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Chapter 1

Overture

If T have seen less far than other men it is because I have
stood behind giants.

Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there are holes
large enough to steam a Eurostar train through them. Here we learn about
harmonic oscillators and Keplerian ellipses - but where is the chapter on chaotic
oscillators, the tumbling Hyperion? We have just quantized hydrogen, where is
the chapter on helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory
have turbulent solutions? How are we to think about systems where things fall
apart; the center cannot hold; every trajectory is unstable?

This chapter is a quick par-course of the main topics covered in the book.
We start out by making promises - we will right wrongs, no longer shall you
suffer the slings and arrows of outrageous Science of Perplexity. We relegate
a historical overview of the development of chaotic dynamics to appendix B,
and head straight to the starting line: A pinball game is used to motivate and
illustrate most of the concepts to be developed in this book.

Throughout the book

3

J indicates that the section is probably best skipped on first reading
@ fast track points you where to skip to

a tells you where to go for more depth on a particular topic

indicates an exercise that might clarify a point in the text



2 CHAPTER 1. OVERTURE

Learned remarks and bibliographical pointers are relegated to the “Com-
mentary” section at the end of each chapter

1.1 Why this book?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
SOITOWS.

Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally re-
current. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take
a logarithm. It would hardly merit a learned treatise, were it not for the fact
that this determinant that we are to compute is fashioned out of infinitely many
infinitely small pieces. The feel is of statistical mechanics, and that is how the
problem was solved; in 1960’s the pieces were counted, and in 1970’s they were
weighted and assembled together in a fashion that in beauty and in depth ranks
along with thermodynamics, partition functions and path integrals amongst the
crown jewels of theoretical physics.

Then something happened that might be without parallel; this is an area of
science where the advent of cheap computation had actually subtracted from our
collective understanding. The computer pictures and numerical plots of fractal
science of 1980’s have overshadowed the deep insights of the 1970’s, and these
pictures have now migrated into textbooks. Fractal science posits that certain
quantities (Lyapunov exponents, generalized dimensions, ...) can be estimated
on a computer. While some of the numbers so obtained are indeed mathemat-
ically sensible characterizations of fractals, they are in no sense observable and
measurable on the length and time scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial, in studies of probabilistically assembled fractal aggregates we
know of nothing better than contemplating such quantities. In deterministic
systems we can do much better. Chaotic dynamics is generated by interplay
of locally unstable motions, and interweaving of their global stable and unstable
manifolds. These features are robust and accessible in systems as noisy as slices of
rat brains. Poincaré, the first to understand deterministic chaos, already said as
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1.2. CHAOS AHEAD 3

much (modulo rat brains). Once the topology of chaotic dynamics is understood,
a powerful theory yields the macroscopically measurable consequences of chaotic
dynamics, such as atomic spectra, transport coeflicients, gas pressures.

That is what we will focus on in this book. We teach you how to evaluate a
determinant, take a logarithm, stuff like that. Should take 100 pages or so. Well,
we fail - so far we have not found a way to traverse this material in less than a
semester, or 200-300 pages subset of this text. Nothing to be done about that.

1.2 Chaos ahead

Things fall apart; the centre cannot hold
W.B. Yeats: The Second Coming

Study of chaotic dynamical systems is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics seem a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though “non-generic”, have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations - an
expectation tempered for many by the recently acquired ability to numerically
scan the phase space of non-integrable dynamical systems. The initial impression
might be that all our analytic tools have failed us, and that the chaotic systems
are amenable only to numerical and statistical investigations. However, as we
show here, we already possess a theory of the deterministic chaos of predictive
quality comparable to that of the traditional perturbation expansions for nearly
integrable systems.

In the traditional approach the integrable motions are used as zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expan-
sions fail completely; the asymptotic time phase space exhibits amazingly rich
structure which is not at all apparent in the integrable approximations. How-
ever, hidden in this apparent chaos is a rigid skeleton, a tree of cycles (periodic
orbits) of increasing lengths and self-similar structure. The insight of the modern
dynamical systems theory is that the zeroth-order approximations to the harshly
chaotic dynamics should be very different from those for the nearly integrable
systems: a good starting approximation here is the linear stretching and folding
of a baker’s map, rather than the winding of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for

printed June 19, 2002 /chapter/intro.tex 15may2002



4 CHAPTER 1. OVERTURE
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Figure 1.1: Physicists’ bare bones game of pin-
ball.

how and why unstable cycles come about, we start by playing a game of pinball.
The reminder of the chapter is a quick tour through the material covered in this
book. Do not worry if you do not understand every detail at the first reading —
the intention is to give you a feeling for the main themes of the book, details will
be filled out later. If you want to get a particular point clarified right now, &5
on the margin points at the appropriate section.

1.3 A game of pinball

Man ma begreense sig, det er en Hovedbetingelse for al
Nydelse.

Seren Kierkegaard, Forforerens Dagbog

That deterministic dynamics leads to chaos is no surprise to anyone who has
tried pool, billiards or snooker — that is what the game is about — so we start
our story about what chaos is, and what to do about it, with a game of pinball.
This might seem a trifle, but the game of pinball is to chaotic dynamics what
a pendulum is to integrable systems: thinking clearly about what “chaos” in a
game of pinball is will help us tackle more difficult problems, such as computing
diffusion constants in deterministic gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
fig. 1.1.  Physicists’ pinball is free, frictionless, point-like, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at the disks from random
starting positions and angles; they spend some time bouncing between the disks
and then escape.

At the beginning of 18th century Baron Gottfried Wilhelm Leibniz was con-
fident that given the initial conditions one knew what a deterministic system
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1.3. A GAME OF PINBALL 5

would do far into the future. He wrote [1]:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [...] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate how
they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres are
taken or whether objects are taken other than spheres. From this one sees
then that everything proceeds mathematically — that is, infallibly — in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of “chaos”. His claim
is wrong in a deep and subtle way: a state of a physical system can mever be
specified to infinite precision, there is no way to take all the circumstances into
account, and a single trajectory cannot be tracked, only a ball of nearby initial
points makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.
Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is fully determined by
its initial conditions, in contra-distinction to a stochastic system, for which the
initial conditions determine the present state only partially, due to noise, or other
external circumstances beyond our control. For a stochastic system, the present
state reflects the past initial conditions plus the particular realization of the noise
encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock market to
palpitations of chicken hearts. So, what is “chaos”?

Two pinball trajectories that start out very close to each other separate ex-
ponentially with time, and in a finite (and in practice, a very small) number
of bounces their separation dx(¢) attains the magnitude of L, the characteristic
linear extent of the whole system, fig. 1.2. This property of sensitivity to initial
conditions can be quantified as

|6%(t)] ~ eX]6%(0)]

printed June 19, 2002 /chapter/intro.tex 15may2002
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23132321

Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other sep-
arate exponentially with time. 2313

where A, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy dx of the initial data, the dynamics
is predictable only up to a finite Lyapunov time

1
T ,yap = —Xln |0x/L|, (1.1)

despite the deterministic and, for baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajec-
tories would only separate, never to meet again. What is also needed is mizing,
the coming together again and again of trajectories. While locally the nearby
trajectories separate, the interesting dynamics is confined to a globally finite re-
gion of the phase space and thus of necessity the separated trajectories are folded
back and can re-approach each other arbitrarily closely, infinitely many times.
In the case at hand there are 2" topologically distinct n bounce trajectories that
originate from a given disk. More generally, the number of distinct trajectories
with n bounces can be quantified as

N(n) =~ e

where the topological entropy h (h =1In2 in the case at hand) is the growth rate
of the number of topologically distinct trajectories.

The appellation “chaos” is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically — that is, as baron Leibniz would have it, infallibly. When a
physicist says that a certain system exhibits “chaos”, he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive to
small uncertainties in the specification of the initial state. The word “chaos” has
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in this context taken on a narrow technical meaning. If a deterministic system
is locally unstable (positive Lyapunov exponent) and globally mixing (positive
entropy), it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive Lyapunov
+ positive entropy” is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is the Poincaré’s vision of chaos as interplay of local instability (unsta-
ble periodic orbits) and global mixing (intertwining of their stable and unstable
manifolds). In a chaotic system any open ball of initial conditions, no matter how
small, will in finite time overlap with any other finite region and in this sense
spread over the extent of the entire asymptotically accessible phase space. Once
this is grasped, the focus of theory shifts from attempting precise prediction of
individual trajectories (which is impossible) to description of the geometry of the
space of possible outcomes, and evaluation of averages over this space. How this
is accomplished is what this book is about.

A definition of “turbulence” is harder to come by. Intuitively, the word refers
to irregular behavior of an infinite-dimensional dynamical system (say, a bucket
of boiling water) described by deterministic equations of motion (say, the Navier-
Stokes equations). But in practice “turbulence” is very much like “cancer” -
it is used to refer to messy dynamics which we understand poorly. As soon as E¥ sect. 2.5
a phenomenon is understood better, it is reclaimed and renamed: “a route to
chaos”, “spatiotemporal chaos”, and so on.

Confronted with a potentially chaotic dynamical system, we analyze it through
a sequence of three distinct stages; diagnose, count, measure. 1. First we deter-
mine the intrinsic dimension of the system — the minimum number of degrees
of freedom necessary to capture its essential dynamics. If the system is very
turbulent (description of its long time dynamics requires a space of high intrin-
sic dimension) we are, at present, out of luck. We know only how to deal with
the transitional regime between regular motions and a few chaotic degrees of
freedom. That is still something; even an infinite-dimensional system such as a
burning flame front can turn out to have a very few chaotic degrees of freedom.
In this regime the chaotic dynamics is restricted to a space of low dimension, the EF sect. 2.5
number of relevant parameters is small, and we can proceed to step II; we count & chapter ??
and classify all possible topologically distinct trajectories of the system into a
hierarchy whose successive layers require increased precision and patience on the
part of the observer. This we shall do in sects. 1.3.3 and 1.3.4. If successful, we EF chapter 11
can proceed with step III of sect. 1.4.1: investigate the weights of the different
pieces of the system.
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1.3.2 When does “chaos” matter?

Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

W. Shakespeare, Hamlet

When should we be mindfull of chaos? The solar system is “chaotic”, yet
we have no trouble keeping track of the annual motions of planets. The rule
of thumb is this; if the Lyapunov time (1.1), the time in which phase space
regions comparable in size to the observational accuracy extend across the entire
accessible phase space, is significantly shorter than the observational time, we
need methods that will be developped here. That is why the main successes of
the theory are in statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics.

As in science popularizations too much has been made of the impact of the
“chaos theory” , perhaps it is not amiss to state a number of caveats already at
this point.

At present the theory is in practice applicable only to systems with a low
intrinsic dimension — the minimum number of degrees of freedom necessary to
capture its essential dynamics. If the system is very turbulent (description
of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers to elucidation of problems of
fully developed turbulence, quantum field theory of strong interactions and early
cosmology have been modest at best. Even that is a caveat with qualifications.
There are applications — such as spatially extended systems and statistical me-
chanics applications — where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

The theory has had limited practical success applied to the very noisy sys-
tems so important in life sciences and in economics. Even though we are often
interested in phenomena taking place on time scales much longer than the intrin-
sic time scale (neuronal interburst intervals, cardiac pulse, etc.), disentangling
“chaotic” motions from the environmental noise has been very hard.

1.3.3 Symbolic dynamics

Formulas hamper the understanding.
S. Smale

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III — measure — in sect. 1.4.1.
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Figure 1.3: Binary labeling of the 3-disk pin-
ball trajectories; a bounce in which the trajectory @370@
returns to the preceding disk is labeled 0, and a

bounce which results in continuation to the third @
disk is labeled 1.

With the game of pinball we are in luck — it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the three
disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels which indicates the order in which the disks are visited; for example,
the two trajectories in fig. 1.2 have itineraries 2313_, _23132321_ respectively.
The itinerary will be finite for a scattering trajectory, coming in from infinity
and escaping after a finite number of collisions, infinite for a trapped trajectory,
and infinitely repeating for a periodic orbit. Parenthetically, in this subject the & 1.1
words “orbit” and “trajectory” refer to one and the same thing. on p. 32

Such labeling is the simplest example of symbolic dynamics. As the particle S chapter 7?
cannot collide two times in succession with the same disk, any two consecutive
symbols must differ. This is an example of pruning, a rule that forbids certain
subsequences of symbols. Deriving pruning rules is in general a difficult problem,
but with the game of pinball we are lucky - there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, fig. 1.3. A clever
choice of an alphabet will incorporate important features of the dynamics, such
as its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the pinball to
bounce as many times as you possibly can — what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks — if you managed to shoot it so it starts out in the
periodic orbit bouncing along the line connecting two disk centers, it would stay
there forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit is unstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear that if one is interested
in playing well, unstable periodic orbits are important — they form the skeleton
onto which all trajectories trapped for long times cling. B sect. 24.3
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Z I

3 3
12123 13132

b)

Figure 1.4: Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other by ¢}
093, the flip across 1 axis; this cycle has degener-
acy 6 under Cs, symmetries. (Cs, is the symmetry
group of the equilateral triangle.) Similarly (b) 123

and 132 and (c) 1213, 1232 and 1323 are degen- 2 2

erate under C3,. (d) The cycles 121212313 and

121212323 are related by time reversal but not by d) 1 L
any Cs3,, symmetry. These symmetries are discussed 3 3

in more detail in chapter 17. (from ref. [2]) 121212313 121212323

1.3.4 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall refer to the set of periodic points that belong to a given periodic orbit as
a cycle.

Short periodic orbits are easily drawn and enumerated - some examples are
drawn in fig. 1.4 - but it is rather hard to perceive the systematics of orbits
from their shapes. In the pinball example the problem is that we are looking at
the projections of a 4-dimensional phase space trajectories onto a 2-dimensional
subspace, the space coordinates. While the trajectories cannot intersect (that
would violate their deterministic uniqueness), their projections on arbitrary sub-
spaces intersect in a rather arbitrary fashion. A clearer picture of the dynamics
is obtained by constructing a phase space Poincaré section.

The position of the ball is described by a pair of numbers (the spatial coordi-
nates on the plane) and its velocity by another pair of numbers (the components
of the velocity vector). As far as baron Leibniz is concerned, this is a complete
description.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces — the ball just travels at constant velocity along a straight
line — so we can reduce the four-dimensional flow to a two-dimensional map f
that takes the coordinates of the pinball from one disk edge to another disk edge.
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sin 6

a1
sin 6,
L]

92

62 sin 63

a3

Figure 1.5: (a) The 3-disk game of pinball coordinates and (b) the Poincaré sections.

Figure 1.6: (a) A trajectory starting out from

disk 1 can either hit another disk or escape. (b) Hit- o
ting two disks in a sequence requires a much sharper P
aim. The pencils of initial conditions that hit more ‘ g
and more consecutive disks are nested within each ' °
5

other as in fig. 1.7. 2

Let us state this more precisely: the trajectory just after the moment of impact
is defined by marking ¢;, the arc-length position of the ith bounce along the
billiard wall, and p; = sin6;, the momentum component parallel to the billiard
wall at the point of impact, fig. 1.5. Such section of a flow is called a Poincaré
section, and the particular choice of coordinates (due to Birkhoff) is particulary
smart, as it conserves the phase-space volume. In terms of the Poincaré section,
the dynamics is reduced to the return map f : (pi,¢) — (Pi+1,¢i+1) from the
boundary of a disk to the boundary of the next disk. The explicit form of this
map is easily written down, but it is of no importance right now.

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories
originating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips Mg, M;. Embedded within them there
are four strips Moo, M1g, Mo1, M1 of initial conditions that survive for two
bounces, and so forth, see figs. 1.6 and 1.7. Provided that the disks are sufficiently
separated, after n bounces the survivors are divided into 2™ distinct strips: the
ith strip consists of all points with itinerary i = s15283...5,, s = {0,1}. The
unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point $15253...8, with the basic block infinitely repeated.
Periodic points are skeletal in the sense that as we look further and further, the
strips shrink but the periodic points stay put forever.

We see now why it pays to have a symbolic dynamics; it provides a navigation
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Figure 1.7: Ternary labelled regions of the 3-disk game of pinball phase space Poincaré
section which correspond to trajectories that originate on disk 1 and remain confined for
(a) one bounce, (b) two bounces, (c) three bounces. The Poincaré sections for trajectories
originating on the other two disks are obtained by the appropriate relabelling of the strips

(K.T. Hansen [3]).

chart through chaotic phase space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12... either eventually escapes or hits the 3rd disk.

1.3.5 Escape rate

What is a good physical quantity to compute for the game of pinball? A repeller
escape rate is an eminently measurable quantity. An example of such measure-
ment would be an unstable molecular or nuclear state which can be well approx-
imated by a classical potential with possibility of escape in certain directions. In
an experiment many projectiles are injected into such a non-confining potential
and their mean escape rate is measured, as in fig. 1.1. The numerical experiment
might consist of injecting the pinball between the disks in some random direction
and asking how many times the pinball bounces on the average before it escapes
the region between the disks.

For a theorist a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how the
periodic orbit theory accomplishes this for us. Each step will be so simple that
you can follow even at the cursory pace of this overview, and still the result is
surprisingly elegant.

Consider fig. 1.7 again. In each bounce the initial conditions get thinned out,
yielding twice as many thin strips as at the previous bounce. The total area that
remains at a given time is the sum of the areas of the strips, so that the fraction
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of survivors after n bounces, or the survival probability is given by

. IMo| My - |[Moo| — [Mio|  [Mo1] | [Mi]
r, = + B + :
! MM PTOME T M) T M T M|

(n)
. 1
r, = — M, 1.2
o 2 (12)

where i is a label of the ith strip, |[M| is the initial area, and |[M;| is the area
of the ith strip of survivors. Since at each bounce one routinely loses about the
same fraction of trajectories, one expects the sum (1.2) to fall off exponentially
with n and tend to the limit

~

Doyt /Th =€ — e, (1.3)

The quantity ~ is called the escape rate from the repeller.

1.4 Periodic orbit theory

We shall now show that the escape rate y can be extracted from a highly conver-
gent eract expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for disk radius 1, center-center
separation 6, velocity 1, you answer that the continuous time escape rate is

roughly v = 0.4103384077693464893384613078192 . . ., you do not need this book.
If you have no clue, hang on.

1.4.1 Size of a partition

Not only do the periodic points keep track of locations and the ordering of the
strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal neigh-
borhood. Let

w(t) = f*(wo)
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denote the trajectory of an initial point 2o = x(0). To linear order, the evolution
of the distance to a neighboring trajectory z;(t) + dz;(t) is given by the Jacobian
matrix

8:6,‘ (t)

(51’1@) = Jt(l‘o)ijé.%'oj, Jt(l'o)ij = 3930' .
J

Evaluation of a cycle Jacobian matrix is a longish exercise - here we just state the
result. The Jacobian matrix describes the deformation of an infinitesimal neigh-
borhood of x(t) as it goes with the flow; its the eigenvectors and eigenvalues give
the directions and the corresponding rates of its expansion or contraction. The
trajectories that start out in an infinitesimal neighborhood are separated along
the unstable directions (those whose eigenvalues are less than unity in magni-
tude), approach each other along the stable directions (those whose eigenvalues
exceed unity in magnitude), and maintain their distance along the marginal direc-
tions (those whose eigenvalues equal unity in magnitude). In our game of pinball
after one traversal of the cycle p the beam of neighboring trajectories is defocused
in the unstable eigendirection by the factor A,, the expanding eigenvalue of the
2-dimensional surface of section return map Jacobian matrix J,,.

As the heights of the strips in fig. 1.7 are effectively constant, we can concen-
trate on their thickness. If the height is ~ L, then the area of the ith strip is
M; =~ Ll; for a strip of width ;.

Each strip 7 in fig. 1.7 contains a periodic point z;. The finer the intervals, the
smaller is the variation in flow across them, and the contribution from the strip
of width I; is well approximated by the contraction around the periodic point x;
within the interval,

li = ai/|Aql (1.4)

where A; is the unstable eigenvalue of the i’th periodic point (due to the low
dimensionality, the Jacobian can have at most one unstable eigenvalue.) Note
that it is the magnitude of this eigenvalue which is important and we can dis-
regard its sign. The prefactors a; reflect the overall size of the system and the
particular distribution of starting values of x. As the asymptotic trajectories are
strongly mixed by bouncing chaotically around the repeller, we expect them to
be insensitive to smooth variations in the initial distribution.

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors a; ~ O(1) are overwhelmed by the exponential growth

of A;, so we neglect them. If the hyperbolicity assumption is justified, we can
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replace |M;| ~ Ll; in (1.2) by 1/|A;| and consider the sum

(n)

(2

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

T(z) =Y Tpa". (1.5)

Recall that for large n the nth level sum (1.2) tends to the limit I';, — e™"7 so
the escape rate v is determined by the smallest z = ¢ for which (1.5) diverges:

T(z)~ Y (ze7)" = % (1.6)
n=1

This is the property of I'(z) which motivated its definition. We now devise an
alternate expression for (1.5) in terms of periodic orbits to make explicit the
connection between the escape rate and the periodic orbits:

00 (n)
Tz = Y ") 1A
n=1 7

. V4 + V4 + Z2 + 22 + Z2 + Z2
Aol |A1]  [Aool  [Ao1|  [Aso]  [Aqd]
ZS 3 23 ZS

z
+ + + + —+ ... 1.7
Novol ool " Thowl T TAxoo] (L7)

For sufficiently small z this sum is convergent. The escape rate 7 is now given E¥ sect. 7.2
by the leading pole of (1.7), rather than a numerical extrapolation of a sequence
of 7, extracted from (1.3).

We could now proceed to estimate the location of the leading singularity of
I'(z) from finite truncations of (1.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simple resummation
that converts this divergence into a zero of a related function.
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1.4.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Aj. A
prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of n, symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01
is not. By the chain rule for derivatives the stability of a cycle is the same
everywhere along the orbit, so each prime cycle of length n,, contributes n, terms
to the sum (1.7). Hence (1.7) can be rewritten as

> 2\ " nyt z
I = — = L t, = 1.
@) =2 m) <|Ap|> D s A A Tw (18)
p r=1 p

where the index p runs through all distinct prime cycles. Note that we have
resumed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n < n, approximation, but an asymptotic,
infinite time estimate based by approximating stabilities of all cycles by a finite
number of the shortest cycles and their repeats. The n,2"» factors in (1.8) suggest
rewriting the sum as a derivative

I(z) = fz% D In(l-t,).
p

Hence I'(z) is a logarithmic derivative of the infinite product

1/6(2) = H(l_tp)7 tp = |Ap| : (19)

p

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the choice of “zeta” in its definition as 1/{(z).
This is the prototype formula of the periodic orbit theory. The zero of 1/({(z) is
a pole of I'(z), and the problem of estimating the asymptotic escape rates from
finite n sums such as (1.2) is now reduced to a study of the zeros of the dynamical
zeta function (1.9). The escape rate is related by (1.6) to a divergence of I'(2),
and I'(z) diverges whenever 1/((z) has a zero.

1.4.3 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
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such as the Newton’s method searches for periodic solutions; we shall assume that
the numerics is under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped — including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result of such numerics is a table of the shortest cycles, their
periods and their stabilities.

Now expand the infinite product (1.9), grouping together the terms of the
same total symbol string length

1/¢ = (1 —to)(1—t1)(1 —t10)(1 —t100) -+
= 1 —tg—t1 — [tio — tito] — [(t100 — t10t0) + (t101 — t10t1)]
—[(t1000 — tot100) + (t1110 — tit110)
+(t1001 — t1toor — t1o1to + tiotot1)] — . .. (1.10)

The virtue of the expansion is that the sum of all terms of the same total length
n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.10), and obtain a polynomial approximation to 1/¢. We then vary z in (1.9)
and determine the escape rate y by finding the smallest z = ¢7 for which (1.10)
vanishes.

1.4.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the
dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively,
one can understand the convergence in terms of the geometrical picture sketched
in fig. 1.8; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

A typical term in (1.10) is a difference of a long cycle {ab} minus its shadowing
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approximation by shorter cycles {a} and {b}

Aab
AaAb

tab - tatb = tab(l - tatb/tab) = tab <1 - ’

> , (1.11)

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (¢, = 2™), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on,
so its itinerary is 2321. In terms of the bounce types shown in fig. 1.3, the
trajectory is alternating between 0 and 1. The incoming and outgoing angles
when it executes these bounces are very close to the corresponding angles for 0
and 1 cycles. Also the distances traversed between bounces are similar so that
the 2-cycle expanding eigenvalue Ag; is close in magnitude to the product of the
1-cycle eigenvalues AgA;.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s phase space in terms of cycle neighborhoods as
a tessellation of the dynamical system, with smooth flow approximated by its
periodic orbit skeleton, each “face” centered on a periodic point, and the scale of
the “face” determined by the linearization of the flow around the periodic point,
fig. 1.8.

The orbits that follow the same symbolic dynamics, such as {ab} and a
“pseudo orbit” {a}{b}, lie close to each other in the phase space; long shad-
owing pairs have to start out exponentially close to beat the exponential growth
in separation with time. If the weights associated with the orbits are multiplica-
tive along the flow (for example, by the chain rule for products of derivatives)
and the flow is smooth, the term in parenthesis in (1.11) falls off exponentially
with the cycle length, and therefore the curvature expansions are expected to be
highly convergent.

1.5 Evolution operators

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
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fixed paint

Figure 1.8: Approximation to (a) a smooth dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods. Indicated are segments of two 1-cycles and a
2-cycle that alternates between the neighborhoods of the two 1-cycles, shadowing first one
of the two 1-cycles, and then the other.

rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite phase space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
of the edge of a pinball table in fig. 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
within M at time ¢ is expected to decay exponentially

_ S dadyd(y — f'(x))

—~t
fM dr € .

I(#)

The integral over x starts a trajectory at every x € M. The integral over y tests
whether this trajectory is still in M at time ¢. The kernel of this integral

Lz, y) =6(z — f'(y)) (1.12)

is the Dirac delta function, as for a deterministic flow the initial point y maps
into a unique point x at time ¢. For discrete time, f™(z) is the nth iterate of the
map f. For continuous flows, f!(x) is the trajectory of the initial point z, and
it is appropriate to express the finite time kernel £! in terms of a generator of
infinitesimal time translations

ﬁt — €tA,
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Figure 1.9: The trace of an evolution operator is concentrated in tubes around prime
cycles, of length T}, and thickness 1/|A,|" for rth repeat of the prime cycle p.

very much in the way the quantum evolution is generated by the Hamiltonian H,
the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in case at hand, as 2"). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n — oo limit. Though a quick look at chaotic
dynamics might reveal it to be complex beyond belief, it is still generated by a
simple deterministic law, and with some luck and insight, our labeling of possible
motions will reflect this simplicity. If the rule that gets us from one level of the
classification hierarchy to the next does not depend strongly on the level, the
resulting hierarchy is approximately self-similar. We now turn such approximate
self-similarity to our advantage, by turning it into an operation, the action of the
evolution operator, whose iteration encodes the self-similarity.

1.5.1 Trace formula

Recasting dynamics in terms of evolution operators changes everything. So far our
formulation has been heuristic, but in the evolution operator formalism the escape
rate and any other dynamical average are given by exact formulas, extracted from
the spectra of evolution operators. The key tools are the trace formulas and the
spectral determinants.
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1.5. EVOLUTION OPERATORS 21

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.12) for £!(z,y) enables us to evaluate the trace. Identify y with z
and integrate x over the whole phase space. The result is an expression for tr £!
as a sum over neighborhoods of prime cycles p and their repetitions

tr £ = ZT Z ’det 1_JT)‘ . (1.13)

This formula has a simple geometrical interpretation sketched in fig. 1.9. After
the rth return to a Poincaré section, the initial tube M, has been stretched out
along the expanding eigendirections, with the overlap with the initial volume
given by 1/ |det (1 —J7)| — 1/[A,].

The “spiky” sum (1.13) is disquieting in the way reminiscent of the Pois-
son resummation formulas of Fourier analysis; the left-hand side is the smooth
eigenvalue sum tre? = S~ efet while the right-hand side equals zero everywhere
except for the set ¢ = rT,. A Laplace transform smoothes the sum over Dirac
delta functions in cycle periods and yields the trace formula for the eigenspectrum

S0, 81, - - - of the classical evolution operator:
o 1 =1
dte sttr £t = tr =
0 s—A Z_% 5 — Sq
ﬂAp sTp)

2.7 Z et (1) (L14)

The beauty of the trace formulas lies in the fact that everything on the right-
hand-side — prime cycles p, their periods 7T}, and the stability eigenvalues of J,, —
is an invariant property of the flow, independent of any coordinate choice.

1.5.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

Indet (s —A) = trin(s—A)
1

d
—Indet (s —A) = trs—A’

ds

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:
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dd (=21
Figure 1.10: Spectral determinant is preferable ‘( ' L;,

to the trace as it vanishes smoothly at the leading
eigenvalue, while the trace formula diverges.

& 1 e—sTpr
det (s —A) =exp | —  ——— 1.15
( ) p( zp:;r|det (1—J;)\> (1.15)

The s integration leads here to replacement 1), — T,,/rT, in the periodic orbit
expansion (1.14).

The motivation for recasting the eigenvalue problem in this form is sketched
in fig. 1.10; exponentiation improves analyticity and trades in a divergence of the
trace sum for a zero of the spectral determinant. The computation of the zeros
of det (s — A) proceeds very much like the computations of sect. 1.4.3.

1.6 From chaos to statistical mechanics

While the above replacement of dynamics of individual trajectories by evolution
operators which propagate densities might feel like just another bit of mathemat-
ical voodoo, actually something very radical has taken place. Consider a chaotic
flow, such as stirring of red and white paint by some deterministic machine. If
we were able to track individual trajectories, the fluid would forever remain a
striated combination of pure white and pure red; there would be no pink. What
is more, if we reversed stirring, we would return back to the perfect white/red
separation. However, we know that this cannot be true — in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Angstroms,
and the result is irreversibly pink.

Understanding the distinction between evolution of individual trajectories and
the evolution of the densities of trajectories is key to understanding statistical
mechanics — this is the conceptual basis of the second law of thermodynamics,
and the origin of irreversibility of the arrow of time for deterministic systems with
time-reversible equations of motion: reversibility is attainable for distributions
whose measure in the space of density functions goes exponentially to zero with
time.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but instead gain a very
effective description of the asymptotic trajectory densities. This will enable us,
for example, to give exact formulas for transport coefficients such as the diffusion
constants without any probabilistic assumptions (such as the stosszahlansatz of
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Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions
of “measure” and “averaging” to systems far from equilibrium, and transports
us into regions hitherto inaccessible with the tools of the equilibrium statistical
mechanics.

The results of the equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and
even “phase transitions”.

1.7 Semiclassical quantization

So far, so good — anyone can play a game of classical pinball, and a skilled neu-
roscientist can poke rat brains. But what happens quantum mechanically, that
is, if we scatter waves rather than point-like pinballs? Were the game of pin-
ball a closed system, quantum mechanically one would determine its stationary
eigenfunctions and eigenenergies. For open systems one seeks instead for com-
plex resonances, where the imaginary part of the eigenenergy describes the rate
at which the quantum wave function leaks out of the central multiple scattering
region. One of the pleasant surprises in the development of the theory of chaotic
dynamical systems was the discovery that the zeros of dynamical zeta function
(1.9) also yield excellent estimates of quantum resonances, with the quantum am-
plitude associated with a given cycle approximated semiclassically by the “square
root” of the classical weight (1.15)

1

= \/—A_C%Sp_iﬂmp/2 . (116)
P

tp

Here the phase is given by the Bohr-Sommerfeld action integral S, together
with an additional topological phase m,, the number of points on the periodic
trajectory where the naive semiclassical approximation fails us.

1.7.1 Quantization of helium

Now we are finally in position to accomplish something altogether remarkable;
we put together all ingredients that made the pinball unpredictable, and com-
pute a “chaotic” part of the helium spectrum to shocking accuracy. Poincaré
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Figure 1.11: A typical collinear helium trajectory
in the 71 — 75 plane; the trajectory enters along the
r1 axis and escapes to infinity along the ro axis. rn

taught us that from the classical dynamics point of view, helium is an example
of the dreaded and intractable 3-body problem. Undaunted, we forge ahead and
consider the collinear helium, with zero total angular momentum, and the two
electrons on the opposite sides of the nucleus.

++

We set the electron mass to 1, and the nucleus mass to oco. In these units the
helium nucleus has charge 2, the electrons have charge -1, and the Hamiltonian
is

9 2 2 1
T9 7’1+7‘2.

(1.17)

Due to the energy conservation, only three of the phase space coordinates (71, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (ry,rs),
r; > 0 quadrant, or, better still, by an appropriately chosen 2-d Poincaré section.

The motion in the (71, 72) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb po-
tential. The classical collinear helium is also a repeller; almost all of the classical
trajectories escape. Miraculously, the symbolic dynamics for the survivors again
turns out to be binary, just as in the 3-disk game of pinball, so we know what
cycles need to be computed for the cycle expansion (1.10). A set of shortest cycles
up to a given symbol string length then yields an estimate of the helium spectrum.

¥ chapter 23 This simple calculation yields surprisingly accurate eigenvalues; even though the
cycle expansion was based on the semiclassical approzimation (1.16) which is ex-
pected to be good only in the classical large energy limit, the eigenenergies are
good to 1% all the way down to the ground state.
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1.8 Guide to literature

But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

Gibbon

This text aims to bridge the gap between the physics and mathematics dynamical
systems literature. The intended audience is the dream graduate student, with
a theoretical bent. As a complementary presentation we recommend Gaspard’s
monograph [1] which covers much of the same ground in a highly readable and
scholarly manner.

As far as the prerequisites are concerned - this book is not an introduction
to nonlinear dynamics. Nonlinear science requires a one semester basic course
(advanced undergraduate or first year graduate). A good start is the textbook
by Strogatz [5], an introduction to flows, fixed points, manifolds, bifurcations. It
is probably the most accessible introduction to nonlinear dynamics - it starts out
with differential equations, and its broadly chosen examples and many exercises
make it favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [0] is preferable: an elegant introduction to maps,
chaos, period doubling, symbolic dynamics, fractals, dimensions - a good compan-
ion to this book. An introduction more comfortable to physicists is the textbook
by Ott [7], with baker’s map used to illustrate many key techniques in analysis
of chaotic systems. It is perhaps harder than the above two as the first book on
nonlinear dynamics.

The introductory course should give students skills in qualitative and nu-
merical analysis of dynamical systems for short times (trajectories, fixed points,
bifurcations) and familiarize them with Cantor sets and symbolic dynamics for
chaotic dynamics. With this, and graduate level exposure to statistical mechan-
ics, partial differential equations and quantum mechanics, the stage is set for
any of the one-semester advanced courses based on this book. The courses we
have taught start out with the introductory chapters on qualitative dynamics,
symbolic dynamics and flows, and than continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formu-
las, zeta functions, cycle expansions, Lyapunov exponents, billiards, transport
coefficients, thermodynamic formalism, period doubling, renormalization opera-
tors.

Spatiotemporal dynamical systems. Partial differential equations for
dissipative systems, weak amplitude expansions, normal forms, symmetries and
bifurcations, pseudospectral methods, spatiotemporal chaos.

Quantum chaology. Semiclassical propagators, density of states, trace for-
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mulas, semiclassical spectral determinants, billiards, semiclassical helium, diffrac-
tion, creeping, tunneling, higher A corrections.

This book does not discuss the random matrix theory approach to chaos in
quantal spectra; no randomness assumptions are made here, rather the goal is to
milk the deterministic chaotic dynamics for its full worth. The book concentrates
on the periodic orbit theory. The role of unstable periodic orbits was already fully
appreciated by Poincaré [3, 9], who noted that hidden in the apparent chaos is
a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths and self-
similar structure, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the mathematical work
on the theory of the classical and quantum dynamical systems ever since. We refer
the reader to the reprint selection [10] for an overview of some of that literature.

If you find this book not rigorous enough, you should turn to the mathe-
matics literature. The most extensive reference is the treatise by Katok and
Hasselblatt [11], an impressive compendium of modern dynamical systems the-
ory. The fundamental papers in this field, all still valuable reading, are Smale [12],
Bowen [13] and Sinai [I4]. Sinai’s paper is prescient and offers a vision and a
program that ties together dynamical systems and statistical mechanics. It is
written for readers versed in statistical mechanics. For a dynamical systems ex-
position, consult Anosov and Sinai[?]. Markov partitions were introduced by
Sinai in ref. [15]. The classical text (though certainly not an easy read) on the
subject of dynamical zeta functions is Ruelle’s Statistical Mechanics, Thermody-
namic Formalism [16]. In Ruelle’s monograph transfer operator technique (or the
“Perron-Frobenius theory”) and Smale’s theory of hyperbolic flows are applied to
zeta functions and correlation functions. The status of the theory from Ruelle’s
point of view is compactly summarized in his 1995 Pisa lectures [18]. Further
excellent mathematical references on thermodynamic formalism are Parry and
Pollicott’s monograph [19] with emphasis on the symbolic dynamics aspects of
the formalism, and Baladi’s clear and compact reviews of dynamical zeta func-
tions [20, 21].

A graduate level introduction to statistical mechanics from the dynamical
point view is given by Dorfman [22]; the Gaspard monograph [1] covers the same
ground in more depth. Driebe monograph [23] offers a nice introduction to the
problem of irreversibility in dynamics. The role of “chaos” in statistical mechanics
is critically dissected by Bricmont in his highly readable essay “Science of Chaos
or Chaos in Science?” [24].

A key prerequisite to developing any theory of “quantum chaos” is solid un-
derstanding of the Hamiltonian mechanics. For that, Arnold’s text [25] is the
essential reference. Ozorio de Almeida [20] is a nice introduction of the aspects
of Hamiltonian dynamics prerequisite to quantization of integrable and nearly
integrable systems, with emphasis on periodic orbits, normal forms, catastrophy
theory and torus quantization. The book by Brack and Bhaduri [27] is an excel-
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lent introduction to the semiclassical methods. Gutzwiller’s monograph [25] is an
advanced introduction focusing on chaotic dynamics both in classical Hamilto-
nian settings and in the semiclassical quantization. This book is worth browsing
through for its many insights and erudite comments on quantum and celestial
mechanics even if one is not working on problems of quantum chaology. Perhaps

more suitable as a graduate course text is Reichl’s presentation [29]. For an in-
troduction to “quantum chaos” that focuses on the random matrix theory the
reader can consult the monograph by Haake [30], among others.

If you were wandering while reading this introduction “what’s up with rat
brains?”, the answer is yes indeed, there is a line of research in study on neuronal
dynamics that focuses on possible unstable periodic states, described for example
in ref. [31].

Guide to exercises

God can afford to make mistakes. So can Dadal
Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. Some of the solutions provided might
be more illuminating than the main text. So as not to fragment the text, the
exercises are indicated by text margin boxes such as the one on this margin,
and collected at the end of each chapter. The problems that you should do have
underlined titles. The rest (smaller type) are optional. Difficult optional problems
are marked by any number of *** stars. By the end of the course you should have
completed at least three projects: (a) compute everything for a one-dimensional
repeller, (b) compute escape rate for a 3-disk game of pinball, (¢) compute a
part of the quantum 3-disk game of pinball, or the helium spectrum, or if you are
interested in statistical rather than the quantum mechanics, compute a transport
coefficient. The essential steps are:

e Dynamics

count prime cycles, exercise 1.1, exercise 10.1, exercise 10.4
pinball simulator, exercise 3.7, exercise 12.4

pinball stability, exercise 4.4, exercise 12.4

pinball periodic orbits, exercise 12.5, exercise 12.6

helium integrator, exercise 2.11, exercise 12.7

A M A

helium periodic orbits, exercise 23.4, exercise 12.8
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e Averaging, numerical

1. pinball escape rate, exercise 8.11

2. Lyapunov exponent, exercise 15.2
e Averaging, periodic orbits

. cycle expansions, exercise 13.1, exercise 13.2
. pinball escape rate, exercise 13.4, exercise 13.5
. cycle expansions for averages, exercise 13.1, exercise 14.3

. cycle expansions for diffusion, exercise 18.1

. desymmetrization exercise 17.1
. intermittency, phase transitions

1
2
3
4
5. pruning, Markov graphs
6
7
8. semiclassical quantization exercise 22.4
9

. ortho-, para-helium, lowest eigenenergies exercise 23.7

Solutions for some of the problems are included appendix K. Often going
through a solution is more instructive than reading the corresponding chapter.

Résumé

The goal of this text is an exposition of the best of all possible theories of deter-
ministic chaos, and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible phase space. Hence the theory focuses on
description of the geometry of the space of possible outcomes, and evaluation of
averages over this space, rather than attempting the impossible, precise predic-
tion of individual trajectories. The dynamics of distributions of trajectories is
described in terms of evolution operators. In the evolution operator formalism
the dynamical averages are given by exact formulas, extracted from the spectra
of evolution operators. The key tools are the trace formulas and the spectral
determinants.

The theory of evaluation of spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor in the sense
that any long orbit can approximately be pieced together from the nearby peri-
odic orbits of finite length. This notion is made precise by approximating orbits
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by prime cycles, and evaluating associated curvatures. A curvature measures the
deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off
for (almost) all curvatures. Cycle expansions offer then an efficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, that is the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping the a; prefactors in (1.4), we have
given up on any possibility of recovering the precise distribution of starting x
(which should anyhow be impossible due to the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior of
the system. The pleasant surprise of cycle expansions (1.9) is that the infinite
time behavior of an unstable system is as easy to determine as the short time
behavior.

To keep exposition simple we have here illustrated the utility of cycles and
their curvatures by a pinball game, but topics covered in this book — unstable
flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning, discrete
symmetries, periodic orbits, averaging over chaotic sets, evolution operators, dyn-
amical zeta functions, spectral determinants, cycle expansions, quantum trace
formulas and zeta functions, and so on to the semiclassical quantization of helium
— should give the reader some confidence in the general applicability of the theory.
The formalism should work for any average over any chaotic set which satisfies
two conditions:

1. the weight associated with the observable under consideration is multi-
plicative along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities character-
izing chaotic systems, such as the escape rates, Lyapunov exponents, transport
coefficients and quantum eigenvalues. One of the surprises is that the quantum
mechanics of classically chaotic systems is very much like the classical mechanics
of chaotic systems; both are described by nearly the same zeta functions and
cycle expansions, with the same dependence on the topology of the classical flow.
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Exercises

1.1  3-disk symbolic dynamics. As the periodic trajectories will turn
out to be the our main tool to breach deep into the realm of chaos, it pays to
start familiarizing oneself with them already now, by sketching and counting the
few shortest prime cycles (we return to this in sect. 11.4). Show that the 3-disk
pinball has 3 - 2" itineraries of length n. List periodic orbits of lengths 2, 3, 4, 5,
-+-. Verify that the shortest 3-disk prime cycles are 12, 13, 23, 123, 132, 1213,
1232, 1323, 12123, - --. Try to sketch them.

1.2 Sensitivity to initial conditions. Assume that two pinball trajectories

start out parallel, but separated by 1 Angstrom, and the disks are of radius
a = 1 cm and center-to-center separation R = 6 cm. Try to estimate in how
many bounces the separation will grow to the size of system (assuming that the
trajectories have been picked so they remain trapped for at least that long).
Estimate the Who’s Pinball Wizard’s typical score (number of bounces) in game
without cheating, by hook or crook (by the end of chapter 13 you should be in
position to make very accurate estimates).

1.3 Trace-log of a matrix. Prove that

det M = T InM

for arbitrary finite dimensional matrix M.
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Chapter 2

Flows

Poetry is what is lost in translation
Robert Frost

(R. Mainieri, P. Cvitanovi¢ and E.A. Spiegel)

We start out by a recapitulation of the basic notions of dynamics. Our aim is
narrow; keep the exposition focused on prerequsites to the applications to be
developed in this text. We assume that the reader is familiar with the dynamics
on the level of introductory texts mentioned in sect. 1.8, and concentrate here on
developing intuition about what a dynamical system can do. It will be a coarse
brush sketch - a full description of all possible behaviors of dynamical systems
is anyway beyond human ken. For a novice there is no shortcut through this
lengthy detour; a sophisticated traveler might prefer to skip this well trodden
territory, and embark upon the journey at chapter 5.

W fast track:
chapter 5, p. 97
2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We express our
observations as numbers and record how they change with time; given sufficiently
detailed information and understanding of the underlying natural laws, the fu-
ture behavior can be predicted. The motion of the planets against the celestial
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving among the fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions - latitudes
and longitudes - its future position could be predicted.

33
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For the solar system, the latitude and longitude in the celestial sphere are
enough to completly specify the planet’s motion. All possible values for positions
and velocities of the planets form the phase space of the system. More generally,
a state of a physical system at a given instant in time can be represented by a
single point in an abstract space called state space or phase space M. As the
system changes, so does the representative point in phase space. We refer to the
evolution of such points as dynamics, and the function f! which specifies where
the representative point is at time ¢t as the evolution rule.

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system
the evolution rule takes one point of the phase space and maps it into another
point. Not two or three, but exactly one. This is not always possible. For ex-
ample, knowing the temperature today is not enough to predict the temperature
tommorrow; or knowing the value of a stock market index today will not deter-
mine its value tommorrow. The phase space can be enlarged, in the hope that
in a sufficently large phase space it is possible to determine an evolution rule,
so we imagine that knowing the state of the atmosphere measured over many
points over the entire planet should be sufficient to determine the temperature
tommorrow. Even that is not quite true, and we are less hopeful when it comes
to a stock index.

For a deterministic system almost every point has a unique future, so tra-
jectories cannot intersect. We say “almost” because there might exist a set of
measure zero (tips of wedges, cusps, etc.) for which a trajectory is not defined.
We may think such sets a nuisance, but it is quite the contrary - will enable us
to partition phase space so that the dynamics can be better understood.

Locally the phase space M is RY, meaning that d numbers are sufficient
to determine what will happen next. Globally it may be a more complicated
manifold formed by patching together several pieces of R?, forming a torus, a
cylinder, or some other manifold. When we need to stress that the dimension
d of M is greater than one, we may refer to the point x € M as x; where
i=1,2,3,...,d. The evolution rule or dynamics f' : M — M that tells where
a point x is in M after a time interval ¢. The pair (M, f) is called a dynamical
system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f(¢,x) to
remind us that f is really a function of two variables: time interval and point of
phase space. Notice that time is not absolute, only the time interval is necessary.
This is because a point in phase space completely determines all future evolution
and it is not necessary to know anything else. The time parameter can be a real
variable (¢ € R), in which case the evolution is called a flow, or an integer (¢t € Z),
in which case the evolution advances in discrete steps in time, given by iteration
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(a)

Figure 2.1: (a) A trajectory traced out by the evolution rule ff. Starting from the phase
space point z, after a time ¢, the point is at f(z). (b) The evolution rule ffcan be used to
map a region M; of the phase space into f!(M;).

of a map.

Nature provides us with inumerable dynamical systems. They manifest them-
selves through their trajectories: given an initial point xg, the evolution rule
traces out a sequence of points z(t) = f(z¢), the trajectory through the point
zo = z(0). Because f! is a single-valued function, any point of the trajectory & 21
can be used to label the trajectory. We can speak of the trajectory starting at zg, ©nP- 52
or of the trajectory passing through a point y = f(zg). For flows the trajectory
of a point is a continuous curve; for a map, a sequence of points. By extension,
we can also talk of the evolution of a region M; of the phase space: just apply
ft to every point in M; to obtain a new region ft(M,), as in fig. 2.1.

What are the possible trajectories? This is a grand question, and there are
many answers, chapters to follow offering some. Here we shall classify possible
trajectories as:

stationary: fi(z) =z for all ¢
periodic:  fi(x) = fi*Tr(x) for a given minimum period 7T,
aperiodic:  ft(x) # f¥ (x) for all t £t .

The ancients no less than the contemporary field theorists tried to make
sense of all dynamics in terms of periodic motions; epicycles, integrable systems.
Embarassing truth is that for a generic dynamical systems most motions are
aperiodic. We will break aperiodic motions up into two types: those that wander
off and those that keep coming back.

A point x € M is called a wandering point if there exists an open neighbor-
hood My of x to which the trajectory never returns

i) N Mo =0 for all ¢ > tn . (2.1)

In physics literature the dynamics of such state is often referred to as transient.
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A periodic trajectory is an example of a trajectory that returns exactly to the
initial point in a finite time; however, periodic trajectories are a very small subset
of the phase space, in the same sense that rationals are a set of zero measure on
the unit interval. For times much longer than a typical “turnover” time it makes
sense to relax the notion of exact periodicity, and replace it by the notion of
recurrence. A point is recurrent or non-wandering if for any open neighborhood
My of x and any time t,,;, there exists a later time ¢ such that

filzyn Mo # 0. (2.2)

In other words, the trajectory of a non-wandering point reenters the neighborhood
My infinitely often. We shall denote by 2 the non-wandering set of f, that is the
union of all the non-wandering points of M. The set {2, the non—wandering set
of f, is the key to understanding the long-time behavior of a dynamical system:;
all calculations undertaken here will be carried out on non—wandering sets.

So much about individual trajectories. What about clouds of initial points?

If there exists a connected phase space volume that maps into itself under the for-
ward evolution (by the method of Lyapunov functionals, or any other method),
the flow is globally contracting onto a subset of M that we shall refer to as the at-
tractor. The attractor may be unique, or there can coexist any number of distinct
attracting sets, each with its own basin of attraction, the set of points that fall
into the attractor under foward evolution. The attractor can be a fixed point, a
periodic orbit, aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic reccurent attractor to which we shall refer loosely
as a strange attractor. We say loosely, as it will soon become apparent that
diagnosing and proving existence of a genuine, card carrying strange attractor is
a tricky undertaking.

Conversely, if we can enclose the non—wandering set () by a connected phase
space volume Mg and then show that almost all points within Mg but not in
Q eventually exit Mg, we refer to the non—wandering set 2 as a repeller. An
example of repeller is not hard to come by - the pinball game of sect. 1.3 is a
simple chaotic repeller.

It would seem that having said that the periodic points are too exceptional,
and that almost all non-wandering points are aperiodic, we have given up the
ancients’ fixation on periodic motions. Not so. As longer and longer cycles
approximate more and more accurately finite segments of aperiodic trajectories,
we shall establish control over the non—wandering set by defining them as the
closure of the union of all periodic points.

Before we can work out an example of a non—wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows into a little
more detail.
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2.2 Flows

A flow is a continuous-time dynamical system. The evolution rule f* is a family
of mappings of M — M parameterized by ¢t € R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

(a) fO(z) == (in O time there is no motion)
(b) fH(fY(x)) = fi*(x)  (the evolution law is the same at all times)

(c) the mapping (z,t) — ft(z) from M x R into M is continuous.

The family of mappings f!(x) thus forms a continuous (forward semi-) group.
It may fail to form a group if the dynamics is not reversible and the rule f!(z)
cannot be used to rerun the dynamics backwards in time, with negative ¢; with no
reversibility, we cannot define the inverse f~!(f*(z)) = f°(x) = z, and thus the
family of mappings f!(x) does not form a group. In exceedingly many situations
of interest - for times beyond the Lyapunov time, for asymptotic attractors, for
infinite dimensional systems, for systems with noise, for non-invertible maps -
time reversal is not an option, hence the circumspect emphasis on semigroups.
On the other hand, there are many settings of physical interest where dynamics
is reversible (such as finite-dimensional Hamiltonian flows), and where the family
of evolution maps f! does form a group.

For infinitesimal times flows can be defined by differential equations. Write a
trajectory as

a(t+7) = [ (w0) = f(7, f(t,20)) (2.3)
and compute the 7 derivative

) Y| =), (24)

dr =0 7=0
x(t), the time derivative of a trajectory at point x(t), can be expressed as the
time derivative of the evolution rule, a vector evaluated at the same point. By

considering all possible trajectories, we obtain the vector 9, f%(z) at any point
x € M and define a vector field

0
v(z) = %(az) (2.5)
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Figure 2.2: (a) The two-dimensional vector field for the Duffing system (2.7), together
with a short trajectory segment. The vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of phase space M, but they belong to a different space, the tangent
bundle TM. (b) The flow lines. Each “comet” represents the same time interval of a
trajectory, starting at the tail and ending at the head. The longer the comet, the faster the

flow in that region.

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar proce-
dures for obtaining a set of differential equations for the vector field v(z) that
describes the evolution of a mechanical system. An equation that is second or
higher order in time can always be rewritten as a set of first order equations.
Here we are concerned with a much larger world of general flows, mechanical or
not, all defined by a time independent vector field

(1) = v(x(t)). (2.6)

At each point of the phase space there is a vector that gives the direction in which
the orbit will evolve. As a concrete example, consider the two-dimensional vector
field for the Duffing system

o(t) = y()
g(t) = 0.15y(t) —z(t) + z(2)* (2.7)

plotted in two ways in fig. 2.2. The length of the vector is proportional to the
speed of the point, and its direction and length changes from point to point.
When the phase space is a manifold more complicated than R%, one can no
longer think of the vector field as being embedded in phase space. Instead, we
have to imagine that each point x of phase space has a different tangent plane
T M, attached to it, and even if these planes seem to cross when they are drawn
on a piece of paper, they do not. The vector field lives in the union of all these
tangent planes, a space called the tangent bundle T M.

If  w(zg) =0, (2.8)
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xq is an equilibrium point (often referred to as a stationary, fized, or stagnation
point) and the trajectory remains forever stuck at x,. Otherwise the trajectory
is obtained by integrating the equations (2.6):

a:(t):ft(mo):xo—i—/o dro@(r),  2(0) = 0. (2.9)

We shall consider here only the autonomous or stationary flows, that is flows for
which the velocity field v; is not explicitely dependent on time. If you insist on
studying a non-autonomous system

d
ﬁ =w(y,7), (2.10)

we can always convert it into a system where time does not appear explicitly. To
do so, extend the phase space to (d + 1)-dimensional = {y,7} and the vector
field to

o(@) = [ A ] . (2.11)

The new flow & = v(x) is autonomous, and the trajectory y(7) can be read off
x(t) by ignoring the last component of x.

2.2.1 A flow with a strange attractor

There is no beauty without some strangeness
William Blake

A concrete example of an autonomous flow is the Rassler system

T = —y—2z
= rt+ay
= b+z(z—0c), a=b=0.2, c=57. (2.12)

The system is as simple as they get - it would be linear were it not for the sole
quadratic term zz. Even for so simple a system, the nature of long-time solutions
is far from obvious. Close to the origin there is a repelling equilibrium point, but
to see what other solutions look like we need to resort to numerical integration.

A typical numerically integrated long-time trajectory is sketched in fig. 2.3.
As we shall show in sect. 4.1, for this flow any finite volume of initial conditions
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Figure 2.3: A trajectory of the Rossler flow at
time ¢ = 250.  (G. Simon)

shrinks with time, so the flow is contracting.  All trajectories seem to converge
to a strange attractor. We say “seem”, as there exist no proof that this attractor
is strange. For now, accept that fig. 2.3 and similar figures in what follows are
examples of “strange attractors”.

You might think that this strangeness has to do with contracting flows only.
Not at all - we chose this example as it is easier to visualise aperiodic dynamics
when the flow is contracting onto a lower-dimensional attracting set. As the next
example we take a flow that preserves phase space volumes.

2.2.2 A Hamiltonian flow

An important class of dynamical systems are the Hamiltonian flows, given by a
time-independent Hamiltonian H (g, p) together with the Hamilton’s equations of
motion

oH oH
'i — 3 'i - - 5 21
6= 5 P 94, (2.13)

with the 2D phase space coordinates x split into the configuration space coor-
dinates and the conjugate momenta of a Hamiltonian system with D degrees of
freedom:

m:(paq)a q:(Q1aQQ7"'aQD)7 p:(plap%'-'»pD)' (214)

In chapter 23 we shall apply the periodic orbit theory to the quantization of
helium. In particular, we will study collinear helium, a doubly charged nucleus
with two electrons arranged on a line, an electron on each side of the nucleus.
The Hamiltonian for this system is
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Figure 2.4: A typical colinear helium trajectory
in the 1 — 5 plane; the trajectory enters here along
the r1 axis and then, like almost every other trajec-
tory, after a few bounces escapes to infinity, in this
case along the r, axis. r

1 1 2 2 1
H:§p%+ ; +

(2.15)

2 2 7 2 7"1—|—’l“2.

The collinear helium has 2 degrees of freedom, thus a 4-dimensional phase space
M, which the energy conservation reduces to 3 dimensions. The dynamics can
be visualized as a motion in the (r1,r2), r; > 0 quadrant, fig. 2.4. It looks messy,
and indeed it will turn out to be no less chaotic than a pinball bouncing between
three disks.

W fast track:
chapter 2.4, p. 44
2.3 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given prob-
lem, one may stretch, rotate, bend and mix the coordinates, but in doing so, the
vector field will also change. The vector field lives in a (hyper)plane tangent to
phase space and changing the coordinates of phase space affects the coordinates
of the tangent space as well.

We shall denote by h the conjugation function which maps the coordinates of
the initial phase space manifold M into the reparametrized phase space manifold
M’ with a point x € M related to a point y € M’ by y = h(z). The change of
coordinates must be one-to-one and span both M and M’ so given any point y
we can go back to 2 = h™!(y). As we interested in representing smooth flows, the
reparametrized dynamics should support the same number of derivatives as the
initial one. Ideally h is a (piece-wise) analytic function, in which case we refer to
h as a smooth conjugacy.

The evolution rule g‘(yo) on the manifold M’ can be computed from the
evolution rule f!(zo) on M and the coordinate change h. Take a point on M/,
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go back to M, evolve, and then return to M’:

y(t) = g'(yo) = ho floh™L(yp). (2.16)

The vector field v(x) locally tangent the flow f!, found by differentiation
(2.5), defines the flow & = v(z) in M. The vector field w(y) tangent to g* which
describes the flow y = w(y) in M’ follows by differentiation and application of
the chain rule:

a¢° 0 _
wly) = F-(0)= ho flonT\(y)
y,t=0

= W (A y))(h™H(y)) = K (z)v(z).

(2.17)

The change of coordinates has to be a smooth one-to-one function, with h pre-
serving the topology of the flow, or the manipulations we just carried out would
not hold. Trajectories that are closed loops in M will remain closed loops in the
new manifold M’, and so on.

Imagine the phase space made out of a rubber sheet with the vector field
drawn on it. A coordinate change corresponds to pulling and tugging on the
rubber sheet. Globally h deforms the rubber sheet M into M’ in a highly non-
linear manner, but locally it simply rescales and deforms the tangent field by
0;hj, hence the simple transformation law (2.17) for the velocity fields. However,
we do need to insist on (sufficient) smoothness of A in order to preclude violent
and irreversible acts such as cutting, glueing, or self-intersections of the distorted
rubber sheet. Time itself is but one possible parametrization of the points along a
trajectory, and it can also be redefined, s = s(t), with the attendent modification
of (2.17).

What we really care about is pinning down an invariant notion of what a
given dynamical system is. The totality of smooth one-to-one nonlinear coordi-
nate transformations A which map all trajectories of a given dynamical system
(M, ft) onto all trajectories of dynamical systems (M’, g*) gives us a huge equiv-
alence class, much larger than the equivalence classes familiar from the theory
of linear group transformations, such as the rotation group O(d) or the Galilean
group of all rotations and translations in R?. In the theory of Lie groups, the full
invariant specification of an object is given by a finite set of Casimir invariants.
What a good full set of invariants for a group of general nonlinear smooth conju-
gacies might be is not known, but the set of all periodic orbits and their stability
eigenvalues will turn out to be a good start.

/chapter/flows.tex 4apr2002 printed June 19, 2002



2.3. CHANGING COORDINATES 43
2.3.1 Rectification of flows

A profitable way to exploit invariance is to use it to pick out the simplest possi-
ble representative of an equivalence class. In general and globally these are just
words, as we have no clue how to pick such “canonical” representative, but for
smooth flows we can always do it localy and for sufficiently short time, by appeal-
ing to the rectification theorem, a fundamental theorem of ordinary differential
equations. The theorem assures us that there exists a solution (at least for a
short time interval) and what the solution looks like. The rectification theorem
holds in the neighborhood of points of the vector field v(z) that are not singular,
that is, everywhere except for the equilibrium points z, for which v(z,) = 0.
According to the theorem, in a small neighborhood of a non-singular point there
exists a change of coordinates y = h(x) such that & = v(z) in the new coordinates
takes the standard form

y1=1
y2:y3:...:yd:07 (2.18)

with unit velocity flow along y;, and no flow along any of the remaining directions.

2.3.2 Harmonic oscillator, rectified

As a simple example of global rectification of a flow consider the harmonic oscil-
lator

g= p, p=—q. (2.19)

The trajectories z(t) = (p(t), q(t)) just go around the origin, so a fair guess is that
the system would have a simpler representation in polar coordinates y = (r, 6):

—1
~1.) ¢ = h{(r,0) = rcosb
ot { p = hy'(r,0) = rsinf - (2.20)

The Jacobian matrix of the transformation is

cos 0 sin 6
h' = sinf  cosf (2.21)

r r
resulting in (2.17)
F=0, f=-1. (2.22)
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In the new coordinates the radial coordinate r is constant, and the angular co-
ordinate # wraps around a cylinder with constant angular velocity. There is a
subtle point in this change of coordinates: the domain of the map A~! is not the
the whole plane R?, but rather the whole plane minus the origin. We had mapped
a plane into a cylinder, and coordinate transformations should not change the
topology of the space in which the dynamics takes place; the coordinate trans-
formation is not defined on the stationary point x = (0,0), or r = 0.

2.3.3 Colinear helium, regularized

Though very simple in form, the Hamiltonian (2.15) is not the most convenient for
numerical investigations of the system. In the (r1,72) coordinates the potential
is singular for r; — 0 nucleus-electron collisions, with velocity diverging to oc.
These 2-body collisions can be regularized by a rescaling of the time and the
coordinates (r1,r2,p1,p2) — (Q1,Q2, P1,P), in a manner to be described in
chapter 23. For the purpose at hand it is sufficient to state the result: In the
rescaled coordinates the equations of motion are

. 2 2 .
P =20, [2—%—@% <1+@)]; O =Lpo2

R4 4
. 2 2 .
Py =2Qs [2 —~ %1 —- Q3 <1 %)] ; Q2 = iPQQ%. (2.23)

where R = (Q?+Q3)'/2. These equations look harder to tackle than the harmonic
oscillators that you are familiar with from other learned treatises, and indeed they
are. But they are also a typical example of kinds of flows that one works with in
practice, and the skill required in finding a good re-coordinatization h(x).

a in depth:
i chapter 23, p. 529
2.4 Computing trajectories

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Stated tersely, you need to implement
some finite time step prescription for integration of the equations of motion (2.6).
The simplest is the Euler integrator which advances the trajectory by §7xvelocity
at each time step:

x; — x; + d1vi(T) . (2.24)
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This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equa-
tions numerically using sophisticated numerical tools, such as pseudo-spectral
methods or implicit methods. If a “sophisticated” integration routine takes
days and gobbles up terabits of memory, you are using brain-damaged high level
software. Try writing a few lines of your own Runge-Kuta code in some mundane
everyday language. While you absolutely need to master the requisite numerical
methods, this in not the time or place to expand on them; how you learn them
is your business.

And if you have developed some nice routines for solving problems in this text
or can point another students to some, let us know.

W fast track:
chapter 3, p. 57
2.5 Infinite-dimensional flows

J" Flows described by partial differential equations are considered infinite
dimensional because if one writes them down as a set of ordinary differential
equations (ODE) then one needs an infinity of the ordinary kind to represent the
dynamics of one equation of the partial kind (PDE). Even though the phase space
is infinite dimensional, for many systems of physical interest the global attractor
is finite dimensional. We illustrate how this works with a concrete example, the
Kuramoto-Sivashinsky system.

