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guide to exercises 24 - resumé 25 - references 27 - exercises 29

2 Flows 31
2.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Computing trajectories . . . . . . . . . . . . . . . . . . . . . 38
2.4 Infinite-dimensional flows . . . . . . . . . . . . . . . . . . . 38
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resumé 302 - references 303 - exercises 304

17 Thermodynamic formalism 307
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Chapter 1

Overture

If I have seen less far than other men it is because I
have stood behind giants.
Edoardo Specchio

Rereading classic theoretical physics textbooks leaves a sense that there
are holes large enough to steam a Eurostar train through them. Here
we learn about harmonic oscillators and Keplerian ellipses - but where is
the chapter on chaotic oscillators, the tumbling Hyperion? We have just
quantized hydrogen, where is the chapter on the classical 3-body problem
and its implications for quantization of helium? We have learned that an
instanton is a solution of field-theoretic equations of motion, but shouldn’t
a strongly nonlinear field theory have turbulent solutions? How are we to
think about systems where things fall apart; the center cannot hold; every
trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the
book. We start out by making promises - we will right wrongs, no longer
shall you suffer the slings and arrows of outrageous Science of Perplexity.
We relegate a historical overview of the development of chaotic dynamics
to appendix A, and head straight to the starting line: A pinball game is
used to motivate and illustrate most of the concepts to be developed in this
book.

Throughout the book

indicates that the section requires a hearty stomach and is probably
best skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

✎ indicates an exercise that might clarify a point in the text

1



2 CHAPTER 1. OVERTURE

indicates that a figure is still missing - you are urged to fetch it

This is a textbook, not a research monograph, and you should be able to
follow the thread of the argument without constant excursions to sources.
Hence there are no literature references in the text proper, all learned re-
marks and bibliographical pointers are relegated to the “Commentary” sec-
tion at the end of each chapter.

1.1 Why this book?

It seems sometimes that through a preoccupation
with science, we acquire a firmer hold over the vi-
cissitudes of life and meet them with greater calm,
but in reality we have done no more than to find a
way to escape from our sorrows.
Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuc-
cessful) crack at the 3-body problem, lunar dynamics. Nature is rich in
systems governed by simple deterministic laws whose asymptotic dynam-
ics are complex beyond belief, systems which are locally unstable (almost)
everywhere but globally recurrent. How do we describe their long term
dynamics?

The answer turns out to be that we have to evaluate a determinant,
take a logarithm. It would hardly merit a learned treatise, were it not for
the fact that this determinant that we are to compute is fashioned out of
infinitely many infinitely small pieces. The feel is of statistical mechanics,
and that is how the problem was solved; in 1960’s the pieces were counted,
and in 1970’s they were weighted and assembled together in a fashion that in
beauty and in depth ranks along with thermodynamics, partition functions
and path integrals amongst the crown jewels of theoretical physics.

Then something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted
from our collective understanding. The computer pictures and numerical
plots of fractal science of 1980’s have overshadowed the deep insights of
the 1970’s, and these pictures have since migrated into textbooks. Frac-
tal science posits that certain quantities (Lyapunov exponents, generalized
dimensions, . . . ) can be estimated on a computer. While some of the num-
bers so obtained are indeed mathematically sensible characterizations of
fractals, they are in no sense observable and measurable on the length and
time scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of na-
ture is circumstantial, in studies of probabilistically assembled fractal ag-
gregates we know of nothing better than contemplating such quantities.

intro - 3jun2003 draft 9.4.0, June 18 2003



1.2. CHAOS AHEAD 3

In deterministic systems we can do much better. Chaotic dynamics is gen-
erated by interplay of locally unstable motions, and interweaving of their
global stable and unstable manifolds. These features are robust and ac-
cessible in systems as noisy as slices of rat brains. Poincaré, the first to
understand deterministic chaos, already said as much (modulo rat brains).
Once the topology of chaotic dynamics is understood, a powerful theory
yields the macroscopically measurable consequences of chaotic dynamics,
such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in this book. This book is a self-contained
graduate textbook on classical and quantum chaos. We teach you how to
evaluate a determinant, take a logarithm, stuff like that. Should take 100
pages or so. Well, we fail - so far we have not found a way to traverse
this material in less than a semester, or 200-300 page subset of this text.
Nothing to be done about that.

1.2 Chaos ahead

Things fall apart; the centre cannot hold
W.B. Yeats: The Second Coming

Study of chaotic dynamical systems is no recent fashion. It did not start
with the widespread use of the personal computer. Chaotic systems have
been studied for over 200 years. During this time many have contributed,
and the field followed no single line of development; rather one sees many
interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics seem
a stroke of luck: a few integrable problems, such as the harmonic oscillator
and the Kepler problem, though “non-generic”, have gotten us very far.
The success has lulled us into a habit of expecting simple solutions to sim-
ple equations - an expectation tempered for many by the recently acquired
ability to numerically scan the phase space of non-integrable dynamical
systems. The initial impression might be that all our analytic tools have
failed us, and that the chaotic systems are amenable only to numerical and
statistical investigations. Nevertheless, a beautiful theory of deterministic
chaos, of predictive quality comparable to that of the traditional perturba-
tion expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-
order approximations to physical systems, and weak nonlinearities are then
accounted for perturbatively. For strongly nonlinear, non-integrable sys-
tems such expansions fail completely; the asymptotic time phase space ex-
hibits amazingly rich structure which is not at all apparent in the integrable
approximations. However, hidden in this apparent chaos is a rigid skele-
ton, a tree of cycles (periodic orbits) of increasing lengths and self-similar
structure. The insight of the modern dynamical systems theory is that
the zeroth-order approximations to the harshly chaotic dynamics should be
very different from those for the nearly integrable systems: a good starting

draft 9.4.0, June 18 2003 intro - 3jun2003



4 CHAPTER 1. OVERTURE

Figure 1.1: A physicist’s bare bones game of
pinball.

approximation here is the linear stretching and folding of a baker’s map,
rather than the periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling
for how and why unstable cycles come about, we start by playing a game of
pinball. The reminder of the chapter is a quick tour through the material
covered in this book. Do not worry if you do not understand every detail at
the first reading – the intention is to give you a feeling for the main themes
of the book, details will be filled out later. If you want to get a particular
point clarified right now, ☞ on the margin points at the appropriate
section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of the [Cvitanović et al “Chaos: Classi-
cal and Quantum”] book. However, in order to un-
derstand the introduction you will first have to read
the rest of the book.
Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who
has tried pool, billiards or snooker – the game is about beating chaos –
so we start our story about what chaos is, and what to do about it, with
a game of pinball. This might seem a trifle, but the game of pinball is
to chaotic dynamics what a pendulum is to integrable systems: thinking
clearly about what “chaos” in a game of pinball is will help us tackle more
difficult problems, such as computing diffusion constants in deterministic
gases, or computing the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among
the pinball machine’s disks, and only high-school level Euclidean geometry
is needed to describe its trajectory. A physicist’s pinball game is the game of
pinball stripped to its bare essentials: three equidistantly placed reflecting
disks in a plane, fig. 1.1. A physicist’s pinball is free, frictionless, point-
like, spin-less, perfectly elastic, and noiseless. Point-like pinballs are shot
at the disks from random starting positions and angles; they spend some
time bouncing between the disks and then escape.

intro - 3jun2003 draft 9.4.0, June 18 2003



1.3. THE FUTURE AS IN A MIRROR 5

At the beginning of 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew all what a deterministic
system would do far into the future. He wrote [1.1], anticipating by century
and a half the oft quoted Laplace’s “Given for one instant an intelligence
which could comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is
just as certain as that three times three is nine. [. . . ] If, for example,
one sphere meets another sphere in free space and if their sizes and
their paths and directions before collision are known, we can then
foretell and calculate how they will rebound and what course they will
take after the impact. Very simple laws are followed which also apply,
no matter how many spheres are taken or whether objects are taken
other than spheres. From this one sees then that everything proceeds
mathematically – that is, infallibly – in the whole wide world, so that
if someone could have a sufficient insight into the inner parts of things,
and in addition had remembrance and intelligence enough to consider
all the circumstances and to take them into account, he would be a
prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type
of physical system that we shall use here as a paradigm of “chaos”. His
claim is wrong in a deep and subtle way: a state of a physical system
can never be specified to infinite precision, there is no way to take all the
circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 What is “chaos”?

I accept chaos. I am not sure that it accepts me.
Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully
determined by its initial conditions, in contra-distinction to a stochastic
system, for which the initial conditions determine the present state only
partially, due to noise, or other external circumstances beyond our control.
For a stochastic system, the present state reflects the past initial conditions
plus the particular realization of the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool
us into regarding it as a stochastic one; disentangling the deterministic from
the stochastic is the main challenge in many real-life settings, from stock
market to palpitations of chicken hearts. So, what is “chaos”?

In a game of pinball, any two trajectories that start out very close
to each other separate exponentially with time, and in a finite (and in
practice, a very small) number of bounces their separation δx(t) attains
the magnitude of L, the characteristic linear extent of the whole system,
fig. 1.2. This property of sensitivity to initial conditions can be quantified

draft 9.4.0, June 18 2003 intro - 3jun2003
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6 CHAPTER 1. OVERTURE

Figure 1.2: Sensitivity to initial conditions:
two pinballs that start out very close to each
other separate exponentially with time.

1

2

3

23132321

2313

as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent. For any finite accuracy |δx(0)| = δx of the initial

☞ sect. 8.3
data, the dynamics is predictable only up to a finite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for baron Leibniz, infallible simple laws that
rule the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One
could try to play 1- or 2-disk pinball game, but it would not be much of
a game; trajectories would only separate, never to meet again. What is
also needed is mixing, the coming together again and again of trajectories.
While locally the nearby trajectories separate, the interesting dynamics is
confined to a globally finite region of the phase space and thus of necessity
the separated trajectories are folded back and can re-approach each other
arbitrarily closely, infinitely many times. In the case at hand there are 2n

topologically distinct n bounce trajectories that originate from a given disk.
More generally, the number of distinct trajectories with n bounces can be
quantified as

N(n) ≈ ehn

☞ sect. 10.1

where the topological entropy h (h = ln 2 in the case at hand) is the growth
rate of the number of topologically distinct trajectories.

☞ sect. 17.1

The appellation “chaos” is a confusing misnomer, as in deterministic
dynamics there is no chaos in the everyday sense of the word; everything
proceeds mathematically – that is, as baron Leibniz would have it, infallibly.
When a physicist says that a certain system exhibits “chaos”, he means that
the system obeys deterministic laws of evolution, but that the outcome is

intro - 3jun2003 draft 9.4.0, June 18 2003



1.3. THE FUTURE AS IN A MIRROR 7

(a) (b)

Figure 1.3: Dynamics of a chaotic dynamical system is (a) everywhere locally unsta-
ble (positive Lyapunov exponent) and (b) globally mixing (positive entropy). (A. Jo-
hansen)

highly sensitive to small uncertainties in the specification of the initial state.
The word “chaos” has in this context taken on a narrow technical meaning.
If a deterministic system is locally unstable (positive Lyapunov exponent)
and globally mixing (positive entropy) - fig. 1.3 - it is said to be chaotic.

While mathematically correct, the definition of chaos as “positive Lya-
punov + positive entropy” is useless in practice, as a measurement of these
quantities is intrinsically asymptotic and beyond reach for systems observed
in nature. More powerful is Poincaré’s vision of chaos as the interplay of
local instability (unstable periodic orbits) and global mixing (intertwining
of their stable and unstable manifolds). In a chaotic system any open ball
of initial conditions, no matter how small, will in finite time overlap with
any other finite region and in this sense spread over the extent of the entire
asymptotically accessible phase space. Once this is grasped, the focus of
theory shifts from attempting precise prediction of individual trajectories
(which is impossible) to description of the geometry of the space of pos-
sible outcomes, and evaluation of averages over this space. How this is
accomplished is what this book is about.

A definition of “turbulence” is harder to come by. Intuitively, the word
refers to irregular behavior of an infinite-dimensional dynamical system
described by deterministic equations of motion - say, a bucket of boiling
water described by the Navier-Stokes equations. But in practice the word
“turbulence” tends to refer to messy dynamics which we understand poorly.
As soon as a phenomenon is understood better, it is reclaimed and renamed:

☞ appendix B
“a route to chaos”, “spatiotemporal chaos”, and so on.

In this book we shall develop a theory of chaotic dynamics for low dimen-
sional attractor visualized as a succession of nearly periodic but unstable
motions. In the same spirit, we shall think of turbulence in spatially ex-
tended systems in terms of recurrent spatiotemporal patterns. Pictorially,
dynamics drives a given spatially extended system through a repertoire of
unstable patterns; as we watch a turbulent system evolve, every so often
we catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

draft 9.4.0, June 18 2003 intro - 3jun2003



8 CHAPTER 1. OVERTURE

For any finite spatial resolution, the system follows approximately for a
finite time a pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space
of such patterns. Recasting this image into mathematics is what this book
is about.

1.3.2 When does “chaos” matter?

Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?
W. Shakespeare, Hamlet

When should we be mindful of chaos? The solar system is “chaotic”,
yet we have no trouble keeping track of the annual motions of planets. The
rule of thumb is this; if the Lyapunov time (1.1) (the time by which a phase
space region initially comparable in size to the observational accuracy ex-
tends across the entire accessible phase space) is significantly shorter than
the observational time, you need to master the theory that will be devel-
oped here. That is why the main successes of the theory are in statistical
mechanics, quantum mechanics, and questions of long term stability in ce-
lestial mechanics.

As in science popularizations too much has been made of the impact of
the “chaos theory”, a number of caveats are already needed at this point.

At present the theory is in practice applicable only to systems with a
low intrinsic dimension – the minimum number of degrees of freedom nec-
essary to capture its essential dynamics. If the system is very turbulent
(description of its long time dynamics requires a space of high intrinsic
dimension) we are out of luck. Hence insights that the theory offers to elu-
cidation of problems of fully developed turbulence, quantum field theory of
strong interactions and early cosmology have been modest at best. Even
that is a caveat with qualifications. There are applications – such as spa-

☞ sect. 2.4.1
tially extended systems and statistical mechanics applications – where the

☞ chapter 20 few important degrees of freedom can be isolated and studied profitably by
methods to be described here.

The theory has had limited practical success applied to the very noisy
systems so important in life sciences and in economics. Even though we
are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal interburst intervals, cardiac pulse,
etc.), disentangling “chaotic” motions from the environmental noise has
been very hard.

intro - 3jun2003 draft 9.4.0, June 18 2003



1.4. A GAME OF PINBALL 9

1.4 A game of pinball

Formulas hamper the understanding.
S. Smale

We are now going to get down to the brasstacks. But first, a disclaimer:
If you understand most of the rest of this chapter on the first reading, you
either do not need this book, or you are delusional. If you do not understand
it, is not because the people who wrote it are so much smarter than you:
the most one can hope for at this stage is to give you a flavor of what lies
ahead. If a statement in this chapter mystifies/intrigues, fast forward to
a section indicated by ☞ on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALL of it, or
otherwise we would not have written it up in the first place.

Confronted with a potentially chaotic dynamical system, we analyze it
through a sequence of three distinct stages; diagnose, count, measure. I.
First we determine the intrinsic dimension of the system – the minimum
number of degrees of freedom necessary to capture its essential dynamics. If
the system is very turbulent (description of its long time dynamics requires a
space of high intrinsic dimension) we are, at present, out of luck. We know
only how to deal with the transitional regime between regular motions
and a few chaotic degrees of freedom. That is still something; even an
infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime the chaotic

☞ sect. 2.4.1
dynamics is restricted to a space of low dimension, the number of relevant
parameters is small, and we can proceed to step II; we count and classify

☞ chapter 9

☞ chapter 10
all possible topologically distinct trajectories of the system into a hierarchy
whose successive layers require increased precision and patience on the part
of the observer. This we shall do in sects. 1.4 and 1.4.1. If successful, we can
proceed with step III of sect. 1.5.1: investigate the weights of the different
pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III – measure – in sect. 1.5.1.

☞ chapter 15

With the game of pinball we are in luck – it is a low dimensional system,
free motion in a plane. The motion of a point particle is such that after a
collision with one disk it either continues to another disk or it escapes. If
we label the three disks by 1, 2 and 3, we can associate every trajectory
with an itinerary, a sequence of labels which indicates the order in which the
disks are visited; for example, the two trajectories in fig. 1.2 have itineraries
2313 , 23132321 respectively. The itinerary will be finite for a scattering

trajectory, coming in from infinity and escaping after a finite number of
collisions, infinite for a trapped trajectory, and infinitely repeating for a
periodic orbit. Parenthetically, in this subject the words “orbit” and ✎ 1.1

page 29
“trajectory” refer to one and the same thing.

