉2

−
〈v(x̂)|t′〉
〈t(x̂)|t′〉

T . (13.24)

How come we got this lengthy formula (13.24), while the stability of a relative
equilibrium looked beautifully simple in (12.28)? Remember that (12.28) was
written for the co-rotating frame of a relative equilibrium. In the language of
slicing, this corresponds to picking the slice template as the relative equilibrium
itself. Plug in x̂ = x̂′ = xTW in (13.24) and recall that 〈v(xTW)|t(xTW)〉 = c. Hence
the second term vanishes, and we end up with

Â(xTW) = A(xTW) − cT (13.25)

as in (12.28). Equation (13.25) is only true for a relative equilibrium on its own
slice. In a general slice, such as the one we described in sect. 13.5, one has to use
(13.24) to compute the reduced stability matrix.

13.7 Method of images: Hilbert bases

(E. Siminos and P. Cvitanović)

Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl a century ago? In-
deed, the most common approach to symmetry reduction is by means of a Hilbert
invariant polynomial bases (11.5), motivated intuitively by existence of such non-
linear invariants as the rotationally-invariant length r2 = x2

1 + x2
2 + · · · + x2

d, or,
in Hamiltonian dynamics, the energy function. One trades in the equivariant state
space coordinates {x1, x2, · · · , xd} for a non-unique set of m ≥ d polynomials
{u1, u2, · · · , um} invariant under the action of the symmetry group. These poly-
nomials are linearly independent, but functionally dependent through m − d + N
relations called syzygies.
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The dynamical equations follow from the chain rule

u̇i =
∂ui

∂x j
ẋ j , (13.26)

upon substitution {x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials.

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of chapter 11, as one that contains the z-axis and
the image of the relative equilibrium TW1, here defined by the condition u1 = u4.
As in example 14.4, we construct the first return map using as coordinate the
Euclidean arclength along the intersection of the unstable manifold of TW1 with
the Poincaré section. Thus the goals set into the introduction to this chapter are
attained: we have reduced the messy strange attractor of figure 12.1 to a 1-dimens-
ional return map. As will be explained in example 14.4 for the Lorenz attractor,
we now have the symbolic dynamics and can compute as many relative periodic
orbits of the complex Lorenz flow as we wish, missing none.

Reducing dimensionality of a dynamical system by explicit elimination of
variables through inclusion of syzygies introduces singularities. Such elimi-
nation of variables, however, is not needed for visualization purposes; syzygies
merely guarantee that the dynamics takes place on a (d − N)-dimensional sub-
manifold in the projection on the {u1, u2, · · · , um} coordinates. However, when
one reconstructs the dynamics in the original spaceM from its imageM/G, the
transformations have singularities at the fixed-point subspaces of the isotropy sub-
groups inM.

What limits the utility of Hilbert basis methods are not such singularities, but
rather the fact that the algebra needed to determine a Hilbert basis becomes com-
putationally prohibitive as the dimension of the system and/or the symmetry group
increases. Moreover, even if such basis were available, rewriting the equations in
an invariant polynomial basis seems impractical, so in practice Hilbert basis com-
putations appear not feasible beyond state space dimension of order ≈ ten. When
the goal is to quotient continuous symmetries of high-dimensional flows, such as
the Navier-Stokes flows, one needs a workable framework. The method of slices
of sect. 13.2 is one such minimalist alternative.

Résumé

Here we have described how, and offered two approaches to continuous symmetry
reduction. In the method of slices one fixes a ‘slice’ 〈x̂ − x̂′|t′〉 = 0, a hyperplane
normal to the group tangent t′ that cuts across group orbits in the neighborhood of
the slice-fixing point x̂′. Each class of symmetry-equivalent points is represented
by a single point, with the symmetry-reduced dynamics in the reduced state space
M/G given by (13.7):

v̂ = v − φ̇ · t , φ̇ = 〈v|t′〉/〈t|t′〉 .
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In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis ap-
proach one transforms the equivariant state space coordinates into invariant ones,
by a nonlinear coordinate transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} + {syzygies} ,

and studies the invariant ‘image’ of dynamics (13.26) rewritten in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more involved than the dis-
crete symmetry reduction to a fundamental domain of chapter 11. Slices are only
local sections of group orbits, and Hilbert polynomials are non-unique and diffi-
cult to compute for high-dimensional flows. However, there is no need to actually
recast the dynamics in the new coordinates: either approach can be used as a vi-
sualization tool, with all computations carried out in the original coordinates, and
then, when done, rotating the solutions into the symmetry reduced state space by
post-processing the data. The trick is to construct a good set of symmetry invari-
ant Poincaré sections (see sect. 3.1), and that is always a dark art, with or without
a symmetry.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifoldsMp invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. Relative periodic orbits are almost never
eventually periodic, i.e., they almost never lie on periodic trajectories in the full
state space, so looking for periodic orbits in systems with continuous symmetries
is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter 10. An
example is the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can ever enter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the
shortest orbits dominate, and they tend to be the most symmetric solutions.