2.5.1 Partial differential equations

First, a few words about partial differential equations in general. Many of the
partial differential equations of mathematical physics can be written in the quasi-
linear form

Ou = Au+ N(u), (2.25)

where u is a function (possibly a vector function) of the coordinate z and time ¢, A
is a linear operator, usually containing the Laplacian and a few other derivatives
of u, and N(u) is the nonlinear part of the equation (terms like udyu in (2.31)
below).
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Not all equations are stated in the form (2.25), but they can easily be so
transformed, just as the ordinary differential equations can be rewritten as first-
order systems. We will illustrate the method with a variant of the D’Alambert’s
wave equation describing a plucked string:

1
Oy = (C + 2 (azy)2> Orzy (2-26)

Were the term 0,y small, this equation would be just the ordinary wave equation.
To rewrite the equation in the first order form (2.25), we need a field u = (y, w)
that is two-dimensional,

o8] =L o[ 4]+ o] 27

The [2x2] matrix is the linear operator A and the vector on the far right is
the nonlinear function N(u). Unlike ordinary functions, differentiations are part
of the function. The nonlinear part can also be expressed as a function on the
infinite set of numbers that represent the field, as we shall see in the Kuramoto-
Sivashinsky example (2.31).

The usual technique for solving the linear part is to use Fourier methods. Just
as in the ordinary differential equation case, one can integrate the linear part of

Ou = Au (2.28)
to obtain
u(z,t) = eu(z,0) (2.29)

If u is expressed as Fourier series ), aj exp(ikx), as we will do for the Kuramoto-
Shivashinsky system, then we can determine the action of e!* on u(z,0). This
can be done because differentiations in A act rather simply on the exponentials.
For example,

. TALEY
ey (x,0) = et Zakelkx = g ag (Zk? etk (2.30)
k k '

Depending on the behavior of the linear part, one distinguishes three classes of
partial differential equations: diffusion, wave, and potential. The classification
relies on the solution by a Fourier series, as in (2.29). In mathematical literature
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these equations are also called parabolic, hyperbolic and elliptic. If the nonlinear
part N(u) is as big as the linear part, the classification is not a good indication of
behavior, and one can encounter features of one class of equations while studying
the others.

In diffusion-type equations the modes of high frequency tend to become smooth,
and all initial conditions tend to an attractor, called the inertial manifold. The
Kuramoto-Sivashinsky system studied below is of this type. The solution being
attracted to the inertial manifold does not mean that the amplitudes of all but
a finite number of modes go to zero (alas were we so lucky), but that there is
a finite set of modes that could be used to describe any solution of the inertial
manifold. The only catch is that there is no simple way to discover what these
inertial manifold modes might be.

In wave-like equations the high frequency modes do not die out and the solu-
tions tend to be distributions. The equations can be solved by variations on the EF chapter 21
WKB idea: the wave-like equations can be approximated by the trajectories of

the wave fronts. 2.12
on p. 56

Elliptic equations have no time dependence and do not represent dynamical
systems.

2.5.2 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
W. Shakespeare, Romeo and Julliet, act I, scene 1

The Kuramoto-Sivashinsky equation, arising in description of the flame front flut-
ter of gas burning in a cylindrically symmetric burner on your kitchen stove and
many other problems of greater import, is one of the simplest partial differential
equations that exhibit chaos. It is a dynamical system extended in one spatial
dimension, defined by

U = (u2)a7 — Upy — Vlgprs - (2.31)

In this equation ¢ > 0 is the time and x € [0, 27| is the space coordinate. The
subscripts x and ¢ denote the partial derivatives with respect to x and t; u; =
du/dt, ugz., stands for 4th spatial derivative of the “height of the flame front”
(or perhaps “velocity of the flame front”) u = u(x,t) at position z and time ¢.
v is a “viscosity” parameter; its role is to suppress solutions with fast spatial
variations. The term (u?), makes this a nonlinear system. It is the simplest
conceivable PDE nonlinearity, playing the role in applied mathematics analogous
to the role that the 22 nonlinearity (3.11) plays in the dynamics of iterated
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mappings. Time evolution of a solution of the Kuramoto-Sivashinsky system is
illustrated by fig. 2.5. How are such solutions computed? The salient feature
of such partial differential equations is that for any finite value of the phase-
space contraction parameter v a theorem says that the asymptotic dynamics is
describable by a finite set of “inertial manifold” ordinary differential equations.

The “flame front” u(x,t) = u(x + 27, t) is periodic on the x € [0, 27| interval,
so a reasonable strategy (but by no means the only one) is to expand it in a
discrete spatial Fourier series:

+00
u(z,t) = Y by(t)e™ . (2.32)

k=—o0

Since u(z,t) is real, by = b*, . Substituting (2.32) into (2.31) yields the infinite
ladder of evolution equations for the Fourier coefficients by:

by = (K* — vk )by + ik > bmbr—m . (2.33)

m=—0o0

As by = 0, the solution integrated over space is constant in time. In what follows
we shall consider only the cases where this average is zero, by = [ dzu(z,t) = 0.

Coefficients by are in general complex functions of time t. We can simplify
the system (2.33) further by considering the case of by pure imaginary, by = ia,
where a; are real, with the evolution equations

o0
ar, = (k* — vkMay, — k Z Ay U—m, - (2.34)
m=—o0
This picks out the subspace of odd solutions u(x,t) = —u(—=z,t), so a_ = —ag.

That is the infinite set of ordinary differential equations promised at the
beginning of the section.

The trivial solution u(z,t) = 0 is an equilibrium point of (2.31), but that
is basically all we know as far as analytical solutions are concerned. You can
integrate numerically the Fourier modes (2.34), truncating the ladder of equations
to a finite number of modes N, that is, set ary = 0 for £ > N. In applied
mathematics literature this is called a Galerkin truncation. For parameter
values explored below, N < 16 truncations were deemed sufficiently accurate.
If your integration routine takes days and lots of memory, you should probably
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2.5. INFINITE-DIMENSIONAL FLOWS 49

Figure 2.5: Spatiotemporally periodic solution
uo(x,t). We have divided « by 7 and plotted only 0
the x > 0 part, since we work in the subspace

of the odd solutions, u(z,t) = —u(—z,t). N = 4
16 Fourier modes truncation with ¥ = 0.029910.
(From ref. [6])

start from scratch and write a few lines of your own Runge-Kuta code.

Once the trajectory is computed in the Fourier space, we can recover and plot
the corresponding spatiotemporal pattern u(x,t) over the configuration space
using (2.32), as in fig. 2.5.

2.5.3 Fourier modes truncations

The growth of the unstable long wavelengths (low |k|) excites the short wave-
lengths through the nonlinear term in (2.34). The excitations thus transferred
are dissipated by the strongly damped short wavelengths, and a sort of “chaotic
equilibrium” can emerge. The very short wavelengths |k| > 1/,/v will remain
small for all times, but the intermediate wavelengths of order |k| ~ 1/1/v will play
an important role in maintaining the dynamical equilibrium. Hence, while one
may truncate the high modes in the expansion (2.34), care has to be exercised to
ensure that no modes essential to the dynamics are chopped away. In practice one
does this by repeating the same calculation at different truncation cutoffs N, and
making sure that inclusion of additional modes has no effect within the accuracy
desired. For figures given here, the numerical calculations were performed taking
N = 16 and the damping parameter value v = 0.029910, for which the system is
chaotic (as far as we can determine that numerically).

The problem with such high dimensional truncations of the infinite tower
of equations (2.34) is that the dynamics is difficult to visualize. The best we S sect.3.1.2
can do without much programming (thinking is extra price) is to examine the
trajectory’s projections onto any three axes a;, a;, a, as in fig. 2.6.

We can now start to understand the remark on page 37 that for infinite
dimensional systems time reversability is not an option: evolution forward in time
strongly damps the higher Fourier modes. But if we reverse the time, the infinity
of high modes that contract strongly forward in time now explodes, rendering
evolution backward in time meaningless.
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Figure 2.6: Projections of a typical 16-dimensional trajectory onto different 3-dimensional
subspaces, coordinates (a) {a1,as2,as}, (b) {a1,a2,a4}. N = 16 Fourier modes truncation

with v = 0.029910. (From ref. [6].)

Commentary

Remark 2.1 Ro&ssler, Kuramoto-Shivashinsky, and PDE systems. Réssler

system was introduced in ref. [2], as a simplified set of equations describing
time evolution of concentrations of chemical reagents. The Duffing system
(2.7) arises in study of electronic circuits.The theorem on finite dimenional-
ity of inertial manifolds of phase-space contracting PDE flows is proven in
ref. [3]. The Kuramoto-Sivashinsky equation was introduced in ref. [1, 5];
sect. 2.5 is based on V. Putkaradze’s term project paper (see www.nbi.dk/-
ChaosBook/extras/), and Christiansen et al. [6]. How good description of a
flame front this equation is need not concern us here; suffice it to say that
such model amplitude equations for interfacial instabilities arise in a variety
of contexts - see e.g. ref. [7] - and this one is perhaps the simplest physically
interesting spatially extended nonlinear system.

Résumé

A dynamical system — a flow, a return map constructed from a Poincaré section
of the flow, or an iterated map — is defined by specifying a pair (M, f), where
M is a space and f : M — M. The key concepts in exploration of the long
time dynamics are the notions of recurrence and of the non—wandering set of f,
the union of all the non-wandering points of M. In more visual terms, chaotic
dynamics with a low dimensional attractor can be thought of as a succession of
nearly periodic but unstable motions.

Similarly, turbulence in spatially extended systems can be described in terms
of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given spa-
tially extended system through a repertoire of unstable patterns; as we watch a
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turbulent system evolve, every so often we catch a glimpse of a familiar pattern.
For any finite spatial resolution and finite time the system follows approximately
a pattern belonging to a finite alphabet of admissible patterns, and the long term
dynamics can be thought of as a walk through the space of such patterns.
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Exercises

2.1 Trajectories do not intersect. A trajectory in the phase space M is the set
of points one gets by evolving x € M forwards and backwards in time:

Co={yeM: fl(z) =y for t € R}.

Show that if two trajectories intersect, then they are the same curve.

2.2 Evolution as a group.  The trajectory evolution f! is a one-parameter group
where

ftJrs — ft ofS.

Show that it is a commutative group.

In this case, the commutative character of the group of evolution functions comes
from the commutative character of the time parameter under addition. Can you see any
other group replacing time?

2.3 Almost ODE’s.

(a) Consider the point z on R evolving according # = e? . Is this an ordinary differential
equation?

(b) Is & = xz(x(t)) an ordinary differential equation?

(c) What about & = x(t+1)?

2.4  All equilibrium points are fixed points. Show that a point of a vector
field v where the velocity is zero is a fixed point of the dynamics f?.
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2.5 Gradient systems.  Gradient systems are a simple dynamical systems where
the velocity field is given by the gradient of an auxiliary function ¢

T =—-Vo(x).
z is a vector in R?, and ¢ a function from that space to the reals R.

(a) Show that the velocity of the particle is in the direction of most rapid decrease of
the function ¢.

(b) Show that all extrema of ¢ are fixed points of the flow.

(c) Show that it takes an infinite amount of time for the system to reach an equilibrium
point.

(d) Show that there are no periodic orbits in gradient systems.

2.6 Coordinate transformations.  Changing coordinates is conceptually simple,
but can become confusing when carried out in detail. The difficulty arises from confusing
functional relationships, such as x(t) = h=1(y(¢)) with numerical relationships, such as
w(y) = h'(x)v(x). Working through an example will clear this up.

(a) The differential equation in the M space is & = {2x1,22} and the change of
coordinates from M to M’ is h(z1, x2) = {221 + x2, 21 — x2}. Solve for z(¢). Find
hL.

(b) Show that in the transformed space M’, the differential equation is

d | L1 5y1 + 2y
@ == ) 2.
dt[yz} 3{ Y1+ 4y2 (2.35)

Solve this system. Does it match the solution in the M space?

2.7 Linearization for maps. Let f: C' — C be a map from the complex numbers
into themselves, with a fixed point at the origin and analytic there. By manipulating
power series, find the first few terms of the map h that conjugates f to az, that is,

f(z) = h™ (ah(2)).

There are conditions on the derivative of f at the origin to assure that the conjugation
is always possible. Can you formulate these conditions by examining the series?

(difficulty: medium)
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2.8 Runge-Kutta integration. Implement the fourth-order Runge-Kutta
integration formula (see, for example, ref. [8]) for # = v(z):

ki  ka ks kg

Tntl = I’n‘FE‘FE—FE—FF—FO((STS)
ki = drv(zy), ko = 6Tv(xp + k1/2)
ks = dtv(rn +k2/2), ka=dTv(T) + K3) (2.36)

or some other numerical integration routine.

2.9 Réossler system. Use the result of exercise 2.8 or some other integration
routine to integrate numerically the Rossler system (2.12). Does the result look
like a “strange attractor”?

2.10 Can you integrate me? Integrating equations numerically is not for the faint
of heart. It is not always possible to establish that a set of nonlinear ordinary differential
equations has a solution for all times and there are many cases were the solution only
exists for a limited time interval, as, for example, for the equation & = 2, z(0)=1.

(a) For what times do solutions of
& = x(x(t))
exist? Do you need numerical routine to answer this question?

(b) Let’s test the integrator you wrote in exercise 2.8. The equation & = —z with
initial conditions z(0) = 2 and & = 0 has as solution z(t) = e~f(1+¢2?). Can your
integrator reproduce this solution for the interval ¢ € [0,10]? Check you solution
by plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The equation is going to be third order
T 4062 +&—|z|+1=0,

which can be checked - numerically - to be chaotic. As initial conditions we will
always use #(0) = #(0) = x(0) = 0. Can you reproduce the result z(12) =
0.8462071873 (all digits are significant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long enough for the exponential sepa-
ration of trajectories to be noticeble (the exponential growth factor is ~ 2.4).

(d) Determine the time interval for which the solution of & = 2%, x(0) = 1 exists.
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2.11 Classical collinear helium dynamics. In order to apply the periodic
orbit theory to quantization of helium we shall need to compute classical periodic
orbits of the helium system. In this exercise we commence their evaluation for
the collinear helium atom (2.15)

1 1 Z A 1
H=_pi+-ps———— :
2p1+2p2 r T2 +T1+7‘2

The nuclear charge for helium is Z = 2. The colinear helium has only 3 degrees
of freedom and the dynamics can be visualized as a motion in the (r1,7r2), r; >0
quadrant. In the (r1,72) coordinates the potential is singular for r; — 0 nucleus-
electron collisions. These 2-body collisions can be regularized by rescaling the
coordinates, with details given in sect. 23.1. In the transformed coordinates
(1,2, p1,p2) the Hamiltonian equations of motion take the form (2.23).

(a) Integrate the equations of motion by the fourth order Runge-Kutta com-
puter routine of exercise 2.8 (or whatever integration routine you like). A
convenient way to visualize the 3-d phase space orbit is by projecting it
onto the 2-dimensional (r1(t),r2(t)) plane.

(Gregor Tanner, Per Rosenqvist)

2.12 Infinite dimensional dynamical systems are not smooth. Many of
the operations we consider natural for finite dimensional systems do not have not smooth
behavior in infinite dimensional vector spaces. Consider, as an example, a concentration
¢ diffusing on R according to the diffusion equation

1
8t¢ - §V2¢ .

(a) Interpret the partial differential equation as an infinite dimensional dynamical
system. That is, write it as # = F'(x) and find the velocity field.

(b) Show by examining the norm

ol = [ doo?(@
R
that the vector field F' is not continuous.
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(c¢) Try the norm
g1l = sup |¢(x)] -
rER

Is F' continuous?
(d) Argue that the semi-flow nature of the problem is not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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Maps

(R. Mainieri and P. Cvitanovi¢)

The time parameter in the definition of a dynamical system, sect. 2.1, can be
either continuous or discrete. Discrete time dynamical systems arise naturally
from flows; one can observe the flow at fixed time intervals (the strobe method),
or one can record the coordinates of the flow when a special event happens (the
Poincaré section method).  This triggering event can be as simple as having
one of the coordinates become zero, or as complicated as having the flow cut
through a curved hypersurface. There are also settings where discrete time is
altogether natural, for example a particle moving through a billiard, sect. 3.4,
suffers a sequence of instantaneous kicks, and executes a simple motion between
successive kicks.

W fast track:
chapter 5, p. 97
3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a d-dimensional hy-
persurface or a set of hypersurfaces P embedded in the (d+ 1)-dimensional phase
space M, define the Poincaré return map P(x), a d-dimensional map of form

Tnt1 = Plxy), Tm €P. (3.1)

The choice of the section hypersurface P is altogether arbitrary. However, with
a sufficiently clever choice of a Poincaré section or a set of sections, any orbit
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d 0 1 2 3 4 5 [ 7 B 2 3 4 5 [ 7 8 s 10 f 2 3 4 5 & 7
( ™ e

Figure 3.1: (b) Poincaré sections of the Rossler flow at ¢ = 20000 taken with a plane
through z-axis, at angles (a) 135, (b) 90°, (c) 45°, (d) 02, (e) 315°, (f) 270° in the a-
y-plane. This sequence of Poincaré sections illustrates the “stretch & fold” action of the
Rossler flow. To orient yourself, compare with fig. 2.3, and note the different z-axis scales.
The segment starts out close to the z-y plane, and after the folding (b) — (c) — (d) the

folded segment is returned close to the z-y plane strongly compressed. (G. Simon)

of interest intersects a section. Depending on the application, one might need
to supplement the return map with the time of first return function 7(z,) -
sometimes refered to as ceiling function - which gives the time of flight to the
next section for a trajectory starting at x,, with the accumulated flight time
given by

tpa1 = tn + 7(T0), to=0, xn € P. (3.2)

Other quantities integrated along the trajectory can be defined in a similar
manner, and will need to be evaluated in the process of evaluating dynamical
averages.

An example may help visualize this. Consider the simple pendulum. Its
phase space is 2-dimensional: momentum on the vertical axis and position on
the horizontal axis. We can then choose the Poincaré section to be the positive
horizontal axis. Now imagine what happens as a point traces a trajectory through
this phase space. In the pendulum all orbits are loops, so any trajectory will
periodically intersect the line, that is the Poincaré section, at one point. Consider
next a pendulum with dissipation. Now every trajectory is an inwards spiral,
and the trajectory will intersect the Poincaré section at a series of points that
get closer and closer to the origin.

/chapter/maps.tex 25may2002 printed June 19, 2002



3.1.

POINCARE SECTIONS 59

. .
.
1 2 3 4 5 6 7 8 b 3 a 5 3 7 8 9 10 1 2 3 4 5
(a) ( c

Figure 3.2: Return maps for the R, — R, 41 radial distance constructed from different
Poincaré sections for the Réssler flow, at angles (a) 02, (b) 90°, (c) 45° around the z-axis, see
fig. 3.1. The case (a) is an example of a nice 1-to-1 return map. However, (b) and (c) appear
multimodal and non-invertible. These are artifacts of projections of a 2-dimensional return
map (Rp, 2n) — (Rn+1,2n+1) onto a 1-dimensional subspace R, — R, 1. (G. Simon)

3.1.1 A Poincaré map with a strange attractor

Appreciation of the utility of visualization of dynamics by means of Poincaré
sections is gained through experience. Consider a 3-dimensional visualization of
the Rossler flow (2.12), such as fig. 2.3. The trajectories seem to wrap around
the origin, so a good choice for a Poincaré section may be a plane containing the
z axis. Fig. 3.1 illustrates what the Poincaré sections containing the z axis and
oriented at different angles with respect to the x axis look like. Once the section
is fixed, we can construct a return map (3.1), as in fig. 3.2. A Poincaré section
gives us a much more informative snapshot of the flow than the full flow portrait;
for example, we see in the Poincaré section that even though the return map is
2-d — 2-d, for the Rossler system the flow contraction happens to be so strong
that for all practical purposes it renders the return map 1-dimensional.

W fast track:
sect. 3.3, p. 62
3.1.2 Fluttering flame front

J‘ One very human problem with dynamics such as the high-dimensional
truncations of the infinite tower of the Kuramoto-Sivashinsky modes (2.34) is
that the dynamics is difficult to visualize.

The question is how to look at such flow? One of the first steps in analysis of
such flows is to restrict the dynamics to a Poincaré section. We fix (arbitrarily)
the Poincaré section to be the hyperplane a; = 0, and integrate (2.34) with
the initial conditions a; = 0, and arbitrary values of the coordinates as, ..., an,
where N is the truncation order. When a; becomes 0 the next time and the flow
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-1.34
-1.38 +
01
2-1.4—2 S
Figure 3.3: The attractor of the Kuramoto- ¥
Sivashinsky system (2.34), plotted as the ag com- I 1
ponent of the a; = 0 Poincaré section return map. 146 | 0
Here 10,000 Poincaré section returns of a typical
trajectory are plotted. Also indicated are the peri- I 10
odic points 0, 1 and 01. N = 16 Fourier modes a0
i . 15 148 142 1.38

truncation with v = 0.029910. (From ref. [6].) agfn)

crosses the hyperplane a; = 0 in the same direction as initially, the coordinates
as,...,ay are mapped into (aj,...a)y) = P(as,...,an), where P is the Poincaré
mapping of the (N — 1)-dimensional a; = 0 hyperplane into itself. Fig. 3.3 is an
example of a result that one gets. We have to pick - arbitrarily - a subspace such
as ag vs. ag to visualize the dynamics. While the topology of the attractor is still
obscure, one thing is clear - the attractor is finite and thin, barely thicker than a
line.

3.2 Constructing a Poincaré section

J For almost any flow of physical interest a Poincaré section is not available
in analytic form. We describe now a numerical method for determining a Poincaré
section.

Consider the system (2.6) of ordinary differential equations in the vector vari-
able © = (x1,x2,...,2q)

dt‘ = vi(x,t), (3.3)

where the flow velocity v is a vector function of the position in phase space x
and the time ¢. In general v cannot be integrated analytically and we will have
to resort to numerical integration to determine the trajectories of the system.
Our task is to determine the points at which the numerically integrated trajec-
tory traverses a given surface. The surface will be specified implicitly through
a function g(z) that is zero whenever a point z is on the Poincaré section. The
simplest choice of such section is a plane specified by a point (located at the tip
of the vector 79) and a direction vector a perpendicular to the plane. A point x
is on this plane if it satisfies the condition
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3.2. CONSTRUCTING A POINCARE SECTION 61

glx)=(x—rg)-a=0. (3.4)

If we use a tiny step size in our numerical integrator, we can observe the value
of g as we integrate; its sign will change as the trajectory crosses the surface. The
problem with this method is that we have to use a very small integration time
step. In order to actually land on the Poincaré section one might try to interpolate
the intersection point from the two trajectory points on either side of the surface.
However, there is a better way.

Let t, be the time just before g changes sign, and t; the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of
the trajectory between t, and t,. Suppose that z; is not tangent to the Poincaré
section. Using

dry dx1  dxp
- Rk t) = t 3.5
dzy dt dmlvl(x’ ) = k(@ ?) (3.5)

we can rewrite the equations of motion (3.3) as

a1
dry v
: (3.6)
dry v
doy vy

Now we use x; as the “time” in the integration routine and integrate it from x;(¢,)
to the value of x1 on the surface, which can be found from the surface intersection
condition (3.4). x1 need not be perpendicular to the Poincaré section; any z; can
be picked as the integration variable, as long as the x; axis is not parallel to the
Poincaré section.

The functional form of P(z) can be obtained by tabulating the results of
integration of the flow from x to the first Poincaré section return for many x € P,
and interpolating. It might pay to find a good approximation to P(z), and then
get 1id of numerical integration altogether by replacing f(z) by iteration of the
Poincaré return map P(z). Polynomial approximations

d d
Pk(aj) =ar + Z bijj + Z CkijTiZTj + ..., rzeR"” (3.7)
j=1 ij=1
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to Poincaré return maps

T1nt1 Py (xy,)

P
R 2(2n) , nth Poincaré section return,
Tdn+1 Py(xy)

motivate the study of model mappings of the plane, such as the Hénon map.

3.3 Hénon map

The example of a nonlinear 2-dimensional map most frequently employed in test-
ing various hunches about chaotic dynamics, the “E. Coli” of nonlinear dynamics,
is the Hénon map

Tnt1 = 1- CLT% + byn
Yn+1 = Tn, (38)

sometimes written equivalently as the 2-step recurrence relation
Tpi1=1— axfl + bxp_1 . (3.9)

Parenthetically, an n-step recurrence relation is the discrete time analogue of
nth order differential equation, and it can always be replaced by a set of 1-step
recurrence relations. Another example frequently employed is the Lozi map, a
linear, “tent map” version of the Hénon map given by

Tny1 = 1 —alx,|+ by,
Yn+1 = Tn- (310)

Though not realistic as an approximation to a smooth flow, the Lozi map is a
very helpful tool for developing intuition about the topology of a whole class of
maps of the Hénon type, so called once-folding maps.

The Hénon map is the simplest map that captures the “stretch & fold” dy-
namics of return maps such as the Rossler’s, fig. 3.2(a). It can be obtained by
a truncation of a polynomial approximation (3.7) to a Poincaré return map to
second order.
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1.5
1001110
1010011
1110100 %
x 00— §
s 0100111
Figure 3.4: The strange attractor (unstable man-
ifold) and a period 7 cycle of the Hénon map (3.8) oottt
with a = 1.4, b = 0.3 . The periodic points in the
cycle are connected to guide the eye; for a numerical -1.5 \
determination of such cycles, consult sect. 12.4.1. -1.5 0.0 15
(K.T. Hansen) X1

The Hénon map dynamics is conveniently plotted in the (z,, z,+1) plane; an
example is given in fig. 3.4. A quick sketch of asymptotics of such mapping is
obtained by picking an arbitrary starting point and iterating (3.8) on a computer.
For an arbitrary initial point this process might converge to a stable limit cycle,
to a strange attractor, to a false attractor (due to the roundoff errors), or diverge.
In other words, straight iteration is essentially uncontrollable, and we will need to
resort to more thoughtful explorations. As we shall explain in due course below,
strategies for systematic exploration rely on stable/unstable manifolds, periodic
points, saddle-stradle methods and so on.

The Hénon map stretches out and folds once a region of the (x,y) plane
centered around the origin.  Parameter a controls the amount of stretching,
while parameter b controls the thickness of the folded image through the “l1-step
memory” term bx,_1 in (3.9), see fig. 3.4. For small b the Hénon map reduces
to the 1-dimensional quadratic map

Tppr =1 —az?. (3.11)

By setting b = 0 we lose determinism, as (3.11) inverted has two preimages
{z} 1, 2,1} for most z,,. Still, the approximation is very instructive. As we
shall see in sect. 10.5, understanding of 1-dimensional dynamics is indeed the
essential prerequisite to unravelling the qualitative dynamics of many higher-
dimensional dynamical systems. For this reason many expositions of the theory
of dynamical systems commence with a study of 1-dimensional maps. We prefer
to stick to flows, as that is where the physics is.

W fast track:
chapter 4, p. 73

We note here a few simple symmetries of the Hénon maps for future reference.
For b # 0 the Hénon map is reversible: the backward iteration of (3.9) is given
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1
Ip—1 = _E(l - CLCL‘%L - xn—i—l) . (312)

Hence the time reversal amounts to b — 1/b, a — a/b® symmetry in the parameter
plane, together with x — —z/b in the coordinate plane, and there is no need to
explore the (a,b) parameter plane outside the strip b € {—1,1}. For b = —1 the
map is orientation and area preserving (see (15.1) below),

Tpo1=1— axi — Tpi1, (3.13)

the backward and the forward iteration are the same, and the non—wandering set
is symmetric across the x,41 = x,, diagonal. This is one of the simplest models
of a Poincaré return map for a Hamiltonian flow. For the orientation reversing
b =1 case we have

Tpo1=1—ax? +xpi1, (3.14)

and the non-wandering set is symmetric across the x,+; = —z, diagonal.

3.4 Billiards

A billiard is defined by a connected region @ C RP, with boundary 0Q ¢ RP~!
separating @ from its complement R”/Q. In what follows we shall more often
than not restrict our attention to D = 2 planar billiards. A point particle (“pin-
ball”) of mass m and momentum p; = muv; moves freely within the billiard, along
a straight line, until it encounters the boundary. There it reflects specularly, with
instantaneous change in the momentum component orthogonal to the boundary,

/

7P =7 2P -n)n, (3.15)

where 7 is a unit vector normal to the boundary 9Q at the collision point. The
angle of incidence equals to the angle of reflection. A billiard is a Hamiltonian
system with a 2D-dimensional phase space x = (p,q) and potential V(q) = 0
for ¢ € Q, and V(q) = oo for ¢ € 9Q. Without loss of generality we will set
m = |v| = 1 throughout.

If we know what happens at two successive collisions we can determine quite
easily what happens in between, as the position of a point of reflection together
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Figure 3.5: Angles defining a unique billiard tra- q

@

jectory. The coordinate q is given by an angle in
[0,27], and the momentum is given by specifying
its component sin § tangential to the disk. For con-
venience, the pinball momentum is customarily set
equal to one.

with the outgoing trajectory angle uniquely specifies the trajectory. In sect. 1.3.4
we used this observation to reduce the pinball flow to a map by the Poincaré
section method, and associate an iterated mapping to the three-disk flow, a
mapping that takes us from one collision to the next.

A billiard flow has a natural Poincaré section defined by marking ¢;, the arc
length position of the ith bounce measured along the billiard wall, and p; = sin ¢;,
the momentum component parallel to the wall, where ¢; is the angle between the
outgoing trajectory and the normal to the wall. We measure the arc length ¢
anti-clockwise relative to the interior of a scattering disk, see fig. 1.5(a). The
dynamics is then conveniently described as a map P : (¢n,pn) — (¢n+1,Pn+1)
from the nth collision to the (n + 1)th collision. Coordinates x,, = (¢n, pn) are
the natural choice (rather than, let’s say, (¢;, ¢;)), because they are phase-space
volume preserving, and easy to extract from the pinball trajectory.

Let t; be the instant of kth collision. Then the position of the pinball € ) at
time t; + 7 < tgy1 is given by 2D — 2 Poincaré section coordinates (qx,px) € P
together with 7, the distance reached by the pinball along the kth section of
its trajectory. In D = 2, the Poincaré section is a cylinder where the parallel
momentum p ranges for -1 to 1, and the ¢ coordinate is cyclic along each connected
component, of 9Q).

3.4.1 3-disk game of pinball

For example, for the 3-disk game of pinball of fig. 1.3 and fig. 1.5 we have two
types of collisions:

I _ ) ;
Py {90/ ¢+ aar'csm,p back-reflection (3.16)
p=-p+ B s @
/ = — 2 i 2 3
P {90, ¥ ; a'rcsinp +2r/ reflect to 3rd disk. (3.17)
p=p— B s @
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Actually, as in this case we are computing intersections of circles and straight
lines, nothing more than high-school geometry is required. There is no need
to compute arcsin’s either - one only needs to compute a square root per each
reflection, and the simulations can be very fast.

Trajectory of the pinball in the 3-disk billiard is generated by a series of
Py’s and P;’s. At each step on has to check whether the trajectory intersects
the desired disk (and no disk inbetween). With minor modifications, the above
formulas are valid for any smooth billiard as long as we replace R by the local
curvature of the wall at the point of collision.

Commentary

Remark 3.1 Hénon, Lozi maps. The Hénon map per se is of no spe-
cial significance - its importance lies in the fact that it is a minimal normal
form for modeling flows near a saddle-node bifurcation, and that it is a
prototype of the stretching and folding dynamics that leads to deterministic
chaos. It is generic in the sense that it can exhibit arbitrarily complicated
symbolic dynamics and mixtures of hyperbolic and non—hyperbolic behav-
iors. Its construction was motivated by the best known early example of
“deterministic chaos”, the Lorenz equation [1]. Y. Pomeau’s studies of the
Lorenz attractor on an analog computer, and his insights into its stretching
and folding dynamics led Hénon [1] to the Hénon mapping in 1976. Hénon’s
and Lorenz’s original papers can be found in reprint collections refs. [2, 3].
They are a pleasure to read, and are still the best introduction to the physics
background motivating such models. Detailed description of the Hénon map
dynamics was given by Mira and coworkers [1], as well as very many other
authors.

The Lozi map [5] is particularly convenient in investigating the symbolic
dynamics of 2-d mappings. Both the Lorenz and the Lozi system are uni-
formly smooth maps with singularities. For the Lozi maps the continuity
of measure was proven by M. Misiurewicz [6], and the existence of the SRB
measure was established by L.-S. Young.

Remark 3.2 _Billiards. The 3-disk game of pinball is to chaotic dynam-
ics what a pendulum is to integrable systems; the simplest physical example
that captures the essence of chaos. Another contender for the title of the
“harmonic oscillator of chaos” is the baker’s map which is used as the red
thread through Ott’s introduction to chaotic dynamics [7]. The baker’s map
is the simplest reversible dynamical system which is hyperbolic and has pos-
itive entropy. We will not have much use for the baker’s map here, as due
to its piecewise linearity it is so nongeneric that it misses all of the cycle
expansions curvature corrections that are central to this treatise.

That the 3-disk game of pinball is a quintessential example of deter-
ministic chaos appears to have been first noted by B. Eckhardt [7]. The
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model was studied in depth classically, semiclassically and quantum me-
chanically by P. Gaspard and S.A. Rice [8], and used by P. Cvitanovié¢ and
B. Eckhardt [9] to demonstrate applicability of cycle expansions to quan-
tum mechanical problems. It has been used to study the higher order A
corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso
Ramirez [10], construct semiclassical evolution operators and entire spec-
tral determinants by P. Cvitanovi¢ and G. Vattay [11], and incorporate the
diffraction effects into the periodic orbit theory by G. Vattay, A. Wirzba
and P.E. Rosenqvist [12]. The full quantum mechanics and semiclassics of
scattering systems is developed here in the 3-disk scattering context in chap-
ter 7?7. Gaspard’s monograph [1], which we warmly recommend, utilizies the
3-disk system in much more depth than will be attained here. For further
links check www.nbi.dk/ChaosBook/.

A pinball game does miss a number of important aspects of chaotic dy-
namics: generic bifurcations in smooth flows, the interplay between regions
of stability and regions of chaos, intermittency phenomena, and the renor-
malization theory of the “border of order” between these regions. To study
these we shall have to face up to much harder challenge, dynamics of smooth
flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The
game of pinball may be thought of as the infinite potential wall limit of a
smooth potential, and pinball symbolic dynamics can serve as a covering
symbolic dynamics in smooth potentials. One may start with the infinite
wall limit and adiabatically relax an unstable cycle onto the corresponding
one for the potential under investigation. If things go well, the cycle will
remain unstable and isolated, no new orbits (unaccounted for by the pinball
symbolic dynamics) will be born, and the lost orbits will be accounted for
by a set of pruning rules. The validity of this adiabatic approach has to
be checked carefully in each application, as things can easily go wrong; for
example, near a bifurcation the same naive symbol string assignments can
refer to a whole island of distinct periodic orbits.
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Exercises

3.1 Rédssler system (continuation of exercise 2.9) Construct a Poincaré section for
this flow. How good an approximation would a replacement of the return map for this
section by a 1-dimensional map be?

3.2 Arbitrary Poincaré sections. We will generalize the construction of Poincaré
section so that it can have any shape, as specified by the equation g(z) = 0.

(a) Start out by modifying your integrator so that you can change the coordinates once
you get near the Poincaré section. You can do this easily by writing the equations
as

dxy,
— .1
Is Kfk, (3.18)

with dt/ds = k, and choosing k to be 1 or 1/ f;. This allows one to switch between
t and x; as the integration “time.”

(b) Introduce an extra dimension z,4; into your system and set

Tpi1 = g(T). (3.19)

How can this be used to find the Poincaré section?

3.3 Classical collinear helium dynamics. (continuation of exercise 2.11)

(a) Make a Poincaré surface of section by plotting (r1,p1) whenever ro = 0.
(Note that for 7o = 0, p2 is already determined by (2.15)). Compare your
results with fig. 23.3(b).

(Gregor Tanner, Per Rosenqvist)
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3.4 Hénon map fixed points. Show that the two fixed points (zg,z¢),
(1,21) of the Hénon map (3.8) are given by

—(1-b)— /(I —0)2+4a

rg = )
2a
—(1—=b)++/(1—0)2+4a
T = ( ) 265 ) . (3.20)

3.5 How strange is the Hénon attractor?

(a) Iterate numerically some 100,000 times or so the Hénon map

| | 1—ax?+y
y | 7| bx

fora =1.4,b = 0.3 . Would you describe the result as a “strange attractor”?
Why?

(b) Now check how robust the Hénon attractor is by iterating a slightly dif-
ferent Hénon map, with a = 1.39945219, b = 0.3. Keep at it until the
“strange” attracttor vanishes like a smile of the Chesire cat. What replaces
it? Would you describe the result as a “strange attractor”? Do you still
have confidence in your own claim for the part (a) of this exercise?

3.6 Fixed points of maps. A continuous function F' is a contraction of the unit
interval if it maps the interval inside itself.

(a) Use the continuity of F' to show that a one-dimensional contraction F of the interval
[0,1] has at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of F is always smaller than one,
|F'| < 1. Is the composition of uniform contractions a contraction? Is it uniform?
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3.7 A pinball simulator. Implement the disk — disk maps to compute
a trajectory of a pinball for a given starting point, and a given R:a = (center-
to-center distance):(disk radius) ratio for a 3-disk system. As this requires only
computation of intersections of lines and circles together with specular reflections,
implementation should be within reach of a high-school student. Please start
working on this program now; it will be continually expanded in chapters to
come, incorporating the Jacobian calculations, Newton root—finding, and so on.

Fast code will use elementary geometry (only one /- - - per iteration, rest are
multiplications) and eschew trigonometric functions. Provide a graphic display
of the trajectories and of the Poincaré section iterates. To be able to compare
with the numerical results of coming chapters, work with R:a = 6 and/or 2.5
values. Draw the correct versions of fig. 1.7 or fig. 10.3 for R:a = 2.5 and/or 6.

3.8 Trapped orbits. Shoot 100,000 trajectories from one of the disks, and
trace out the strips of fig. 1.7 for various R:a by color coding the initial points
in the Poincaré section by the number of bounces preceeding their escape. Try
also R:a = 6:1, though that might be too thin and require some magnification.
The initial conditions can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of interest.
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanovi¢)

Topological features of a dynamical system — singularities, periodic orbits, and
the overall topological interrelations between trajectories — are invariant under a
general continuous change of coordinates. More surprisingly, there exist quanti-
ties that depend on the notion of metric distance between points, but nevertheless
do not change value under a change of coordinates. Local quantities such as sta-
bility eigenvalues of equilibria and periodic orbits and global quantities such as
the Lyapunov exponents, metric entropy, and fractal dimensions are examples of
such coordinate choice independent properties of dynamical systems.

We now turn to our first class of such invariants, linear stability of flows and
maps. This will give us metric information about local dynamics. Extending
the local stability eigendirections into stable and unstable manifolds will yield
important global information, a topological foliation of the phase space.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods, as sketched in fig. 2.1(b). Deformation of an infinitesimal neigh-
borhood is best understood by considering a trajectory originating near xy = x(0)
with an initial infinitesimal displacement dx(0), and letting the flow transport
the displacement dz(t) along the trajectory x(t) = f!(z0). The system of linear
equations of variations for the displacement of the infinitesimally close neighbor
x;(x0,t) + 0x; (20, t) follows from the flow equations (2.6) by Taylor expanding to
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linear order

d 0
51‘1 (xo,t Z vile dz;(zo,t) . (4.1)
8'7;] x=x(zo,t)
Taken together, the set of equations
ii = UZ(.CC) s (5%2 = Ai]‘ (x)(sl’] (4.2)

governs the dynamics in the extended (x,dz) € M x TM space obtained by
adjoining a d-dimensional tangent space dx € T'M to the d-dimensional phase
space £ € M C R%. The matrix of variations

0v; ()

Aij(z) = — -
J

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
z by the flow. Its eigenvalues and eigendirections determine the local behavior
of neighboring trajectories; nearby trajectories separate along the unstable direc-
tions, approach each other along the stable directions, and maintain their distance
along the marginal directions. In the mathematical literature the word neutral is
often used instead of “marginal”.

Taylor expanding a finite time flow to linear order,

)5.1‘j+-" , (4.4)

Fi(wo + 02) = fizo) + 3?&

0j

one finds that the linearized neighborhood is transported by the Jacobian (or
fundamental) matriz

A (1)
al‘j

S(t) = I (w0)dw(0),  I(a0) = (4.5)

T=x0

The deformation of a neighborhood for finite time ¢ is described by the eigenvec-
tors and eigenvalues of the Jacobian matrix of the linearized flow. For example,
consider two points along the periodic orbits separated by infinitesimal flight time
5t: 52(0) = £ (x0) — 20 = v(wo)6t. Time ¢ later

du(t) = [ (wo) — fH(x0) = f*'((t)) — x(t) = v(x(1)) 6t ,
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hence J!(zg) transports the velocity vector at zo to the velocity vector at x(t)
time ¢ later:

v(z(t)) = I (x0) v(0) . (4.6)

As J'(z0) eigenvalues have invariant meaning only for periodic orbits, we shall
postpone discussing this to sect. 4.7.

What kinds of flows might exist? If a flow is smooth, in a sufficiently small
neighborhood it is essentially linear. Hence the next section, which might seem
an embarassment (what is a section on linear flows doing in a book on nonlinear
dynamics?), offers a firm stepping stone on the way to understanding nonlinear
flows.

4.2 Linear flows

Linear fields are the simplest of vector fields. They lead to linear differential
equations which can be solved explicitly, with solutions which are good for all
times. The phase space for linear differential equations is M = R and the

differential equation (2.6) is written in terms of a vector x and a constant matrix
A as

T =v(r) =Azx. (4.7)
Solving this equation means finding the phase space trajectory

xz(t) = (z1(t), x2(t), ..., xq(t))

passing through the point xg.

If 2(t) is a solution with (0) = ¢ and z(¢)’ another solution with z(0)" = x¢’,
then the linear combination ax(t)+bx(t) with a,b € R is also a solution, but now
starting at the point azg + bxy’. At any instant in time, the space of solutions is
a d-dimensional vector space, which means that one can find a basis of d linearly
independent solutions. How do we solve the linear differential equation (4.7)7 If
instead of a matrix equation we have a scalar one, £ = ax , with a a real number,
then the solution is

z(t) = e"x(0), (4.8)
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as you can verify by differentiation. In order to solve the matrix case, it is helpful
to rederive the solution (4.8) by studying what happens for a short time step At.
If at time O the position is x(0), then

z(0 + At) — z(0)
At

= azx(0), (4.9)

which we iterate m times to obtain
t m
x(t) = <1 + —a) x(0). (4.10)
m

The term in the parenthesis acts on the initial condition z(0) and evolves it to
x(t) by taking m small time steps At = t/m. As m — oo, the term in the
parenthesis converges to e'®. Consider now the matrix version of equation (4.9):

x(At) — x(0)

= A(0). (4.11)

Representative point z is now a vector in R? acted on by the matrix A, as in
(4.7). Denoting by 1 the identity matrix, and repeating the steps (4.9) and (4.10)
we obtain the Euler formula for exponential of a matrix

z(t) = lim <1 + %A) m:r(O) = e2(0). (4.12)

m—00

We will use this expression as the definition of the exponential of a matrix.

4.2.1 Operator norms

J‘ The limit used in the above definition involves matrices - operators in
vector spaces - rather than numbers, and its convergence can be checked using
tools familiar from calculus. We briefly review those tools here, as throughout the
text we will have to consider many different operators and how they converge.

The n — oo convergence of partial products
E.= ][] (1 - 3A>
" n
0<m<n
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can be verified using the Cauchy criterion, which states that the sequence {E,}
converges if the differences |[E; —E;|| — 0 as k, j — oo. To make sense of this we
need to define a sensible norm || - - - ||. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matrix M a norm that is the largest
possible change it can cause to the length of a unit vector 7:

M| = sup [[Ma[|,  [laf=1. (4.13)
n

We say that || - || is the operator norm induced by the vector norm || - ||. Con-
structing a norm for a finite-dimensional matrix is easy, but had M been an
operator in an infinite-dimensional space, we would also have to specify the space
n belongs to. In the finite-dimensional case, the sum of the absolute values of the
components of a vector is also a norm; the induced operator norm for a matrix
M with components M;; in that case can be defined by

M| = miaxz |Mij| . (4.14)
J

For infinite-dimensional vectors - functions f(x),z € R? - one might use instead

Linorm : /dm|f(33)| , orlgnorm : /dm]f(:c)]z , , etc..

The operator norm (4.14) and the vector norm (4.13) are only rarely distinguished
by different notation, a bit of notational laziness that we shall uphold.

Now that we have learned how to make sense out of norms of operators, we
can check that

A < etllAl, (4.15)

As ||A| is a number, the norm of e is finite and therefore well defined. In
particular, the exponential of a matrix is well defined for all values of ¢, and the
linear differential equation (4.7) has a solution for all times.

4.2.2 Stability eigenvalues

How do we compute the exponential (4.12)? Should we be so lucky that A hap-

pens to be a diagonal matrix A p with eigenvalues (A1, g, ..., A\g), the exponential
is simply
et ..
etAD — . . (416)
O e et)‘d
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Usually A is not diagonal. In that case A can either be diagonalized and things
are simple once again, or we have to resort to the upper triangular Jordan form.

If a matrix is a normal matrix, that is a matrix that comutes with its hermitian
conjugate (the complex conjugate of its transpose), it can be diagonalized by a
unitary transformation. Suppose that A is diagonalizable and that U is the
matrix that brings it to its diagonal form Ap = UAU™!. The transformation U
is a linear coordinate transformation which rotates, skews, and possibly flips the
coordinate axis of the vector space. The relation

A = UTletAry (4.17)

can be verified by noting that the defining product (4.10) can be rewritten as

UuU ' 4+

aa _ (puor s (UADU! tUApUY
m m

tA tA
- U <1 T %) Uu'u (1 + %) U l...=UehrUl. (4.18)

In general, A will have complex eigenvalues and U will have complex matrix
elements. The presence of complex numbers should intrigue you because in the
definition of the exponential of a matrix we only used real operations. Where did
the complex numbers come from?

4.2.3 Complex stability eigenvalues

As we cannot avoid complex numbers, we embrace them, and use the linearity of
the vector field Az to extend the problem to vectors in C¢, work there, and see
the effect it has on solutions that start in R?. Take two vectors z and y of the
phase space R%, combine them in a vector w = z + iy in C%, and then extend the
action of A to these complex vectors by Aw = Ax + iAy. The solution w(t) to
the complex equation

W = Aw (4.19)

is the sum of the solutions z(t) = Re (w(t)) and y(t) = Im (w(¢)) to the problem
(4.7) over the reals.

To develop some intuition we work out the behavior for systems were A is a
[2x2] matrix
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An A12>
A = 4.20
<A21 Ao (4:20)

The eigenvalues A1, Ao are the roots

A = (trA +/(tr A)Z — 4det A) (4.21)

[N

of the characteristic equation

det(A—z1) = (M—2)(ha—2) =0, (4.22)
Al —z A
Ayt Ay —z

‘ = 22— (A4 Ap) 2+ (A1 Agy — Ao Ag))

The qualitative behavior of the exponential of A for the case that the eigen-
values A1 and Ay are both real, A;, A2 € R will differ from the case that they
form a complex conjugate pair, 1,72 € C, 7§ = v2. These two possibilities are
refined into sub-cases depending on the signs of the real part. The matrix might
have only one linearly independent vector (an example is given sect. 5.2.1), but
in general it has two linearly independent eigenvectors, which may or may not be
orthogonal. Along each of these directions the motion is of the form exp(tA;)x;,
i = 1,2. If the eigenvalue \; has a positive real part, then the component x; will
grow; if the real part of \; is negative, it will shrink. The imaginary part of the
eigenvalue leads to magnitude oscillations of ;.

We sketch the full set of possibilities in fig. 4.1(a), and work out in detail only
the case when A can be diagonalized in a coordinate system where the solution
(4.12) to the differential equation (4.19) can be written as

(o) =( 2 (). i

In the case Re A1 > 0, Re A2 < 0, wy grows exponentially towards infinity, and
wy contracts towards zero. Now this growth factor is acting on the complex
version of the vector, and if we want a solution to the original problem we have
to concentrate on either the real or the imaginary part. The effect of the growth
factor is then to make the real part of z; diverge to +oo if the Re(z1) > 0 and
to —oo if the Re(z1) < 0. The effect on the real part of z3 is to take it to zero.
This behavior, called a saddle, is sketched in fig. 4.1(b), as are the remaining
possibilities: in/out nodes, inward/outward spirals, and the center. saddle

Now that we have a good grip on the linear case, we are ready to return to
nonlinear flows.

printed June 19, 2002 /chapter/stability.tex 18may2002



[==p appendix G.1

80 CHAPTER 4. LOCAL STABILITY

7//&
/7

saddle  out node in node

(&

(a) (b)

center out spiral in spiral

Figure 4.1: (a) Qualitatively distinct types of eigenvalues of a [2x2] stability matrix. (b)

Streamlines for 2-dimensional flows.
4.3 Nonlinear flows

How do you determine the eigenvalues of the finite time local deformation J? for a
general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

z(t) = fYzg), Ox(zg,t) = I (20)dx(x0,0). (4.24)

The equations of variations are linear, so the Jacobian matrix is formally given
by the integral

3'j(wo) = [ Telo dmAGD] (4.25)

ij
where T stands for time-ordered integration.
Let us make sense of the exponential in (4.25). For start, consider the case

where x4 is an equilibrium point (2.8). Expanding around the equilibrium point
x4, using the fact that the matrix A = A(xz,) in (4.2) is constant, and integrating,

ft(x) :xq—i—eAt(x—acq)—}—u- ) (4.26)

we verify that the simple formula (4.12) applies also to the Jacobian matrix of

an equilibrium point, Jt(z,) = eAl.
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Next, consider the case of an arbitrary trajectory z(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion, or in terms
of the Euler limit (4.12):

A 17
et = HA (4.27)
k=0 "
: t\"
= lim <1+—A) (4.28)
m—oo m

Taylor expansion is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of exponential is appropriate for the task
at hand, as for a dynamical system the local rate of neighborhood distortion
A(z) depends on where we are along the trajectory. The m discrete time steps
approximation to J! is therefore given by generalization of the Euler product
(4.12) to

1
t—t
= lim ] Q+AtA(z,)), At= — O @, =a(to + nAt), (4.29)

n=m

with the linearized neighborhood multiplicatively deformed along the flow. To
the leading order in At this is the same as multiplying exponentials et A(@n) | with
the time ordered integral (4.25) defined as the N — oo limit of this procedure.
We note that due to the time-ordered product structure the finite time Jacobian
matrices are multiplicative along the flow,

IH (20) = IV (2()) T (o) - (4.30)

In practice, better numerical accuracy is obtained by the following observa-
tion. To linear order in At, J*+2t — J* equals At A(z(t))J*, so the Jacobian
matrix itself satisfies the linearized equation (4.1)

d
EJ’f(:c) = A(z)J(x),  with the initial condition J%(z) =1.  (4.31)

Given a numerical routine for integrating the equations of motion, evaluation of
the Jacobian matrix requires minimal additional programming effort; one simply
extends the d-dimensional integration rutine and integrates concurrently with
ft(x) the d? elements of J'(x).

We shall refer to the determinant det J(x¢) as the Jacobian of the flow. The
Jacobian is given by integral

det Jt(.%‘(]) _ €fg drtr A(z(r)) _ efg dr;v;(z(T)) ] (432)
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This follows by computing detJ? from (4.29) to the leading order in At. As
the divergence 0;v; is a scalar quantity, this integral needs no time ordering. If
0;v; < 0, the flow is contracting. If 0;v; = 0, the flow preserves phase space
volume and det J* = 1. A flow with this property is called incompressible. An
important class of such flows are the Hamiltonian flows to which we turn next.

a in depth:
o appendix J.1, p. 679
4.4 Hamiltonian flows

J As the Hamiltonian flows are so important in physical applications, we
digress here to illustrate the ways in which an invariance of equations of mo-
tion affects dynamics. In case at hand the symplectic invariance will reduce the
number of independent stability exponents by factor 2 or 4.

The equations of motion for a time independent D-degrees of freedom, Hamil-
tonian (2.13) can be written as

. OH 0 —I

mm:wmna—xn, w:<I O)’ m,n=12,...,2D, (4.33)
where z = [p,q] is a phase space point, I = [DxD] unit matrix, and w the
[2Dx2D] symplectic form

Wimn = —Wnm » w?=-1. (4.34)

The linearized motion in the vicinity x+ dx of a phase space trajectory z(t) =
(p(t),q(t)) is described by the Jacobian matrix (4.24). The matrix of variations
in (4.31) takes form

A = Wi Hin(2), 3 () = AT (@), (4.35)

where Hy,, = 0p0n,H is the Hessian matrix of second derivatives. From (4.35)
and the symmetry of Hy, it follows that

AT+ wA — 0. (4.36)
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This is the defining property for infinitesimal generators of symplectic (or canon-
ical) transformations, transformations that leave the symplectic form wy,, invari-
ant. From this it follows that for Hamiltonian flows % (J TwI ) =0, and that J is
a symplectic transformation (we suppress the dependence on the time and initial
point, J = J¥(zg), A = A(xo,t), for notational brevity):

JTwl=w. (4.37)
The transpose J7 and the inverse J~! are related by
J = —witw, (4.38)

hence if A is an eigenvalue of J, so are 1/A, A* and 1/A*. Real (non-marginal)
eigenvalues always come paired as A, 1/A. The complex eigenvalues come in pairs
A, A*, |A| =1, or in loxodromic quartets A, 1/A, A* and 1/A*. Hence

det J'(zg) =1 for all ¢ and x¢’s, (4.39)

and symplectic flows preserve the Liouville phase space volume.

In the 2-dimensional case the eigenvalues (4.59) depend only on trJ*

Aro = (tr It /(e I — 2)(tr It + 2)) . (4.40)

| =

The trajectory is elliptic if the residue |tr J*| — 2 < 0, with complex eigenvalues
Ay =€ Ay = A} = e If [tr J| — 2 > 0, the trajectory is () real)

either  hyperbolic A =M, Ay=e M, (4.41)
or inverse hyperbolic A = —eM, Ayg=—eH, (4.42)

g in depth:
# appendix C.1, p. 611
4.5 Billiards

We turn next to the question of local stability of discrete time systems. Infinites-
imal equations of variations (4.2) do not apply, but the multiplicative structure
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Figure 4.2: Variations in the phase space coordi-
nates of a pinball between the (k—1)th and the kth
collision. (a) dgqy, variation away from the direction
of the flow. (b) dz) angular variation tranverse to
the direction of the flow. (c) dgj variation in the
direction of the flow is conserved by the flow.

(4.30) of the finite-time Jacobian matrices does. As they are more physical than
most maps studied by dynamicists, let us turn to the case of billiards first.

On the face of it, a plane billiard phase space is 4-dimensional. However, one
dimension can be eliminated by energy conservation, and the other by the fact
that the magnitude of the velocity is constant. We shall now show how going to
the local frame of motion leads to a [2x2] Jacobian matrix.

Consider a 2-dimensional billiard with phase space coordinates x = (q1, ¢2, p1, P2)-
Let t; be the instant of the kth collision of the pinball with the billiard boundary,
and t,f = ti te, € positive and infinitesimal. With the mass and the velocity equal
to 1, the momentum direction can be specified by angle : = = (q1, g2, sin 6, cos 0).
Now parametrize the 2-d neighborhood of a trajectory segment by dx = (dz, §6),
where

0z = gy cost — dgasinf, (4.43)

00 is the variation in the direction of the pinball. Due to energy conservation,
there is no need to keep track of dg||, variation along the flow, as that remains
constant. (dqi,dq2) is the coordinate variation transverse to the kth segment of
the flow. From the Hamilton’s equations of motion for a free particle, dg;/dt = p;,
dp;/dt = 0, we obtain the equations of motion (4.1) for the linearized neighbor-
hood

d d

Let 66, = 60(t}) and 6z, = 0z(t]) be the local coordinates immediately after the
kth collision, and 60, = §60(t, ), 6z, = dz(t, ) immediately before. Integrating
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the free flight from t:q to t,, we obtain

0z, = O02p—1+ k00K 1, Tk =tp — tr_1
507 = S0, (4.45)

and the stability matrix (4.25) for the kth free flight segment is

Ir(zy) = <é Tf) . (4.46)

At incidence angle ¢y (the angle between the outgoing particle and the outgo-
ing normal to the billiard edge), the incoming transverse variation 0z, projects
onto an arc on the billiard boundary of length dz, /cos ¢;. The corresponding
incidence angle variation ¢, = dz, /pi cos ¢y, pr = local radius of curvature,
increases the angular spread to

oz, = —dz;
2

50, = —007 — ———
. ko prcos gy,

8z, (4.47)

so the Jacobian matrix associated with the reflection is

Jr(zr) = — ( ! 0) ;o TE= S (4.48)

e 1 Pk COS P,

The full Jacobian matrix for n, consecutive bounces describes a beam of tra-
jectories defocused by Jp along the free flight (the 7, terms below) and defo-
cused /refocused at reflections by Jg (the r; terms below)

Iy = (=)™ ﬁ <(1) Tf) (;k ?) , (4.49)

k=nyp

where 73 is the flight time of the kth free-flight segment of the orbit, r; =
2/py cos ¢, is the defocusing due to the kth reflection, and py is the radius of
curvature of the billiard boundary at the kth scattering point (for our 3-disk
game of pinball, p = 1). As the billiard dynamics is phase-space volume preserv-
ing, detJ = 1 and the eigenvalues are given by (4.40).

This is en example of the Jacobian matrix chain rule for discrete time systems.
Stability of every flight segment or reflection taken alone is a shear with two unit
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Figure 4.3: Defocusing of a beam of nearby tra-
jectories at a billiard collision. (A. Wirzba)

eigenvalues, but acting in concert in the intervowen sequence (4.49) they can

lead to a hyperbolic deformation of the infinitesimal neighborhood of a billiard
trajectory. 4.4
on p. 95

As a concrete application, consider the 3-disk pinball system of sect. 1.3.

Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow

4.5 from elementary geometrical considerations. Longer cycles require numerical

on p. 95 evaluation by methods such as those described in chapter 12.

10 &

on p. 94

Wchapter 12 4.6 Maps

Transformation of an infinitesimal neighborhood of a trajectory under map it-
eration follows from Taylor expanding the iterated mapping at discrete time n
to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix

ofn
I (o) = J;x(;v)

(4.50)

T=x0

This matrix is in the literature sometimes called the fundamental matrix. As the
simplest example, a 1-dimensional map. The chain rule yields stability of the nth

iterate
d n—1
A== f"(@) = [ F™), 20 = (). (4.51)
m=0

The 1-step product formula for the stability of the nth iterate of a d-dimensional

map
0 0
V(o) = [T 3G, Ju@) = g5-fu@), o = f"@o)  (452)
m=n—1
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follows from the chain rule for matrix derivatives

fr(x) .

d
(‘3 0
or; kga ()&cz

The [dxd] Jacobian matrix J” for a map is evaluated along the n points z(™ )

on the trajectory of xg, with J(x) the single time step Jacobian matrix. For 4.1
example, for the Hénon map (3.8) the Jacobian matrix for nth iterate of the map on p- 94
is

1
=TT (75 0) 0 o= ), (4.53)

m=n

The billiard Jacobian matrix (4.49) exhibits similar multiplicative structure. The
determinant of the Hénon Jacobian (4.53) is constant,

detdJ = A1A2 =-b (454)

so in this case only one eigenvalue needs to be determined.

4.7 Cycle stabilities are metric invariants

As noted on page 35, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic — nevertheless, the stationary
and the periodic orbits will turn out to be the key to unraveling chaotic dynamics.
Here we note a few of the properties that makes them so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invariants: a
fixed point is a fixed point in any coordinate choice, and similarly a periodic orbit
is a periodic orbit in any representation of the dynamics. Any reparametrization
of a dynamical system that preserves its topology has to preserve topological
relations between periodic orbits, such as their relative inter-windings and knots.
So mere existence of periodic orbits suffices to partially organize the spatial layout
of a non—wandering set. More importantly still, as we shall now show, cycle
stability eigenvalues are metric invariants: they determine the relative sizes of
neighborhoods in a non-wandering set.

First we note that due to the multiplicative structure (4.30) of Jacobian ma-
trices the stability of the rth repeat of a prime cycle of period T, is

I (20) = I (f710 (o)) - - I (fT7 (w0))IT7 (o) = Tp(20)" (4.55)
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where J,(79) = J?(z0), 7o is any point on the cycle, and f"'#(zo) = xo by
the periodicity assumption. Hence it suffices to restrict our considerations to the
stability of the prime cycles.

The simplest example of cycle stability is afforded by 1-dimensional maps.
The stability of a prime cycle p follows from the chain rule (4.51) for stability of
the n,th iterate of the map

np—1

A, = if"" (z0) H f(@m), xm=f"(x0), (4.56)

where the initial x¢ can be any of the periodic points in the p cycle.

For future reference we note that a periodic orbit of a 1-dimensional map is
stable if

(Apl = | (@n,) f (@ny—1) -+ f1(@2) f(21)| < 1,

and superstable if the orbit includes a critical point, so that the above product
vanishes. A critical point z. is a value of x for which the mapping f(x) has
vanishing derivative, f’(x.) = 0. For a stable periodic orbit of period n the slope
of the nth iterate f™(z) evaluated on a periodic point z (fixed point of the nth
iterate) lies between —1 and 1.

The 1-dimensional map (4.51) cycle stability A, is a product of derivatives
over all cycle points around the cycle, and is therefore independent of which
periodic point is chosen as the initial one. In higher dimensions the Jacobian
matrix Jp(zg) in (4.55) does depend on the initial point zg € p. However, as we
shall now show, the cycle stability eigenvalues are intrinsic property of a cycle
in any dimension. Consider the ith eigenvalue, eigenvector evaluated at a cycle
point x,

J,(x)e?(z) = A, D (z), zep,

and at another point on the cycle 2/ = f!(z). By the chain rule (4.30) the
Jacobian matrix at 2’ can be written as

I () = I (2) I (z) = Tp(a") T (z).
Defining the eigenvactor transported along the flow z — 2’ by e (2) = J*(z)e® (z),

we see that J, evaluated anywhere along the cycle has the same set of stability
eigenvalues {A, 1, Ap2, - Apa}

(Jp(a') — Ap1) D (@) =0, o' €p. (4.57)
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Quantities such as trJ,(z), detJ,(x) depend only on the eigenvalues of J,(x)
and not on z, hence in expressions such as

det (1 —J7) = det (1 —Jp(x)) (4.58)

we will omit reference to any particular cycle point x.

We sort the stability eigenvalues Ap1, Apo, ..., Apq of the [dxd] Jacobian
matrix J, evaluated on the p cycle into sets {e,m, c}

expanding: {Apet = {Api:|Apil > 1}
marginal: {Apm} = {Api:|Api| =1} (4.59)
contracting: {Ape} = {Api:|Api| <1}

and denote by A, (no spatial index) the product of expanding eigenvalues
Ap=]]Ape- (4.60)
e

Cycle stability exponents are defined as (see (4.16) (4.41) and (4.42) for ex-
amples) as stretching/contraction rates per unit time

Api = In[Ap ;| T (4.61)
We distinguish three cases

expanding: Poet = {pe: Ape >0}
elliptic: {Mom} = {Ppm Apm =0}
contracting: {Mel = {peiApe <0}, (4.62)

Cycle stability exponents are of interest because they are a local version of the
Lyapunov exponents (to be discussed below in sect. 6.3). However, we do care
about the sign of A,; and its phase (if A,; is complex), and keeping track of
those by case-by-case enumeration, as in (4.41) - (4.42), is a nuisance, so almost
all of our formulas will be stated in terms of stability eigenvalues A, ; rather than
in terms of stability exponents A ;.

Our task will be to determine the size of a neighborhood, and that is why
we care about the stability eigenvalues, and especially the unstable (expanding)
ones. Nearby points aligned along the stable (contracting) directions remain in
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the neighborhood of the trajectory x(t) = f(x0); the ones to keep an eye on
are the points which leave the neighborhood along the unstable directions. The
volume |M;| = []{ Ax; of the set of points which get no further away from f*(x)
than L, the typical size of the system, is fixed by the condition that Az;A; = O(L)
in each expanding direction i. Hence the neighborhood size scales as o< 1/|Ay)|
where A, is the product of expanding eigenvalues (4.60) only; contracting ones
play a secondary role.

Presence of marginal eigenvalues signals either an invariance of the flow (which
you should immediately exploit to simplify the problem), or a non-hyperbolicity
of a flow (source of much pain, hard to avoid).