Such labeling is the simplest example of symbolic dynamics. As the
particle cannot collide two times in succession with the same disk, any two

draft 9.4.0, June 18 2003 intro - 3jun2003



10 CHAPTER 1. OVERTURE

Figure 1.4: Binary labeling of the 3-disk pin-
ball trajectories; a bounce in which the trajec-
tory returns to the preceding disk is labeled 0,
and a bounce which results in continuation to
the third disk is labeled 1.

consecutive symbols must differ. This is an example of pruning, a rule
that forbids certain subsequences of symbols. Deriving pruning rules is in
general a difficult problem, but with the game of pinball we are lucky -
there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each
bounce we can either proceed to the next disk or return to the previous disk,
the above 3-letter alphabet can be replaced by a binary {0, 1} alphabet,
fig. 1.4. A clever choice of an alphabet will incorporate important features
of the dynamics, such as its symmetries.

☞ sect. 9.7

Suppose you wanted to play a good game of pinball, that is, get the
pinball to bounce as many times as you possibly can – what would be a
winning strategy? The simplest thing would be to try to aim the pinball so
it bounces many times between a pair of disks – if you managed to shoot
it so it starts out in the periodic orbit bouncing along the line connecting
two disk centers, it would stay there forever. Your game would be just as
good if you managed to get it to keep bouncing between the three disks
forever, or place it on any periodic orbit. The only rub is that any such
orbit is unstable, so you have to aim very accurately in order to stay close
to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important – they form the skeleton onto
which all trajectories trapped for long times cling.

☞ sect. 29.2

1.4.1 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum.
We shall refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated - some examples
are drawn in fig. 1.5 - but it is rather hard to perceive the systematics of
orbits from their shapes. In mechanics a trajectory is fully and uniquely
specified by its position and momentum at a given instant, and no two dis-
tinct phase space trajectories can intersect. Their projections on arbitrary
subspaces, however, can and do intersect, in rather unilluminating ways. In
the pinball example the problem is that we are looking at the projections
of a 4-dimensional phase space trajectories onto a 2-dimensional subspace,
the space coordinates. A clearer picture of the dynamics is obtained by
constructing a phase space Poincaré section.

The position of the ball is described by a pair of numbers (the spatial
coordinates on the plane) and its velocity by another pair of numbers (the

intro - 3jun2003 draft 9.4.0, June 18 2003



1.4. A GAME OF PINBALL 11

Figure 1.5: Some examples of 3-disk cycles:
(a) 12123 and 13132 are mapped into each
other by the flip across 1 axis. Similarly (b)
123 and 132 are related by flips, and (c) 1213,
1232 and 1323 by rotations. (d) The cycles
121212313 and 121212323 are related only by
time reversal. These symmetries are discussed
in more detail in chapter 19. (from ref. [1.2])

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

Figure 1.6: (a) The Poincaré section coordinates for the 3-disk game of pinball. (b)
Collision sequence (s1, p1) �→ (s2, p2) �→ (s3, p3) from the boundary of a disk to the
boundary of the next disk presented in the Poincaré section coordinates.

components of the velocity vector). As far as baron Leibniz is concerned,
this is a complete description.

Suppose that the pinball has just bounced off disk 1. Depending on its
position and outgoing angle, it could proceed to either disk 2 or 3. Not much
happens in between the bounces – the ball just travels at constant velocity
along a straight line – so we can reduce the four-dimensional flow to a two-
dimensional map f that takes the coordinates of the pinball from one disk
edge to another disk edge. Let us state this more precisely: the trajectory
just after the moment of impact is defined by marking sn, the arc-length
position of the nth bounce along the billiard wall, and pn = p sinφn the
momentum component parallel to the billiard wall at the point of impact,
fig. 1.6. Such section of a flow is called a Poincaré section, and the
particular choice of coordinates (due to Birkhoff) is particularly smart, as
it conserves the phase-space volume. In terms of the Poincaré section, the
dynamics is reduced to the return map P : (sn, pn) �→ (sn+1, pn+1) from the
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12 CHAPTER 1. OVERTURE

Figure 1.7: (a) A trajectory starting out from
disk 1 can either hit another disk or escape. (b)
Hitting two disks in a sequence requires a much
sharper aim. The cones of initial conditions that
hit more and more consecutive disks are nested
within each other, as in fig. 1.8.

Figure 1.8: Ternary labeled regions of the 3-disk game of pinball phase space Poincaré
section which correspond to trajectories that originate on disk 1 and remain confined
for (a) one bounce, (b) two bounces, (c) three bounces. The Poincaré sections for
trajectories originating on the other two disks are obtained by the appropriate relabeling
of the strips (K.T. Hansen [1.3]).

boundary of a disk to the boundary of the next disk. The explicit form of
this map is easily written down, but it is of no importance right now.

☞ sect. 5

Next, we mark in the Poincaré section those initial conditions which
do not escape in one bounce. There are two strips of survivors, as the
trajectories originating from one disk can hit either of the other two disks,
or escape without further ado. We label the two stripsM0,M1. Embedded
within them there are four stripsM00,M10,M01,M11 of initial conditions
that survive for two bounces, and so forth, see figs. 1.7 and 1.8. Provided
that the disks are sufficiently separated, after n bounces the survivors are
divided into 2n distinct strips: the Mith strip consists of all points with
itinerary i = s1s2s3 . . . sn, s = {0, 1}. The unstable cycles as a skeleton
of chaos are almost visible here: each such patch contains a periodic point
s1s2s3 . . . sn with the basic block infinitely repeated. Periodic points are
skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to have a symbolic dynamics; it provides a nav-
igation chart through chaotic phase space. There exists a unique trajectory
for every admissible infinite length itinerary, and a unique itinerary labels
every trapped trajectory. For example, the only trajectory labeled by 12 is
the 2-cycle bouncing along the line connecting the centers of disks 1 and 2;
any other trajectory starting out as 12 . . . either eventually escapes or hits
the 3rd disk.

1.4.2 Escape rate

☞ remark 7.1

What is a good physical quantity to compute for the game of pinball? Such
system, for which almost any trajectory eventually leaves a finite region
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1.5. CHAOS FOR CYCLISTS 13

(the pinball table) never to return, is said to be open, or a repeller. The
repeller escape rate is an eminently measurable quantity. An example of
such measurement would be an unstable molecular or nuclear state which
can be well approximated by a classical potential with possibility of escape
in certain directions. In an experiment many projectiles are injected into
such a non-confining potential and their mean escape rate is measured, as
in fig. 1.1. The numerical experiment might consist of injecting the pinball
between the disks in some random direction and asking how many times
the pinball bounces on the average before it escapes the region between the
disks. ✎ 1.2

page 29For a theorist a good game of pinball consists in predicting accurately
the asymptotic lifetime (or the escape rate) of the pinball. We now show
how the periodic orbit theory accomplishes this for us. Each step will be so
simple that you can follow even at the cursory pace of this overview, and
still the result is surprisingly elegant.

Consider fig. 1.8 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total
area that remains at a given time is the sum of the areas of the strips, so
that the fraction of survivors after n bounces, or the survival probability is
given by

Γ̂1 =
|M0|
|M| +

|M1|
|M| , Γ̂2 =

|M00|
|M| +

|M10|
|M| +

|M01|
|M| +

|M11|
|M| ,

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |Mi| is the
area of the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary
number. Since at each bounce one routinely loses about the same fraction
of trajectories, one expects the sum (1.2) to fall off exponentially with n
and tend to the limit

Γ̂n+1/Γ̂n = e−γn → e−γ . (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

We shall now show that the escape rate γ can be extracted from a highly
convergent exact expansion by reformulating the sum (1.2) in terms of un-
stable periodic orbits.

If, when asked what the 3-disk escape rate is for disk radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape
rate is roughly γ = 0.4103384077693464893384613078192 . . ., you do not
need this book. If you have no clue, hang on.
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14 CHAPTER 1. OVERTURE

1.5.1 Size of a partition

Not only do the periodic points keep track of locations and the ordering of
the strips, but, as we shall now show, they also determine their size.

As a trajectory evolves, it carries along and distorts its infinitesimal
neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). To linear order, the
evolution of the distance to a neighboring trajectory xi(t) + δxi(t) is given
by the Jacobian matrix

δxi(t) =
d∑

j=1

Jt(x0)ijδx0j , Jt(x0)ij =
∂xi(t)
∂x0j

.

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a longish exercise - here we just state the result.

☞ sect. 5.3
The Jacobian matrix describes the deformation of an infinitesimal neigh-
borhood of x(t) as it goes with the flow; its the eigenvectors and eigenvalues
give the directions and the corresponding rates of its expansion or contrac-
tion. The trajectories that start out in an infinitesimal neighborhood are
separated along the unstable directions (those whose eigenvalues are less
than unity in magnitude), approach each other along the stable directions
(those whose eigenvalues exceed unity in magnitude), and maintain their
distance along the marginal directions (those whose eigenvalues equal unity
in magnitude). In our game of pinball the beam of neighboring trajectories
is defocused along the unstable eigendirection of the Jacobian matrix J.

As the heights of the strips in fig. 1.8 are effectively constant, we can
concentrate on their thickness. If the height is ≈ L, then the area of the
ith strip is Mi ≈ Lli for a strip of width li.

Each strip i in fig. 1.8 contains a periodic point xi. The finer the inter-
vals, the smaller is the variation in flow across them, and the contribution
from the strip of width li is well approximated by the contraction around
the periodic point xi within the interval,

li = ai/|Λi| , (1.4)

where Λi is the unstable eigenvalue of the Jacobian matrix Jt(xi) evaluated
at the ith periodic point for t = Tp, the full period (due to the low dimen-
sionality, the Jacobian can have at most one unstable eigenvalue). Note
that it is the magnitude of this eigenvalue which is important and we can
disregard its sign. The prefactors ai reflect the overall size of the system
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1.5. CHAOS FOR CYCLISTS 15

and the particular distribution of starting values of x. As the asymptotic
trajectories are strongly mixed by bouncing chaotically around the repeller,
we expect them to be insensitive to smooth variations in the initial distri-
bution.

☞ sect. 7.3

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth
of Λi, so we neglect them. If the hyperbolicity assumption is justified, we

☞ sect. 11.1.1
can replace |Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =
(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a
generating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑

n=1

Γnzn . (1.5)

Recall that for large n the nth level sum (1.2) tends to the limit Γn → e−nγ ,
so the escape rate γ is determined by the smallest z = eγ for which (1.5)
diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n =
ze−γ

1− ze−γ
. (1.6)

This is the property of Γ(z) which motivated its definition. We now devise
an alternate expression for (1.5) in terms of periodic orbits to make explicit
the connection between the escape rate and the periodic orbits:

Γ(z) =
∞∑

n=1

zn

(n)∑
i

|Λi|−1

=
z

|Λ0|
+

z

|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.7)

For sufficiently small z this sum is convergent. The escape rate γ is now
☞ sect. 11.4

given by the leading pole of (1.6), rather than a numerical extrapolation of
a sequence of γn extracted from (1.3). As any finite truncation n < ntrunc

of (1.7) is a polynomial in z, convergent for any z, finding this pole requires
that we know something about Γn for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity
of Γ(z) from finite truncations of (1.7) by methods such as Padé approx-
imants. However, as we shall now show, it pays to first perform a simple
resummation that converts this divergence into a zero of a related function.
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16 CHAPTER 1. OVERTURE

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λr
p.

A prime cycle p is a single traversal of the orbit; its label is a non-repeating
symbol string of np symbols. There is only one prime cycle for each cyclic
permutation class. For example, p = 0011 = 1001 = 1100 = 0110 is prime,
but 0101 = 01 is not. By the chain rule for derivatives the stability of a✎ 10.5

page 183

☞ sect. 4.4

cycle is the same everywhere along the orbit, so each prime cycle of length
np contributes np terms to the sum (1.7). Hence (1.7) can be rewritten as

Γ(z) =
∑

p

np

∞∑
r=1

(
znp

|Λp|

)r

=
∑

p

nptp
1− tp

, tp =
znp

|Λp|
(1.8)

where the index p runs through all distinct prime cycles. Note that we
have resumed the contribution of the cycle p to all times, so truncating the
summation up to given p is not a finite time n ≤ np approximation, but
an asymptotic, infinite time estimate based by approximating stabilities of
all cycles by a finite number of the shortest cycles and their repeats. The
npz

np factors in (1.8) suggest rewriting the sum as a derivative

Γ(z) = −z
d

dz

∑
p

ln(1− tp) .

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏
p

(1− tp) , tp =
znp

|Λp|
. (1.9)

This function is called the dynamical zeta function, in analogy to the Rie-
mann zeta function, which motivates the choice of “zeta” in its definition as
1/ζ(z). This is the prototype formula of the periodic orbit theory. The zero
of 1/ζ(z) is a pole of Γ(z), and the problem of estimating the asymptotic
escape rates from finite n sums such as (1.2) is now reduced to a study of
the zeros of the dynamical zeta function (1.9). The escape rate is related
by (1.6) to a divergence of Γ(z), and Γ(z) diverges whenever 1/ζ(z) has a
zero.

☞ sect. 16.1

☞ sect. 12.4 Easy, you say: “Zeros of (1.9) can be read off the formula, a zero zp =
|Λp|1/np for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths
and eigenvalues of the shortest cycles. This usually requires some numerical
work, such as the Newton’s method searches for periodic solutions; we shall
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1.5. CHAOS FOR CYCLISTS 17

assume that the numerics is under control, and that all short cycles up to
given length have been found. In our pinball example this can be done

chapter 14
by elementary geometrical optics. It is very important not to miss any
short cycles, as the calculation is as accurate as the shortest cycle dropped
– including cycles longer than the shortest omitted does not improve the
accuracy (unless exponentially many more cycles are included). The result
of such numerics is a table of the shortest cycles, their periods and their
stabilities.

☞ sect. 14.4.3

Now expand the infinite product (1.9), grouping together the terms of
the same total symbol string length

1/ζ = (1− t0)(1− t1)(1− t10)(1− t100) · · ·
= 1− t0 − t1 − [t10 − t1t0]− [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)
+(t1001 − t1t001 − t101t0 + t10t0t1)]− . . . (1.10)

The virtue of the expansion is that the sum of all terms of the same total
☞ chapter 15

length n (grouped in brackets above) is a number that is exponentially
smaller than a typical term in the sum, for geometrical reasons we explain
in the next section.

☞ sect. 15.1

The calculation is now straightforward. We substitute a finite set of the
eigenvalues and lengths of the shortest prime cycles into the cycle expansion
(1.10), and obtain a polynomial approximation to 1/ζ. We then vary z in
(1.9) and determine the escape rate γ by finding the smallest z = eγ for
which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that
the convergence is very impressive: only three input numbers (the two fixed
points 0, 1 and the 2-cycle 10) already yield the pinball escape rate to 3-4
significant digits! We have omitted an infinity of unstable cycles; so why

☞ sect. 15.1.3
does approximating the dynamics by a finite number of the shortest cycle
eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a
consequence of the smoothness and analyticity of the underlying flow.
Intuitively, one can understand the convergence in terms of the geometrical
picture sketched in fig. 1.9; the key observation is that the long orbits are
shadowed by sequences of shorter orbits.

A typical term in (1.10) is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}

tab − tatb = tab(1− tatb/tab) = tab

(
1−

∣∣∣∣ Λab

ΛaΛb

∣∣∣∣) , (1.11)
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18 CHAPTER 1. OVERTURE

Figure 1.9: Approximation to (a) a smooth dynamics by (b) the skeleton of periodic
points, together with their linearized neighborhoods. Indicated are segments of two
1-cycles and a 2-cycle that alternates between the neighborhoods of the two 1-cycles,
shadowing first one of the two 1-cycles, and then the other.

where a and b are symbol sequences of the two shorter cycles. If all orbits
are weighted equally (tp = znp), such combinations cancel exactly; if orbits
of similar symbolic dynamics have similar weights, the weights in such
combinations almost cancel.

This can be understood in the context of the pinball game as follows.
Consider orbits 0, 1 and 01. The first corresponds to bouncing between any
two disks while the second corresponds to bouncing successively around all
three, tracing out an equilateral triangle. The cycle 01 starts at one disk,
say disk 2. It then bounces from disk 3 back to disk 2 then bounces from disk
1 back to disk 2 and so on, so its itinerary is 2321. In terms of the bounce
types shown in fig. 1.4, the trajectory is alternating between 0 and 1. The
incoming and outgoing angles when it executes these bounces are very close
to the corresponding angles for 0 and 1 cycles. Also the distances traversed
between bounces are similar so that the 2-cycle expanding eigenvalue Λ01

is close in magnitude to the product of the 1-cycle eigenvalues Λ0Λ1.

To understand this on a more general level, try to visualize the partition
of a chaotic dynamical system’s phase space in terms of cycle neighborhoods
as a tessellation of the dynamical system, with smooth flow approximated
by its periodic orbit skeleton, each “face” centered on a periodic point, and
the scale of the “face” determined by the linearization of the flow around
the periodic point, fig. 1.9.

