
Appendix A36

Thermodynamic formalism

Being Hungarian is not sufficient. You also must be tal-
ented.

— Zsa Zsa Gabor

(G. Vattay)

In the preceding chapters we characterized chaotic systems via global quanti-
ties such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods of individual periodic

orbits. In statistical mechanics a similar duality exists. Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemical
potential) which are averages over fine details of the system called microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made the analogy between
these two subjects explicit. Later this “Thermodynamic Formalism" of dynam-
ical systems became widely used making it possible to calculate various fractal
dimensions. We sketch the main ideas of this theory and show how periodic orbit
theory helps to carry out calculations.

A36.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting points Ms1 s2...sn of trajectories whose symbol sequence starts
with a given set of n symbols s1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V(s1s2...sn), the
area A(s1s2...sn) or the length l(s1s2...sn) of this set. Or in general we can have
some measure µ(Ms1 s2...sn) = µ(s1s2...sn) of this set. As we have seen in (27.10)
the most important is the natural measure, which is the probability that an ergodic
trajectory visits the set µ(s1s2...sn) = P(s1s2...sn). The natural measure is additive.
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Summed up for all possible symbol sequences of length n it gives the measure of
the whole state space:∑

s1 s2...sn

µ(s1s2...sn) = 1 (A36.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it de-
creases typically with an exponential rate. It is then useful to introduce the expo-
nents

λ(s1s2...sn) = −
1
n

log µ(s1s2...sn). (A36.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol se-
quences of length n with exponents between λ and λ + dλ be given by Nn(λ)dλ.
For large n the number of such sequences increases exponentially. The rate of this
exponential growth can be characterized by g(λ) such that

Nn(λ) ∼ exp(ng(λ)) .

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully character-
izes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are called partition sums

Zn(β) =
∑

s1 s2...sn

µβ(s1s2...sn), (A36.3)

as they are obviously motivated by Gibbs type partition sums of statistical me-
chanics. The parameter β plays the role of inverse temperature 1/kBT and E(s1s2...sn) =

− log µ(s1s2...sn) is the energy associated with the microstate labeled by s1s2...sn

We are tempted also to introduce something analogous with the Free energy. In
dynamical systems this is called the Rényi entropy [1] defined by the growth rate
of the partition sum

Kβ = lim
n→∞

1
n

1
1 − β

log

 ∑
s1 s2...sn

µβ(s1s2...sn)

 . (A36.4)

In the special case β→ 1 we get Kolmogorov entropy

K1 = lim
n→∞

1
n

∑
s1 s2...sn

−µ(s1s2...sn) log µ(s1s2...sn),
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while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

log N(n),

where N(n) is the number of existing length n sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =

∫
dλNn(λ) exp(−nλβ),

where we used the definition (A36.2). For large n we can replace Nn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which maxi-
mize the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (A36.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (A36.4) we can now connect the Rényi entropies and g(λ)

(β − 1)Kβ = λ∗(β)β − g(λ∗(β)). (A36.6)

Equations (A36.5) and (A36.6) define the Legendre transform of g(λ). This equa-
tion is analogous with the thermodynamic equation connecting the entropy and the
free energy. As we know from thermodynamics we can invert the Legendre trans-
form. In our case we can express g(λ) from the Rényi entropies via the Legendre
transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (A36.7)

where now β∗(λ) can be determined from

d
dβ∗

[(β∗ − 1)Kβ∗] = λ. (A36.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (A36.7) and (A36.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (27.10)

µ(s1, ..., sn) ≈
enγ

|Λs1 s2...sn |
. (A36.9)
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The partition sum (A36.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|
β
, (A36.10)

where the summation goes for periodic orbits of length n. We can define the
characteristic function

Ω(z, β) = exp

−∑
n

zn

n
Zn(β)

 . (A36.11)

According to (A36.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (A36.12)

Substituting this into (A36.11) we can see that the leading zero of the characteris-
tic function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (A36.10) into
(A36.11) and introducing prime and repeated periodic orbits as usual we get

Ω(z, β) = exp

−∑
p,r

znpreβγnpr

r|Λr
p|
β

 .
We can see that the characteristic function is the same as the zeta function we
introduced for Lyapunov exponents (A6.12) except we have zeβγ instead of z.
Then we can conclude that the Rényi entropies can be expressed with the pressure
function directly as

P(β) = (β − 1)Kβ + βγ, (A36.13)

since the leading zero of the zeta function is the pressure. The Rényi entropies Kβ,
hence the distribution of the exponents g(λ) as well, can be calculated via finding
the leading eigenvalue of the operator (A6.4).