A periodic orbit always has at least one marginal eigenvalue. As J*(x) trans-
ports the velocity field v(x) by (4.6), after a complete period

Ip(z)v(z) =v(z), (4.63)

and a periodic orbit always has an eigenvector e(l) parallel to the local velocity
field with eigenvalue

Ay =1. (4.64)

A periodic orbit p of a d-dimensional map is stable if the magnitude of every
one of its stability eigenvalues is less than one, |[A,;| <1 fori=1,2,...,d. The
region of parameter values for which a periodic orbit p is stable is called the
stability window of p.

4.7.1 Smooth conjugacies

So far we have established that for a given flow the cycle stability eigenvalues are
intrinsic to a given cycle. As we shall now see, they are intrinsic to the cycle in
any representation of the dynamical system.

That the cycle stability eigenvalues are an invariant property of the given dy-
namical system follows from elementary considerations of sect. 2.3: If the same
dynamics is given by a map f in = coordinates, and a map ¢ in the y = h(x) co-
ordinates, then f and g (or any other good representation) are related by (2.17),
a reparametrization and a coordinate transformation g = ho f o h~!. As both f
and g are arbitrary representations of the dynamical system, the explicit form of
the conjugacy h is of no interest, only the properties invariant under any trans-
formation h are of general import. Furthermore, a good representation should
not mutilate the data; h must be a smooth conjugacy which maps nearby cycle
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points of f into nearby cycle points of g. This smoothness guarantees that the
cycles are not only topological invariants, but that their linearized neighborhoods
are also metrically invariant. For a fixed point f(z) = z of a 1-dimensional map
this follows from the chain rule for derivatives,

J) = W h W) )
= W@ @ = @), (165)

and the generalization to the stability eigenvalues of periodic orbits of d-dimensional

flows is immediate.

As stability of a flow can always be rewritten as stability of a Poincaré section
return map, we find that the stability eigenvalues of any cycle, for a flow or a
map in arbitrary dimension, is a metric invariant of the dynamical system.

4.8 Going global: Stable/unstable manifolds

The invariance of stabilities of a periodic orbit is a local property of the flow. Now
we show that every periodic orbit carries with it stable and unstable manifolds
which provide a global topologically invariant foliation of the phase space.

The fixed or periodic point z* stability matrix J,(z*) eigenvectors describe
the flow into or out of the fixed point only infinitesimally close to the fixed point.
The global continuations of the local stable, unstable eigendirections are called
the stable, respectively unstable manifolds.  They consist of all points which
march into the fixed point forward, respectively backward in time

wWe = {zeM: fl(z)—a"—0ast— oo}
W' = {zeM:fHz)—a"—>0ast— oo} . (4.66)

The stable/unstable manifolds of a flow are rather hard to visualize, so as long
as we are not worried about a global property such as the number of times they
wind around a periodic trajectory before completing a parcourse, we might just
as well look at their Poincaré section return maps. Stable, unstable manifolds for
maps are defined by

W = {xeP:f"(z)—2"—0asn— oo}
W' = {zeP:f™z)—a"—>0asn— oo} . (4.67)
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For n — oo any finite segment of W* respectively W* converges to the linearized
map eigenvector €®, respectively €“. In this sense each eigenvector defines a
(curvilinear) axis of the stable, respectively unstable manifold. Conversely, we
can use an arbitrarily small segment of a fixed point eigenvector to construct a
finite segment of the associated manifold: The stable (unstable) manifold of the
central hyperbolic fixed point (x1,x1) can be constructed numerically by starting
with a small interval along the local stable (unstable) eigendirection, and iterating
the interval n steps backwards (forwards).

Both in the example of the Rossler flow and of the Kuramoto-Sivashinsky
system we have learned that the attractor is very thin, but otherwise the return
maps that we found were disquieting — neither fig. 3.2 nor fig. 3.3 appeared to be
one-to-one maps. This apparent loss of invertibility is an artifact of projection of
higher-dimensional return maps onto lower-dimensional subspaces. As the choice
of lower-dimensional subspace was entirely arbitrary, the resulting snapshots of
return maps look rather arbitrary, too. Other projections might look even less
suggestive. Such observations beg a question: Does there exist a “natural”,
intrinsically optimal coordinate system in which we should plot of a return map?
T As we shall see in sect. 7?7, the answer is yes: The intrinsic coordinates are
given by the stable/unstable manifolds, and a return map should be plotted as a
map from the unstable manifold back onto the unstable manifold.

a in depth:
S appendix C.1, p. 611

Commentary

Remark 4.1 Further reading. The chapter 1 of Gaspard’s monograph []
is recommended reading if you are interested in Hamiltonian flows, and
billiards in particular. A. Wirzba has generalized the stability analysis of
sect. 4.5 to scattering off 3-dimensional spheres (follow the links in www.nbi.dk/-
ChaosBook/extras/). A clear discussion of linear stability for the general
d-dimensional case is given in Gaspard [1], sect. 1.4.

Résumé

A neighborhood of a trajectory deforms as it is transported by the flow. In the
linear approximation, the matrix of variations A describes this shearing of an
infinitesimal neighborhood in an infinitesimal time step. The shearing after finite
time is described by the Jacobian matrixJ?. Its eigenvalues and eigendirections
describe deformation of an initial infinitesimal sphere of neighboring trajectories
into an ellipsoid time ¢ later. Nearby trajectories separate exponentially along the
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unstable directions, approach each other along the stable directions, and maintain
their distance along the marginal directions.

Periodic orbits play a central role in any invariant characterization of the
dynamics, as their existence and inter-relations are topological, coordinate choice
independent property of the dynamics. Furthermore, they form an infinite set of
metric invariants: The stability eigenvalues of a periodic orbit remain invariant
under any smooth nonlinear change of coordinates f — ho foh™! .
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Exercises

4.1 How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent by iterating the Hénon map

] [ 1-ax?+y
y | T | bx

fora=1.4,b=0.3.

(b) Now check how robust is the Lyapunov exponent for the Hénon attractor?
Evaluate numerically the Lyapunov exponent by iterating the Hénon map
for a = 1.39945219, b = 0.3. How much do you trust now your result for
the part (a) of this exercise?

4.2 A pinball simulator. Add to your exercise 3.7 pinball simulator a
routine that computes the the [2xx2] Jacobian matrix. To be able to compare
with the numerical results of coming chapters, work with R:a = 6 and/or 2.5

values.

4.3 Stadium billiard.  The Bunimovich stadium [?, ?] is a billiard with a point
particle moving freely within a two dimensional domain, reflected elastically at the border
which consists of two semi-circles of radius d = 1 connected by two straight walls of length

e

2a

At the points where the straight walls meet the semi-circles, the curvature of the border
changes discontinuously; these are the only singular points on the border. The length a
is the only parameter.

The Jacobian matrix associated with the reflection is given by (4.48). Here we take
pr = —1 for the semicircle sections of the boundary, and cos ¢y remains constant for all
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bounces in a rotation sequence. The time of flight between two semicircle bounces is
Tk = 2cos ¢r. The Jacobian matrix of one semicircle reflection folowed by the flight to
the next bounce is

3(1)<(1) 2C018¢k> (2/§OS¢]¢ (1))(1)(2/‘;’2% 2cols¢k>.

A shift must always be followed by k = 1,2,3, - - bounces along a semicircle, hence the
natural symbolic dynamics for this problem is n-ary, with the corresponding Jacobian
matrix given by shear (ie. the eigenvalues remain equal to 1 throughout the whole
rotation), and k bounces inside a circle lead to

_ —2k—1 2kcos¢
I =(1F (2k/cos¢ 2k —1 ) : (4.68)

The Jacobian matrix of a cycle p of length n,, is given by

Np

3= (6 T) (i 1) (1)

k=1

Adopt your pinball simulator to the Bunimovich stadium.

4.4 Fundamental domain fixed points. Use the formula (4.49) for billiard
Jacobian matrix to compute the periods 7}, and the expanding eigenvalues A, of
the fundamental domain 0 (the 2-cycle of the complete 3-disk space) and 1 (the
3-cycle of the complete 3-disk space) fixed points:

‘ Tp AP
0:| R—2 R—1+4+R\/1-2/R (4.70)

R-v3 -2E+1-22/1-V3/R

We have set the disk radius to a = 1.

!

4.5 Fundamental domain 2-cycle. Verify that for the 10-cycle the cycle length
and the trace of the Jacobian matrix are given by

Loy = 2/R2—V3R+1-2,

1 Lig(Lyo + 2)?
2o+ 2 4 - oS0 T AT 471
v 2 VBR/2-1 (4.71)

tI‘Jlo

The 10-cycle is drawn in fig. 10.4. The unstable eigenvalue A1q follows from (4.21).
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4.6 A test of your pinball simulator. Test your exercise 4.2 pinball sim-
ulator by comparing what it yields with the analytic formulas of exercise 4.4 and
4.5.

4.7 Birkhoff coordinates. Prove that the Birkhoff coordinates are phase-space
volume preserving. Hint: compute the determinant of (4.49).
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Chapter 5

Transporting densities

O what is my destination? (I fear it is henceforth chaos;)

Walt Whitman,
Leaves of Grass: Out of the Cradle Endlessly Rocking

(P. Cvitanovi¢, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2 and 3 we learned how to track an individual trajectory, and saw
that such a trajectory can be very complicated. In chapter 4 we studied a small
neighborhood of a trajectory and learned that such neighborhood can grow ex-
ponentially with time, making the concept of tracking an individual trajectory
for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-
voluted, the density of these points might evolve in a manner that is relatively
smooth. The evolution of the density of representative points is for this reason
(and other that will emerge in due course) of great interest. So are the behaviors
of other properties carried by the evolving swarm of representative points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of evolution operators.

5.1 Measures

Do I then measure, O my God, and know not what I
measure?

St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote by du(z) = p(z)dr. An intuitive way to define

97



98

CHAPTER 5. TRANSPORTING DENSITIES

12\
L

(a) (b)

Figure 5.1: (a) First level of partitioning: A coarse partition of M into regions Mg, My,
and My. (b) n = 2 level of partitioning: A refinement of the above partition, with each

region M subdivided into M;o, M;1, and M;s.

and construct a physically meaningful measure is by a process of coarse-graining.
Consider a sequence 1, 2, ..., n, ... of more and more refined partitions of the
phase space, fig. 5.1, into regions M; defined by the characteristic function

oy _ ) 1 ifz € region M;
xi(w) = { 0 otherwise ' (5-1)

A coarse-grained measure is obtained by assigning the “mass”, or the fraction of
trajectories contained in the ith region M; C M at the nth level of partitioning
of the phase space:

A = [ dnteyute) = /Mi duta) = [ dapla). (5.2)

k3

p(z) = p(z,t) is the density of representative points in the phase space at time
t. This density can be (and in chaotic dynamics often is) an arbitrarily ugly
function, and it may display remarkable singularities; for instance, there may
exist directions along which the measure is singular with respect to the Lebesgue
measure. As our intent is to sprinkle the phase space with a finite number of
initial points, we shall assume that the measure can be normalized

(n)

where the sum is over subregions i at the nth level of partitioning. The in-
finitesimal measure dxp(x) can be thought of as a continuum limit of Ayu; =
|IM;|p(x;), x; € M;, with normalization

/ dx p(x) =1. (5.4)
M
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5.2. DENSITY EVOLUTION 99

While dynamics can lead to very singular p’s, in practice we cannot do better
than to measure it averaged over some region M;, and that is why we insist
on “coarse-graining” here. One is free to think of a measure as a probability
density, as long as one keeps in mind the distinction between deterministic and
stochastic flows. In deterministic evolution there are no probabilistic evolution
kernels, the density of trajectories is transported deterministically. What this
distinction means will became apparent later on: for deterministic flows our trace
and determinant formulas will be ezact, while for quantum and stochastic flows
they will only be the leading saddlepoint approximations.

So far, any arbitrary sequence of partitions will do. What are intelligent ways
of partitioning the phase space? We postpone the answer to chapter 77, after we
have developed some intuition about how the dynamics transports densities.

5.2 Density evolution

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in
a region M; at t = 0. As the flow evolves, this region is carried into f'(M,),
as in fig. 2.1(b). No trajectory is created or destroyed, so the conservation of
representative points requires that

/ dz p(z,t) _/ dzo p(o,0) .
FH(M;) M;

If the flow is invertible and the transformation zo = f~!(z) is single valued, we
can transform the integration variable in the expression on the left to

/ | dxo p(f'(zo),t) |det Jt(:po)‘ .

(3

We conclude that the density changes with time as the inverse of the Jacobian
(4.32)

plat) = i o= f(ao), (5.5)

which makes sense: the density varies inversely to the infinitesimal volume oc-
cupied by the trajectories of the flow. The manner in which a flow transports
densities may be recast into language of operators, by writing

p(x,t) = Lp(z) = /deo §(z = (o)) p(wo,0). (5.6)
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Let us check this formula. Integrating Dirac delta functions is easy: [ M drd(z) =
1if 0 € M, zero otherwise. Integral over a one-dimensional Dirac delta function
picks up the Jacobian of its argument evaluated at all of its zeros:

/d:ré(h(:r)) - ¥ ’hé),‘ , (5.7)

x€Zero [h]

and in d dimensions the denominator is replaced by

/ da 5(h(z)) = %@) | (5.8)
x€Zero [h] ’det “ox
Now you can check that (5.6) is just a rewrite of (5.5):
Llp(x) = Z & (1-dimensional)
= Z __pzo) (d-dimensional) . (5.9)

\ |det Jt(x0)|

zo=f"t(z
For a deterministic, invertible flow there is only one zy preimage of x; allowing
for multiple preimages also takes account of noninvertible mappings such as the

“stretch&fold” maps of the interval, to be discussed in the next example, or more
generally in sect. 10.5.

We shall refer to the kernel of (5.6) as the Perron-Frobenius operator:

LNz, y) =6(z — f'(y)) - (5.10)

If you do not like the word “kernel” you might prefer to think of £!(z,y) as a
matrix with indices x, y. The Perron-Frobenius operator assembles the density
p(z,t) at time ¢ by going back in time to the density p(zg,0) at time ¢ = 0.

a in depth:
. appendix D, p. 617
5.2.1 A piecewise-linear example

What is gained by reformulation of dynamics in terms of “operators”? We start
by considering a simple example where the operator is a [2 X 2] matrix. Assume
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5.2. DENSITY EVOLUTION 101

f(x) 05—

Figure 5.2: A piecewise-linear repeller: All tra-

jectories that land in the gap between the f; and o
f1 branches escape. .

the expanding 1-d map f(x) of fig. 5.2, a piecewise-linear 2—-branch repeller with
slopes Ag >1and Ay < —1:

fo= Aoz if zeMy=10,1/A
f(x)—{ f—A(e—1) if meM(f:th/%l,u : (5.11)

Both f(My) and f(M;) map onto the entire unit interval M = [0,1]. Assume a
piecewise constant density

_f opo ifze My
p(x) —{ o1 ifze M - (5.12)

There is no need to define p(z) in the gap between My and Mj, as any point
that lands in the gap escapes. The physical motivation for studying this kind
of mapping is the pinball game: f is the simplest model for the pinball escape,
fig. 1.6, with fy and f; modelling its two strips of survivors.

As can be easily checked by using (5.9), the Perron-Frobenius operator acts
on this piecewise constant function as a [2x2] “transfer” matrix with matrix
elements

@)-o(F B)E)
1 Aol A1l P1

stretching both pg and p; over the whole unit interval A, and decreasing the
density at every iteration. As in this example the density is constant after one
iteration, £ has only one eigenvalue e* = 1/|Ag| + 1/|A1], with the constant
density eigenvector pg = pi. 1/|Ao|, 1/|A1| are respectively the sizes of | M|,

| M| intervals, so the ezact escape rate (1.3) — the log of the fraction of survivors
at each iteration for this linear repeller — is given by the sole eigenvalue of L:

v = —so=—In(1/[Ao| + 1/[A4]). (5.14)
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Voila! Here is the rationale for introducing operators — in one time step we
have solved the problem of evaluating escape rate at infinite time. Such simple
explicit matrix representation of the Perron-Frobenius operator is a consequence
of piecewise linearity of f, and the restriction of the densities p to the space
of piecewise constant functions. In general case there will exist no such finite-
dimensional representation for the Perron-Frobenius operator. To a student with
practical bend the example does suggest a strategy for constructing evolution
operators for smooth maps, as limits of partitions of phase space into regions
M;, with a piecewise-linear approximation f; to dynamics in each region, but
that would be too naive; much of the physically interesting spectrum would be
missed. As we shall see, the choice of function space for p is crucial, and the
physically motivated choice is a space of smooth functions, rather than the space
of piecewise constant functions.

5.3 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

p(f'(2)) = p(z) = p(f~(2)). (5.15)

Conversely, if such a density exists, the transformation f!(x) is said to be measure
preserving. As we are given deterministic dynamics and our goal is computation
of asymptotic averages of observables, our task is to identify interesting invariant
measures for a given f!(x). Invariant measures remain unaffected by dynamics,
so they are fixed points (in the infinite-dimensional function space of p densities)
of the Perron-Frobenius operator (5.10), with the unit eigenvalue:

Cip(x) = /Mdy 5 - I'(w))p(y) = pl). (5.16)

Depending on the choice of f(z), there may be no, one, or many solutions of
the eigenfunction condition (5.16). For instance, a singular measure du(x) =
5(z — z*)dx concentrated on an equilibrium point z* = f!(z*), or any linear
combination of such measures, each concentrated on a different equilibrium point,
is stationary. So there are infinitely many stationary measures you can construct,
almost all of them unnatural in the sense that a slightest perturbation will destroy
them. Intutitively, the “natural” measure should be the one least sensitive to
inevitable facts of life, such as noise, not matter how weak.
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5.3. INVARIANT MEASURES 103

5.3.1 Natural measure

The natural or equilibrium measure can be defined as the limit

o) = Jim £ [ dr = 7o) (517)

t—o0

where xg is a generic inital point. Staring at an average over co many Dirac
deltas is not a prospect we cherish. From a physical point of view, it is more
sensible to think of the natural measure as a limit of the transformations which
an initial smooth distribution experiences under the action of f, rather than as
a limit computed from a single trajectory. Generated by the action of f, the
natural measure satisfies the stationarity condition (5.16) and is invariant by
construction. From the computational point of view, the natural measure is the
visitation frequency defined by coarse-graining, integrating (5.17) over the M;
region

;= lim —, (5.18)
t—o0

where t; is the accumulated time that a trajectory of total duration ¢ spends in
the M, region, with the initial point o picked from some smooth density p(z).

Let a = a(x) be any observable, a function belonging to some function space,
for instance the space of integrable functions L', that associates to each point
in phase space a number or a set of numbers. The observable reports on some
property of the dynamical system (several examples will be given in sect. 6.1).
The space average of the observable a with respect to measure p is given by the
d-dimensional integral over the phase space M:

1 .
(a) = W/de p(x)a(z), |pm|= /de p(x) = mass in M. (5.19)

For the time being we assume that the phase space M has a finite dimension and
a finite volume. By its definition (a) is a function(al) of p , (a) = (a},,.

Inserting the right hand side of (5.17) into (5.19) we see that the natural
measure corresponds to time average of the observable a along a trajectory of the
initial point xg,

a(zo) = lim ~ [ dra(f7(x0)). (5.20)

t—o0 0
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104 CHAPTER 5. TRANSPORTING DENSITIES

Figure 5.3: Natural measure (5.18) for the Hénon
map (3.8) strange attractor at parameter values
(a,b) = (1.4,0.3). See fig. 3.4 for a sketch of
the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann)

Analysis of the above asyptotic time limit is the central problem of ergodic
theory.  More precisely, the Birkhoff ergodic theorem asserts that if a natural
measure p exists, the limit a(zg) for the time average (5.20) exists for all initial
xo. As we shall not rely on this result in what follows we forgo a proof here.
Furthermore, if the dynamical system is ergodic, the time average over almost
any trajectory tends to the space average

lim % dr a(f7(z0)) = (a) (5.21)

t—o00 0

for “almost all” initial xg. By “almost all” we mean that the time average is
independent of the initial point apart from a set of p-measure zero. For future
reference, we note a further property, stronger than ergodicity: if you can es-
tablish the space average of a product of any two variables decorrelates with
time,

lim (a(0)b(t)) = {a) (b) , (5.22)

t—o00

the dynamical system is said to be mizing.

An example of a numerical calculation of the natural measure (5.18) for the
Hénon attractor (3.8) is given in fig. 5.3. The phase space is partitioned into
many equal size areas p;, and the coarse grained measure (5.18) computed by a
long time iteration of the Hénon map, and represented by the height of the pin
over area M;. What you see is a typical invariant measure complicated, singular
function concentrated on a fractal set. If an invariant measure is quite singular
(for instance a Dirac 0 concentrated on a fixed point or a cycle), its existence
is most likely of limited physical import. No smooth inital density will converge
to this measure if the dynamics is unstable. In practice the average (5.17) is
problematic and often hard to control, as generic dynamical systems are neither
uniformly hyperbolic nor structurally stable: it is not known whether even the
simplest model of a strange attractor, the Hénon attractor, is a strange attractor
or merely a long stable cycle.

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you will never ever need to compute them. How
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so? The evolution operators that we turn to next, and the trace and determinant
formulas that they will lead us to will assign the correct natural measure weights
to desired averages without recourse to any explicit computation of the coarse-
grained measure AM;.

5.4 Koopman, Perron-Frobenius operators

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

W. Shakespeare: The Winter’s Tale

The way in which time evolution acts on densities may be rephrased in the lan-
guage of functional analysis, by introducing the Koopman operator, whose action
on a phase space function a(x) is to replace it by its downstream value time ¢
later, a(z) — a(x(t)) evaluated at the trajectory point x(t):

Kla(z) = a(f'(z)). (5.23)

Observable a(x) has no explicit time dependence; all time dependence is carried
in its evaluation at z(t) rather than at z = x(0).

Suppose we are starting with an initial density of representative points p(x):
then the average value of a(z) evolves as

1 t = L X ta X i
@) = o /Mdm(f (@)ola) = /Md [Kta()] pz)

An alternative point of view (analogous to the shift from the Heisenberg to the
Schrodinger picture in quantum mechanics) is to push dynamical effects into the
density. In contrast to the Koopman operator which advances the trajectory by
time ¢, the Perron-Frobenius operator (5.10) depends on the trajectory point time
t in the past, so the Perron-Frobenius operator is the adjoint of the Koopman
operator

/ dz [K'a(z)] p(z) :/ dz a(z) [L'p(z)] . (5.24)
M M

Checking this is an easy change of variables exercise. For finite dimensional
deterministic invertible flows the Koopman operator (5.23) is simply the inverse
of the Perron-Frobenius operator (5.6), so in what follows we shall not distinguish
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106 CHAPTER 5. TRANSPORTING DENSITIES

the two. However, for infinite dimensional flows contracting forward in time and
for stochastic flows such inverses do not exist, and there you need to be more
careful.

The family of Koopman’s operators {lCt } teRy forms a semigroup parametrized
by time
(a) K'=1

(b) KIKY = Kt t,t' >0 (semigroup property) ,

with the gemerator of the semigroup, the generator of infinitesimal time transla-
tions defined by

A = lim 1(/CLI).

t—0t+

(If the flow is finite-dimensional and invertible, 4 is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order,
as in (2.4):

Aa(z) = lim — (a(ft(x)) — a(m)) = vi(z)0a(x) . (5.25)

Of course, that is nothing but the definition of the time derivative, so the equation
of motion for a(x) is

<% - A) a(z) = 0. (5.26)

The finite time Koopman operator (5.23) can be formally expressed by exponen-
tiating the time evolution generator A as

Kt =elA. (5.27)

The generator A looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothing but a translation by
time x velocity:

etva%a(x) =a(x + tv). (5.28)
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As we will not need to implement a computational formula for general e in
what follows, we relegate making sense of such operators to appendix D.2. Here
we limit ourselves to a brief remark about the notion of “spectrum” of a linear
operator.

The Koopman operator K acts multiplicatively in time, so it is reasonable to
suppose that there exist constants M > 0, 8 > 0 such that ||Kf|| < Me!? for all
t > 0. What does that mean? The operator norm is defined in the same spirit in
which we defined the matrix norms in sect. 4.2.1: We are assuming that no value
of K'p(z) grows faster than exponentially for any choice of function p(x), so that
the fastest possible growth can be bounded by e*?, a reasonable expectation in
the light of the simplest example studied so far, the exact escape rate (5.14). If
that is so, multiplying X! by e~*? we construct a new operator e "kt = ¢t(A—5)
which decays exponentially for large t, ||e/A=P)|| < M. We say that e *0K* is
an element of a bounded semigroup with generator A — 1. Given this bound, it
follows by the Laplace transform

& 1
A dt Q_Stlct = m N Res > ﬁ, (529)

that the resolvent operator (s —.A)~! is bounded

0.0
: H S/ dte St MetP = M )
s — 0 s—0

If one is interested in the spectrum of I, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for the
continuous time flows the Laplace transform is the tool that brings down the
generator in (5.27) into the resolvent form (5.29) and enables us to study its
spectrum.

a in depth:
# appendix D.2, p. 618
5.4.1 Liouville operator

J‘ A case of special interest is the Hamiltonian or symplectic flow defined by
the time-independent Hamiltonian equations of motion (2.13). A reader versed in
quantum mechanics will have observed by now that with replacement A — — %I:I ,
where H is the quantum Hamiltonian operator, (5.26) looks rather much like the
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time dependent Schrodinger equation, so this is probably the right moment to
figure out what all this means in the case of Hamiltonian flows.

For separable Hamiltonians of form H = p?/2m + V(q), the equations of
motion are

. _ Db . oV (q)
qi = —, Di = — .
m dq;

(5.30)

The evolution equations for any p, ¢ dependent quantity @ = Q(p, q) are given
by

Q _0Qdn  0Qdn _oH0Q 9Qon
dt  Odq; dt ~ Op; dt  Op; Oq;  Opi Ogq;

(5.31)

As equations with this structure arise frequently for symplectic flows, it is con-
venient to introduce a notation for them, the Poisson bracket

% 0B B % 0B
Opi 0g;  0q; Opi

A, B] = (5.32)

In terms of Poisson brackets the time evolution equation (5.31) takes the compact
form

dQ
— =H.Ql. (5.33)

The phase space flow velocity is v = (¢,p), where the dot signifies time
derivative for fixed initial point. Hamilton’s equations (2.13) imply that the flow
is incompressible, 9;v; = 0, so for Hamiltonian flows the equation for p reduces
to the continuity equation for the density:

Oep+ 0i(pvi) =0. (5.34)

Consider evolution of the phase space density p of an ensemble of noninter-
acting particles subject to the potential V' (g); the particles are conserved, so

dtp q,p,t) = ot Qzaqi pzapi p\q,p,t) =V.

Inserting Hamilton’s equations (2.13) we obtain the Liouwville equation, a special
case of (5.26):

%p(q,p,t) = —Ap(q,p,t) = [H, p(q,p, )], (5.35)
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where [, | is the Poisson bracket (5.32). The generator of the flow (5.25) is now
the generator of infinitesimal symplectic transformations,

0 0 0H 0 OH 0
=(i— + Ppi— = - ) 5.36
A=d 9 oy Opi  Opi 9q;  partialg; Op; (5.36)
or, by the Hamilton’s equations for separable Hamiltonians
pi O 0
=—-———+4+0V(qg)—. 5.37
A - + 9V (q) o0 (5.37)

This special case of the time evolution generator (5.25) for the case of symplectic
flows is called the Liouwville operator. You might have encountered it in statistical
mechanics, in rather formal settings, while discussing what ergodicity means for
1023 hard balls, or on the road from Liouville to Boltzmann. Here its action will
be very tangible; we shall apply the evolution operator to systems as small as 1
or 2 hard balls and to our suprise learn that suffices to get a grip on some of the
fundations of the classical nonequilibrium statistical mechanics.

a in depth:
. sect. D.2, p. 618
Commentary

Remark 5.1 Ergodic theory. An overview of ergodic theory is outside
the scope of this book: the interested reader may find it useful to consult
[1]. The existence of time average (5.20) is the basic result of ergodic theory,
known as the Birkhoff theorem, see for example refs. [1, 2], or the statement
of the theorem 7.3.1 in ref. [3]. The natural measure (5.18) (more carefully
defined than in the above sketch) is often referred to as the SBR or Sinai-
Bowen-Ruelle measure [14, 13, 16]. The Heisenberg picture in dynamical
system theory has been introduced in refs. [4, 5], see also ref. [3].

Remark 5.2 Koopman operators.  Inspired by the contemporary ad-

vances in quantum mechanics, Koopman [1] observed in 1931 that X! is
unitary on L?(u) Hilbert spaces. The Liouville/Koopman operator is the
classical analogue of the quantum evolution operator — the kernel of Lt(y, x)
introduced in (5.16) (see also sect. 6.2) is the analogue of the Green’s func-
tion. The relation between the spectrum of the Koopman operator and
classical ergodicity was formalized by von Neumann [5]. We shall not use

printed June 19, 2002 /chapter/measure.tex 27sep2001

& 513

on p. 116



110 CHAPTER 5.

Hilbert spaces here and the operators that we shall study will not be uni-
tary. For a discussion of the relation between the Perron-Frobenius oper-
ators and the Koopman operators for finite dimensional deterministic in-
vertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [3] and Gaspard [1].

Remark 5.3 Bounded semigroup.  For a discussion of bounded semi-
groups of page 107 see, for example, Marsden and Hughes [6].

Résumé

In a chaotic system, it is not possible to calculate accurately the long time tra-
jectory of a given initial point. We study instead the evolution of the measure, or
the density of representative points in phase space, acted upon by an evolution
operator. Essentially this means trading in nonlinear dynamical equations on
finite low-dimensional spaces x = (x1,z2---x4) for linear equations on infinite
dimensional vector spaces of density functions p(x).

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. Both in classical and quantum mechanics one has a choice of
implementing dynamical evolution on densities (“Schrédinger picture”, sect. 5.4)
or on observables (“Heisenberg picture”, sect. 6.2 and chapter 7): in what follows
we shall find the second formulation more convenient, but the alternative is worth
keeping in mind when posing and solving invariant density problems.

For long times the dynamics is described in terms of stationary measures, that
is, fixed points of certain evolution operators. The most physical of stationary
measures is the natural measure, a measure robust under perturbations by weak
noise.
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Exercises

5.1 Integrating over Dirac delta functions. Let us verify a few of the
properties of the delta function and check (5.9), as well as the formulas (5.7) and
(5.8) to be used later.

(a) If f:R? — R? then show that

1
dz = _—
/Rd Xz (f(x)) xe;(o) |det 8xf|

(b) The delta function can be approximated by delta sequences, for example

2

/ dad(a) (@) = iy [ dr f(@).

Use this approximation to see whether the formal expression

/R dx 6(x?)

makes sense.

5.2 Derivatives of Dirac delta functions.  Consider §*)(z) = %5(30), and
show that

(a) Using integration by parts, determine the value of

dz 8 (y).
R

25 () — 1 [y

& [wi) 2 W e 539
. ()5 (1) — gt vy Wy

©  faneiw 2 Wor (3 ) 6

These formulas are useful incomputing effects of weak noise on deterministic dynamics [7].
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5.3 L! generates a semigroup. Check that the Perron-Frobenius operator
has the semigroup property,

/ dzL%2(y, 2) LM (z,2) = L (y, 2) t1,t2 > 0. (5.40)
M

As the flows that we tend to be interested in are invertible, the £’s that we will
use often do form a group, with t;,t5 € R.

5.4 Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of the fraction of trajectories re-
maining trapped in the interval [0, 1] for the tent map

f(z) =a(l —2]x —0.5])
for several values of a.

(b) Determine analytically the a dependence of the escape rate v(a).
(c) Compare your results for (a) and (b).

5.5 Invariant measure. We will compute the invariant measure for two
different piecewise linear maps.

(a) Verify the matrix £ representation (5.13).

(b) The maximum of the first map has value 1. Compute an invariant measure
for this map.

(c) Compute the leading eigenvalue of £ for this map.
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(d) For this map there is an infinite number of invariant measures, but only
one of them will be found when one carries out a numerical simulation. De-
termine that measure, and explain why your choice is the natural measure
for this map.

(e) In the second map the maximum is at o = (3 — +/5)/2 and the slopes are
+(+/5 + 1)/2. Find the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values is (v/5 + 1)/2.

(medium difficulty)

5.6 Escape rate for a flow conserving map. Adjust Ag, A; in (5.11) so that
the gap between the intervals Mg, M vanishes. Check that in that case the escape rate
equals zero.

5.7 Eigenvalues of the skew Ulam tent map Perron-Frobenius operator.
Show that for the skew Ulam tent map
1

0.8
0.6
0.4

0.2

02 04 06 038 1

fo(x) = Aoz, z € Mo=10,1/Ao)
f(z) —{ 1) = A§gl<1_x>, e My = (1/Ag. 1. (5.41)

the eigenvalues are available analytically, compute the first few.
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5.8 “Kissing disks”* (continuation of exercises 3.7 and 3.8). Close off the escape
by setting R = 2, and look in the real time at the density of the Poincaré section iterates
for a trajectory with a randomly chosen initial condition. Does it look uniform? Should
it be uniform? (hint - phase space volumes are preserved for Hamiltonian flows by the
Liouville theorem). Do you notice the trajectories that loiter around special regions of
phase space for long times? These exemplify “intermittency”, a bit of unpleasantness
that we shall return to in chapter 16.

5.9 Invariant measure for the Gauss map. Consider the Gauss map (we shall
need this map in chapter 19):

f(x):{i[;} iig

where [ ] denotes the integer part.

(a) Verify that the density

pa) = o

- log21+x
is an invariant measure for the map.

(b) Is it the natural measure?

5.10 Perron-Frobenius operator is the adjoint of the Koopman operator.
Check (5.24) - it might be wrong as it stands. Pay attention to presence/absence of a
Jacobian.

5.11 Exponential form of the semigroup. Check that the Koopman operator
and the evolution generator commute, K‘'A = AK!, by considering the action of both
operators on an arbitrary phase space function a(x).

5.12 A as a generator of translations. Verify that for a constant velocity field
the evolution generator A n (5.28) is the generator of translations,

e“’é’%a(x) = a(x + tv).

(hint: expand a(z) in a Tylor series.)
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5.13 Incompressible flows. Show that (5.9) implies that po(z) = 1 is an
eigenfunction of a volume preserving flow with eigenvalue sy = 0. In particular, this
implies that the natural measure of hyperbolic and mixing Hamiltonian flows is uniform.
Compare with the numerical experiment of exercise 5.8.
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Chapter 6
Averaging

For it, the mystic evolution;
Not the right only justified
— what we call evil also justified.

Walt Whitman,
Leaves of Grass: Song of the Universal

We start by discussing the necessity of studying the averages of observables in
chaotic dynamics, and then cast the formulas for averages in a multiplicative
form that motivates the introduction of evolution operators and further formal
developments to come. The main result is that any dynamical average measurable
in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator. In order to keep our toes closer to the ground,
in sect. 6.3 we try out the formalism on the first quantitative diagnosis that a
system’s got chaos, Lyapunove exponents.

6.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified
initial condition, no matter how precise, will fill out the entire accessible phase
space. Hence for chaotic dynamics one cannot follow individual trajectories for a
long time; what is attainable is a description of the geometry of the set of possible
outcomes, and evaluation of long time averages. Examples of such averages are
transport coefficients for chaotic dynamical flows, such as escape rate, mean drift
and diffusion rate; power spectra; and a host of mathematical constructs such as
generalized dimensions, entropies and Lyapunov exponents. Here we outline how
such averages are evaluated within the evolution operator framework. The key
idea is to replace the expectation values of observables by the expectation values
of generating functionals. This associates an evolution operator with a given
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observable, and relates the expectation value of the observable to the leading
eigenvalue of the evolution operator.

6.1.1 Time averages

Let a = a(z) be any observable, a function that associates to each point in phase
space a number, a vector, or a tensor. The observable reports on a property of
the dynamical system. It is a device, such as a thermometer or laser Doppler
velocitometer. The device itself does not change during the measurement. The
velocity field a;(z) = v;(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an experiment at instant 7 are
examples of scalar observables. We define the integrated observable A as the time
integral of the observable a evaluated along the trajectory of the initial point xg,

At(z0) = /0 dr a( [ (z0)). (6.1)

If the dynamics is given by an iterated mapping and the time is discrete, t — n,
the integrated observable is given by

3
L

A" (o) = ) a(f*(x0)) (6.2)
0

b
Il

(we suppress possible vectorial indices for the time being). For example, if the
observable is the velocity, a;(z) = v;(z), its time integral Af(zo) is the trajectory
Al(zo) = xi(t). Another familiar example, for Hamiltonian flows, is the action
associated with a trajectory z(t) = [p(t), ¢(t)] passing through a phase space point
xo = [p(0),¢(0)] (this function will be the key to the semiclassical quantization
of chapter 22):

Al(zy) = / dr é(r) - p(r). (6.3)

The time average of the observable along a trajectory is defined by

a(zg) = lim %At(xo). (6.4)

t—o00

If a does not behave too wildly as a function of time — for example, if a;(x) is
the Chicago temperature, bounded between —80°F and +130°F for all times —
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6.1. DYNAMICAL AVERAGING 119

At(xg) is expected to grow not faster than ¢, and the limit (6.4) exists. For an
example of a time average - the Lyapunov exponent - see sect. 6.3.

The time average depends on the trajectory, but not on the initial point on
that trajectory: if we start at a later phase space point f7(xg) we get a couple
of extra finite contributions that vanish in the ¢ — oo limit:

t+T
o) = Jim 1 [ dra(r @)
T t+T
— a0 - fim 7 ([ aratre - [ dratsa)

The integrated observable Af(xg) and the time average a(zo) take a particu-
larly simple form when evaluated on a periodic orbit. Define

T,
flows: A, = apr:/ pa(fT(xo))dT, ToED
0
np—1
maps: = apnp = Z a(f*(zo)) , (6.5)
i=0

where p is a prime cycle, T}, is its period, and n,, is its discrete time period in
the case of iterated map dynamics. A, is a loop integral of the observable along
a single parcourse of a prime cycle p, so it is an intrinsic property of the cycle,
independent of the starting point z¢ € p. (If the observable a is not a scalar but
a vector or matrix we might have to be more careful in defining an average which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtain A, repeated r times. Evaluation of the asymptotic time
average (6.4) requires therefore only a single traversal of the cycle:

A, (6.6)

However, a(zg) is in general a wild function of z; for a hyperbolic system
ergodic with respect to a smooth measure, it takes the same value (a) for almost
all initial z¢, but a different value (6.6) on any periodic orbit, that is, on a dense
set of points (fig. 6.1(b)). For example, for an open system such as the Sinai gas of
sect. 18.1 (an infinite 2-dimensional periodic array of scattering disks) the phase
space is dense with initial points that correspond to periodic runaway trajectories.
The mean distance squared traversed by any such trajectory grows as z(t)? ~
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'BREODICT:  <p> = faxucopen)
Ly

oo
N Irne’a.sur&/.{ (2}

M + 3o

Figure 6.1: (a) A typical chaotic trajectory explores the phase space with the long time
visitation frequency corresponding to the natural measure. (b) time average evaluated along
an atypical trajectory such as a periodic orbit fails to explore the entire accessible phase space.

(PC: clip out "Ergodic”; need to draw (b) here!)

t2, and its contribution to the diffusion rate D ~ x(t)?/t, (6.4) evaluated with
a(z) = x(t)?, diverges. Seemingly there is a paradox; even though intuition says
the typical motion should be diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust averaging,

that is, averaging also over the initial x, and worrying about the measure of the
“pathological” trajectories.

6.1.2 Space averages

The space average of a quantity a that may depend on the point = of phase space
M and on the time ¢ is given by the d-dimensional integral over the d coordinates
of the dynamical system:

1
@0 = o | dwaan)

M| = / dr = volume of M. (6.7)
M

The space M is assumed to have finite dimension and volume (open systems like
the 3-disk game of pinball are discussed in sect. 6.1.3).

What is it we really do in experiments? We cannot measure the time average
(6.4), as there is no way to prepare a single initial condition with infinite precision.
The best we can do is to prepare some initial density p(z) perhaps concentrated
on some small (but always finite) neighborhood p(z) = p(x,0), so one should
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6.1. DYNAMICAL AVERAGING 121

abandon the uniform space average (6.7), and consider instead

1
@, = 3 /de p(@)a(a(t)) (6.9)

We do not bother to lug the initial p(z) around, as for the ergodic and mix-
ing systems that we shall consider here any smooth initial density will tend to
the asymptotic natural measure ¢t — oo limit p(x,t) — po(z), so we can just as
well take the initial p(x) = const. . The worst we can do is to start out with
p(x) = const., as in (6.7); so let us take this case and define the ezpectation value
(a) of an observable a to be the asymptotic time and space average over the phase
space M

(a) = Tim —— d:c%/o dra(f7(z)). (6.9)

t—oo | M| Jpq

We use the same (- - -) notation as for the space average (6.7), and distinguish the
two by the presence of the time variable in the argument: if the quantity (a)(t)
being averaged depends on time, then it is a space average, if it does not, it is
the expectation value (a).

The expectation value is a space average of time averages, with every x € M
used as a starting point of a time average. The advantage of averaging over space
is that it smears over the starting points which were problematic for the time
average (like the periodic points). While easy to define, the expectation value (a)
turns out not to be particularly tractable in practice. Here comes a simple idea
that is the basis of all that follows: Such averages are more conveniently studied
by investigating instead of (a) the space averages of form

t 1 t
AN = — | da PN @), 6.10
() W\/M ve (6.10)

In the present context (3 is an auxiliary variable of no particular physical signifi-
cance. In most applications 3 is a scalar, but if the observable is a d-dimensional
vector a;(z) € R?, then (8 is a conjugate vector 3 € R%; if the observable is a
d x d tensor, ( is also a rank-2 tensor, and so on. Here we will mostly limit the
considerations to scalar values of (.

If the limit a(xg) for the time average (6.4) exists for “almost all” initial z
and the system is ergodic and mixing (in the sense of sect. 1.3.1), we expect the
time average along almost all trajectories to tend to the same value @, and the
integrated observable A’ to tend to ta. The space average (6.10) is an integral over
exponentials, and such integral also grows exponentially with time. So as t — oo
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we would expect the space average of <exp(ﬂ . At)> itself to grow exponentially
with time

<€B~At> x (8

and its rate of growth to go to a limit

1

s(8) = lim - In <eﬁ'Az> . (6.11)
t—oo t

Now we understand one reason for why it is smarter to compute <exp(ﬂ . At)>

rather than (a): the expectation value of the observable (6.9) and the moments

of the integrated observable (6.1) can be computed by evaluating the derivatives

of s(8)

0s B Loy —

82_/85:0 B tli)I&t<A>_<>’

04s - t t

0P|y tlir?ot(<AA>—<A><A ) (6.12)
= Jlim (4"~ t(a))?) ,

and so forth. We have written out the formulas for a scalar observable; the vector
case is worked out in the exercise 6.3. If we can compute the function s(3), we
have the desired expectation value without having to estimate any infinite time
limits from finite time data.

Suppose we could evaluate s(/3) and its derivatives. What are such formulas
good for? A typical application is to the problem of describing a particle scat-
tering elastically off a 2-dimensional triangular array of disks. If the disks are
sufficiently large to block any infinite length free flights, the particle will diffuse
chaotically, and the transport coefficient of interest is the diffusion constant given
by <:U(t)2> ~ 4Dt. In contrast to D estimated numerically from trajectories x(t)
for finite but large ¢, the above formulas yield the asymptotic D without any
extrapolations to the t — oo limit. For example, for a; = v; and zero mean drift
(v;) = 0, the diffusion constant is given by the curvature of s(3) at 8 =0,

: (6.13)

1
D= lim —
A 5 ¢ "2 Z 6ﬂ2

so if we can evaluate derivatives of s([3), we can compute transport coefficients
that characterize deterministic diffusion. As we shall see in chapter 18, periodic
orbit theory yields an explicit closed form expression for D.
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W fast track:
sect. 6.2, p. 124
6.1.3 Averaging in open systems

J‘ If the M is a compact region or set of regions to which the dynamics
is confined for all times, (6.9) is a sensible definition of the expectation value.
However, if the trajectories can exit M without ever returning,

/ dy §(y — ff(z0)) =0 for t > tegit , r9g €M,
M

we might be in trouble. In particular, for a repeller the trajectory f!(zo) will
eventually leave the region M, unless the initial point x¢ is on the repeller, so
the identity

/ dyé(y — fizo)) =1, t>0, iff xyp € non-wandering set  (6.14)
M

might apply only to a fractal subset of initial points a set of zero Lebesgue
measure. Clearly, for open systems we need to modify the definition of the
expectation value to restrict it to the dynamics on the non—wandering set, the
set of trajectories which are confined for all times.

Note by M a phase space region that encloses all interesting initial points, say
the 3-disk Poincaré section constructed from the disk boundaries and all possible
incidence angles, and denote by | M| the volume of M. The volume of the phase
space containing all trajectories which start out within the phase space region M
and recur within that region at the time ¢

M) = /M dady(y — f'(x)) ~ IMle™ (6.15)

is expected to decrease exponentially, with the escape rate v. The integral over ES sect. 1.3.5
x takes care of all possible initial points; the integral over y checks whether their

trajectories are still within M by the time ¢. For example, any trajectory that ES sect. 14.1
falls off the pinball table in fig. 1.1 is gone for good.

The non—wandering set can be very difficult object to describe; but for any
finite time we can construct a normalized measure from the finite-time covering
volume (6.15), by redefining the space average (6.10) as

par\ _ / do — 1 BAw) L / d oA @)t (6.16
(& = X (& ~ T € . .
() = |, 2 T ™My )
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in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factor e’*. What
does this mean? Once we have computed v we can replenish the density lost to
escaping trajectories, by pumping in ¢ in such a way that the overall measure
is correctly normalized at all times, (1) = 1.

We now turn to the problem of evaluating <eﬁ'At>.

6.2 Evolution operators

The above simple shift of focus, from studying (a) to studying <exp (ﬁ : At)> is
the key to all that follows. Make the dependence on the flow explicit by rewriting
this quantity as

<ﬁ“‘t |M|/ dx/ dy §(y — fi(z)) P A@). (6.17)

Here 5(y - ft(x)) is the Dirac delta function: for a deterministic flow an initial
point x maps into a unique point y at time ¢. Formally, all we have done above
is to insert the identity

:/ dy 5(3/— ft(a:)) , (6.18)
M

into (6.10) to make explicit the fact that we are averaging only over the trajec-
tories that remain in M for all times. However, having made this substitution
we have replaced the study of individual trajectories fi(x) by the study of the
evolution of density of the totality of initial conditions. Instead of trying to ex-
tract a temporal average from an arbitrarily long trajectory which explores the
phase space ergodically, we can now probe the entire phase space with short (and
controllable) finite time pieces of trajectories originating from every point in M.

As a matter of fact (and that is why we went to the trouble of defining the
generator (5.25) of infinitesimal transformations of densities) infinitesimally short

time evolution can suffice to determine the spectrum and eigenvalues of L.

We shall refer to the kernel of £! = e in the phase-space representation
(6.17) as the evolution operator

Lhy,z) = d(y — f'(2)) P4 (6.19)
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“EVCLYTION OPERATOR :

TrRANSFER. ENTIKE space
FINITE TIME:

“vecior" Cft » U matriy L"tx “v{aor?"

Loy "t A,’, '.E&dlni Efaenwulue L

Figure 6.2: Space averaging pieces together the time average computed along the t — oo
trajectory of fig. 6.1 by a simultaneous space average over finite t trajectory segments starting
at infinitely many starting points.

The simplest example is the Perron-Frobenius operator introduced in section
5.2. Another example - designed to deliver the Lyapunov exponent - will be the
evolution operator (6.31). The evolution operator acts on scalar functions a(x)
as

Lla(y) = /Mda: §(y — fi(x)) e/B'At(x)a(a:) . (6.20)

In terms of the evolution operator, the expectation value of the generating func-
tion (6.17) is given by

<eﬁ'At> = <£tb> ,

where the initial density ¢(z) is the constant function that always returns 1.

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observable A! in the exponential. Its job
is deliver to us the expectation value of a, but before showing that it accomplishes
that, we need to verify the semigroup property of evolution operators.
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By its definition, the integral over the observable a is additive along the
trajectory

X(t1+t2) Vas x(t1+t2)
x(o)\ﬁ/> — o™ LW
t1 t1+t2
Atttz (gg) = / dra(z(t)) + / dra(xz(T))
0 t
= A" (xo) +  AR(f" ().

If A'(z) is additive along the trajectory, the evolution operator generates a semi-
group

ﬁ”%@z/wﬁWﬂﬁwm (6.21)
M

as is easily checked by substitution

WUw@=Aﬂw@W@m“mwﬁ@@=UM%m.

This semigroup property is the main reason why (6.17) is preferable to (6.9) as a
starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

6.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanovi¢)

Let us apply the newly acquired tools to the fundamental diagnostics in this
subject: Is a given system “chaotic”? And if so, how chaotic? If all points in a
neighborhood of a trajectory converge toward the same trajectory, the attractor

is a fixed point or a limit cycle. However, if the attractor is strange, two
trajectories
z(t) = fi(xo) and x(t) + o6x(t) = f'(xo + 52(0)) (6.22)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible phase space. This
sensitivity to initial conditions can be quantified as

16(t)| ~ e[52(0)] (6.23)

where A, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.
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6.3.1 Lyapunov exponent as a time average

We can start out with a small 0z and try to estimate A from (6.23), but now
that we have quantified the notion of linear stability in chapter 4 and defined
the dynamical time averages in sect. 6.1.1, we can do better. The problem with
measuring the growth rate of the distance between two points is that as the
points separate, the measurement is less and less a local measurement. In study
of experimental time series this might be the only option, but if we have the
equations of motion, a better way is to measure the growth rate of tangent vectors
to a given orbit.

The mean growth rate of the distance |dz(t)|/|dz(0)| between neighboring
trajectories (6.22) is given by the Lyapunov exponent

A= lim % In |62(t)|/|52(0)] (6.24)

(For notational brevity we shall often suppress the dependence of A = A(xg) and
related quantities on the initial point z¢ and the time ¢). For infinitesimal dz we
know the dz;(t)/dx;(0) ratio exactly, as this is by definition the Jacobian matrix
(4.25)

i (5361(75) . 81:1(75)
5220 0a;(0)  0a;(0)

= Jgj (33’0) ’

so the leading Lyapunov exponent can be computed from the linear approxima-
tion (4.24)

1. |J(x0)dx(0
A= lim —ln‘ (20)02(0)] Al (IHT It . (6.25)

—oo ¢ 02(0)] oo 2t

In this formula the scale of the initial separation drops out, only its orientation
given by the unit vector 7 = dx/|dz| matters. The eigenvalues of J are either
real or come in complex conjugate pairs. As J is in general not symmetric and
not diagonalizable, it is more convenient to work with the symmetric and diago-
nalizable matrix M = (J*)7J¢, with real eigenvalues {|A1]2 > ... > |A4[?}, and a
complete orthonormal set of eigenvectors of {uj,...,ug}. Expanding the initial
orientation n = > (7 - u;)u; in the Mu; = Aju; eigenbasis, we have

d
ATMA = 3 (- w2 = (A - ur) e (1 + 0(6_2(>\1_)\2)t)) . (6.26)
=1
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Figure 6.3: A numerical estimate of the leading
Lyapunov exponent for the Rdssler system (2.12)
from the dominant expanding eigenvalue formula -
(6.25). The leading Lyapunov exponent A =~ 0.09 =
is positive, so numerics supports the hypothesis that st

the Réssler attractor is strange. (J. Mathiesen) ‘

where t\; = log |A;(x,t)|, and we assume that A\; > Ao > A3---. For long times
the largest Lyapunov exponent dominates exponentially (6.25), provided the ori-
entation n of the initial separation was not chosen perpendicular to the dominant
expanding eigendirection u;. The Lyapunov exponent is the time average

1
Awo) = Jim - {log|in ut] +log A (w0, D] + O(e 2= |
1
= thm ; log ‘Al(ﬂfo, t)| y (627)

where Aj(zg,t) is the leading eigenvalue of J!(zg). By chosing the initial dis-
placement such that 7 is normal to the first (i-1) eigendirections we can define
not only the leading, but all Lyapunov exponents as well:

— 1
)\1(1'0) = lim Z In ’Ai(.%'o,t)’ y 1= 1,2, cee ,d. (628)

t—o0

The leading Lyapunov exponent now follows from the Jacobian matrix by
numerical integration of (4.31). The equations can be integrated accurately for
a finite time, hence the infinite time limit of (6.25) can be only estimated from
plots of 11In|ATM#| as function of time, such as the fig. 6.3 for the Rossler
system (2.12). As the local expansion and contraction rates vary along the flow,
the temporal dependence exhibits small and large humps. The sudden fall to a low
level is caused by a close passage to a folding point of the attractor, an illustration
of why numerical evaluation of the Lyapunov exponents, and proving the very
existence of a strange attractor is a very difficult problem. The approximately
monotone part of the curve can be used (at your own peril) to estimate the
leading Lyapunov exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.27) directly. First of all, the phase
space is dense with atypical trajectories; for example, if xg happened to lie on a
periodic orbit p, A would be simply log |A,|/T},, a local property of cycle p, not a
global property of the dynamical system. Furthermore, even if 2y happens to be
a “generic” phase space point, it is still not obvious that log |A(xg,t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
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elliptic islands and chaotic regions, a chaotic trajectory gets every so often cap-
tured in the neighborhood of an elliptic island and can stay there for arbitrarily
long time; as there the orbit is nearly stable, during such episode log |A(zg, )|/t
can dip arbitrarily close to 0. For phase space volume non-preserving flows
the trajectory can traverse locally contracting regions, and log |[A(xo,t)|/t can
occasionally go negative; even worse, one never knows whether the asymptotic
attractor is periodic or “strange”, so any finite estimate of A might be dead wrong.

6.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect. 6.2. We shall now replace time av-
eraging along a single trajectory by action of a multiplicative evolution operator
on the entire phase space, and extract the Lyapunov exponent from its leading
eigenvalue. If the chaotic motion fills the whole phase space, we are indeed com-
puting the asymptotic Lyapunov exponent. If the chaotic motion is transient,
leading eventually to some long attractive cycle, our Lyapunov exponent, com-
puted on nonwandering set, will characterize the chaotic transient; this is actually
what any experiment would measure, as even very small amount of external noise
will suffice to destabilize a long stable cycle with a minute immediate basin of
attraction.

Due to the chain rule (4.52) for the derivative of an iterated map, the stability
of a 1-d mapping is multiplicative along the flow, so the integral (6.1) of the
observable a(z) = log | f'(x)], the local trajectory divergence rate, evaluated along
the trajectory of zq is additive:

n—1

A™(xo) = log | f™ (w0)| = ) log | f' (k)| - (6.29)

k=0

The Lyapunov exponent is then the expectation value (6.9) given by a spatial
integral (5.24) weighted by the natural measure

3= (081 @)) = [ dz poa) oz /(@) (6.30)
The associated (discrete time) evolution operator (6.19) is

L(y,x) = 6y — f(x)) 7V (6.31)
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Here we have restricted our considerations to 1-dimensional maps, as for higher-
dimensional flows only the Jacobian matrices are multiplicative, not the indi-
vidual eigenvalues. Construction of the evolution operator for evaluation of the
Lyapunov spectra in the general case requires more cleverness than warranted at
this stage in the narrative: an extension of the evolution equations to a flow in
the tangent space.

All that remains is to determine the value of the Lyapunov exponent

A= (ogls@) = 2| =s) (632

from (6.12), the derivative of the leading eigenvalue so(3) of the evolution oper-
ator (6.31). The only question is: how?

g in depth:
. appendix G.1, p. 643

Commentary

Remark 6.1 _“Pressure”. The quantity (exp(3 - A?)) is called a “parti-
tion function” by Ruelle [1]. Mathematicians decorate it with considerably
more Greek and Gothic letters than is the case in this treatise.  Either
Ruelle [2] or Bowen [I] had given name “pressure” P(a) (where a is the
observable introduced here in sect. 6.1.1) to s(3), defined by the “large
system” limit (6.11). For us, s(8) will be the leading eigenvalue of the evo-
lution operator introduced in sect. 5.4, and the “convexity” properties such
as P(a) < P(]a]) will be pretty obvious consequence of the definition (6.11).
In physics vernacular the eigenvalues {so(0),s1(08),--} in the case that £
is the Perron-Frobenius operator (5.10) are called the Ruelle-Pollicott reso-
nances, with the leading one, s(3) = so() being the one of main physical
interest. In order to aid the reader in digesting the mathematics literature,
we shall try to point out the notational correspondences whenever appropri-
ate. The rigorous formalism is replete with lims, sups, infs, (2-sets which are
not really essential to understanding the physical applications of the theory,
and are avoided in this presentation.

Remark 6.2 _Microcanonical ensemble. In statistical mechanics the
space average (6.7) performed over the Hamiltonian system constant en-
ergy surface invariant measure p(x)dx = dqdpd(H(q,p) — E) of volume

M| = [,,dqdp 6(H(q,p) — E)

(a(t)) = W1| /qudp6<H<q,p> ~ B)a(g,p.1) (6.33)
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is called the microcanonical ensemble average.

Remark 6.3 Lyapunov exponents.  The Multiplicative Ergodic Theo-
rem of Oseledec states that the limit (6.28) exists for almost all points xg
and all tangent vectors n. There are at most d distinct values of A as we let
7L range over the tangent space. These are the Lyapunov exponents A;(zo).

There is a rather large literature on numerical computation of the Lya-
punov exponents, see for example refs. [3, 4].

Résumé

The expectation value (a) of an observable a(x) measured and averaged along the
flow z — fi(z) is given by the derivative ds/93 of the leading eigenvalue e*(%)
of the evolution operator L.

Next question is: how do we evalute the eigenvalues of £L 7 We saw in
sect. 5.2.1, in the case of piecewise-linear dynamical systems, that these operators
reduce to finite matrices, but for generic smooth flows, they are infinite-dimen-
sional linear operators, and finding smart ways of computing their eigenvalues
requires some thought. As we shall show in chapters 7 and 8, a systematic way
to accomplish this task is by means of periodic orbits.
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Exercises

6.1 A contracting baker’s map. Consider a contracting (or “dissipative”)
baker’s map, on [0, 1], defined as

Tng1 ) _ ( n/3 <1/2
(?Jn+1> <2yn) yn 1/

Tnt1 \ _ [ xn/3+1/2 1/9
(yn+1>_< 2y — 1 yn>/

This map shrinks strips by factor 1/3 in the z direction, and stretches (and folds) by
factor 2 in the y direction.

(a) How fast does the phase space volume contract?

(b) The symbolic dynamics encoding of trajectories is realized via symbols 0 (y < 1/2)
and 1 (y > 1/2). Consider the observable a(z,y) = z. Verify that for any periodic
orbit p (e1...€n,), € € {0,1}

3 &
A, = ZZ 8-
j=1

6.2 L' generates a semigroup. Check that the evolution operator has the
semigroup property,

/ dzL2(y,2) L (z,2) = L2 (y, 2), t1,t2 > 0. (6.34)
M

As the flows that we tend to be interested in are invertible, the £’s that we will
use often do form a group, with t1,t2 € R.

6.3 Expectation value of a vector observable and its moments. Check
and extend the expectation value formulas (6.12) by evaluating the derivatives of
s(3) up to 4-th order for the space average <exp(ﬁ . At)> with a; a vector quantity:

/Problems/exerAver.tex 2jul2000 printed June 19, 2002



EXERCISES 133

(a)

(b)

(c)
(d)

s 1
0ilsey tlili‘o§<A§> = {ai) , (6.35)
9%s 1
B07 |, A ((4545) — (A ()
- tlil&%“Af—Hai))(AE—t<aj>)>- (6.36)

Note that the formalism is cmart: it automatically yields the variance from
the mean, rather than simply the 2nd moment <a2>.

compute the third derivative of s(3).

compute the fourth derivative assuming that the mean in (6.35) vanishes,
(a;) = 0. The 4-th order moment formula

(2'(®))
K(t) = -3 6.37
O oy o

that you have derived is known as kurtosis: it measures a deviation from
what the 4-th order moment would be were the distribution a pure gaussian
(see (18.21) for a concrete example). If the observable is a vector, the
kurtosis is given by

> [(AiAiAjAz) + 2 ((AiA;) (A Ai) — (AiAi) (Aj45))]
(X (Aids))?

K(t) = (6.38)
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Chapter 7

Trace formulas

The trace formula is not a formula, it is an idea.

Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages require
global information. How can we use a local description of a flow to learn some-
thing about the global behavior? We have given a quick sketch of this program in
sects. 1.4 and 1.5; now we redo the same material in greater depth. In chapter 6
we have related global averages to the eigenvalues of appropriate evolution oper-
ators. Traces of evolution operators can be evaluated as integrals over Dirac delta
functions, and in this way the spectra of evolution operators become related to
periodic orbits. If there is one idea that one should learn about chaotic dynamics,
it happens in this chapter, and it is this: there is a fundamental local < global
duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will now intro-
duce. These objects are to dynamics what partition functions are to statistical
mechanics.

7.1 Trace of an evolution operator

Our extraction of the spectrum of £ commences with the evaluation of the trace.
To compute an expectation value using (6.17) we have to integrate over all the
values of the kernel L!(x,y). If L' were a matrix we would be computing a
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weighted sum of its eigenvalues which is dominated by the leading eigenvalue as
t — oo. As the trace of £! is also dominated by the leading eigenvalue as t — oo,
we might just as well look at the trace

tr L' = /d:c Lz, z) = /da:é(a; — i) P A (7.1)

Assume that £ has a spectrum of discrete eigenvalues sg, s1, $2, - - - ordered so that
Re sq > Resqt1. We ignore for the time being the question of what function
space the eigenfunctions belong to, as we shall compute the eigenvalue spectrum
without constructing any explicit eigenfunctions.

By definition, the trace is the sum over eigenvalues (for the time being we
choose not to worry about convergence of such sums),

tr L' = Z esel (7.2)
a=0

On the other hand, we have learned in sect. 5.2 how to evaluate the delta-function
integral (7.1).

As the case of discrete time mappings is somewhat simpler, we first derive
the trace formula for maps, and then for flows. The final formula (7.19) covers
both cases.

7.1.1 Hyperbolicity assumption

According to (5.8) the trace (7.1) picks up a contribution whenever z— f™(x) = 0,
that is whenever x belongs to a periodic orbit. For reasons which we will explain
in sect. 7.1.4, it is wisest to start by focusing on discrete time systems. The
contribution of an isolated prime cycle p of period n, for a map f can be evaluated
by restricting the integration to an infinitesimal open neighborhood M, around
the cycle,

1
I, » zd(z — () |det (1—J,)] np}_ll|1_Ap’i| .

(in (5.9) and here we set the observable e = 1 for the time being). Periodic
orbit Jacobian matrix J, is also known as the monodromy matrix (from Greek
mono- = alone, single, and dromo = run, racecourse), and its eigenvalues A, 1,
Ap2, ..., Ay g as the Floquet multipliers. We sort the eigenvalues Aj 1, Ay 2,
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..y Ay q of the p-cycle [dxd] Jacobian matrix J, into expanding, marginal and
contracting sets {e,m,c}, as in (4.59).  As the integral (7.3) can be carried out
only if J, has no eigenvalue of unit magnitude, we assume that no eigenvalue is
marginal (we shall show in sect. 7.1.4, the longitudinal A, 41 = 1 eigenvalue for
flows can be eliminated by restricting the consideration to the transverse Jacobian
matrix J,), and factorize the trace (7.3) into a product over the expanding and
the contracting eigenvalues

1 1 1 1
‘ _|Ap|131_1/Ap,6 ¢ 1_Ap,c,

|det (1—J,) (7.4)

where A, = [], Ape is the product of expanding eigenvalues. Both A, . and
1/A, e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets |- - - |
in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Apel > erelr

[Apel < e

any p, any expanding eigenvalue |A, .| > 1

—AeTp any p, any contracting eigenvalue [Ap | <1, (7.5)

where A¢, A\. > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearly does), the £! spectrum
will be relatively easy to control. If the expansion/contraction is slower than ex-
ponential, let us say |Ap;| ~ Tp2, the system may exhibit “phase transitions”,
and the analysis is much harder - we shall discuss this in chapter 16.

