
Chapter 21

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

D
ynamics is posed in terms of local equations, but the ergodic averages re-

quire global information. How can we use a local description of a flow

to learn something about the global behavior? In chapter 20 we have re-

lated global averages to the eigenvalues of appropriate evolution operators. Here

we show that the traces of evolution operators can be evaluated as integrals over

Dirac delta functions, and in this way the spectra of evolution operators become

related to periodic orbits. If there is one idea that one should learn about chaotic

dynamics, it happens in this chapter, and it is this: there is a fundamental local↔

global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-

tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical

systems the duality is embodied in the trace formulas that we will now derive.

These objects are to dynamics what partition functions are to statistical mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again

through the quick sketch of sects. 1.5 and 1.6. We have a state space that we

would like to tessellate by periodic orbits, one short orbit per neighborhood, as in

figure 21.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit get closer with time,

so we only have to keep track of those who are moving away along the unsta-

ble directions. The fraction of those who remain in the neighborhood for one

recurrence time Tp is given by the overlap ratio along the initial sphere and the

returning ellipsoid, figure 21.1 (b), and along the expanding eigen-direction e(i)

of Jp(x) this is given by the expanding Floquet multiplier 1/|Λp,i|. A bit more
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Figure 21.1: (a) Smooth dynamics tesselated by

the skeleton of periodic points, together with their

linearized neighborhoods. (b) Jacobian matrix Jp

maps spherical neighborhood of x0 → ellipsoidal

neighborhood time Tp later, with the overlap ratio

along the expanding eigdirection e(i) of Jp(x) given

by the expanding eigenvalue 1/|Λp,i |.
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thinking leads to the conclusion that one also cares about how long it takes to re-

turn (the long returns contributing less to the time averages), so the weight tp

of the p-neighborhood tp = e−sTp/|Λp| decreases exponentially both with the

shortest recurrence period and the product (5.6) of expanding Floquet multipli-

ers Λp =
∏

eΛp,e . With emphasis on expanding - the flow could be a 60,000-

dimensional dissipative flow, and still the neighborhood is defined by the handful

of expanding eigen-directions. Now the long-time average of a physical observ-

able -let us say power D dissipated by viscous friction of a fluid flowing through a

pipe- can be estimated by its mean value (20.5) Dp/Tp computed on each neigh-

borhood, and weighted by the above estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many a Phys. Rev. Letter, and in its

essence the key result of this chapter, the ‘trace formula.’ Here we redo the argu-

ment in a bit greater depth, and derive the correct formula (23.23) for a long time

average 〈D〉 as a weighted sum over periodic orbits. It will take three chapters,

but it is worth it - the reward is an exact (i.e., not heuristic) and highly convergent

and controllable formula for computing averages over chaotic flows.

21.1 A trace formula for maps

Our extraction of the spectrum of L commences with the evaluation of the trace.

As the case of discrete time mappings is somewhat simpler, we first derive the

trace formula for maps, and then, in sect. 21.2, for flows. The final formula (21.19)

covers both cases.

To compute an expectation value using (20.22) we have to integrate over all

the values of the kernel Ln(x, y). Were Ln a matrix sum over its matrix elements

would be dominated by the leading eigenvalue as n → ∞ (we went through the

argument in some detail in sect. 18.1). As the trace of Ln is also dominated by the

leading eigenvalue as n→ ∞, we might just as well look at the trace for which we

have a very explicit formula exercise 18.3

trLn =

∫

dxLn(x, x) =

∫

dx δ
(

x − f n(x)
)

eβA(x,n) . (21.1)
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On the other hand, by its matrix motivated definition, the trace is the sum over

eigenvalues (20.28),

trLn =

∞
∑

α=0

esαn . (21.2)

We find it convenient to write the eigenvalues as exponents esα rather than as mul-

tipliers λα, and we assume that spectrum of L is discrete, s0, s1, s2, · · · , ordered

so that Re sα ≥ Re sα+1.

For the time being we choose not to worry about convergence of such sums,

ignore the question of what function space the eigenfunctions belong to, and com-

pute the eigenvalue spectrum without constructing any explicit eigenfunctions.

We shall revisit these issues in more depth in chapter 28, and discuss how lack of

hyperbolicity leads to continuous spectra in chapter 29.