The orbits that follow the same symbolic dynamics, such as {ab} and
a “pseudo orbit” {a}{b}, lie close to each other in the phase space; long
shadowing pairs have to start out exponentially close to beat the expo-
nential growth in separation with time. If the weights associated with the
orbits are multiplicative along the flow (for example, by the chain rule for
products of derivatives) and the flow is smooth, the term in parenthesis
in (1.11) falls off exponentially with the cycle length, and therefore the
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curvature expansions are expected to be highly convergent.
☞ chapter 13

1.6 Evolution

The above derivation of the dynamical zeta function formula for the escape
rate has one shortcoming; it estimates the fraction of survivors as a function
of the number of pinball bounces, but the physically interesting quantity is
the escape rate measured in units of continuous time. For continuous time
flows, the escape rate (1.2) is generalized as follows. Define a finite phase
space region M such that a trajectory that exits M never reenters. For
example, any pinball that falls of the edge of a pinball table in fig. 1.1 is gone
forever. Start with a uniform distribution of initial points. The fraction of
initial x whose trajectories remain within M at time t is expected to decay
exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over
y tests whether this trajectory is still in M at time t. The kernel of this
integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.12)

is the Dirac delta function, as for a deterministic flow the initial point x
maps into a unique point y at time t. For discrete time, fn(x) is the nth
iterate of the map f . For continuous flows, f t(x) is the trajectory of the
initial point x, and it is appropriate to express the finite time kernel Lt in
terms of a generator of infinitesimal time translations

Lt = etA ,

☞ sect. 7.4.1

☞ chapter 25very much in the way the quantum evolution is generated by the Hamilto-
nian H, the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a
name, and refer to it and its generalizations as the evolution operator for a
d-dimensional map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle
length (in case at hand, as 2n). As we have already seen, this exponential
proliferation of cycles is not as dangerous as it might seem; as a matter of
fact, all our computations will be carried out in the n →∞ limit. Though
a quick look at chaotic dynamics might reveal it to be complex beyond
belief, it is still generated by a simple deterministic law, and with some
luck and insight, our labeling of possible motions will reflect this simplicity.
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20 CHAPTER 1. OVERTURE

Figure 1.10: The trace of an evolution operator is concentrated in tubes around
prime cycles, of length Tp and thickness 1/|Λp|r for rth repeat of the prime cycle p.

If the rule that gets us from one level of the classification hierarchy to
the next does not depend strongly on the level, the resulting hierarchy is
approximately self-similar. We now turn such approximate self-similarity to
our advantage, by turning it into an operation, the action of the evolution
operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

Recasting dynamics in terms of evolution operators changes everything.
So far our formulation has been heuristic, but in the evolution operator
formalism the escape rate and any other dynamical average are given by
exact formulas, extracted from the spectra of evolution operators. The key
tools are the trace formulas and the spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The
explicit expression (1.12) for Lt(x, y) enables us to evaluate the trace. Iden-
tify y with x and integrate x over the whole phase space. The result is an
expression for trLt as a sum over neighborhoods of prime cycles p and their
repetitions

☞ sect. 11.3

trLt =
∑

p

Tp

∞∑
r=1

δ(t− rTp)∣∣det
(
1− Jr

p

)∣∣ . (1.13)

This formula has a simple geometrical interpretation sketched in fig. 1.10.
After the rth return to a Poincaré section, the initial tube Mp has been
stretched out along the expanding eigendirections, with the overlap with
the initial volume given by 1/

∣∣det
(
1− Jr

p

)∣∣→ 1/|Λp|.

The “spiky” sum (1.13) is disquieting in the way reminiscent of the
Poisson resummation formulas of Fourier analysis; the left-hand side is the
smooth eigenvalue sum tr eA =

∑
esαt, while the right-hand side equals
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zero everywhere except for the set t = rTp. A Laplace transform smooths
the sum over Dirac delta functions in cycle periods and yields the trace
formula for the eigenspectrum s0, s1, · · · of the classical evolution operator:

∫ ∞

0+

dt e−st trLt = tr
1

s−A =
∞∑

α=0

1
s− sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jr

p

)∣∣ . (1.14)

The beauty of the trace formulas lies in the fact that everything on the right-
☞ sect. 11.1

hand-side – prime cycles p, their periods Tp and the stability eigenvalues
of Jp – is an invariant property of the flow, independent of any coordinate
choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms
of traces, using the identities ✎ 4.1

page 77

ln det (s−A) = tr ln(s−A)
d

ds
ln det (s−A) = tr

1
s−A ,

and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed:

☞ chapter 12

det (s−A) = exp

(
−
∑

p

∞∑
r=1

1
r

e−sTpr∣∣det
(
1− Jr

p

)∣∣
)

. (1.15)

The s integration leads here to replacement Tp → Tp/rTp in the periodic
orbit expansion (1.14).

The motivation for recasting the eigenvalue problem in this form is
sketched in fig. 1.11; exponentiation improves analyticity and trades in a
divergence of the trace sum for a zero of the spectral determinant. The

☞ sect. 12.5.1
computation of the zeros of det (s − A) proceeds very much like the com-
putations of sect. 1.5.3.

1.7 From chaos to statistical mechanics

While the above replacement of dynamics of individual trajectories by evo-
lution operators which propagate densities might feel like just another bit
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Figure 1.11: Spectral determinant is prefer-
able to the trace as it vanishes smoothly at the
leading eigenvalue, while the trace formula di-
verges.

of mathematical voodoo, actually something very radical has taken place.
Consider a chaotic flow, such as stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the
fluid would forever remain a striated combination of pure white and pure
red; there would be no pink. What is more, if we reversed stirring, we
would return back to the perfect white/red separation. However, we know
that this cannot be true – in a very few turns of the stirring stick the thick-
ness of the layers goes from centimeters to Ångströms, and the result is
irreversibly pink.

Understanding the distinction between evolution of individual trajecto-
ries and the evolution of the densities of trajectories is key to understand-
ing statistical mechanics – this is the conceptual basis of the second law of
thermodynamics, and the origin of irreversibility of the arrow of time for
deterministic systems with time-reversible equations of motion: reversibil-
ity is attainable for distributions whose measure in the space of density
functions goes exponentially to zero with time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, but instead
gain a very effective description of the asymptotic trajectory densities. This
will enable us, for example, to give exact formulas for transport coefficients
such as the diffusion constants without any probabilistic assumptions (such

☞ chapter 20
as the stosszahlansatz of Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics
applies only to systems with very many degrees of freedom. More recent
is the realization that much of statistical mechanics follows from chaotic
dynamics, and already at the level of a few degrees of freedom the evolution
of densities is irreversible. Furthermore, the theory that we shall develop
here generalizes notions of “measure” and “averaging” to systems far from
equilibrium, and transports us into regions hitherto inaccessible with the
tools of the equilibrium statistical mechanics.

The results of the equilibrium statistical mechanics do help us, however,
to understand the ways in which the simple-minded periodic orbit theory
falters. A non-hyperbolicity of the dynamics manifests itself in power-law
correlations and even “phase transitions”.

☞ chapter 18
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1.8 Guide to literature

But the power of instruction is seldom of much effi-
cacy, except in those happy dispositions where it is
almost superfluous.
Gibbon

This text aims to bridge the gap between the physics and mathematics dy-
namical systems literature. The intended audience is the dream graduate
student, with a theoretical bent. As a complementary presentation we rec-
ommend Gaspard’s monograph [1.4] which covers much of the same ground
in a highly readable and scholarly manner.

As far as the prerequisites are concerned - this book is not an intro-
duction to nonlinear dynamics. Nonlinear science requires a one semester
basic course (advanced undergraduate or first year graduate). A good start
is the textbook by Strogatz [1.5], an introduction to flows, fixed points,
manifolds, bifurcations. It is probably the most accessible introduction
to nonlinear dynamics - it starts out with differential equations, and its
broadly chosen examples and many exercises make it favorite with stu-
dents. It is not strong on chaos. There the textbook of Alligood, Sauer and
Yorke [1.6] is preferable: an elegant introduction to maps, chaos, period
doubling, symbolic dynamics, fractals, dimensions - a good companion to
this book. An introduction more comfortable to physicists is the textbook
by Ott [1.7], with baker’s map used to illustrate many key techniques in
analysis of chaotic systems. It is perhaps harder than the above two as the
first book on nonlinear dynamics.

An introductory course should give students skills in qualitative and
numerical analysis of dynamical systems for short times (trajectories, fixed
points, bifurcations) and familiarize them with Cantor sets and symbolic
dynamics for chaotic dynamics. With this, and a graduate level exposure to
statistical mechanics, partial differential equations and quantum mechanics,
the stage is set for any of the one-semester advanced courses based on this
book. The courses taught so far start out with the introductory chapters
on qualitative dynamics, symbolic dynamics and flows, and then continue
in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace
formulas, zeta functions, cycle expansions, Lyapunov exponents, billiards,
transport coefficients, thermodynamic formalism, period doubling, renor-
malization operators.

Spatiotemporal dynamical systems. Partial differential equations
for dissipative systems, weak amplitude expansions, normal forms, symme-
tries and bifurcations, pseudospectral methods, spatiotemporal chaos.

Quantum chaology. Semiclassical propagators, density of states,
trace formulas, semiclassical spectral determinants, billiards, semiclassical
helium, diffraction, creeping, tunneling, higher � corrections.
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This book concentrates on the periodic orbit theory. The role of un-
stable periodic orbits was already fully appreciated by Poincaré [1.8, 1.9],
who noted that hidden in the apparent chaos is a rigid skeleton, a tree of
cycles (periodic orbits) of increasing lengths and self-similar structure, and
suggested that the cycles should be the key to chaotic dynamics. Periodic
orbits have been at core of much of the mathematical work on the the-
ory of the classical and quantum dynamical systems ever since. We refer
the reader to the reprint selection [1.10] for an overview of some of that
literature.

If you find this book not rigorous enough, you should turn to the math-
ematics literature. The most extensive reference is the treatise by Katok
and Hasselblatt [1.11], an impressive compendium of modern dynamical
systems theory. The fundamental papers in this field, all still valuable
reading, are Smale [1.12], Bowen [1.13] and Sinai [1.14]. Sinai’s paper is
prescient and offers a vision and a program that ties together dynamical
systems and statistical mechanics. It is written for readers versed in statis-
tical mechanics. Markov partitions were introduced by Sinai in ref. [1.15].
The classical text (though certainly not an easy read) on the subject of
dynamical zeta functions is Ruelle’s Statistical Mechanics, Thermodynamic
Formalism [1.16]. In Ruelle’s monograph transfer operator technique (or
the “Perron-Frobenius theory”) and Smale’s theory of hyperbolic flows are
applied to zeta functions and correlation functions. The status of the the-
ory from Ruelle’s point of view is compactly summarized in his 1995 Pisa
lectures [1.17]. Further excellent mathematical references on thermody-
namic formalism are Parry and Pollicott’s monograph [1.18] with emphasis
on the symbolic dynamics aspects of the formalism, and Baladi’s clear and
compact reviews of the theory dynamical zeta functions [1.19, 1.20].

A graduate level introduction to statistical mechanics from the dynam-
ical point view is given by Dorfman [1.21]; the Gaspard monograph [1.4]
covers the same ground in more depth. Driebe monograph [1.22] offers a
nice introduction to the problem of irreversibility in dynamics. The role of
“chaos” in statistical mechanics is critically dissected by Bricmont in his
highly readable essay “Science of Chaos or Chaos in Science?” [1.23].

If you were wandering while reading this introduction “what’s up with
rat brains?”, the answer is yes indeed, there is a line of research in study
on neuronal dynamics that focuses on possible unstable periodic states,
described for example in ref. [1.25].

Guide to exercises

God can afford to make mistakes. So can Dada!
Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to
develop intuition about chaotic dynamics is by computing, and the reader is
urged to try to work through the essential exercises. Some of the solutions
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provided might be more illuminating than the main text. So as not to
fragment the text, the exercises are indicated by text margin boxes such
as the one on this margin, and collected at the end of each chapter. The ✎ 15.2

page 290
problems that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.
By the end of the course you should have completed at least three projects:
(a) compute everything for a one-dimensional repeller, (b) compute escape
rate for a 3-disk game of pinball, (c) compute a part of the quantum 3-disk
game of pinball, or the helium spectrum, or if you are interested in statistical
rather than the quantum mechanics, compute a transport coefficient. The
essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1

2. pinball simulator, exercise 5.1, exercise 14.4

3. pinball stability, exercise 5.5, exercise 14.4

4. pinball periodic orbits, exercise 14.5, exercise 14.6

5. helium integrator, exercise 2.9, exercise 14.7

6. helium periodic orbits, exercise 28.4, exercise 14.8

• Averaging, numerical

1. pinball escape rate, exercise 12.12

2. Lyapunov exponent, exercise 17.2

• Averaging, periodic orbits

1. cycle expansions, exercise 15.1, exercise 15.2

2. pinball escape rate, exercise 15.4, exercise 15.5

3. cycle expansions for averages, exercise 15.1, exercise 16.3

4. cycle expansions for diffusion, exercise 20.1

5. desymmetrization exercise 19.1

6. semiclassical quantization exercise 27.3

7. ortho-, para-helium, lowest eigenenergies exercise 28.7

Solutions for some of the problems are included appendix O. Often
going through a solution is more instructive than reading the corresponding
chapter.

Résumé

The goal of this text is an exposition of the best of all possible theories of
deterministic chaos, and the strategy is: 1) count, 2) weigh, 3) add up.
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In a chaotic system any open ball of initial conditions, no matter how
small, will spread over the entire accessible phase space. Hence the theory
focuses on description of the geometry of the space of possible outcomes,
and evaluation of averages over this space, rather than attempting the
impossible, precise prediction of individual trajectories. The dynamics of
distributions of trajectories is described in terms of evolution operators. In
the evolution operator formalism the dynamical averages are given by exact
formulas, extracted from the spectra of evolution operators. The key tools
are the trace formulas and the spectral determinants.

The theory of evaluation of spectra of evolution operators presented
here is based on the observation that the motion in dynamical systems of
few degrees of freedom is often organized around a few fundamental cycles.
These short cycles capture the skeletal topology of the motion on a strange
attractor in the sense that any long orbit can approximately be pieced to-
gether from the nearby periodic orbits of finite length. This notion is made
precise by approximating orbits by prime cycles, and evaluating associated
curvatures. A curvature measures the deviation of a longer cycle from its
approximation by shorter cycles; smoothness and the local instability of
the flow implies exponential (or faster) fall-off for (almost) all curvatures.
Cycle expansions offer then an efficient method for evaluating classical and
quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, that is the assumption of exponential shrinkage
of all strips of the pinball repeller. By dropping the ai prefactors in (1.4),
we have given up on any possibility of recovering the precise distribution
of starting x (which should anyhow be impossible due to the exponential
growth of errors), but in exchange we gain an effective description of the
asymptotic behavior of the system. The pleasant surprise of cycle expan-
sions (1.9) is that the infinite time behavior of an unstable system is as
easy to determine as the short time behavior.

To keep exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in this book
– unstable flows, Poincaré sections, Smale horseshoes, symbolic dynamics,
pruning, discrete symmetries, periodic orbits, averaging over chaotic sets,
evolution operators, dynamical zeta functions, spectral determinants, cycle
expansions, quantum trace formulas and zeta functions, and so on to the
semiclassical quantization of helium – should give the reader some confi-
dence in the general applicability of the theory. The formalism should work
for any average over any chaotic set which satisfies two conditions:

1. the weight associated with the observable under consideration is
multiplicative along the trajectory,

2. the set is organized in such a way that the nearby points in the
symbolic dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities char-
acterizing chaotic systems, such as the escape rates, Lyapunov exponents,
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transport coefficients and quantum eigenvalues. One of the surprises is that
the quantum mechanics of classically chaotic systems is very much like the
classical mechanics of chaotic systems; both are described by nearly the
same zeta functions and cycle expansions, with the same dependence on
the topology of the classical flow.
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Exercises

Exercise 1.1 3-disk symbolic dynamics. As the periodic trajectories
will turn out to be the our main tool to breach deep into the realm of chaos,
it pays to start familiarizing oneself with them already now, by sketching and
counting the few shortest prime cycles (we return to this in sect. 10.4). Show
that the 3-disk pinball has 3 · 2n itineraries of length n. List periodic orbits of
lengths 2, 3, 4, 5, · · ·. Verify that the shortest 3-disk prime cycles are 12, 13,
23, 123, 132, 1213, 1232, 1323, 12123, · · ·. Try to sketch them.

Exercise 1.2 Sensitivity to initial conditions. Assume that two pinball

trajectories start out parallel, but separated by 1 Ångström, and the disks are
of radius a = 1 cm and center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the size of system (assuming
that the trajectories have been picked so they remain trapped for at least that
long). Estimate the Who’s Pinball Wizard’s typical score (number of bounces)
in game without cheating, by hook or crook (by the end of chapter 15 you
should be in position to make very accurate estimates).
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Chapter 2

Flows

Poetry is what is lost in translation
Robert Frost

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We start out by a recapitulation of the basic notions of dynamics. Our aim
is narrow; keep the exposition focused on prerequisites to the applications
to be developed in this text. We assume that the reader is familiar with
the dynamics on the level of introductory texts mentioned in sect. 1.8, and
concentrate here on developing intuition about what a dynamical system
can do. It will be a coarse brush sketch - a full description of all possible
behaviors of dynamical systems is anyway beyond human ken. For a novice
there is no shortcut through this lengthy detour; a sophisticated traveler
might prefer to skip this well trodden territory and embark upon the journey
at chapter 7.

fast track:

chapter 7, p. 101

2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We
express our observations as numbers and record how they change with time;
given sufficiently detailed information and understanding of the underlying
natural laws, we see the future in the present as in a mirror. The motion of

☞ sect. 1.3
the planets against the celestial firmament provides an example. Against
the daily motion of the stars from East to West, the planets distinguish
themselves by moving among the fixed stars. Ancients discovered that by
knowing a sequence of planet’s positions - latitudes and longitudes - its
future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial
sphere suffices to completely specify the planet’s apparent motion. All
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32 CHAPTER 2. FLOWS

possible values for positions and velocities of the planets form the phase
space of the system. More generally, a state of a physical system, at a given
instant in time, can be represented by a single point in an abstract space
called state space or phase space M. As the system changes, so does the
representative point in phase space. We refer to the evolution of such points
as dynamics, and the function f t which specifies where the representative
point is at time t as the evolution rule.