From (A36.13) we can get all the important quantities of the thermodynamic
formalism. For β = 0 we get the topological entropy

P(0) = −K0 = −htop. (A36.14)

For β = 1 we get the escape rate

P(1) = γ. (A36.15)

Taking the derivative of (A36.13) in β = 1 we get Pesin’s formula [5] connecting
Kolmogorov entropy and the Lyapunov exponent

P′(1) = λ = K1 + γ. (A36.16)

It is important to note that, as always, these formulas are strictly valid for nice
exercise A36.1
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Figure A36.1
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Figure A36.2: g(λ) and P(β) for the map of exer-
cise A36.4 at a = 3 and b = 3/2.
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hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On figure A36.2 we show a typical pressure and g(λ) curve computed for the
two scale tent map of Exercise A36.4. We have to mention, that all typical hy-
perbolic dynamical system produces a similar parabola like curve. Although this
is somewhat boring we can interpret it like a sign of a high level of universality:
The exponents λ have a sharp distribution around the most probable value. The
most probable value is λ = P′(0) and g(λ) = htop is the topological entropy. The
average value in closed systems is where g(λ) touches the diagonal: λ = g(λ) and
1 = g′(λ).

Next, we are looking at the distribution of trajectories in real space.

A36.2 Fractal dimensions

Hentschel and Procaccia rediscovered a small part of my
theory. Generalized dimensions are not useful at all.

—Benoit B. Mandelbrot

By looking at the repeller we can recognize an interesting spatial structure.
In the 3-disk case the starting points of trajectories not leaving the system after
the first bounce form two strips. Then these strips are subdivided into an infinite
hierarchy of substrings as we follow trajectories which do not leave the system
after more and more bounces. The finer strips are similar to strips on a larger
scale. Objects with such self similar properties are called fractals.

We can characterize fractals via their local scaling properties. The first step is
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to draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid ε the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the ith box is proportional with the dimension of the
section

µi ∼ ε
d.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

µi ∼ ε
αi ,

where αi is the local “dimension" or Hölder exponent of the object. As α is not
necessarily an integer here we are dealing with objects with fractional dimensions.
We can study the distribution of the measure on the surface of section by looking
at the distribution of these local exponents. We can define

αi =
log µi

log ε
,

the local Hölder exponent and then we can count how many of them are between
α and α + dα. This is Nε(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nε(α) ∼ ε−d,

while for hairy objects we expect an α dependent scaling exponent

Nε(α) ∼ ε− f (α).

f (α) can be interpreted as the dimension of the points on the surface of section
with scaling exponent α. [A note to the reader: Even though the thermodynamic
formalism is of older vintage (we refer the reader to ref. [6] for a comprehensive
overview), we adhere here to the notational conventions of ref. [4] which are more
current in the physics literature: we strongly recommend also ref. [8], dealing with
period doubling universality.] We can calculate f (α) with the help of partition
sums as we did for g(λ) in the previous section. First, we define

Zε(q) =
∑

i

µ
q
i . (A36.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by the τ(q) exponent

Zε(q) ∼ ε−τ(q).

The partition sum can be written in terms of the distribution function of α-s

Zε(q) =

∫
dαNε(α)εqα.
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Using the asymptotic form of the distribution we get

Zε(q) ∼
∫

dαεqα− f (α).

As ε goes to zero the integral is dominated by the term maximizing the exponent.
This α∗ can be determined from the equation

d
dα∗

(qα∗ − f (α∗)) = 0,

leading to

q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f (α∗).

In a uniform fractal characterized by a single dimension both α and f (α) col-
lapse to α = f (α) = D. The scaling exponent then has the form τ(q) = (q − 1)D.
In case of non uniform fractals we can introduce generalized dimensions [3] Dq

via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum
(A36.17) counts the number of non empty boxes N̄ε . Consequently

D0 = − lim
ε→0

log N̄ε

log ε
,

is called the box counting dimension. For q = 1 the dimension can be determined
as the limit of the formulas for q→ 1 leading to

D1 = lim
ε→0

∑
i

µi log µi/ log ε.

This is the scaling exponent of the Shannon information entropy [7] of the distri-
bution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (A36.17) into the more convenient form

∑
i

µ
q
i

ετ(q)
∼ 1. (A36.18)

If we cover the ith branch of the fractal with a grid of size li instead of ε we can
use the relation [4]

∑
i

µ
q
i

liτ(q)
∼ 1, (A36.19)
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the non-uniform grid generalization of A36.18. Next we show how can we use
the periodic orbit formalism to calculate fractal dimensions. We have already seen
that the width of the strips of the repeller can be approximated with the stabilities
of the periodic orbits placed within them

li ∼
1
|Λi|

.

Then using this relation and the periodic orbit expression of the natural measure
we can write (A36.19) into the form∑

i

eqγn

|Λi|
q−τ(q) ∼ 1, (A36.20)

where the summation goes for periodic orbits of length n. The sum for stabilities
can be expressed with the pressure function again∑

i

1
|Λi|

q−τ(q) ∼ e−nP(q−τ(q)),

and (A36.20) can be written as

eqγne−nP(q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P(q − (q − 1)Dq) = qγ. (A36.21)

Solving this equation directly gives us the partial dimensions of the fractal repeller
along the stable direction. We can see again that the pressure function alone con-
tains all the relevant information. Setting q = 0 in (A36.21) we can prove that the
zero of the pressure function is the box-counting dimension of the repeller

P(D0) = 0.