21.1.1 Hyperbolicity assumption

We have learned in sect. 19.2 how to evaluate the delta-function integral (21.1). section 19.2

According to (19.8) the trace (21.1) picks up a contribution whenever x −

f n(x) = 0, i.e., whenever x belongs to a periodic orbit. For reasons which we

will explain in sect. 21.2, it is wisest to start by focusing on discrete time systems.

The contribution of an isolated prime cycle p of period np for a map f can be

evaluated by restricting the integration to an infinitesimal open neighborhoodMp

around the cycle,

tr pL
np =

∫

Mp

dx δ
(

x − f np(x)
)

=
np

∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

= np

d
∏

i=1

1

|1 − Λp,i|
. (21.3)

For the time being we set here and in (19.9) the observable eβAp = 1. Periodic orbit

Jacobian matrix Mp is also known as the monodromy matrix, and its eigenvalues

Λp,1, Λp,2, . . . , Λp,d as the Floquet multipliers. section 5.2.1

We sort the eigenvalues Λp,1, Λp,2, . . . , Λp,d of the p-cycle [d×d] monodromy

matrix Mp into expanding, marginal and contracting sets {e,m, c}, as in (5.5). As

the integral (21.3) can be evaluated only if Mp has no eigenvalue of unit magni-

tude, we assume that no eigenvalue is marginal (we shall show in sect. 21.2 that

the longitudinal Λp,d+1 = 1 eigenvalue for flows can be eliminated by restricting

the consideration to the transverse monodromy matrix Mp), and factorize the trace

(21.3) into a product over the expanding and the contracting eigenvalues

∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

−1
=

1

|Λp|

∏

e

1

1 − 1/Λp,e

∏

c

1

1 − Λp,c

, (21.4)
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where Λp =
∏

eΛp,e is the product of expanding eigenvalues. Both Λp,c and

1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in

complex conjugate pairs we are allowed to drop the absolute value brackets | · · · |

in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles included

in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λp,c| < 1 , (21.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting cycle

Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-

tion (for example, the well separated 3-disk system clearly does), the Lt spectrum

will be relatively easy to control. If the expansion/contraction is slower than ex-

ponential, let us say |Λp,i| ∼ Tp
2, the system may exhibit “phase transitions,” and

the analysis is much harder - we shall discuss this in chapter 29.

example 21.1

p. 394

It follows from (21.4) that for long times, t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

→ |Λp|
r. We shall use this fact to

motivate the construction of dynamical zeta functions in sect. 22.3. However, for

evaluation of the full spectrum the exact cycle weight (21.3) has to be kept.

21.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have

Floquet multipliers |Λp,i| , 1 strictly bounded away from unity, the trace Ln is

given by the sum over all periodic points i of period n:

trLn =

∫

dxLn(x, x) =
∑

xi∈Fix f n

eβAi

|det (1 − Mn(xi))|
. (21.6)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of period n, and

Ai is the observable (20.4) evaluated over n discrete time steps along the cycle to

which the periodic point xi belongs. The weight follows from the properties of

the Dirac delta function (19.8) by taking the determinant of ∂i(x j − f n(x) j). If a

trajectory retraces itself r times, its monodromy matrix is Mr
p, where Mp is the

[d×d] monodromy matrix (4.5) evaluated along a single traversal of the prime

cycle p. As we saw in (20.4), the integrated observable A is additive along the

cycle: If a prime cycle p trajectory retraces itself r times, n = rnp, we obtain Ap

repeated r times, Ai = A(xi, n) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating

symbol string. There is only one prime cycle for each cyclic permutation class.
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For example, the four periodic points 0011 = 1001 = 1100 = 0110 belong to the chapter 14

same prime cycle p = 0011 of length 4. As both the stability of a cycle and the

weight Ap are the same everywhere along the orbit, each prime cycle of length np

contributes np terms to the sum, one for each periodic point. Hence (21.6) can be

rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞
∑

r=1

erβAp

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

δn,npr , (21.7)

with the Kronecker delta δn,npr projecting out the periodic contributions of total

period n. This constraint is awkward, and will be more awkward still for the

continuous time flows, where it would yield a series of Dirac delta spikes. In both

cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞
∑

n=1

zntrLn = tr
zL

1 − zL
=

∑

p

np

∞
∑

r=1

znprerβAp

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

, (21.8)

the constraint δn,npr is replaced by weight zn . Such discrete time Laplace trans-

form of trLn is usually referred to as a ‘generating function’. Why this transform?