If there is a definite rule f that tells us how this representative point
moves in M, the system is said to be deterministic. For a deterministic
dynamical system, the evolution rule takes one point of the phase space
and maps it into another point. Not two or three, but exactly one. This
is not always possible. For example, knowing the temperature today is not
enough to predict the temperature tomorrow; or knowing the value of a
stock market index today will not determine its value tomorrow. The phase
space can be enlarged, in the hope that in a sufficiently large phase space it
is possible to determine an evolution rule, so we imagine that knowing the
state of the atmosphere, measured over many points over the entire planet
should be sufficient to determine the temperature tomorrow. Even that is
not quite true, and we are less hopeful when it comes to a stock index.

For a deterministic system almost every point has a unique future, so
trajectories cannot intersect. We say “almost” because there might exist a
set of measure zero (tips of wedges, cusps, etc.) for which a trajectory is not
defined. We may think such sets a nuisance, but it is quite the contrary -
they will enable us to partition phase space, so that the dynamics can be
better understood.

Locally, the phase spaceM is R
d, meaning that d numbers are sufficient

to determine what will happen next. Globally, it may be a more compli-
cated manifold formed by patching together several pieces of R

d, forming a
torus, a cylinder, or some other manifold. When we need to stress that the
dimension d of M is greater than one, we may refer to the point x ∈ M
as xi where i = 1, 2, 3, . . . , d. The evolution rule or dynamics f t :M→M
tells us where a point x is in M after a time interval t. The pair (M, f) is
called a dynamical system.

The dynamical systems we will be studying are smooth. This is ex-
pressed mathematically, by saying that the evolution rule f t can be dif-
ferentiated as many times as needed. Its action on a point x is sometimes
indicated by f(t, x) to remind us that f is really a function of two variables:
time interval and point of phase space. Note that time is not absolute, only
the time interval is necessary. This is because a point in phase space com-
pletely determines all future evolution, and it is not necessary to know
anything else. The time parameter can be a real variable (t ∈ R), in which
case the evolution is called a flow, or an integer (t ∈ Z), in which case the
evolution advances in discrete steps in time, given by iteration of a map.

Nature provides us with innumerable dynamical systems. They man-
ifest themselves through their trajectories: given an initial point x0, the
evolution rule traces out a sequence of points x(t) = f t(x0), the trajectory
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Figure 2.1: (a) A trajectory traced out by the evolution rule f t. Starting from the
phase space point x, after a time t, the point is at f t(x). (b) The evolution rule f tcan
be used to map a region Mi of the phase space into the region f t(Mi).

through the point x0 = x(0). A trajectory is parameterized by the time ✎ 2.1
page 45

t and thus belongs to (f t(x0), t) ∈ M⊗ R. By extension, we can also talk
of the evolution of a region Mi of the phase space: just apply f t to every
point in Mi to obtain a new region f t(Mi), as in fig. 2.1.

Because f t is a single-valued function, any point of the trajectory can
be used to label the trajectory. If we mark the trajectory by its inital point
x0, we are describing it in the Lagrangian coordinates. We can regard the
transport of the material point at t = 0 to its current point x(t) = f t(x0)
as a coordinate transformation from the Lagrangian coordinates to the
Eulerian coordinates.

The subset of points in M that belong to the (possibly infinite) trajec-
tory of a given point x0 is called the orbit of x0; we shall talk about forward
orbits, backward orbits, periodic orbits. For a flow, an orbit is a continuous
curve; for a map, a sequence of points.

What are the possible trajectories? This is a grand question, and there
are many answers, chapters to follow offering some. Here we shall classify
possible trajectories as:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum period Tp

aperiodic: f t(x) 	= f t′(x) for all t 	= t′ .

The ancient, no less than the contemporary quantum field theorists,
tried to make sense of all dynamics in terms of periodic motions; epicycles,
integrable systems. The embarassing truth is that for a generic dynamical
systems most motions are aperiodic. We will break aperiodic motions up
into two types: those that wander off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open
neighborhood M0 of x to which the trajectory never returns

f t(x) /∈M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to as
transient.
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34 CHAPTER 2. FLOWS

A periodic orbit corresponds to a trajectory that returns exactly to
the initial point in a finite time. Periodic orbits form a very small subset
of the phase space, in the same sense that rational numbers are a set of
zero measure on the unit interval. For times much longer than a typical
“turnover” time, it makes sense to relax the notion of exact periodicity,
and replace it by the notion of recurrence. A point is recurrent or non-
wandering if for any open neighborhood M0 of x and any time tmin there
exists a later time t, such that

f t(x) ∈M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neigh-
borhood M0 infinitely often. We shall denote by Ω the non–wandering set
of f , that is the union of all the non-wandering points ofM. The set Ω, the
non–wandering set of f , is the key to understanding the long-time behavior
of a dynamical system; all calculations undertaken here will be carried out
on non–wandering sets.

So much about individual trajectories. What about clouds of initial
points? If there exists a connected phase space volume that maps into
itself under the forward evolution (and you can prove that by the method
of Lyapunov functionals, or any other method available in the literature),
the flow is globally contracting onto a subset of M which we shall refer to
as the attractor. The attractor may be unique, or there can coexist any
number of distinct attracting sets, each with its own basin of attraction,
the set of all points that fall into the attractor under foward evolution.

The attractor can be a fixed point, a periodic orbit, aperiodic, or any
combination of the above. The most interesting case is that of an aperiodic
reccurent attractor, to which we shall refer loosely as a strange attractor.

☞ sect. 2.2
We say loosely, as will soon become apparent, that diagnosing and proving
existence of a genuine, card carrying strange attractor is a highly nontrivial
undertaking.

Conversely, if we can enclose the non–wandering set Ω by a connected
phase space volume M0 and then show that almost all points within M0,
but not in Ω, eventually exit M0, we refer to the non–wandering set Ω as
a repeller. An example of a repeller is not hard to come by - the pinball
game of sect. 1.3 is a simple chaotic repeller.

It would seem, that having said that the periodic points are too ex-
ceptional, and that almost all non-wandering points are aperiodic, we have
given up the ancients’ fixation on periodic motions. Quite to the con-
trary. As longer and longer cycles approximate more and more accurately
finite segments of aperiodic trajectories, we shall establish control over non–
wandering sets by defining them as the closures of the union of all periodic
points.

Before we can work out an example of a non–wandering set and get a
better grip on what chaotic motion might look like, we need to ponder flows
in a little more depth.
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2.2 Flows

There is no beauty without some strangeness
William Blake

A flow is a continuous-time dynamical system. The evolution rule f t is
a family of mappings of M → M parameterized by t ∈ R. Because t
represents a time interval, any family of mappings that forms an evolution
rule must satisfy: ✎ 2.2

page 45

(a) f0(x) = x (in 0 time there is no motion)

(b) f t(f t′(x)) = f t+t′(x) (the evolution law is the same at all times)

(c) the mapping (x, t) �→ f t(x) from M× R into M is continuous.

The family of mappings f t(x) thus forms a continuous (forward semi-)
group. Why “semi-”group? It may fail to form a group if the dynamics
is not reversible, and the rule f t(x) cannot be used to rerun the dynamics
backwards in time, with negative t; with no reversibility, we cannot define
the inverse f−t(f t(x)) = f0(x) = x , in which case the family of mappings
f t(x) does not form a group. In exceedingly many situations of interest
- for times beyond the Lyapunov time, for asymptotic attractors, for infi-
nite dimensional systems, for systems with noise, for non-invertible maps

☞ sect. 2.4.1
- the dynamics cannot be run backwards in time, hence, the circumspect
emphasis on semigroups. On the other hand, there are many settings of
physical interest, where dynamics is reversible (such as finite-dimensional
Hamiltonian flows), and where the family of evolution maps f t does form
a group.

For infinitesimal times, flows can be defined by differential equations.
Write a trajectory as

x(t + τ) = f t+τ (x0) = f(f(x0, t), τ) (2.3)

and express the time derivative of a trajectory at point x(t),

dx

dτ

∣∣∣∣
τ=0

= ∂τf(f(x0, t), τ)|τ=0 = ẋ(t) . (2.4)

✎ 2.3
page 45as the time derivative of the evolution rule, a vector evaluated at the same

point. By considering all possible trajectories, we obtain the vector ẋ(t) at
any point x ∈M; this vector field is a (generalized) velocity field:

v(x) = ẋ(t) . (2.5)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar
procedures for obtaining a set of differential equations for the vector field
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(a) (b)

Figure 2.2: (a) The two-dimensional vector field for the Duffing system (2.6), to-
gether with a short trajectory segment. (b) The flow lines. Each “comet” represents
the same time interval of a trajectory, starting at the tail and ending at the head. The
longer the comet, the faster the flow in that region.

v(x) that describes the evolution of a mechanical system. Equations of
mechanics may appear different in form from (2.5), as they are often involve
higher time derivatives, but an equation that is second or higher order in
time can always be rewritten as a set of first order equations.

We are concerned here with a much larger world of general flows, me-
chanical or not, all defined by a time independent vector field (2.5). At each
point of the phase space a vector indicates the local direction in which the
orbit evolves. The length of the vector |v(x)| is proportional to the speed
at the point x, and the direction and length of v(x) changes from point to
point. When the phase space is a complicated manifold embedded in R

d,
one can no longer think of the vector field as being embedded in the phase
space. Instead, we have to imagine that each point x of phase space has a
different tangent plane TMx attached to it. The vector field lives in the
union of all these tangent planes, a space called the tangent bundle TM.

Example 2.1 A two-dimensional vector field v(x): A simple example of a flow
is afforded by the Duffing system

ẋ(t) = y(t)

ẏ(t) = 0.15 y(t)− x(t) + x(t)3 (2.6)

plotted in fig. 2.2. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of phase space M, but they belong to a different space, the
tangent bundle TM.

✎ 2.4
page 45

If v(xq) = 0 , (2.7)

xq is an equilibrium point (often referred to as a stationary, fixed, or stagna-
tion point), and the trajectory remains forever stuck at xq. Otherwise the
trajectory passing though x0 at time t = 0 can be obtained by integrating
the equations (2.5):

x(t) = f t(x0) = x0 +
∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.8)
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Figure 2.3: A trajectory of the Rössler flow
at time t = 250. (G. Simon)
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We shall consider here only the autonomous or stationary flows, that is
flows for which the velocity field vi is not explicitely dependent on time. A
non-autonomous system

dy

dτ
= w(y, τ) , (2.9)

can always be converted into a system where time does not appear explicitly.
To do so, extend the phase space to (d + 1)-dimensional x = {y, τ}, and
the vector field to

v(x) =
[

w(y, τ)
1

]
. (2.10)

✎ 2.5
page 45The new flow ẋ = v(x) is autonomous, and the trajectory y(τ) can be read

off x(t) by ignoring the last component of x.

Example 2.2 A flow with a strange attractor: A concrete example of an au-
tonomous flow is the Rössler system

ẋ = −y − z

ẏ = x + ay

ż = b + z(x− c) , a = b = 0.2 , c = 5.7 . (2.11)

The system is as simple as they get - it would be linear, were it not for the sole
quadratic term zx. Even for so simple a system the nature of long-time solutions is far
from obvious. In order to get a feel for what typical solutions look like we need to
resort to numerical integration. A typical numerically integrated long-time trajectory
is sketched in fig. 2.3. As we shall show in sect. 4.1, for this flow any finite volume of
initial conditions shrinks with time, so the flow is contracting. All trajectories seem
to converge to a strange attractor. We say “seem”, as there exists no proof that such✎ 3.5

page 59
attractor is asymptotically aperiodic - it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that fig. 2.3 and
similar figures in what follows are examples of “strange attractors”.

fast track:

chapter 2.3, p. 38
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2.3 Computing trajectories

There is lots of strangeness without beauty
Benny Lautrup

You have not learned dynamics unless you know how to integrate numer-
ically whatever dynamical equations you face. Stated tersely, you need to
implement some finite time step prescription for integration of the equa-
tions of motion (2.5). The simplest is the Euler integrator which advances
the trajectory by δτ×velocity at each time step:

xi → xi + δτvi(x) . (2.12)

This might suffice to get you started, but as soon as you need higher nu-
merical accuracy, you will need something better. There are many excellent
reference texts and computer programs that can help you learn how to solve
differential equations numerically using sophisticated numerical tools, such
as pseudo-spectral methods or implicit methods. If a “sophisticated” in-✎ 2.6

page 46
tegration routine takes days and gobbles up terabits of memory, you are
using brain-damaged high level software. Try writing a few lines of your
own Runge-Kuta code in some mundane everyday language. While you✎ 2.7

page 46
absolutely need to master the requisite numerical methods, this is neither
the time nor the place to expand on them; how you learn them is your busi-
ness. And if you have developed some nice routines for solving problems✎ 2.8

page 46
in this text or can point another student to some, let us know.

✎ 2.9
page 47

In the next section we dispose of the fear of “infinite-dimensional” dy-
namical systems - you might prefer to skip the section on first reading.

fast track:

chapter 3, p. 49

2.4 Infinite-dimensional flows

Romeo: ‘Misshapen chaos of well seeming forms!’
W. Shakespeare, Romeo and Julliet, act I, scene I

There is only one honorable cause that would justify sweating
through so much formalism - this is but the sharpening of a pencil in
order that we may attack the Navier-Stokes equation,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + η

(
∇2u +

1
3
∇(divu)

)
+ f , (2.13)

and solve the problem of turbulence. Being realistic, we are not so foolhardy
to immediately plunge into the problem. Too many dimensions and indices
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Figure 2.4: Spatiotemporally periodic solution
u0(x, t). We have divided x by π and plot-
ted only the x > 0 part, since we work in
the subspace of the odd solutions, u(x, t) =
−u(−x, t). N = 16 Fourier modes truncation
with ν = 0.029910. (From ref. [2.7])

- instead, we start small, in one spatial dimension, u→ u, u ·∇u→ 1
2∂xu2,

assume constant ρ, forget about the pressure p, and so on. This line of
reasoning, as well as many other equally sensible threads of thought, such
as the amplitude equations obtained via weakly nonlinear stability analysis
of steady flows, lead to the essentially same nonlinear PDEs, like the one
that we turn to in the next section.

Flows described by partial differential equations are considered infinite
dimensional because if one writes them down as a set of ordinary differential
equations (ODE) then one needs an infinity of the ordinary kind to represent
the dynamics of one equation of the partial kind (PDE). Even though the
phase space is infinite dimensional, for many systems of physical interest
the global attractor is finite dimensional. We illustrate how this works with
a concrete example, the Kuramoto-Sivashinsky system.

in depth:

appendix B, p. 561

2.4.1 Fluttering flame front

The Kuramoto-Sivashinsky system, arising in description of the flame front
flutter of gas burning in a cylindrically symmetric burner on your kitchen
stove and many other problems of greater import, is one of the simplest
partial differential equations that exhibit chaos. It is a dynamical system
extended in one spatial dimension, defined by

ut = (u2)x − uxx − νuxxxx . (2.14)

In this equation t ≥ 0 is the time and x ∈ [0, 2π] is the space coordinate.
The subscripts x and t denote the partial derivatives with respect to x and
t; ut = du/dt, uxxxx stands for 4th spatial derivative of the “height of the
flame front” (more correctly the “velocity of the flame front”) u = u(x, t)
at position x and time t. ν is a “viscosity” parameter; its role is to suppress
solutions with fast spatial variations. We take note, as in the Navier-Stokes
equation (2.13), of the u∂xu “inertial” term, the ∂2

xu “diffusive” term (both
with a “wrong” sign), etc.

The term (u2)x makes this a nonlinear system. It is the simplest con-
ceivable nonlinear PDE, playing the role in the theory of spatially extended
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systems analogous to the role that the x2 nonlinearity plays in the dynamics
of iterated mappings. The time evolution of a solution of the Kuramoto-

☞ sect. 3.3
Sivashinsky system is illustrated by fig. 2.4. How are such solutions com-
puted? The salient feature of such partial differential equations is a theorem

☞ remark 2.1
saying that for any finite value of the phase-space contraction parameter ν,
the asymptotic dynamics is describable by a finite set of “inertial manifold”
ordinary differential equations.