The message: If a dynamical systems has a symmetry, use it!
chapter 25

Commentary

Remark 13.1. A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued from remark 12.1).

Relative equilibria and relative periodic solutions are related by symmetry reduction
to equilibria and periodic solutions of the reduced dynamics. They appear in many physi-
cal applications, such as celestial mechanics, molecular dynamics, motion of rigid bodies,
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nonlinear waves, spiralling patterns, and fluid mechanics. A relative equilibrium is a solu-
tion which travels along an orbit of the symmetry group at constant speed; an introduction
to them is given, for example, in Marsden [43]. According to Cushman, Bates [20] and
Yoder [75], C. Huygens [36] understood the relative equilibria of a spherical pendulum
many years before publishing them in 1673. A reduction of the translation symmetry
was obtained by Jacobi (for a modern, symplectic implementation, see Laskar et al. [42]).
In 1892 German sociologist Vierkandt [69] showed that on a symmetry-reduced space
(the constrained velocity phase space modulo the action of the group of Euclidean mo-
tions of the plane) all orbits of the rolling disk system are periodic [8]. According to
Chenciner [16], the first attempt to find (relative) periodic solutions of the N-body prob-
lem was the 1896 short note by Poincaré [55], in the context of the 3-body problem.
Poincaré named such solutions ‘relative’. Relative equilibria of the N-body problem
(known in this context as the Lagrange points, stationary in the co-rotating frame) are
circular motions in the inertial frame, and relative periodic orbits correspond to quasiperi-
odic motions in the inertial frame. For relative periodic orbits in celestial mechanics see
also ref. [12]. A striking application of relative periodic orbits has been the discovery of
“choreographies" in the N-body problems [17, 18, 46].

The modern story on equivariance and dynamical systems starts perhaps with S.
Smale [65] and M. Field [26], and on bifurcations in presence of symmetries with Ru-
elle [59]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at an equi-
librium/fixed point x ∈ MG decomposes into linear irreps of G, and that stable/unstable
manifold continuations of its eigenvectors inherit their symmetry properties, and shows
that an equilibrium can bifurcate to a rotationally invariant periodic orbit (i.e., relative
equilibrium).