We are actually not interested in evaluating the sum (21.7) for any particular fixed

period n; what we are interested in is the long time n → ∞ behavior. The trans-

form trades in the large time n behavior for the small z behavior. Expressing the

trace as in (21.2), in terms of the sum of the eigenvalues of L, we obtain the trace

formula for maps:

∞
∑

α=0

zesα

1 − zesα
=

∑

p

np

∞
∑

r=1

znpr erβAp

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

. (21.9)

This is our second example of the duality between the spectrum of eigenvalues

and the spectrum of periodic orbits, announced in the introduction to this chapter.

(The first example was the topological trace formula (18.8).)

fast track:

sect. 21.2, p. 388

example 21.2

p. 394

21.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake

(R. Artuso and P. Cvitanović)

Our extraction of the spectrum of Lt commences with the evaluation of the trace

trLt = tr eAt =

∫

dxLt(x, x) =

∫

dx δ
(

x − f t(x)
)

eβA(x,t) . (21.10)
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We are not interested in any particular time t, but into the long-time behavior

as t → ∞, so we need to transform the trace from the “time domain” into the

“frequency domain.” A generic flow is a semi-flow defined forward in time, so

the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator

yields the resolvent (20.32). This is a delicate step, since the evolution operator

becomes the identity in the t → 0+ limit. In order to make sense of the trace we

regularize the Laplace transform by a lower cutoff ǫ smaller than the period of any

periodic orbit, and write

∫ ∞

ǫ

dt e−st trLt = tr
e−(s−A)ǫ

s −A
=

∞
∑

α=0

e−(s−sα)ǫ

s − sα
, (21.11)

whereA is the generator of the semigroup of dynamical evolution, see sect. 19.5.

Our task is to evaluate trLt from its explicit state space representation.

21.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle

period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector

along the flow necessarily equals unity for all periodic orbits. Hence for flows the section 5.3.1

trace integral trLt requires a separate treatment for the longitudinal direction. To

evaluate the contribution of an isolated prime cycle p of period Tp, restrict the in-

tegration to an infinitesimally thin tubeMp enveloping the cycle (see figure 1.13),

and consider a local coordinate system with a longitudinal coordinate dx‖ along

the direction of the flow, and d−1 transverse coordinates x⊥ ,

tr pL
t =

∫

Mp

dx⊥dx‖ δ
(

x⊥ − f t
⊥(x)

)

δ
(

x‖ − f t(x‖)
)

. (21.12)

(we set β = 0 in the exp(β · A) weight for the time being). Pick a point on the

prime cycle p, and let

v(x‖) =

















d
∑

i=1

vi(x)2

















1/2

(21.13)

be the magnitude of the tangential velocity at any point x = (x‖, 0, · · · , 0) on the

cycle p. The velocity v(x) must be strictly positive, as otherwise the orbit would

stagnate for infinite time at v(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectory x‖(τ) = f τ(xp) sweeps out the entire cycle, and

for larger times x‖ is a cyclic variable of periodicity Tp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (21.14)

We parametrize both the longitudinal coordinate x‖(τ) and the velocity v(τ) =

v(x‖(τ)) by the flight time τ, and rewrite the integral along the periodic orbit as
∮

p

dx‖ δ
(

x‖ − f t(x‖)
)

=

∮

p

dτ v(τ) δ
(

x‖(τ) − x‖(τ + t
)

) . (21.15)
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By the periodicity condition (21.14) the Dirac δ function picks up contributions

for t = rTp, so the Laplace transform can be split as

∫ ∞

0

dt e−st δ
(

x‖(τ) − x‖(τ + t)
)

=

∞
∑

r=1

e−sTpr Ir

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) .

Taylor expanding and applying the periodicity condition (21.14), we have x‖(τ +

rTp + t) = x‖(τ) + v(τ)t + . . . ,

Ir =

∫ ǫ

−ǫ

dt e−st δ
(

x‖(τ) − x‖(τ + rTp + t
)

) =
1

v(τ)
,

so the remaining integral (21.15) over τ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus

∫ ∞

0

dt e−st

∮

p

dx‖ δ
(

x‖ − f t(x‖)
)

= Tp

∞
∑

r=1

e−sTpr . (21.16)

This integration is a prototype of what needs to be done for each marginal direc-

tion, whenever existence of a conserved quantity (energy in Hamiltonian flows,

angular momentum, translational invariance, etc.) implies existence of a smooth

manifold of equivalent (equivariant) solutions of dynamical equations.