We are studying a “flame front” u(x, t) = u(x + 2π, t) periodic on the
x ∈ [0, 2π] interval, so a reasonable strategy (but by no means the only
one) is to expand it in a discrete spatial Fourier series:

u(x, t) =
+∞∑

k=−∞
bk(t)eikx . (2.15)

Since u(x, t) is real, bk = b∗−k . Substituting (2.15) into (2.14) yields the
infinite ladder of evolution equations for the Fourier coefficients bk:

ḃk = (k2 − νk4)bk + ik
∞∑

m=−∞
bmbk−m . (2.16)

As it follows from this equation that ḃ0 = 0, the solution integrated over
space is constant in time. We shall consider only the case of this average -
the mean value of u - equal to zero, b0 =

∫
dx u(x, t) = 0.

The coefficients bk are in general complex functions of time t. We can
isolate a smaller subspace of the system (2.16) further by considering the
case of bk pure imaginary, bk = iak, where ak are real, with the evolution
equations

ȧk = (k2 − νk4)ak − k
∞∑

m=−∞
amak−m . (2.17)

This picks out the subspace of odd solutions u(x, t) = −u(−x, t), so a−k =
−ak. By picking this subspace we eliminate the continuous translational
symmetry from our consideration; that is probably not an option for an
experimentalist, but will do for our purposes.

That is the infinite set of ordinary differential equations promised at
the beginning of the section.

The trivial solution u(x, t) = 0 is an equilibrium point of (2.14), but
that is basically all we know as far as analytical solutions are concerned.
You can integrate numerically the Fourier modes (2.17), truncating the
ladder of equations to a finite number of modes N , that is, set ak = 0
for k > N . In applied mathematics literature such truncation is called a
Galerkin truncation. For the parameter values explored below, N ≤ 16
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truncations were deemed sufficiently accurate. In other words, even though
2.6

46
our starting point (2.14) is an infinite-dimensional dynamical system, the
asymptotic dynamics unfolds on a finite-dimensional attracting manifold,
and so we are back on the familiar territory of sect. 2.2: the theory of a
finite number of ODEs applies to this infinite-dimensional PDE as well.

Once the trajectory is computed in the Fourier space, we can recover and
plot the corresponding spatiotemporal pattern u(x, t) over the configuration
space using (2.15), as in fig. 2.4.

2.4.2 Fourier modes truncations

Thinking is extra price
Fernando Solla

Consider now the case of initial ak sufficiently small that the bilinear
amak−m terms in (2.17) can be neglected. Then we have a set of decoupled
linear equations for ak whose solutions are exponentials, at most a finite
number for which k2 > νk4 growing with time, and the infinity of modes for
which νk4 > k2 decaying with time. The growth of the unstable long wave-
lengths (low |k|) excites the short wavelengths through the nonlinear term
in (2.17). The excitations thus transferred are dissipated by the strongly
damped short wavelengths, and a “chaotic equilibrium” can emerge. The
very short wavelengths |k| � 1/

√
ν will remain small for all times, but

the intermediate wavelengths of order |k| ∼ 1/
√

ν will play an important
role in maintaining the dynamical equilibrium. As the damping parameter
decreases, the solutions increasingly take on shock front character poorly
represented by the Fourier basis, and many higher harmonics may need to
be kept in truncations of (2.17).

Hence, while one may truncate the high modes in the expansion (2.17),
care has to be exercised to ensure that no modes essential to the dynamics
are chopped away. In practice one does this by repeating the same cal-
culation at different truncation cutoffs N , and making sure that inclusion
of additional modes has no effect within the accuracy desired. For figures
given here, the numerical calculations were performed taking N = 16 and
the damping parameter value ν = 0.029910, for which the system is chaotic
(as far as we can determine that numerically).

The problem with such high dimensional truncations of the infinite
tower of equations (2.17) is that the dynamics is difficult to visualize. The

☞ sect. 3.3
best we can do without much programming is to examine the trajectory’s
projections onto any three axes ai, aj , ak, as in fig. 2.5.

Examination of numerical plots such as fig. 2.5 suggests that a more
thoughtful approach would be to find a coordinate transformation y = h(x)
to a “center manifold”, such that in the new, curvilinear coordinates large
scale dynamics takes place in (y1, y2) coordinates, with exponentially small
dynamics in y3, y4 · · ·. But - thinking is extra price - we do not know how
to actually accomplish that.

☞ chapter 6
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Figure 2.5: Projections of a typical 16-dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a) {a1, a2, a3}, (b) {a1, a2, a4}. N = 16 Fourier
modes truncation with ν = 0.029910. (From ref. [2.7].)

We can now start to understand the remark on page 35 that for infinite
dimensional systems time reversability is not an option: evolution forward
in time strongly damps the higher Fourier modes. There is no turning back:
if we reverse the time, the infinity of high modes that contract strongly
forward in time now explodes, instantly rendering evolution backward in
time meaningless. As everything in dynamics, this claim is also wrong,
in a subtle way: if the initial u(x, 0) is in the non–wandering set (2.2),
the trajectory is well defined both forward and backward in time. For
practical purposes, this subtlety is not of much use, as any time-reversed
numerical trajectory in a finite-mode truncation will explode very quickly,
unless special precautions are taken.

Commentary

Remark 2.1 Model ODE and PDE systems. Rössler system was
introduced in ref. [2.2], as a simplified set of equations describing time
evolution of concentrations of chemical reagents. The Duffing system
(2.6) arises in study of electronic circuits. The theorem on finite dime-
nionality of inertial manifolds of phase-space contracting PDE flows
is proven in ref. [2.4]. The Kuramoto-Sivashinsky equation was in-
troduced in refs. [2.5, 2.6]; sect. 2.4 is based on V. Putkaradze’s term
project (see wwwcb/extras), and on the Christiansen et al. article
[2.7]. How good description of a flame front this equation is need not
concern us here; suffice it to say that such model amplitude equa-
tions for interfacial instabilities arise in a variety of contexts - see
e.g. ref. [2.8] - and this one is perhaps the simplest physically inter-
esting spatially extended nonlinear system.

Remark 2.2 Diagnosing chaos. In sect. 1.3.1 we have stated
that a deterministic system exhibits “chaos” if the dynamics is locally
unstable (positive Lyapunov exponent) and globally mixing (positive
entropy). In sect. 8.3 we shall define Lyapunov exponents, and discuss
their evaluation, but already at this point it would be handy to have a
few quick numerical methods to diagnose chaotic dynamics. Laskar’s
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frequency analysis method [2.10] is useful for extracting quasi-periodic
and weakly chaotic regions of phase space in Hamiltonian dynamics
with many degrees of freedom. For references to several other numer-
ical methods, see ref. [2.11].

Résumé

A dynamical system – a flow, or an iterated map – is defined by specifying
a pair (M, f), where M is the phase space and f : M → M. The key
concepts in exploration of the long time dynamics are the notions of recur-
rence and of the non–wandering set of f , the union of all the non-wandering
points of M.

Chaotic dynamics with a low dimensional attractor can be visualized
as a succession of nearly periodic but unstable motions. In the same spirit,
turbulence in spatially extended systems can be described in terms of recur-
rent spatiotemporal patterns. Pictorially, dynamics drives a given spatially
extended system through a repertoire of unstable patterns; as we watch a
turbulent system evolve, every so often we catch a glimpse of a familiar
pattern. For any finite spatial resolution and finite time the system follows
approximately a pattern belonging to a finite repertoire of possible pat-
terns, and the long term dynamics can be thought of as a walk through the
space of such patterns. Recasting this image into mathematics is what this
book is about.
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Exercises

Exercise 2.1 Trajectories do not intersect. A trajectory in the phase space
M is the set of points one gets by evolving x ∈M forwards and backwards in time:

Cx = {y ∈M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the same curve.

Exercise 2.2 Evolution as a group. The trajectory evolution f t is a
one-parameter group where

f t+s = f t ◦ fs .

Show that it is a commutative group.

In this case, the commutative character of the group of evolution functions comes
from the commutative character of the time parameter under addition. Can you see
any other group replacing time?

Exercise 2.3 Almost ode’s.

(a) Consider the point x on R evolving according ẋ = eẋ . Is this an ordinary
differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

Exercise 2.4 All equilibrium points are fixed points. Show that a point of
a vector field v where the velocity is zero is a fixed point of the dynamics f t.

Exercise 2.5 Gradient systems. Gradient systems are a simple dynamical
systems where the velocity field is given by the gradient of an auxiliary function φ

ẋ = −∇φ(x) .

x is a vector in R
d, and φ a function from that space to the reals R.

(a) Show that the velocity of the particle is in the direction of most rapid decrease
of the function φ.

(b) Show that all extrema of φ are fixed points of the flow.

(c) Show that it takes an infinite amount of time for the system to reach an equi-
librium point.

(d) Show that there are no periodic orbits in gradient systems.
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Exercise 2.6 Runge-Kutta integration. Implement the fourth-order
Runge-Kutta integration formula (see, for example, ref. [2.9]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτv(xn) , k2 = δτv(xn + k1/2)
k3 = δτv(xn + k2/2) , k4 = δτv(xn + k3) (2.18)

or some other numerical integration routine.

Exercise 2.7 Rössler system. Use the result of exercise 2.6 or some other
integration routine to integrate numerically the Rössler system (2.11). Does
the result look like a “strange attractor”?

Exercise 2.8 Can you integrate me? Integrating equations numerically is
not for the faint of heart. It is not always possible to establish that a set of nonlinear
ordinary differential equations has a solution for all times and there are many cases were
the solution only exists for a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need numerical routine to answer this question?

(b) Let’s test the integrator you wrote in exercise 2.6. The equation ẍ = −x with
initial conditions x(0) = 2 and ẋ = 0 has as solution x(t) = e−t(1 + e2 t) . Can
your integrator reproduce this solution for the interval t ∈ [0, 10]? Check you
solution by plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The equation is going to be third
order

...
x +0.6ẍ + ẋ− |x|+ 1 = 0 ,

which can be checked - numerically - to be chaotic. As initial conditions
we will always use ẍ(0) = ẋ(0) = x(0) = 0 . Can you reproduce the result
x(12) = 0.8462071873 (all digits are significant)? Even though the equation
being integrated is chaotic, the time intervals are not long enough for the expo-
nential separation of trajectories to be noticeble (the exponential growth factor
is ≈ 2.4).

(d) Determine the time interval for which the solution of ẋ = x2, x(0) = 1 exists.

Exercise 2.9 Classical collinear helium dynamics. In order to apply
the periodic orbit theory to quantization of helium we shall need to compute
classical periodic orbits of the helium system. In this exercise we commence
their evaluation for the collinear helium atom (5.3)

H =
1
2
p2
1 +

1
2
p2
2 −

Z

r1
− Z

r2
+

1
r1 + r2

.
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The nuclear charge for helium is Z = 2. The colinear helium has only 3
degrees of freedom and the dynamics can be visualized as a motion in the
(r1, r2), ri ≥ 0 quadrant. In the (r1, r2) coordinates the potential is singular for
ri → 0 nucleus-electron collisions. These 2-body collisions can be regularized
by rescaling the coordinates, with details given in sect. 28.1. In the transformed
coordinates (x1, x2, p1, p2) the Hamiltonian equations of motion take the form
(6.9).

(a) Integrate the equations of motion by the fourth order Runge-Kutta com-
puter routine of exercise 2.6 (or whatever integration routine you like).
A convenient way to visualize the 3-d phase space orbit is by projecting
it onto the 2-dimensional (r1(t), r2(t)) plane.

(Gregor Tanner, Per Rosenqvist)

Exercise 2.10 Infinite dimensional dynamical systems are not smooth.
Many of the operations we consider natural for finite dimensional systems do not have
not smooth behavior in infinite dimensional vector spaces. Consider, as an example, a
concentration φ diffusing on R according to the diffusion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an infinite dimensional dynamical
system. That is, write it as ẋ = F (x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =
∫

R

dx φ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R

|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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Maps

(R. Mainieri and P. Cvitanović)

The time parameter in the definition of a dynamical system, sect. 2.1, can
be either continuous or discrete. Discrete time dynamical systems arise
naturally from flows; one can observe the flow at fixed time intervals (the
strobe method), or one can record the coordinates of the flow when a special
event happens (the Poincaré section method). This triggering event can
be as simple as having one of the coordinates go through a zero, or as
complicated as having the flow cut through a curved hypersurface.

3.1 Poincaré sections

Successive trajectory intersections with a Poincaré section, a d-dimensional
hypersurface or a set of hypersurfaces P embedded in the (d+1)-dimensional
phase spaceM, define the Poincaré return map P (x), a d-dimensional map
of form

xn+1 = P (xn) , xn, xn+1 ∈ P , n ∈ Z
+ (3.1)

(for economy of notation, the maps of this chapter will be taken d-dimensional,
the associated flows (d + 1)-dimensional). The choice of the section hy-
persurface P is altogether arbitrary. With a sufficiently clever choice of
a Poincaré section or a set of sections, any orbit of interest intersects a
section. Depending on the application, one might need to supplement the
return map with the time of first return function τ(xn) - sometimes referred
to as ceiling function - which gives the time of flight to the next section for
a trajectory starting at xn, with the accumulated flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.2)

Other quantities integrated along the trajectory can be defined in a sim-
ilar manner, and will need to be evaluated in the process of evaluating
dynamical averages.

☞ chapter 8
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Figure 3.1: A sequence of Poincaré sections of the Rössler flow strange attractor,
defined by planes through the z axis, oriented at angles (a) 270o (b) 135o, (c) 90o,
(d) 45o, (e) 0o, (f) 315o, in the x-y plane. In order to guide the eye, a continuous
line is drawn from a point A on the inner edge of the attractor to the point B on the
outer edge (based on a calculation by G. Simon).

A few examples may help visualize this.

Example 3.1 Pendulum. The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. In the pendulum all orbits are loops,
so any trajectory will periodically intersect the line, that is the Poincaré section, at one
point. Consider next a pendulum with friction. Now every trajectory is an inward spiral,
and the trajectory will intersect the Poincaré section at a series of points that get closer
and closer to the origin.

Pendulum dynamics is so simple that you can sketch it yourself on a
piece of paper. Two next two examples offer a better illustration of the
utility of visualization of dynamics by means of Poincaré sections.

Example 3.2 Rössler attractor. Consider fig. 2.3, a typical trajectory of the
3-dimensional Rössler flow (2.11). It wraps around the z axis, so a good choice for a
Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, fig. 3.1, illustrates
the “stretch & fold” action of the Rössler flow. To orient yourself, compare with fig. 2.3,
and note the different z axis scales. A line segment [A,B], traversing the width of the
attractor, starts out close to the x-y plane, and after the stretching (b) → (c) → (d)
followed by the folding (d) → (e) → (f), the folded segment is returned close to the
x-y plane strongly compressed. In one Poincaré return the [A,B] interval is stretched,
folded and mapped onto itself, so the flow is expanding. It is also mixing, as in one
Poincaré return the point C from the interior of the attractor is mapped into the outer
edge, while the edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in fig. 3.2. The case (a) is an example of a nice 1-to-1 return map.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projections of
a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn → Rn+1.
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Figure 3.2: Return maps for the Rn → Rn+1 radial distance for three distinct
Poincaré sections for the Rössler flow, at angles (a) 0o, (b) 90o, (c) 45o around the
z-axis, see fig. 3.1. (G. Simon and A. Johansen)

Figure 3.3: The attractor of the Kuramoto-
Sivashinsky system (2.17), plotted as the a6

component of the a1 = 0 Poincaré section re-
turn map. Here 10,000 Poincaré section re-
turns of a typical trajectory are plotted. Also
indicated are the periodic points 0, 1, 01 and
10. N = 16 Fourier modes truncation with
ν = 0.029910. (From ref. [2.7].)

The dynamics of high-dimensional flows, such as a truncation of the
infinite tower of the Kuramoto-Sivashinsky modes (2.17) can be difficult to
visualize. The question then is: how to look at such a flow? It is not clear
that restricting the dynamics to a Poincaré section necessarily helps - after
all, a section reduces a (d+1)-dimensional flow to a d-dimensional map, and
how much is gained by replacing a continuous flow in 16 dimensionas by a
set of points in 15 dimensions? Nevertheless, as we now show, much can
be gleaned by examining trajectory’s projections onto a subspace spanned
by two or three coordinate axes.

Example 3.3 Kuramoto-Sivashinsky attractor. Consider an N -mode truncation
to the infinite tower of the Kuramoto-Sivashinsky coupled Fourier modes (2.17). We fix
(arbitrarily) the Poincaré section to be the hyperplane a1 = 0, and integrate (2.17) with
the initial conditions a1 = 0, and arbitrary values of the coordinates a2, . . . , aN (where
N is the truncation order). When a1 becomes 0 the next time and the flow crosses
the a1 = 0 hyperplane in the same direction as initially, the coordinates a2, . . . , aN are
mapped into (a′

2, . . . a
′
N ) = P (a2, . . . , aN ), where P is the Poincaré mapping (3.1) of

the (N − 1)-dimensional a1 = 0 hyperplane into itself. Fig. 3.3 is an example of a
typical result. We have picked - arbitrarily - a subspace such as a6(n + 1) vs. a6(n)
in order to visualize the dynamics. While the topology of the attractor is still obscure,
one thing is clear: even though the flow is infinite dimensional, the attractor is finite
and thin, barely thicker than a line.

fast track:

sect. 3.3, p. 53

The above examples illustrate why a Poincaré section gives a more in-
formative snapshot of the flow than the full flow portrait. For example,
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while the full flow portrait of the Rössler flow fig. 2.3 gives us no sense of
the thickness of the attractor, we see clearly in the Rössler Poincaré sections
fig. 3.1 that even though the return map is 2-d → 2-d, the flow contraction
happens to be so strong that for all practical purposes it renders the return
map 1-dimensional. Similarly, while no fine structure is discernable in the
full flow portraits of Kuramoto-Sivashinsky dynamics fig. 2.5, the Poincaré
return map fig. 3.3 reveals the fractal structure in the asymptotic attractor.