Gilmore and Lettelier monograph [32] offers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert polynomial bases (do not look
for ‘Hilbert’ in the index, though). Vladimirov, Toronov and Derbov [71] use an in-
variant polynomial basis to study bounding manifolds of the symmetry reduced complex
Lorenz flow and its homoclinic bifurcations. There is no general strategy how to construct
a Hilbert basis; clever low-dimensional examples have been constructed case-by-case.
The determination of a Hilbert basis appears computationally prohibitive for state space
dimensions larger than ten [19, 28], and rewriting the equations of motions in invariant
polynomial bases appears impractical for high-dimensional flows. Thus, by 1920’s the
problem of rewriting equivariant flows as invariant ones was solved by Hilbert and Weyl,
but at the cost of introducing largely arbitrary extra dimensions, with the reduced flows
on manifolds of lower dimensions, constrained by sets of syzygies. Cartan found this
unsatisfactory, and in 1935 he introduced [15] the notion of a moving frame, a map from
a manifold to a Lie group, which seeks no invariant polynomial basis, but instead rewrites
the reduced M/G flow in terms of d − N fundamental invariants defined by a gener-
alization of the Poincaré section, a slice that cuts across all group orbits in some open
neighborhood. Fels and Olver view the method as an alternative to the Gröbner bases
methods for computing Hilbert polynomials, to compute functionally independent funda-
mental invariant bases for general group actions (with no explicit connection to dynamics,
differential equations or symmetry reduction). ‘Fundamental’ here means that they can
be used to generate all other invariants. Olver’s monograph [53] is pedagogical, but does
not describe the original Cartan’s method. Fels and Olver papers [22, 23] are lengthy and
technical. They refer to Cartan’s method as method of ‘moving frames’ and view it as
a special and less rigorous case of their ‘moving coframe’ method. The name ‘moving
coframes’ arises through the use of Maurer-Cartan form which is a coframe on the Lie
group G, i.e., they form a pointwise basis for the cotangent space. In refs. [62, 63] the
invariant bases generated by the moving frame method are used as a basis to project a full
state space trajectory to the slice (i.e., theM/G reduced state space).
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The basic idea of the ‘method of slices’ is intuitive and frequently reinvented, often
under a different name; for example, it is stated without attribution as the problem 1.
of Sect. 6.2 of Arnol’d Ordinary Differential Equations [2]. The factorization (13.1) is
stated on p. 31 of Anosov and Arnol’d [1], who note, without further elaboration, that in
the vicinity of a point which is not fixed by the group one can reduce the order of a system
of differential equations by the dimension of the group. Ref. [3] refers to symmetry re-
duction as ‘lowering the order’. For the definition of ‘slice’ see, for example, Chossat and
Lauterbach [19]. Briefly, a submanifoldMx̂′ containing x̂′ is called a slice through x̂′ if it
is invariant under isotropy G x̂′(Mx̂′ ) =Mx̂′ . If x̂′ is a fixed point of G, than slice is invariant
under the whole group. The slice theorem is explained, for example, in Encyclopaedia of
Mathematics. Slices tend to be discussed in contexts much more difficult than our appli-
cation - symplectic groups, sections in absence of global charts, non-compact Lie groups.
We follow ref. [58] in referring to a local group-orbit section as a ‘slice’. Refs. [11, 33]
and others refer to global group-orbit sections as ‘cross-sections’, a term that we would
rather avoid, as it already has a different and well established meaning in physics. Duis-
termaat and Kolk [21] refer to ‘slices’, but the usage goes back at least to Guillemin and
Sternberg [33] in 1984, Palais [54] in 1961 and Mastow [48] in 1957 (who discusses “lo-
cal cross-sections”). Bredon [11] discusses both cross-sections and slices. Guillemin and
Sternberg [33] define the ‘cross-section’, but emphasize that finding it is very rare: “ex-
istence of a global section is a very stringent condition on a group action. The notion of
‘slice’ is weaker but has a much broader range of existence.”

Several important fluid dynamics flows exhibit continuous symmetries which are ei-
ther SO(2) or products of SO(2) groups, each of which act on different coordinates of the
state space. The Kuramoto-Sivashinsky equations [40, 64], plane Couette flow [29, 30,
34, 70], and pipe flow [37, 72] all have continuous symmetries of this form. In the 1982
paper Rand [56] explains how presence of continuous symmetries gives rise to rotating
and modulated rotating (quasiperiodic) waves in fluid dynamics. Haller and Mezić [35]
reduce symmetries of three-dimensional volume-preserving flows and reinvent method
of moving frames, under the name ‘orbit projection map’. There is extensive literature
on reduction of symplectic manifolds with symmetry; Marsden and Weinstein 1974 ar-
ticle [45] is an important early reference. Then there are studies of the reduced phase
spaces for vortices moving on a sphere such as ref. [38], and many, many others.

Reaction-diffusion systems are often equivariant with respect to the action of a finite
dimensional (not necessarily compact) Lie group. Spiral wave formation in such nonlinear
excitable media was first observed in 1970 by Zaikin and Zhabotinsky [76]. Winfree [73,
74] noted that spiral tips execute meandering motions. Barkley and collaborators [4, 5]
showed that the noncompact Euclidean symmetry of this class of systems precludes non-
linear entrainment of translational and rotational drifts and that the interaction of the Hopf
and the Euclidean eigenmodes leads to observed quasiperiodic and meandering behaviors.
Fiedler, in the influential 1995 talk at the Newton Institute, and Fiedler, Sandstede, Wulff,
Turaev and Scheel [24, 25, 60, 61] treat Euclidean symmetry bifurcations in the context
of spiral wave formation. The central idea is to utilize the semidirect product structure of
the Euclidean group E(2) to transform the flow into a ‘skew product’ form, with a part or-
thogonal to the group orbit, and the other part within it, as in (13.7). They refer to a linear
slice M̂ near relative equilibrium as a Palais slice, with Palais coordinates. As the choice
of the slice is arbitrary, these coordinates are not unique. According to these authors, the
skew product flow was first written down by Mielke [47], in the context of buckling in the
elasticity theory. However, this decomposition is no doubt much older. For example, it
was used by Krupa [19, 39] in his local slice study of bifurcations of relative equilibria.
Biktashev, Holden, and Nikolaev [7] cite Anosov and Arnol’d [1] for the ‘well-known’
factorization (13.1) and write down the slice flow equations (13.7).