It follows from (7.4) that for long times, ¢t = T}, — oo, only the product of
expanding eigenvalues matters, }det (1 — J;)‘ — |A,|". We shall use this fact to
motivate the construction of dynamical zeta functions in sect. 8.3. However, for
evaluation of the full spectrum the exact cycle weight (7.3) has to be kept.

7.1.2 A trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
stability eigenvalues |A, ;| # 1 strictly bounded away from unity, the trace £" is
given by the sum over all periodic points ¢ of period n:

tr L7 = /dxﬁ"(x,x) = Z Aot =T @) (7.6)

z,€Fixfn
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Here Fix f* = {x : f"(x) = z} is the set of all periodic points of period n, and
A; is the observable (6.5) evaluated over n discrete time steps along the cycle to
which the periodic point x; belongs. The weight follows from the properties of
the Dirac delta function (5.8) by taking the determinant of 0;(z; — f"(z);). If a
trajectory retraces itself 7 times, its Jacobian matrix is Jj,, where J,, is the [dxd]
Jacobian matrix (4.5) evaluated along a single traversal of the prime cycle p. As
we saw in (6.5), the integrated observable A™ is additive along the cycle: If a
prime cycle p trajectory retraces itself r times, n = rn,, we obtain A, repeated
r times, A; = A™(z;) =rAp, z; € p.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four cycle points 0011 = 1001 = 1100 = 0110 belong to the
same prime cycle p = 0011 of length 4. As both the stability of a cycle and the
weight A, are the same everywhere along the orbit, each prime cycle of length
n, contributes n, terms to the sum, one for each cycle point. Hence (7.6) can be
rewritten as a sum over all prime cycles and their repeats

rﬂ -Ap
tr E Z np Z ‘det ) | 5n,npr ) (77)

with the Kronecker delta 6, 5, projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it will yield a series of Dirac delta spikes (7.17).
Such sums are familiar from the density-of-states sums of statistical mechanics,
where they are dealt with in the same way as we shall do here: we smooth this
distribution by taking a Laplace transform which rids us of the d;, 5, constraint.

We define the trace formula for maps to be the Laplace transform of tr £™
which, for discrete time mappings, is simply the generating function for the trace
sums

T oTB-Ap

;zntrﬁn: I—ZE Z Z|det -7 (7.8)

Expressing the trace as in (7.2), in terms of the sum of the eigenvalues of £, we
obtain the trace formula for maps:

0 LT T8 Ap
Z 1 — zesa Z Z ‘det 1 — J"")‘ ' (7.9)

a=0

This is our first example of the duality between the spectrum of eigenvalues and
the spectrum of periodic orbits, announced in the introduction to this chapter.
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W fast track:
sect. 7.1.4, p. 140
7.1.3 A trace formula for transfer operators

J‘ For a piecewise-linear map (5.11), we can explicitely evaluate the trace
formula. By the piecewise linearity and the chain rule A, = A{°A]", where the
cycle p contains ng symbols 0 and n; symbols 1, the trace (7.6) reduces to

" /n 1 > 1 1 n
tr L7 = _— = . 7.10
=) <m> oA (|AorA’5 - |A1!A’f) (7.10)

m=0 k=0
The eigenvalues are simply

I S
[Ao| AL [AL[A}

Sk

(7.11)

For k = 0 this is in agreement with the explicit transfer matrix (5.13) eigen-
values (5.14).

Alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitely the transfer operator in (5.13), and that it
is clear by inspection that it has only one eigenvalue e = 1/|Ag| + 1/|A1]|? The
example at hand is one of the simplest illustrations of necessity of defining the
space that the operator acts on in order to define the spectrum. The transfer
operator (5.13) is the correct operator on the space of functions piecewise constant
on the two defining intervals { Mg, M1}; on this space the operator indeed has
only the eigenvalue €. As we shall see in sect. 9.1, the full spectrum (7.11)
corresponds to the action of the transfer operator on the space of real analytic
functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map
(5.11) follows from (7.8)

1 1
2L z <|A0—1| + |A1——1|)

tr =
1—2L _ 1 1
1-2 (|A0*1| + |A1*1|)

, (7.12)

verifying the trace formula (7.9).
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7.1.4 A trace formula for flows

Amazing! I did not understand a single word.
Fritz Haake

(R. Artuso and P. Cvitanovié)

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows the
trace integral tr £! requires a separate treatment for the longitudinal direction.
To evaluate the contribution of an isolated prime cycle p of period T}, restrict the
integration to an infinitesimally thin tube M, enveloping the cycle (see fig. 1.9),
and choose a local coordinate system with a longitudinal coordinate dx| along
the direction of the flow, and d transverse coordinates x|

trpﬁt — /M dz d) 5(@_ — fi(a?)) (5(37” — fﬁ(m)) . (7.13)

P

(here we again set the observable exp(3 - A') = 1 for the time being). Let v(z)
be the magnitude of the velocity at the point x along the flow. wv(z) is strictly
positive, as otherwise the orbit would stagnate for infinite time at v(z) = 0 points,
and that would get us nowhere. Therefore we can parametrize the longitudinal
coordinate x| by the flight time

z) (1) = /OT do v(o)

mod Ly

where v(0) = v(z|(0)), and L, is the length of the circuit on which the peri-
odic orbit lies (for the time being the mod operation in the above definition is
redundant, as 7 € [0, 7T}]). With this parametrization

t+7

(fﬁ(m) - 93”) = / dov(o)

T

mod Ly

so that the integral around the longitudinal coordinate is rewritten as

/OLP dx) 5(;1:H - fﬁ(m)) = /OTP dT’U(T)(S(/TH_T dov(o) mOde> . (7.14)
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Now we notice that the zeroes of the argument of the delta function do not depend
on 7, as v is positive, so we may rewrite (7.14) as

/OLP dxHCS(:U” fH ) 2(5 (t —rT)p) / dTU(T)ﬁ,

having used (5.7). The r sum starts from one as we are considering strictly pos-
itive times. Now we use another elementary property of delta functions, namely
that

h(z)d(z — xo) = h(wo)d(z — xo)

so that velocities cancel, and we get

f;d:n”d(x f” ): pZ(St—rT (7.15)

The fact that it is the prime period which arises also for repeated orbits comes
from the fact that the space integration just sweeps once the circuit in phase space:
a similar observation will be important for the derivation of the semiclassical
trace formula in chapter 22. For the remaining transverse integration variables
the Jacobian is defined in a reduced Poincaré surface of section P of constant x;.
Linearization of the periodic flow transverse to the orbit yields

1

/Pdacj_é(xl — iT”(x)> = m , (7.16)

where J), is the p-cycle [dxd] transverse Jacobian matrix, and as in (7.5) we have
to assume hyperbolicity, that is that the magnitudes of all transverse eigenvalues
are bounded away from unity.

Substituting (7.15), (7.16) into (7.13), we obtain an expression for tr £! as a
sum over all prime cycles p and their repetitions

rﬁA

tr ! = ZT Z Jaer (1 _JT)}(S(t —1T}) . (7.17)

A trace formula follows by taking a Laplace transform. This is a delicate step,
since the transfer operator becomes the identity in the ¢ — 0% limit. In order to
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make sense of the trace we regularize the Laplace transform by a lower cutoff e
smaller than the period of any periodic orbit, and write

oo —(s—A)e X —(s—sa)e
/ dteitrf! = S =N
. s—A S — Sq

a=0

r(8-Ap—sTp)

2.7 Z et (1 3p)]° (7.18)

where A is the generator of the semigroup of dynamical evolution, sect. 5.4. The
classical trace formula for flows is the € — oo limit of the above expression:

& T(ﬁ Ap—sT)p)

Z%s—s _Z Z‘det 1—J’“)" (7.19)

1 &

on p. 146
This is another example of the duality between the (local) cycles and (global)

eigenvalues. If T}, takes only integer values, we can replace e™* — z throughout.
We see that the trace formula for maps (7.9) is a special case of the trace formula
for flows. The relation between the continuous and discrete time cases can be
summarized as follows:

T, < ny

e’ — z

A oL (7.20)

We could now proceed to estimate the location of the leading singularity of
tr (s —.A)~! by extrapolating finite cycle length truncations of (7.19) by methods
such as Padé approximants. However, it pays to first perform a simple resumma-
tion which converts this divergence of a trace into a zero of a spectral determinant.
We shall do this in sect. 8.2, after we complete our offering of trace formulas.

7.2 An asymptotic trace formula

J‘ In order to illuminate the manipulations of sect. 7.1.2 and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect. 1.4.1 from the exact trace formula (7.9). The Laplace transforms (7.9) or
(7.19) are designed to capture the time — oo asymptotic behavior of the trace

/chapter/trace.tex 11dec2001 printed June 19, 2002



7.2. AN ASYMPTOTIC TRACE FORMULA 143

sums. By the hyperbolicity assumption (7.5) for ¢ = T),r large the cycle weight
approaches

[det (1= J3)[ = [Ap]", (7.21)

where A, is the product of the expanding eigenvalues of J,. Denote the corre-
sponding approximation to the nth trace (7.6) by

(7.22)

(n) 1
n:;ma

and denote the approximate trace formula obtained by replacing the cycle weights
|det (1 — J;)} by |Ap|" in (7.9) by I'(z). Equivalently, think of this as a replace-
ment of the evolution operator (6.19) by a transfer operator (as in sect. 7.1.3).
For concreteness consider a dynamical system whose symbolic dynamics is com-
plete binary, for example the 3-disk system fig. 1.3. In this case distinct periodic
points that contribute to the nth periodic points sum (7.7) are labelled by all
admissible itineraries composed of sequences of letters s; € {0,1}:

i e/BA 172
- Yeney ey o
n=1 z;eFixfr i
eB-Ao eﬁ'Al 5 e26-Ao efB-Ao eBAio e26-A1
SN 2 R + + +
{ Aol |A4] } { Aol [Ao1|  [Awol  [A4]? }

38-Ag B-Ago1 B-Ao10 B-A100
(& (& (& [

+z3{ + + + +} 7.23
Aol |Agoi] |Aoiol |A100] (7:23)

Both the cycle averages A; and the stabilities A; are the same for all points z; € p
in a cycle p. Summing over repeats of all prime cycles we obtain

Nptp

Pz)=30
p

e A,

ty = (7.24)

>

This is precisely our initial heuristic estimate (1.8). Note that we could not
perform such sum over r in the exact trace formula (7.9) as }det (1- J;)‘ #
‘det (1 —-J p)
expand the factors 1/|1 —

}T; the correct way to resum the exact trace formulas is to first
Ay i|, as we shall do in (8.9).

If the weights e4" (@) are multiplicative along the flow, and the flow is hyper-
bolic, for given § the magnitude of each |54 (%) /A;| term is bounded by some
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constant M™. The total number of cycles grows as 2" (or as e, h = topo-
logical entropy, in general), and the sum is convergent for z sufficiently small,
|z| < 1/2M. For large n the nth level sum (7.6) tends to the leading L™ eigen-

value ™. Summing this asymptotic estimate level by level

zeS0
1 — zedo

I'(z) ~ Z (ze®0)"

n=1

(7.25)

we see that we should be able to determine sy by determining the smallest value
of z = €% for which the cycle expansion (7.24) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to consider the
approximate trace I'(z). We will use this fact below to motivate the introduction
of dynamical zeta functions (8.11), and in sect. 8.5.1 we shall give the exact
relation between the exact and the approximate trace formulas.

Commentary

Remark 7.1 ‘Who's dunne it?  Continuous time flow traces weighted

by the cycle periods were introduced by Bowen [I] who treated them as
Poincaré section suspensions weighted by the “time ceiling” function (3.2).
They were used by Parry and Pollicott [2]. The derivation presented here [3]
was designed to parallel as closely as possible the derivation of the Gutzwiller
semiclassical trace formula, chapters 77 and 22.

Remark 7.2 Flat and sharp traces. In the above formal derivation of

trace formulas we cared very little whether our sums were well posed. In the
Fredholm theory traces like (7.1) require compact operators with continuous
function kernels. This is not the case for our Dirac delta evolution oper-
ators: nevertheless, there is a large class of dynamical systems for which our
results may be shown to be perfectly legal. In the mathematical literature
expressions like (7.6) are called flat traces (see the review ?? and chapter 9).
Other names for traces appear as well: for instance, in the context of 1—d
mappings, sharp traces refer to generalizations of (7.6) where contributions
of periodic points are weighted by the Lefschetz sign +1, reflecting whether
the periodic point sits on a branch of nth iterate of the map which crosses
the diagonal starting from below or starting from above [12]. Such traces
are connected to the theory of kneading invariants (see ref. [1] and references
therein). Traces weighted by %1 sign of the derivative of the fixed point have
been used to study the period doubling repeller, leading to high precision
estimates of the Feigenbaum constant ¢, refs. [5, 5, 0].
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Résumé

The description of a chaotic dynamical system in terms of cycles can be visu-
alized as a tessellation of the dynamical system, fig. 1.8, with a smooth flow
approximated by its periodic orbit skeleton, each region M; centered on a peri-
odic point z; of the topological length n, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over such
topologically partitioned phase space yields the classical trace formula

e e (B-Ap—sTy)

Zs—s Z Z’det 1—JT)‘.

a=0

Now that we have a trace formula we might ask what it is good for? It’s not good
for much as it stands, a scary formula which relates the unspeakable infinity of
global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants
(to which we turn next) and starting to grasp that the theory might turn out
to be convergent beyond our wildest dreams (chapter 9). In order to implement
such formulas, we have to determine “all” prime cycles. This task we postpone
to chapters 77 and 12.
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Exercises

7.1 t— 0; regularization of eigenvalue sums**. In taking the Laplace trans-
form (7.19) we have ignored the t — 0 divergence, as we do not know how to regularize
the delta function kernel in this limit. In the quantum (or heat kernel) case this limit
gives rise to the Weyl or Thomas-Fermi mean eigenvalue spacing (see sect. 22.1.1). Regu-
larize the divergent sum in (7.19) following (for example) the prescription of appendix J.5
and assign to such volume term some interesting role in the theory of classical resonance
spectra. E-mail the solution to the authors.

7.2 General weights. (easy) Let f* be a flow and £' the operator

Clg(x) = / dy8(z — f(y))wlt ) (y)

where w is a weight function. In this problem we will try and determine some of
the properties w must satisfy.

(a) Compute L5L'g(x) to show that
w(s, (@) w(t, ) = w(t +s,).
(b) Restrict ¢ and s to be integers and show that the most general form of w is

w(n,x) = g(2)g(f(2))g(f*(x)) - g(f* (),

for some g that can be multiplied. Could g be a function from R +— R"2?
(ni eN )
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Chapter 8

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

Lewis Carroll, Through the Looking Glass

The problem with trace formulas (7.9), (7.19) and (7.24) is that they diverge
at z = e7%, respectively s = sg, that is, precisely where one would like to
use them. While this does not prevent numerical estimation of some “thermody-
namic” averages for iterated mappings, in the case of the Gutzwiller trace formula
of chapter 22 this leads to a perplexing observation that crude estimates of the
radius of convergence seem to put the entire physical spectrum out of reach (see
chapter 9). We shall now cure this problem by going from trace formulas to de-
terminants. The idea is illustrated by fig. 1.10: Determinants tend to have larger
analyticity domains because if tr L/(1 — 2L£) = d% Indet (1 — z£) diverges at a
particular value of z, then det (1 — z£) might have an isolated zero there, and a
zero of a function is easier to determine than its radius of convergence.

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity logdet = tr log. Traces of evolution oper-
ators can be evaluated as integrals over Dirac delta functions, and in this way
the spectra of evolution operators become related to periodic orbits.
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8.1 Spectral determinants for maps

The eigenvalues z; of a linear operator are given by the zeros of the determinant

det (1 —2£) = [J(1 - 2/z) . (8.1)

k

For finite matrices this is the characteristic determinant; for operators this is the
Hadamard representation of the spectral determinant (here again we spare the
reader from pondering possible regularization factors). Consider first the case of
maps, for which the evolution operator advances the densities by integer steps in

1.3 & time. In this case we can use the formal matrix identity
on p. 32

Indet (1 — M) = tr In(1 — Z —tr M™, (8.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(7.7), that is, periodic orbits:

det (1 —2L£) = exp (— Z %tr E")

n

ZMpT o ri3-Ap
— exp( ZZ et | 1—Jr)|>' (8.3)

Going the other way, the trace formula (7.9) can be recovered from the spec-
tral determinant by taking a derivative

£ L det(1— 20). (8.4)

trlfz[, dz

W fast track:
sect. 8.2, p. 149
8.1.1 Spectral determinants of transfer operators

J‘ For a piecewise-linear map (5.11) with a finite Markov partition, an
explicit formula for the spectral determinant follows by substituting the trace
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8.2. SPECTRAL DETERMINANT FOR FLOWS 149

formula (7.12) into (8.3):

> t t
det(l—zﬁ):H<1—A—?€—A—1k> , (8.5)
0 1

k=0

where ts = z/|As|. The eigenvalues are - as they should be - (7.11), the ones that
we already determined from the trace formula (7.9).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (8.5) is an entire function. It is this property that will generalize to piecewise
smooth flows with finite Markov parititions, and single out spectral determinants
rather than the trace formulas or dynamical zeta functions as the tool of choice
for evaluation of spectra.

8.2 Spectral determinant for flows

..an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction. [---] define I(7)
to be the minimal period of 7 [---] then define formally
(another zeta function!) Z(s) to be the infinite product

“TITI (1= lexpu(n) ") .

~eTl k=0

Stephen Smale, Differentiable Dynamical Systems
We write the formula for the spectral determinant for flows by analogy to

(8.3)

1 er(B-Ap—sTy)
¢ ’ ) , (8.6)

det (s — A —exp< ZZ m

and then check that the trace formula (7.19) is the logarithmic derivative of the
spectral determinant so defined

tr

1 d
A ds Indet (s — A). (8.7)

To recover det (s — A) integrate both sides fsso ds. With z set to z = e7° as in
(7.20), the spectral determinant (8.6) has the same form for both maps and flows.
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150 CHAPTER 8. SPECTRAL DETERMINANTS

We shall refer to (8.6) as spectral determinant, as the spectrum of the operator
A is given by the zeros of

det (s —A)=0. (8.8)

We now note that the r sum in (8.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into
an infinite product over periodic orbits as follows:

Let J, be the p-cycle [dxd] transverse Jacobian matrix, with eigenvalues
Ap1, Apa, ..oy Ap g Expanding 1/(1 —1/Ap.), 1/(1 — Ay ) in (7.4) as geometric
series, substituting back into (8.6), and resumming the logarithms, we find that
the spectral determinant is formally given by the infinite product

(oo} o0 1
det(s —A) = e
,IIO z!_[o Choy -l

Alle 1[\125 27 'j\lc
1/Gote = H<1—tp B e (8.9)

k k ke
p Ap,llAp,Q2 e Aple
1
ty = tp(z,5,8) = —eP ATy (8.10)
[Ap

Here we have inserted a topological cycle length weigth z™ for reasons which will
become apparent in chapter 13; eventually we shall set z = 1. The observable
whose average we wish to compute contributes through the A, term, which is

the p cycle average of the multiplicative weight e4'(®). By its definition (6.1), for
maps the weight is a product along the cycle points

np—1

eAP — H ea(f](xp))’
7=0

and for the flows the weight is an exponential of the integral (6.5) along the cycle

e — exp ( /0 " a(x(T))dT> |

This formula is correct for scalar weighting functions; more general matrix valued
weights require a time-ordering prescription as in the Jacobian matrix of sect. 4.1.

Now we are finally poised to deal with the problem posed at the beginning of
chapter 7; how do we actually evaluate the averages introduced in sect. 6.17 The
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8.3. DYNAMICAL ZETA FUNCTIONS 151

eigenvalues of the dynamical averaging evolution operator are given by the values
of s for which the spectral determinant (8.6) of the evolution operator (6.19)
vanishes. If we can compute the leading eigenvalue so(/3) and its derivatives,
we are done. Unfortunately, the infinite product formula (8.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such cycle formulas into a tractable
form. This we shall accomplish in chapter 13, but this point in the narrative is a
natural point to introduce a still another variant of a determinant, the dynamical
zeta function.

8.3 Dynamical zeta functions

It follows from sect. 7.1.1 that if one is interested only in the leading eigenvalue
of £, the size of the p cycle neighborhood can be approximated by 1/|A,|", the
dominant term in the r7, =t — oo limit, where A, = [], Ap. is the product of
the expanding eigenvalues of the Jacobian matrix J,. With this replacement the
spectral determinant (8.6) is replaced by the dynamical zeta function

1/¢ = exp (— 3 %t;) (8.11)

p r=1

that we have already derived heuristically in sect. 1.4.2. Resumming the log-
arithms using » t;/r = —In(1 — t,) we obtain the Euler product rep. of the
dynamical zeta function:

1/¢ =J[a—-t). (8.12)

p

For reasons of economy of the notation, we shall usually omit the explicit depen-
dence of 1/¢, t, on z, s, § whenever the dependence is clear from the context.

The approximate trace formula (7.24) plays the same role vis-a-vis the dyn-
amical zeta function

d. Tyt
I(s) = —-In¢ 1= Zﬁ (8.13)
D P

as the exact trace formula (7.19) plays vis-a-vis the spectral determinant (8.6),
see (8.7). The heuristically derived dynamical zeta function of sect. 1.4.2 now
re-emerges as the 1/{p...o(z) part of the ezact spectral determinant; other factors
in the infinite product (8.9) affect the non-leading eigenvalues of L.
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To summarize: the dynamical zeta function (8.12) associated with the flow
ft(x) is defined as the product over all prime cycles p. T,, np and A, are the
period, topological length and stability of prime cycle p, A, is the integrated
observable a(z) evaluated on a single traversal of cycle p (see (6.5)), s is a variable
dual to the time ¢, z is dual to the discrete “topological” time n, and t,(z, s, 3) is
the local trace over the cycle p. We have included the factor 2z in the definition
of the cycle weight in order to keep track of the number of times a cycle traverses
the surface of section. The dynamical zeta function is useful because

1/¢(s) =0 (8.14)

vanishes at s equal to s, the leading eigenvalue of £! = e, and often the
leading eigenvalue is all that is needed in applications. The above completes our
derivation of the trace and determinant formulas for classical chaotic flows. In
chapters that follow we shall make these formulas tangible by working out a series
of simple examples.

The remainder of this chapter offers examples of zeta functions.
g fast track:
chapter 13, p. 293
8.3.1 A contour integral formulation

J The following observation is sometimes useful, in particular when the
zeta functions have richer analytic structure than just zeros and poles, as in the
case of intermittency (chapter 16): T';,, the trace sum (7.22), can be expressed in
terms of the dynamical zeta function (8.12)

e =1 (1 - m) | (8.15)

as a contour integral

1 d
r, =— M Zlog ¢!t d 1
o - z <dz og( (z)> z (8.16)

where a small contour «,” encircles the origin in negative (clockwise) direction. If
the contour is small enough, that is it lies inside the unit circle |z| = 1, we may
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8.3. DYNAMICAL ZETA FUNCTIONS 153

Figure 8.1: The survival probability I',, can be
split into contributions from poles (x) and zeros
(o) between the small and the large circle and a
contribution from the large circle.

write the logarithmic derivative of (~!(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (7.22) is recovered. For hyperbolic maps, cycle
expansion or other techniques provide an analytic extension of the dynamical zeta
function beyond the leading zero; we may therefore deform the orignal contour
into a larger circle with radius R which encircles both poles and zeros of (~!(z2),
see fig. 16.5. Residue calculus turns this into a sum over the zeros z, and poles
zg of the dynamical zeta function, that is

1 1 1 d
I, = — — — 4+ — dzz"—log ¢! 1
20 Z z t om j,{y SR 08¢, (8:.17)

where the last term gives a contribution from a large circle v,. We thus find
exponential decay of I',, dominated by the leading zero or pole of (~!(z).

8.3.2 Dynamical zeta functions for transfer operators

J" Ruelle’s original dynamical zeta function was a generalization of the top-
ological zeta function (11.20) that we shall discuss in chapter 11 to a function
that assigns different weights to different cycles:

[e’s) n n—1
(@H=epd = S]] o @)
n=1 =0
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Here the sum goes over all periodic points x; of period n, and g(z) is any (ma-
trix valued) weighting function, with weight evaluated multiplicatively along the
trajectory of x;.

By the chain rule the stability of any n-cycle of a 1-d map factorizes as
A, = H?:l f'(x;), so the 1-d map cycle stability is the simplest example of a
multiplicative cycle weight g(x;) = f’(x;), and indeed - via the Perron-Frobenius
evolution operator (5.9) - the historical motivation for Ruelle’s more abstract
construction.

In particular, for a piecewise-linear map with a finite Markov partition, the
dynamical zeta function is given by a finite polynomials, a straightforward gener-
alization of determinant of the topological transition matrix (10.2). As explained
in sect. 11.3, for a finite [V X N] dimensional matrix the determinant is given by

where ¢,, is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total length n.
We illustrate this by the piecewise linear repeller (5.11). Due to the piecewise
linearity, the stability of any n-cycle factorizes as Ag,s,.. s, = Ag*AT "™, where m
is total number of times letter s; = 0 appears in the p symbol sequence, so the
traces in the sum (7.24) are of a particularly simple form

1 1 "
frT" =Tp= [~ + — ] .
<|A0| |A1|>

The dynamical zeta function (8.11) evaluated by resumming the traces
1/¢(z) = 1= z/[Ao] — z/|A4] (8.18)

is indeed the determinant det (1 — 27") of the transfer operator (5.13), almost as
simple as the topological zeta function (11.24). More generally, piecewise-linear
approximations to dynamical systems yield polynomial or rational polynomial
cycle expansions, provided that the symbolic dynamics is a subshift of finite type
(see sect. 10.2).

We see that the exponential proliferation of cycles so dreaded by quantum
chaoticists is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are
the stabilities of the two fixed points. Clearly the information carried by the
infinity of longer cycles is highly redundant; we shall learn in chapter 13 how to
exploit systematically this redundancy.

/chapter/det.tex 18apr2002 printed June 19, 2002



8.4. FALSE ZEROS 155

8.4 False zeros

Compare (8.18) with the Euler product (8.12). For simplicity take the two scales
equal, |Ag| = |A1| = €*. Our task is to determine the leading zero z = e of
the Euler product. It is a novice error to assume that the infinite Euler product
(8.12) vanishes whenever one of its factors vanishes. If that were true, each factor

(1 — 2" /|Ay|) would yield
0=1—ew0=%) (8.19)

that is the escape rate v would equal the stability exponent of a repulsive fixed
point. False! The exponentially growing number of cycles with growing period
conspires to shift the zeros of the infinite product. The correct formula follows
from (8.18)

0=1—-e"?"  h=1In2. (8.20)

This particular formula for the escape rate is a special case of a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. The physical interpretation is that the escape induced by repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling segments, that is the entropy h; the positive entropy of orbits of the
same stability shifts the “false zeros” z = e’ of the Euler product (8.12) to the
true zero z = e* M.

8.5 More examples of spectral determinants

é For expanding 1-d mappings the spectral determinant (8.9) takes form

eBAp—sTp

det (s — A) = [ H (1 . tp/Ak) b= (8.21)

p k=0

For a periodic orbit of a 2-dimensional hyperbolic Hamiltonian flow with
one expanding transverse eigenvalue A, |A| > 1, and one contracting transverse
eigenvalue 1/A, the weight in (7.4) is expanded as follows:

! 1 1 k+1
[det (1—J5)] ~ [AF(1—1/A3)% ~ [A]" 4 Z AL (8.22)
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The spectral determinant exponent can be resummed,

s 1 e(ﬁAp_STp)r s eﬁAp—sTp
-y - =Nk +Dlog (1 - —— | ,
2 aaaoay kY g( A, 1AE )

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow
rewritten as an infinite product over prime cycles

det (s — A) = [ H (1 - tp/A’f) . (8.23)

p k=0

In such formulas, t, is a weight associated with the p cycle (letter ¢ refers to
the “local trace” evaluated along the p cycle trajectory), and the index p runs
through all distinct prime cycles. We use z as a formal parameter which keeps
track of the topological cycle lengths, to assist us in expanding zeta functions
and determinants, then set it to z = 1 in calculations.

8.5.1 Spectral determinants vs. dynamical zeta functions

In sect. 7.2 we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to the spectral det-
erminants ezactly, by showing that a dynamical zeta function can be expressed
as a ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

= =0T 1_ i 1)ktr </\kJ> , (8.24)

k=0

inserted into the exponential representation (8.11) of the dynamical zeta func-
tion, relates the dynamical zeta function to weighted spectral determinants. For
1-d maps the identity

- 1 1
C(1—-1/A) A(1-1/A)

substituted into (8.11) yields an expression for the dynamical zeta function for
1-d maps as a ratio of two spectral determinants

det (1 - L)

1/¢= m (8.25)
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where the cycle weight in £ ;) is given by replacement ¢, — ¢,,/A;,. As we shall see
in chapter 9, this establishes that for nice hyperbolic flows 1/¢ is meromorphic,
with poles given by the zeros of det (1 — L(;)). The dynamical zeta function and
the spectral determinant have the same zeros - only in exceptional circumstances
some zeros of det (1—L;)) might be cancelled by coincident zeros of det (1—L(y)).
Hence even though we have derived the dynamical zeta function in sect. 8.3 as an
“approximation” to the spectral determinant, the two contain the same spectral
information.

For 2-dimensional Hamiltonian flows the above identity yields

1 1

W:—]A|(1—1/A)2(1_2/A+1/A2)’

SO

B det (1 — L) det (1 — [,(2))
1/¢= det (1 — ﬁ(l))

(8.26)

This establishes that for nice hyperbolic flows dynamical zeta function is mero-
morphic in 2-d.

8.5.2 Dynamical zeta functions for 2-d Hamiltonian flows

The relation (8.26) is not particularly useful for our purposes. Instead we insert
the identity

1 2 1 1 1

S Yy N N (RS Yy N CE GRS Y\

into the exponential representation (8.11) of 1/(x, and obtain

FyFiio

2
Fk+1

1/¢, = (8.27)

Even though we have no guarantee that Fj, are entire, we do know (by arguments
explained in sect. ?!) that the upper bound on the leading zeros of Fjiq
lies strictly below the leading zeros of Fj, and therefore we expect that for 2-
dimensional Hamiltonian flows the dynamical zeta function 1/(; has generically
a double leading pole coinciding with the leading zero of the Fj1 spectral deter-
minant. This might fail if the poles and leading eigenvalues come in wrong order,
but we have not encountered such situation in our numerical investigations. This
result can also be stated as follows: the theorem that establishes that the spec-
tral determinant (8.23) is entire, implies that the poles in 1/ must have right
multiplicities in order that they be cancelled in the F' =[] 1/ (}j“ product.
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Figure 8.2: The classical resonances o = {k,n} {0-3}
for a 2-disk game of pinball, equation (8.28).
ad L 4;1
Figure 8.3: A game of pinball consisting of two / /
disks of equal size in a plane, with its only periodic
orbit. (A. Wirzba) S - S

8.6 All too many eigenvalues?

J" What does the 2-dimensional hyperbolic Hamiltonian flow spectral deter-
minant (8.23) tell us? Consider one of the simplest conceivable hyperbolic flows:
the game of pinball of fig. 8.3 consisting of two disks of equal size in a plane.
There is only one periodic orbit, with the period T and the expanding eigenvalue
A is given by elementary considerations (see exercise 4.4), and the resonances
det (sq —A) =0, o = {k,n} plotted in fig. 8.2

.
o= —(k+1)A+ n%z neZ,keZ,y, multiplicity k+1,  (8.28)

can be read off the spectral determinant (8.23) for a single unstable cycle:
o k+1
det (s — A) = [ (1 - e’ST/]A]A’“> . (8.29)
k=0

In the above A = In|A|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalue s, gives the decay rate of ath eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of s, indicates that the resonance is unstable, and the decay rate in this simple
case (zero entropy) equals to the cycle Lyapunov exponent.

Fast decaying eigenstates with large negative Re s, are not a problem, but as
there are eigenvalues arbitrarily far in the imaginary direction, this might seem

like all too many eigenvalues. However, they are necessary - we can check this by
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explicit computation of the right hand side of (7.19), the trace formula for flows:

iesat = i i (k+1)e(k+l))\t+i27rnt/T
a=0

k=0n=—o0

S 1 W & i2mn /T
_ Z(kJrl)(—‘AAk) 3 e/
k=0 n=-—00

k+1
- Z|A‘7"Ak‘7‘ Z 6 t/T

B ot —=rT)
- T3 may 50

So the two sides of the trace formula (7.19) check. The formula is fine for ¢ > 0;
for ¢ — 04 both sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work in the variable z = e®, an infinite strip along Im s maps into an anulus in
the complex z plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (7.7). In case at hand there is only one time scale T,
and we could as well replace s by variable z = ¢~*/T. In general the flow has
a continuum of cycle periods, and the resonance arrays are more irregular, cf.
fig. 13.1.

Commentary

Remark 8.1 Piecewise monotone maps. A partial list of cases for which

the transfer operator is well defined: expanding Holder case, weighted sub-
shifts of finite type, expanding differentiable case, see Bowen [13]: expanding
holomorphic case, see Ruelle [9]; piecewise monotone maps of the interval,
see Hofbauer and Keller [14] and Baladi and Keller [17].

Remark 8.2 Smale's wild idea. Smale’s wild idea quoted on page 149

was technically wrong because 1) the Selberg zeta yields the spectrum of a
quantum mechanical Laplacian rather than the classical resonances, 2) the
spectral determinant weights are different from what Smale conjectured, as
the individual cycle weights also depend on the stability of the cycle, 3) the
formula is not dimensionally correct, as k is an integer and s is dimensionally
inverse time. Only for spaces of constant negative curvature do all cycles
have the same Lyapunov exponent A = In|A,|/T,. In this case normalizing
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the time so that A = 1 the factors e=*%» /A¥ in (8.9) simplify to s~ (s+F)7Tr,
as intuited in Smale’s wild idea quoted on page 149 (where I(7y) is the cycle
period denoted here by T},). Nevertheless, Smale’s intuition was remarkably
on the target.

Remark 8.3 Is this a generalization of the Fourier analysis? The Fourier

analysis is a theory of the space < eignfunctions duality for dynamics on a
circle. The sense in which the periodic orbit theory is the generalization of
the Fourier analysis to nonlinear flows is discussed in ref. [4], a very readable
introduction to the Selberg Zeta function.

Remark 8.4 Zeta functions, antecedents. For a function to be deserv-
ing of the appellation “zeta function”, one expects it to have an Euler prod-
uct (8.12) representation, and perhaps also satisfy a functional equation.
Various kinds of zeta functions are reviewed in refs. [8, 9, 10]. Histori-
cal antecedents of the dynamical zeta function are the fixed-point counting
functions introduced by Weil [11], Lefschetz [12] and Artin and Mazur [13],
and the determinants of transfer operators of statistical mechanics [14].

In his review article Smale [12] already intuited, by analogy to the Sel-
berg Zeta function, that the spectral determinant is the right generalization
for continuous time flows. In dynamical systems theory dynamical zeta func-
tions arise naturally only for piecewise linear mappings; for smooth flows
the natural object for study of classical and quantal spectra are the spec-
tral determinants. Ruelle had derived the relation (8.3) between spectral
determinants and dynamical zeta functions, but as he was motivated by the
Artin-Mazur zeta function (11.20) and the statistical mechanics analogy,
he did not consider the spectral determinant a more natural object than
the dynamical zeta function. This has been put right in papers on “flat
traces” [22, 27].

The nomenclature has not settled down yet; what we call evolution oper-
ators here is called transfer operators [16], Perron-Frobenius operators [0]
and/or Ruelle-Araki operators elsewhere. Here we refer to kernels such as
(6.19) as evolution operators. We follow Ruelle in usage of the term “dynam-
ical zeta function”, but elsewhere in the literature function (8.12) is often
called the Ruelle zeta function. Ruelle [18] points out the corresponding
transfer operator T was never considered by either Perron or Frobenius; a
more appropriate designation would be the Ruelle-Araki operator. Deter-
minants similar to or identical with our spectral determinants are sometimes
called Selberg Zetas, Selberg-Smale zetas [1], functional determinants, Fred-
holm determinants, or even - to maximize confusion - dynamical zeta func-
tions [?]. A Fredholm determinant is a notion that applies only to the trace
class operators - as we consider here a somewhat wider class of operators,
we prefer to refer to their determinants losely as “spectral determinants”.
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Résumé

The spectral problem is now recast into a problem of determining zeros of either
the spectral determinant

(B-Ap—sTp)r
e

det (s — = ,
o) = o (X3 A
or the leading zeros of the dynamical zeta function

1 n .
/¢ =110-t), tp:meﬁA” s
P

p

The spectral determinant is the tool of choice in actual calculations, as it
has superior convergence properties (this will be discussed in chapter 9 and is
illustrated, for example, by table 13.2). In practice both spectral determinants
and dynamical zeta functions are preferable to trace formulas because they yield
the eigenvalues more readily; the main difference is that while a trace diverges
at an eigenvalue and requires extrapolation methods, determinants vanish at s
corresponding to an eigenvalue s, and are analytic in s in an open neighborhood
of sq.

The critical step in the derivation of the periodic orbit formulas for spec-
tral determinants and dynamical zeta functions is the hyperbolicity assumption,
that is the assumption that all cycle stability eigenvalues are bounded away from
unity, |A,;| # 1. By dropping the prefactors in (1.4), we have given up on any
possibility of recovering the precise distribution of starting x (return to the past
is rendered moot by the chaotic mixing and the exponential growth of errors),
but in exchange we gain an effective description of the asymptotic behavior of
the system. The pleasant surprise (to be demonstrated in chapter 13) is that the
infinite time behavior of an unstable system turns out to be as easy to determine
as its short time behavior.
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Exercises

8.1 Escape rate for a 1-d repeller, numerically. Consider the quadratic
map

f(z) = Az(1 — 2) (8.31)

on the unit interval. The trajectory of a point starting in the unit interval either
stays in the interval forever or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate (14.8), the rate of expo-
nential decay of the measure of points remaining in the unit interval, for either
A =9/2 or A =6. Remember to compare your numerical estimate with the
solution of the continuation of this exercise, exercise 13.2.

8.2 Dynamical zeta functions (easy)

(a) Evaluate in closed form the dynamical zeta function
Z"p
e =TI (1- ) -
p P

for the piecewise-linear map (5.11) with the left branch slope Ay, the right
branch slope Aj.

£(x) £(x)

01 11

(b) What if there are four different slopes soo, so1, S10, and s1; instead of just
two, with the preimages of the gap adjusted so that junctions of branches
S00, So1 and s11, S0 map in the gap in one iteration? What would the dyn-
amical zeta function be?
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8.3 Zeros of infinite products.  Determination of the quantities of interest by
periodic orbits involves working with infinite product formulas.

(a) Consider the infinite product

o

F(z) = [0+ fu(2)

k=0

where the functions fj are “sufficiently nice.” This infinite product can be con-
verted into an infinite sum by the use of a logarithm. Use the properties of infinite
sums to develop a sensible definition of infinite products.

(b) If 2ot is a root of the function F, show that the infinite product diverges when
evaluated at zpgot-

(c) How does one compute a root of a function represented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet {0,1}. Apply your definition of
F(z) to the infinite product

np

i) = [0 - 10)

p

(e) Are the roots of the factors in the above product the zeros of F(z)?

(Per Rosenqvist)

8.4 Dynamical zeta functions as ratios of spectral determinants. (medium)
Show that the zeta function

1/¢(2) = exp (— ¥y | A|)

p r>0

T det (12’
where det (1 — 2L,)) = [, (1 — an/|AP|AII§+8)'

can be written as the ratio 1/{(z)

8.5 Escape rate for the Ulam map. (medium) We will try and compute the
escape rate for the Ulam map (12.28)

f(z) = 4z(1 — 2),
using cycle expansions. The answer should be zero, as nothing escapes.
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(a) Compute a few of the stabilities for this map. Show that Ay = 4, Ay = -2,
A01 = 747 A001 = —8 and A011 = 8.

(b) Show that
Ae,. e, = £27
and determine a rule for the sign.
(¢) (hard) Compute the dynamical zeta function for this system
¢h=1—to—t1 — (tor —tot1) — - -

You might note that the convergence as function of the truncation cycle length is
slow. Try to fix that by treating the Ag = 4 cycle separately.

8.6 Contour integral for survival probability. Perform explicitly the contour
integral appearing in (8.16).

8.7 Dynamical zeta function for maps. In this problem we will compare the
dynamical zeta function and the spectral determinant. Compute the exact dynamical
zeta function for the skew Ulam tent map (5.41)

vee =T (1= 7)-

peEP

What are its roots? Do they agree with those computed in exercise 5.77

8.8 Dynamical zeta functions for Hamiltonian maps. Starting from

1/¢(5) = exp (— »3 }tﬁ)

p r=1
for a two-dimensional Hamiltonian map and using the equality

1

mu —2/A+1/A%),

det (1—c)det (1—£5))
det (1-£1)2
one gets by replacing t, — ¢,/ A’;, in the spectral determinant.

show that 1/¢ =

. In this expression det (1 — zL ;) is the expansion
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8.9 Riemann ( function. The Riemann ¢ function is defined as the sum

(a)

(b)
(c)

1
C(S): > seC.
n:ln

Use factorization into primes to derive the Euler product representation

=Tl

p

The dynamical zeta function exercise 8.12 is called a “zeta” function because it
shares the form of the Euler product representation with the Riemann zeta func-
tion.

(Not trivial:) For which complex values of s is the Riemann zeta sum convergent?

Are the zeros of the terms in the product, s = — In p, also the zeros of the Riemann
¢ function? If not, why not?

8.10 Finite truncations. (easy) Suppose we have a one-dimensional system
with complete binary dynamics, where the stability of each orbit is given by a
simple multiplicative rule:

Ay = Agp’OA?”’l , npo =#0inp, ny1 =#linp,

so that, for example, Agg191 = A%A%

(a)

(b)

Compute the dynamical zeta function for this system; perhaps by creating
a transfer matrix analogous to (??), with the right weights.

Compute the finite p truncations of the cycle expansion, that is take the
product only over the p up to given length with n, < N, and expand as a
series in z

(i)

Do they agree? If not, how does the disagreement depend on the truncation
length N7
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8.11 Pinball escape rate from numerical simulation®* Estimate the es-
cape rate for R : a = 6 3-disk pinball by shooting 100,000 randomly initiated pin-
balls into the 3-disk system and plotting the logarithm of the number of trapped
orbits as function of time. For comparison, a numerical simulation of ref. [¢]
yields v = .410.. ..
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Chapter 9

Why does it work?

Bloch: “Space is the field of linear operators.” Heisenberg:
“Nonsense, space is blue and birds fly through it.”

Felix Bloch, Heisenberg and the early days of quantum
mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovi¢)

é‘ The trace formulas and spectral determinants work well, sometimes very
well indeed. The question is: why? The heuristic manipulations of chapter 7
were naive and reckless, as we are facing infinite-dimensional vector spaces and
singular integral kernels.

In this chapter we outline some of the ingredients in the proofs that put
the above trace and determinant formulas on solid mathematical footing. This
requires taking a closer look at the Perron-Frobenius operator from a mathemat-
ical point of view, since up to now we have talked about eigenvalues without
any reference to an underlying function space. In sect. 9.1 we show, by a simple
example, that the spectrum is quite sensitive to the regularity properties of the
functions considered, so what we referred to as the set of eigenvalues acquires
a meaning only if the functional setting is properly tuned: this sets the stage
for a discussion of analyticity properties mentioned in chapter 8. The program
is enunciated in sect. 9.2, with the focus on expanding maps. In sect. 9.3 we
concentrate on piecewise real-analytic maps acting on appropriate densities. For
expanding and hyperbolic flows analyticity leads to a very strong result; not only
do the determinants have better analyticity properties than the trace formulas,
but the spectral determinants are singled out as being entire functions in the
complex s plane.

This chapter is not meant to provide an exhaustive review of rigorous results
about properties of the Perron-Frobenius operator or analyticity results of spec-
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170 CHAPTER 9. WHY DOES IT WORK?

tral determinants or dynamical zeta functions (see remark 9.5), but rather to
point out that heuristic considerations about traces and determinant can be put
on firmer bases, under suitable hypotheses, and the mathematics behind this
construction is both hard and profound.

If you are primarily interested in physical applications of periodic orbit theory,
you should probably skip this chapter on the first reading.

g fast track:
chapter 14, p. 319

9.1 The simplest of spectral determinants: A single
fixed point

In order to get some feeling for the determinants defined so formally in sect. 8.2,
let us work out a trivial example: a repeller with only one expanding linear branch

fl)=Aw, A>T,

and only one fixed point x = 0. The action of the Perron-Frobenius operator
(5.10) is

Lolw) = [ dxdly— ) ola) = Trolu/A). (9.1)

From this one immediately gets that the monomials y™ are eigenfunctions:

1

Ly Zwy )

n=0,1,2,... (9.2)
We note that the eigenvalues A~"~! fall off exponentially with n, and that the

trace of L is

1 1 1
trL=—9Y A "= = ,
|A| nz:(:) [A[(1—=A7Y) [f(0) —1]

in agreement with (7.6). A similar result is easily obtained for powers of £, and
for the spectral determinant (8.3) one obtains:

det(1-2£) =[] (1 - IAI%> _ kZOthk, t=—z/|A|, (9.3)

k=0
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where the coefficients Q)i are given explicitly by the Fuler formula & 9.3
on p. 194

1 A—l A—k+1
TI1 AT I1-A2 1Ak

Qk (9.4)

(if you cannot figure out exercise 9.3 check the solutions on 702 for proofs of this
formula).

Note that the coefficients Q)i decay asymptotically faster than exponentially,
as A~F(E—1/2 " Ag we shall see in sect. 9.3.1, these results carry over to any single-
branch repeller. This super-exponential decay of ) ensures that for a repeller
consisting of a single repelling point the spectral determinant (9.3) is entire in
the complex z plane.

What is the meaning of (9.3)?7 It gives us an interpretation of the index k
in the Selberg product representation of the spectral determinant (8.9): k labels
the kth local fixed-point eigenvalue 1/|A|A*.

Now if the spectral determinant is entire, on the basis of (8.25) we get that the
dynamical zeta function is a meromorphic function. These mathematical prop-
erties are of direct physical import: they guarantee that finite order estimates
of zeroes of dynamical zeta functions and spectral determinants converge expo-
nentially or super-exponentially to the exact values, and so the cycle expansions
of chapter 13 represent a true perturbative approach to chaotic dynamics. To
see how exponential convergence comes out of analytic properties we take the
simplest possible model of a meromorphic function. Consider the function

with a, b real and positive and a < b. Within the cycle |z| < b we may represent
h as a power series

h(z) = Z 0"
k=0

where o9 = a/b and higher order coefficients are given by o; = (a — b)/b/ ! Now
we take the truncation of order N of the power series

N a z(a —b)(1 — 2N /b
hN(Z):ZUkaZEvL ( b2()1(—z/b)/ )
k=0
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Figure 9.1: Spectrum for Perron-Frobenius oper-
ator in an extended function space: only a few
isolated eigenvalues remain between the spectral
radius and the essential spectral radius, bounding
continuous spectrum

Let Zy be the solution of the truncated series hy(Zy) = 0. To estimate the
distance between a and Zy it is sufficient to calculate hy(a), which is of or-
der (a/b)N*1, and so finite order estimates indeed converge exponentially to the
asymptotic value.

The discussion of our simple example confirms that our formal manipulations
with traces and determinants are justified, namely the Perron-Frobenius operator
has isolated eigenvalues: trace formulas are then explicitly verified, the spectral
determinant is an analytic function whose zeroes yield the eigenvalues. Life is
actually harder, as we may appreciate through the following considerations

e Our discussion tacitly assumed something that is physically entirely rea-
sonable: our evolution operator is acting on the space of analytic functions,
that is, we are allowed to represent the initial density p(z) by its Taylor ex-
pansions in the neighborhoods of periodic points. This is however far from
being the only possible choice: we might choose the function space C**,
that is the space of k times differentiable functions whose k’th derivatives
are Holder continuous with an exponent 0 < a < 1: then every y"7 with
Ren > k is an eigenfunction of Perron-Frobenius operator and we have

This spectrum is quite different from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between the unit disk and a smaller
disk of radius 1/|A|**!, (the so-called essential spectral radius) see fig. 9.1.

In sect. 9.2 we will discuss this point further, with the aid of a less trivial
one-dimensional example. We remark that our point of view is com-
plementary to the standard setting of ergodic theory, where many chaotic
properties of a dynamical system are encoded by the presence of a contin-
uwous spectrum, which is necessary in order to prove asymptotic decay of
correlations in L%(du) setting.

/chapter/converg.tex 9oct2001 printed June 19, 2002

essential spectyum



9.2. ANALYTICITY OF SPECTRAL DETERMINANTS 173

o A deceptively innocent assumption hides behind many features discussed
so far: that (9.1) maps a given function space into itself. This is strictly
related to the ezpanding property of the map: if f(x) is smooth in a domain
D then f(x/A) is smooth on a larger domain, provided |A| > 1. This is not
obviously the case for hyperbolic systems in higher dimensions, and, as we
shall see in sect. 9.3, extensions of the results obtained for expanding maps
will be highly nontrivial,

e It is not a priori clear that the above analysis of a simple one-branch, one
fixed point repeller can be extended to dynamical systems with a Cantor
set infinity of periodic points: we show that next.

9.2 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.
Terry Pratchett

We now choose another paradigmatic example (the Bernoulli shift) and sketch

the steps that lead to the proof that the corresponding spectral determinant is
an entire function. Before doing that it is convenient to summarize a few facts
about classical theory of integral equations.

9.2.1 Classical Fredholm theory

He who would valiant be
’Gainst all disaster

Let him in constancy
Follow the Master.

John Bunyan, Pilgrim’s Progress
J The Perron-Frobenius operator
Lota) = [ dyd(a~ $(w) o)
has the same appearance as a classical Fredholm integral operator

Ko(z) = /Qdyﬁ(x,y)w(y), (9.5)
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and one is tempted to resort to the classical Fredholm theory in order to estab-
lish analyticity properties of spectral determinants. This path to enlightment is
blocked by the singular nature of the kernel, which is a distribution, wheras the
standard theory of integral equations usually concerns itself with regular kernels
K(z,y) € L*(Q?). Here we briefly recall some steps of the Fredholm theory,
before going to our major example in sect. 9.2.2.

The general form of Fredholm integral equations of the second kind is

o(z) = /Q dy Kz, y)o(y) + &) (9.6)

where £(z) is a given function in L?(Q) and the kernel K(x,y) € L?(Q?) (Hilbert-
Schmidt condition). The natural object to study is then the linear integral op-
erator (9.5), acting on the Hilbert space L?(Q): and the fundamental property
that follows from the L?(Q) nature of the kernel is that such an operator is
compact, that is close to a finite rank operator (see appendix J). A compact
operator has the property that for every § > 0 only a finite number of linearly
independent eigenvectors exist corresponding to eigenvalues whose absolute value
exceeds J, so we immediately realize (fig. 9.1) that much work is needed to bring
Perron-Frobenius operators into this picture.

We rewrite (9.6) in the form
T =¢,T=1-K. (9.7)

The Fredholm alternative is now stated as follows: the equation Ty = & as
a unique solution for every ¢ € L?(Q) or there exists a non-zero solution of
T o = 0, with an eigenvector of K corresponding to the eigenvalue 1.

The theory remains the same if instead of 7 we consider the operator 7, = 1—
A with A #£ 0. As K is a compact operator there will be at most a denumerable
set of A\ for which the second part of Fredholm alternative holds: so apart from
this set the inverse operator ( 1—\7)~! exists and is a bounded operator. When A
is sufficiently small we may look for a perturbative expression for such an inverse,
as a geometric series

(1-2K) "' = 1+ M+ N2+ = 1+ AW, (9.8)
where each K" is still a compact integral operator with kernel

K" (z,y) = /Q » dzy ...dzp1 K(z,21) - K(2n-1,9) ,
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and W is also compact, as it is given by the convergent sum of compact operators.
The problem with (9.8) is that the series has a finite radius of convergence, while
apart from a denumerable set of A’s the inverse operator is well defined. A
fundamental result in the theory of integral equations consists in rewriting the
resolving kernel W as a ratio of two analytic functions of A

D(x,y; \)

If we introduce the notation

<$1xn> . K(xhyl) K:(xlayn)
Yl Yn K(zn,y1) ... K(xn,yn)

we may write the explicit expressions

—1+Z n' /nd'zl"'dz”lc(zi...zn> = exp — Z—trlC (9.9)

m=1

and

D(my,A)-lC( > Z n,/ndzl...dznic(”y“" 2 N iz)

D()) is known as the Fredholm determinant (see (8.24) and appendix J): it is an
entire analytic function of A, and D(\) = 0 only if 1/X is an eigenvalue of K.

We remark again that the whole theory is based on the compactness of the
integral operator, that is on the functional properties (summability) of its kernel.

9.2.2 Bernoulli shift
Consider now the Bernoulli shift
x +— 2z mod 1 x € [0,1] (9.10)

and look at spectral properties in appropriate function spaces. The Perron-
Frobenius operator associated with this map is given by

Lh(y) = %h (4)+ —h (y; 1> . (9.11)
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Spaces of summable functions as L!([0,1]) or L?([0,1]) are mapped into them-
selves by the Perron-Frobenius operator, and in both spaces the constant function
h =1 is an eigenfunction with eigenvalue 1. This obviously does not exhaust the
spectrum: if we focus our attention on L!([0,1]) we also have a whole family of
eigenfunctions, parametrized by complex 6 with Re 6 > 0. One verifies that

ho(y) =Y exp(QTriky)ki'G (9.12)
Je0

is indeed an L'-eigenfunction with (complex) eigenvalue 27, by varying 6 one
realizes that such eigenvalues fill out the entire unit disk. This casts out a ‘spectral
rug’, also known as an essential spectrum, which hides all the finer details of the
spectrum.

For a bounded linear operator .4 on a Banach space €2, the spectral radius is
the smallest positive number pgpe. such the spectrum is inside the disk of radius
Pspec, While the essential spectral radius is the smallest positive number pegs
such that outside the disk of radius pess the spectrum consists only of isolated
eigenvalues of finite multiplicity (see fig. 9.1).

We may shrink the essential spectrum by letting the Perron-Frobenius oper-
ator act on a space of smoother functions, exactly as in the one-branch repeller
case of sect. 9.1. We thus consider a smaller space, C*T%, the space of k times
differentiable functions whose k’th derivatives are Holder continuous with an
exponent 0 < a < 1: the expansion property guarantees that such a space is
mapped into itself by the Perron-Frobenius operator. In the strip 0 < Re 8 < k+«
most hg will cease to be eigenfunctions in the space C*+®. Only for integer valued
0 = n the function h,, survives. In this way we arrive at a finite set of isolated
eigenvalues 1, 271, .-+, 27% and an essential spectral radius pess = 2~ *+),

For this simple example, we may actually exactly write down the eigenfunc-
tions: they coincide, up to a constant, with the Bernoulli polynomials B, (x).
These polynomials are defined as successive derivatives of te*/(e! — 1) evaluated
at t =0:

so Bo(z) =1, Bi(x) =x —1/2, ete. .

If we let the Perron-Frobenius operator (9.11) act on the generating function
g, we get

1 t t/2 t t/2 xt/2 t/2 xt/2 o0 t/2)"
Egt(x):—<e + 20 _ 2 :ZBn(x)(/')
n=1 ’

2\et—1 et —1 et/2 — 1 n
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it follows that each By, (z) is an eigenfunction of the Perron-Frobenius operator £
with eigenvalue 1/2". The persistence of a finite essential spectral radius would
suggest that traces and determinants do not exist in this case either. The pleasant
surprise is that they do, see remark 9.3.

We follow a simpler path and restrict the function space even further, namely
to a space of analytic functions, i.e. for which the is convergent at each point of
the interval [0, 1]. With this choice things turn out easy and elegant. To be more
specific let A be a holomorphic and bounded function on the disk D = B(0, R)
of radius R > 0 centered at the origin. Our Perron-Frobenius operator preserves
the space of such functions provided (1 + R)/2 < R so all we need is to choose
R > 1. In this the expansion property of the Bernoulli shift enter). If F' denotes
one of the inverse branches of the Bernoulli shift (??) the corresponding part of
the Perron-Frobenius operator is given by Lph(y) = s F'(y) h o F(y), using the
Cauchy integral formula:

Lrh(y) =s ]{ de

op w— F(y)

For reasons that will be made clear later we have introduced a sign s = 1 of the
given real branch |F'(y)| = sF(y). For both branches of the Bernoulli shift s?+1,
one is not allowed to take absolute values as this could destroy analyticity. In
the above formula one may also replace the domain D by any domain containing
[0,1] such that the inverse branches maps the closure of D into the interior of
D. Why? simply because the kernel stays non-singular under this condition, 1.e.
w — F(y) # 0 whenever w € 9D and y € Cl D.

The problem is now reduced to the standard theory for Fredholm determi-
nants. The integral kernel is no longer singular, traces and determinants are
well-defined and we may even calculate the trace of L as a contour integral:

B sF'(w) w
trEF_?{iw—F(w)d .

Elementary complex analysis shows that since F' maps the closure of D into its
own interior, F' has a unique (real-valued) fixed point 2* with a multiplier strictly
smaller than one in absolute value. Residue calculus therefore yields

sF'(z*) 1

WS G) T Pa —1)

justifies our previous ad hoc calculations of traces by means of Dirac delta func-
tions. The full operator has two components corresponding to the two branches
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og the . For the n times iterated operator we have a full binary shift and for each
of the 2™ branches the above calculations carry over in each , yielding the trace
(2" — 1)L, Without further ado we substitute everything back and obtain the
determinant,

det(1 — zL) = exp (Zi 2n2i1> = H (1* 2%),

n=1

verifying the fact that the Bernoulli polynomials are eigenfunctions with eigen-
values 1/2", n=10,1,2,....

We worked out a very specific example, yet our conclusions can be generalized,
provided a number of restrictive requirements are met by our dynamical systems:

1) the evolution operator is multiplicative along the flow,

2) the symbolic dynamics is a finite subshift,

3) all cycle eigenvalues are hyperbolic (exponentially bounded away
from 1),

4) the map (or the flow) is real analytic, that is it has a piecewise
analytic continuation to a complex extension of the phase space.

These assumptions are romantic projections not lived up to by the dynamical
systems that we actually desire to understand. Still, they are not devoid of
physical interest; for example, nice repellers like our 3-disk game of pinball of
changes do satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a matrix
in an appropriate basis space; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

L'y, x) = |A"(2)|%6(y - f*())

where A!(z) is an eigenvalue of the Jacobian matrix transverse to the flow. Semi-
classical quantum mechanics suggest operators of this form with g = 1/2, (see
chapter 22). The problem with such operators is due to the fact that when consid-
ering the Jacobian matrices J,, = J,Jp for two successive trajectory segments a
and b, the corresponding eigenvalues are in general not multiplicative, Ay, # Aq Ay
(unless a, b are repeats of the same prime cycle p, so JoJp = J;”Tb). Conse-
quently, this evolution operator is not multiplicative along the trajectory. The
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f(x)
05

. . . 0 :
Figure 9.2: A (hyperbolic) tent map without a 0 0.5
finite Markov partition.

theorems require that the evolution be represented as a matrix in an appropriate
polynomial basis, and thus cannot be applied to non-multiplicative kernels, that
is}. kernels that do not satisfy the semi-group property L oLt = £V Cure for
this problem in this particular case will be given in sect. G.1.

Property 2 is violated by the 1-d tent map (see fig. 9.2)
flz)=a(l — 1-22|), 1/2<a<l1.

All cycle eigenvalues are hyperbolic, but in general the critical point . = 1/2
18 not a pre-periodic point, there is no finite Markov partition and the symbolic
dynamics does not have a finite grammar (see sect. 10.7 for definitions). In
practice this means that while the leading eigenvalue of L might be computable,
the rest of the spectrum is very hard to control; as the parameter o is varied,
non-leading zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see fig. 9.3)

fx+222 |, x€el
f(x)_{2—2x , zeli =]

Here the interval [0, 1] has a Markov partition into the two subintervals Iy and Iy;
f is monotone on each. Howewver, the fixed point at x = 0 has marginal stability
Ao =1, and violates the condition 3. This type of map is called intermittent and
necessitates much extra work. The problem is that the dynamics in the neighbor-
hood of a marginal fized point is very slow, with correlations decaying as power
laws rather than exponentially. We will discuss such flows in chapter 16.

The property 4 is required as the heuristic approach of chapter 7 faces two
magor hurdles:

1. The trace (7.7) is not well defined since the integral kernel is singular.
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f(x)
05

Figure 9.3: A Markov map with a marginal fixed 0 | 05
point.

2. The existence and properties of eigenvalues are by no means clear.

Actually this property is quite restrictive, but we need it in the present ap-
proach, in order that the Banach space of analytic functions in a disk is preserved
by the Perron-Frobenius operator.

In attempting to generalize the results we encounter several problems. First,
i higher dimensions life is not as simple. Multi-dimensional residue calculus is
at our disposal but in general requires that we find poly-domains (direct product
of domains in each coordinate) and this need not be the case. Second, and per-
haps somewhat surprisingly, the ‘counting of periodic orbits’ presents a difficult
problem. For example, instead of the Bernoulli shift consider the doubling map
of the circle, x +— 2x mod 1, x € R/Z. Compared to the shift on the interval
[0, 1] the only difference is that the endpoints 0 and 1 are now glued together. But
since these endpoints are fixed points of the map the number of cycles of length n
decreases by 1. The determinant becomes:

n

det(1 — zL) = exp (— Z %

n=1

\V)

-1
"—1) =1-z (9.13)

\V)

The value z = 1 still comes from the constant eigenfunction but the Bernoulli
polynomials no longer contribute to the spectrum (they are not periodic). Proofs
of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering purely ez-
panding maps. When stable and unstable directions co-exist we have to resort to

stranger function spaces, as shown in the next section.
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9.3 Hyperbolic maps

(H.H. Rugh)

Moving on to hyperbolic systems, one faces the following paradoz: If f is an area-
preserving hyperbolic and real-analytic map of e.g. a two dimensional torus then
the Perron-Frobenius operator is clearly unitary on the space of L? functions. The
spectrum is then confined to the unit-circle. On the other hand when we compute
determinants we find eigenvalues scattered around inside the unit disk. Thinking
back on our Bernoulli shift example one would like to imagine these eigenvalues
as popping up from the L? spectrum by shrinking the function space. Shrinking
the space, however, can only make the spectrum smaller so this is obviously not
what happens. Instead one needs to introduce a ‘mized’ function space where in
the unstable direction one resort to analytic functions as before but in the stable
direction one considers a ‘dual space’ of distributions on analytic functions. Such
a space is neither included in nor does it include the L?-space and we have thus
resolved the paradoxr. But it still remains to be seen how traces and determinants
are calculated.

First, let us consider the apparently trivial linear example (0 < X\s < 1, Ay >

1):
f(2) = (fi(z1, 22), fa(21, 22)) = (As21, Auz2) (9.14)

The function space, alluded to above, is then a mizture of Laurent series in the
z1 variable and analytic functions in the zo variable. Thus, one considers expan-
sions in terms of Y, n,(21,22) = Zl_nl_lzg12 with ny,ne = 0,1,2,... If one looks
at the corresponding Perron-Frobenius operator, one gets a simple generalization
of the 1-d repeller:

1
As - Ay

[,h(zl,ZQ) = h(zl/)\S,ZQ/Au) (915)

The action of Perron-Frobenius operator on the basis functions yields

Am
Lipnyna (21, 22) = Wsomm(%m)

no—1

so that the above basis elements are eigenvectors with eigenvalues \3' Ay, and
~1

one verifies by an explicit calculation that the trace indeed equals det(f'— 1)~ =

(Ay —1)7H1 =)7L
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This example is somewhat misleading, however, as we have made explicit
use of an analytic ‘splitting’ into stable/unstable directions. For a more general
hyperbolic map, if one attempts to make such a splitting it will not be analytic and
the whole argument falls apart. Nevertheless, one may introduce ‘almost’ analytic
splittings and write down a generalization of the above operator as follows (s is
the signature of the derivative in the unstable direction):

_ s h(w1,w2) dwy dws
Lh(z1,22) = j{j{ A (9.16)

wi, w2)(fo(wy, we) — 29) 2w 2mi

Here the ‘function’ h should belong to a space of functions analytic respectively
outside a disk and inside a disk in the first and the second coordinate and with the
additional property that the function decays to zero as the first coordinate tends
to infinity. The contour integrals are along the boundaries of these disks. It is
but an exercise in multi-dimensional residue calculus to verify that for the above
linear example this expression reduces to (9.15). Such operators form the building
bricks in the calculation of traces and determinants and one is able to prove the
following:

Theorem: The spectral determinant for hyperbolic analytic maps is entire.