21.2.2 Stability in the transverse directions

Think of the τ = 0 point in above integrals along the cycle p as a choice of a

particular Poincaré section. As we have shown in sect. 5.5, the transverse Flo-

quet multipliers do not depend on the choice of a Poincaré section, so ignoring

the dependence on x‖(τ) in evaluating the transverse integral in (21.12) is justi-

fied. For the transverse integration variables the Jacobian matrix is defined in a

reduced Poincaré surface of section P of fixed x‖. Linearization of the periodic

flow transverse to the orbit yields

∫

P

dx⊥δ
(

x⊥ − f
rTp

⊥ (x)
)

=
1

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

, (21.17)

where Mp is the p-cycle [d−1×d−1] transverse monodromy matrix. As in (21.5)

we have to assume hyperbolicity, i.e., that the magnitudes of all transverse eigen-

values are bounded away from unity.

Substitution (21.16), (21.17) in (21.12) leads to an expression for trLt as a

sum over all prime cycles p and their repetitions

∫ ∞

ǫ

dt e−st trLt =
∑

p

Tp

∞
∑

r=1

er(βAp−sTp)

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

. (21.18)
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The ǫ → 0 limit of the two expressions for the resolvent, (21.11) and (21.18), now

yields the classical trace formula for flows

∞
∑

α=0

1

s − sα
=

∑

p

Tp

∞
∑

r=1

er(βAp−sTp)

∣

∣

∣

∣
det

(

1 − Mr
p

)

∣

∣

∣

∣

. (21.19)

(If you are worried about the convergence of the resolvent sum, keep the ε regu- exercise 21.1

larization.)

This formula is still another example of the duality between the (local) cycles

and (global) eigenvalues. If Tp takes only integer values, we can replace e−s → z

throughout, so the trace formula for maps (21.9) is a special case of the trace

formula for flows. The relation between the continuous and discrete time cases

can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (21.20)

The beauty of trace formulas is that they are coordinate independent: the
∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

= |det (1 − MTp(x))| and eβAp = eβA(x,Tp) contributions to the cy-

cle weight tp are both independent of the starting periodic point x ∈ Mp. For the

Jacobian matrix Mp this follows from the chain rule for derivatives, and for eβAp

from the fact that the integral over eβA(x,t) is evaluated along a closed loop. In

addition, as we have shown in sect. 5.3,
∣

∣

∣

∣

det
(

1 − Mp

)

∣

∣

∣

∣

is invariant under smooth

coordinate transformations.

We could now proceed to estimate the location of the leading singularity of

tr (s−A)−1 by extrapolating finite cycle length truncations of (21.19) by methods

such as Padé approximants. However, it pays to first perform a simple resumma-

tion which converts this divergence of a trace into a zero of a spectral determinant.

We shall do this in sect. 22.2, but first a brief refresher of how all this relates to

the formula for escape rate (1.8) offered in the introduction might help digest the

material.

fast track:

sect. 22, p. 397

21.3 An asymptotic trace formula

In order to illuminate the manipulations of sect. 21.1 and relate them to

something we already possess intuition about, we now rederive the heuristic sum

of sect. 1.5.1 from the exact trace formula (21.9). The Laplace transforms (21.9)
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or (21.19) are designed to capture the time→ ∞ asymptotic behavior of the trace

sums. By the hyperbolicity assumption (21.5), for t = Tpr large the cycle weight

approaches

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

→ |Λp|
r , (21.21)

where Λp is the product of the expanding eigenvalues of Mp. Denote the corre-

sponding approximation to the nth trace (21.6) by

Γn =

(n)
∑

i

1

|Λi|
, (21.22)

and denote the approximate trace formula obtained by replacing the cycle weights
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

by |Λp|
r in (21.9) by Γ(z). Equivalently, think of this as a replace-

ment of the evolution operator (20.24) by a transfer operator (as in example 21.2).