Neither Fiedler et al. [24] nor Biktashev et al. [7] implemented their methods numer-

slice - 9feb2015 ChaosBook.org edition16.0, Jan 28 2018

http://eom.springer.de/S/s120150.htm
http://eom.springer.de/S/s120150.htm


CHAPTER 13. SLICE & DICE 231

ically. That was done by Rowley and Marsden for the Kuramoto-Sivashinsky [58] and
the Burgers [57] equations, and Beyn and Thümmler [6, 66] for a number of reaction-
diffusion systems, described by parabolic partial differential equations on unbounded do-
mains. We recommend the Barkley paper [5] for a clear explanation of how the Euclidean
symmetry leads to spirals, and the Beyn and Thümmler paper [6] for inspirational con-
crete examples of how ‘freezing’/‘slicing’ simplifies the dynamics of rotational, traveling
and spiraling relative equilibria. Beyn and Thümmler write the solution as a composition
of the action of a time dependent group element g(t) with a ‘frozen’, in-slice solution û(t)
(13.1). In their nomenclature, making a relative equilibrium stationary by going to a co-
moving frame is ‘freezing’ the traveling wave, and the imposition of the phase condition
(i.e., slice condition (13.4)) is the ‘freezing ansatz’. They find it more convenient to make
use of the equivariance by extending the state space rather than reducing it, by adding
an additional parameter and a phase condition. The ‘freezing ansatz’ [6] is identical to
the Rowley and Marsden [57] and our slicing, except that ‘freezing’ is formulated as an
additional constraint, just as when we compute periodic orbits of ODEs we add Poincaré
section as an additional constraint, i.e., increase the dimensionality of the problem by 1
for every continuous symmetry (see sect. 7.2).

section 7.2

Several symmetry reduction schemes are reviewed in ref. [63]. Here we describe
the method of slices [6, 27, 58], the only method that we find practical for a symmetry
reduction of chaotic solutions of highly nonlinear and possibly also high-dimensional
flows. Derivation of sect. 13.4 follows most closely Rowley and Marsden [57] who, in
the pattern recognition setting refer to the slice point as a ‘template’, and call (13.8) the
‘reconstruction equation’ [43, 44]. They also describe the ‘method of connections’ (called
‘orthogonality of time and group orbit at successive times’ in ref. [6]), for which the
reconstruction equation (13.8) denominator is 〈t(x̂)|t(x̂)〉 and thus non-vanishing as long
as the action of the group is regular. This avoids the spurious slice singularities, but it
is not clear what the ‘method of connections’ buys us otherwise. It does not reduce the
dimensionality of the state space, and it accrues ‘geometric phases’ which prevent relati-
ve periodic orbits from closing into periodic orbits. Geometric phase in laser equations,
including complex Lorenz equations, has been studied in ref. [49–51, 67, 68]. Another
theorist’s temptation is to hope that a continuous symmetry would lead us to a conserved
quantity. However, Noether theorem [52] requires that equations of motion be cast in
Lagrangian form and that the Lagrangian exhibits variational symmetries [9, 10]. Such
variational symmetries are hard to find for dissipative systems.

In general relativity ‘symmetry reduction’ is a method of finding exact solutions by
imposing symmetry conditions to obtain a reduced system of equations, i.e., restricting
the set of solutions considered to an invariant subspace. This is not what we mean by
‘symmetry reduction’ in this monograph.

References to ‘cyclists’ are bit of a joke in more ways than one. First, ‘cyclist’,
‘pedestrian’ throughout ChaosBook.org refer jokingly both to the title of Lipkin’s Lie
groups for pedestrians [41] and to our preoccupations with actual cycling. Lipkin’s
‘pedestrian’ is fluent in Quantum Field Theory, but wobbly on Dynkin diagrams. More to
the point, it is impossible to dispose of Lie groups in a page of text. As an antidote to
the brevity of exposition here, consider reading Gilmore’s monograph [31] which offers a
quirky, personal and enjoyable distillation of a lifetime of pondering Lie groups. As seems
to be the case with any textbook on Lie groups, it will not help you with the problem at
hand, but it is the only place you can learn both what Galois actually did when he invented
the theory of finite groups in 1830, and what, inspired by Galois, Lie actually did in his
1874 study of symmetries of ODEs. Gilmore also explains many things that we pass over
in silence here, such as matrix groups, group manifolds, and compact groups.