Taking the derivative of (A36.21) in q = 1 we get

P′(1)(1 − D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1 − γ/λ. (A36.22)

If the system is bound (γ = 0) the information dimension and all other dimen-
sions are Dq = 1. Also since D10 is positive (A36.22) proves that the Lyapunov
exponent must be larger than the escape rate λ > γ in general.

exercise A36.4
exercise A36.5

Résumé

In this chapter we have shown that thermodynamic quantities and various frac-
tal dimensions can be expressed in terms of the pressure function. The pressure
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function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov case β is just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter is that the distribution of
locally fluctuating exponents should not be computed via making statistics. We
can use cyclist formulas for determining the pressure. Then the pressure can be
found using short cycles + curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories coded in g(λ) and P(β) can be
calculated from short cycles. To use this intimate relation between long and short
trajectories effectively is still a research level problem.

Commentary

Remark A36.1. Mild phase transition. In non-hyperbolic systems the formulas
derived in this chapter should be modified. As we mentioned in remark 27.1 in non-
hyperbolic systems the periodic orbit expression of the measure can be

µ0 = eγn/|Λ0|
δ ,

where δ can differ from 1. Usually it is 1/2. For sufficiently negative β the corresponding
term 1/|Λ0|

β can dominate (A36.10) while in (A36.3) eγn/|Λ0|
δβ plays no dominant role.

In this case the pressure as a function of β can have a kink at the critical point β = βc

where βc log |Λ0| = (βc − 1)Kβc + βcγ. For β < βc the pressure and the Rényi entropies
differ

P(β) , (β − 1)Kβ + βγ .

This phenomena is called phase transition. This is however not a very deep problem. We
can fix the relation between pressure and the entropies by replacing 1/|Λ0| with 1/|Λ0|

δ in
(A36.10).

Remark A36.2. Hard phase transition. The really deep trouble of thermodynamics
is caused by intermittency. In that case we have periodic orbits with |Λ0| → 1 as n → ∞.
Then for β > 1 the contribution of these orbits dominate both (A36.10) and (A36.3). Con-
sequently the partition sum scales as Zn(β) → 1 and both the pressure and the entropies
are zero. In this case quantities connected with β ≤ 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
D0 and D1. This phase transition cannot be fixed. It is probably fair to say that quanti-
ties which depend on this phase transition are only of mathematical interest and not very
useful for characterization of realistic dynamical systems.
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Exercises

A36.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the Jacobian matrix J

µ(k) = lim
t→∞

1
t

log |Λt
k(x0)|, (A36.23)

as a generalization of (6.11).
Show that in d dimensions Pesin’s formula is

K1 =

d∑
k=1

µ(k) − γ, (A36.24)

where the summation goes for the positive µ(k)-s only.
Hint: Use the d-dimensional generalization of (A36.9)

µp = enγ/|
∏

k

Λp,k |,

where the product goes for the expanding eigenvalues of
the Jacobian matrix of p-cycle. (G. Vattay)

A36.2. Stadium billiard Kolmogorov entropy. (con-
tinuation of exercise 9.6) Take a = 1.6 and d = 1 in
figure 9.1, and estimate the Lyapunov exponent by aver-
aging over a very long trajectory. Biham and Kvale [2]
estimate the discrete time Lyapunov to λ ≈ 1.0 ± .1,
the continuous time Lyapunov to λ ≈ 0.43 ± .02, the
topological entropy (for their symbolic dynamics) h ≈
1.15 ± .03.

A36.3. Entropy of rugged-edge billiards. Take a semi-circle
of diameter ε and replace the sides of a unit square by
b1/εc semi-circle arcs.

(a) Is the billiard ergodic as ε→ 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → −
2
π

ln ε + const ,

as ε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, say L, the entropy
for the flow decays as

K1 →
2 ln L
πL

.

A36.4. Two scale map. Compute all those quantities - dimen-
sions, escape rate, entropies, etc. - for the repeller of the
one dimensional map

f (x) =

{
1 + ax if x < 0,
1 − bx if x > 0. (A36.25)

where a and b are larger than 2. Compute the fractal di-
mension, plot the pressure and compute the f (α) spec-
trum of singularities.

A36.5. Transfer matrix. Take the unimodal map f (x) =

sin(πx) of the interval I = [0, 1]. Calculate the four
preimages of the intervals I0 = [0, 1/2] and I1 =

[1/2, 1]. Extrapolate f (x) with piecewise linear func-
tions on these intervals. Find a1, a2 and b of the previous
exercise. Calculate the pressure function of this linear
extrapolation. Work out higher level approximations by
linearly extrapolating the map on the 2n-th preimages of
I.
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