For concreteness consider a dynamical system whose symbolic dynamics is com-

plete binary, for example the 3-disk system figure 1.6. In this case distinct periodic

points that contribute to the nth periodic points sum (21.7) are labeled by all ad-

missible itineraries composed of sequences of letters si ∈ {0, 1}:

Γ(z) =

∞
∑

n=1

znΓn =

∞
∑

n=1

zn
∑

xi∈Fix f n

eβA(xi,n)

|Λi|

= z

{

eβA0

|Λ0|
+

eβA1

|Λ1|

}

+ z2

{

e2βA0

|Λ0|
2
+

eβA01

|Λ01|
+

eβA10

|Λ10|
+

e2βA1

|Λ1|
2

}

+z3

{

e3βA0

|Λ0|
3
+

eβA001

|Λ001|
+

eβA010

|Λ010|
+

eβA100

|Λ100|
+ . . .

}

(21.23)

Both the cycle averages Ai and the stabilities Λi are the same for all points xi ∈ Mp

in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1 − tp

, tp = znpeβAp/|Λp| . (21.24)

This is precisely our initial heuristic estimate (1.9). Note that we could not per-

form such sum over r in the exact trace formula (21.9) as
∣

∣

∣

∣
det

(

1 − Mr
p

)

∣

∣

∣

∣
,

∣

∣

∣

∣
det

(

1 − Mp

)

∣

∣

∣

∣

r
;

the correct way to resum the exact trace formulas is to first expand the factors

1/|1 − Λp,i|, as we shall do in (22.8). section 22.2

If the weights eβA(x,n) are multiplicative along the flow, and the flow is hyper-

bolic, for given β the magnitude of each |eβA(xi,n)/Λi| term is bounded by some

constant Mn. The total number of cycles grows as 2n (or as ehn, h = topological

entropy, in general), and the sum is convergent for z sufficiently small, |z| < 1/2M.

For large n the nth level sum (21.6) tends to the leading Ln eigenvalue ens0 . Sum-

ming this asymptotic estimate level by level

Γ(z) ≈

∞
∑

n=1

(zes0 )n
=

zes0

1 − zes0
(21.25)
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we see that we should be able to determine s0 by determining the smallest value

of z = e−s0 for which the cycle expansion (21.24) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to consider

the approximate trace Γ(z). We will use this fact in sect. 22.3 to motivate the

introduction of dynamical zeta functions (22.10), and in sect. 22.5 we shall give

the exact relation between the exact and the approximate trace formulas.

Résumé

The description of a chaotic dynamical system in terms of cycles can be visual-

ized as a tessellation of the dynamical system, figure 21.1, with a smooth flow

approximated by its periodic orbit skeleton, each region Mi centered on a peri-

odic point xi of the topological length n, and the size of the region determined

by the linearization of the flow around the periodic point. The integral over such

topologically partitioned state space yields the classical trace formula

∞
∑

α=0

1

s − sα
=

∑

p

Tp

∞
∑

r=1

er(βAp−sTp)

∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

.

Now that we have a trace formula, one might ask: what is it good for? As it

stands, it is a scary divergent formula which relates the unspeakable infinity of

global eigenvalues to the unthinkable infinity of local unstable cycles. However,

it is a good stepping stone on the way to construction of spectral determinants (to

which we turn next), and a first hint that when the going is good, the theory might

turn out to be convergent beyond our wildest dreams (chapter 28). In order to

implement such formulas, we will have to determine “all” prime cycles. The first

step is topological: enumeration of all admissible cycles undertaken in chapter 15.

The more onerous enterprize of actually computing the cycles we first approach

traditionally, as a numerical task in chapter 16, and then more boldly as a part and

parcel of variational foundations of classical and quantum dynamics in chapter 33.

Commentary

Remark 21.1 Who’s dunne it? Continuous time flow traces weighted by cycle

periods were introduced by Bowen [A1.70] who treated them as Poincaré section sus-

pensions weighted by the “time ceiling” function (3.5). They were used by Parry and

Pollicott [21.2].

Remark 21.2 Flat and sharp traces. In the above formal derivation of trace for-

mulas we cared very little whether our sums were well posed. In the Fredholm theory

traces like (21.10) require compact operators with continuous function kernels. This is

not the case for our Dirac delta evolution operators: nevertheless, there is a large class

of dynamical systems for which our results may be shown to be perfectly legal. In the
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mathematical literature expressions like (21.6) are called flat traces (see the review [21.4]

and chapter 28). Other names for traces appear as well: for instance, in the context of 1-

dimensional mappings, sharp traces refer to generalizations of (21.6) where contributions

of periodic points are weighted by the Lefschetz sign ±1, reflecting whether the periodic

point sits on a branch of nth iterate of the map which crosses the diagonal starting from

below or starting from above [22.9]. Such traces are connected to the theory of knead-

ing invariants (see ref. [21.4] and references therein). Traces weighted by ±1 sign of the

derivative of the fixed point have been used to study the period doubling repeller, leading

to high precision estimates of the Feigenbaum constant δ, refs. [A1.30, A1.27, A1.28, ?].