3.2 Constructing a Poincaré section

For almost any flow of physical interest a Poincaré section is not
available in analytic form. We describe here a numerical method for deter-
mining a Poincaré section.

☞ remark 3.1

Consider the system (2.5) of ordinary differential equations in the vector
variable x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.3)

where the flow velocity v is a vector function of the position in phase space
x and the time t. In general v cannot be integrated analytically and we
will have to resort to numerical integration to determine the trajectories of
the system. Our task is to determine the points at which the numerically
integrated trajectory traverses a given surface. The surface will be specified
implicitly through a function g(x) that is zero whenever a point x is on the
Poincaré section. The simplest choice of such section is a plane specified
by a point (located at the tip of the vector r0) and a direction vector a
perpendicular to the plane. A point x is in this plane if it satisfies the
condition✎ 3.2

page 58

g(x) = (x− r0) · a = 0 . (3.4)

If we use a tiny step size in our numerical integrator, we can observe the
value of g as we integrate; its sign will change as the trajectory crosses the
surface. The problem with this method is that we have to use a very small
integration time step. In order to actually land on the Poincaré section
one might try to interpolate the intersection point from the two trajectory
points on either side of the surface. However, there is a better way.

Let ta be the time just before g changes sign, and tb the time just after
it changes sign. The method for landing exactly on the Poincaré section
will be to convert one of the space coordinates into an integration variable
for the part of the trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.5)
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we can rewrite the equations of motion (3.3) as

dt

dx1
=

1
v1

, · · · , dxd

dx1
=

vd

v1
. (3.6)

Now we use x1 as the “time” in the integration routine and integrate it
from x1(ta) to the value of x1 on the surface, which can be found from
the surface intersection condition (3.4). x1 need not be perpendicular to
the Poincaré section; any xi can be picked as the integration variable, as
long as the xi axis is not parallel to the Poincaré section at the trajectory
intersection point.

3.3 Do it again

Though we have motivated discrete time dynamics by considering sections
of a continuous flow, there are many settings in which dynamics is discrete,
and naturally described by repeated applications of the same map

f :M→M , (3.7)

or sequences of consecutive applications of a finite set of maps,

{fA, fB, . . . fZ} : M→M . (3.8)

The discrete “time” is then an integer, the number of applications of a map.
As writing out explicitly formulas involving repeated applications of a set
of maps can be awkward, we streamline the notation by denoting a map
composition by “◦”

fZ(· · · fB(fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) ,

and the nth iterate of map f by

fn(x) = f ◦ fn−1(x) = f
(
fn−1(x)

)
, f0(x) = x .

☞ sect. 2.1

The trajectory of x is the set of points

{
x, f(x), f2(x), . . . , fn(x)

}
,

and the orbit of x is the subset of all points of M that can be reached by
iterations of f .

The functional form of Poincaré return maps P such as figs. 3.2 and 3.3
can be approximated by tabulating the results of integration of the flow

draft 9.4.0, June 18 2003 maps - 16jun2003



54 CHAPTER 3. MAPS

from x to the first Poincaré section return for many x ∈ P, and con-
structing a function that interpolates through these points. If we find a
good approximation to P (x), we can get rid of numerical integration al-
together, by replacing the continuous time trajectory f t(x) by iteration of
the Poincaré return map P (x). Multinomial approximations

Pk(x) = ak +
d+1∑
j=1

bkjxj +
d+1∑
i,j=1

ckijxixj + . . . , x ∈ P (3.9)

to Poincaré return maps
x1,n+1

x2,n+1

. . .
xd,n+1

 =


P1(xn)
P2(xn)

. . .
Pd(xn)

 , xn, xn+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon
map.

Example 3.4 Hénon map. The map

xn+1 = 1− ax2
n + byn

yn+1 = xn (3.10)

is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

xn+1 = 1− ax2
n + bxn−1 . (3.11)

An n-step recurrence relation is the discrete time analogue of nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as the Rössler’s, fig. 3.1. It can be obtained by a truncation of a
polynomial approximation (3.9) to a Poincaré return map to second order.

A quick sketch of the long-time dynamics of such mapping, such as fig. 3.4,
is obtained by picking an arbitrary starting point and iterating (3.10) on a computer.
We plot here the dynamics in the (xn, xn+1) plane, rather than in the (xn, yn) plane,
because we think of the Hénon map as a model return map xn → xn+1. As we shall✎ 3.4

page 58
soon see, periodic orbits will be key to understanding the long-time dynamics, so we
also plot a typical periodic orbit of such system, in this case an unstable period 7 cycle.
Numerical determination of such cycles will be explained in sect. 14.4.1.

Example 3.5 Lozi map. Another example frequently employed is the Lozi map, a
linear, “tent map” version of the Hénon map given by

xn+1 = 1− a|xn|+ byn

yn+1 = xn . (3.12)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very
helpful tool for developing intuition about the topology of a large class of maps of the
“stretch & fold” type.
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Figure 3.4: The strange attractor and an un-
stable period 7 cycle of the Hénon map (3.10)
with a = 1.4, b = 0.3. The periodic points
in the cycle are connected to guide the eye.
(K.T. Hansen [1.3])
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What we get by iterating such maps is - at least qualitatively - not
unlike what we get from Poincaré section of flows, figs. 3.2 and 3.3. For an
arbitrary initial point this process might converge to a stable limit cycle,
to a strange attractor, to a false attractor (due to the roundoff errors),
or diverge. In other words, straight iteration is essentially uncontrollable,
and we will need to resort to more thoughtful explorations. As we shall ✎ 3.5

page 59
explain in due course below, strategies for systematic exploration rely on
stable/unstable manifolds, periodic points, saddle-straddle methods and so
on.

Example 3.6 Parabola. The Hénon map stretches out and folds once a region
of the (x, y) plane centered around the origin. Parameter a controls the amount of
stretching, while parameter b controls the thickness of the folded image through the
“1-step memory” term bxn−1 in (3.11). In fig. 3.4 b is rather large, b = 0.3, hence
the attractor is rather thick, with the transverse fractal structure clearly visible. For
vanishingly small b the Hénon map reduces to the 1-dimensional quadratic map

xn+1 = 1− ax2
n . (3.13)

✎ 3.6
page 59

By setting b = 0 we lose determinism, as on reals the inverse of map (3.13) has two
preimages {x+

n−1, x
−
n−1} for most xn. Still, this 1-dimensional approximation is very

instructive.

As we shall see in sect. 9.4, understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unravelling the qualitative dynamics of
many higher-dimensional dynamical systems. For this reason many expo-
sitions of the theory of dynamical systems commence with a study of 1-
dimensional maps. We prefer to stick to flows, as that is where the physics
is.

☞ appendix I.4

Commentary

Remark 3.1 Determining a Poincaré section. The idea of chang-
ing the integration variable from time to one of the coordinates, al-
though simple, avoids the alternative of having to interpolate the nu-
merical solution to determine the intersection. The trick described in
sect. 3.2 was published by Hénon.

draft 9.4.0, June 18 2003 maps - 16jun2003



56 References

Remark 3.2 Hénon, Lozi maps. The Hénon map per se is of
no particular physical import - its importance lies in the fact that
it is a minimal normal form for modeling flows near a saddle-node
bifurcation, and that it is a prototype of the stretching and folding
dynamics that leads to deterministic chaos. It is generic in the sense
that it can exhibit arbitrarily complicated symbolic dynamics and
mixtures of hyperbolic and non–hyperbolic behaviors. Its construc-
tion was motivated by the best known early example of “deterministic
chaos”, the Lorenz equation [2.1]. Y. Pomeau’s studies of the Lorenz
attractor on an analog computer, and his insights into its stretching
and folding dynamics motivated Hénon [3.1] to introduce the Hénon
mapping in 1976. Hénon’s and Lorenz’s original papers can be found
in reprint collections refs. [3.2, 3.3]. They are a pleasure to read, and
are still the best introduction to the physics motivating such models.
Detailed description of the Hénon map dynamics was given by Mira
and coworkers [3.4], as well as very many other authors.

The Lozi map [3.6] is particularly convenient in investigating the
symbolic dynamics of 2-d mappings. Both the Lorenz and the Lozi
system are uniformly smooth maps with singularities. For the Lozi
maps the continuity of measure was proven by M. Misiurewicz [3.7],
and the existence of the SRB measure was established by L.-S. Young.

☞ sect. 7.1

Résumé

Visualization of strange attractors is greatly facilitated by felicitous choice
of Poincaré sections, and reduction of flows to Poincaré section return maps,
which motivates study of discrete time dynamical systems generated by
iteration of maps.
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Exercises

Exercise 3.1 Rössler system (continuation of exercise 2.7) Construct a Poincaré

section for this flow. How good an approximation would a replacement of the return

map for this section by a 1-dimensional map be?

Exercise 3.2 Arbitrary Poincaré sections. We will generalize the construction
of Poincaré section so that it can have any shape, as specified by the equation g(x) = 0.

(a) Start out by modifying your integrator so that you can change the coordinates
once you get near the Poincaré section. You can do this easily by writing the
equations as

dxk

ds
= κfk , (3.14)

with dt/ds = κ, and choosing κ to be 1 or 1/f1. This allows one to switch
between t and x1 as the integration “time.”

(b) Introduce an extra dimension xn+1 into your system and set

xn+1 = g(x) . (3.15)

How can this be used to find the Poincaré section?

Exercise 3.3 Classical collinear helium dynamics. (continuation of ex-
ercise 2.9)

Make a Poincaré surface of section by plotting (r1, p1) whenever r2 = 0:
Note that for r2 = 0, p2 is already determined by (5.3). Compare your results
with fig. 28.3(b).

(Gregor Tanner, Per Rosenqvist)

Exercise 3.4 Hénon map fixed points. Show that the two fixed points
(x0, x0), (x1, x1) of the Hénon map (3.10) are given by

x0 =
−(1− b)−

√
(1− b)2 + 4a

2a
,

x1 =
−(1− b) +

√
(1− b)2 + 4a

2a
. (3.16)

Exercise 3.5 How strange is the Hénon attractor?

(a) Iterate numerically some 100,000 times or so the Hénon map[
x′
y′

]
=
[

1− ax2 + y
bx

]
for a = 1.4, b = 0.3 . Would you describe the result as a “strange
attractor”? Why?

exerMaps - 21sep2001 draft 9.4.0, June 18 2003



EXERCISES 59

(b) Now check how robust the Hénon attractor is by iterating a slightly
different Hénon map, with a = 1.39945219, b = 0.3. Keep at it until
the “strange” attracttor vanishes like a smile of the Chesire cat. What
replaces it? Would you describe the result as a “strange attractor”?
Do you still have confidence in your own claim for the part (a) of this
exercise?

Exercise 3.6 Fixed points of maps. A continuous function F is a contraction
of the unit interval if it maps the interval inside itself.

(a) Use the continuity of F to show that a one-dimensional contraction F of the
interval [0, 1] has at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope of F is always smaller than
one, |F ′| < 1. Is the composition of uniform contractions a contraction? Is it
uniform?
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

Topological features of a dynamical system – singularities, periodic orbits,
and the ways in which the orbits intertwine – are invariant under a general
continuous change of coordinates. More surprisingly, there exist quantities
that depend on the notion of metric distance between points, but never-
theless do not change value under a smooth change of coordinates. Local
quantities such as stability eigenvalues of equilibria and periodic orbits,
and global quantities such as the Lyapunov exponents, metric entropy, and
fractal dimensions are examples of such properties of dynamical systems
independent of coordinate choice.

We now turn to the first, local class of such invariants, linear stability of
flows and maps. This will give us metric information about local dynamics.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and dis-
torts neighborhoods, as sketched in fig. 2.1(b). Deformation of an infinites-
imal neighborhood is best understood by considering a trajectory origi-
nating near x0 = x(0) with an initial infinitesimal displacement δx(0),
and letting the flow transport the displacement δx(t) along the trajectory
x(x0, t) = f t(x0). The system of linear equations of variations for the dis-
placement of the infinitesimally close neighbor x + δx follows from the flow
equations (2.5) by Taylor expanding to linear order

ẋi + ˙δxi = vi(x + δx) ≈ vi(x) +
∑

j

∂vi

∂xj
δxj .
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The infinitesimal displacement δx is thus transported along the trajectory
x(x0, t), its time variation given by

d

dt
δxi(x0, t) =

∑
j

∂vi(x)
∂xj

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (4.1)

As both the displacement and the trajectory always depend on the initial
point x0 and the time t, we shall often abbreviate the notation to x(x0, t) →
x(t) → x, δxi(x0, t) → δxi(t) → δx in what follows. Taken together, the
set of equations

ẋi = vi(x) , ˙δxi =
∑

j

Aij(x)δxj (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM space obtained
by adjoining a d-dimensional fiber, the tangent space δx ∈ TxM to the
d-dimensional phase space x ∈M ⊂ R

d. The matrix of variations

Aij(x) =
∂vi(x)
∂xj

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighbor-
hood of x(t) by the flow.

Taylor expanding a finite time flow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂f t
i (x0)

∂x0j
δxj + · · · , (4.4)

one finds that the linearized neighborhood is transported by the Jacobian
(or fundamental) matrix

δx(t) = Jt(x0)δx(0) , Jt
ij(x0) =

∂xi(t)
∂xj

∣∣∣∣
x=x0

. (4.5)

which describes the deformation of an infinitesimal neighborhood at finite
time t in the co-moving frame of x(t), that is transformation of the initial,
Lagrangian coordinate frame into the current, Eulerian coordinate frame.

As this is a deformation in the linear approximation, you can think of
it as a linear deformation of an infinitesimal sphere envelopping x0 into an
ellipsoid around x(t), described by the eigenvectors and eigenvalues of the
Jacobian matrix of the linearized flow. Nearby trajectories separate along
the unstable directions, approach each other along the stable directions,
and maintain their distance along the marginal directions. In the literature
adjectives neutral or indifferent are often used instead of “marginal”.
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One of the eigendirections is what one might expect, the direction of
the flow itself. To see that, consider two points along a trajectory separated
by infinitesimal flight time δt: δx(0) = f δt(x0) − x0 = v(x0)δt. At time t
later

δx(t) = f t+δt(x0)− f t(x0) = f δt(x(t))− x(t) = v(x(t)) δt ,

while from (4.5)

δx(t) = Jt(x0)δx(0) .

Dividing both equations by δt we observe that Jt(x0) transports the velocity
vector at x0 to the velocity vector at x(t) time t later:

v(x(t)) = Jt(x0) v(x0) . (4.6)

v(x(t)) in general does not point in the same direction as v(x0), so this
is not an eigenvalue condition for Jt; Jacobian matrix computed for an
arbitrary segment of an arbitrary trajectory has no invariant meaning. As
the eigenvalues of Jt have invariant meaning only for periodic orbits, we
postpone their interpretation to sect. 4.5. However, already at this stage
we see that if the orbit is periodic, x(T) = x(0), v(x0) is an eigenvector of
the Jacobian matrix JT(x0) with a unit eigenvalue.

As we started by assuming that we know the equations of motion, from
(4.3) we also know A, the instantaneous rate of shear of an infinitesimal
neighborhood δxi(t) of the trajectory x(t). What we do not know is the
finite time deformation matrix JT . Our next task is to relate the two.

We are interested in smooth, differentiable flows. If a flow is smooth,
in a sufficiently small neighborhood it is essentially linear. Hence the next
section, which might seem an embarrassment (what is a section on linear
flows doing in a book on nonlinear dynamics?), offers a firm stepping stone
on the way to understanding nonlinear flows. If you know your eigenvalues
and eigenvectors, you may prefer to fast forward here.

fast track:

sect. 4.3, p. 67

4.2 Linear flows

Linear fields are the simplest of vector fields. They lead to linear differential
equations which can be solved explicitly, with solutions which are good for
all times. The phase space for linear differential equations is M = R

d,
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and the equations of motion (2.5) are written in terms of a vector x and a
constant matrix of variations A as

ẋ = v(x) = Ax . (4.7)

Solving this equation means finding the phase space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through the point x0.