One would think that with all this literature the case is shut and closed, but not so.
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Applied mathematicians are inordinately fond of bifurcations, and almost all of the pub-
lished work focuses on equilibria, relative equilibria, and their bifurcations, and for these
problems a single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a serious nuisance.

(E. Siminos and P. Cvitanović)

Remark 13.2. Velocity vs. speed Velocity is a vector, the rate at which the object
changes its position. Speed, or the magnitude of the velocity, is a scalar quantity which
describes how fast an object moves. We denote the rate of change of group phases, or
the phase velocity by the vector c = (φ̇1, · · · , φ̇N) = (c1, · · · , cN), a component for each
of the N continuous symmetry parameters. These are converted to state space velocity
components along the group tangents by

v(x) = c(τ) · t(x) . (13.27)

For rotational waves these are called ‘angular velocities’.

Remark 13.3. Killing fields. The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geometry and special relativity. If this
poetry warms the cockles of your heart, hang on. From wikipedia ( this wikipedia might
also be useful): A Killing vector field is a set of infinitesimal generators of isometries on
a Riemannian manifold that preserve the metric. Flows generated by Killing fields are
continuous isometries of the manifold. The flow generates a symmetry, in the sense that
moving each point on an object the same distance in the direction of the Killing vector
field will not distort distances on the object. A vector field X is a Killing field if the Lie
derivative with respect to X of the metric g vanishes:

LXg = 0 . (13.28)

Killing vector fields can also be defined on any (possibly nonmetric) manifoldM if we
take any Lie group G acting on it instead of the group of isometries. In this broader sense,
a Killing vector field is the pushforward of a left invariant vector field on G by the group
action. The space of the Killing vector fields is isomorphic to the Lie algebra g of G.

If the equations of motion can be cast in Lagrangian form, with the Lagrangian ex-
hibiting variational symmetries [9, 10], Noether theorem associates a conserved quantity
with each Killing vector.
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13.8 Examples

Example 13.1. An SO(2) moving frame. (Continued from example 12.5) The
SO(2) action

(x̂1, ŷ1) = (x1 cos θ + y1 sin θ, −x1 sin θ + y1 cos θ) (13.29)

is regular on R2\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through x̂′ = (0, 1), with group tangent t′ = (1, 0), and ensure uniqueness by clockwise
rotation into positive y1 axis. Hence the reduced state space is the half-line x1 = 0, x̂2 =

y1 > 0. The slice condition then simplifies to x̂1 = 0 and yields the explicit formula for
the moving frame parameter

θ(x1, y1) = tan−1(x1/y1) , (13.30)

i.e., the angle which rotates the point (x1, y1) back to the slice, taking care that tan−1

distinguishes (x1, y1) plane quadrants correctly. Substituting (13.30) back to (13.29) and
using cos(tan−1 a) = (1 + a2)−1/2, sin(tan−1 a) = a(1 + a2)−1/2 confirms x̂1 = 0. It also
yields an explicit expression for the transformation to variables on the slice,

x̂2 =

√
x2

1 + y2
1 . (13.31)

This was to be expected as SO(2) preserves lengths, x2
1 + y2

1 = x̂2
1 + ŷ2

1. If dynamics is
in plane and SO(2) equivariant, the solutions can only be circles of radius (x2

1 + y2
1)1/2,

so this is the “rectification" of the harmonic oscillator by a change to polar coordinates,
example A2.1. Still, it illustrates the sense in which the method of moving frames yields
group invariants. (E. Siminos)

click to return: p. 220
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Exercises

13.1. SO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) on R2

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write
out explicitly the group transformation that brings any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

13.2. The moving frame flow stays in the reduced state
space: Show that the flow (13.7) stays in a (d−1)-
dimensional slice hyperplane.

13.3. Stability of a relative equilibrium in the reduced state
space: Find an expression for the stability matrix of
the system at a relative equilibrium when a linear slice
is used to reduce the symmetry of the flow.