The proof, apart from the Markov property which is the same as for the purely
expanding case, relies heavily on analyticity of the map in the explicit construc-
tion of the function space. As we have also seen in the previous example the basic
idea is to view the hyperbolicity as a cross product of a contracting map in the
forward time and another contracting map in the backward time. In this case the
Markov property introduced above has to be elaborated a bit. Instead of dividing
the phase space into intervals, one divides it into rectangles. The rectangles should
be viewed as a direct product of intervals (say horizontal and vertical), such that
the forward map is contracting in, for example, the horizontal direction, while the
inverse map is contracting in the vertical direction. For Aziom A systems (see re-
mark 9.11) one may choose coordinate axes close to the stable/unstable manifolds
of the map. With the phase space divided into N rectangles {My, Ma, ..., My},
M; = Il-h x I one needs complex extension Dzh x D7, with which the hyperbol-
icity condition (which at the same time guarantees the Markov property) can be
formulated as follows:

Analytic hyperbolic property: Either f(M;)N Int(M;) =0, or for each pair
wy, € CI(DY), 2z, € CUD3) there exist unique analytic functions of wp,zy: wy =
Wy (Wh, 2v) € INt(DY), zn = zn(wh, 2y) € Int(D;?), such that f(wp,wy) = (2n, 2v).
Furthermore, if wy, € Iih and z, € I7, then wy, € I} and z), € I]h (see fig. 9.4).
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Figure 9.4: For an analytic hyperbolic map, specifying the contracting coordinate wy, at
the initial rectangle and the expanding coordinate z, at the image rectangle defines a unique
trajectory between the two rectangles. In particular, w, and z, (not shown) are uniquely
specified.

What this means for the iterated map is that one replaces coordinates zp, zy
at time n by the contracting pair zp,w,, where w, is the contracting coordinate
at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (9.16) is acting on functions analytic out-
side Dzh in the horizontal direction (and tending to zero at infinity) and inside D}
in the vertical direction. The contour integrals are precisely along the boundaries
of these domains.

A map f satisfying the above condition is called analytic hyperbolic and the
theorem states that the associated spectral determinant is entire, and that the
trace formula (7.7) is correct.

9.3.1 Matrix representations

When considering analytic maps there is another, and for numerical purposes,
sometimes convenient way to look at the operators, namely through matriz repre-
sentations. The size of these matrices is infinite but entries in the matrix decay
exponentially fast with the indisize. Hence, within an exponentially small error
one may safely do calculations using finite matrix truncations.

Furthermore, from bounds on the elements L., one calculates bounds on
tr (/\kﬁ) and verifies that they fall off as A*kQ/Z, concluding that the L eigenvalues
fall off exponentially for a general Aziom A 1-d map. In order to illustrate how
this works, we work out a simple example.

As in sect. 9.1 we start with a map with a single fived point, but this time
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Figure 9.5: A nonlinear one-branch repeller with 0
a single fixed point w*.

with a nonlinear map f with a nonlinear inverse F = f~', s = sgn(F")

£od() = [ bz~ 1) ola) = s F'(2) o(F ().
Assume that F' is a contraction of the unit disk, that is
|F(z)|]<0<1 and |F'(2)]<C<o0 for |z]<1, (9.17)

and expand ¢ in a polynomial basis by means of the Cauchy formula

Ny fdw o) fdw o)
o =T 0= o S o= o

n>0

In this basis, L is a represented by the matriz

Lo ¢(w) = Zmemn¢n v Lmn = f % = (Zzlsfl(w))n . (918)

Taking the trace and summing we get:

dw s F'(w)
tr L= Lpyp=¢ — ———.
g n§>:0 2w — F(w)

This integral has but one simple pole at the unique fix point w* = F(w*) = f(w™*).
Hence

s Fl(w) 1
TS ) T ) 1]
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96 &

on p. 195
We recognize this result as a generalization of the single piecewise-linear fixed-

point example (9.2), ¢n = y", and L is diagonal (no sum on repeated n here),
Ly, = 1/|A|A™™, so we have verified the heuristic trace formula for an expanding
map with a single fized point. The requirement that map be analytic is needed to
substitute bound (9.17) into the contour integral (9.18) and obtain the inequality

[ Lmn| < Sup |F'(w)| |F(w)[" < CO"
w|<1

which shows that finite [N x N]| matriz truncations approximate the operator
within an error exponentially small in N. It also follows that eigenvalues fall off
as 0™. In higher dimension similar considerations show that the entries in the
matriz fall off as 1/Ak1+l/d, and eigenvalues as 1/Ak1/d.

9.4 Physics of eigenvalues and eigenfunctions

J‘ We appreciate by now that any serious attempt to look at spectral prop-
erties of the Perron-Frobenius operator involves hard mathematics: but the effort
1s rewarded by the fact that we are finally able to control analyticity properties
of dynamical zeta functions and spectral determinants, and thus substantiate the
claim that these objects provide a powerful and well founded perturbation theory.

Quite often (see for instance chapter 6) the physical interest is concentrated
in the leading eigenvalue, as it gives the escape rate from a repeller, or, when
considering generalized transfer operators, it yields expressions for gemerating
functions for observables. We recall (see chapter 5) that also the eigenfunction
associated to the leading eigenvalue has a remarkable property: it provides the
density of the invariant measure, with singular measures ruled out by the choice
of the function space. Such a conclusion is coherent with a the validity of a
generalized Perron-Frobenius theorem for the evolution operator. In the finite
dimensional setting such theorem is formulated as follows:

o let Ly be a nonnegative matriz, such that some n exists for which (L™);; >
0 Vi, j: then

1. the mazimal modulus eigenvalue is non degenerate, real and positive

2. the corresponding eigenvector (defined up to a constant) has nonnega-
tive coordinates
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We may ask what physical information is contained in eigenvalues beyond the
leading one: suppose that we have a probability conserving system (so that the
dominant eigenvalue is 1), for which the essential spectral radius is such that
0 < pess < 8 < 1 on some Banach space B and denote by P the projection
corresponding to the part of the spectrum inside a disk of radius 6. We denote
by A1, Aa... Ay the eigenvalues outside of this disk, ordered by the size of their
absolute value (so that \y = 1). Then we have the following decomposition

M
Lo = > AahiLijp + PLyp (9.19)
=1

when L; are (finite) matrices in Jordan normal form (L1 =1 is a 1 x 1 matriz,
as A1 is simple, due to Perron-Frobenius theorem), while v; is a row vector whose
elements are a basis on the eigenspace corresponding to \;, and ] is a column
vector of elements of B* (the dual space, of linear functionals over B) spanning the
eigenspace of L* corresponding to ;. For iterates of Perron-Frobenius operator
(9.19) becomes

M
Lo =Y N Liyie + PL (9.20)

i=1

If we now consider expressions like

Cln)ep = /M dy€(y) (L") (4) = /M duw (€ o ") (w)p(w) (9.21)
we have
L
C(n)ep = Mwi(&9) + > Mw(n)i(&, @) + 00" (9.22)
=2
where

w(n)i(€,¢) = /M dy E(y) i L35

In this way we see how eigenvalues beyond the leading one provide a twofold piece

_of information: they rule the convergence of expressions containing high powers

9.7 & of evolution operator to the leading order (the A1 contribution).  Moreover if
onp. 195 () (&,) = 0 then (9.21) defines a correlation function: as each term in (9.22)

/chapter/converg.tex 9oct2001 printed June 19, 2002



9.4. PHYSICS OF EIGENVALUES AND EIGENFUNCTIONS 187

vanishes exponentially in the n — oo limit, the eigenvalues Aa, ... Ay Tule the
exponential decay of correlations for our dynamical system. We observe that
prefactors w depend on the choice of functions, while the exponential decay rates
(logarithms of A\;) do not: the correlation spectrum is thus an universal property
of the dynamics (once we fix the overall functional space our Perron-Frobenius
operator acts on).

So let us come back the Bernoulli shift ezample (9.10), on the space of ana-
lytic functions on a disk: apart from the origin we have only simple eigenvalues
Mo = 27Fk =0,1,.... The eigenvalue N\g = 1 corresponds to probability con-
servation: the corresponding eigenfunction By(x) = 1 indicates that the natural,
measure has a constant density over the unit interval. If we now take any ana-
lytic function n(x) with zero average (with respect to the Lebesque measure), we
have that wi(n,n) = 0, and from (9.22) we have that the asymptotic decay of
correlation function is (unless also wi(n,n) =0)

Crn(n) ~ exp(—nlog2) (9.23)

thus —log A1 gives the exponential decay rate of correlations (with a prefactor
that depends on the choice of the function). Actually the Bernoulli shift case may
be treated exactly, as for analytic functions we can employ the Euler-MacLaurin
summation formula

1 O pm=1)(1) — plm=1)
n(z) = /0 dwn(w) + Z U (1)m'n (O)Bm(z) (9.24)
m=1 ’

As we are considering zero—average functions, we have from (9.21), and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator

m!

i —m\n (,,(m) _ n(m) 1
Cyn(n) = > @) ™) —n (0))/0 dz1(2)Bp(2) .

m=1

The decomposition (9.24) is also useful to make us realize that the linear func-
tionals 1} are quite singular objects: if we write it as

n(z) = Y Bu(2) ¢n[n]

m=0

we see that these functionals are of the form

1
Gl = /O dw W (w)e(w)
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U, (w) = (G (5@—1)( — 1) — §li- 1)(w)) (9.25)

when i > 1, while ¥o(w) = 1. Such a representation is only meaningful when the
function € is analytic in w,w — 1 neighborhoods.

9.5 Why not just run it on a computer?

J‘ All of the insight gained in this chapter was nothing but an elegant way
of thinking of L as a matriz (and such a point of view will be further pursued in
chapter 11). There are many textbook methods of approximating an operation L
by sequences of finite matrix approzimations L, so why a new one?

The simplest possible way of introducing a phase space discretization, fig. 9.6,
is to partition the phase space M with a non-overlapping collection of sets M, a =
1,..., N, and to consider densities that are locally constant on each My:

- f: o Xo(®)

where xq(x) is the characteristic function of the set Ay. Then the weights ©q
are determined by the action of Perron-Frobenius operator

[ dzxsn) = s = /M d2xp(2) [ dwi(z = fw) plw)

.AﬂfA
:Z_: o 3)

PCrewrite as in sect. 4.1 In this way

m(Aq N fﬁlAg)
m(Aq)

Lopg = (9.26)

s a matriz approximation to the Perron-Frobenius operator, and its left eigen-
vector is a piecewise constant approrimation to the invariant measure. It is an
old idea of Ulam that such an approximation for the Perron-Frobenius operator
18 a meaningful one.
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BRUTO INSENSITIVO METHoD ;

cigendhite LLJ = Ay
eigenvalue  det (4-zL.)=0
m z;l. = a: 2(" 200 2;}

f

N o0

&

Figure 9.6: Phase space discretization approach
to computing averages. exact spechium

The problem with such general phase space discretization approaches is that
they are blind; the grid knows not what parts of the phase space are more or
less important, and with such methods one is often plagued by numerical artifacts
such as spurious eigenvalues. In contrast, in this treatise we exploit the intrinsic
topology of the flow to give us both an invariant partition of the phase space and
invariant measure of the partition volumes, see fig. 1.8. We shall lean on the g
basis approach only insofar it helps us prove that the spectrum that we compute
1s indeed the correct one, and that finite periodic orbit truncations do converge.

Commentary

For a physicist Dricbee’s monograph [] might be the most accessible introduction
into main theories touched upon in this chapter.

Remark 9.1 Surveys of rigorous theory We recommend references listed
in sect. 7?7 for an introduction into the mathematic literature on this subject.
There are a number of reviews of the mathematical approach to dynamical
zeta functions and spectral determinants, with pointers to the original refer-

ences, such as refs. [1, 2]. An alternative approach to spectral properties of
the Perron-Frobenius operator is illustrated in ref. [3]. The ergodic theory,
as presented by Sinai [15] and others, tempts one to describe the densities

that the evolution operator acts on in terms of either integrable or square
integrable functions. As we have already seen, for our purposes, this space
is not suitable. An introduction to ergodic theory is given by Sinai, Korn-
feld and Fomin [16]; more advanced and more old fashioned presentations
are Walters [17] and Denker, Grillenberger and Sigmund [18]; and a more

formal Peterson [19].
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PCgive credit to Prigople + ....(/)

Remark 9.2 Fredholm theory. Our brief summary of Fredholm theory

is based on the exposition in ref. [1]. A technical introduction of the theory
from an operatorial point of view is contained in ref. [5]. The theory has
been generalized in ref. [0].

Remark 9.3 Bernoulli shift.  For a more detailed discussion, consult
chapter 15.1 or The extension of Fredholm theory to the case or Bernoulli
shift on C*+< (in which the Perron-Frobenius operator is not compact tech-
nically it is only quasi-compact, that is the essential spectral radius is strictly
smaller than the spectral radius) has been given by Ruelle [7]: a concise and
readable statement of the results is contained in ref. [3].

Remark 9.4 Higher dimensions and generalized Fredholm theory. When

extending Bernoulli shift to higher dimensions. Extensions of Fredholm the-
ory [6], which avoid problems with multi-dimensional residue calculus, may
be used: see ref. [9].

Remark 9.5 Hyperbolic dynamics. When dealing with hyperbolic sys-

tems one might try to reduce back to the expanding case by projecting the
dynamics along the unstable directions. As mentioned in the text this might
be technically quite involved, as usually such the unstable foliation is not
characterized by very strong smoothness properties. For such an approach,
see ref. [3].

Remark 9.6 Spectral determinants for smooth flows.  The theorem on

p- 169 applies also to hyperbolic analytic maps in d dimensions and smooth
hyperbolic analytic flows in (d 4+ 1) dimensions, provided that the flow can
be reduced to a piecewise analytic map by suspension on a Poincaré section
complemented by an analytic “ceiling” function (3.2) which accounts for a
variation in the section return times. For example, if we take as the ceiling
function g(z) = e*7®) | where T'(z) is the time of the next Poincaré section
for a trajectory staring at x, we reproduce the flow spectral determinant
(8.23). Proofs are getting too hard for the purposes of this chapter; details
are discussed in ref.(?).

Remark 9.7 Examples. Examples of analytic hyperbolic maps are pro-
vided by small analytic perturbations of the cat map (where the Markov par-
titioning is non-trivial [10]), the 3-disk repeller, and the 2-d baker’s map.
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Remark 9.8 Explicit diagonalization.  For 1-d repellers a diagonaliza-

tion of an explicit truncated L,,, matrix evaluated in a judiciously cho-
sen basis may yield many more eigenvalues than a cycle expansion (see
refs. [11, 12]). The reasons why one persists anyway in using the periodic
orbit theory are partially aesthetic, and partially pragmatic. Explicit Ly,
demands explicit choice of a basis and is thus non-invariant, in contrast to
cycle expansions which utilize only the invariant information about the flow.
In addition, we usually do not know how to construct L,,, for a realistic
flow, such as the hyperbolic 3-disk game of pinball flow of sect. 1.3, whereas
the periodic orbit formulas are general and straightforward to apply.

Remark 9.9 Perron-Frobenius theorem. A proof of the Perron-Frobenius

theorem may be found in ref. [13]. For positive transfer operators such the-
orem has been generalized by Ruelle [14].

Remark 9.10 _Fried estimates. = The form of the fall-off of the coeffi-
cients in the F'(z) expansion, as u"Hl/d, is in agreement with the estimates
of Fried [20] for the spectral determinants of d-dimensional expanding flows.

Remark 9.11 Axiom A systems. Proofs outlined in sect. 9.3 follow the

thesis work of H.H. Rugh [9, 20, 21]. For mathematical introduction to the
subject, consult the excellent review by V. Baladi [l]. Rigorous treatment
is given in refs. [9, 20, 21]. It would take us too far to give and explain
the definition of the Axiom A systems (see refs. [22, 23]). Axiom A implies,
however, the existence of a Markov partition of the phase space from which
the properties 2 and 3 assumed on p. 165 follow.

Remark 9.12 Exponential mixing speed of the Bernoulli shift. ~ We see

from (9.23) that for the Bernoulli shift the exponential decay rate of corre-
lations coincides with the Lyapunov exponent: while such an identity holds
for a number of systems, it is by no means a general result, and there exist
explicit counterexamples.

Remark 9.13 Left eigenfunctions. We shall never use explicit form

of left eigenfunctions, corresponding to highly singular kernels like (9.25).
Many details have been elaborated in a number of papers, like ref. [24], with
a daring physical interpretation.

Remark 9.14 _Ulam’s idea. The approximation of Perron-Frobenius
operator defined by (9.26) has been shown to reproduce correctly the spec-
trum for expanding maps, once finer and finer Markov partitions are used [25].
The subtle point of choosing a phase space partitioning for a “generic case”
is discussed in ref. [20].

191
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Résumé

A serious theory of cycle expansions requires a deeper understanding of their
analyticity and convergence. If we restrict the considerations to those few ideal
systems where symbolic dynamics and hyperbolicity can be controlled, it is possi-
ble to treat traces and determinants in a rigorous fashion, and beautiful rigorous
results about analyticity properties of dynamical zeta functions and spectral det-
erminants outlined above follow.

Most systems of interest are not of the “axiom A” category; they are nei-
ther purely hyperbolic nor do they have a simple symbolic dynamics grammar.
Importance of symbolic dynamics is sometime grossly unappreciated; the crucial
ingredient for nice analyticity properties of zeta functions is existence of finite
grammar (coupled with uniform hyperbolicity). The dynamical systems that we
are really interested in - for example, smooth bound Hamiltonian potentials - are
presumably never really chaotic, and the central question remains: how to attack
the problem in systematic and controllable fashion?

References

[9.1] V. Baladi, A brief introduction to dynamical zeta functions, in: DMV-Seminar
27, Classical Nonintegrability, Quantum Chaos, A. Knauf and Ya.G. Sinai (eds),
(Birkhuser,1997).

[9.2] M. Pollicott, Periodic orbits and zeta functions, 1999 AMS Summer Institute on
Smooth ergodic theory and applications, Seattle (1999), To appear Proc. Symposia
Pure Applied Math., AMS.

[9.3] M. Viana, Stochastic dynamics of deterministic systems, (Col. Bras. de Matemética,
Rio de Janeiro,1997)

[9.4] A.N. Kolmogorov and S.V. Fomin, Elements of the theory of functions and func-
tional analysis (Dover,1999).

[9.5] R.G. Douglas, Banach algebra techniques in operator theory (Springer, New
York,1998).

[9.6] A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84, 319 (1956).
[9.7] D. Ruelle, Inst. Hautes Etudes Sci. Publ. Math. 72, 175-193 (1990).

[9.8] V. Baladi, Dynamical zeta functions, Proceedings of the NATO ASI Real and Com-
plex Dynamical Systems (1993), B. Branner and P. Hjorth, eds. (Kluwer Academic
Publishers, Dordrecht, 1995)

[9.9] D. Ruelle, Inv. Math. 34, 231-242 (1976).

[9.10] R.L. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley,
Reading MA, 1987).

/refsConverg.tex 29jan2001 printed June 19, 2002



REFERENCES 193

[9.11] F. Christiansen, P. Cvitanovié¢ and H.H. Rugh, J. Phys A 23, L713 (1990).

[9.12] D. Alonso, D. MacKernan, P. Gaspard and G. Nicolis, Phys. Rev. E54, 2474
(1996).

[9.13] P. Walters, An introduction to ergodic theory. (Springer, New York 1982).
[9.14] D. Ruelle, Commun. Math. Phys. 9, 267 (1968).

[9.15] Ya.G. Sinai, Topics in ergodic theory. (Princeton Univ. Press, Princeton 1994).
[9.16] I. Kornfeld, S. Fomin and Ya. Sinai, Ergodic Theory (Springer, 1982).

[9.17] P. Walters, An introduction to ergodic theory, Springer Graduate Texts in Math.
Vol 79 (Springer, New York, 1982).

[9.18] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces,
(Springer Lecture Notes in Math. 470, 1975).

[9.19] K. Peterson, Ergodic theory (Cambridge Univ. Press, Cambridge 1983).
[9.20] D. Fried, Ann. Scient. Ec. Norm. Sup. 19, 491 (1986).

[9.21] H.H. Rugh, Nonlinearity 5, 1237 (1992).

[9.22] S. Smale, Bull. Amer. Math. Soc. 73, 747 (1967).

[9.23] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Springer Lect. Notes in Math. 470, 1975.

[9.24] H.H. Hasegawa and W.C. Saphir, Phys. Rev. A46, 7401 (1992).
[9.25] G. Froyland, Commun. Math. Phys. 189, 237 (1997)

[9.26] G. Froyland, Extracting dynamical behaviour via markov models, in A. Mees (ed.)
Nonlinear dynamics and statistics: Proceedings Newton Institute, Cambridge 1998
(Birkhauser,2000).

[9.27] V. Baladi, A. Kitaev, D. Ruelle, and S. Semmes, “Sharp determinants and knead-
ing operators for holomorphic maps”, IHES preprint (1995).

[9.28] A. Zygmund, Trigonometric series (Cambridge Univ. Press, Cambridge 1959).

printed June 19, 2002 /refsConverg.tex 29jan2001



194 CHAPTER 9.

Exercises

Show that (9.2) is a complete basis on the space

9.1 What space does L act on?
of analytic functions on a disk (and thus that we found the complete set of eigenvalues).

9.2 What space does £ act on? What can be said about the spectrum of (9.1)
on L'[0,1]? Compare the result with fig. 9.1.

9.3 Euler formula. Derive the Euler formula (9.4)

ﬁ(l—i—tuk) gt t2u N t3u’
11 T—u  (I—w(—u?) " (1—u)(l—u2)(1—ud)
k(k—1)
Y u| < 1. (9.27)

_ c- k
- Lo

9.4 2-d product expansion**.  We conjecture that the expansion corresponding
to (9.27) is in this case

1 T Len s e S Fi(u) &
;};[0(1+t ) B kZ:O(lfu)Q(l—u2)2...(1,uk)2t
= 1+ (1—u)? + 1 —w)2(1 - u?)

21 4 2

o wea— w1 —w)

n3/2

Fy(u) is a polynomial in u, and the coefficients fall off asymptotically as C,, = u
Verify; if you have a proof to all orders, e-mail it to the authors. (See also solution 9.3).
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EXERCISES 195

9.5 Bernoulli shift on L spaces. Check that the family (9.12) belongs to
L1([0,1]). What can be said about the essential spectral radius on L?([0,1])? A useful
reference is [28].

9.6 Cauchy integrals. Rework all complex analysis steps used in the Bernoulli
shift example on analytic functions on a disk.

9.7 Escape rate. Consider the escape rate from a strange repeller: find a choice
of trial functions £ and ¢ such that (9.21) gives the fraction on particles surviving after
n iterations, if their initial density distribution is po(x). Discuss the behavior of such an
expression in the long time limit.
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Chapter 10

Qualitative dynamics

The classification of the constituents of a chaos, nothing
less is here essayed.

Herman Melville, Moby Dick, chapter 32

In chapters 7 and 8 we established that spectra of evolution operators can be
extracted from periodic orbit sums:

Z(eigenvalues) = Z(periodic orbits) .

In order to apply this theory we need to know what periodic orbits can exist.

In this chapter and the next we learn how to name and count periodic orbits,
and in the process touch upon all the main themes of this book, going the whole
distance from diagnosing chaotic dynamics to computing zeta functions. We
start by showing that the qualitative dynamics of stretching and mixing flows
enables us to partition the phase space and assign symbolic dynamics itineraries
to trajectories. Given an itinerary, the topology of stretching and folding fixes
the relative spatial ordering of trajectories, and separates the admissible and
inadmissible itineraries. We turn this topological dynamics into a multiplicative
operation by means of transition matrices/Markov graphs.

Even though by inclination you might only care about the serious stuff, like

Rydberg atoms or mesoscopic devices, and resent wasting time on things formal,
this chapter and the next are good for you. Read them.
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198 CHAPTER 10. QUALITATIVE DYNAMICS

10.1 Temporal ordering: Itineraries

(R. Mainieri and P. Cvitanovi¢)

What can a flow do to the phase space points? This is a very difficult question
to answer because we have assumed very little about the evolution function f%;
continuity, and differentiability a sufficient number of times. Trying to make sense
of this question is one of the basic concerns in the study of dynamical systems.
One of the first answers was inspired by the motion of the planets: they appear to
repeat their motion through the firmament. Motivated by this observation, the
first attempts to describe dynamical systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point zg of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point zy must
return is up to us: we can choose a volume of any size and shape as long as it
encloses zg, and call it the neighborhood Mj. For chaotic dynamical systems,
the evolution might bring the point back to the starting neighborhood infinitely
often. That is, the set

{ye Mo: y=f(z0), t>to} (10.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in phase space, which turns
out to be the important first step on the way to a theory of dynamical systems:
qualitative, topological dynamics, or, as it is usually called, symbolic dynam-
ics. Understanding symbolic dynamics is a prerequisite to developing a theory of
chaotic dynamic systems. We offer a summary of the basic notions and defini-
tions of symbolic dynamics in sect. 10.2. As the subject can get quite technical,
you might want to skip this section on first reading, but check there whenever
you run into obscure symbolic dynamics jargon.

We start by cutting up the phase space up into regions M4, Mp,..., M.
This can be done in many ways, not all equally clever. Any such division of the
phase space into topologically distinct regions is a partition, and we associate with
each region (sometimes referred to as a state) a symbol s from an N-letter alphabet
or state set A={A,B,C,---,Z}. As the dynamics moves the point through the
phase space, different regions will be visited. The visitation sequence - forthwith
referred to as the itinerary - can be represented by the letters of the alphabet A.
If, as in the example sketched in fig. 10.1, the phase space is divided into three
regions My, M1, and My, the “letters” are the integers {0, 1,2}, and a possible
itinerary for the trajectory of a point x would be 0 — 2+—1+—0+— 1+ 2+ ---
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S
[

Figure 10.1: A trajectory with itinerary 021012.

An interesting partition should be dynamically connected, that is one should
be able to go from any region M; to any other region M; in a finite number of
steps. A dynamical system with such partition is metrically indecomposable.

The allowed transitions between the regions of a partition are encoded in the
[N x N]-dimensional transition matriz whose elements take values

T, = { 1 if a transition region M; — region M; is possible (10.2)

0 otherwise.

An example is the complete N-ary dynamics for which all transition matrix
entries equal unity (one can reach any region to any other region in one step)

11 ... 1
11 ... 1

T.=|. . . (10.3)
11 ... 1

Further examples of transition matrices, such as the 3-disk transition matrix
(10.14) and the 1-step memory sparse matrix (10.27), are peppered throughout
the text. The transition matrix encodes the topological dynamics as an invariant
law of motion, with the allowed transitions at any instant independent of the
trajectory history, requiring no memory.

In general one also encounters transient regions - regions to which the dy-
namics does not return to once they are exited. Hence we have to distinguish
between (for us uninteresting) wandering trajectories that never return to the
initial neighborhood, and the non-wandering set (2.2) of the recurrent trajecto-
ries.

Knowing that some point from M; reaches M, in one step is not quite good
enough. We would be happier if we knew that any point in M; reaches Mj;
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200 CHAPTER 10. QUALITATIVE DYNAMICS

otherwise we have to subpartition M; into the points which land in M;, and
those which do not, and often we will find ourselves partitioning ad infinitum.

Such considerations motivate the notion of a Markov partition, a partition for
which no memory of preceeding steps is required to fix the transitions allowed
in the next step. Dynamically, finite Markov partitions can be generated by
expanding d-dimensional iterated mappings f : M — M, if M can be divided
into N regions { Mg, M1,..., My_1} such that in one step points from an initial
region M; either fully cover a region M;, or miss it altogether,

either M; N fM;)=0 or M; C fM;). (10.4)

An example is the 1-dimensional expanding mapping sketched in fig. 10.6, and
more examples are worked out in sect. 18.2.

@ fast track:
sect. 10.3, p. 204
10.2 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic dynamics.
The reader might prefer to skim through this material on first reading, return to
it later as the need arises.

Definitions.

We associate with every initial point zg € M the future itinerary, a sequence of
symbols ST (xg) = s1s253 -+ which indicates the order in which the regions are
visited. If the trajectory x1,x9,x3,... of the initial point x( is generated by

Tnt1 = f(zn), (10.5)
then the itinerary is given by the symbol sequence
Sp =S if T, € M. (10.6)

Similarly, the past itinerary S™(xg) = - - - s_25_10 describes the history of xg, the
order in which the regions were visited before arriving to the point zg. To each
point zg in the dynamical space we thus associate a bi-infinite itinerary

S($0) = (Sk)kGZ = S_.S+ — ++85_95_.150.5158283 """ . (10.7)
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The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating
for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabet A is called the full shift

AL = {(sp)pez s s € Afor allk € Z}. (10.8)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on these
sequences. As is clear from the definition (10.6), a forward iteration x — 2’ =
f(x) shifts the entire itinerary to the left through the “decimal point”. This
operation, denoted by the shift operator o,

o(++8_95_180.518283 ") = -+ S_25_18051.5283 " , (10.9)

demoting the current partition label s; from the future S* to the “has been”
itinerary S™. The inverse shift o~! shifts the entire itinerary one step to the
right.

A finite sequence b = 5511 " Sg4n,—1 Of symbols from A is called a block
of length ny. A phase space trajectory is periodic if it returns to its initial point
after a finite time; in the shift space the trajectory is periodic if its itinerary is
an infinitely repeating block p>°. We shall refer to the set of periodic points that
belong to a given periodic orbit as a cycle

P = 38182+ "8p, = {$8182"'8np7xsg'"snp817 T axsnpsl---snp_l} . (10-10)

By its definition, a cycle is invariant under cyclic permutations of the symbols
in the repeating block. A bar over a finite block of symbols denotes a periodic
itinerary with infinitely repeating basic block; we shall omit the bar whenever
it is clear from the context that the trajectory is periodic. Each cycle point is
labeled by the first n, steps of its future itinerary. For example, the 2nd cycle
point is labelled by

Lsgesnys1 = L5787 87-537 8y 51 -

A prime cycle p of length n, is a single traversal of the orbit; its label is a
block of n, symbols that cannot be written as a repeat of a shorter block (in
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202 CHAPTER 10. QUALITATIVE DYNAMICS

literature such cycle is sometimes called primitive; we shall refer to it as “prime”
throughout this text).

A partition is called generating if every infinite symbol sequence corresponds
to a distinct point in the phase space. Finite Markov partition (10.4) is an
example. Constructing a generating partition for a given system is a difficult
problem. In examples to follow we shall concentrate on cases which allow finite
partitions, but in practice almost any generating partition of interest is infinite.

A mapping f : M — M together with a partition A induces topological
dynamics (X, 0), where the subshift

%= {(s)rez} (10.11)

is the set of all admissible infinite itineraries, and o : ¥ — X is the shift operator
(10.9). The designation “subshift” comes form the fact that ¥ C A? is the subset
of the full shift (10.8). One of our principal tasks in developing symbolic dynamics
of dynamical systems that occur in nature will be to determine X, the set of all
bi-infinite itineraries S that are actually realized by the given dynamical system.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid
that, we often find it convenient to work with partitions finer than strictly nec-
essary. Ideally the dynamics in the refined partition assigns a unique infinite
itinerary - --s_25_150.515283 - - - to each distinct trajectory, but there might exist
full shift symbol sequences (10.8) which are not realized as trajectories; such se-
quences are called inadmissible, and we say that the symbolic dynamics is pruned.

The word is suggested by “pruning” of branches corresponding to forbidden se-
quences for symbolic dynamics organized hierarchically into a tree structure, as
will be explained in sect. 10.8.

If the dynamics is pruned, the alphabet must be supplemented by a grammar,
a set of pruning rules. After the inadmissible sequences have been pruned, it is
often convenient to parse the symbolic strings into words of variable length - this
is called coding. Suppose that the grammar can be stated as a finite number of
pruning rules, each forbidding a block of finite length,

G = {b1,b2,-- - by} , (10.12)

where a pruning block b is a sequence of symbols b = sysg---sp,, s € A, of
finite length ny. In this case we can always construct a finite Markov partition
(10.4) by replacing finite length words of the original partition by letters of a
new alphabet. In particular, if the longest forbidden block is of length M + 1,
we say that the symbolic dynamics is a shift of finite type with M-step memory.
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N S OE
@ 7= (] )0 :

Figure 10.2: (a) The transition matrix for a simple subshift on two-state partition A =
{0,1}, with grammar G given by a single pruning block b = 11 (consecutive repeat of symbol
1 is inadmissible): the state My maps both onto My and M, but the state M; maps only
onto My. (b) The corresponding finite 2-node, 3-links Markov graph, with nodes coding the
symbols. All admissible itineraries are generated as walks on this finite Markov graph.

In that case we can recode the symbolic dynamics in terms of a new alphabet,
with each new letter given by an admissible block of at most length M. In the
new alphabet the grammar rules are implemented by setting 7;; = 0 in (10.3) for
forbidden transitions.

A topological dynamical system (X, o) for which all admissible itineraries are
generated by a finite transition matrix

Y= {(Sk)kez : Tsypsy,y =1 for all k} (10.13)

is called a subshift of finite type. Such systems are particularly easy to handle; the
topology can be converted into symbolic dynamics by representing the transition
matrix by a finite directed Markov graph, a convenient visualization of topological
dynamics.

A Markov graph describes compactly the ways in which the phase-space re-
gions map into each other, accounts for finite memory effects in dynamics, and
generates the totality of admissible trajectories as the set of all possible walks
along its links.

A Markov graph consists of a set of nodes (or vertices, or states), one for each
state in the alphabet A = {4, B,C,---, Z}, connected by a set of directed links
(edges, arcs). Node 7 is connected by a directed link to node j whenever the
transition matrix element (10.2) takes value Tj; = 1. There might be a set of links
connecting two nodes, or links that originate and terminate on the same node.
Two graphs are isomorphic if one can be obtained from the other by relabelling
links and nodes; for us they are one and the same graph. As we are interested in
recurrent dynamics, we restrict our attention to irreducible or strongly connected
graphs, that is graphs for which there is a path from any node to any other node.
irreducible!lgraph strongly connected graph graphl!irreducible

The simplest example is given in fig. 10.2. We shall study such graphs in more
detail in sect. 10.8.
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10.3 3-disk symbolic dynamics

The key symbolic dynamics concepts are easily illustrated by a game of pinball.
Consider the motion of a free point particle in a plane with IV elastically reflecting
convex disks. After a collision with a disk a particle either continues to another
disk or escapes, and any trajectory can be labelled by the disk sequence. For
example, if we label the three disks by 1, 2 and 3, the two trajectories in fig. 1.2
have itineraries -3123_, _312132_ respectively. The 3-disk prime cycles given in
figs. 1.4 and 10.4 are further examples of such itineraries.

At each bounce a pencil of initially nearby trajectories defocuses, and in
order to aim at a desired longer and longer itinerary of bounces the initial point
xo = (po, qo) has to be specified with a larger and larger precision. Similarly, it is
intuitively clear that as we go backward in time (in this case, simply reverse the
velocity vector), we also need increasingly precise specification of o = (po, qo)
in order to follow a given past itinerary. Another way to look at the survivors
after two bounces is to plot My, s,, the intersection of M ;, with the strips Mg, .
obtained by time reversal (the velocity changes sign sinf — —sinf). My, g, is
a “rectangle” of nearby trajectories which have arrived from the disk s; and are
heading for the disk so.

We see that a finite length trajectory is not uniquely specified by its finite
itinerary, but an isolated unstable cycle (consisting of infinitely many repetitions
of a prime building block) is, and so is a trajectory with a bi-infinite itinerary
S™.ST = -..5_95_150.518983--- . For hyperbolic flows the intersection of the
future and past itineraries uniquely specifies a trajectory. This is intuitively clear
for our 3-disk game of pinball, and is stated more formally in the definition (10.4)
of a Markov partition. The definition requires that the dynamics be expanding
forward in time in order to ensure that the pencil of trajectories with a given
itinerary becomes sharper and sharper as the number of specified symbols is
increased.

As the disks are convex, there can be no two consecutive reflections off the
same disk, hence the covering symbolic dynamics consists of all sequences which
include no symbol repetitions _11_, 22 33_. This is a finite set of finite length
pruning rules, hence the dynamics is a subshift of finite type (for the definition,
see (10.13)), with the transition matrix (10.2) given by

01 1
T =110 1]. (10.14)
110

For convex disks the separation between nearby trajectories increases at every
reflection, implying that the stability matrix has an expanding eigenvalue. By
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Figure 10.3: The Poincaré section of the phase space for the binary labelled pinball, see
also fig. 10.4(b). Indicated are the fixed points 0, 1 and the 2-cycle periodic points 01, 10,
together with strips which survive 1, 2, ... bounces. lteration corresponds to the decimal
point shift; for example, all points in the rectangle [01.01] map into the rectangle [010.1] in

one iteration.
PC: do this figure right, in terms of strips!

the Liouville phase-space volume conservation (4.39), the other transverse eigen-
value is contracting. This example shows that finite Markov partitions can be
constructed for hyperbolic dynamical systems which are expanding in some direc-
tions, contracting in others.

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks), pruned (for example, for touching or overlapping
disks), or only a first coarse graining of the topology (as, for example, for smooth
potentials with islands of stability) requires case-by-case investigation. For the
time being we assume that the disks are sufficiently separated that there is no
additional pruning beyond the prohibition of self-bounces.

W fast track:
sect. 10.5, p. 210
10.3.1 A brief detour; nonuniqueness, symmetries, tilings

é Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any of many
different partitions might do the job. The 3-disk system offers a simple illustration
of different Markov partitioning strategies for the same dynamical system.

The A = {1, 2,3} symbolic dynamics for 3-disk system is neither unique, nor
necessarily the smartest one - before proceeding it pays to exploit the symmetries
of the pinball in order to obtain a more efficient description. As we shall see in
chapter 17, rewards of this desymmetrization will be handsome.
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As the three disks are equidistantly spaced, our game of pinball has a sixfold
symmetry. For instance, the cycles 12, 23, and 13 are related to each other
by rotation by 42m/3 or, equivalently, by a relabelling of the disks. Further
examples of such symmetries are shown in fig. 1.4. We note that the disk labels
are arbitrary; what is important is how a trajectory evolves as it hits subsequent
disks, not what label the starting disk had. We exploit this symmetry by recoding,
in this case replacing the absolute disk labels by relative symbols, indicating the
type of the collision.  For the 3-disk game of pinball there are two topologically
distinct kinds of collisions, fig. 1.3:

0: the pinball returns to the disk it came from
1:  the pinball continues to the third disk.

This binary symbolic dynamics has one immediate advantage over the ternary
one; the prohibition of self-bounces is automatic. If the disks are sufficiently far
apart there are no further restrictions on symbols, the symbolic dynamics is
complete, and all binary sequences are admissible itineraries. As this type of
symbolic dynamics pops up frequently, we list the shortest binary prime cycles
in table 10.1.

The 3-disk game of pinball is tiled by six copies of the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflect-
ing mirrors, see fig. 10.4b. A global 3-disk trajectory maps into its fundamental
domain mirror trajectory by replacing every crossing of a symmetry axis by a re-
flection. Depending on the symmetry of the global trajectory, a repeating binary
symbols block corresponds either to the full periodic orbit or to an irreducible
segment (examples are shown in fig. 10.4 and table 10.2). An irreducible segment
corresponds to a periodic orbit in the fundamental domain. Table 10.2 lists some
of the shortest binary periodic orbits, together with the corresponding full 3-disk
symbol sequences and orbit symmetries.  For a number of reasons that will be
elucidated in chapter 17, life is much simpler in the fundamental domain than in
the full system, so whenever possible our computations will be carried out in the
fundamental domain.

Symbolic dynamics for N-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and the symbolic dynamics. This is brought out more clearly by the Smale
horseshoe visualization of “stretch & fold” flows to which we turn now.

10.4 Spatial ordering of “stretch & fold” flows

Suppose concentrations of certain chemical reactants worry you, or the variations
in the Chicago temperature, humidity, pressure and winds affect your mood. All
such properties vary within some fixed range, and so do their rates of change. So
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Figure 10.4: The 3-disk game of pinball with the disk radius : center separation ratio
a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated. (b) The
fundamental domain, that is the small 1/6th wedge indicated in (a), consisting of a section
of a disk, two segments of symmetry axes acting as straight mirror walls, and an escape gap.
The above cycles restricted to the fundamental domain are now the two fixed points 0, T,

and the 100 cycle.
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niﬂ p np p ’er p np p np p
1 0 7 0001001 8 00001111 9 000001101 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
) 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101

Table 10.1: Prime cycles for the binary symbolic dynamics up to length 9.

a typical dynamical system that we care about is bounded. If the price for change
is high - for example, we try to stir up some tar, and observe it come to dead
stop the moment we cease our labors - the dynamics tends to settle into a simple
limiting state. However, as the resistence to change decreases - the tar is heated
up and we are more vigorous in our stirring - the dynamics becomes unstable.
We have already quantified this instability in sect. 4.1 - for now suffice it to say
that a flow is locally unstable if nearby trajectories separate exponentially with
time.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back. An example is a 3-dimensional
invertible flow sketched in fig. 10.5 which returns an area of a Poincaré section
of the flow stretched and folded into a “horseshoe”, such that the initial area is
intersected at most twice (see fig. 10.16). Run backwards, the flow generates
the backward horseshoe which intersects the forward horseshoe at most 4 times,
and so forth. Such flows exist, and are easily constructed - an example is the
Rossler system given below in (2.12).

At this juncture the reader can chose either of the paths illustrating the
concepts introduced above, or follow both: a shortcut via unimodal mappings
of the interval, sect. 10.5, or more demanding path, via the Smale horseshoes of
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D P 8 D p g5
0 12 012 000001 121212131313 0923
1 123 Cs 000011 121212313131 232323 C§
01 1213 093 000101 121213 e

001 121232313 Cs 000111 121213212123 012
011 121 323 013 001011 121232131323 093
0001 12121313 093 001101 121231 323213 13
0011 1212 3131 2323 Cg 001111 121231232312 313123 Cs
0111 12132123 012 010111 121312313231 232123 C’g
00001 | 121212323231313 | Cs 011111 121321 323123 013
00011 | 1212132323 013 0000001 | 121212123232323131313 | Cs
00101 | 1212321213 012 0000011 | 1212121 3232323 013
00111 | 12123 e 0000101 | 12121232121213 012
01011 | 121312321231323 | C3 0000111 | 1212123 e

01111 | 1213213123 093

Table 10.2: (3, correspondence between the binary labelled fundamental domain prime
cycles p and the full 3-disk ternary labelled cycles p, together with the Cj3, transformation
that maps the end point of the p cycle into the irreducible segment of the p cycle, see
sect. 17.2.2. Breaks in the ternary sequences mark repeats of the irreducible segment. The
degeneracy of p cycle is m;,, = 6n;/n,. The shortest pair of the fundamental domain cycles
related by time symmetry are the 6-cycles 001011 and 001101.

‘ )

Z v ’b . A stretch  ©
f(x) )
l 7 f(b)
o X f(a) "©)
(a) a c (b)

Figure 10.5: (a) A recurrent flow that stretches and folds. (b) The “stretch & fold" return
map on the Poincaré section.
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sects. 10.6 and 10.7. Unimodal maps are easier, but physically less motivated.
The Smale horseshoes are the high road, more complicated, but the right tool to
describe the 3-disk dynamics, and begin analysis of general dynamical systems.
It is up to you - to get quickly to the next chapter, unimodal maps will suffice.

- in depth:
a sect. 10.6, p. 215
10.5 Unimodal map symbolic dynamics

Our next task is to relate the spatial ordering of phase-space points to their
temporal itineraries. The easiest point of departure is to start out by working
out this relation for the symbolic dynamics of 1-dimensional mappings. As it
appears impossible to present this material without getting bogged down in a sea
of 0’s, 1’s and subscripted symbols, let us state the main result at the outset: the
admissibility criterion stated in sect. 10.5.2 eliminates all itineraries that cannot
occur for a given unimodal map.

Suppose that the compression of the folded interval in fig. 10.5 is so fierce
that we can neglect the thickness of the attractor. For example, the Rossler
flow (2.12) is volume contracting, and an interval transverse to the attractor is
stretched, folded and pressed back into a nearly 1-dimensional interval, typically
compressed transversally by a factor of ~ 10'® in one Poincaré section return.
In such cases it makes sense to approximate the return map of a “stretch &
fold” flow by a 1-dimensional map. Simplest mapping of this type is unimodal,
interval is stretched and folded only once, with at most two points mapping into a
point in the new refolded interval. A unimodal map f(z) is a 1-d function R — R
defined on an interval M with a monotonically increasing (or decreasing) branch,
a critical point or interval x. for which f(z.) attains the maximum (minimum)
value, followed by a monotonically decreasing (increasing) branch. The name is
uninspiring - it refers to any one-humped map of interval into itself.

The simplest examples of unimodal maps are the complete tent map fig. 10.6(a),

f() =1-2]y-1/2], (10.15)
and the quadratic map (sometimes also called the logistic map)

T =1 —ax?, (10.16)
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o1 10 101
(b) ==

Figure 10.6: (a) The complete tent map together with intervals that follow the indicated
itinerary for n steps. (b) A unimodal repeller with the remaining intervals after 1, 2 and
3 iterations. Intervals marked syss---s, are unions of all points that do not escape in n
iterations, and follow the itinerary ST = sys5 - - - 5,. Note that the spatial ordering does not
respect the binary ordering; for example xgp < g1 < 11 < Z19. Also indicated: the fixed

pOintS Xo, T1, the 2-CyC|e 0_1, and the 3-CyC|e m (need correct eq. ref.)

with the one critical point at . = 0. Another example is the repelling unimodal
map of fig. 10.6b. We refer to (10.15) as the “complete” tent map because its
symbolic dynamics is a complete binary dynamics.

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall argue in sect. 10.6.1, they may nevertheless serve as effective
descriptions of hyperbolic flows. For the unimodal maps of fig. 10.6 a Markov
partition of the unit interval M is given by the two intervals { Mo, M1}. The
symbolic dynamics is complete binary: as both f(My) and f(M;) fully cover
My and M, the corresponding transition matrix is a [2x2] matrix with all
entries equal to 1, as in (10.3). The critical value denotes either the maximum or
the minimum value of f(z) on the defining interval; we assume here that it is a
maximum, f(z.) > f(z) for all z € M. The critical value f(z.) belongs neither
to the left nor to the right partition M;, and is denoted by its own symbol s = C.

The trajectory x1,x2,x3,... of the initial point zg is given by the iteration
ZTnt1 = f(x,). Tterating f and checking whether the point lands to the left or
to the right of x. generates a temporally ordered topological itinerary (10.6) for
a given trajectory,

(10.17)

1 ifx, >z,
Sn =19 0 if z, < x,

printed June 19, 2002 /chapter/symbolic.tex 2dec2001



212 CHAPTER 10. QUALITATIVE DYNAMICS

Figure 10.7: Alternating binary tree relates the

itinerary labelling of the unimodal map fig. 10.6 in- N . -
tervals to their spatial ordering. Dotted line stands

for 0, full line for 1; the binary sub-tree whose root
is a full line (symbol 1) reverses the orientation, / 001 o1 010 1 \in 10

due to the orientation reversing fold in figs. 10.6 T / 7:'
and 10.5.

We shall refer to S*(zg) = .s15283- - as the future itinerary. Our next task is
answer the reverse problem: given an itinerary, what is the corresponding spatial
ordering of points that belong to a given trajectory?

10.5.1 Spatial ordering for unimodal mappings

The tent map (10.15) consists of two straight segments joined at x = 1/2. The
symbol s,, defined in (10.17) equals 0 if the function increases, and 1 if the function
decreases. The piecewise linearity of the map makes it possible to analytically
determine an initial point given its itinerary, a property that we now use to define
a topological coordinatization common to all unimodal maps.

Here we have to face the fundamental problems of combinatorics and symbolic
dynamics: combinatorics cannot be taught. The best one can do is to state the
answer, and then hope that you will figure it out by yourself. The tent map point
v(ST) with future itinerary S is given by converting the sequence of s,,’s into a
binary number by the following algorithm:

w1 = S1

w if s, =0
Wn4+1 = { " "

1—w, ifs,=1 "’

Y(SH) = Owiwgws... =Y wy/2". (10.18)

10.5 & This follows by inspection from the binary tree of fig. 10.7. For example, v whose

on p. 234 jtinerary is ST = 0110000 --- is given by the binary number v = .010000 - - -
Conversely, the itinerary of v = .01 is 81 = 0, f(y) = .1 — s = 1, f2(y) =
f(l) =1— S3 = 1, etc..

We shall refer to y(S™) as the (future) topological coordinate. wy’s are nothing
more than digits in the binary expansion of the starting point -+ for the complete
tent map (10.15). In the left half-interval the map f(x) acts by multiplication by
2, while in the right half-interval the map acts as a flip as well as multiplication
by 2, reversing the ordering, and generating in the process the sequence of s,’s
from the binary digits w,.
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The mapping xo — ST(x9) — 70 = Y(ST) is a topological conju-
gacy which maps the trajectory of an initial point xg under iteration of a given
unimodal map to that initial point « for which the trajectory of the “canonical”
unimodal map (10.15) has the same itinerary. The virtue of this conjugacy is
that it preserves the ordering for any unimodal map in the sense that if T > =,
then 7 > ~.

10.5.2 Kneading theory

(K.T. Hansen and P. Cvitanovi¢)

The main motivation for being mindful of spatial ordering of temporal itineraries
is that this spatial ordering provides us with criteria that separate inadmissible
orbits from those realizable by the dynamics. For 1-dimensional mappings the
kneading theory provides such criterion of admissibility.

If the parameter in the quadratic map (10.16) is a > 2, then the iterates of the
critical point . diverge for n — oco. As long as a > 2, any sequence ST composed
of letters s; = {0,1} is admissible, and any value of 0 < 7 < 1 corresponds to
an admissible orbit in the non—-wandering set of the map. The corresponding
repeller is a complete binary labelled Cantor set, the n — oo limit of the nth
level covering intervals sketched in fig. 10.6.

For a < 2 only a subset of the points in the interval v € [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largest x,, value in an orbit x1 — 22 — x3 — ... has to be smaller than or
equal to the image of the critical point, the critical value f(x.). Let K = St (z.)
be the itinerary of the critical point x., denoted the kneading sequence of the
map. The corresponding topological coordinate is called the kneading value

K =7(K)=~(S" (). (10.19)

A map with the same kneading sequence K as f(x), such as the dike map fig. 10.8,
is obtained by slicing off all v (ST (xq)) > &,

fo(v) =2y v €lp=[0,r/2)
f(y) =3 fe(v)=r yel=[k/2,1-K/2] . (10.20)
i) =2(1-v) ~yeh=[-x/2]1]

The dike map is the complete tent map fig. 10.6(a) with the top sliced off. It is
convenient for coding the symbolic dynamics, as those v values that survive the
pruning are the same as for the complete tent map fig. 10.6(a), and are easily
converted into admissible itineraries by (10.18).
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Figure 10.8: The “dike” map obtained by slic-
ing of a top portion of the tent map fig. 10.6a.
Any orbit that visits the primary pruning interval
(k, 1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit
interval the primary pruning interval and all its iter-
ates. Any admissible orbit has the same topological
coordinate and itinerary as the corresponding tent
map fig. 10.6a orbit.

If v(ST) > v(K), the point z whose itinerary is ST would exceed the critical
value, z > f(x.), and hence cannot be an admissible orbit. Let

A(8T) = sup Y(e™(S)) (10.21)

be the mazximal value, the highest topological coordinate reached by the orbit
x1 — 3 — x3 — .... We shall call the interval (k,1] the primary pruned
interval. The orbit ST is inadmissible if v of any shifted sequence of ST falls into
this interval.

Criterion of admissibility: Let k be the kneading value of the critical point,
and 4(S™) be the maximal value of the orbit S*. Then the orbit S™ is admissible
if and only if ¥(S7) < k.

While a unimodal map may depend on many arbitrarily chosen parameters, its
dynamics determines the unique kneading value . We shall call x the topological
parameter of the map. Unlike the parameters of the original dynamical system,
the topological parameter has no reason to be either smooth or continuous. The
jumps in £ as a function of the map parameter such as a in (10.16) correspond
to inadmissible values of the topological parameter. Each jump in k corresponds
to a stability window associated with a stable cycle of a smooth unimodal map.
For the quadratic map (10.16) x increases monotonically with the parameter a,
but for a general unimodal map monotonicity need not be the case.

For further details of unimodal dynamics, the reader is referred to appendix E.1.
As we shall see in sect. 10.7, for higher-dimensional maps and flows there is no
single parameter that orders dynamics monotonically; as a matter of fact, there
is an infinity of parameters that need adjustment for a given symbolic dynamics.
This difficult subject is beyond our current ambition horizon.
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Armed with one example of pruning, the impatient reader might prefer to
skip the 2-dimensional examples and jump from here directly to the topological
dynamics sect. 10.8.

W fast track:
sect. 10.8, p. 222
10.6 Spatial ordering: Symbol square

I.1. Introduction to conjugacy problems for diffeomorphisms. This
is a survey article on the area of global analysis defined by differentiable
dynamical systems or equivalently the action (differentiable) of a Lie group
G on a manifold M. Here Diff(M ) is the group of all diffeomorphisms of M
and a diffeomorphism is a differentiable map with a differentiable inverse.
(-..) Our problem is to study the global structure, that is, all of the orbits of
M.

Stephen Smale, Differentiable Dynamical Systems

Consider a system for which you have succeeded in constructing a covering sym-
bolic dynamics, such as a well-separated 3-disk system. Now start moving the
disks toward each other. At some critical separation a disk will start blocking
families of trajectories traversing the other two disks. The order in which trajec-
tories disappear is determined by their relative ordering in space; the ones closest
to the intervening disk will be pruned first. Determining inadmissible itineraries
requires that we relate the spatial ordering of trajectories to their time ordered
itineraries.

So far we have rules that, given a phase space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the reverse: given a
set of itineraries, what is the spatial ordering of corresponding points along the
trajectories? In answering this question we will be aided by Smale’s visualization
of the relation between the topology of a flow and its symbolic dynamics by means
of “horseshoes”.

10.6.1 Horseshoes

In fig. 10.5 we gave an example of a locally unstable but globally bounded flow
which returns an area of a Poincaré section of the flow stretched and folded into a
“horseshoe”, such that the initial area is intersected at most twice. We shall refer
to such flow-induced mappings from a Poincaré section to itself with at most 2"
transverse intersections at the nth iteration as the once-folding maps.
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As an example of a flow for which the iterates of an initial region intersect as
claimed above, consider the 2-dimensional Hénon map

Tnt1 = 1- awi + byn
Yntl = Tnp. (10.22)

The Hénon map models qualitatively the Poincaré section return map of fig. 10.5.
For b = 0 the Hénon map reduces to the parabola (10.16), and, as we shall see
here and in sects. 3.3 and 12.4.1, for b # 0 it is kind of a fattened parabola; it
takes a rectangular initial area and returns it bent as a horseshoe.

For definitiveness, fix the parameter values to a = 6, b = 0.9. The map is
quadratic, so it has 2 fixed points z¢g = f(z9), 1 = f (1) indicated in fig. 10.9a.
For the parameter values at hand, they are both unstable. If you start with a
small ball of initial points centered around x;, and iterate the map, the ball will
be stretched and squashed along the line Wi{*. Similarly, a small ball of initial
points centered around the other fixed point x( iterated backward in time,

Tp—1 = Tn

1
o1 = —3(L—ayy =), (10.23)

traces out the line Wj. W is the stable manifold of xy, and W7} is the unstable
manifold of z; fixed point (see sect. 4.8 - for now just think of them as curves
going through the fixed points).  Their intersection delineates the crosshatched
region M . It is easily checked that any point outside W{* segments of the M.
border escapes to infinity forward in time, while any point outside W border
segments escapes to infinity backwards in time. That makes M a good choice of
the initial region; all orbits that stay confined for all times must be within M .

Iterated one step forward, the region M. is stretched and folded into a horse-
shoe as in fig. 10.9b. Parameter a controls the amount of stretching, while the
parameter b controls the amount of compression of the folded horseshoe. The
case a = 6, b = 0.9 considered here corresponds to weak compression and strong
stretching. Denote the forward intersections f(M )NM_ by My , with s € {0, 1},
fig. 10.9b. The horseshoe consists of the two strips Mg , M. , and the bent seg-
ment that lies entirely outside the W7* line. As all points in this segment escape
to infinity under forward iteration, this region can safely be cut out and thrown
away.

Iterated one step backwards, the region M. is again stretched and folded
into a horseshoe, fig. 10.9c. As stability and instability are interchanged under
time reversal, this horseshoe is transverse to the forward one. Again the points
in the horseshoe bend wonder off to infinity as n — —oo, and we are left with
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(a) (b) (c)

Figure 10.9: (a) The Hénon map for a = 6, b = .9. Indicated are the fixed points 0, 1,
and the segments of the W stable manifold, W1 unstable manifold that enclose the initial
(crosshatched) region M . (b) The forward horseshoe f(M.). (c) The backward horseshoe
f~Y(M.). Iteration yields a complete Smale horseshoe, with every forward fold intersecting

every backward fold.

the two (backward) strips M o, M ; . Iterating two steps forward we obtain the
four strips Mi1., Mo1., Moo., M1o., and iterating backwards we obtain the four
strips M g9, M o1, M 11, M 10 transverse to the forward ones. Iterating three
steps forward we get an 8 strips, and so on ad infinitum.

What is the significance of the subscript 11 which labels the M 411 backward
strip? The two strips M o, M 1 partition the phase space into two regions labelled
by the two-letter alphabet A = {0,1}. ST = .011 is the future itinerary for all
x € M 11. Likewise, for the forward strips all z € My .5 |5, have the past
itinerary ST = S_pm---5-150 - Which mth level partition we use to present
pictorially the regions that do not escape in m iterations is a matter of taste, as
the backward strips are the preimages of the forward ones

Mo, = f(Mo), My = f(Ma).

2, the non—wandering set (2.2) of M, is the union of all the non-wandering
points given by the intersections

Q= {x cx e lim fM(M) ﬂf_n(/\/l)} , (10.24)

m,n— 00

of all images and preimages of M. The non—wandering set {2 is the union of all
points whose forward and backward trajectories remain trapped for all time.
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The two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold f™(M) intersects transver-
sally every backward fold f~™ (M), so a unique bi-infinite binary sequence can be
associated to every element of the non—wandering set. A point z € € is labelled
by the intersection of its past and future itineraries S(z) = ---s_25_150.5182 - -,
where s, =s if f"(x)e My , s € {0,1} and n € Z. For sufficiently sepa-
rated disks, the 3-disk game of pinball is another example of a complete Smale
horseshoe; in this case the “folding” region of the horseshoe is cut out of the
picture by allowing the pinballs that fly between the disks to fall off the table
and escape.

The system is structurally stable if all intersections of forward and backward
iterates of M remain transverse for sufficiently small perturbations f — f + ¢ of
the flow, for example, for slight displacements of the disks, or sufficiently small
variations of the Hénon map parameters a, b.

Inspecting the fig. 10.9d we see that the relative ordering of regions with
differing finite itineraries is a qualitative, topological property of the flow, so it
makes sense to define a simple “canonical” representative partition for the entire
class of topologically similar flows.

10.6.2 Symbol square

For a better visualization of 2-dimensional non—wandering sets, fatten the inter-
section regions until they completely cover a unit square, as in fig. 10.10. We
shall refer to such a “map” of the topology of a given “stretch & fold” dynami-
cal system as the symbol square. The symbol square is a topologically accurate
representation of the non—wandering set and serves as a street map for labelling
its pieces. Finite memory of m steps and finite foresight of n steps partitions the
symbol square into rectangles [S_p41 - S0.S152 - Sp]. In the binary dynamics
symbol square the size of such rectangle is 27" x 27"; it corresponds to a region of
the dynamical phase space which contains all points that share common n future
and m past symbols. This region maps in a nontrivial way in the phase space,
but in the symbol square its dynamics is exceedingly simple; all of its points are
mapped by the decimal point shift (10.9)

0(' ++8_95_.150.5158283 - - ) = +++85_95-15051.8283 """, (10.25)

For example, the square [01.01] gets mapped into the rectangle o[01.01] = [010.1].

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labelling of the horseshoe strips, and
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FIG. 4. Tterative construction of the symbol plane.

Figure 10.10: Kneading Danish pastry: symbol square representation of an orientation
reversing once-folding map obtained by fattening the Smale horseshoe intersections of fig. 10.9
into a unit square. In the symbol square the dynamics maps rectangles into rectangles by a
decimal point shift.
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their relative placement. The symbol square points (S™) with future itinerary
ST are constructed by converting the sequence of s,’s into a binary number by
the algorithm (10.18). This follows by inspection from fig. 10.10. In order to
understand this relation between the topology of horseshoes and their symbolic
dynamics, it might be helpful to backtrace to sect. 10.5.1 and work through and
understand first the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged; M !
has the same orientation as M, while /\/lf1 has the opposite orientation. We as-
sign to an orientation preserving once-folding map the past topological coordinate
d = 0(S7) by the algorithm:

. Wn, if s, =0 _
Wp—1 = {1—wn ifs, =1 " wo = 0
o0
5(8) = Owow qw g...=» win/2". (10.26)
n=1

Such formulas are best derived by quiet contemplation of the action of a folding
map, in the same way we derived the future topological coordinate (10.18).

The coordinate pair (J,7) maps a point (z,y) in the phase space Cantor
set of fig. 10.9 into a point in the symbol square of fig. 10.10, preserving the
topological ordering; (9, ) serves as a topologically faithful representation of the
non—wandering set of any once-folding map, and aids us in partitioning the set
and ordering the partitions for any flow of this type.

10.7 Pruning

The complexity of this figure will be striking, and I shall
not even try to draw it.

H. Poincaré, describing in Les méthodes nouvelles de la
méchanique cleste his discovery of homoclinic tangles.

In general, not all possible itineraries are realized as physical trajectories.
Trying to get from “here” to “there” we might find that a short path is excluded
by some obstacle, such as a disk that blocks the path, or a potential ridge. To
count correctly, we need to prune the inadmissible trajectories, that is, specify
the grammar of the admissible itineraries.

While the complete Smale horseshoe dynamics discussed so far is rather
straightforward, we had to get through it in order to be able to approach a situ-
ation that resembles more the real life: adjust the parameters of a once-folding
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Figure 10.11: (a) Anincomplete Smale horseshoe: the inner forward fold does not intersect
the two rightmost backward folds. (b) The primary pruned region in the symbol square and the
corresponding forbidden binary blocks. (c) An incomplete Smale horseshoe which illustrates
(d) the monotonicity of the pruning front: the thick line which delineates the left border of
the primary pruned region is monotone on each half of the symbol square. The backward
folding in figures (a) and (c) is only schematic - in invertible mappings there are further
missing intersections, all obtained by the forward and backward iterations of the primary

pruned region.

map so that the intersection of the backward and forward folds is still transverse,
but no longer complete, as in fig. 10.11a. The utility of the symbol square lies in
the fact that the surviving, admissible itineraries still maintain the same relative
spatial ordering as for the complete case.

In the example of fig. 10.11a the rectangles [10.1], [11.1] have been pruned,
and consequently any trajectory containing blocks b; = 101, by = 111 is pruned.
We refer to the border of this primary pruned region as the pruning front; another
example of a pruning front is drawn in fig. 10.11d. We call it a “front” as it can be
visualized as a border between admissible and inadmissible; any trajectory whose
periodic point would fall to the right of the front in fig. 10.11 is inadmissible, that
is, pruned. The pruning front is a complete description of the symbolic dynamics
of once-folding maps. For now we need this only as a concrete illustration of how
pruning rules arise.