21.4 Examples

Example 21.1 Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary

exponentsΛm = e±iθ is excluded by the hyperbolicity assumption. While the contribution

of a single repeat of a cycle

1

(1 − eiθ)(1 − e−iθ)
=

1

2(1 − cos θ)
(21.26)

does not make (19.9) diverge, if Λm = ei2πp/r is rth root of unity, 1/
∣

∣

∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

di-

verges. For a generic θ repeats cos(rθ) behave badly and by ergodicity 1 − cos(rθ) is

arbitrarily small, 1− cos(rθ) < ǫ, infinitely often. This goes by the name of “small divisor

problem,” and requires a separate treatment. click to return: p. ??

Example 21.2 A trace formula for transfer operators: For a piecewise-linear map

(19.37), we can explicitly evaluate the trace formula. By the piecewise linearity and the

chain rule Λp = Λ
n0

0
Λ

n1

1
, where the cycle p contains n0 symbols 0 and n1 symbols 1, the

trace (21.6) reduces to

trLn =

n
∑

m=0

(

n

m

)

1

|1 − Λm
0
Λn−m

1
|
=

∞
∑

k=0













1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1













n

, (21.27)

with eigenvalues

esk =
1

|Λ0|Λ
k
0

+
1

|Λ1|Λ
k
1

. (21.28)

As the simplest example of spectrum for such dynamical system, consider the symmet-

ric piecewise-linear 2-branch repeller (19.37) for which Λ = Λ1 = −Λ0. In this case all

odd eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.exercise 19.7

Asymptotically the spectrum (21.28) is dominated by the lesser of the two fixed

point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off

exponentially as 1/Λk, dominated by the single less unstable fixed-point. example 28.1

For k = 0 this is in agreement with the explicit transfer matrix (19.39) eigenval-

ues (20.41). The alert reader should experience anxiety at this point. Is it not true that

we have already written down explicitly the transfer operator in (19.39), and that it is

clear by inspection that it has only one eigenvalue es0 = 1/|Λ0| + 1/|Λ1|? The example

at hand is one of the simplest illustrations of necessity of defining the space that the
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operator acts on in order to define the spectrum. The transfer operator (19.39) is

the correct operator on the space of functions piecewise constant on the state space

partition {M0,M1}; on this space the operator indeed has only the eigenvalue es0 . As

we shall see in example 28.1, the full spectrum (21.28) corresponds to the action of the

transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (19.37)

follows from (21.8)

tr
zL

1 − zL
=

z
(

1
|Λ0−1|

+ 1
|Λ1−1|

)

1 − z
(

1
|Λ0−1|

+ 1
|Λ1−1|

) , (21.29)

verifying the trace formula (21.9). click to return: p. ??

Exercises

21.1. t → 0+ regularization of eigenvalue sums.

In taking the Laplace transform (21.19) we have

ignored the t → 0+ divergence, as we do not know how

to regularize the delta function kernel in this limit. In

the quantum (or heat kernel) case this limit gives rise

to the Weyl or Thomas-Fermi mean eigenvalue spac-

ing.Regularize the divergent sum in (21.19) and assign

to such volume term some interesting role in the theory

of classical resonance spectra. E-mail the solution to the

authors.

21.2. General weights. (easy) Let f t be a flow and Lt the

operator

Ltg(x) =

∫

dy δ(x − f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will

try and determine some of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the

most general form of w is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · ·g( f n−1(x)) ,

for some g that can be multiplied. Could g be a

function from Rn1 7→ Rn2 ? (ni ∈ N.)

21.3. Classical trace formula for flows. Verify (or

improve) the steps in the derivation of the continuous

time trace formula

∞
∑

α=0

1

s − sα
=

∑

p

Tp

∞
∑

r=1

er(βAp−sTp)

∣
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∣

∣

det
(

1 − Mr
p

)

∣

∣

∣

∣

. (21.30)
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