If x(t) is a solution with x(0) = x0 and x(t)′ another solution with
x(0)′ = x0

′, then the linear combination ax(t) + bx(t)′ with a, b ∈ R is also
a solution, but now starting at the point ax0 +bx0

′. At any instant in time,
the space of solutions is a d-dimensional vector space, which means that
one can find a basis of d linearly independent solutions. How do we solve
the linear differential equation (4.7)? If instead of a matrix equation we
have a scalar one, ẋ = ax , with a a real number, then the solution is

x(t) = etax(0) . (4.8)

In order to solve the matrix case, it is helpful to re-derive the solution (4.8)
by studying what happens for a short time step ∆t. If at time 0 the position
is x(0), then

x(0 + ∆t)− x(0)
∆t

= ax(0) , (4.9)

which we iterate m times to obtain

x(t) ≈
(

1 +
t

m
a

)m

x(0) . (4.10)

The term in the parenthesis acts on the initial condition x(0) and evolves
it to x(t) by taking m small time steps ∆t = t/m. As m → ∞, the term
in the parenthesis converges to eta. Consider now the matrix version of
equation (4.9):

x(∆t)− x(0)
∆t

= Ax(0) . (4.11)

Representative point x is now a vector in R
d acted on by the matrix A, as

in (4.7). Denoting by 1 the identity matrix, and repeating the steps (4.9)
and (4.10) we obtain the Euler formula for the exponential of a matrix

x(t) = lim
m→∞

(
1 +

t

m
A
)m

x(0) = etAx(0) . (4.12)
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We will use this expression as the definition of the exponential of a matrix.

in depth:

appendix K.2, p. 639

fast track:

sect. 4.3, p. 67

4.2.1 Stability eigenvalues, diagonal case

How do we compute the exponential (4.12)? Should we be so lucky that A
happens to be a diagonal matrix AD with eigenvalues (λ1, λ2, . . . , λd), the
exponential is simply

Jt = etAD =

 etλ1 · · · 0
. . .

0 · · · etλd

 . (4.13)

Suppose next that A is diagonalizable and that U is the matrix that
brings it to its diagonal form AD = UAU−1. The transformation U is
a linear coordinate transformation which rotates, skews, and possibly flips
the coordinate axis of the vector space. Then J can also be brought to a
diagonal form: ✎ 4.2

page 77

Jt = etA = U−1etADU . (4.14)

In either case, the action of both A and J is very simple; the axes of
orthonormal coordinate system where A is diagonal are also the eigendi-
rections of both A and Jt, and under the flow the neighborhood is deformed
by a multiplication by an eigenvalue factor for each coordinate axis.

4.2.2 Complex stability eigenvalues

As A has only real entries, it will in general have either real eigenvalues, or
complex conjugate pairs of eigenvalues. That is not surprising, but also the
corresponding eigenvectors can be either real or complex. All coordinates
used in defining the flow are real numbers, so what is the meaning of a
complex eigenvector?

To develop some intuition about that, let us work out the behavior for
the simplest nontrivial case, the case where A is a [2×2] matrix

A =
(

A11 A12

A21 A22

)
. (4.15)

The eigenvalues λ1, λ2 of A are the roots

λ1,2 =
1
2

(
trA±

√
(trA)2 − 4 detA

)
(4.16)
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of the characteristic equation

det (A− z1) = (λ1 − z)(λ2 − z) = 0 , (4.17)∣∣∣∣∣
∣∣∣∣∣ A11 − z A12

A21 A22 − z

∣∣∣∣∣
∣∣∣∣∣ = z2 − (A11 + A22) z + (A11A22 −A12A21) .

The qualitative behavior of the exponential of A for real eigenvalues
λ1, λ2 ∈ R will differ from the case that they form a complex conjugate
pair,

λ1 = λ + iθ , λ2 = λ∗
1 = λ− iθ .

These two possibilities are refined further into sub-cases depending on the
signs of the real part. The matrix might have only one eigenvector, or two
linearly independent eigenvectors, which may or may not be orthogonal.
Along each of these directions the motion is of the form exp(tλk)xk. If the
exponent λk is positive, then the component xk will grow; if the exponent
λk is negative, it will shrink.

We sketch the full set of possibilities in fig. 4.1(a), and work out in detail
the case when A can be brought to the diagonal form. Then the solution
(4.12) to the differential equation (4.7) can be written either as

(
x1(t)
x2(t)

)
=
(

etλ1 0
0 etλ2

)(
x1(0)
x2(0)

)
, (4.18)

or (
x1(t)
x2(t)

)
= etλ

(
eitθ 0
0 e−itθ

)(
x1(0)
x2(0)

)
. (4.19)

In the case λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2

contracts exponentially. This behavior, called a saddle, is sketched in
fig. 4.1(b), as are the remaining possibilities: in/out nodes, inward/outward
spirals, and the center. Spirals arise from taking a real part of the action
of Jt on a complex eigenvector. The magnitude of |x(t)| diverges exponen-
tially the λ > 0, and contracts toward 0 if the λ < 0, while the imaginary
phase θ controls its oscillations.

4.2.3 General, nonsymmetric Jacobian matrix

In general Jt is neither diagonal, nor diagonalizable, nor constant along the
trajectory. Still, any matrix, including Jt, can be expressed in the singular
value decomposition form

J = UDVT
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Figure 4.1: (a) Qualitatively distinct types of eigenvalues of a [2×2] stability matrix.
(b) Streamlines for several typical 2-dimensional flows.

where D is diagonal, and U, V are orthogonal matrices. The diagonal
elements Λ1, Λ2, . . ., Λd of D are called the stability eigenvalues.

Under the action of the flow an infinitesimally small ball of initial points
is deformed into an ellipsoid: Λi is the relative stretching of the ith principal
axis of the ellipsoid, the columns of the matrix V are the principal axes
ei of stretching in the Lagrangian coordinate frame, and the orthogonal
matrix U gives the orientation of the ellipse in the Eulerian coordinates.

Now that we have some feeling for the qualitative behavior of eigenvec-
tors and eigenvalues, we are ready to return to the general case: nonlinear
flows.

4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation
Jt for a general nonlinear smooth flow? The Jacobian matrix is computed
by integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0)δx(x0, 0) . (4.20)

The equations of variations are linear, so we should be able to integrate
them - but in order to make sense of the answer, we derive it step by step.
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Figure 4.2: Lyapunov exponents λ1,k versus k
for the least unstable spatio-temporally periodic
orbit 1 of the Kuramoto-Sivashinsky system,
compared with the stability exponents of the
u(x, t) = 0 stationary solution, λk = k2 − νk4.
λ1,k for k ≥ 8 fall below the numerical accuracy
of integration and are not meaningful. N = 16
Fourier modes, ν = 0.029924, chaotic regime.
The cycle 1 was computed using methods of
chapter 14. (From ref. [2.7])
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4.3.1 Stability of equilibria

For a start, consider the case where xq is an equilibrium point (2.7). Ex-
panding around the equilibrium point xq, using the fact that the matrix
A = A(xq) in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.21)

we verify that the simple formula (4.12) applies also to the Jacobian matrix
of an equilibrium point, Jt(xq) = eAt.

Example 4.1 Why does a flame front flutter? The Kuramoto-Sivashinsky flat
frame-front u(x, t) = 0 is an equilibrium point of (2.14). The matrix of variations (4.3)
follows from (2.17)

Akj(a) =
∂vk(x)

∂aj
= (k2 − νk4)δkj − 2kak−j . (4.22)

For the u(x, t) = 0 equilibrium solution the matrix of variations is diagonal, and as in

(4.13), so is the Jacobian matrix Jt(0)kj = δkje
(k2−νk4)t .

For ν > 1, u(x, t) = 0 is the globally attractive stable equilibrium. With the
“viscosity” ν = 1 and below, the dynamics goes through a rich sequence of bifurcations
on which we shall not dwell here. The |k| < 1/

√
ν long wavelength perturbations of

the flat-front equilibrium are linearly unstable, while all |k| > 1/
√

ν short wavelength
perturbations are strongly contractive. The high k eigenvalues, corresponding to rapid
variations of the flame front, decay so fast that the corresponding eigendirections have
no physical meaning. To illustrate the rapid contraction in the non-leading eigendirec-
tions we plot in fig. 4.2 the eigenvalues of the equilibrium in the unstable regime, for
relatively low “viscosity” ν, and compare them with the stability eigenvalues of the least
unstable cycle for the same value of ν. The equilibrium solution is very unstable, in
5 eigendirections, the least unstable cycle only in one, but for k > 7 the rate of con-
traction is so strong that higher eigendirections are numerically meaningless for either
solution.

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The
exponential of a constant matrix can be defined either by its Taylor series
expansion, or in terms of the Euler limit (4.12):

☞ appendix K.1
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etA =
∞∑

k=0

tk

k!
Ak (4.23)

= lim
m→∞

(
1 +

t

m
A
)m

. (4.24)

Taylor expansion is fine if A is a constant matrix. However, only the sec-
ond, tax-accountant’s discrete step definition of exponential is appropriate
for the task at hand, as for a dynamical system the local rate of neigh-
borhood distortion A(x) depends on where we are along the trajectory.
The linearized neighborhood is multiplicatively deformed along the flow,
and the m discrete time steps approximation to Jt is therefore given by
generalization of the Euler product (4.24) to

Jt = lim
m→∞

1∏
n=m

(1 + ∆tA(xn)) = lim
m→∞

1∏
n=m

e∆tA(xn) (4.25)

where ∆t = (t− t0)/m, xn = x(t0 + n∆t). The two formulas for Jt agree
to the leading order in ∆t, and the m → ∞ limit of this procedure is the
integral

☞ appendix D

Jt
ij(x0) =

[
Te

∫ t
0 dτA(x(τ))

]
ij

. (4.26)

where T stands for time-ordered integration. This formula for J is the main
☞ appendix H.1

result of this chapter.

It is evident from the time-ordered product structure (4.25) that the
Jacobian matrices are multiplicative along the flow,

Jt+t′(x) = Jt′(x′)Jt(x), where x′ = f t(x) . (4.27)

The formula (4.25) is a matrix generalization of the crude Euler integrator
(2.12), neither smart not accurate. Much better numerical accuracy is
obtained by the following observation. To linear order in ∆t, (Jt+∆t − Jt)
equals ∆tAJt, so the Jacobian matrix itself satisfies the linearized equation
(4.1)

d

dt
Jt(x) = A(x)Jt(x) , with the initial condition J0(x) = 1 .(4.28)

Given a numerical routine for integrating the equations of motion, eval-
uation of the Jacobian matrix requires minimal additional programming
effort; one simply extends the d-dimensional integration routine and inte-
grates concurrently with f t(x) the d2 elements of Jt(x).

“Simply” is perhaps too glib. Integration will work for short finite
times, but for exponentially unstable flows one quickly runs into numerical
over/underflow problems, and further thought will be required.
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4.4 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory un-
der map iteration follows from Taylor expanding the iterated mapping at
discrete time n to linear order, as in (4.4). The linearized neighborhood
is transported by the Jacobian matrix evaluated at a discrete set of times
n = 1, 2, . . .,

Jn
ij(x0) =

∂fn
i (x)
∂xj

∣∣∣∣
x=x0

. (4.29)

This matrix is in the literature sometimes called the fundamental matrix.
As the simplest example, consider a 1-dimensional map. The chain rule
yields stability of the nth iterate

Λn =
d

dx
fn(x) =

n−1∏
m=0

f ′(xm) , xm = fm(x0) . (4.30)

The 1-step product formula for the stability of the nth iterate of a d-
dimensional map

Jn(x0) =
0∏

m=n−1

J(xm) , J(x)kl =
∂

∂xl
fk(x) , xm,j = fm(x0)j(4.31)

follows from the chain rule for matrix derivatives

∂

∂xi
fj(f(x)) =

d∑
k=1

∂

∂yk
fj(y)

∣∣∣∣
y=f(x)

∂

∂xi
fk(x) .

The [d×d] Jacobian matrix Jn for a map is evaluated by multiplication
along the n points x0, x1, x2, . . . xn−1 on the trajectory of x0, with J(x) the
single time step Jacobian matrix.✎ 8.1

page 135

Example 4.2 Hénon map Jacobian matrix. For the Hénon map (3.10) the
Jacobian matrix for nth iterate of the map is

Jn(x0) =
1∏

m=n

(
−2axm b

1 0

)
, xm = fm

1 (x0, y0) . (4.32)

The determinant of the Hénon one time step Jacobian matrix (4.32) is constant,

detJ = Λ1Λ2 = −b (4.33)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant jacobian was one of desiderata that led Hénon to constructing
the map of this particular form.
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4.5 Stability of periodic orbits

As noted on page 33, a trajectory can be stationary, periodic or aperiodic.
For chaotic systems almost all trajectories are aperiodic – nevertheless, the
stationary and the periodic orbits will turn out to be the key to unraveling
chaotic dynamics. Here we note a few of the properties that makes them
so precious to a theorist.

An obvious virtue of periodic orbits is that they are topological invari-
ants: a fixed point is a fixed point in any coordinate choice, and similarly a
periodic orbit is a periodic orbit in any representation of the dynamics. Any
re-parametrization of a dynamical system that preserves its topology has to
preserve topological relations between periodic orbits, such as their relative
inter-windings and knots. So mere existence of periodic orbits suffices to
partially organize the spatial layout of a non–wandering set. No less
important, as we shall now show, is the fact that cycle stability eigenvalues
are metric invariants: they determine the relative sizes of neighborhoods in
a non–wandering set.

To prove this, we start by noting that due to the multiplicative structure
(4.27) of Jacobian matrices, the stability of the rth repeat of a prime cycle
p of period Tp is

JrTp(x0) = JTp(f rTp(x0)) · · ·JTp(fTp(x0))JTp(x0) = Jp(x0)r , (4.34)

where Jp(x0) = JTp(x0) is the stability matrix for a single traversal of the
prime cycle p, x0 ∈ p is any point on the cycle, and f rTp(x0) = x0 as f t(x0)
returns to x0 every multiple of the period Tp. Hence, it suffices to restrict
our considerations to the stability of prime cycles.

4.5.1 Stability eigenvalues, stability exponents

We sort the stability eigenvalues Λp,1, Λp,2, . . ., Λp,d of the [d×d] Jacobian
matrix Jp evaluated on the p cycle into sets {e, m, c}

expanding: {Λp}e = {Λp,i : |Λp,i| > 1}
marginal: {Λp}m = {Λp,i : |Λp,i| = 1} (4.35)

contracting: {Λp}c = {Λp,i : |Λp,i| < 1} .

and denote by Λp (no spatial index) the product of expanding eigenvalues

Λp =
∏
e

Λp,e . (4.36)

As Jp is a real matrix, complex Λi always come in Λp,i, Λp,i+1 = Λ∗
p,i pairs,

and Λp is always real.
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Cycle stability exponents are the stretching/contraction rates per unit
time

λp,i =
1
Tp

ln |Λp,i| . (4.37)

This definition is motivated by the form of the stability exponents for the
linear case, for example (4.13), as well as the fact that exponents so defined
can be interpreted as the Lyapunov exponents evaluated on the prime cycle
p. As in the three cases of (4.35), we sort the stability exponents into three
sets

☞ sect. 8.3

expanding: {λp}e = {λp,i : λp,i > 0}
elliptic: {λp}m = {λp,i : λp,i = 0}

contracting: {λp}c = {λp,i : λp,i < 0} . (4.38)

A periodic orbit p of a d-dimensional flow or a map is stable if all its
stability exponents (other than the vanishing longitudinal stability expo-
nent, to be explained in sect. 4.5.3 below) are strictly negative, |λp,i| < 0.
The region of system parameter values for which a periodic orbit p is stable
is called the stability window of p. The subset M of initial points that are
asymptotically attracted to p (for a fixed set of system parameter velues)
is called the basin of attraction of p.

If all stability exponents (other than the vanishing longitudinal stability
exponent) of all periodic orbits of a flow are strictly bounded away from
zero, |λi| ≥ λmin > 0, the flow is said to be hyperbolic. Otherwise the flow
is said to be nonhyperbolic.

As we often do care about the sign of Λp,i and, if Λp,i is complex, its
phase

Λp,j = ±eTp(λp,j±iθp,j) , (4.39)

☞ sect. 5.1.1

and keeping track of those by case-by-case enumeration is a self-inflicted,
unnecessary nuisance (followed by much of the literature), almost all of our
formulas will be stated in terms of the stability eigenvalues Λ rather than
in the terms of the overall signs, stability exponents λi and phases θi.

Example 4.3 1-dimensional maps. The simplest example of cycle stability is
afforded by 1-dimensional maps. The stability of a prime cycle p follows from the chain
rule (4.30) for stability of the npth iterate of the map

Λp =
d

dx0
fnp(x0) =

np−1∏
m=0

f ′(xm) , xm = fm(x0) , (4.40)

where the initial x0 ∈ p can be any of the periodic points in the p cycle.
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A critical point xc is a value of x for which the mapping f(x) has vanishing
derivative, f ′(xc) = 0. For future reference we note that a periodic orbit of a 1-
dimensional map is stable if

|Λp| =
∣∣f ′(xnp

)f ′(xnp−1) · · · f ′(x2)f ′(x1)
∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope of the nth iterate fn(x) evaluated on

a periodic point x (fixed point of the nth iterate) lies between −1 and 1. If |Λp| > 1,
cycle p is unstable.