In the example at hand there are total of two forbidden blocks 101, 111, so the
symbol dynamics is a subshift of finite type (10.13). For now we concentrate on
this kind of pruning because it is particularly clean and simple. Unfortunately,
for a generic dynamical system a subshift of finite type is the exception rather
than the rule.  Only some repelling sets (like our game of pinball) and a few
purely mathematical constructs (called Anosov flows) are structurally stable -
for most systems of interest an infinitesimal perturbation of the flow destroys
and/or creates an infinity of trajectories, and specification of the grammar re-
quires determination of pruning blocks of arbitrary length. The repercussions are
dramatic and counterintuitive; for example, due to the lack of structural stability
the transport coefficients such as the deterministic diffusion constant of sect. 18.2
are emphatically not smooth functions of the system parameters. This generic
lack of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
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most of the key concepts that we shall need for time being.

10.8 Topological dynamics

So far we have established and related the temporally and spatially ordered topo-
logical dynamics for a class of “stretch & fold” dynamical systems, and given
several examples of pruning of inadmissible trajectories. Now we use these re-
sults to generate the totality of admissible itineraries. This task will be relatively
easy for repellers with complete Smale horseshoes and for subshifts of finite type.

10.8.1 Finite memory

In the complete N-ary symbolic dynamics case (see example (10.3)) the choice of
the next symbol requires no memory of the previous ones. However, any further
refinement of the partition requires finite memory.

For example, for the binary labelled repeller with complete binary sym-
bolic dynamics, we might chose to partition the phase space into four regions
{ Moo, Mo1, M19, M11}, a 1-step refinement of the initial partition { My, M;}.
Such partitions are drawn in figs. 10.3 and 10.17, as well as fig. 1.7. Topologically
f acts as a left shift (10.25), and its action on the rectangle [.01] is to move the
decimal point to the right, to [0.1], forget the past, [.1], and land in either of the
two rectangles {[.10],[.11]}. Filling in the matrix elements for the other three
initial states we obtain the 1-step memory transition matrix acting on the 4-state
vector

To0,00 0 Tpo,10 0 ®00

T 0 T 0 do1
T — 01,00 01,10 10.27
¢ ¢ 0 Tigm 0 Tion ®10 ( )

0 Tum 0  Tumn o11

By the same token, for M-step memory the only nonvanishing matrix elements
are of the form Ty s, sy;\1.s051...505 SM+1 € {0,1}. This is a sparse matrix, as
the only non vanishing entries in the m = sgsy ... sy column of Ty, are in the
rows d = s1...5y0 and d = s1...sy1. If we increase the number of steps
remembered, the transition matrix grows big quickly, as the N-ary dynamics
with M-step memory requires an [NM*! x NM+1] matrix. Since the matrix is
very sparse, it pays to find a compact representation for T. Such representation
is afforded by Markov graphs, which are not only compact, but also give us an
intuitive picture of the topological dynamics.
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Figure 10.12: (a) The self-similarity of the complete binary symbolic dynamics represented
by a binary tree (b) identification of nodes B = A, C' = A leads to the finite 1-node, 2-links
Markov graph. All admissible itineraries are generated as walks on this finite Markov graph.

Figure 10.13: (a) The 2-step memory Markov
graph, links version obtained by identifying nodes
A=D=F=F = (G in fig. 10.12(a). Links of
this graph correspond to the matrix entries in the
transition matrix (10.27). (b) the 2-step memory
Markov graph, node version.

Construction of a good Markov graph is, like combinatorics, unexplainable.
The only way to learn is by some diagrammatic gymnastics, so we work our way
through a sequence of exercises in lieu of plethora of baffling definitions. 11.4
on p. 261
To start with, what do finite graphs have to do with infinitely long trajecto- & 111
ries? To understand the main idea, let us construct a graph that enumerates all , p. 260
possible iteneraries for the case of complete binary symbolic dynamics.

Mark a dot “” on a piece of paper. Draw two short lines out of the dot, end
each with a dot. The full line will signify that the first symbol in an itinerary
is “1”, and the dotted line will signifying “0”. Repeat the procedure for each of
the two new dots, and then for the four dots, and so on. The result is the binary
tree of fig. 10.12(a). Starting at the top node, the tree enumerates exhaustively
all distinct finite itineraries

{0,11},{00,01, 10,11}, {000, 001, 010, - - -}, - - .

The M = 4 nodes in fig. 10.12(a) correspond to the 16 dsitinct binary strings of
length 4, and so on. By habit we have drawn the tree as the alternating binary
tree of fig. 10.7, but that has no significance as far as enumeration of itineraries
is concerned - an ordinary binary tree would serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper.
On the other hand, we are not doing much - at each node we are turning either
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Figure 10.14: (a) The self-similarity of the _00_ pruned binary tree: trees originating from
nodes C and E are the same as the entire tree. (b) ldentification of nodes A = C' = E leads
to the finite 2-node, 3-links Markov graph; as 0 is always followed by 1, the walks on this
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graph generate only the admissible itineraries.

left or right. Hence all nodes are equivalent, and can be identified. To say it in
other words, the tree is self-similar; the trees originating in nodes B and C are
themselves copies of the entire tree. The result of identifying B = A, C = A is
a single node, 2-link Markov graph of fig. 10.12(b): any itinerary generated by
the binary tree fig. 10.12(a), no matter how long, corresponds to a walk on this
graph.

This is the most compact encoding of the complete binary symbolic dynamics.
Any number of more complicated Markov graphs can do the job as well, and
might be sometimes preferable. For example, identifying the trees originating in
D, E, F and G with the entire tree leads to the 2-step memory Markov graph of
fig. 10.13a. The corresponding transition matrix is given by (10.27).

W fast track:
chapter 11, p. 239
10.8.2 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to be illuminating, so
we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say _00_.

This situation arises, for example, in studies of the circle maps, where this
kind of symbolic dynamics describes “golden mean” rotations (we shall return
to this example in chapter 19). Now the admissible itineraries are enumerated
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by the pruned binary tree of fig. 10.14(a), or the corresponding Markov graph
fig. 10.14b. We recognize this as the Markov graph example of fig. 10.2.

So we can already see the main ingradients of a general algorithm: (1) Markov
graph encodes self-similarities of the tree of all itineraries, and (2) if we have a
pruning block of length M, we need to descend M levels before we can start
identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so lucky fishing for
pruning rules that you now know the grammar (10.12) in terms of a finite set of
pruning blocks G = {by, by, - - - b;}, of lengths np,, < M. Our task is to generate
all admissible itineraries. What to do?

A Markov graph algorithm.

1. Starting with the root of the tree, delineate all branches that correspond
to all pruning blocks; implement the pruning by removing the last node in
each pruning block.

2. Label all nodes internal to pruning blocks by the itinerary connecting the
root point to the internal node. Why? So far we have pruned forbidden
branches by looking n; steps into future for all pruning blocks. into future
for pruning block b = [.10010]. However, the blocks with a right combi-
nation of past and future [1.0110], [10.110], [101.10] and [1011.0] are also
pruned. In other words, any node whose near past coincides with the be-
gining of a pruning block is potentially dangerous - a branch further down
the tree might get pruned.

3. Add to each internal node all remaining branches allowed by the alphabet,
and label them. Why? Each one of them is the beginning point of an
infinite tree, a tree that should be similar to another one originating closer
to the root of the whole tree.

4. Pick one of the free external nodes closest to the root of the entire tree,
forget the most distant symbol in its past. Does the truncated itinerary
correspond to an internal node? If yes, identify the two nodes. If not, forget
the next symbol in the past, repeat. If no such truncated past corresponds
to any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free external node in question
is [1010.]. Three time steps back the past is [010.]. That is not dangerous,
as no pruning block in this example starts with 0. Now forget the third
step in the past: [10.] is dangerous, as that is the start of the pruning block
[10.110]. Hence the free external node [1010.] should be identified with the
internal node [10.].

5. Repeat until all free nodes have been tied back into the internal nodes.
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Figure 10.15: Conversion of the pruning front of fig. 10.11d into a finite Markov graph.
(a) Starting with the start node “.", delineate all pruning blocks on the binary tree. A solid

”

line stands for “1" and a dashed line for “0".

Ends of forbidden strings are marked with

x. Label all internal nodes by reading the bits connecting “.", the base of the tree, to the
node. (b) Indicate all admissible starting blocks by arrows. (c) Drop recursively the leading
bits in the admissible blocks; if the truncated string corresponds to an internal node in (a),
connect them. (d) Delete the transient, non-circulating nodes; all admissible sequences are
generated as walks on this finite Markov graph. (e) Identify all distinct loops and construct

the determinant (11.16).
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6. Clean up: check whether every node can be reached from every other node.
Remove the transisent nodes, that is the nodes to which dynamics never
returns.

7. The result is a Markov diagram. There is no guarantee that this is the
smartest, most compact Markov diagram possible for given pruning (if you
have a better algorithm, teach us), but walks around it do generate all
admissible itineraries, and nothing else.

Heavy pruning.

We complete this training by examples by implementing the pruning of fig. 10.11d.
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (10.28)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as
pruning rules. Draw the pruning tree as a section of a binary tree with 0 and 1
branches and label each internal node by the sequence of 0’s and 1’s connecting
it to the root of the tree (fig. 10.15a). These nodes are the potentially dangerous
nodes - beginnings of blocks that might end up pruned. Add the side branches to
those nodes (fig. 10.15b). As we continue down such branches we have to check
whether the pruning imposes constraints on the sequences so generated: we do
this by knocking off the leading bits and checking whether the shortened strings
coincide with any of the internal pruning tree nodes: 00 — 0; 110 — 10; 011 — 11;
0101 — 101 (pruned); 1000 — 00 — 00 — 0; 10011 — 0011 — 011 — 11;
01000 — 0.

As in the previous two examples, the trees originating in identified nodes are
identical, so the tree is “self-similar”. Now connect the side branches to the cor-
responding nodes, fig. 10.15d. Nodes “.” and 1 are transient nodes; no sequence
returns to them, and as you are interested here only in infinitely recurrent se-
quences, delete them. The result is the finite Markov graph of fig. 10.15d; the
admissible bi-infinite symbol sequences are generated as all possible walks along
this graph.

Commentary

Remark 10.1 Symbolic dynamics, history and good taste.  For a brief

history of symbolic dynamics, from J. Hadamard in 1898 onwards, see Notes
to chapter 1 of Kitchens monograph [1], a very clear and enjoyable mathe-
matical introduction to topics discussed in this chapter and the next. The
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binary labeling of the once-folding map periodic points was introduced by
Myrberg [13] for 1-dimensional maps, and its utility to 1-dimensional maps
has been emphasized in refs. [4, ?]. For 1-dimensional maps it is now custom-
ary to use the R-L notation of Metropolis, Stein and Stein [14, 18], indicating
that the point x,, lies either to the left or to the right of the critical point
in fig. 10.6. The symbolic dynamics of such mappings has been extensively
studied by means of the Smale horseshoes, see for example ref. [7]. Using
letters rather than numerals in symbol dynamics alphabets probably reflects
good taste. We prefer numerals for their computational convenience, as they
speed up the implementation of conversions into the topological coordinates
(0,7) introduced in sect. 10.6.2.

Remark 10.2 Kneading theory. The admissible itineraries are studied

in refs. [15, 14, 7, 6], as well as many others. We follow here the Milnor-
Thurston exposition [16]. They study the topological zeta function for piece-
wise monotone maps of the interval, and show that for the finite subshift case
it can be expressed in terms of a finite-dimensional kneading determinant.
As the kneading determinant is essentially the topological zeta function that
we introduce in (11.4), we shall not discuss it here. Baladi and Ruelle have
reworked this theory in a series of papers [19, 20, 21] and in ref. [22] replaced
it by a power series manipulation. The kneading theory is covered here in
P. Dahlqvist’s appendix E.1.

Remark 10.3 Smale horseshoe. S. Smale understood clearly that the
crucial ingredient in the description of a chaotic flow is the topology of

its non—wandering set, and he provided us with the simplest visualization of
such sets as intersections of Smale horseshoes. In retrospect, much of the ma-
terial covered here can already be found in Smale’s fundamental paper [12],
but a physicist who has run into a chaotic time series in his laboratory might
not know that he is investigating the action (differentiable) of a Lie group
G on a manifold M, and that the Lefschetz trace formula is the way to go.
If you find yourself mystified by Smale’s article abstract about “the action
(differentiable) of a Lie group G on a manifold M”, quoted on page 215,
rereading chapter 5 might help; for example, the Liouville operators form
a Lie group (of symplectic, or canonical transformations) acting on the
manifold (p, q).

Remark 10.4 Pruning fronts. The notion of a pruning front was intro-

duced in ref. [23], and developed by K.T. Hansen for a number of dynamical
systems in his Ph.D. thesis [3] and a series of papers [29]-[33]. Detailed stud-
ies of pruning fronts are carried out in refs. [24, 25, ?]; ref. [10] is the most

detailed study carried out so far. The rigorous theory of pruning fronts has
been developed by Y. Ishii [26, 27] for the Lozi map, and A. de Carvalho [28]
in a very general setting.
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Remark 10.5 Inflating Markov graphs. In the above examples the sym-

bolic dynamics has been encoded by labelling links in the Markov graph.
Alternatively one can encode the dynamics by labelling the nodes, as in

fig. 10.13, where the 4 nodes refer to 4 Markov partition regions { Mg, Mo1, M19, M11},
and the 8 links to the 8 non-zero entries in the 2-step memory transition ma-

trix (10.27).

Remark 10.6 Formal languages.  Finite Markov graphs or finite au-

tomata are discussed in the present context in refs. [3, 9, 10, ?]. They
belong to the category of regular languages. A good hands-on introduction
to symbolic dynamics is given in ref. [2].

Remark 10.7 The unbearable growth of Markov graphs. A construc-
tion of finite Markov partitions is described in refs. [?, ?], as well as in the
innumerably many other references.

If two regions in a Markov partition are not disjoint but share a bound-
ary, the boundary trajectories require special treatment in order to avoid
overcounting, see sect. 17.3.1. If the image of a trial partition region cuts
across only a part of another trial region and thus violates the Markov par-
tition condition (10.4), a further refinement of the partition is needed to
distinguish distinct trajectories - fig. 10.11 is an example of such refine-
ments.

The finite Markov graph construction sketched above is not necessarily
the minimal one; for example, the Markov graph of fig. 10.15 does not gen-
erate only the “fundamental” cycles (see chapter 13), but shadowed cycles
as well, such as tppp11 in (11.16). For methods of reduction to a minimal
graph, consult refs. [?, 7, ?]. Furthermore, when one implements the time
reversed dynamics by the same algorithm, one usually gets a graph of very
different topology even though both graphs generate the same admissible
sequences, and have the same determinant. The algorithm described here
makes some sense for 1-d dynamics, but is unnatural for 2-d maps whose dy-
namics it treats as 1-dimensional. In practice, generic pruning grows longer
and longer, and more plentiful pruning rules. For generic flows the refine-
ments might never stop, and almost always we might have to deal with
infinite Markov partitions, such as those that will be discussed in sect. 11.6.
Not only do the Markov graphs get more and more unwieldy, they have the
unpleasant property that every time we add a new rule, the graph has to
be constructed from scratch, and it might look very different form the pre-
vious one, even though it leads to a minute modification of the topological
entropy. The most determined effort to construct such graphs may be the
one of ref. [24]. Still, this seems to be the best technology available, unless
the reader alerts us to something superior.
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Résumé

Given a partition A of the phase space M, a dynamical system (M, f) induces
topological dynamics (X, o) on the space ¥ of all admissible bi-infinite itineraries.
The itinerary describes the time evolution of an orbit, while the symbol square
describes the spatial ordering of points along the orbit. The symbol square is
essential in transforming topological pruning into pruning rules for inadmissible
sequences; those are implemented by constructing transition matrices and/or
Markov graphs. As we shall see in the next chapter, these matrices are the
simplest examples of “operators” prerequisite to developing a theory of averaging
over chaotic flows.

Symbolic dynamics is the coarsest example of coarse graining, the way irre-
versibility enters chaotic dynamics. The exact trajectory is deterministic, and
given an initial point we know (in principle) both its past and its future - its
memory is infinite. In contrast, the partitioned phase space is described by the
quientessentially probabilistic tools, such as the finite memory Markov graphs.

Importance of symbolic dynamics is sometime grossly unappreciated; the cru-
cial ingredient for nice analyticity properties of zeta functions is existence of finite
grammar (coupled with uniform hyperbolicity).
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Exercises

10.1 Binary symbolic dynamics. Verify that the shortest prime binary

with table 10.1. Try to sketch them in the graph of the unimodal function f(z);
compare ordering of the periodic points with fig. 10.7. The point is that while
overlayed on each other the longer cycles look like a hopeless jumble, the cycle
points are clearly and logically ordered by the alternating binary tree.

10.2 3-disk fundamental domain symbolic dynamics. Try to sketch
0, 1, 01, 001, 011, ---. in the fundamental domain, fig. 10.4, and interpret the
symbols {0, 1} by relating them to topologically distinct types of collisions. Com-
pare with table 10.2. Then try to sketch the location of periodic points in the
Poincaré section of the billiard flow. The point of this exercise is that while in the
configuration space longer cycles look like a hopeless jumble, in the Poincaré sec-
tion they are clearly and logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration space coordinates, or any
other subset of phase space coordinates which does not respect the topological

organization of the flow.

10.3 Generating prime cycles. Write a program that generates all binary prime
cycles up to given finite length.

10.4 Reduction of 3-disk symbolic dynamics to binary.

(a) Verify that the 3-disk cycles
{12,13,23}, {123,132}, {1213 + 2 perms.},
{121232313 + 5 perms.}, {121 323+ 2 perms.}, - - -,

tively.

(b) Check the reduction for short cycles in table 10.2 by drawing them both in
the full 3-disk system and in the fundamental domain, as in fig. 10.4.
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(c) Optional: Can you see how the group elements listed in table 10.2 relate
irreducible segments to the fundamental domain periodic orbits?

10.5 Unimodal map symbolic dynamics. Show that the tent map point v(ST)
with future itinerary S* is given by converting the sequence of s,,’s into a binary number
by the algorithm (10.18). This follows by inspection from the binary tree of fig. 10.7.

10.6 A Smale horseshoe. The Hénon map
z’ 1—ax?+
{ , } = { - ar-Ty } (10.29)

maps the (x,y) plane into itself - it was constructed by Hénon [1] in order to mimic the
Poincaré section of once-folding map induced by a flow like the one sketched in fig. 10.5.
For definitivness fix the parameters to a = 6, b = —1.

a) Draw a rectangle in the (z,y) plane such that its nth iterate by the Hénon map
intersects the rectangle 2" times.

b) Construct the inverse of the (10.29).

c) Iterate the rectangle back in the time; how many intersections are there between
the n forward and m backward iterates of the rectangle?

d) Use the above information about the intersections to guess the (x,y) coordinates
for the two fixed points, a 2-cycle point, and points on the two distinct 3-cycles
from table 10.1. We shall compute the exact cycle points in exercise 12.13.

10.7 Kneading Danish pastry. Write down the (z,y) — (x,y) mapping
that implements the baker’s map of fig. 10.10, together with the inverse mapping.
Sketch a few rectangles in symbol square and their forward and backward images.
(Hint: the mapping is very much like the tent map (10.15)).

10.8 Kneading Danish without flipping. The baker’s map of fig. 10.10 includes
a flip - a map of this type is called an orientation reversing once-folding map. Write down
the (z,y) — (z,y) mapping that implements an orientation preserving baker’s map (no
flip; Jacobian determinant = 1). Sketch and label the first few foldings of the symbol
square.
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Figure 10.16: A complete Smale horseshoe iterated forwards and backwards, orientation
preserving case: function f maps the dashed border square M into the vertical horseshoe,
while the inverse map f~! maps it into the horizontal horseshoe. a) One iteration, b) two
iterations, c) three iterations. The non-wandering set is contained within the intersection

of the forward and backward iterates (crosshatched). (from K.T. Hansen [3])

10.9 Fix this manuscript. Check whether the layers of the baker’s map
of fig. 10.10 are indeed ordered as the branches of the alternating binary tree of
fig. 10.7. (They might not be - we have not rechecked them). Draw the correct
binary trees that order both the future and past itineraries.

For once-folding maps there are four topologically distinct ways of laying out
the stretched and folded image of the starting region,
(a) orientation preserving: stretch, fold upward, as in fig. 10.16
(b) orientation preserving: stretch, fold downward, as in fig. 10.11
(c) orientation reversing: stretch, fold upward, flip, as in fig. 10.17
(d) orientation reversing: stretch, fold downward, flip, as in fig. 10.10,
with the corresponding four distinct binary-labelled symbol squares. For n-fold
“stretch & fold” flows the labelling would be nary. The intersection Mg for
the orientation preserving Smale horseshoe, fig. 10.16a, is oriented the same way
as M, while M; is oriented opposite to M. Brief contemplation of fig. 10.10

indicates that the forward iteration strips are ordered relative to each other as
the branches of the alternating binary tree in fig. 10.7.

Check the labelling for all four cases.
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Figure 10.17: An orientation reversing Smale horseshoe map. Function

f = {stretch,fold,flip} maps the dashed border square M into the vertical horseshoe, while
the inverse map f~! maps it into the horizontal horseshoe. a) one iteration, b) two iterations,
c) the non—wandering set cover by 16 rectangles, each labelled by the 2 past and the 2 future
steps. (from K.T. Hansen [3])

10.10 Orientation reversing once-folding map. By adding a reflection around
the vertical axis to the horseshoe map g we get the orientation reversing map g shown
in fig. 10.17. Qo and Q; are oriented as Qy and Qi, so the definition of the future
topological coordinate ~ is identical to the - for the orientation preserving horseshoe.
The inverse intersections QE L and Cz)l_l are oriented so that Qg 1 is opposite to Q, while
Ql_l has the same orientation as ). Check that the past topological coordinate § is given
by

1-—w, ifs,=0
Wn-1 = Wn ifs,=1" Wo = S0
o0
0(x) = Owow_qw_g...= Z wi—n/2". (10.30)
n=1

10.11  “Golden mean” pruned map. Consider a symmetrical tent map
on the unit interval such that its highest point belongs to a 3-cycle:
1

0.8

0.6

0.4

0.2
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(a) Find the absolute value A for the slope (the two different slopes +A just
differ by a sign) where the maximum at 1/2 is part of a period three orbit,
as in the figure.

(b) Show that no orbit of this map can visit the region 2 > (1 + v/5)/4 more
than once. Verify that once an orbit exceeds z > (v/5 — 1)/4, it does not
reenter the region z < (v/5 — 1)/4.

(c) If an orbit is in the interval (v/5 —1)/4 < = < 1/2, where will it be on the
next iteration?

(d) If the symbolic dynamics is such that for < 1/2 we use the symbol 0 and
for x > 1/2 we use the symbol 1, show that no periodic orbit will have the
substring _00_ in it.

(e) On the second thought, is there a periodic orbit that violates the above _00_
pruning rule?

For continuation, see exercise 11.7 and exercise 11.9. See also exercise 11.8 and
exercise 11.10.

10.12 Binary 3-step transition matrix.  Construct [8x8] binary 3-step tran-
sition matrix analogous to the 2-step transition matrix (10.27). Convince yourself that
the number of terms of contributing to tr 7™ is independent of the memory length, and
that this [2™x2™] trace is well defined in the infinite memory limit m — oco.

10.13 Infinite symbolic dynamics. Let o be a function that returns zero or
one for every infinite binary string: o : {0,1} — {0,1}. Its value is represented by
o(€1,€g,...) where the ¢; are either 0 or 1. We will now define an operator 7 that acts
on observables on the space of binary strings. A function a is an observable if it has
bounded variation, that is, if

|la]| = sup |a(er, ez, ...)| < co.

{ei}
For these functions

Ta(er,ea,...) =a(0,€1,€2,...)0(0,€1,€,...) +a(l,er,€a,...)0(l,€1,€a,...).
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(a) (easy) Consider a finite version T, of the operator 7:

Tha(€r,€o,. .. €10) =
G(O,El,EQ, B '767171)0—(07617627 ce 7€n71) +
a(l,er,€2,...,6n—1)0(1,€1,€2,...,€n1).

Show that T}, is a 2™ x 2™ matrix. Show that its trace is bounded by a number
independent of n.

(b) (medium) With the operator norm induced by the function norm, show that 7 is
a bounded operator.

(c) (hard) Show that 7 is not trace class. (Hint: check if 7 is compact “trace class”
is defined in appendix J.)

10.14 Time reversability.** Hamiltonian flows are time reversible. Does that
mean that their Markov graphs are symmetric in all node — node links, their transition
matrices are adjacency matrices, symmetric and diagonalizable, and that they have only
real eigenvalues?

10.15 Heavy pruning. Implement the prunning grammar (10.28), with the
pruned blocks

10010, 101,01001,01101, 111, 10110,

by a method of your own devising, or following the the last example of sect. 10.8 illus-
trated in fig. 10.15. For continuation, see exercise 11.11.
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Chapter 11

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

Ecclestiastes 1.15

We are now in position to develop our first prototype application of the periodic
orbit theory: cycle counting. This is the simplest illustration of raison d’etre of
the periodic orbit theory; we shall develop a duality transformation that relates
local information - in this case the next admissible symbol in a symbol sequence
- to global averages, in this case the mean rate of growth of the number of admis-
sible itineraries with increasing itinerary length. We shall turn the topological
dynamics of the preceding chapter into a multiplicative operation by means of
transition matrices/Markov graphs, and show that the powers of a transition ma-
trix count the distinct itineraries. The asymptotic growth rate of the number of
admissible itineraries is therefore given by the leading eigenvalue of the transition
matrix; the leading eigenvalue is given by the leading zero of the characteristic de-
terminant of the transition matrix, which is in this context called the topological
zeta function. For a class of flows with finite Markov graphs this determinant is a
finite polynomial which can be read off the Markov graph. The method goes well
beyond the problem at hand, and forms the core of the entire treatise, making
tangible the rather abstract introduction to spectral determinants commenced in
chapter 8.

11.1 Counting itineraries

In the 3-disk system the number of admissible trajectories doubles with every
iterate: there are K, = 3-2" distinct itineraries of length n. If there is pruning,
this is only an upper bound and explicit formulas might be hard to come by, but
we still might be able to establish a lower exponential bound of form K,, > Ce™".
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Hence it is natural to characterize the growth of the number of trajectories as a
function of the itinerary length by the topological entropy:

1
h= lim —InK, . (11.1)

n—oo N

We shall now relate this quantity to the eigenspectrum of the transition matrix.

The transition matrix element Tj; € {0,1} in (10.2) indicates whether the
transition from the starting partition j into partition ¢ in one step is allowed or
not, and the (i, 7) element of the transition matrix iterated n times

(Tn)ij = Z Tik1Tk1k2 s Tkn—lj
k1,k2,. s kn—1

receives a contribution 1 from every admissible sequence of transitions, so (7T");;
is the number of admissible n symbol itineraries starting with j and ending with
i. The total number of admissible itineraries of n symbols is

1
1

We can also count the number of prime cycles and pruned periodic points,
but in order not to break up the flow of the main argument, we relegate these
pretty results to sects. 11.5.2 and 11.5.3. Recommended reading if you ever have
to compute lots of cycles.

T is a matrix with non-negative integer entries. A matrix M is said to be
Perron-Frobenius if some power k of M has strictly positive entries, (M¥),, > 0.
In the case of the transition matrix 7" this means that every partition eventually
reaches all of the partitions, that is, the partition is dynamically transitive or
indecomposable, as assumed in (2.2). The notion of transitivity is crucial in
ergodic theory: a mapping is transitive if it has a dense orbit, and the notion
is obviously inherited by the shift once we introduce a symbolic dynamics. If
that is not the case, phase space decomposes into disconnected pieces, each of
which can be analyzed separately by a separate indecomposable Markov graph.
Hence it suffices to restrict our considerations to the transition matrices of the
Perron-Frobenius type.
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A finite matrix T has eigenvalues T, = Ao@o and (right) eigenvectors
{¢0, 1, -+, on—1}. Expressing the initial vector in (11.2) in this basis

1
1 N-1 N-1
T . =T" Z ba@a = Z ba)\ggoav
i a=0 a=0
and contracting with (1,1,...,1) we obtain

N—-1
K, = Z Calg -
a=0 & 110

on p. 260
The constants ¢, depend on the choice of initial and final partitions: In this P

example we are sandwiching 7" between the vector (1,1,...,1) and its transpose,
but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ¢g. Perron theorem states that a Perron-Frobenius matrix
has a nondegenerate positive real eigenvalue \g > 1 (with a positive eigenvector)
which exceeds the moduli of all other eigenvalues. Therefore as n increases, the
sum is dominated by the leading eigenvalue of the transition matrix, A\g > |Re A4/,
a=1,2,---,N — 1, and the topological entropy (11.1) is given by

1 n
h = lim —IncA} [1+C_1<ﬁ> +}
n—0o0 N co )\0
1 1 "
— )+ lim [ﬂ+_c_1 (ﬁ> +]
n—oo | n nco \ Ao
= In)g. (11.3)

What have we learned? The transition matrix 7T is a one-step local operator,
advancing the trajectory from a partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at
the asymptotic times. Instead of painstakingly counting K7, Ko, K3,... and es-
timating (11.1) from a slope of a log-linear plot, we have the ezact topological
entropy if we can compute the leading eigenvalue of the transition matrix 7". This
is reminiscent of the way the free energy is computed from transfer matrix for
one dimensional lattice models with finite range interaction: the analogies with
statistical mechanics will be further commented upon in chapter 15.

11.2 Topological trace formula

There are two standard ways of getting at a spectrum - by evaluating the trace
trT"™ = Y AL, or by evaluating the determinant det (1 — 27"). We start by

('R)
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n N, # of prime cycles of length n,
1 2 3 4 5 6 7 8 9 10
1 2|2
2 412 1
3 812 2
4 612 1 3
5 32 | 2 6
6 6412 1 2 9
7] 128 | 2 18
81 256 |2 1 3 30
9| 512 |2 2 56
10 [ 1024 | 2 1 6 99

Table 11.1: The total numbers of periodic points NN, of period n for binary symbolic
dynamics. The numbers of prime cycles contributing illustrates the preponderance of long
prime cycles of length n over the repeats of shorter cycles of lengths n,, n = rn,. Further
listings of binary prime cycles are given in tables 10.1 and 11.2. (L. Rondoni)

evaluating the trace of transition matrices.

Consider an M-step memory transition matrix, like the 1-step memory exam-
ple (10.27). The trace of the transition matrix counts the number of partitions
that map into themselves. In the binary case the trace picks up only two contri-
butions on the diagonal, Ty...0,0...0 + 77...1,1...1, no matter how much memory we
assume (check (10.27) and exercise 10.12). We can even take M — oo, in which
case the contributing partitions are shrunk to the fixed points, tr 7" = T55+ T3 1.

More generally, each closed walk through n concatenated entries of T' con-
tributes to tr 7™ a product of the matrix entries along the walk. Each step in
such walk shifts the symbolic label by one label; the trace ensures that the walk
closes into a periodic string c¢. Define ¢, to be the local trace, the product of matrix
elements along a cycle ¢, each term being multiplied by a book keeping variable
z. z™rT"™ is then the sum of ¢, for all cycles of length n.  For example, for
[8x8] transition matrix T, s,ss 50515, version of (10.27), or any refined partition
[2"x2"] transition matrix, n arbitrarily large, the periodic point 100 contributes
ti00 = Z3Tm7me7me’m to z3tr T3. This product is manifestly cyclically
symmetric, 100 = toi0 = too1, and so a prime cycle p of length n, contributes
n, times, once for each periodic point along its orbit. For the binary labelled
non-wandering set the first few traces are given by (consult tables 10.1 and 11.1)

ztr’T' = to+1t1,

2trT? = 3412 + 2ty,

BT = 3413 + 3ti00 + 3t01,

et = ]+ 11+ 263 + 4t1000 + 41001 + Atio11- (11.4)

For complete binary symbolic dynamics ¢, = 2"» for every binary prime cycle p;
if there is pruning ¢, = 2" if p is admissible cycle and t, = 0 otherwise. Hence
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11.3. DETERMINANT OF A GRAPH 243

tr’T™ counts the number of admissible periodic points of period n. In general,
the nth order trace (11.4) picks up contributions from all repeats of prime cycles,
with each cycle contributing n, periodic points, so the total number of periodic
points of period n is given by

oo
N, =trT" = Z nptg/n” = Z np Z On,nprityp - (11.5)
p r=1

npln

Here m|n means that m is a divisor of n, and we have taken z =1 so t, = 1 if
the cycle is admissible, and ¢, = 0 otherwise. In order to get rid of the awkward
divisibility constraint n = n,r in the above sum, we introduce the generating
function for numbers of periodic points

> 2T
"N, =t . 11.6
Zz " 1nl—,zT ( )

n=1

Substituting (11.5) into the left hand side, and replacing the right hand side by
the eigenvalue sum tr7™ = > A7, we obtain still another example of a trace

formula, the topological trace formula

Aa t
D 1 - S 2. 1nf Z, ' (11.7)

a=0 P

A trace formula relates the spectrum of eigenvalues of an operator - in this case
the transition matrix - to the spectrum of periodic orbits of the dynamical system.
The 2™ sum in (11.6) is a discrete version of the Laplace transform, see chapter 7,
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (7.9), (7.19) and (22.3). We shall now use this result to compute
the spectral determinant of the transition matrix.

11.3 Determinant of a graph
Our next task is to determine the zeros of the spectral determinant of an [MxM|
transition matrix
M-1
det (1—2T) = J] (1—2Xa) - (11.8)

a=0

We could now proceed to diagonalize T" on a computer, and get this over with.
Nevertheless, it pays to dissect det (1 — z7T) with some care; understanding this
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computation in detail will be the key to understanding the cycle expansion com-
putations of chapter 13 for arbitrary dynamical averages. For T a finite matrix
(11.8) is just the characteristic equation for 7. However, we shall be able to com-
pute this object even when the dimension of T and other such operators goes to
00, and for that reason we prefer to refer to (11.8) as the “spectral determinant”.

There are various definitions of the determinant of a matrix; they mostly
reduce to the statement that the determinant is a certain sum over all possible
permutation cycles composed of the traces tr 7%, in the spirit of the determinant—
trace relation of chapter 1:

det (1 —2T) = exp(tr In(1 —2T)) = exp ( Z %tr T”)

n=1
= 1—ztrT—%2((tr T)? —tr (T%) — ... (11.9)

This is sometimes called a cumulant expansion. Formally, the right hand is
an infinite sum over powers of z". If T is an [M xM] finite matrix, then the
characteristic polynomial is at most of order M. Coefficients of 2, n > M
vanish exactly.

We now proceed to relate the determinant in (11.9) to the corresponding
Markov graph of chapter ?7: to this end we start by the usual algebra textbook
expression

det (1—2T) = Y (=1)" (1= 2T) 1z, - (1= 2T)2m, - - - (1= 2T) psmy, (11.10)
{r}

where once again we suppose T is an [M x M| finite matrix, {w} denotes the set
of permutations of M symbols, 75 is what k is permuted into by the permutation
k, and Py is the parity of the considered permutation. The right hand side of
(11.10) yields a polynomial of order M in z: a contribution of order n in z picks
up M —n unit factors along the diagonal, the remaining matrix elements yielding

(=2)" (=) Ty, 0, - T, (11.11)

where 7 is the permutation of the subset of n distinct symbols 7 ...7n, in-
dexing T' matrix elements. As in (11.4), we refer to any combination t; =
T Toons - Ty s € =m1,m2, -+, fixed, as a local trace associated with a
closed loop ¢ on the Markov graph. Each term of form (11.11) may be fac-
tored in terms of local traces t. tc, - -tc,, that is loops on the Markov graph.
These loops are non-intersecting, as each node may only be reached by one link,
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and they are indeed loops, as if a node is reached by a link, it has to be the
starting point of another single link, as each 7; must appear exactly once as a
row and column index. So the general structure is clear, a little more thinking
is only required to get the sign of a generic contribution. We consider only the
case of loops of length 1 and 2, and leave to the reader the task of generalizing
the result by induction. Consider first a term in which only loops of unit length
appear on (11.11) that is, only the diagonal elements of T" are picked up. We have
k = n loops and an even permutation 7 so the sign is given by (—1)*, k being
the number of loops. Now take the case in which we have ¢ single loops and j
loops of length 2 (we must thus have n = 25 + 7). The parity of the permutation
gives (—1)7 and the first factor in (11.11) gives (—1)" = (—1)%*%. So once again
these terms combine into (—1)*, where k = i + j is the number of loops. We
may summarize our findings as follows:

The characteristic polynomial of a transition matrix/Markov graph is
given by the sum of all possible partitions 7 of the graph into products
of non-intersecting loops, with each loop trace ¢, carrying a minus sign:

/
det (1—2T) =3 3 (= 1)kt -ty (11.12)
k=0 m

Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop t,, and its shadow t.t; in the case
at hand carry the same weight 2™ the cancellation is exact, and the loop
expansion (11.12) is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting loops {tp,,tp,, - t,,} as the the
fundamental cycles. This is not a very good definition, as the Markov graphs
are not unique — the most we know is that for a given finite-grammar language,
there exist Markov graph(s) with the minimal number of loops. Regardless of
how cleverly a Markov graph is constructed, it is always true that for any finite
Markov graph the number of fundamental cycles f is finite. If you know a better
way to define the “fundamental cycles”, let us know.

W fast track:
sect. 11.4, p. 247
11.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily grasped
by a working through a few examples. The complete binary dynamics Markov
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Figure 11.1: The golden mean pruning rule ‘Q

Markov graph, see also fig. 10.14

graph of fig. 10.12(b) is a little bit too simple, but anyway, let us start humbly;
there are only two non-intersecting loops, yielding

det (1 —2T)=1—tg—t; =1—2z. (11.13)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy e = 2. As we know that there are K,, = 2" binary strings of length N,
we are not surprised. Similarly, for complete symbolic dynamics of N symbols
the Markov graph has one node and N links, yielding

det(1—-27T)=1—- Nz, (11.14)

whence the topological entropy h = In N.

A more interesting example is the “golden mean” pruning of fig. 11.1. There
is only one grammar rule, that a repeat of symbol o is forbidden. The non-
intersecting loops are of length 1 and 2, so the topological polynomial is given
by

det (1 —2T)=1—t; —tgy=1—2—2°. (11.15)

The leading root of this polynomial is the golden mean, so the entropy (11.3) is

the logarithm of the golden mean, h = In #

Finally, the non-self-intersecting loops of the Markov graph of fig. 10.15(d) are
indicated in fig. 10.15(e). The determinant can be written down by inspection,
as the sum of all possible partitions of the graph into products of non-intersecting
loops, with each loop carrying a minus sign:

det (1 =T) =1—1to —too11 — tooor — tooo11 + totoor1 + toor1tooor  (11.16)
With ¢, = 2"», where n,, is the length of the p-cycle, the smallest root of

0=1-—2z—-224+28 (11.17)
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yields the topological entropy h = —lInz, z = 0.658779..., h = 0.417367.. .,
significantly smaller than the entropy of the covering symbolic dynamics, the
complete binary shift h = In2 = 0.693...

- in depth:
a sect. L.1, p. 725
11.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the Markov graph
is infinite? If we are never sure that looking further into future will reveal no
further forbidden blocks? There is still a way to define the determinant, and
the idea is central to the whole treatise: the determinant is then defined by its

cumulant expansion (11.9) f 1.3
on p. 32
oo
det(1—2T)=1-) én2". (11.18)
n=1

For finite dimensional matrices the expansion is a finite polynomial, and (11.18)
is an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ¢,, define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (11.8)
in terms of cycles, substitute (11.5) into (11.18) and sum over the repeats of
prime cycles

det (1 — 2T —exp< Zi ?;)) :H 1—t,). (11.19)

p r=1

where for the topological entropy the weight assigned to a prime cycle p of length
ny is t, = 2" if the cycle is admissible, or ¢, = 0 if it is pruned. This determinant
is called the topological or the Artin-Mazur zeta function, conventionally denoted
by

1/Gop = [ J(1 = 2" 1= éna" . (11.20)

p n=1

Counting cycles amounts to giving each admissible prime cycle p weight ¢, = 2"»
and expanding the Euler product (11.20) as a power series in z. As the precise
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expression for coefficients ¢, in terms of local traces ¢, is more general than the
current application to counting, we shall postpone deriving it until chapter 13.

The topological entropy h can now be determined from the leading zero z =

" of the topological zeta function. For a finite [M x M] transition matrix, the

number of terms in the characteristic equation (11.12) is finite, and we refer to

this expansion as the topological polynomial of order < N. The power of defining

a determinant by the cumulant expansion is that it works even when the partition
is infinite, N — o0o; an example is given in sect. 11.6, and many more later on.

g fast track:
sect. 11.6, p. 252
11.4.1 Topological zeta function for flows

J‘ We now apply the method we used in deriving (7.19) to the problem
of deriving the topological zeta functions for flows. By analogy to (7.17), the
time-weighted density of prime cycles of period ¢ is

=33 T,0(t—rT,). (11.21)

p r=1

A Laplace transform smoothes the sum over Dirac delta spikes and yields the
topological trace formula

ZZT/ dt et §(t — rT),) ZTZ —sTpr (11.22)

p r=1 r=1

and the topological zeta function for flows:

1/Cop(s) = H(I—C_ST”)

P

YT,y e = —%m/gmp(s). (11.23)
P

This is the continuous time version of the discrete time topological zeta function
(11.20) for maps; its leading zero s = —h yields the topological entropy for a
flow.
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11.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to topological
length n, so it is handy to know their exact number.

11.5.1 Counting periodic points

N,,, the number of periodic points of period n can be computed from (11.18) and
(11.6) as a logarithmic derivative of the topological zeta function

d d
nz:anz” = tr (—25 In(1 — zT)) =z Indet (1 —27)

d
241
LS (11.24)

1/ Ctop

h

We see that the trace formula (11.7) diverges at z — e™", as the denominator

has a simple zero there.

As a check of formula (11.18) in the finite grammar context, consider the
complete N-ary dynamics (10.3) for which the number of periodic points of period
n is simply tr 7' = N™. Substituting

>  _n 0 n

P 0 (zN)" B
g ;trTc = E — =1In(l —2N),
n=1 n=1

into (11.18) we verify (11.14). The logarithmic derivative formula (11.24) in this
case does not buy us much either, we recover

Nz
N, 2" = .
Z n? 1—-Nz
n=1

However, consider instead the nontrivial pruning of fig. 10.15(e). Substituting
(11.17) we obtain

n_ 2t 8z* — 828
;an S ey 2 (11.25)
Now the topological zeta function is not merely a tool for extracting the asymp-
totic growth of NV, ; it actually yields the exact and not entirely trivial recursion
relation for the numbers of periodic points: Ny = No = N3 =1, N, = 2n+ 1 for
n=4,56,7,8 and N, = N,_1 +2N,,_4 — N,_g for n > 8.
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11.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number of prime cycles M, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of finding M, is classical in combinatorics
(counting necklaces made out of n beads out of N different kinds) and is easily
solved. There are N™ possible distinct strings of length n composed of N letters.
These N™ strings include all My prime d-cycles whose period d equals or divides
n. A prime cycle is a non-repeating symbol string: for example, p = 011 =
101 = 110 = ...011011... is prime, but 0101 = 010101... = 01 is not. A prime
d-cycle contributes d strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of length
n is therefore related to the number of prime cycles by

Np =Y dMy, (11.26)
din

where N, equals tr 7. The number of prime cycles can be computed recursively

1 d<n
M, = =[N, — dMy | ,
R

or by the Mébius inversion formula

M, = n! dz|: i (%) Ny. (11.27)

where the Mobius function u(1) = 1, u(n) = 0 if n has a squared factor, and
w(pipa . .. pr) = (—1)F if all prime factors are different.

We list the number of prime cycles up to length 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 11.2. The number of prime cycles follows
by Mobius inversion (11.27).

11.5.3 Counting N-disk periodic points

J A simple example of pruning is the exclusion of “self-bounces” in the N-
disk game of pinball. The number of points that are mapped back onto themselves
after n iterations is given by N, = trT™. The pruning of self-bounces eliminates
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n Mn(N) Mn(z) Mn(g) Mn(4)
1 N 2 3 4
2 N(N —1)/2 1 3 6
3 N(N?-1)/3 2 8 20
4 N2(N? —1)/4 3 18 60
5 (N5 —N)/5 6 48 204
6| (N®—-N3—-N2+N)/6 9 116 670
7 (N"—N)/7 18 312 2340
8 N4(N*-1)/8 30 810 8160
9 N3(N6—1)/9 56 2184 29120
10 | (N9 — N5 -~ N2 4+ N)/10 99 5880 104754

Table 11.2: Number of prime cycles for various alphabets and grammars up to length 10.
The first column gives the cycle length, the second the formula (11.27) for the number of
prime cycles for complete N-symbol dynamics, columns three through five give the numbers

for N =2,3 and 4.

the diagonal entries, Tny_gisk = T. — 1, so the number of the N-disk periodic
points is

Np=trT% g = (N — 1)" + (=1)"(N — 1) (11.28)

(here T, is the complete symbolic dynamics transition matrix (10.3)). For the
N-disk pruned case (11.28) Mdbius inversion (11.27) yields

M disk %Z y (%) (N —1)¢+ %Z m (%) (—1)4

dn dln
= MY for n>2. (11.29)
There are no fixed points, M 1N ~disk — (). The number of periodic points of period

2 is N2 — N, hence there are M2N7di3k = N(N —1)/2 prime cycles of length 2;
for lengths n > 2, the number of prime cycles is the same as for the complete
(N — 1)-ary dynamics of table 11.2.

11.5.4 Pruning individual cycles

é‘ Consider the 3-disk game of pinball. The prohibition of repeating a
symbol affects counting only for the fixed points and the 2-cycles. Everything
else is the same as counting for a complete binary dynamics (eq (11.29)). To
obtain the topological zeta function, just divide out the binary 1- and 2-cycles
(1 — 2tp)(1 — zt1)(1 — 2%tp1) and multiply with the correct 3-disk 2-cycles (1 —
Z2t12)(1 — 22t13)(1 — Z2t23):
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n Mn Nn Sn myp-p

1 0 0 0

2 3 6=3-2 11312

3 2 6=2-3 1] 2123

4 3 18=3-2+3-4 1] 31213

5 6 30=6-5 1] 6-12123

6 9 66=3-24+2-34-9-6 2| 6-121213 + 3-121323

7| 18 | 126=18-7 3| 61212123 + 6-1212313 + 6-1213123

8| 30 | 258=3-2+3-44+30-8 6 | 6:12121213 + 3-12121313 + 6-12121323
+ 6-12123123 + 6-12123213 + 3-12132123

9] 56 | 510=2-3+56-9 10 | 6121212123 + 6-(121212313 4 121212323)
+ 6-(121213123 + 121213213) + 6-121231323
+ 6-(121231213 4 121232123) + 2-121232313
+ 6-121321323

10 | 99 | 1022 18

Table 11.3: List of the 3-disk prime cycles up to length 10. Here n is the cycle length,
M,, the number of prime cycles, N,, the number of periodic points and .S,, the number of
distinct prime cycles under the C3, symmetry (see chapter 17 for further details). Column 3
also indicates the splitting of IV,, into contributions from orbits of lengths that divide n. The
prefactors in the fifth column indicate the degeneracy m, of the cycle; for example, 3-12
stands for the three prime cycles 12, 13 and 23 related by 27/3 rotations. Among symmetry
related cycles, a representative p which is lexically lowest was chosen. The cycles of length
9 grouped by parenthesis are related by time reversal symmetry, but not by any other Cs,
transformation.

- 2,2 3
1/CGodgisk = (1—2z) a _(12)2(1 )_ 5
= (1-22)(1+2)?2=1-322-223. (11.30)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it
in (17.25). As we shall see in chapter 17, symmetries lead to factorizations of
topological polynomials and topological zeta functions.

The example of exercise 11.19 with the alphabet {a, cb®; b} is more interest-
ing. In the cycle counting case, the dynamics in terms of a — z, c¢b* — 7 isa

complete binary dynamics with the explicit fixed point factor (1 — ;) = (1 — 2):

z
1—=2

1/ctop:(1—z)<1—z— >:1—3z+22

11.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanovi¢)

:.

J" Now consider an example of a dynamical system which (as far as we know
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=

n Ny n | Mp- P

1 00 0

2 6 | 12=6-2 2| 412 4+ 2:13

3 8 | 24=8-3 1| 8123

4 18 | 84=6-2+18-4 4 | 81213 4+ 4-1214 + 2-1234 + 4-1243

5 48 | 240=48-5 6 | 8(12123 + 12124) + 8-12313
+ 8:(12134 + 12143) + 8-12413

6 | 116 | 732=6-2+8-34+116-6 17 | 8121213 + 8-121214 4 8-121234
+ 8121243 + 8-121313 + 8-121314
+ 4-121323 + 8(121324 +'121423)
+ 4-121343 + 8-121424 + 4-121434
+ 8:123124 + 8-123134 + 4-123143
+ 4-124213 + 8-124243

7 312 | 2184 39

8 | 810 | 6564 108

Table 11.4: List of the 4-disk prime cycles up to length 8. The meaning of the symbols is
the same as in table 11.3. Orbits related by time reversal symmetry (but no other symmetry)
already appear at cycle length 5. List of the cycles of length 7 and 8 has been omitted.

Figure 11.2:

O 1 i i
(4
-10  © i
o
o
-20 F 4
© o
-30 b ° 0000 -
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-40 00%-
] 1 1 9
0 20 40 60 80
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(a) The logarithm of the difference between the leading zero of the finite
polynomial approximations to topological zeta function and our best estimate, as a function of
the length for the quadratic map A = 3.8. (b) The 90 zeroes of the characteristic polynomial
for the quadratic map A = 3.8 approximated by symbolic strings up to length 90. (from
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- there is no proof) has an infinite partition, or an infinity of longer and longer
pruning rules. Take the 1-d quadratic map

f(2) = Ax(1 - )

with A = 3.8. It is easy to check numerically that the itinerary or the “kneading
sequence” (see sect. 10.5.2) of the critical point x = 1/2 is

K =1011011110110111101011110111110. ...

where the symbolic dynamics is defined by the partition of fig. 10.6. How this
kneading sequence is converted into a series of pruning rules is a dark art, rele-
gated to appendix E.1 For the moment it suffices to state the result, to give you a
feeling for what a “typical” infinite partition topological zeta function looks like.
Approximating the dynamics by a Markov graph corresponding to a repeller of
the period 29 attractive cycle close to the A = 3.8 strange attractor (or, much
easier, following the algorithm of appendix E.1) yields a Markov graph with 29
nodes and the characteristic polynomial

1/<t(§?)) = 12434 54 6 T4 8 9 10

Gl A2 13 14 15 16 17 18 4 19 4 20
21y 22 23, 24 25 26 27 28 (11.31)

The smallest real root of this approximate topological zeta function is
z =0.62616120... (11.32)

Constructing finite Markov graphs of increasing length corresponding to A — 3.8
we find polynomials with better and better estimates for the topological entropy.
For the closest stable period 90 orbit we obtain our best estimate of the topological
entropy of the repeller:

h =—1In0.62616130424685 . .. = 0.46814726655867 . . .. (11.33)

Fig. 11.2 illustrates the convergence of the truncation approximations to the top-
ological zeta function as a plot of the logarithm of the difference between the zero
of a polynomial and our best estimate (11.33), plotted as a function of the length
of the stable periodic orbit. The error of the estimate (11.32) is expected to be
of order z?° ~ e~ because going from length 28 to a longer truncation yields
typically combinations of loops with 29 and more nodes giving terms +22° and
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of higher order in the polynomial. Hence the convergence is exponential, with
exponent of —0.47 = —h, the topological entropy itself.

In fig. 11.2(b) we plot the zeroes of the polynomial approximation to the top-
ological zeta function obtained by accounting for all forbidden strings of length
90 or less. The leading zero giving the topological entropy is the point closest to
the origin. Most of the other zeroes are close to the unit circle; we conclude that
for infinite Markov partitions the topological zeta function has a unit circle as the
radius of convergence. The convergence is controlled by the ratio of the leading to

the next-to-leading eigenvalues, which is in this case indeed A /A\g = 1/ = e,

11.7 Shadowing

The topological zeta function is a pretty function, but the infinite product (11.19)
should make you pause. For finite transfer matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; but the right hand side is
an infinite product over the infinitely many prime periodic orbits of all periods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at
the full cycle expansion (13.5) of chapter 13; all cycles beyond the fundamental
to and t; appear in the shadowing combinations such as

torsamsn — tsisasmbsmiiomsn -

For subshifts of finite type such shadowing combinations cancel ezactly, if we are
counting cycles as we do here, or if the dynamics is piecewise linear, as in exer-
cise 8.2. As we have already argued in sect. 1.4.4 and appendix 1.1.2, for nice
hyperbolic flows whose symbolic dynamics is a subshift of finite type, the shad-
owing combinations almost cancel, and the spectral determinant is dominated by
the fundamental cycles from (11.12), with longer cycles contributing only small
“curvature” corrections.

These exact or nearly exact cancellations depend on the flow being smooth
and the symbolic dynamics being a subshift of finite type.  If the dynamics
requires infinite Markov partition with pruning rules for longer and longer blocks,
most of the shadowing combinations still cancel, but the few corresponding to the
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant as in fig. 11.2(b).

One striking aspect of the pruned cycle expansion (11.31) compared to the
trace formulas such as (11.6) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergence e™",
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in the example at hand the topological zeta function has the unit circle as the
radius of convergence. In other words, exponentiating the spectral problem from
a trace formula to a spectral determinant as in (11.18) increases the analyticity
domain: the pole in the trace (11.7) at z = e~" is promoted to a smooth zero of
the spectral determinant with a larger radius of convergence.

A detailed discussion of the radius of convergence is given in appendix E.1.

The very sensitive dependence of spectral determinants on whether the sym-
bolic dynamics is or is not a subshift of finite type is the bad news that we should
announce already now. If the system is generic and not structurally stable
(see sect. 10.6.1), a smooth parameter variation is in no sense a smooth varia-
tion of topological dynamics - infinities of periodic orbits are created or destroyed,
Markov graphs go from being finite to infinite and back. That will imply that the
global averages that we intend to compute are generically nowhere differentiable
functions of the system parameters, and averaging over families of dynamical sys-
tems can be a highly nontrivial enterprise; a simple illustration is the parameter
dependence of the diffusion constant computed in a remark in chapter 18.

You might well ask: What is wrong with computing an entropy from (11.1)?
Does all this theory buy us anything? If we count K, level by level, we ignore
the self-similarity of the pruned tree - examine for example fig. 10.14, or the
cycle expansion of (11.25) - and the finite estimates of h,, = In K,,/n converge
nonuniformly to h, and on top of that with a slow rate of convergence, |h — hy,| ~
O(1/n) as in (11.3). The determinant (11.8) is much smarter, as by construction
it encodes the self-similarity of the dynamics, and yields the asymptotic value of
h with no need for any finite n extrapolations.

So, the main lesson of learning how to count well, a lesson that will be affirmed
over and over, is that while the trace formulas are a conceptually essential step
in deriving and understanding periodic orbit theory, the spectral determinant
is the right object to use in actual computations. Instead of resumming all
of the exponentially many periodic points required by trace formulas at each
level of truncation, spectral determinants incorporate only the small incremental
corrections to what is already known - and that makes them more convergent
and economical to use.

Commentary

Remark 11.1 “Entropy”’. The ease with which the topological entropy
can be motivated obscures the fact that our definition does not lead to an
invariant of the dynamics, as the choice of symbolic dynamics is largely
arbitrary: the same caveat applies to other entropies discussed in chapter 15,
and to get proper invariants one is forced to evaluating a supremum over all
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possible partitions. The key mathematical point that eliminates the need of
such a variational search is the existence of generators, i.e. partitions that
under dynamics are able to probe the whole phase space on arbitrarily small
scales: more precisely a generator is a finite partition 2,= w;...wy, with
the following property: take M the subalgebra of the phase space generated
by €, and consider the partition built upon all possible intersectiond of sets
" (83;), where ¢ is dynamical evolution, 3; is an element of M and k takes all
possible integer values (positive as well as negative), then the closure of such
a partition coincides with the algebra of all measurable sets. For a thorough
(and readable) discussion of generators and how they allow a computation
of the Kolmogorov entropy, see ref. [1] and chapter 15.

Remark 11.2 Perron-Frobenius matrices. For a proof of Perron the-

orem on the leading eigenvalue see ref. [2]. Ref. [3], sect. A4.1 contains a
clear discussion of the spectrum of the transition matrix.

Remark 11.3 Determinant of a graph.  Many textbooks offer deriva-

tions of the loop expansions of characteristic polynomials for transition ma-
trices and their Markov graphs, see for example refs. [4, 5, 6].

Remark 11.4 T is not trace class. Note to the erudite reader: the
transition matrix 7" (in the infinite partition limit (11.18)) is not trace class

in the sense of appendix J. Still the trace is well defined in the n — oo limit.

Remark 11.5 _Artin-Mazur zeta functions. Motivated by A. Weil’s zeta
function for the Frobenius map [7], Artin and Mazur [13] introduced the zeta

function (11.20) that counts periodic points for diffeomorphisms (see also
ref. [8] for their evaluation for maps of the interval). Smale [9] conjectured
rationality of the zeta functions for Axiom A diffeomorphisms, later proved
by Guckenheimer [10] and Manning [I1]. See remark 8.4 on page 160 for
more zeta function history.

Remark 11.6 Ordering periodic orbit expansions. In sect. 13.4 we will

introduce an alternative way of hierarchically organising cumulant expan-
sions, in which the order is dictated by stability rather than cycle length:
such a procedure may be better suited to perform computations when the
symbolic dynamics is not well understood.

Résumé

What have we accomplished? We have related the number of topologically dis-
tinct paths from “this region” to “that region” in a chaotic system to the leading
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eigenvalue of the transition matrix 7". The eigenspectrum of T is given by a cer-
tain sum over traces tr’ 7™, and in this way the periodic orbit theory has entered
the arena, already at the level of the topological dynamics, the crudest description
of dynamics.

The main result of this chapter is the cycle expansion (11.20) of the topological
zeta function (that is, the spectral determinant of the transition matrix):

For subshifts of finite type, the transition matrix is finite, and the topological
zeta function is a finite polynomial evaluated by the loop expansion (11.12) of
det (1 — 2T). For infinite grammars the topological zeta function is defined by its
cycle expansion. The topological entropy A is given by the smallest zero z = e~ ".
This expression for the entropy is eract; in contrast to the definition (11.1), no

n — oo extrapolations of In K, /n are required.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to the problem of computa-
tion of dynamical averages for chaotic flows. The key result were the dynamical
zeta functions that derived in chapter 7, the weighted generalizations of the top-
ological zeta function.

Contrary to claims one sometimes encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules, or the “algorithmic
complexity”, as illustrated by sect. 11.6, and fig. 11.2 in particular.
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Exercises

11.1 A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-disk ternary symbolic dy-
namics, and write down the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition matrix results in two
coupled linear difference equations, - one for the diagonal and one for the
off diagonal elements. (Hint: relate tr 7™ to tr T +....)

b) Solve the above difference equation and obtain the number of periodic orbits
of length n. Compare with table 11.3.

c¢) Find the eigenvalues of the transition matrix T for the 3-disk system with
ternary symbolic dynamics and calculate the topological entropy. Compare
this to the topological entropy obtained from the binary symbolic dynamics

{0,1}.

11.2  Sum of A;; is like a trace. Let A be a matrix with eigenvalues Ay.
Show that

= [A"; = Z CEAL .
(2]

(a) Use this to show that In|tr A"| and In|I",| have the same asymptotic be-
havior as n — oo, that is, their ratio converges to one.

(b) Do eigenvalues Ay need to be distinct, A\, # N\; for k # 1?7

11.3 Loop expansions. Prove by induction the sign rule in the determinant
expansion (11.12):

det (1—2T)=> " > (=D)ftyty, - tp, .

k>0p1+-+pr
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11.4 Transition matrix and cycle counting.

Suppose you are given the Markov graph

b

SSONRO

c

This diagram can be encoded by a matrix 7', where the entry T;; means that
there is a link connecting node 7 to node j. The value of the entry is the weight
of the link.

a)

11.5

Walks on the graph are given the weight that is the product of the weights
of all links crossed by the walk. Convince yourself that the transition matrix
for this graph is:

a b
reo ]
Enumerate all the walks of length three on the Markov graph. Now compute

T3 and look at the entries. Is there any relation between the terms in 73
and all the walks?

Show that T77 is the number of walks from point ¢ to point j in n steps.
(Hint: one might use the method of induction.)

Try to estimate the number N (n) of walks of length n for this simple Markov
graph.

The topological entropy h measures the rate of exponential growth of the
total number of walks N(n) as a function of n. What is the topological
entropy for this Markov graph?

3-disk prime cycle counting. A prime cycle p of length n, is a single

traversal of the orbit; its label is a non-repeating symbol string of n, symbols. For
example, 12 is prime, but 2121 is not, since it is 21 = 12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, - -- prime cycles of length 2, 3, 4, 5, 6,
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11.6 Dynamical zeta functions from Markov graphs. Extend sect. 11.3
to evaluation of dynamical zeta functions for piecewise linear maps with finite Markov
graphs. This generalizes the results of exercise 8.2.

11.7 “Golden mean” pruned map. Continuation of exercise 10.11: Show
that the total number of periodic orbits of length n for the “golden mean” tent
map is

(1+VB)"+ (1= V5)"
2n '

For continuation, see exercise 11.9. See also exercise 11.10.

11.8 Alphabet {0,1}, prune _00_. The Markov diagram fig. 10.14(b) implements
this pruning rule. The pruning rule implies that “0” must always be bracketed by “1”s;
in terms of a new symbol 2 = 10, the dynamics becomes unrestricted symbolic dynamics
with with binary alphabet {1,2}. The cycle expansion (11.12) becomes

1/C = (1—tl)(l—tg)(l—tlg)(l—tug)...
= 1- t1 —tg — (tlg — tltg) — (t112 — tlgtl) — (t122 — t12t2) e (1134)

In the original binary alphabet this corresponds to:

1/¢ = 1—t1—ti — (t110 — tit1o)
—(t1110 — t110t1) — (t11010 — t110t10) - - - (11.35)

This symbolic dynamics describes, for example, circle maps with the golden mean winding
number, see chapter 19. For unimodal maps this symbolic dynamics is realized by the
tent map of exercise 11.7.

11.9 Spectrum of the “golden mean” pruned map. (medium - Exer-
cise 11.7 continued)

(a) Determine an expression for tr L, the trace of powers of the Perron-Frobenius
operator (5.10) for the tent map of exercise 11.7.
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Figure 11.3: (a) A unimodal map for which the critical point maps into the right hand
fixed point in three iterations, and (b) the corresponding Markov graph (Kai T. Hansen).

(b) Show that the spectral determinant for the Perron-Frobenius operator is

z 22 z Z2

k even k odd

11.10 A unimodal map example. Consider a unimodal map of fig. 11.3(a)
for which the critical point maps into the right hand fixed point in three iterations,
St = 1001. Show that the admissible itineraries are generated by the Markov graph
fig. 11.3(b).

(Kai T. Hansen)

11.11 Heavy pruning. (continuation of exercise 10.15.) Implement the
grammar (10.28) by verifying all steps in the construction outlined in fig. 10.15.
Verify the entropy estimate (11.17). Perhaps count admissible trajectories up to
some length of 5-10 symbols by your own method (generate all binary sequences,
throw away the bad ones?), check whether this converges to the h value claimed
in the text.

11.12  Glitches in shadowing.”™ Note that the combination tggg1; minus the
“shadow” totpp11 in (11.16) cancels exactly, and does not contribute to the topological
polynomial (11.17). Are you able to construct a smaller Markov graph than fig. 10.15(e)?
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11.13 Whence Mobius function? To understand where the Mdbius function
comes from consider the function

fn)=> g(d) (11.37)
dl

where d|n stands for sum over all divisors d of n. Invert recursively this infinite tower of
equations and derive the Mdbius inversion formula

g(n) =Y u(n/d)f(d) (11.38)

d|n

11.14 Counting prime binary cycles. In order to get comfortable with
Mobius inversion reproduce the results of the second column of table 11.2.

Write a program that determines the number of prime cycles of length n. You
might want to have this program later on to be sure that you have missed no
3-pinball prime cycles.