13.4. Stability of a relative periodic orbit in the reduced
state space: Find an expression for the Jacobian
matrix (monodromy matrix) of a relative periodic orbit
when a linear slice is used to reduce the dynamics of the
flow.

13.5. Determination of invariants by the method of slices:
Show that the d − N reduced state space coordinates
determined by the method of slices are independent
and invariant under group actions, and that the method
of slices allows the determination of (in general non-
polynomial) symmetry invariants by a simple algorithm
that works well in high-dimensional state spaces.

13.6. Invariant subspace of the two-modes system: Show
that (0, 0, x2, y2) is a flow invariant subspace of the two-
modes system (12.40), i.e., show that a trajectory with
the initial point within this subspace remains within it
forever.
(N.B. Budanur)

13.7. Slicing the two-modes system: Choose the simplest
slice template point that fixes the 1. Fourier mode,

x̂′ = (1, 0, 0, 0) . (13.32)

(a) Show for the two-modes system (12.40), that the
velocity within the slice (13.7), and the phase ve-
locity (13.8) along the group orbit are

v̂(x̂) = v(x̂) − φ̇(x̂)t(x̂) (13.33)
φ̇(x̂) = −v2(x̂)/x̂1 (13.34)

(b) Determine the chart border (the locus of point
where the group tangent is either not transverse
to the slice or vanishes).

(c) What is its dimension?

(d) What is its relation to the invariant subspace of ex-
ercise 13.7?

(e) Can a symmetry-reduced trajectory cross the chart
border?

(N.B. Budanur and P. Cvitanović)

13.8. The symmetry reduced two-modes flow: Pick an
initial point x̂(0) that satisfies the slice condition (13.4)
for the template choice (13.32) and integrate (13.33) &
(13.34). Plot the three dimensional slice hyperplane
spanned by (x1, x2, y2) to visualize the symmetry re-
duced dynamics. Does it look like figure 13.5 (b)?
(N.B. Budanur)

13.9. Visualize the relative equilibrium of the two-modes
system: Starting the initial condition

x0 = (0.439966, 0,−0.386267, 0.070204) (13.35)

integrate the full state space SO(2)-equivariant (12.40)
and the symmetry reduced (13.33) two-modes system
for t = 250 time units. Plot the (x1, x2, y1) projection of
both trajectories. Explain your results.
(N.B. Budanur)

13.10. Relative equilibria of the two-modes system: Write
down an expression for the reduced velocity (13.33) of
the two-modes system explicitly by substituting (13.34)
and solve v̂ = 0 to find the relative equilibria. Part of
this might be doable analytically (you have an invariant
subspace). If that does not work out for you, solve the
system numerically, for the parameter values (12.39).
Check that x0 of exercise 13.35 is among your solutions.
Mark the relative equilibria that you have found on the
strange attractor plot of exercise 13.8, interpret the role
they play in the dynamics, if any. (N.B. Budanur)

13.11. Stability of the two-modes relative equilibrium:

(a) Write down the stability matrix of the two-modes
system in the reduced state space by computing
derivatives of (13.33).

(b) Compute eigenvalues and eigenvectors of this sta-
bility matrix at the relative equilibrium (13.35)

(c) Indicate the direction along which the nearby tra-
jectories expand.
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(d) Compute the stability eigenvalues and eigenvec-
tors of all relative equilibria of exercise 13.10

(N.B. Budanur)

13.12. Relative periodic orbits of the two-modes system:
Initial conditions and periods for 4 relative periodic or-
bitof the two-modes system are listed in the table 12.1.
Integrate (12.40) and (13.33) with these initial condi-
tions for 3-4 periods, and plot the four trajectories. Ex-
plain what you see.
(N.B. Budanur)

13.13. Poincaré section in the slice Construct a Poincaré
section for the two-modes system in the slice hyper-
plane, such that the relative equilibrium (13.35) and its

expanding direction that you found in (13.11) is in this
Poincaré section. Interpolate this Poincaré section with
a smooth curve, and compute the arclengths positions
of each crossing of the symmetry-reduced flow with the
Poincaré section. (N.B. Budanur)

13.14. Finding relative periodic orbits from a return map.
Produce a return map of the arclengths that you found in
exercise 13.13. Plot this return map. Note that its deriva-
tive is discontinuous at its critical point - why? Interpo-
late to this return map in two pieces and find its fixed
point. Take the fixed point as the initial point to inte-
grate the reduced two-modes system (13.33) for t = 3.7.
What do you see? (N.B. Budanur)
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