11.15 Counting subsets of cycles. The techniques developed above can be
generalized to counting subsets of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (10.15) with two straight branches,
which we label 0 and 1. Every cycle weight for such map factorizes, with a factor ¢y for
each 0, and factor t; for each 1 in its symbol string. Prove that the transition matrix
traces (11.4) collapse to tr(T*) = (to + t1)*, and 1/¢ is simply

H(l—tp) =1l—-to—1 (11.39)

Substituting (11.39) into the identity

1—t,2
[Ta+u) =]] -

p P
we obtain
1—¢2 —¢2 2tot1
1+4t,) = —O% L1444+t +—""
1;[( ) 1—ty—t thth+ i~

n—

o0
= ltto+t+Y
n=

! /n—2
2 ( >t’gt§‘—k. (11.40)
k—1
2 k=1

/Problems/exerCount.tex 3nov2001 printed June 19, 2002



EXERCISES 265

Hence for n > 2 the number of terms in the cumulant expansion with k 0’s and n — k 1’s
. . . )
in their symbol sequences is 2 (2_1).

In order to count the number of prime cycles in each such subset we denote with
My (n=1,2,...;k={0,1} forn=1; k=1,...,n— 1 for n > 2) the number of
prime n-cycles whose labels contain k zeros. Show that

Mg = M =1
n/m
nMyr = %M(m)(k/w)’ n>2k=1,...,n—1
m| %

where the sum is over all m which divide both n and k.

11.16 Logarithmic periodicity of In N,*. Plot In N,, — nh for a system with a
nontrivial finite Markov graph. Do you see any periodicity? If yes, why?

11.17 4-disk pinball topological polynomial. Show that the 4-disk pinball
topological polynomial (the pruning affects only the fixed points and the 2-cycles) is
given by

1/Ca—gisk = (1—3z2)

I
—~
—_
|
w
N
~—
—~
—
+
N
~—
w
Il
—_
|
=2}
W
[
|
o
N
w
|
w
N
'

(11.41)

11.18 N-disk pinball topological polynominal. Show that for an N-disk
pinball, the topological polynominal is given by

(1 — 22)N(N=1)/2
1/CN—gisk = (1—(N—-1)z) (1= 2)N-1(1 = 2)N-D(N-2)/2

= 1—(N-1)z)(1+2)V"1. (11.42)

The topological polynomial has a root z=! = N — 1, as we already know it should from
(11.28) or (11.14). We shall see in sect. 17.4 that the other roots reflect the symmetry
factorizations of zeta functions.
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11.19 Alphabet {a,b,c}, prune _ab_ . The pruning rule implies that any string

1PN

of “b”s must be preceeded by a “c”; so one possible alphabet is {a, cb¥; 5}, k=0,1,2.. ..
As the rule does not prune the fixed point b, it is explicitly included in the list. The
cycle expansion (11.12) becomes

1/¢ = (1—t)(1—tp)(1 —te)(1 —tep)(1 — tac) (1 — tepp) - - -
= 11—ty —ty —t.+tuty — (tcb — tctb) — (tac — tatc) — (tcbb — tcbtb) -

The effect of the _ab_ pruning is essentially to unbalance the 2 cycle curvature t,p — totp;
the remainder of the cycle expansion retains the curvature form.

11.20 Alphabet {0,1}, prune n repeats. of “0” _000...00_ .
This is equivalent to the n symbol alphabet {1, 2, ..., n} unrestricted symbolic dy-

namics, with symbols corresponding to the possible 10...00 block lengths: 2=10, 3=100,
..., n=100...00. The cycle expansion (11.12) becomes

1/C=1—ty —ty... =ty — (t1o — tata) ... — (t1n — titn) ... (11.43)

11.21  Alphabet {0,1}, prune _1000_, _00100_, _01100_. This example is
motivated by the pruning front description of the symbolic dynamics for the Hénon-type
maps, sect. 10.7.

Show that the topological zeta function is given by

1/¢=(1—to)(1 —t1 —ta —taz — t113) (11.44)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}. Here 2, 3, refer to 10, 100
respectively, as in exercise 11.20.
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11.22 Alphabet {0,1}, prune _1000_, -00100_, -01100_, -10011_.  This example
of pruning we shall use in sect. 7?. The first three pruning rules were incorporated in
the preceeding exercise.

(a) Show that the last pruning rule 10011 leads (in a way similar to exercise 11.21)
to the alphabet {21%, 23, 21¥113; T, 0}, and the cycle expansion

1/¢ = (1 —to)(1 =ty —to — tag + t1taz — t2113) (11.45)

Note that this says that 1, 23, 2, 2113 are the fundamental cycles; not all cycles up to
length 7 are needed, only 2113.

(b) Show that the topological polynomial is
l/Ctop:(1—z)(1—z—22—z5+26—z7) (11.46)

and check that it yields the exact value of the entropy h = 0.522737642. . ..
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Chapter 12

Fixed points, and how to get
them

(F. Christiansen)

Having set up the dynamical context, now we turn to the key and unavoidable
piece of numerics in this subject; search for the solutions (z,7), z € RY, T € R
of the periodic orbit condition

T (z) = fi(x), T>0 (12.1)

for a given flow or mapping.

We know from chapter 7 that cycles are the necessary ingredient for evaluation
of spectra of evolution operators. In chapter ?? we have developed a qualitative
theory of how these cycles are laid out topologically. This chapter is intended as
a hands-on guide to extraction of periodic orbits, and should be skipped on first
reading - you can return to it whenever the need for finding actual cycles arises.

fast track:
W chapter 5, p. 97

A prime cycle p of period T}, is a single traversal of the orbit, so our task
will be to find a cycle point z € p and the shortest time T' = T}, for which (12.1)
has a solution. A cycle point of a flow which crosses a Poincaré section n,, times
is a fixed point of the f" iterate of the Poincaré section return map, hence we
shall refer to all cycles as “fixed points” in this chapter. By cyclic invariance,
stability eigenvalues and the period of the cycle are independent of the choice of
the stability point, so it will suffice to solve (12.1) at a single cycle point.
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If the cycle is an attracting limit cycle with a sizable basin of attraction, it
can be found by integrating the flow for sufficiently long time. If the cycle is
unstable, simple integration forward in time will not reveal it, and methods to be
described here need to be deployed. In essence, any method for finding a cycle
is based on devising a new dynamical system which possesses the same cycle,
but for which this cycle is attractive. Beyond that, there is a great freedom in
constructing such systems, and many different methods are used in practice. Due
to the exponential divergence of nearby trajectories in chaotic dynamical systems,
fixed point searches based on direct solution of the fixed-point condition (12.1)
as an initial value problem can be numerically very unstable. Methods that start
with initial guesses for a number of points along the cycle are considerably more
robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation
is preparation of a list of all distinct admissible prime periodic symbol sequences,
such as the list given in table 10.1. The relations between the temporal symbol
sequences and the spatial layout of the topologically distinct regions of the phase
space discussed in chapter 77 should enable us to guess location of a series of
periodic points along a cycle. Armed with such informed guess we proceed to
improve it by methods such as the Newton-Raphson iteration; we illustrate this
by considering 1-dimensional and d-dimensional maps.

12.1 One-dimensional mappings

12.1.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-dimensional
map such as the logistic map. Unstable cycles of 1-d maps are attracting cycles
of the inverse map. The inverse map is not single valued, so at each backward
iteration we have a choice of branch to make. By choosing branch according to
the symbolic dynamics of the cycle we are trying to find, we will automatically
converge to the desired cycle. The rate of convergence is given by the stability
of the cycle, i.e. the convergence is exponentially fast. Fig. 12.1 shows such path
to the 0I-cycle of the logistic map.

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-d systems such as the repeller of exercise 12.13. It is not particularly fast,
especially if the inverse map is not known analytically. However, it completely
fails for higher dimensional systems where we have both stable and unstable
directions. Inverse iteration will exchange these, but we will still be left with
both stable and unstable directions. The best strategy is to directly attack the
problem of finding solutions of f7(z) = .
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1 T T T T
0.8
0.6
0.4 |
Figure 12.1: The inverse time path to the 01-
cycle of the logistic map f(x)=4x(1-x) from an ini- 0.2 -
tial guess of x=0.2. At each inverse iteration we 0 4 . . .
chose the 0, respectively 1 branch. 0 02 04 06 08

12.1.2 Newton’s method

Newton’s method for finding solutions of F'(x) = 0 works as a simple linearization
around a starting guess xg:

F(x) = F(xq) + F'(x0)(x — x0). (12.2)
An approximate solution x1 of F(z) =0 is
Ir1 = Xy — F(l’o)/Fl(x()). (12.3)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a map f is a solution to F(z) = z — f(z) = 0. We
determine x by iterating

Tm = g(xm—l) = Tm—1 — F(xm—l)/F/(«Tm—l)
Tn—1 — m@m_l — f(xm-1))- (12.4)

Privided that the fixed point is not marginally stable, f’(x) # 1 at the fixed point
x, a fixed point of f is a super-stable fixed point of the Newton-Raphson map g,
¢'(z) = 0, and with a sufficiently good inital guess, the Newton-Raphson iteration
will converge super-exponentially fast. In fact, as is illustrated by fig. 12.2, in the
typical case the number of significant digits of the accuracy of x estimate doubles
with each iteration.

12.1.3 Multipoint shooting method

Periodic orbits of length n are fixed points of f™ so in principle we could use the
simple Newton’s method described above to find them. However, this is not an
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optimal strategy. f™ will be a highly oscillating function with perhaps as many
as 2™ or more closely spaced fixed points, and finding a specific periodic point,
for example one with a given symbolic sequence, requires a very good starting
guess. For binary symbolic dynamics we must expect to improve the accuracy of
our initial guesses by at least a factor of 2" to find orbits of length n. A better
alternative is the multipoint shooting method. ~ While it might very hard to give
a precise initial point guess for a long periodic orbit, if our guesses are informed
by a good phase-space partition, a rough guess for each point along the desired
trajectory might suffice, as for the individual short trajectory segments the errors
have no time to explode exponentially.

A cycle of length n is a zero of the n-dimensional vector function F:

] X1 — f(xn)
F(.ZU) S 1) _ 5132_](.(:171)
Tn Tp — f($n—1)

The relations between the temporal symbol sequences and the spatial layout
of the topologically distinct regions of the phase space discussed in chapter 7?7
enable us to guess location of a series of periodic points along a cycle. Armed
with such informed initial guesses we can initiate a Newton-Raphson iteration.
The iteration in the Newton’s method now takes the form of

LF@)! ~ ) = ~Fl) (12.5)

where %F(l‘) is an [n x n] matrix:

1 —f'(@n)

1 . (12.6)
1

_f/(xn—l) 1

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in the n’th column. We
eliminate these and are done. Let us take it step by step for a period 3 cycle.
Initially the setup for the Newton step looks like this:

1 0 —f/(xg) (51 —F1
— (1) 1 0 6 | = -B |, (12.7)
0 —f'(w2) 1 03 —F;
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where §; = z — x; is the correction of our guess for a solution and where F; =
x; — f(xi—1). First we eliminate the below diagonal elements by adding f’(x1)
times the first row to the second row, then adding f’(x3) times the second row
to the third row. We then have

10 —f'(3) 01
0 1 —f (1) f' (x3) o | =
0 0 1— f'(x2)f'(w1)f (x3) 03

n (12.8)

—F — fl(z1) 4
—F3 — f'(w2) Fy — f'(x2) f'(x1) Fy

The next step is to invert the last element in the diagonal, i.e. divide the third
row by 1— f/(z2) f (1) f'(x3). Tt is clear that if this element is zero at the periodic
orbit this step might lead to problems. In many cases this will just mean a slower
convergence, but it might throw the Newton iteration completely off. We note
that f/(x2)f'(x1)f'(x3) is the stability of the cycle (when the Newton iteration
has converged) and that this therefore is not a good method to find marginally
stable cycles. We now have

1 0 —f’x (51
0 1 —f'(x)f'(xs) || 02 | =
00 1 03
R . (12.9)

—EF—f(xo) Fo—f'(z2) f' (x1) A
1=f"(x2) f' (1) f'(23)

Finally we add f’(x3) times the third row to the first row and f’(z1)f’(x3) times
the third row to the second row. On the left hand side the matrix is now the unit
matrix, on the right hand side we have the corrections to our initial guess for the
cycle, i.e. we have gone through one step of the Newton iteration scheme.

When one sets up the Newton iteration on the computer it is not necessary
to write the left hand side as a matrix. All one needs is a vector containing the
f'(x;)’s, a vector containing the n’th column, that is the cumulative product of
the f/(x;)’s and a vector containing the right hand side. After the iteration the
vector containing the right hand side should be the correction to the initial guess.

To illustrate the efficiency of the Newton method we compare it to the inverse
iteration method in fig. 12.2. The advantage with respect to speed of Newton’s
method is obvious.
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0 | | | | | | | |
-5+
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Figure 12.2: Convergence of Newton's method () vs. inverse iteration (4+). The
error after n iterations searching for the Ol-cycle of the logistic map f(z) = 4z(1 — x)
with an initial starting guess of 1 = 0.2,z2 = 0.8. y-axis is log;, of the error. The
difference between the exponential convergence of the inverse iteration method and the

super-exponential convergence of Newton's method is obvious.

12.2 d-dimensional mappings
(F. Christiansen)

J Armed with symbolic dynamics informed initial guesses we can utilize
the Newton-Raphson iteration in d-dimensions as well.

12.2.1 Newton’s method for d-dimensional mappings

Newton’s method for 1-dimensional mappings is easily extended to higher dimen-
sions. In this case f'(z;) is a [d x d] matrix. & F(z) is then an [nd x nd] matrix.
In each of the steps that we went through above we are then manipulating d rows
of the left hand side matrix. (Remember that matrices do not commute - always
multiply from the left.) In the inversion of the n’th element of the diagonal we
are inverting a [d x d] matrix (1 — [] f/(«;)) which can be done if none of the
eigenvalues of ] f'(x;) equals 1, i.e. the cycle must not have any marginally
stable directions.

Some d-dimensional mappings (such as the Hénon map (3.8)) can be written

/chapter/cycles.tex 17apr2002 printed June 19, 2002



12.3. FLOWS 275

as 1-dimensional time delay mappings of the form

f(@i) = f(@im1, wimg, .., Tima) (12.10)

In this case d%F (z) is an [n X n] matrix as in the case of usual 1-dimensional maps
but with non-zero matrix elements on d off-diagonals. In the elimination of these
off-diagonal elements the last d columns of the matrix will become non-zero and
in the final cleaning of the diagonal we will need to invert a [d X d] matrix. In this
respect, nothing is gained numerically by looking at such maps as 1-dimensional
time delay maps.

12.3 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that for a periodic orbit
the stability eigenvalue corresponding to the flow direction of necessity equals
unity; the separation of any two points along a cycle remains unchanged after
a completion of the cycle. More unit eigenvalues can arise if the flow satisfies
conservation laws, such as the energy invariance for Hamiltonian systems. We
now show how such problems are solved by increasing the number of fixed point
conditions.

12.3.1 Newton’s method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow to a
mapping on the Poincaré surface of section. An autonomous flow (2.6) is given
as

i = v(), (12.11)

The corresponding Jacobian matrix J (4.25) is obtained by integrating the lin-
earized equation (4.31)

j = AJ, AU(.T) = agix)
J

along the trajectory. The flow and the corresponding Jacobian are integrated
simultaneously, by the same numerical routine. Integrating an initial condition
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on the Poincaré surface until a later crossing of the same and linearizing around
the flow we can write

f@') = f(z) + I — ). (12.12)

Notice here, that, even though all of 2/, x and f(z) are on the Poincaré surface,
f(2") is usually not. The reason for this is that J corresponds to a specific
integration time and has no explicit relation to the arbitrary choice of Poincaré
section. This will become important in the extended Newton method described
below.

To find a fixed point of the flow near a starting guess x we must solve the
linearized equation

(1-J)(2' —2)=—(x— f(x)) = —F(x) (12.13)

where f(x) corresponds to integrating from one intersection of the Poincaré sur-
face to another and J is integrated accordingly. Here we run into problems with
the direction along the flow, since this corresponds to a unit eigenvector of J. The
matrix (1 — J) does therefore not have full rank. A related problem is that the
solution z’ of (12.13) is not guaranteed to be in the Poincaré surface of section.
The two problems are solved simultaneously by adding a small vector along the
flow plus an extra equation demanding that x be in the Poincaré surface. Let us
for the sake of simplicity assume that the Poincaré surface is a (hyper)-plane, i.e.
it is given by the linear equation

(x —x9)-a=0, (12.14)

where a is a vector normal to the Poincaré section and xzg is any point in the
Poincaré section. (12.13) then becomes

( 1;.] U(O:c) > ( m’5—Tx ) _ ( —Fo(x) > (12.15)

The last row in this equation ensures that x will be in the surface of section, and
the addition of v(z)dT, a small vector along the direction of the flow, ensures
that such an x can be found at least if x is sufficiently close to a solution, i.e. to
a fixed point of f.

To illustrate this little trick let us take a particularly simple example; consider
a 3-d flow with the (z,y,0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e. with v = (0,0, v,), which means that
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the marginally stable direction is also perpendicular to the Poincaré section.
Furthermore, let the unstable direction be parallel to the x-axis and the stable
direction be parallel to the y-axis. In this case the Newton setup looks as follows

1-A 0 0 0 5 _F,
0 1-A, 0 0 5, | | -F,
0 0 0 v 5. |=1| -F (12.16)
0 0 1 0 5t 0

If you consider only the upper-left [3 x 3] matrix (which is what we would have
without the extra constraints that we have introduced) then this matrix is clearly
not invertible and the equation does not have a unique solution. However, the full
[4x 4] matrix is invertible, as det () = v.det (1—J ), where J is the monodromy
matrix for a surface of section transverse to the orbit, see for ex. (22.15).

For periodic orbits (12.15) generalizes in the same way as (12.6), but with n
additional equations — one for each point on the Poincaré surface. The Newton
setup looks like this

1 —Jn S _F

1 1

—J1 1 U1 5o B
.. 1 o . - ‘

—n—l 1 On - —F,
a 0t 0
Otn 0

Solving this equation resembles the corresponding task for maps. However, in
the process we will need to invert an [(d + 1)n x (d 4+ 1)n] matrix rather than a
[d x d] matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems if
other eigenvalues of the Jacobian matrix equal 1. This happens if the flow has
an invariant of motion, the most obvious example being energy conservation in
Hamiltonian systems. In this case we add an extra equation for x to be on the
energy shell plus and extra variable corresponding to adding a small vector along
the gradient of the Hamiltonian. We then have to solve

-z —(z — f(z
<1;J v(ozv) VI{)@«“)) St ( 0 ) (12.17)

oF 0
simultaneously with
H(z') — H(z) =0. (12.18)
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Figure 12.3: lllustration of the optimal Poincaré surface. The original surface y = 0 yields

a large distance = — f(x) for the Newton iteration. A much better choice is y = 0.7.

This last equation is nonlinear. It is often best to treat this separately in the sense
that we really solve this equation in each Newton step. This might mean putting
in an additional Newton routine to solve the single step of (12.17) and (12.18)
together. One might be tempted to linearize (12.18) and put it into (12.17) to
do the two different Newton routines simultaneously, but this will not guarantee
a solution on the energy shell. In fact, it may not even be possible to find any
solution of the combined linearized equations, if the initial guess is not very good.

12.3.2 Newton’s method with optimal surface of section

(F. Christiansen)

J In some systems it might be hard to find a good starting guess for
a fixed point, something that could happen if the topology and/or the symbolic
dynamics of the flow is not well understood. By changing the Poincaré section one
might get a better initial guess in the sense that = and f(z) are closer together.
In fig. 12.3 there is an illustration of this. The figure shows a Poincaré section,
y = 0, an initial guess z, the corresponding f(x) and pieces of the trajectory near
these two points.

If the Newton iteration does not converge for the initial guess x we might
have to work very hard to find a better guess, particularly if this is in a high-
dimensional system (high-dimensional might in this context mean a Hamiltonian
system with 3 degrees of freedom.) But clearly we could easily have a much better
guess by simply shifting the Poincaré section to y = 0.7 where the distance
x — f(x) would be much smaller. Naturally, one cannot see by eye the best
surface in higher dimensional systems. The way to proceed is as follows: We
want to have a minimal distance between our initial guess x and the image of
this f(x). We therefore integrate the flow looking for a minimum in the distance
d(t) = |ft(z) — z|. d(t) is now a minimum with respect to variations in f!(z),
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but not necessarily with respect to x. We therefore integrate x either forward or
backward in time. Doing this we minimize d with respect to x, but now it is no
longer minimal with respect to f!(x). We therefore repeat the steps, alternating
between correcting z and f!(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector (f(z) — x) connecting the two end
points is perpendicular to the flow at both points. We can now choose to define a
Poincaré surface of section as the hyper-plane that goes through x and is normal
to the flow at z. In other words the surface of section is determined by

(@' —z)-v(z) = 0. (12.19)

Note that f(x) lies on this surface. This surface of section is optimal in the
sense that a close return on the surface is really a local minimum of the distance
between x and f!(x). But more importantly, the part of the stability matrix
that describes linearization perpendicular to the flow is exactly the stability of
the flow in the surface of section when f(z) is close to . In this method, the
Poincaré surface changes with each iteration of the Newton scheme. Should we
later want to put the fixed point on a specific Poincaré surface it will only be a
matter of moving along the trajectory.

12.4 Periodic orbits as extremal orbits

If you have some insight into the topology of the flow and its symbolic dynamics,
or have already found a set of short cycles, you might be able to construct a
rough approximation to a longer cycle p of cycle length n, as a sequence of points
(a:&o), xgo)’ e :zg;)) with the periodic boundary condition xy,+1 = z1. Suppose
you have an iterative method for improving your guess; after k iterations the cost
function

BW)y=%" <:c§f?1 - f(:cg’“))>2 (12.20)

or some other more cleverly constructed function is a measure of the deviation
of the kth approximate cycle from the true cycle. This observation motivates
variational approaches to determining cycles. We give her two examples of such
methods, one for maps and one for billiards. Unlike the Newton-Raphson method,
variational methods are very robust. As each step around the cycle is short, they
do not suffer from exponential instabilities, and with rather coarse initial guesses
one can determine cycles of arbitrary length.
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12.4.1 Cyeclists relaxation method

(O. Biham and P. Cvitanovi¢)

The relaxation (or gradient) algorithm for finding cycles is based on the observa-
tion that a trajectory of a map such as the Hénon map (3.8),

Tiv1 = 1—ax?+ by
Yirl = i, (12.21)

is a stationary solution of the relaxation dynamics defined by the flow
=i, i=1,....n (12.22)

for any vector field v; = v;(z) which vanishes on the trajectory. As the simplest
example, take v; to be the deviation of an approximate trajectory from the exact
2-step recurrence form of the Hénon map (3.9)

vi =Tl — 1+ ax? —bx;_1. (12.23)

For fixed x;_1, ;41 there are two values of x; satisfying v; = 0. These solutions
are the two extremal points of a local “potential” function (no sum on )

_d
_da;i

Vg W(x) , V»L(.’L‘) = l'z'(ffi—i-l —bxi_1 — 1) + xf’ . (12.24)

w| e

Assuming that the two extremal points are real, one is a local minimum of V;(z)
and the other is a local maximum. Now here is the idea; replace (12.22) by

dfl:i
dt

=0, 1=1,...,n, (12.25)

where o; = £1.

The modified flow will be in the direction of the extremal point given by
the local maximum of V;(z) if o; = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we take o; = —1. This is not quite what
happens in solving (12.25) - all x; and Vj(z) change at each integration step -
but this is the observation that motivates the method. The differential equations
(12.25) then drive an approximate initial guess toward the exact trajectory. A
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1

Figure 12.4: “Potential” V;(x) (12.24) for a V®
typical point along an inital guess trajectory. For
o; = +1 the flow is toward the local maximum of
Vi(x), and for o; = —1 toward the local minimum.
A large deviation of z;'s is needed to destabilize a
trajectory passing through such local extremum of

V;(z), hence the basin of attraction is expected to

be large. oo
15
05 | -;‘:; ..N
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Figure 12.5: The repeller for the Hénon map at
a=18,06=0.3. (0. Biham) 15 5 o5

sketch of the landscape in which x; converges towards the proper fixed point
is given in fig. 12.4. As the “potential” function (12.24) is not bounded for a
large |x;|, the flow diverges for initial guesses which are too distant from the true
trajectory.

Our aim in this calculation is to find all periodic orbits of period n, in principle
at most 2™ orbits. We start by choosing an initial guess trajectory (x1,xa, -+, 2y)
and impose the periodic boundary condition x,+1 = x1. A convenient choice of
the initial condition in the Hénon map example is x; = 0 for all ¢. In order to find
a given orbit one sets o; = —1 for all iterates ¢ which are local minima of V;(x),
and o; = 1 for iterates which are local maxima. In practice one runs through a
complete list of prime cycles, such as the table 10.1. The real issue for all searches
for periodic orbits, this one included, is how large is the basin of attraction of the
desired periodic orbit? There is no easy answer to this question, but empirically
it turns out that for the Hénon map such initial guess almost always converges to
the desired trajectory as long as the initial |z| is not too large compared to 1/+/a.
Fig. 12.4 gives some indication of a typical basin of attraction of the method.

The calculation is carried out by solving the set of n ordinary differential
equations (12.25) using a simple Runge-Kutta method with a relatively large
step size (h = 0.1) until |v| becomes smaller than a given value € (in a typical
calculation € ~ 10~7). Empirically, in the case that an orbit corresponding to
the desired itinerary does not exist, the initial guess escapes to infinity since the
“potential” V;(x) grows without bound.

printed June 19, 2002 /chapter/cycles.tex 17apr2002

& 1212

on p. 290



129 &

on p. 289

12.10 &

on p. 289

1211 &

on p. 290

282 CHAPTER 12. FIXED POINTS, AND HOW TO GET THEM

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well
as selected orbits up to period n = 1000. We list all prime cycles up to period 10
for the Hénon map, a = 1.4 and b = 0.3 are listed in table 12.1. The number of
unstable periodic orbits for periods n < 28 is given in table 12.2. Comparing
this with the list of all possible 2-symbol alphabet prime cycles, table 10.1, we
see that the pruning is quite extensive, with the number of cycle points of period
n growing as e%4645" — (1.592)" rather than as 2".

As another example we plot all unstable periodic points up to period n = 14
for a = 1.8, b = 0.3 in fig. 12.5. Comparing this set with the strange attractor
for the Hénon’s parameters fig. 3.4, we note the existence of gaps in the set, cut
out by the preimages of the escaping regions.

In practice, this method finds (almost) all periodic orbits which exist and
indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

12.4.2 Orbit length extremization method for billiards

(Per Dahlquist)

The simplest method for determining billiard cycles is given by the princi-
ple of least action, or equivalently, by extremizing the length of an approximate
orbit that visits a given sequence of disks. In contrast to the multipoint shoot-
ing method of sect. 12.2.1 which requires variation of 2N phase-space points,
extremization of a cycle length requires variation of only N bounce positions s;.

The problem is to find the extremum values of cycle length L(s) where s =
(s1,...,8N), that is find the roots of 9;L(s) = 0. Expand to first order

DiL(so + 6s) = 9;L(so) + Z 0;0;L(s0)0s; + ...
J

and use J;j(so) = 0;0;L(so) in the N-dimensional Newton-Raphson iteration
scheme of sect. 12.1.2

Si > 85 — ; <ﬁ)w d;L(s) (12.26)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that
the final extremal length orbit does not penetrate any of the disks.
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As an example, the short periods and stabilities of 3-disk cycles computed
this way are listed table 12.3.

12.5 Stability of cycles for maps

No matter what method we had used to determine the unstable cycles, the theory
to be developed here requires that their stability eigenvalues be evaluated as well.
For maps a Jacobian matrix is easily evaluated by picking any cycle point as a
starting point, running once around a prime cycle, and multiplying the individual
cycle point stability matrices according to (4.52). For example, the Jacobian
matrix J, for a Hénon map (3.8) prime cycle p of length n, is given by (4.53),
and the Jacobian matrix J,, for a 2-dimensional billiard prime cycle p of length n,,
follows from (4.49). As explained on page 81, evaluation of the Jacobian matrix
for a flow will require an integration along the prime cycle.

Commentary

Remark 12.1 Intermittency. Intermittency could reduce the efficiency
of this method. If only a “small” part of phase space is intermittent then
this might work since one needs many of the intermittent cycles in a stability
ordered cycle expansion (at least classically). However, if the system is as
unbounded as the (zy)? potential ... forget it ! Sune F. Nielsen

Remark 12.2 Piece-wise linear maps.  The Lozi map (3.10) is linear,

and 100,000’s of cycles can be be easily computed by [2x2] matrix multipli-
cation and inversion.

Remark 12.3 _Relaxation method.  The relaxation (or gradient) algo-
rithm is one of the methods for solving extremal problems [12]. The method
described above was introduced by Biham and Wenzel [13], who have also
generalized it (in the case of the Hénon map) to determination of all 2"
cycles of period n, real or complex [14]. The applicability and reliability of
the method is discussed in detail by Grassberger, Kantz and Moening [16],
who give examples of the ways in which the method fails: (a) it might reach
a limit cycle rather than a stationary saddlepoint (that can be remedied by
the complex Biham-Wenzel algorithm [14]) (b) different symbol sequences
can converge to the same cycle (that is, more refined initial conditions might
be needed). Furthermore, Hansen (ref. [17] and chapter 4. of ref. [3]) has
pointed out that the method cannot find certain cycles for specific values of
the Hénon map parameters.
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In practice, the relaxation method for determining periodic orbits of
maps appears to be effective almost always, but not always. It is much
slower than the multipoint shooting method of sect. 12.2.1, but also much
quicker to program, as it does not require evaluation of stability matrices
and their inversion. If the complete set of cycles is required, the method has
to be supplemented by other methods.

Another method, which is also based on the construction of an artifi-
cial dynamics, but of different type, has been introduced by Diakonos and
Schmelcher [18]. This method determines cycles ordered by stability, the
least unstable cycles being obtained first [20, 19], and is useful in conjunc-
tion with the stability ordered cycle expansions that we shall discuss in
sect. 13.4.

Remark 12.4 Relation to the Smale horseshoe symbolic dynamics.  For
a complete horseshoe Hénon repeller (a sufficiently large), such as the one
given in fig. 10.17, the signs o; € {1, —1} are in a 1-to-1 correspondence with
the Smale horsheshoe symbolic dynamics s; € {0,1}:

Si:{ 0 lfai—l, z; <0 (12.27)

1 if o +1, z; >0

For arbitrary parameter values with a finite subshift symbolic dynamics or

with arbitrarily complicated pruning, the relation of sign sequences {01, 02, -+, 05}
to the intineraries {s1, s2,- -, s, } can be much subtler; this is discussed in

ref. [16].

Remark 12.5 A compilation of the Hénon map numerical results. For

the record - the most accurate estimates of various averages for the Hénon
map, Hénon’s parameters choice a = 1.4, b = 0.3, known to the authors,
are: the topological entropy (11.1) is h = 0.46457?, the Lyapunov exponent
= 0.463, the Hausdorff dimension Dy = 1.274(2).
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n p (Yp, 2p ) Ap
1 0 (-1.13135447 , -1.13135447) 1.18167262
1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982
011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559
0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634
8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 |, -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493
9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 |, -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658
10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048
13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001  (-1.0598110494 , -0.2056310390)  0.21072511

CHAPTER 12.

Table 12.1: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period n,, the itinerary (defined in remark 12.4), a cycle point (y,, z;),
and the cycle Lyapunov exponent A\, = In |A,|/n,. While most of the cycles have )\, ~ 0.5,
several significantly do not. The 0 cycle point is very unstable, isolated and transient fixed
point, with no other cycles returning close to it. At period 13 one finds a pair of cycles
with exceptionally low Lyapunov exponents. The cycles are close for most of the trajectory,
differing only in the one symbol corresponding to two cycle points straddle the (partition)
fold of the attractor. As the system is not hyperbolic, there is no known lower bound on
cycle Lyapunov exponents, and the Hénon's strange “attractor” might some day turn out to
be nothing but a transient on the way to a periodic attractor of some long period (Work
through exercise ?77). The odds, however, are that it indeed is strange.
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n | M, N, n| M, Ny, n M, Ny,
11 14 | 156 || 17 | 166 | 2824 || 23 | 1930 | 44392
12 19 | 248 || 18 | 233 | 4264 || 24 | 2902 | 69952
13 32 | 418 || 19| 364 | 6918 || 25 | 4498 | 112452
14 | 44| 648 || 20 | 535 | 10808 || 26 | 6806 | 177376
15 72 | 1082 || 21 | 834 | 17544 || 27 | 10518 | 284042
16 | 102 | 1696 || 22 | 1225 | 27108 || 28 | 16031 | 449520

287

Table 12.2: The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n < 28. M, is the number of prime cycles of length n, and N,, is the total
number of periodic points of period n (including repeats of shorter prime cycles).

D A, T,

0 9.898979485566 4.000000000000
1 -1.177145519638 x 10! 4.267949192431
01 -1.240948019921x10% | 8.316529485168
001 -1.240542557041x10% | 12.321746616182
011 1.449545074956 x 10% | 12.580807741032
0001 -1.229570686196 x 107 | 16.322276474382
0011 1.445997591902x10* | 16.585242906081
0111 -1.707901900894 x 10* | 16.849071859224
00001 | -1.217338387051x10° | 20.322330025739
00011 1.432820951544x10° | 20.585689671758
00101 1.539257907420x10° | 20.638238386018
00111 | -1.704107155425x10° | 20.853571517227
01011 | -1.799019479426 x10° | 20.897369388186
01111 2.010247347433x10° | 21.116994322373
000001 | -1.205062923819x10° | 24.322335435738
000011 | 1.418521622814x10° | 24.585734788507
000101 | 1.525597448217x10° | 24.638760250323
000111 | -1.688624934257x10¢ | 24.854025100071
001011 | -1.796354939785x10° | 24.902167001066
001101 | -1.796354939785x10° | 24.902167001066
001111 | 2.005733106218 <106 | 25.121488488111
010111 | 2.119615015369x10° | 25.165628236279
011111 | -2.366378254801x 106 | 25.384945785676

Table 12.3: All prime cycles up to 6 bounces for
center-to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary, its
expanding eigenvalue A,, and the length of the orbit (if the velocity=1 this is the same as its
period or the action). Note that the two 6 cycles 001011 and 001101 are degenerate due to
the time reversal symmetry, but are not related by any discrete spatial symmetry. (computed
by P.E. Rosenqvist)
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Exercises

12.1 Cycles of the Ulam map. Test your cycle-searching routines by computing
a bunch of short cycles and their stabilities for the Ulam map

flx) =4x(1 —x). (12.28)

12.2  Cycles stabilities for the Ulam map, exact. In exercise 12.1 you
should have observed that the numerical results for the cycle stability eigenvalues (4.51)
are exceptionally simple: the stability eigenvalue of the zy = 0 fixed point is 4, while
the eigenvalue of any other n-cycle is 2. Prove this. (Hint: the Ulam map can be
conjugated to the tent map (10.15). This problem is perhaps too hard, but give it a try
- the answer is in many introductory books on nolinear dynamics.)

12.3 Stability of billiard cycles. Compute stabilities of few simple cycles.

(a) A simple scattering billiard is the two-disk billiard. It consists of a disk of radius
one centered at the origin and another disk of unit radius located at L + 2. Find
all periodic orbits for this system and compute their stabilities. (You might have
done this already in exercise 1.2; at least now you will be able to see where you
went wrong when you knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard ball bouncing between the
diagonal y = x and one of the hyperbola branches y = 1/x.

12.4 Cycle stability. Add to the pinball simulator of exercise 3.7 a routine
that evaluates the expanding eigenvalue for a given cycle.
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12.5 Newton-Raphson method. Implement the Newton-Raphson method
in 2-d and apply it to determination of pinball cycles.

12.6 Pinball cycles. Determine the stability and length of all fundamental
domain prime cycles of the binary symbol string lengths up to 5 (or longer) for
R : a = 6 3-disk pinball.

12.7 Cycle stability, helium. Add to the helium integrator of exercise 2.11
a routine that evaluates the expanding eigenvalue for a given cycle.

12.8 Colinear helium cycles. Determine the stability and length of all
fundamental domain prime cycles up to symbol sequence length 5 or longer for
collinear helium of fig. 23.5.

12.9 Evaluation of cycles by minimization*.  Given a symbol sequence, you
can construct a guess trajectory by taking a point on the boundary of each disk in the
sequence, and connecting them by straight lines. If this were a rubber band wrapped
through 3 rings, it would shrink into the physical trajectory, which minimizes the action
(in this case, the length) of the trajectory.

Write a program to find the periodic orbits for your billiard simulator. Use the least
action principle to extremize the length of the periodic orbit, and reproduce the periods
and stabilities of 3-disk cycles, table 12.3. After that check the accuracy of the computed
orbits by iterating them forward with your simulator. What is | ¢ () — z|?

12.10 Tracking cycles adiabatically*.  Once a cycle has been found, orbits for
different system parameters values may be obtained by varying slowly (adiabatically) the
parameters, and using the old orbit points as starting guesses in the Newton method.
Try this method out on the 3-disk system. It works well for R : a sufficiently large. For
smaller values, some orbits change rather quickly and require very small step sizes. In
addition, for ratios below R : a = 2.04821419... families of cycles are pruned, that is
some of the minimal length trajectories are blocked by intervening disks.
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12.11 Uniqueness of unstable cycles™**. Prove that there exists only one
3-disk prime cycle for a given finite admissible prime cycle symbol string. Hints: look
at the Poincaré section mappings; can you show that there is exponential contraction to
a unique periodic point with a given itinerary? FExercise 12.9 might be helpful in this
effort.

12.12 Find cycles of the Hénon map. Apply the method of sect. 12.4.1 to the
Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3, and compute all prime
cycles for at least n < 6. Estimate the topological entropy, either from the definition
(11.1), or as the zero of a truncated topological zeta function (11.20). Do your cycles
agree with the cycles listed in table 12.17

12.13 Inverse iteration method for a Hamiltonian repeller. For the
complete repeller case (all binary sequences are realized), the cycles are evaluated as
follows. According to sect. 3.3, the coordinates of a periodic orbit of length n, satisfy
the equation

2
Dyi

Tpit1 T Tpi—1=1—ax 1=1,...,mn, (12.29)

with the periodic boundary condition x, o = xp,. In the complete repeller case, the
Hénon map is a realization of the Smale horseshoe, and the symbolic dynamics has a
very simple description in terms of the binary alphabet € € {0,1}, €, = (14 5,,)/2,
where S),; are the signs of the corresponding cycle point coordinates, S, ; = 0, ,. We
start with a preassigned sign sequence S, 1,52, -.,Spn,, and a good initial guess for
the coordinates z7, ;. Using the inverse of the equation (12.29)

P T a

1—al .. —a .
! —Sp,i\/ pitl it n, (12.30)

we converge iteratively, at exponential rate, to the desired cycle points z, ;. Given the
cycle points, the cycle stabilities and periods are easily computed using (4.53). Verify
that the times and the stabilities of the short periodic orbits for the Hénon repeller (3.8)
at a = 6 are listed in table 12.4; in actual calculations all prime cycles up to topological
length n = 20 have been computed.

(G. Vattay)
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D A, D Tp.i

0 0.71516752438%x 10" | -0.6076252185107
1 -0.29528463259x 10! | 0.2742918851774
10 -0.98989794855x 10" | 0.3333333333333
100 -0.13190727397x10% | -0.2060113295833
110 0.55896964996x 102 | 0.5393446629166

1000 -0.10443010730x 10% | -0.8164965809277
1100 0.57799826989x10* | 0.0000000000000
1110 -0.10368832509x10% | 0.8164965809277
10000 | -0.76065343718x10% | -1.4260322065792
11000 0.44455240007x10* | -0.6066540777738
10100 0.77020248597x10% | 0.1513755016405
11100 | -0.71068835616x10% | 0.2484632276044
11010 | -0.58949885284x10% | 0.8706954728949
11110 0.39099424812x10% | 1.0954854155465
100000 | -0.54574527060x10° | -2.0341342556665
110000 | 0.32222060985x10° | -1.2152504370215
101000 | 0.51376165109x10% | -0.4506624359329
111000 | -0.47846146631x10* | -0.3660254037844
110100 | -0.63939998436x10% | 0.3333333333333
101100 | -0.63939998436x10* | 0.3333333333333
111100 | 0.39019387269x10% | 0.5485837703548
111010 | 0.10949094597x10* | 1.1514633582661
111110 | -0.10433841694x10% | 1.3660254037844

Table 12.4: All periodic orbits up to 6 bounces for the Hamiltonian Hénon mapping (12.29)
with a = 6. Listed are the cycle itinerary, its expanding eigenvalue A,, and its “center of
mass”. (The last one because we do not understand why the “center of mass” tends to be
a simple rational every so often.)
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Chapter 13

Cycle expansions

Recycle... It’s the Law!
Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (8.9) and dynamical
zeta functions (8.12) are really only a shorthand notation - the zeros of the in-
dividual factors are not the zeros of the zeta function, and convergence of such
objects is far from obvious. Now we shall give meaning to the dynamical zeta
functions and spectral determinants by expanding them as cycle expansions, se-
ries representations ordered by increasing topological cycle length, with products
in (8.9), (8.12) expanded as sums over pseudocycles, products of t,’s. The ze-
ros of correctly truncated cycle expansions yield the desired eigenvalues, and
the expectation values of observables are given by the cycle averaging formulas
obtained from the partial derivatives of dynamical zeta functions (or spectral
determinants).

13.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (8.12) evaluated? We start by computing
the lengths and stability eigenvalues of the shortest cycles. This always requires
numerical work, such as the Newton’s method searches for periodic solutions; we
shall assume that the numerics is under control, and that all short cycles up to
a given (topological) length have been found. Examples of the data required for
application of periodic orbit formulas are the lists of cycles given in tables 12.3
and 12.4. It is important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cycles longer than the short-
est omitted does not improve the accuracy. (More precisely, improves it rather
slowly).

293



294 CHAPTER 13. CYCLE EXPANSIONS

Expand the dynamical zeta function (8.12) as a formal power series,

=TI -t)=1= 3 (~1"ptpy...tp, (13.1)

{p1p2.-.pr}

where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. As we shall frequently use such sums,
let us denote by t. = (—1)¥*1¢, ¢, ...t, an element of the set of all distinct
products of the prime cycle weights t,. The formal power series (13.1) is now
compactly written as

1/¢=1-3tx. (13.2)

For k > 1, t, are weights of pseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequence pips...pi along segments pi,
p2,..., p. > denotes the restricted sum, for which any given prime cycle p
contributes at most once to a given pseudocycle weight .

The pseudocycle weight

1
te = (—1)’““‘1—‘A |€BA7T_ST"ZTL7T . (13.3)
iy

depends on the pseudocycle topological length, integrated observable, period, and
stability

Ng = Np, + ...+ N, Tr=Tp +...+Tp,
A = Ap +...+ A4, Ar=Ap Ay, - A, (13.4)

13.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a complete
binary symbolic dynamics. In this case the Euler product (8.12) is given by

1/( = (1 — to)(l — tl)(l — t01)(1 — t001>(1 — ton)
(1 = tooo1)(1 — too11)(1 — to111)(1 — toooor) (1 — tooo11)
(1 —too101) (1 — too111)(1 — toro11) (1 — tor111) - - -
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(see table 10.1), and the first few terms of the expansion (13.2) ordered by in-
creasing total pseudocycle length are:

1/¢ = 1—ty—ti—tor —toor — to11 — tooo1r — toor1 — toiir — - - -
+tot1 + totor + to1t1 + totoo1r + tofor1 + too1t1 + tor1ty
—toto1t1 — ...

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant funda-
mental contributions ¢y and the decreasing curvature corrections ¢,. For the
binary case this regrouping is given by

1/¢ = 1—tog—t1— [(tor — tito)] — [(too1 — toito) + (to11 — toit1)]
—[(too01 — totoo1) + (to111 — to1it1)
+(too11 — tooit1 — totoir + totort1)] — - .-

= 1= tp— én. (13.5)
f n

All terms in this expansion up to length n, = 6 are given in table 13.1. We refer
to such regrouped series as curvature expansions.

Such separation into “fundamental” and “curvature” parts of cycle expan-
sions is possible only for dynamical systems whose symbolic dynamics has finite
grammar. The fundamental cycles tg, t; have no shorter approximants; they
are the “building blocks” of the dynamics in the sense that all longer orbits can
be approximately pieced together from them. The fundamental part of a cycle
expansion is given by the sum of the products of all non-intersecting loops of
the associated Markov graph (see sect. 11.3 and sect. 13.3). The terms grouped
in brackets are the curvature corrections; the terms grouped in parenthesis are
combinations of longer cycles and corresponding sequences of “shadowing” pseu-
docycles. If all orbits are weighted equally (¢, = 2"), such combinations cancel
exactly, and the dynamical zeta function reduces to the topological polynomial
(11.20). If the flow is continuous and smooth, orbits of similar symbolic dynam-
ics will traverse the same neighborhoods and will have similar weights, and the
weights in such combinations will almost cancel. The utility of cycle expansions
of dynamical zeta functions and spectral determinants, lies precisely in this or-
ganization into nearly cancelling combinations: cycle expansions are dominated
by short cycles, with long cycles giving exponentially decaying corrections.

In the case that there is no finite grammar symbolic dynamics to help organize
the cycles, the best thing to use is a stability cutoff which we shall discuss in
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—t10 + t1to

—t100 + tioto

—t101 + t10t1

—£1000 =+ t100t0

—t1001 + t100t1 + t101to — t1tioto

—t1011 + t101t1

—t10000  + t1000t0

—t10001  + fiooifo  + fioooft  — tofiooti

—t10010  + t1o0t10

—t10101  + t101t10

—t10011  + tio11to  + tioo1t1  — totio1t1

—t10111  + tio11t1

—t100000 + t10000t0

—t100001  + tio001to + tio000t1  — totiooot1

—t100010 + ti0010to  + tioootio  — totiootio

—t100011  + fioo11fo  + fioo01ti  — tofiooitl

—t100101  —t100110 + t10010t1  + t10110t0
+ t10t1001  + tioot101  — fotioti01 — t1itiof100

—t101110  + ti0110t1  + tio11f10  — f1tio1tio

—t100111  + tioo11t1  + tio111t0  — totio11t1

~t101111  + t10111t1

Table 13.1: The binary curvature expansion (13.5) up to length 6, listed in such way that
the sum of terms along the pth horizontal line is the curvature ¢, associated with a prime
cycle p, or a combination of prime cycles such as the ¢199101 + f100110 pair.

sect. 13.4. The idea is to truncate the cycle expansion by including only the
pseudocycles such that [Ap, -+ Ap, | < Amax, with the cutoff Apayx larger than
the most unstable A, in the data set.

13.1.2 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by first
computing the weights t,, = t,(3, s) of all prime cycles p of topological length n,, <
N for given fixed 5 and s. Denote by subscript (¢) the ith prime cycle computed,
ordered by the topological length n) < n(4q). The dynamical zeta function
1/¢n truncated to the n, < N cycles is computed recursively, by multiplying

1/¢u) = 1/Ca—1)(1 — (32" @),
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and truncating the expansion at each step to a finite polynomial in 2", n < N.
The result is the Nth order polynomial approximation

N

iy =1-) én2". (13.6)

n=1

In other words, a cycle expansion is a Taylor expansion in the dummy variable z
raised to the topological cycle length. If both the number of cycles and their in-
dividual weights grow not faster than exponentially with the cycle length, and we
multiply the weight of each cycle p by a factor 2", the cycle expansion converges
for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of (13.6) as
function of z yields the leading eigenvalue of the appropriate evolution operator.
For continuous time flows, z is a dummy variable that we set to z = 1, and the
leading eigenvalue of the evolution operator is given by the leading zero of (13.6)
as function of s.

13.1.3 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight, det (1 —Jp,p,) #
det (1 —Jp,)det (1 —J,,) , the cycle expansions for the spectral determinant
(8.9) are somewhat less transparent than is the case for the dynamical zeta func-
tions.

We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (7.9) truncated to all prime cycles p and
their repeats such that n,r < N:

nnr<N
2L 2L Q27 BAG=sTa)r
tr = tr— 2 + n(z) Z PO
1—2L]1, 1—2z2L], r
0 (i-1) = m(i-ag,)|
zL N
tr T ’N = 321 Cp2", Cp=trL". (13.7)

This is done numerically: the periodic orbit data set consists of the list of the
cycle periods T}, the cycle stability eigenvalues A1, Ap2,..., A, g, and the cycle
averages of the observable A, for all prime cycles p such that n, < N. The
coefficient of 2" is then evaluated numerically for the given (3,s) parameter
values. Now that we have an expansion for the trace formula (7.8) as a power
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series, we compute the Nth order approximation to the spectral determinant
(8.3)

N
det(1—-2L)|y=1—- Z Qnz", Qn = Qn(L) = nth cumulant  (13.8)
n=1

as follows. The logarithmic derivative relation (8.4) yields

zL d
(tr - zﬁ) det (1 —2L£) = —zadet (1-2L)

(01Z+CQZ2+-~~)(1—le—QQZ’Q—-”) = Q12+2Q222—|—3Q3Z3-~-

so the nth order term of the spectral determinant cycle (or in this case, the cu-
mulant) expansion is given recursively by the trace formula expansion coefficients

Qn =1 (Co = Cra@i — - CiQu ) (13.9)

Given the trace formula (13.7) truncated to z"¥ we now also have the spectral

determinant truncated to z%V.

The same method can also be used to compute the dynamical zeta function
cycle expansion (13.6), by replacing [] (1 — A&)j) in (13.7) by the product of

expanding eigenvalues Ay = [], A, as in sect. 8.3.

The calculation of the leading eigenvalue of a given evolution operator is now
straightforward. After the prime cycles and the pseudocycles have been grouped
into subsets of equal topological length, the dummy variable can be set equal
to z = 1. With z = 1, expansion (13.8) is the cycle expansion for (8.6), the
spectral determinant det (s —.4) . We vary s in cycle weights, and determine the
eigenvalue s, by finding s = s, for which (13.8) vanishes. The convergence of
a leading eigenvalue for a nice hyperbolic system is illustrated by the listing of
pinball escape rate v estimates computed from truncations of (13.5) and (13.8)
to different maximal cycle lengths, table 13.2.

The pleasant surprise is that the coefficients in these expansions can be proven
to fall off exponentially or even faster @ fast track: , due to

sect. 9, p. 169
analyticity of det (s —.A) or 1/((s) for s values well beyond those for which the

corresponding trace formula diverges.
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=

R:a det (s — A)

1/¢(s)

1/¢(s)3-disk

0.39
0.4105
0.410338
0.4103384074
0.4103384077696
0.410338407769346482

0.407
0.41028
0.410336
0.4103383
0.4103384
0.4103383

0.435
0.4049
0.40945
0.410367
0.410338

299

0.4103384077693464892
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192

0.41

0.72

0.675

0.67797

0.677921

0.6779227
0.6779226894
0.6779226896002
0.677922689599532
0.67792268959953606

0.4103396

— =
QOO TDHDU R WN OO Uk W~

Table 13.2: 3-disk repeller escape rates computed from the cycle expansions of the spectral
determinant (8.6) and the dynamical zeta function (8.12), as function of the maximal cycle
length N. The first column indicates the disk-disk center separation to disk radius ratio R:a,
the second column gives the maximal cycle length used, and the third the estimate of the
classical escape rate from the fundamental domain spectral determinant cycle expansion. As
for larger disk-disk separations the dynamics is more uniform, the convergence is better for
R:a = 6 than for R:a = 3. For comparison, the fourth column lists a few estimates from
from the fundamental domain dynamical zeta function cycle expansion (13.5), and the fifth
from the full 3-disk cycle expansion (13.31). The convergence of the fundamental domain
dynamical zeta function is significantly slower than the convergence of the corresponding
spectral determinant, and the full (unfactorized) 3-disk dynamical zeta function has still
poorer convergence. (P.E. Rosenqvist.)
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Figure 13.1: Examples of the complex s plane scans: contour plots of the logarithm
of the absolute values of (a) 1/((s), (b) spectral determinant det (s — .A) for the 3-disk
system, separation a : R = 6, A; subspace are evaluated numerically. The eigenvalues of
the evolution operator L are given by the centers of elliptic neighborhoods of the rapidly
narrowing rings. While the dynamical zeta function is analytic on a strip Ims > —1, the
spectral determinant is entire and reveals further families of zeros. (P.E. Rosenqvist)

13.1.4 Newton algorithm for determination of the evolution oper-
ator eigenvalues

‘ﬂ The cycle expansions of spectral determinants yield the eigenvalues of
the evolution operator beyond the leading one. A convenient way to search for
these is by plotting either the absolute magnitude In|det (1 — £)| or the phase
of spectral determinants and dynamical zeta functions as functions of complex s.
The eye is guided to the zeros of spectral determinants and dynamical zeta func-
tions by means of complex s plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different colors; zeros
emerge as centers of elliptic neighborhoods of rapidly changing colors. Detailed
scans of the whole area of the complex s plane under investigation and searches
for the zeros of spectral determinants, fig. 13.1, reveal complicated patterns of
resonances even for something so simple as the 3-disk game of pinball. With
a good starting guess (such as a location of a zero suggested by the complex s
scan of fig. 13.1), a zero 1/{(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (12.3)

-1
Sn+1 = Sp — <C(sn)%§_1(sn)> = Sp — 1/<CT<S¢R) . (13.10)

The derivative of 1/((s) required for the Newton iteration is given by the cycle
expansion (13.18) that we need to evaluate anyhow, as <T>C enters our cycle
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BA

Figure 13.2: The eigenvalue condition is satisfied

F(3.5(3))=0 line

on the curve F' = 0 the (3, s) plane. The expecta- d \
tion value of the observable (6.12) is given by the QS /1/\\.
slope of the curve. d[_)) S

averaging formulas.

13.2 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far - the
level sum (14.18), the dynamical zeta function (13.2), the spectral determinant
(13.8):

(n)
1= Y ti, ti=ti(8s(8) = ‘i’eﬁ*“i—s(ﬁm (13.11)
0 = 1= tas  tn=talz.5.5(9)) (13.12)
0 = 1= Qn, Qn=0QuBs(9), (13.13)
n=1

is an implicit equation for the eigenvalue s = s() of form F(3,s(f3)) = 0. The
eigenvalue s = s(f3) as a function of 3 is sketched in fig. 13.2; the eigenvalue
condition is satisfied on the curve F' = 0. The cycle averaging formulas for
the slope and the curvature of s(f) are obtained by taking derivatives of the
eigenvalue condition. Evaluated along F' = 0, the first derivative leads to

0 = LF(@Es(8)

dg
oOF ds OF ds OF OF

- &L e 0 @ _ 9 13.14
95 4B bs|_yy 4B 05’ 0s’ (13.14)
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and the second derivative of F(f3,s(3)) = 0 yields

2 2p 2 2 92F ja
s _ _|O°F  ,ds O ds\"OF) OF (13.15)
dp? 032 dB 930s dg) 9s2 |’ s
Denoting by
OF OF
Ar = - o3 ’ (Dr= 57
9B |5,5=s(5) 95 | 5,5=s(p)
0*F
(A=A = 37 (13.16)
B,s=s5(3)

respectively the mean cycle expectation value of A and the mean cycle period
computed from the F(3,s(f)) = 0 condition, we obtain the cycle averaging for-
mulas for the expectation value of the observable (6.12) and its variance

((a=(a)?) = = ((A=(A)*),. (13.17)

These formulas are the central result of the periodic orbit theory. As we shall
see below, for each choice of the eigenvalue condition function F(3,s) in (14.18),
(13.2) and (13.8), the above quantities have explicit cycle expansions.

13.2.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (13.12), the cycle averaging formulas
(13.14), (13.17) require evaluation of the derivatives of dynamical zeta function
at a given eigenvalue. Substituting the cycle expansion (13.2) for dynamical zeta
function we obtain

8 1
01 01 /
<T>g = %E Z Ixt <n>g = —255 = Z Nrtr

where the subscript in (- ‘>< stands for the dynamical zeta function average
over prime cycles, A, T, and n, are evaluated on pseudocycles (13.4), and
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pseudocycle weights t, = t.(z, 3, s(83)) are evaluated at the eigenvalue s(3). In
most applications, s(3) is typically the leading eigenvalue.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,
S0

’ Ap +Ap, -+ A
(A)e =D (—1)rtt= 0 = ‘ B, (13.19)
p1 Pk

™

and similarly for <T>C’ <n>< For example, for the complete binary symbolic
dynamics the mean cycle period (T) ¢ is given by

To Ty ( Ton To+ T1>
- TR -
De = a1 ™ \Bod ~ Thomd
Too1 To1 + T0> ( Th11 To1 + T1>
- — +. 13.20
<\A001! |Ao1Ao| |[Ao11]  |Ao1Ai] ( )

Note that the cycle expansions for averages are grouped into the same shadowing
combinations as the dynamical zeta function cycle expansion (13.5), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable (a)
follow by substitution into (13.17). Assuming zero mean drift (a) = 0, the cycle
expansion for the variance ((A — (4))?) ¢ Is given by

A A oo A )2
<AQ>C — Z,(_l)k—H( P1 + D2 + pk) _ (13'21)
[Apy -+ Apy |

13.2.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple struc-
ture, with the shadowing apparent already by a term-by-term inspection of ta-
ble 13.2. For “nice” hyperbolic systems the shadowing ensures exponential con-
vergence of the dynamical zeta function cycle expansions. This, however, is not
the best achievable convergence. As has been explained in chapter 9, for such
systems the spectral determinant constructed from the same cycle data base is
entire, and its cycle expansion converges faster than exponentially. Hence in prac-
tice, the best convergence is attained by the spectral determinant cycle expansion
(13.13) and its derivatives.

The 0/0s, 0/0( derivatives are in this case computed recursively, by taking
derivatives of the spectral determinant cycle expansion contributions (13.9) and
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(13.7). The cycle averaging formulas formulas are exact, and highly convergent
for nice hyperbolic dynamical systems. We shall illustrate the utility of such cycle
expansions in chapter ?77.

13.2.3 Continuous vs. discrete mean return time

The mean cycle period (7). fixes the normalization of the unit of time; it can
be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value (a) in terms of
continuous time, and would like to also have the corresponding average (a)iqcr
measured in discrete time given by the number of reflections off billiard walls,
the two averages are related by

(@)gser = (@) (T)¢ / {n) (13.22)

where (n) ¢ 18 the average of the number of bounces n, along the cycle p.

13.3 Cycle expansions for finite alphabets

J A finite Markov graph like the one given in fig. 10.15(d) is a compact
encoding of the transition or the Markov matrix for a given subshift. It is a
sparse matrix, and the associated determinant (11.16) can be written down by
inspection: it is the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1 —T) =1—to — too11 — tooor — tooo11 + totoor1 + too11tooor (13.23)

The simplest application of this determinant is to the evaluation of the topological
entropy; if we set t, = 2”7, where n,, is the length of the p-cycle, the determinant
reduces to the topological polynomial (11.17).

The determinant (13.23) is exact for the finite graph fig. 10.15(e), as well as
for the associated transfer operator of sect. 5.2.1. For the associated (infinite
dimensional) evolution operator, it is the beginning of the cycle expansion of the
corresponding dynamical zeta function:

1/¢ = 1—ty—too11 — tooo1 + toooitooit
—(tooo11 — totoo11 + - - - curvatures). .. (13.24)
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The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (13.5); they
are not shadowed by any combinations of shorter cycles, and are the basic build-
ing blocks of the dynamics generated by iterating the pruning rules (10.28). All
other cycles appear together with their shadows (for example, too011 —totoo11 com-
bination is of that type) and yield exponentially small corrections for hyperbolic
systems.

For the cycle counting purposes both t,, and the pseudocycle combination
tars = talp in (13.2) have the same weight 22t 5o all curvature combinations
tap — tqly vanish exactly, and the topological polynomial (11.20) offers a quick
way of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polynomials,
we are assured that there are just a few fundamental cycles and that all long cycles
can be grouped into curvature combinations. For example, the fundamental cycles
in exercise 10.4 are the three 2-cycles which bounce back and forth between
two disks and the two 3-cycles which visit every disk. It is only after these
fundamental cycles have been included that a cycle expansion is expected to start
converging smoothly, that is, only for n larger than the lengths of the fundamental
cycles are the curvatures ¢,, a measure of the deviations between long orbits and
their short cycle approximants, expected to fall off rapidly with n.

13.4 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

John Wilkins
(C.P. Dettmann and P. Cvitanovi¢)

Most dynamical systems of interest have no finite grammar, so at any order in z
a cycle expansion may contain unmatched terms which do not fit neatly into the
almost cancelling curvature corrections. Similarly, for intermittent systems that
we shall discuss in chapter 16, curvature corrections are in general not small, so
again the cycle expansions may converge slowly. For such systems schemes which
collect the pseudocycle terms according to some criterion other than the topology
of the flow may converge more quickly than expansions based on the topological
length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing at least approximately. If
a long cycle is shadowed by two or more shorter cycles and the flow is smooth,
the period and the action will be additive in sense that the period of the longer
cycle is approximately the sum of the shorter cycle periods. Similarly, stability
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is multiplicative, so shadowing is approximately preserved by including all terms
with pseudocycle stability

[Apy - Apy| < Amax (13.25)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately respect
shadowing are truncations by the pseudocycle period (or action) and the stability
ordering that we shall discuss here. In these schemes a dynamical zeta function
or a spectral determinant is expanded keeping all terms for which the period,
action or stability for a combination of cycles (pseudocycle) is less than a given
cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of inter-
mittency.

13.4.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the phase space generates
the “optimal” symbolic dynamics. Stability ordering does not require under-
standing dynamics in such detail: if you can find the cycles, you can use stability
ordered cycle expansions. Stability truncation is thus easier to implement for
a generic dynamical system than the curvature expansions (13.5) which rely on
finite subshift approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for finding cycles preferentially finds
the least unstable cycles, regardless of their topological length. Another practical
advantage of the method (in contrast to the Newton method searches) is that it
only finds cycles in a given connected ergodic component of phase space, even if
isolated cycles or other ergodic regions exist elsewhere in the phase space.

Why should stability ordered cycle expansion of a dynamical zeta function
converge better than the rude trace formula (14.9)?7 The argument has essen-
tially already been laid out in sect. 11.7: in truncations that respect shadowing
most of the pseudocycles appear in shadowning combinations and nearly cancel,
and only the relatively small subset affected by the longer and longer pruning
rules appears not shadowed. So the error is typically of the order of 1/A, smaller
by factor T than the trace formula (14.9) error, where h is the entropy and T
typical cycle length for cycles of stability A.
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13.4.2 Smoothing

J‘ The breaking of exact shadowing cancellations deserves further comment.
Partial shadowing which may be present can be (partially) restored by smooth-
ing the stability ordered cycle expansions by replacing the 1/A weigth for each
term with pseudocycle stability A = Ap, --- Ay, by f(A)/A. Here, f(A) is a
monotonically decreasing function from f(0) =1 to f(Amax) = 0. No smoothing
corresponds to a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudocycles
of stability A separated by AA, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of the resulting term is of
order 1/A — 1/(A + AA) =~ AA/A%. With smoothing there is an extra term of
the form f/(A)AA/A, which we want to minimise. A reasonable guess might be
to keep f/(A)/A constant and as small as possible, that is

&) =1- (Aﬁ%)Q

The results of a stability ordered expansion should always be tested for ro-
bustness by varying the cutoff. If this introduces significant variations, smoothing
is probably necessary.

13.4.3 Stability ordering for intermittent flows

é Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion. This situation is best
illustrated by intermittent maps that we shall study in detail in chapter 1, the
simplest of which is the Farey map

z/(1—x 0<x<1/2 L
f(x):{(l/(—x)/az 1/§§§§/1 R, (13.26)

a map which will reappear in chapter 19 in the the study of circle maps.
For this map the symbolic dynamics is of complete binary type, so lack of

shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed point x; = 0, for which the stability
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equals A; = 1. This fixed point does not participate directly in the dynamics
and is omitted from cycle expansions. Its presence is felt in the stabilities of
neighboring cycles with n consecutive repeats of the symbol L’s whose stability
falls of only as A ~ n?, in contrast to the most unstable cycles with n consecutive
R’s which are exponentially unstable, [Argn| ~ [(v/5 +1)/2]?".

The symbolic dynamics is of complete binary type, so a quick count in the
style of sect. 11.5.2 leads to a total of 74,248,450 prime cycles of length 30 or
less, not including the marginal point x; = 0. Evaluating a cycle expansion to
this order would be no mean computational feat. However, the least unstable
cycle omitted has stability of roughly Agzso ~ 302 = 900, and so amounts to a
0.1% correction. The situation may be much worse than this estimate suggests,
because the next, RL3! cycle contributes a similar amount, and could easily
reinforce the error. Adding up all such omitted terms, we arrive at an estimated
error of about 3%, for a cycle-length truncated cycle expansion based on more
than 10° pseudocycle terms! On the other hand, truncating by stability at say
Amax = 3000, only 409 prime cycles suffice to attain the same accuracy of about
3% error (see fig. 13.3).

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equal sy = 0, so 1/{(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given cycle
expansion. The errors of different truncation schemes are indicated in fig. 13.3.
We see that topological length truncation schemes are hopelessly bad in this case;
stability length truncations are somewhat better, but still rather bad. As we shall
show in sect. 77, in simple cases like this one, where intermittency is caused by a
single marginal fixed point, the convergence can be improved by going to infinite
alphabets.

13.5 Dirichlet series

J‘ A Dirichlet series is defined as
o
f(s) = aje® (13.27)
j=1

where s, a; are complex numbers, and {);} is a monotonically increasing series
of real numbers \; < Ay < -+ < A\; < ---. A classical example of a Dirichlet
series is the Riemann zeta function for which a; = 1, A\; = Inj. In the present
context, formal series over individual pseudocycles such as (13.2) ordered by the
increasing pseudocycle periods are often Dirichlet series. For example, for the
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10 100 1000 10000
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Figure 13.3: Comparison of cycle expansion truncation schemes for the Farey map (13.26);
the deviation of the truncated cycles expansion for |1/{x(0)| from the exact flow conserva-
tion value 1/¢(0) = 0 is a measure of the accuracy of the truncation. The jagged line is
logarithm of the stability ordering truncation error; the smooth line is smoothed according
to sect. 13.4.2; the diamonds indicate the error due the topological length truncation, with
the maximal cycle length N shown. They are placed along the stability cutoff axis at points
determined by the condition that the total number of cycles is the same for both truncation

schemes.

pseudocycle weight (13.3), the Dirichlet series is obtained by ordering pseudocy-
cles by increasing periods Ay =T}, + 1}, + ...+ T}, , with the coefficients

65'(‘4?1 +AP2 +"'+Apk) d
T
[ApyAps - - Apy |

Qr =

where d; is a degeneracy factor, in the case that d, pseudocycles have the same
weight.

If the series ) |a;| diverges, the Dirichlet series is absolutely convergent for
Re s > 0, and conditionally convergent for Re s > 0., where o, is the abscissa of
absolute convergence

N
. 1
oa = Jim_sup 1nZ; la], (13.28)
]:

and o, is the abscissa of conditional convergence

N
, 1
ac:]\}gnoosupmln ;aj . (13.29)
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310 CHAPTER 13. CYCLE EXPANSIONS

We shall encounter another example of a Dirichlet series in the semiclas-
sical quantization chapter 7?7, where the inverse Planck constant is a complex
variable s = i/h, Ax = Sp, + Sp, + ... + Sp, is the pseudocycle action, and
ar = 1/y/|Ap, Ap, - .. Ap,| (times possible degeneracy and topological phase fac-
tors). As the action is in general not a linear function of energy (except for
billiards and for scaling potentials, where a variable s can be extracted from S,),
semiclassical cycle expansions are Dirichlet series in variable s = i/h but not in
E, the complex energy variable.

Commentary

Remark 13.1 Pseudocycle expansions. Bowen’s introduction of shad-

owing e-pseudoorbits [13] was a significant contribution to Smale’s theory.
Expression “pseudoorbits” seems to have been introduced in the Parry and
Pollicott’s 1983 paper [5]. Following them M. Berry [3] had used the ex-
pression “pseudoorbits” in his 1986 paper on Riemann zeta and quantum
chaology. Cycle and curvature expansions of dynamical zeta functions and
spectral determinants were introduced in refs. [9, 1]. Some literature [?]
refers to the pseudoorbits as “composite orbits”, and to the cycle expan-
sions as “Dirichlet series” (see also remark 13.6 and sect. 13.5).

Remark 13.2 Cumulant expansion. To statistical mechanician the cur-

vature expansions are very reminiscent of cumulant expansions. Indeed,
(13.9) is the standard Plemelj-Smithies cumulant formula (J.25) for the Fred-
holm determinant, discussed in more detail in appendix J.

Remark 13.3 Exponential growth of the number of cycles. Going from
N,, =& N™ periodic points of length n to M, prime cycles reduces the num-

ber of computations from N,, to M,, &~ N"~!/n. Use of discrete symmetries
(chapter 17) reduces the number of nth level terms by another factor. While
the formulation of the theory from the trace (7.24) to the cycle expansion
(13.5) thus does not eliminate the exponential growth in the number of
cycles, in practice only the shortest cycles are used, and for them the com-
putational labor saving can be significant.

Remark 13.4 Shadowing cycle-by-cycle. A glance at the low order

curvatures in the table 13.1 leads to a temptation of associating curvatures
to individual cycles, such as ¢yoo1 = tooo1 —totoo1. Such combinations tend to
be numerically small (see for example ref. [2], table 1). However, splitting
¢, into individual cycle curvatures is not possible in general [?]; the first
example of such ambiguity in the binary cycle expansion is given by the
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13.5. DIRICHLET SERIES 311

too1011, to10011 0 < 1 symmetric pair of 6-cycles; the counterterm tgp1tp11 in
table 13.1 is shared by the two cycles.

Remark 13.5 Stability ordering. The stability ordering was introduced

by Dahlqvist and Russberg [11] in a study of chaotic dynamics for the
(x2y2)1/ ¢ potential. The presentation here runs along the lines of Dettmann
and Morriss [12] for the Lorentz gas which is hyperbolic but the symbolic
dynamics is highly pruned, and Dettmann and Cvitanovié [13] for a fam-
ily of intermittent maps. In the applications discussed in the above papers,
the stability ordering yields a considerable improvement over the topological
length ordering.

Remark 13.6 Are cycle expansions Dirichlet series? Even though some

literature [?] refers to cycle expansions as “Dirichlet series”, they are not
Dirichlet series. Cycle expansions collect contributions of individual cycles
into groups that correspond to the coefficients in cumulant expansions of
spectral determinants, and the convergence of cycle expansions is controlled
by general properties of spectral determinants. Dirichlet series order cycles
by their periods or actions, and are only conditionally convergent in regions
of interest. The abscissa of absolute convergence is in this context called the
“entropy barrier”; contrary to the frequently voiced anxieties, this number
does not necessarily have much to do with the actual convergence of the
theory.

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (8.12), (22.13) expanded as
sums over pseudocycles, products of the prime cycle weigths t,.

If a flow is hyperbolic and has a topology of a Smale horseshoe, the associated
zeta functions have nice analytic structure: the dynamical zeta functions are
holomorphic, the spectral determinants are entire, and the spectrum of the
evolution operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no “abscissa of absolute
convergence” and no “entropy barier”, the exponential proliferation of cycles is
no problem, spectral determinants are entire and converge everywhere, and the
topology dictates the choice of cycles to be used in cycle expansion truncations.

The basic observation is that the motion in dynamical systems of few degrees
of freedom is in this case organized around a few fundamental cycles, with the
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312 CHAPTER 13.

cycle expansion of the Euler product
YC=1=2 tr=3 én
f n

regrouped into dominant fundamental contributions t; and decreasing curvature
corrections ¢,. The fundamental cycles ¢y have no shorter approximants; they
are the “building blocks” of the dynamics in the sense that all longer orbits can
be approximately pieced together from them. A typical curvature contribution
to éy is a difference of a long cycle {ab} minus its shadowing approximation by
shorter cycles {a} and {b}:

tab - tatb = tab(l - tatb/tab)

The orbits that follow the same symbolic dynamics, such as {ab} and a “pseu-
docycle” {a}{b}, lie close to each other, have similar weights, and for longer and
longer orbits the curvature corrections fall off rapidly. Indeed, for systems that
satisfy the “axiom A” requirements, such as the open disks billiards, curvature
expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle periods, sta-
bilities and integrated observable computed, the cycle averaging formulas

(@) = <A></<T>g
01 / 01 /
<A>C - _%Z = Z Aty <T'>C = %Z = Z Trtr

yield the expectation value (the chaotic, ergodic average over the non—wandering
set) of the observable a(x).
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Exercises

13.1 Cycle expansions. Write programs that implement binary symbolic
dynamics cycle expansions for (a) dynamical zeta functions, (b) spectral deter-
minants. Combined with the cycles computed for a 2-branch repeller or a 3-disk
system they will be useful in problem that follow.

13.2 Escape rate for a 1-d repeller. (Continuation of exercise 8.1 - easy,
but long)
Consider again the quadratic map (8.31)

f(@) = Az(1 - )

on the unit interval, for definitivness take either A = 9/2 or A = 6. Describing
the itinerary of any trajectory by the binary alphabet {0,1} (’0’ if the iterate is
in the first half of the interval and 1’ if is in the second half), we have a repeller
with a complete binary symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed points 0 and 1, together
with their stabilities.

(b) Sketch the two branches of f~!. Determine all the prime cycles up to
topological length 4 using your pocket calculator and backwards iteration
of f (see sect. 12.1.1).

(c) Determine the leading zero of the zeta function (8.12) using the weigths
t, = 27 /|A,| where A, is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of the repeller is 0.361509. .. using
the spectral determinant, with the same cycle weight. If you have taken
A = 6, the escape rate is in 0.83149298..., as shown in solution 13.2.
Compare the coeflicients of the spectral determinant and the zeta function
cycle expansions. Which expansion converges faster?

(Per Rosenqvist)
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13.3 Escape rate for the Ulam map. Check that the escape rate for the Ulam
map, A =4 in (8.31)

f(2) = dx(1 — ),

equals zero. You might note that the convergence as function of the truncation cycle
length is slow. Try to fix that by treating the Ag = 4 cycle separately.

13.4 Pinball escape rate, semi-analytical. Estimate the 3-disk pinball
escape rate for R : a = 6 by substituting analytical cycle stabilities and peri-
ods (exercise 4.4 and exercise 4.5) into the appropriate binary cycle expansion.
Compare with the numerical estimate exercise 8.11

13.5 Pinball escape rate, from numerical cycles. Compute the escape
rate for R : a = 6 3-disk pinball by substituting list of numerically computed
cycle stabilities of exercise 12.6 into the binary cycle expansion.

13.6 Pinball resonances, in the complex plane. Plot the logarithm of the
absolute value of the dynamical zeta function and/or the spectral determinant cycle
expansion (13.5) as contour plots in the complex s plane. Do you find zeros other than
the one corresponding to the complex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

13.7 Counting the 3-disk pinball counterterms. Verify that the number of
terms in the 3-disk pinball curvature expansion (13.30) is given by

1—32% — 226 5 246+ 122 +222)
1+t ST TR 13,2 4958
[Ta+t) 1—3:2_9.8 O AT T o

p
= 143224223+ 62 +122° + 2025 + 4827 + 8428 + 1842° + . ..

This means that, for example, c¢g has a total of 20 terms, in agreement with the explicit
3-disk cycle expansion (13.31).
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316 CHAPTER 13.

13.8 3—disk unfactorized zeta cycle expansions. Check that the curvature
expansion (13.2) for the 3-disk pinball, assuming no symmetries between disks, is given
by

1/¢ = (1= 2%12)(1 — 2%t13) (1 — 2%t23) (1 — 23t123) (1 — 23t132)
(1 — 2*1213) (1 — 2*t1232) (1 — 2*t1323) (1 — 2%¢121023) - - -
= 1— 2%ty — 2Ptay — 2%ty — 2t103 — 2t1se
—2*(t1213 — tiot1s) + (tr2s2 — tiztos) + (t1323 — tistes)]
—2°[(t12123 — taotios) + -] — - (13.30)

The symmetrically arranged 3-disk pinball cycle expansion of the Euler product (13.2)
(see table 11.4 and fig. 17.2) is given by:

1/¢ = (1= 2%12)3(1 — 23t123)%(1 — 2Mt1213)3
(1= 2%t12125)%(1 — 2%121213)° (1 — 2%121323)° . ..
= 1-32%t15 — 223 t103 — 32% (t1213 — 135) — 62° (t12123 — t12t123)
—2% (6121213 + 3t121323 + ti — Vtinti013 — ti93)
—627 (t1212123 + t1212313 + t1213123 + Ligt123 — 3tiat12123 — t123t1213)
—32% (212121213 + t12121313 + 212121323 + 2t12123123
+ 219193213 + t12132123 + 3tiot1213 + tiatiag
— 6tiat121213 — 3tiatio1323 — dti23ti2103 — tiagg) — - (13.31)

Remark 13.7 Unsymmetrized cycle expansions. The above 3-disk cycle
expansions might be useful for cross-checking purposes, but, as we shall see
in chapter 17, they are not recommended for actual computations, as the
factorized zeta functions yield much better convergence.

13.9 4-disk unfactorized dynamical zeta function cycle expansions For
the symmetriclly arranged 4-disk pinball the symmetry group is Cy,, of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see table 11.2):

]./C = (]. — Z2t12)4(1 — 22t13)2(1 — Z3t123)8(1 — Z4t1213)8(1 — Z4t1214)4
(1 — 2%1934)2(1 — 2*t1243)* (1 — 2°12123) (1 — 2°t12124)8 (1 — 2°t12134)°
(1 — 2%12143)% (1 — 2°t19313)3(1 — 2°t10413)% - - - (13.32)
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and the cycle expansion is given by

1/¢ = 1—2*(4tiz +2t13) — 8% thas
—2*(8t12013 + 4t1214 + 2t1034 + dt1243 — 615 — 55 — 8t12t13)
—82°(t12123 + t12124 + t12134 + t12143 + t12313 + ti2a13 — 4t12t123 — 2t13t123)
—425(2 85 + Sy + 13, + 313, t13 + tiatls — 8tintia1s — dtiationg

—2t19t1034 — 4t12t1243 — 4T13t1213 — 211381214 — t13T1234
—2t13t1943 — Ttigs) — - - (13.33)

where in the coefficient to z® the abbreviations Sg and S stand for the sums over the
weights of the 12 orbits with multiplicity 8 and the 5 orbits of multiplicity 4, respectively;
the orbits are listed in table 11.4.

13.10 Tail resummations. A simple illustration of such tail resummation is the
¢ function for the Ulam map (12.28) for which the cycle structure is exceptionally simple:
the eigenvalue of the o = 0 fixed point is 4, while the eigenvalue of any other n-cycle is
+2". Typical cycle weights used in thermodynamic averaging are to =47z, t1 =t =27z,
t, = t" for p # 0. The simplicity of the cycle eigenvalues enables us to evaluate the ¢
function by a simple trick: we note that if the value of any n-cycle eigenvalue were ",
(8.18) would yield 1/¢ = 1 — 2t. There is only one cycle, the z( fixed point, that has
a different weight (1 — ¢), so we factor it out, multiply the rest by (1 —¢)/(1 —¢), and
obtain a rational ¢ function

(I=2t)(1—to)

= (13.34)

1/¢(2) =

Consider how we would have detected the pole at z = 1/t without the above trick.
As the 0 fixed point is isolated in its stability, we would have kept the factor (1 —tg) in
(13.5) unexpanded, and noted that all curvature combinations in (13.5) which include
the tg factor are unbalanced, so that the cycle expansion is an infinite series:

[[a-t) =0-t)a—t—2>—3—t*— ) (13.35)

p

(we shall return to such infinite series in chapter 16). The geometric series in the brackets
sums up to (13.34). Had we expanded the (1 — tg) factor, we would have noted that the
ratio of the successive curvatures is exactly ¢,y1/¢, = t; summing we would recover the
rational ¢ function (13.34).
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Chapter 14

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had
found it ... the invisible king the lan vital the principle
of evolution ... writing a book, starting a war, founding a
school....”

F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip feeling
for the traces of evolution operators. We start out by explaining how qualitatively
how local exponential instability and exponential growth in topologically distinct
trajectories lead to a global exponential instability.

14.1 Escape rates

We start by verifying the claim (6.11) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. Consider again the game
of pinball of fig. 1.1. Designate by M a phase space region that encloses the three
disks, say the surface of the table x all pinball directions. The fraction of initial
points whose trajectories start out within the phase space region M and recur
within that region at the time ¢ is given by

Cpm(t) = ﬁ//M dzdy§(y — f'(2)) . (14.1)

This quantity is eminently measurable and physically interesting in a variety of
problems spanning from nuclear physics to celestial mechanics. The integral over
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320 CHAPTER 14. WHY CYCLE?

x takes care of all possible initial pinballs; the integral over y checks whether they
are still within M by the time ¢. If the dynamics is bounded, and M envelops
the entire accessible phase space, I Mm(t) = 1 for all t. However, if trajectories
exit M the recurrence fraction decreases with time. For example, any trajectory
that falls off the pinball table in fig. 1.1 is gone for good.

These observations can be made more concrete by examining the pinball phase
space of fig. 1.7. With each pinball bounce the initial conditions that survive get
thinned out, each strip yielding two thiner strips within it. The total fraction of
survivors (1.2) after n bounces is given by

(n)
- 1
Ly=—5" My, 14.2
g 2 A (142)

where i is a binary label of the ith strip, and |M;]| is the area of the ith strip. The
phase space volume is preserved by the flow, so the strips of survivors are con-
tracted along the stable eigendirections, and ejected along the unstable eigendi-
rections. As a crude estimate of the number of survivors in the ith strip, as-
sume that the spreading of a ray of trajectories per bounce is given by a factor
A, the mean value of the expanding eigenvalue of the corresponding Jacobian
matrix of the flow, and replace |M;| by the phase space strip width estimate
|IM;|/IM| ~ 1/A;.  This estimate of a size of a neighborhood (given already
on p. 89) is right in spirit, but not without drawbacks. One problem is that in
general the eigenvalues of a Jacobian matrix have no invariant meaning; they
depend on the choice of coordinates. However, we saw in chapter 7 that the sizes
of neighborhoods are determined by stability eigenvalues of periodic points, and
those are invariant under smooth coordinate transformations.

In this approximation I',, receives 2" contributions of equal size

. 1 1

on
1 A+A7

T = e ) = g (14.3)

O Ol

up to preexponential factors. We see here the interplay of the two key ingredients
of chaos first alluded to in sect. 1.3.1: the escape rate v equals local expansion
rate (the Lyapunov exponent A = In A), minus the rate of global reinjection back
into the system (the topological entropy h = In2). As we shall see in (15.16),
with correctly defined “entropy” this result is exact.

As at each bounce one loses routinely the same fraction of trajectories, one
expects the sum (14.2) to fall off exponentially with n. More precisely, by the
hyperbolicity assumption of sect. 7.1.1 the expanding eigenvalue of the Jacobian
matrix of the flow is exponentially bounded from both above and below,

L < |Amin] < [A(2)] < [Amazl (14.4)
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14.1. ESCAPE RATES 321

and the area of each strip in (14.2) is bounded by |A;2.| < |[M;| < |AZ |.
Replacing |M;| in (14.2) by its over (under) estimates in terms of |Apaz|, |Amin|
immediately leads to exponential bounds (2/|Amaz|)” < Tn < (2/]Amin|)", that
is

1 A
In Az > ——InDy +1In2 > In|Apinl - (14.5)
n

The argument based on (14.5) establishes only that the sequence v,, = —% InT,

has a lower and an upper bound for any n. In order to prove that -, converge
to the limit -, we first show that for hyperbolic systems the sum over survivor
intervals (14.2) can be replaced by the sum over periodic orbit stabilities. By
(14.4) the size of M, strip can be bounded by the stability A; of ith periodic
point:

1My
C <
A T M|

C2

TR (14.6)

for any periodic point 7 of period n, with constants C; dependent on the dynamical
system but independent of n. The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, the shrinking of the ith strip
is better and better approximated by by the derivaties evaluated on the periodic
point within the strip. Hence the survival probability can be bounded close to
the cycle point stability sum

(n)

M;
Ci T, < Z ”M” , (14.7)

where T'), = Zgn) 1/]A;] is the asymptotic trace sum (7.22). In this way we have
established that for hyperbolic systems the survival probability sum (14.2) can
be replaced by the periodic orbit sum (7.22).

We conclude that for hyperbolic, locally unstable flows the fraction (14.1) of
initial x whose trajectories remain trapped within M up to time t is expected to
decay exponentially,

Ta(t) o e,

where v is the asymptotic escape rate defined by

o1
v=— tlg})lo 7 InTpq(2) . (14.8)
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Figure 14.1: Johannes Kepler contemplating the
bust of Mandelbrot, after Rembrandt's “Aristotle
contemplating the bust of Homer” (Metropolitan
Museum, New York).

(in order to illustrate the famed New York Times
Science section quote! )

14.1.1 Periodic orbit averages

We now refine the reasoning of sect. 14.1. Consider the trace (7.6) in the asymp-
totic limit (7.21):

. () pA™ ()
tr L™ = /da:5(x — f(x)) 5@ ZW

i

The factor 1/|A;| was interpreted in (14.2) as the area of the ith phase space
strip. Hence tr L™ is a discretization of the integral f dzePA" (@) approximated by
a tessellation into strips centered on periodic points x;, fig. 1.8, with the volume
of the ith neighborhood given by estimate |M;| ~ 1/|A;], and e4"(*) estimated
by ePA" (i) its value at the ith periodic point. If the symbolic dynamics is a com-
plete, any rectangle [s_,, - - - $9.5152 - - - S of sect. 10.6.2 always contains the cycle
point 5_,, - -805152 - - - 5n; hence even though the periodic points are of measure
zero (just like rationals in the unit interval), they are dense on the non—wandering
set. Equiped with a measure for the associated rectangle, periodic orbits suffice
to cover the entire non-wandering set. The average of e#4" evaluated on the non—
wandering set is therefore given by the trace, properly normalized so (1) = 1:

. (n) LBA™(2:) /| A . (n) .
<6,6A > ~ Zz (in) /1A _ Z“i oPA™ (@) (14.9)
" i /1A i

Here p; is the normalized natural measure

(n)
> mi=1, ni="/IA, (14.10)
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14.2. FLOW CONSERVATION SUM RULES 323

correct both for the closed systems as well as the open systems of sect. 6.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect. 9.5), the periodic orbit theory is smart, as it automatically
partitions integrals by the intrinsic topology of the flow, and assigns to each tile
the invariant natural measure ;.

14.1.2 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanovi¢)

Our goal in sect. 6.1 was to evaluate the space and time averaged expectation
value (6.9). An average over all periodic orbits can accomplish the job only if the
periodic orbits fully explore the asymptotically accessible phase space.

Why should the unstable periodic points end up being dense? The cycles
are intuitively expected to be dense because on a connected chaotic set a typical
trajectory is expected to behave ergodically, and pass infinitely many times arbi-
trarily close to any point on the set, including the initial point of the trajectory
itself. The argument is more or less the following. Take a partition of M in
arbitrarily small regions, and consider particles that start out in region M;, and
return to it in n steps after some peregrination in phase space. In particular,
a particle might return a little to the left of its original position, while a close
neighbor might return a little to the right of its original position. By assump-
tion, the flow is continuous, so generically one expects to be able to gently move
the initial point in such a way that the trajectory returns precisely to the initial
point, that is one expects a periodic point of period n in cell 7. (This is by no
means guaranteed to always work, and it must be checked for the particular sys-
tem at hand. A variety of ergodic but insufficiently mixing counter-examples can
be constructed - the most familiar being a quasiperiodic motion on a torus.) As
we diminish the size of regions M;, aiming a trajectory that returns to M; be-
comes increasingly difficult. Therefore, we are guaranteed that unstable (because
of the expansiveness of the map) orbits of larger and larger period are densely
interspersed in the asymptotic non—-wandering set.

14.2 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for all times,
escape rate (14.8) equals v = —sp = 0, and the leading eigenvalue (??) of the
Perron-Frobenius operator (5.10) is simply exp(—tvy) = 1. Conservation of ma-
terial flow thus implies that for bound flows cycle expansions of dynamical zeta
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functions and spectral determinants satisfy exact flow conservation sum rules:

r (=DF
1/¢(0,0) = 14> oA
F(0,0) = 1—icn(o,o):o (14.11)
n=1

obtained by setting s = 0 in (13.12), (13.13) cycle weights ¢, = e~*T» /|A,| —
1/|Ap| . These sum rules depend neither on the cycle periods 7, nor on the
observable a(z) under investigation, but only on the cycle stabilities A, 1, Ap2,
-+, A, 4, and their significance is purely geometric: they are a measure of how well
periodic orbits tesselate the phase space. Conservation of material flow provides
the first and very useful test of the quality of finite cycle length truncations,
and is something that you should always check first when constructing a cycle
expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in two
varieties, one for the maps, and another for the flows. By flow conservation the
leading eigenvalue is sy = 0, and for maps (13.11) yields

1
tr L7 = =1 sy 14.12
. | Z det A—d(z))] T T (14.12)
ieFixfn

For flows one can apply this rule by grouping together cycles from ¢ = T to
t=T+ AT

T<rTp<T+AT T 1 T+AT
1 P _ dt (145t 4 ...
AT ; |det (1 —J7)] AT/T (e )
1 X esal S AT s1T
— 1+Ezs—(ea —1) &1+ +--(14.13)
(0%

a=1

As is usual for the the fixed level trace sums, the convergence of (14.12) is con-
troled by the gap between the leading and the next-to-leading eigenvalues of the
evolution operator.
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14.3 Correlation functions

The time correlation function Cap(t) of two observables A and B along the
trajectory z(t) = ft(xq) is defined as

1 T
Capltize) = lim — /0 drA((r + 0)B(r), 30 = 2(0). (14.14)

T—o00

If the system is ergodic, with invariant continuous measure o(x)dx, then correla-
tion functions do not depend on xy (apart from a set of zero measure), and may
be computed by a phase average as well

Cap(t) = /deo o(z0) A(f(20))B(x0) . (14.15)

For a chaotic system we expect that time evolution will loose the information
contained in the initial conditions, so that C'4p(t) will approach the uncorrelated
limit (A) - (B). As a matter of fact the asymptotic decay of correlation functions

Cap = Cap — (A)(B) (14.16)

for any pair of observables coincides with the definition of mizing, a fundamental
property in ergodic theory. We now assume (B) = 0 (otherwise we may define a
new observable by B(z) — (B)). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of £. We can write (14.15)
as

Can(t) = /de /Mdy A(y)B(x)o(2)d(y — (),

and recover the evolution operator

é’AB(t) = /de /Mdy A(y) L (y, z)B(z)o(x)

We also recall that in sect. 5.1 we showed that p(z) is the eigenvector of £
corresponding to probability conservation

[ dv £ o) = ple).
M
Now, we can expand the x dependent part in terms of the eigenbasis of L:

B(x)9<m) - Z Ca@a(x)a
a=0
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where o = o(z). Since the average of the left hand side is zero the coefficient cg
must vanish. The action of £ then can be written as

Cap(t) = e *oley, | dy A(y)ealy). (14.17)
4B O;) /M y A(y)paly

We see immediately that if the spectrum has a gap, that is the second largest
leading eigenvalue is isolated from the largest eigenvalue (so = 0) then (14.17)
implies an exponential decay of correlations

Cap(t) ~ e,

The correlation decay rate v = s; then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), while the choice of particular observables influences just the
prefactor.

The importance of correlation functions, beyond the mentioned theoretical
features, is that they are often accessible from time series measurable in labora-
tory experiments and numerical simulations: moreover they are linked to trans-
port exponents.

14.4 Trace formulas vs. level sums

Trace formulas (7.9) and (7.19) diverge precisely where one would like to use them,
at s equal to eigenvalues s,. Instead, one can proceed as follows; according to
(7.23) the “level” sums (all symbol strings of length n) are asymptotically going
like e®o™

Z oBA™ (1) -
| Al ’

ieFixfn
so an nth order estimate s, is given by

eﬁAn({L‘i)e—S(n)n
| Al

-3

ieFixfn

(14.18)

which generates a “normalized measure”. The difficulty with estimating this
n — oo limit is at least twofold:
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1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20.

2. the preasymptotic sequence of finite estimates s(,) is not unique, because
the sums I';, depend on how we define the escape region, and because in general
the areas M; in the sum (14.2) should be weighted by the density of initial
conditions zg. For example, an overall measuring unit rescaling M; — aM;
introduces 1/n corrections in S(n) defined by the log of the sum (14.8): s(,) —
S(n) — Ina/n. This can be partially fixed by defining a level average

eBA™ (z4) esn

(14.19)
| Al

<65A(s>>(n) =y

icFixfn

and requiring that the ratios of successive levels satisfy

<eﬁA(S(n))>(n+1)

<eﬁA(S(n>)>( |

This avoids the worst problem with the formula (14.18), the inevitable 1/n cor-
rections due to its lack of rescaling invariance. However, even though much
published pondering of “chaos” relies on it, there is no need for such gymnastics:
the dynamical zeta functions and spectral determinants are already invariant un-
der all smooth nonlinear conjugacies © — h(z), not only linear rescalings, and
require no n — oo extrapolations. Comparing with the cycle expansions (13.5)
we see what the difference is; while in the level sum approach we keep increas-
ing exponentially the number of terms with no reference to the fact that most
are already known from shorter estimates, in the cycle expansions short terms
dominate, longer ones enter only as exponentially small corrections.

1=

The beauty of the trace formulas is that they are coordinatization indepen-
dent: both |det (1 — Jp)‘ = |det (1 — J»(2))| and €4 = eBA™ @) contribution
to the cycle weight ¢, are independent of the starting periodic point point x. For
the Jacobian matrix J,, this follows from the chain rule for derivatives, and for
eP4r from the fact that the integral over ePA' (@) is evaluated along a closed loop.
In addition, |det (1 —J p) ‘ is invariant under smooth coordinate transformations.

14.4.1 Equipartition measures

J‘ There exist many strange sets which cannot be partitioned by the topology
of a dynamical flow: some well known examples are the Mandelbrot set, the
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period doubling repeller and the probabilistically generated fractal aggregates.
In such cases the choice of measure is wide open. One easy choice is the
equipartition or cylinder measure: given a symbolic dynamics partition, weigh
all symbol sequences of length n equally. Given a symbolic dynamics, the
equipartition measure is easy to implement: the rate of growth of the number
of admissible symbol sequences K, with the sequence length n is given by the
topological entropy h (discussed in sect. 11.1) and the equipartition measure for
the ith region M; is simply

Ap; =1/K, — e ™. (14.20)

The problem with the equipartition measure is twofold: it usually has no physical
basis, and it is not an intrinsic invariant property of the strange set, as it depends
on the choice of a partition. One is by no means forced to use either the natural
or the equipartition measure; there is a variety of other choices, depending on
the problem. Also the stability eigenvalues A; need not refer to motion in the
dynamical space; in more general settings it can be a renormalization scaling
function (sect. ?77), or even a scaling function describing a non—wandering set in
the parameter space (sect. 19.3).

Commentary

Remark 14.1 Nonhyperbolic measures. p; = 1/|A;| is the natural mea-
sure only for the strictly hyperbolic systems. For non-hyperbolic systems,
the measure develops folding cusps. For example, for Ulam type maps (uni-
modal maps with quadratic critical point mapped onto the “left” unstable
fixed point xg, discussed in more detail in chapter 16), the measure develops
a square-root singularity on the 0 cycle:

_ 1
SNTWIEE

(14.21)

The thermodynamics averages are still expected to converge in the “hyper-
bolic” phase where the positive entropy of unstable orbits dominates over
the marginal orbits, but they fail in the “non-hyperbolic” phase. The general
case remains unclear, and we refer the reader to the literature [19, 15, 12, 23].

Remark 14.2 Trace formula periodic orbit averaging.  The cycle aver-

aging formulas are not the first thing that one would intuitively write down;
the approximate trace formulas are more accessibly heuristically. The trace
formula averaging (14.13) seems to have be discussed for the first time by
Hannay and Ozorio de Almeida [1, 26]. Another novelty of the cycle av-
eraging formulas and one of their main virtues, in contrast to the explicit
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analytic results such as those of ref. [3], is that their evaluation does not re-
quire any explicit construction of the (coordinate dependent) eigenfunctions
of the Perron-Frobenius operator (that is, the natural measure pg).

Remark 14.3 _The choice of observables We have been quite sloppy on

the mathematical side, as in discussing the spectral features of £ the choice
of the function space is crucial (especially when one is looking beyond the
dominant eigenvalue). As a matter of fact in the function space where usu-
ally ergodic properties are defined, L?(du) there is no gap, due to unitarity
property of the Koopman operator: this means that there exist (ugly yet
summable) functions for which no exponential decay is present even if the
Fredholm determinant has isolated zeroes. A particularly nice example is
worked out in [22], and a more mathematical argument is presented in [23].

Remark 14.4 Lattice models  The relationship between the spectral
gap and exponential decay properties is very well known in the statistical
mechanical framework, where one deals with spatial correlations in lattice
systems and links them to the gap of the transfer matrix.

Remark 14.5 Role of noise in dynamical systems. In most practical
applications in addition to the chaotic deterministic dynamics there is always
an additional external noise. The noise can be characterized by its strength
o and distribution. Lyapunov exponents, correlation decay and dynamo rate
can be defined in this case the same way as in the deterministic case. We can
think that noise completely destroys the results derived here. However, one
can show that the deterministic formulas remain valid until the noise level
is small. A small level of noise even helps as it makes the dynamics ergodic.
Non-communicating parts of the phase space become weakly connected due
to the noise. This is a good argument to explain why periodic orbit theory
works in non-ergodic systems. For small amplitude noise one can make a
noise expansion

A= Xo +X10’2 +)\720'4 + .

around the deterministic averages \g. The expansion coefficients A, Ag, ...
can also be expressed via periodic orbit formulas. The calculation of these
coeflicients is one of the challenges facing periodic orbit theory today.

Résumé

We conclude this chapter by a general comment on the relation of the finite trace
sums such as (14.2) to the spectral determinants and dynamical zeta functions.
One might be tempted to believe that given a deterministic rule, a sum like
(14.2) could be evaluated to any desired precision. For short finite times this is
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indeed true: every region M; in (14.2) can be accurately delineated, and there is
no need for fancy theory. However, if the dynamics is unstable, local variations
in initial conditions grow exponentially and in finite time attain the size of the
system. The difficulty with estimating the n — oo limit from (14.2) is then at
least twofold:

1. due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20;

2. the preasymptotic sequence of finite estimates -, is not unique, because
the sums I';, depend on how we define the escape region, and because in general
the areas M; in the sum (14.2) should be weighted by the density of initial .

In contrast, the dynamical zeta functions and spectral determinants are al-

ready invariant under all smooth nonlinear conjugacies x — h(x), not only linear
rescalings, and require no n — oo extrapolations.
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Exercises

14.1 Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining trapped in the interval [0, 1]
for the logistic map

f(z) = a(l —4(z — 0.5)?), (14.22)

and determine the a dependence of the escape rate (a) numerically.

(b) Work out a numerical method for calculating the lengths of intervals of
trajectories remaining stuck for n iterations of the map.

(c) What is your expectation about the a dependence near the critical value
a. =17

14.2 Four scale map decay. Compute the second largest eigenvalue of the
Perron-Frobenius operator for the four scale map

a1x lf 0<.’[7<b/(],17
fla) =4 oy Ve e 0 e, (1429

(1=b)((x —b—>b/az)/(1 =b—>b/az))+b if b+b/az <z <]1.

14.3 Lyapunov exponents for 1-dimensional maps. Extend your cycle
expansion programs so that the first and the second moments of observables can
be computed. Use it to compute the Lyapunov exponent for some or all of the
following maps:

(a) the piecewise-linear flow conserving map, the skew tent map

ar if 0<z<al,
)= S (1-xz) if al<z<1

(b) the Ulam map f(z) =4z(1 — x)
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(¢) the skew Ulam map
f(z) =0.1218z(1 — x)(1 — 0.6x)

with a peak at 0.7.

(d) the repeller of f(x) = Az(1 — x), for either A = 9/2 or A = 6 (this is a
continuation of exercise 13.2).

(e) for the 2-branch flow conserving map

h—p++/(h—p)?+4hx
folw) = Y (1424
h+p—1++/(h+p—1)2+4h(x—p
filz) = V( ) (z-p) s € [p1]
2h
This is a nonlinear perturbation of (h = 0) Bernoulli map (9.10); the first
15 eigenvalues of the Perron-Frobenius operator are listed in ref. [1] for
p = 0.8, h =0.1. Use these parameter values when computing the Lyapunov
exponent.

Cases (a) and (b) can be computed analytically; cases (c), (d) and (e) require
numerical computation of cycle stabilities. Just to see whether the theory is
worth the trouble, also cross check your cycle expansions results for cases (c)
and (d) with Lyapunov exponent computed by direct numerical averaging along
trajectories of randomly chosen initial points:

(f) trajectory-trajectory separation (6.23) (hint: rescale dz every so often, to
avoid numerical overflows),

(g) iterated stability (6.27).

How good is the numerical accuracy compared with the periodic orbit theory
predictions?
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Chapter 15

Thermodynamic formalism

So, naturalists observe, a flea hath smaller fleas that on
him prey; and those have smaller still to bite ’em; and so
proceed ad infinitum.

Jonathan Swift

In the preceding chapters we characterized chaotic systems via global quan-
tities such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods of individual periodic
orbits. In statistical mechanics a similar duality exists. Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemi-
cal potential) which are averages over fine details of the system called microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made the analogy between
these two subjects explicit. Later this “Thermodynamic Formalism” of dynam-
ical systems became widely used when the concept of fractals and multifractals
has been introduced. The formalism made it possible to calculate various fractal
dimensions in an elegant way and become a standard instrument in a wide range
of scientific fields. Next we sketch the main ideas of this theory and show how
periodic orbit theory helps to carry out calculations.

15.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting points Mg, s,.. s, of trajectories whose symbol sequence starts
with a given set of n symbols s155...5,. We can associate many different quantities
to these sets. There are geometric measures such as the volume V' (s;s2...sy,), the
area A(s182...8,) or the length [(s159...s,) of this set. Or in general we can have
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some measure ((Ms, s, s,) = p(s152...8,) of this set. As we have seen in (14.10)
the most important is the natural measure, which is the probability that a non-
periodic trajectory visits the set p(s152...8,) = P(8182...8,). The natural measure
is additive. Summed up for all possible symbol sequences of length n it gives the
measure of the whole phase space:

Z (s182...8n) =1 (15.1)

S§182...8n

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence

Zu(slsg...sn) = 11(8182---8p—1)-
Sn

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce the
exponents

1
A(8189...8,) = fﬁlogu(slsg...sn). (15.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol
sequences of length n with exponents between A and A+ dA be given by N,,(\)dA.
For large n the number of such sequences increases exponentially. The rate of
this exponential growth can be characterized by g(\) such that

Np(A) ~ exp(ng(N)).

The knowledge of the distribution N, () or its essential part g(A) fully charac-
terizes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are called partition sums

Zn(B) = Z 1P (s182...50), (15.3)

as they are obviously motivated by Gibbs type partition sums of statistical me-
chanics. The parameter [ plays the role of inverse temperature 1/kpT and
E(s182...8,) = —logpu(slss...s,) is the energy associated with the microstate
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labelled by s152...s,, We are tempted also to introduce something analogous with
the Free energy. In dynamical systems this is called the Rényi entropy [21] defined
by the growth rate of the partition sum

.11
Kg = nlLHOlo o log ( Z ,uﬁ(slsg...sn)> . (15.4)

S$182...8n
In the special case 8 — 1 we get Kolmogorov’s entropy

. 1
K :nh—{goﬁ Z —1u(5182...8,) log pu(s182...8n),
51892...8n

while for 8 = 0 we recover the topological entropy

1
hiop = Ko = lim —log N(n),

n—oo N

where N (n) is the number of existing length n sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(8) = / dAN, (A) exp(—nAB),

where we used the definition (15.2). For large n we can replace Ny () with its
asymptotic form

Z0(B) ~ / dxexp(ng(A)) exp(~nAB).

For large n this integral is dominated by contributions from those A* which max-
imize the exponent

g(A) — AB.

The exponent is maximal when the derivative of the exponent vanishes
JO) = 6. (15.5)

From this equation we can determine \*(/3). Finally the partition sum is

Zn(B) ~ exp(n[g(A"(8)) = A" (8)5))-

Using the definition (15.4) we can now connect the Rényi entropies and g(\)

(B =1)Kg =X (B)8 — g(A\"(B))- (15.6)

Equations (15.5) and (15.6) define the Legendre transform of g(A). This equation
is analogous with the thermodynamic equation connecting the entropy and the
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free energy. As we know from thermodynamics we can invert the Legendre trans-
form. In our case we can express g(A) from the Rényi entropies via the Legendre
transformation

g(A) = AB"(A) = (B (N) = D) K=, (15.7)
where now *(\) can be determined from

d
dp*

(8" = 1) Kg] = A (15.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (15.7) and (15.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (14.10)

e™
(81, ey 8p) ® —— (15.9)

‘ASISQ---5n|

The partition sum (15.3) now reads
ey
Zo(B) =S 15.10
CED v (15.10)

where the summation goes for periodic orbits of length n. We can define the
characteristic function

Q(z, 8) = exp (- > f%(ﬁ)) . (15.11)

According to (15.4) for large n the partition sum behaves as
Zn(B) ~ e I DK, (15.12)

Substituting this into (15.11) we can see that the leading zero of the characteristic
function is

20(8) = elP Vs,
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On the other hand substituting the periodic orbit approximation (15.10) into
(15.11) and introducing primitive and repeated periodic orbits as usual we get

npr ,Bynpr
0 —exp| =S"Z2_ ).
(z,8) = p( pzr AT >
We can see that the characteristic function is the same as the zeta function
we introduced for Lyapunov exponents (G.14) except we have zeP7 instead of
z. Then we can conclude that the Rényi entropies can be expressed with the
pressure function directly as

P(B) = (B—1)Ks+ B, (15.13)

since the leading zero of the zeta function is the pressure. The Rényi entropies
Kpg, hence the distribution of the exponents g(\) as well, can be calculated via
finding the leading eigenvalue of the operator (G.4).

From (15.13) we can get all the important quantities of the thermodynamic
formalism. For 8 = 0 we get the topological entropy

P(0) = =Ko = —hiop. (15.14)
For 0 =1 we get the escape rate
P(1) =~. (15.15)

Taking the derivative of (15.13) in § = 1 we get Pesin’s formula [2] connecting
Kolmogorov’s entropy and the Lyapunov exponent

P(1)=X=K; +1. (15.16)

It is important to note that, as always, these formulas are strictly valid for nice
hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On fig. 15.2 we show a typical pressure and g(\) curve computed for the two
scale tent map of Exercise 15.4. We have to mention, that all typical hyper-
bolic dynamical system produces a similar parabola like curve. Although this is
somewhat boring we can interpret it like a sign of a high level of universality:
The exponents A have a sharp distribution around the most probable value. The
most probable value is A = P’(0) and g(\) = hyop is the topological entropy. The
average value in closed systems is where g()) touches the diagonal: A = g(\) and

1=4g(\).

Next, we are looking at the distribution of trajectories in real space.
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/ 3
/ 3
0 / \
1‘; \
Figure 15.1: R T
f _—
Figure 15.2: g(\) and P(3) for the map of Ex- 5
ercise 15.4 at a = 3 and b = 3/2. See Solutions K
for calculation details. ) ’ o ’

15.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure. In
the 3-disk case the starting points of trajectories not leaving the system after the
first bounce form two strips. Then these strips are subdivided into an infinite
hierarchy of substrips as we follow trajectories which do not leave the system
after more and more bounces. The finer strips are similar to strips on a larger
scale. Objects with such self similar properties are called fractals.

We can characterize fractals via their local scaling properties. The first step is
to draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid € the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the i-th box is proportional with the dimension of the

section

Hg ~ e,

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

i ~ 6ai7

where q; is the local “dimension” or Holder exponent of the the object. As «is not

necessarily an integer here we are dealing with objects with fractional dimensions.
We can study the distribution of the measure on the surface of section by looking
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at the distribution of these local exponents. We can define

_ logp
loge’

the local Holder exponent and then we can count how many of them are between
a and « + da. This is Ne(a)da. Again, in smooth objects this function scales
simply with the dimension of the system

Ne(a) ~ e 4,
while for hairy objects we expect an o dependent scaling exponent
Ne(a) ~ e 1),

f(«) can be interpreted [3] as the dimension of the points on the surface of section
with scaling exponent a. We can calculate f(«) with the help of partition sums
as we did for g(\) in the previous section. First we define

Z(q) = Zu?. (15.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by the 7(q) exponent

Zelq) ~ €T,

The partition sum can be written in terms of the distribution function of a-s

2.@) = [ daNa)er.

Using the asymptotic form of the distribution we get

Ze(q) ~ /daeqo‘_f(o‘).

As € goes to zero the integral is dominated by the term maximizing the exponent.
This o* can be determined from the equation

d
do*

(go" = f(a")) =0,

leading to
q = f'(a").

Finally we can read off the scaling exponent of the partition sum

7(q) = g — f(a").
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In a uniform fractal characterized by a single dimension both a and f(«)
collapse to a = f(a) = D. The scaling exponent then has the form 7(q) = (¢ —
1)D. In case of non uniform fractals we can introduce generalized dimensions [10)]
D, via the definition

Dy =1(q)/(q—1).

Some of these dimensions have special names. For ¢ = 0 the partition sum (15.17)
counts the number of non empty boxes N.. Consequently

is called the box counting dimension. For ¢ = 1 the dimension can be determined
as the limit of the formulas for ¢ — 1 leading to

Dy = lg%Zm log ;/loge.
3

This is the scaling exponent of the Shannon information entropy [17] of the dis-
tribution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (15.17) into the more convenient form

1
— € (q)

~ 1. (15.18)
If we cover the ith branch of the fractal with a grid of size I; instead of € we can
use the relation [9]

q
7

L
Zi: g " (15.19)

the non-uniform grid generalization of 15.18. Next we show how can we use
the periodic orbit formalism to calculate fractal dimensions. We have already
seen that the width of the strips of the repeller can be approximated with the
stabilities of the periodic orbits situating in them

1

i~
| Al

Then using this relation and the periodic orbit expression of the natural measure
we can write (15.19) into the form
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where the summation goes for periodic orbits of length n. The sum for stabilities
can be expressed with the pressure function again

3 m ~ e~Pla=7(0)),

and (15.20) can be written as

e Pa=(a) 1,

for large n. Finally we get an implicit formula for the dimensions
P(q—(q¢—1)Dg) = q7. (15.21)

Solving this equation directly gives us the partial dimensions of the multifractal
repeller along the stable direction. We can see again that the pressure function
alone contains all the relevant information. Setting ¢ = 0 in (15.21) we can
prove that the zero of the pressure function is the box-counting dimension of the

repeller
P(Dy) = 0.

Taking the derivative of (15.21) in ¢ = 1 we get
P'(1)(1 = Dy) =1.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

Dy =1—v/\ (15.22)

If the system is bound (v = 0) the information dimension and all other dimensions
are Dy, = 1. Also since D0 is positive (15.22) proves that the Lyapunov exponent
must be larger than the escape rate A > ~ in general.

Commentary

Remark 15.1 Mild phase transition In non-hyperbolic systems the for-
mulas derived in this chapter should be modified. As we mentioned in 14.1
in non-hyperbolic systems the periodic orbit expression of the measure can
be

po = e/ Aof’,

where § can differ from 1. Usually it is 1/2. For sufficiently negative 3 the
corresponding term 1/|Ag|? can dominate (15.10) while in (15.3) €7 /|Ag|*?
plays no dominant role. In this case the pressure as a function of 3 can have

printed June 19, 2002 /chapter/thermodyn.tex 4aug2000

on p.

on p.

on p.

15.4
344

15.5
344

15.6
345



342 CHAPTER 15. THERMODYNAMIC FORMALISM

a kink at the critical point 8 = . where G.log|Ao| = (8. — 1) K3, + Bc7-
For B < 3. the pressure and the Rényi entropies differ

P(B) # (B —1)Kps + Bv.

This phenomena is called phase transition. This is however not a very deep
problem. We can fix the relation between pressure and the entropies by
replacing 1/|Ao| with 1/|Ao]® in (15.10).

Remark 15.2 Hard phase transition  The really deep trouble of ther-
modynamics is caused by intermittency. In that case we have periodic orbits
with |[Ag] — 1 as n — oo. Then for 3 > 1 the contribution of these orbits
dominate both (15.10) and (15.3). Consequently the partition sum scales as

Z,(B) — 1 and both the pressure and the entropies are zero. In this case
quantities connected with § < 1 make sense only. These are for example the
topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
Dy and D;. This phase transition cannot be fixed. It is probably fair to say
that quantities which depend on this phase transition are only of mathemat-
ical interest and not very useful for characterization of realistic dynamical
systems.

Remark 15.3 _Multifractals. For reasons that remain mysterious to the
authors - perhaps so that Mandelbrot can refer to himself both as the mother
of fractals and the grandmother of multifractals - some physics literature
referes to any fractal generated by more than one scale as a “multi”-fractal.

This usage seems to divide fractals into 2 classes; one consisting essentially
of the above Cantor set and the Serapinski gasket, and the second consisting
of anything else, including all cases of physical interest.

Résumé

In this chapter we have shown that thermodynamic quantities and various frac-
tal dimensions can be expressed in terms of the pressure function. The pressure
function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov case [ is just an auxiliary variable. In thermodynam-
ics it plays an essential role. The good news of the chapter is that the distribution
of locally fluctuating exponents should not be computed via making statistics.
We can use cyclist formulas for determining the pressure. Then the pressure can
be found using short cycles + curvatures. Here the head reach the tail of the
snake. We just argued that the statistics of long trajectories coded in g(\) and
P(3) can be calculated from short cycles. To use this intimate relation between
long and short trajectories effectively is still a research level problem.
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Exercises

15.1 Thermodynamics in higher dimensions Introduce the time averages of
the eigenvalues of the Jacobian

1
A\ = lim = log |AL(z0)], (15.23)
t—oo t

as a generalization of (6.27).

Show that in higher dimensions Pesin’s formula is

K=Y X\i—7, (15.24)

where the summation goes for the positive A;-s only. (Hint: Use the higher dimensional
generalization of (14.10)

pi =" /| [T Al
i

where the product goes for the expanding eigenvalues of the Jacobian of the periodic
orbit.

15.2 Bunimovich stadium Kolmogorov entropy. Take for definitiveness
a=1.6 and d =1 in the Bunimovich stadium of exercise 4.3,

T

2a

estimate the Lyapunov exponent by averaging over a very long trajectory. Biham and

Kvale [?] estimate the discrete time Lyapunov to A & 1.0 £ .1, the continuous time
Lyapunov to A a2 0.43 + .02, the topological entropy (for their symbolic dynamics) h ~
1.15 + .03.
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15.3 Entropy of rugged-edge billiards.  Take a semi-circle of diameter ¢ and
replace the sides of a unit square by |1/¢| catenated copies of the semi-circle.

(a) Is the billiard ergodic as € — 07
(b) (hard) Show that the entropy of the billiard map is

2
Ki — ——1Ine+ const,
™

as € — 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the Bunimovich stadium are far apart,
say L, the entropy for the flow decays as

2In L
L

K1—>

15.4 Two scale map Compute all those quantities - dimensions, escape rate,
entropies, etc. - for the repeller of the one dimensional map

f(ac)z{ l+azr if =<0,

1—bz if >0 (15.25)

where a and b are larger than 2. Compute the fractal dimension, plot the pressure and
compute the f(a) spectrum of singularities. Observe how K; may be obtained directly
from (?7).

15.5 Four scale map Compute the Rényi entropies and g(A) for the four scale

map
a1x lf O<x<b/a1,
S = ety O S e, 0529

(I1=0b)((x —b—>b/az)/(1—b—0b/az))+b if b+bjas <z <1

Hint: Calculate the pressure function and use (15.13).
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15.6 Transfer matrix Take the unimodal map f(x) = sin(wz) of the interval
I =10,1]. Calculate the four preimages of the intervals Iy = [0,1/2] and I; = [1/2,1].
Extrapolate f(x) with piecewise linear functions on these intervals. Find a1, a2 and b of
the previous exercise. Calculate the pressure function of this linear extrapolation. Work
out higher level approximations by linearly extrapolating the map on the 2"-th preimages
of I.
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Chapter 16

Intermittency

Sometimes They Come Back
Stephen King

(R. Artuso, P. Dahlqvist and G. Tanner)

In the theory of chaotic dynamics developed so far we assumed that the evolution
operator has a discrete spectra {zo, 21, 22, . ..} given by the zeros of

1/¢(z) = () [T = 2/z1) .

k

Such an assumption was based on the tacit premise that the dynamics is ev-
erywhere exponentially unstable. Real life is nothing like that - phase spaces
are generically infinitely interwoven patterns of stable and unstable behaviors.
While the stable (“integrable”) and the unstable (“chaotic”) behaviors are by
now pretty much under control, the borderline marginally stable orbits present
many difficult and still unresolved challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message

will be that spectra of evolution operators are no longer discrete, dynamical zeta
functions exhibit branch cuts of the form

1/¢(z) = () + (1 =2)%(-+),

and correlations decay no longer exponentially, but as power laws.
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b ey AN, / R B2, R A 4
0 02 04 06 08 1 08 08 084 08 088

Figure 16.1: Typical phase space for an area-preserving map with mixed phase space
dynamics; (here the standard map for k=1.2).

16.1 Intermittency everywhere

With a change in an external parameter, one observes in many fluid dynamics
experiments a transition from a regular behavior to a behavior where long time
intervals of regular behavior (“laminar phases”) are interupted by fast irregular
bursts. The closer the parameter is to the onset of such bursts, the longer are
the intervals of regular behavior. The distributions of laminar phase intervals are
well described by power laws.

This phenomenon is called intermittency, and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginally stable phase space re-
gions. Complete hyperbolicity assumed in (7.5) is the exception rather than the
rule, and for almost any dynamical system of interest (dynamics in smooth po-
tentials, billiards with smooth walls, the infinite horizon Lorentz gas, etc.) one
encounters mixed phase spaces with islands of stability coexisting with hyper-
bolic regions, see fig. 16.1. Wherever stable islands are interspersed with chaotic
regions, trajectories which come close to the stable islands can stay ‘glued’ for
arbitrarily long times. These intervals of regular motion are interupted by ir-
regular bursts as the trajectory is re-injected into the chaotic part of the phase
space. How the trajectories are precisely ‘glued’ to the marginally stable region
is often hard to describe, as what coarsely looks like a border of an island will
under magnification dissolve into infinities of island chains of decreasing sizes,
broken tori and bifurcating orbits as is illustrated by fig. 16.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (4.59), or (in studies of the onset of intermittency) to the proximity of

a nearly marginal complex or unstable orbit. In Hamiltonian systems intermit-
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Figure 16.2: A complete binary repeller with a L

0.2 04 06

marginal fixed point. X

tency goes hand in hand with the existence of (marginally stable) KAM tori. In
more general settings, the existence of marginal or nearly marginal orbits is due
to incomplete intersections of stable and unstable manifolds in a Smale horse-
shoe type dynamics (see fig. 10.11). Following the stretching and folding of the
invariant manifolds in time one will inevitably find phase space points at which
the stable and unstable manifolds are almost or exactly tangential to each other,
implying non-exponential separation of nearby points in phase space or, in other
words, marginal stability. Under small parameter perturbations such neighbor-
hoods undergo tangent birfucations - a stable/unstable pair of periodic orbits is
destroyed or created by coalescing into a marginal orbit, so pruning which we
encountered first in chapter 77, and intermittency are two sides of the same coin.

How to deal with the full complexity of a typical Hamiltonian system with
mixed phase space is a very difficult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considering rather simple
examples. Here we shall restrict our considerations to 1-dimensional maps of the
form

z— f(z) =z + O(z%). (16.1)

which are expanding almost everywhere except for a single marginally stable fixed
point at x=0. Such a map may allow escape, like the map shown in fig. 16.2 or
may be bounded like the Farey map (13.26)

z/(l1—z) =z 0,1/2
e s ={ 5D Y

introduced in sect. 13.4. Fig. 16.3 compares a trajectory of the (uniformly hy-
perbolic) tent map (10.15) side by side with a trajectory of the (non-hyperbolic)
Farey map. In a stark contrast to the uniformly chaotic trajectory of the tent
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Figure 16.3: (a) A tent map trajectory. (b) A Farey map trajectory.
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16.1. INTERMITTENCY EVERYWHERE 351

map, the Farey map trajectory alternates intermittently between slow regular
motion of varying length glued to the marginally stable fixed point, and chaotic
bursts.

The presence of marginal stability has striking dynamical consequences: corre-
lation decay may exhibit long range power law asymptotic behavior and diffusion
processes can assume anomalous character. Escape from a repeller of the form
fig. 16.2 may be algebraic rather than exponential. In long time explorations of
the dynamics intermittency manifests itself by enhancement of natural measure
in the proximity of marginally stable cycles.

The questions we need to answer are: how does marginal stability affect zeta
functions or spectral determinants? And, can we deduce power law decays of
correlations from cycle expansions?

In sect. 9.2.2 we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the
simple fact that the cycle weight 1/[1 — AJ| in the trace (7.3) or the spectral
determinant (8.3) diverges for marginal orbits with [A,| = 1 tells us that we
have to treat these orbits with care. We saw in sect. 13.4 that a cycle expansion
for the Farey map based on the binary symbolic dynamics does not reflect the
nonuniform distribution of cycle weights of the map; in that example a stability
ordered expansion leads to improved convergence properties.

In the following we will take a more systematic approach to incorporate
marginal stability into a cycle-expansion. To get to know the difficulties lying
ahead, we will first start with a map, which is piecewise linear, but still follows
the asymptotics (16.1) in sect. 16.2. We will construct a dynamical zeta function
in the usual way without worrying too much about its justification at that stage
and show that it has a branch point singularity. We will calculate the rate of es-
cape from our piecewise linear map and find a power law behavior. The worrying
comes next: that is, we will argue that dynamical zeta functions in the presence
of marginal stability can still be written in terms of periodic orbits exactly in
the way as derived in chapters 6 and 14 with one exception: we actually have to
exclude the marginal stable fixed point explicitely. This innocent looking step has
far reaching consequences; it forces us to change from finite symbolic dynamics
to an infinite letter symbol code and demands a reorganisation of the order of
summation in the cycle expansion. We will come to these more conceptual issues
in sect. 16.2.3

Branch points are typical also for smooth intermittent maps with isolated
marginally stable fixed points and cycles. In sect. 16.3, we discuss the cycle
expansions and curvature combinations for zeta functions of smooth maps tay-
lored for intermittency. The knowledge of the type of singularity one encounters
enables us to construct an efficient resummation method which is presented in
sect. 16.3.1.
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Figure 16.4: A piecewise linear intermittent o ;_a ‘
map, see (16.2). X

Finally, in sect. 16.4, we discuss a probabilistic method that yields approx-
imate dynamical zeta functions and provides valuable information about more
complicated systems, such as billiards.

16.2 Intermittency for beginners

Intermittency does not only present us with a large repertoire of interesting dy-
namics, it is also at the root of problems, such as slow convergence of cycle
expansions or pruning. In order to get to know the kind of problems which arise
when studying dynamical zeta functions in the presence of marginal stability we
will consider a carefully constructed piecewise linear model first. From there we
will move on to the more general case of a smooth intermittend map which will
be discussed in sect. 16.3.

16.2.1 A toy map

The binary shift map is an idealised example of a hyperbolic map. To study in-
termittency we will now construct a piecewise linear model, which can be thought
of as an intermittent map stripped down to its bare essentials.

Consider a map x +— f(z) on the unit interval M = [0, 1] with two monotone
branches

folz) zeMy= [(I)),

_ |
o ={ 46 R 12

The two branches are assumed complete, that is fo(Mg) = f1(M71) = M. The
map allows escape if a < b and is bounded if a = b (see fig. 16.4).
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We will choose the right branch to be expanding and linear, that is,

T —b

h@) =3=-

Next, we will construct the left branch in a way, which will allow us to model
the intermittent behaviour (16.1) near the origin. We chose a monotonically
decreasing sequence of points ¢, in [0,a] with ¢ = a and ¢, — 0 as n — 0.
This sequence defines a partition of the left interval My into an infinite number
of connected intervals M, n > 2 with

oo
Mn :]Qn7Qn—1] and MO = U Mn (163)
n=2
The map fo(z) is now specified by the following requirements
e fo(z) is continuous.

e fo(z) is linear on the intervals M,, for n > 2.

o fo(gn) = qn_1, that is M,, = (f;1)"([a,1]) .

This fixes the map for any given sequence {g,}. The last condition ensures the
existence of a simple Markov partition. The slopes of the various linear segments
are

Jolgn-1) — folan)  |Mu_|

Nz) = = for zeM, and n>3
fO( ) dn—1 — 4n | M| N
/ folgr) — folez) 1—a
fole) a1 —q2 Mo T ’ (16.4)
1
/ —
folx) = T3 for = e My

with |M,,| = ¢n—1 — gn for n > 2. Note that we do not require as yet that the
map exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10" plays a key
role for intermittent maps of the form (16.1). An orbit 10" enters the intervals
MiMpy1, My, ... Ms successively and the family approaches the marginal sta-
ble fixed point at x = 0 for n — oco. The stability of a cycle 10"™ for n > 1 is
given by

1 1—a

Aion = fo(@ns1) fo(xn) - fo(22) fi(21) = Mo 1= (16.5)
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with x; € M;. The properties of the map (16.2) are completely determined by
the sequence {g,}. By choosing ¢, = 27", for example, we recover the uniformly
hyperbolic binary shift map. An intermittent map of the form (16.3) having
the asymptotic behaviour (16.1) can be constructed by chosing an algebraically
decaying sequence {g,} behaving asymptotically like

1
qn /s’

(16.6)

where s is the intermittency exponent in (16.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-law, that is,

1
nlt+l/s”

|M.,| (16.7)

The stability of periodic orbit families approaching the marginal fixed point, as
for example the family of orbits with symbol code 10™ increases in turn only
algebraically with the cycle length as can be seen from refeq (16.5).

It may now seem natural to construct an intermittent toy map in terms of
a partition |[M,| = 1/n'*1/% that is, a partition which follows (16.7) exactly.
Such a choice leads to a dynamical zeta function which can be written in terms
of so-called Jonquiere functions (or Polylogarithms) which arise naturally also in
the context of the Farey map, see remark 16.3. We will, however, not go along
this route here; instead, we will choose a maybe less obvious partition which will
simplify the algebra considerably later without loosing any of the key features
typical for intermittent systems. We fix the intermittent toy map by specifying
the intervals M,, in terms of gamma functions according to

I'n+m—1/s—1)

for n>2, (16.8)

where m = [1/s] denotes the integer part of 1/s and C is a normalization constant
fixed by the condition 7, |M,| = ¢i = a, that is,

(16.9)

= T(n—-1/s)
C—a[ T+l

n=2

Using Stirling’s formula for the Gamma function

1
[(z) ~ e 2227 Y2/2m(1 + 195 +...),
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we find that the intervals decay asymptotically like n~(171/%) ag required by the
condition (16.7).

Next, let us write down the dynamical zeta function of the toy map in terms
of its periodic orbits, that is

vee =TI (1)

p

One may be tempted to expand the dynamical zeta function in terms of the
binary symbolic dynamics of the map; we saw, however, in sect. 13.4, that such
a cycle expansion converges extremely slow in the presence of marginal stability.
The shadowing mechanism between orbits and pseudo-orbits is very inefficient for
orbits of the form 10™ with stabilities given by (16.5) due to the marginal stability
of the fixed point 0. It is therefore advantagous to choose as the fundamental
cycles the family of orbits with code 10™ or equivalently switching from the finite
(binary) alphabet to an infinite alphabet given by

10"t — n.

Due to the piecewise-linear form of the map which maps intervals M, exactly
onto M,,_1, we get the transformation from a finite alphabet to an infinite al-
phabet here for free. All periodic orbits entering the left branch at least twice
are cancelled exactly by composite orbits and the cycle expanded dynamical zeta
function has the simple form

v = I (1-7) =1 meﬂ

p#0

- 1_(1—b)z—ci:22m"4}21%§_1)2”. (16.10)

The fundamental term consist