4.5.2 Cycle stabilities are cycle invariants

The 1-dimensional map cycle stability Λp is a product of derivatives over all
cycle points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the
Jacobian matrix Jp(x0) in (4.34) does depend on the choice of coordinates
and the initial point x0 ∈ p. Nevertheless, as we shall now show, the
cycle stability eigenvalues are intrinsic property of a cycle also for multi-
dimensional flows. Consider the ith eigenvalue, eigenvector pair (Λp,i, ei)
computed from Jp evaluated at a cycle point,

Jp(x)ei(x) = Λp,iei(x) , x ∈ p . (4.41)

Consider another point on the cycle a time t later, x′ = f t(x) whose Jaco-
bian matrix is Jp(x′). By the group property (4.27), JTp+t = Jt+Tp , and
the Jacobian matrix at x′ can be written either as

JTp+t(x) = JTp(x′)Jt(x) = Jp(x′)Jt(x) , or Jt+Tp(x) = Jt(x)Jp(x) .

Multiplying (4.41) by Jt(x), we find that the Jacobian matrix evaluated at
x′ has the same eigenvalue,

Jp(x′)ei(x′) = Λp,iei(x′) , ei(x′) = Jt(x)ei(x) , (4.42)

but with the eigenvector ei transported along the flow x → x′ to ei(x′) =
Jt(x)ei(x). Hence, Jp evaluated anywhere along the cycle has the same set
of stability eigenvalues {Λp,1, Λp,2, · · ·Λp,d}. As quantities such as trJp(x),
detJp(x) depend only on the eigenvalues of Jp(x) and not on the starting
point x, in expressions such as det

(
1− Jr

p(x)
)

we may omit reference to
any particular cycle point x:

det
(
1− Jr

p(x)
)

= det
(
1− Jr

p

)
. (4.43)

We postpone the proof that the cycle stability eigenvalues are smooth con-
jugacy invariants of the flow to sect. 6.4.
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4.5.3 Marginal eigenvalues

The presence of marginal eigenvalues signals either an invariance of the
flow (which you should immediately exploit to simplify the problem), or a
non-hyperbolicity of a flow (source of much pain, hard to avoid).

☞ chapter 18

A periodic orbit of a continuous flow always has at least one marginal
eigenvalue. As Jt(x) transports the velocity field v(x) by (4.6), after a
complete period

Jp(x)v(x) = v(x) , (4.44)

so a periodic orbit of a flow always has an eigenvector e‖(x) = v(x) parallel
to the local velocity field with the unit eigenvalue

Λp,‖ = 1 . (4.45)

✎ 6.2
page 99 The continuous invariance that gives rise to this marginal eigenvalues is the

invariance of a cycle under a translation of its points along the cycle. As we
shall see in sect. 11.3, this marginal stability direction can be eliminated by
“fixing the gauge”, that is by cutting the cycle by a Poincaré section and
eliminating the continuous flow Jacobian matrix in favor of the Jacobian
matrix of the Poincaré section return map.

4.6 Neighborhood of a cycle

☞ sect. 8.3

☞ remark 8.3 The Jacobian of the flow (or the sum of stability exponents) is easily eval-
uated.

Consider detJt(x0) =
∏d

i=1 Λi(x0, t), the product of the stability eigen-
values. We shall refer to this determinant as the Jacobian of the flow.✎ 4.1

page 77
By means of the time-ordered product (4.25) and the identity ln det M =
tr lnM the Jacobian is given by

detJt(x0) = e
∫ t
0 dτ trA(x(τ)) = e

∫ t
0 dτ ∂ivi(x(τ)) . (4.46)

As the divergence ∂ivi is a scalar quantity, the integral in the exponent
needs no time ordering. All we need to do is to evaluate the time average

〈∂ivi〉t =
1
t

ln

∣∣∣∣∣
d∏

i=1

Λi(x0, t)

∣∣∣∣∣ =
d∑

i=1

λi(x0, t) =
1
t

∫ t

0
dτ

d∑
i=1

Aii(x(τ))(4.47)

along the trajectory. If the flow is not singular (for example, the trajectory
does not run head-on into the Coulomb 1/r singularity), the matrix of
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variations elements |Aij | are everywhere bounded in magnitude, and so is
the trace

∑
i Aii. The time integral in (4.47) grows at most linearly with

t, hence 〈∂ivi〉t is bounded, regardless of how large the time t might be,
and numerical estimates of the t →∞ limit 〈∂ivi〉 are not marred by any
exponential blowups.

Even if we were to insist on extracting 〈∂ivi〉 from (4.25) by first mul-
tiplying stability matrices along the flow, and then taking the logarithm,
we can avoid exponential blowups in Jt by using the multiplicative struc-
ture (4.27), detJt′+t(x0) = detJt′(x′) detJt(x0) to restart with J0(x′) = 1
whenever the eigenvalues of Jt(x0) start getting out of hand. In numerical

☞ sect. 8.3
evaluations of Lyapunov exponents, λi = limt→∞ λi(x0, t), sum rule (4.47)
can serve as a helpful check on the accuracy of the computation.

〈∂ivi〉 is also an important physical characterization of the flow - it tells
us what is the behavior of a phase space volume in the infinitesimal neigh-
borhood of the trajectory. If ∂ivi < 0, the flow is locally contracting, and the
trajectory might be falling into an attractor. If ∂ivi = 0, the flow preserves
phase space volume and det Jt = 1. A flow with this property is called in-
compressible. An important class of such flows are the Hamiltonian flows
to which we turn in sect. 5.1.1.

But before we can get to that, the alert student, pipes up. He does
not like our definition of the Jacobian matrix in terms of the time-ordered
exponential (4.26). Depending on the signs of stability eigenvalues, the

☞ chapter 24.1
left hand side of (4.46) can be either positive or negative. But the right
hand side is an exponential of a real number, and that can only be positive.
What gives? As we shall see much later on in this text, in discussion of
topological topological indices arising in semiclassical quantization, this is
not at all a dumb question.

in depth:

appendix K.1, p. 637

in depth:

appendix C.1, p. 565

4.6.1 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood
of x(t), and that is why we care about the stability eigenvalues, and es-
pecially the unstable (expanding) ones. Nearby points aligned along the
stable (contracting) directions remain in the neighborhood of the trajec-
tory x(t) = f t(x0); the ones to keep an eye on are the points which
leave the neighborhood along the unstable directions. The sub-volume
|Mi| =

∏e
i ∆xi of the set of points which get no further away from f t(x0)

than L, the typical size of the system, is fixed by the condition that
∆xiΛi = O(L) in each expanding direction i. Hence the neighborhood
size scales as ∝ 1/|Λp| where Λp is the product of expanding eigenvalues
(4.36) only; contracting ones play a secondary role. So secondary that even
infinity of them (for example, the infinity of contracting eigendirections of
the spatiotemporal dynamics of sect. 2.4.1) will not matter.
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So the physically important information is carried by the expanding
sub-volume, not the total volume computed so easily in (4.47). That is
also the reason why the dissipative and the Hamiltonian chaotic flows are
much more alike than one would have naively expected for “compressible”
vs. “incompressible” flows. What matters are the expanding directions.
Whether the contracting eigenvalues are inverses of the expanding ones
or not is of secondary importance. As long as the number of unstable
directions is finite, the same theory will describe finite-dimensional ODEs
and infinite-dimensional PDEs.

Résumé

A neighborhood of a trajectory deforms as it is transported by the flow. In
the linear approximation, the matrix of variations A describes this shearing
of an infinitesimal neighborhood in an infinitesimal time step. The shearing
after a finite time t is described by the Jacobian matrix

Jt(x0) = Te
∫ t
0 dτA(x(τ)) ,

where T stands for the time-ordered integration. Its eigenvalues and eigendi-
rections describe deformation of an initial infinitesimal sphere of neighbor-
ing trajectories into an ellipsoid finite time t later. Nearby trajectories sep-
arate exponentially along unstable directions, approach each other along
stable directions, and change slowly (algebraically) their distance along
marginal directions. The Jacobian matrix Jt is in general neither symmet-
ric, nor diagonalizable by a rotation, nor do its (left or right) eigenvectors
define an orthonormal coordinate frame. Furthermore, while the stabil-
ity matrices are multiplicative along the flow, in dimensions higher than
one their eigenvalues in general are not. This lack of multiplicativity has

☞ appendix H.1
important repercussion both for classical dynamics and quantum dynamics.

Periodic orbits play a central role in any invariant characterization of
the dynamics, because (a) their existence and inter-relations are topologi-
cal, coordinate choice independent property of the dynamics, and (b) their
stability eigenvalues are metric invariants. We shall show in chapter 9
that extending their local stability eigendirections into stable and unstable
manifolds yields also important global information about the topological
organization of the phase space.
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Exercises

Exercise 4.1 Trace-log of a matrix. Prove that

det M = etr ln M .

for arbitrary finite dimensional matrix M .

Exercise 4.2 Stability, diagonal case. Verify the relation (4.14)

Jt = etA = U−1etADU .

Exercise 4.3 A contracting baker’s map. Consider a contracting (or “dissi-
pative”) baker’s map, on [0, 1]2, defined as

(
xn+1

yn+1

)
=
(

xn/3
2yn

)
yn ≤ 1/2

(
xn+1

yn+1

)
=
(

xn/3 + 1/2
2yn − 1

)
yn > 1/2

This map shrinks strips by factor 1/3 in the x direction, and stretches (and folds) by
factor 2 in the y direction.

How fast does the phase space volume contract?
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Chapter 5

Newtonian dynamics

You might think that the strangeness of contracting flows, flows such as the
Rössler flow of fig. 2.3 is of concern only to chemists. Not at all - while it is
easier to visualize aperiodic dynamics when the flow is contracting onto a
lower-dimensional attracting set, there are plenty examples of chaotic flows
that do preserve the full symplectic invariance of Hamiltonian dynamics.

5.1 Hamiltonian flows

An important class of dynamical systems are the Hamiltonian flows, given
☞ appendix C

by a time-independent Hamiltonian H(q, p) together with the Hamilton’s
equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (5.1)

with the 2D phase space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D
degrees of freedom:

☞ sect. 25.1.1

x = (p,q) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (5.2)

Example 5.1 Collinear helium. In chapter 28, we shall apply the periodic orbit
theory to the quantization of helium. In particular, we will study collinear helium, a
doubly charged nucleus with two electrons arranged on a line, an electron on each side
of the nucleus. The Hamiltonian for this system is

☞ chapter 28

H =
1
2
p2
1 +

1
2
p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (5.3)

The collinear helium has 2 degrees of freedom, thus a 4-dimensional phase space M,
which the energy conservation reduces to 3 dimensions. The dynamics can be visualized
as a motion in the (r1, r2), ri ≥ 0 quadrant, fig. 5.1. It looks messy, and, indeed, it
will turn out to be no less chaotic than a pinball bouncing between three disks.
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Figure 5.1: A typical colinear helium trajec-
tory in the r1 – r2 plane; the trajectory enters
here along the r1 axis and then, like almost ev-
ery other trajectory, after a few bounces escapes
to infinity, in this case along the r2 axis.
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5.1.1 Stability of Hamiltonian flows

As the Hamiltonian flows are so important in physical applications,
we digress here to illustrate the ways in which an invariance of equations
of motion affects dynamics. In case at hand the symplectic invariance will
reduce the number of independent stability exponents by factor 2 or 4.

The equations of motion for a time independent D-degrees of freedom
Hamiltonian (5.1) can be written as

ẋm = ωmn
∂H

∂xn
, ω =

(
0 −I
I 0

)
, m, n = 1, 2, . . . , 2D (5.4)

where x = [p, q] is a phase space point, I = [D×D] unit matrix, and ω the
[2D×2D] symplectic form

ωmn = −ωnm , ω2 = −1 . (5.5)

The linearized motion in the vicinity x + δx of a phase space trajectory
x(t) = (p(t), q(t)) is described by the Jacobian matrix (4.20). The matrix
of variations in (4.28) takes form

A(x)mn = ωmkHkn(x) ,
d

dt
Jt(x) = A(x)Jt(x) , (5.6)

where Hkn = ∂k∂nH is the Hessian matrix of second derivatives. From
(5.6) and the symmetry of Hkn it follows that

AT ω + ωA = 0 . (5.7)

This is the defining property for infinitesimal generators of symplectic (or
canonical) transformations, transformations that leave the symplectic form
ωmn invariant. From this it follows that for Hamiltonian flows d

dt

(
JT ωJ

)
=

0, and that J is a symplectic transformation (we suppress the dependence
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on the time and initial point, J = Jt(x0), Λ = Λ(x0, t), for notational
brevity):

JT ωJ = ω . (5.8)

The transpose JT and the inverse J−1 are related by

J−1 = −ωJT ω , (5.9)

hence if Λ is an eigenvalue of J, so are 1/Λ, Λ∗ and 1/Λ∗. Real (non- ✎ 5.8
page 89

marginal) eigenvalues always come paired as Λ, 1/Λ. The complex eigen-
values come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic quartets Λ, 1/Λ, Λ∗

and 1/Λ∗, so

det Jt(x0) = 1 for all t and x0’s , (5.10)

and symplectic flows preserve the Liouville phase space volume.

Example 5.2 2-dimensional symplectic flows In the 2-dimensional case the eigen-
values (4.35) depend only on trJt

Λ1,2 =
1
2

(
trJt ±

√
(trJt − 2)(trJt + 2)

)
. (5.11)

The trajectory is elliptic if the residue |trJt| − 2 ≤ 0, with complex eigenvalues Λ1 =
eiθt, Λ2 = Λ∗

1 = e−iθt. If |trJt| − 2 > 0, the trajectory is (λ real)

either hyperbolic Λ1 = eλt , Λ2 = e−λt , (5.12)
or inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (5.13)

in depth:

appendix C.1, p. 565

5.2 Billiards

The dynamics that we have the best intuitive grasp on, and find easiest
to grapple with both numerically and conceptually, is the dynamics of bil-
liards. For billiards discrete time is altogether natural; a particle moving
through a billiard suffers a sequence of instantaneous kicks, and executes
a simple motion inbetween, so and there is no need to contrive a Poincaré
section. We have already used this system in sect. 1.3 as the intuitively
most accessible example of chaos. Here we define billiard dynamics more
precisely, anticipating the applications to come.
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Figure 5.2: The stadium billiard is a 2-dimensional domain bounded by two semi-
circles of radius d = 1 connected by two straight walls of length 2a. At the points
where the straight walls meet the semi-circles, the curvature of the border changes
discontinuously; these are the only singular points of the flow. The length a is the
only parameter.

A billiard is defined by a connected region Q ⊂ R
D, with boundary

∂Q ⊂ R
D−1 separating Q from its complement R

D \ Q. Q can consist
of one compact, finite volume component (in which case the billiard phase
space is bounded, as for the stadium billiard fig. 5.2), or can be infinite in
extent, with its complement R

D \ Q consisting of one or several finite or
infinite volume components (in which case the phase space is open, as for
the 3-disk pinball game fig. 1.1). In what follows we shall more often than
not restrict our attention to planar billiards. A point particle (“pinball”)
of mass m and momentum pn = mvn moves freely within the billiard,
along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in tangential component
of momentum, and instantaneous reversal of the momentum component
normal to the boundary,

p
′
= p− 2(p · n̂)n̂ ,

where n̂ is a unit vector normal to the boundary ∂Q at the collision point.
The angle of incidence equals to the angle of reflection, fig. 5.3. A billiard
is a Hamiltonian system with a 2D-dimensional phase space x = (p, q) and
potential V (q) = 0 for q ∈ Q, V (q) = ∞ for q ∈ ∂Q.

A billiard flow has a natural Poincaré section defined by marking sn, the
arc length position of the nth bounce measured along the billiard bound-
ary, and pn = p sinφn, the momentum component parallel to the boundary,
where φn is the angle between the outgoing trajectory and the normal to
the boundary. We measure both the arc length s and the parallel momen-
tum p anti-clockwise relative to the outward normal (see fig. 5.3 as well as
fig. 1.6a). In D = 2, the Poincaré section is a cylinder (topologically an
annulus), fig. 5.4, where the parallel momentum p ranges for -1 to 1, and
the s coordinate is cyclic along each connected component of ∂Q. The
volume in the full phase space is preserved by the Liouville theorem (5.10).
The Birkhoff Poincaré section coordinates x = (s, p) ∈ P, see fig. 5.3, are
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Figure 5.3: (a) A planar billiard trajectory is fixed by specifying the perimeter length
parametrized by s and the outgoing trajectory angle φ, both measured anti-clockwise
with respect to the outward normal n̂. (b) The Birkhoff phase space coordinate
pair (s, p) fully specifies the trajectory, with p = sin φ is the momentum component
tangential to the boundary.

Figure 5.4: In D = 2 the billiard Poincaré
section is a cylinder, with the parallel momen-
tum p ranging over p ∈ {−1, 1}, and with the s
coordinate is cyclic along each connected com-
ponent of ∂Q. The rectangle fig. 5.3(b) is such
cylinder unfolded, with periodic boundary con-
ditions glueing together the left and the right
edge of the rectangle.
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the natural choice (rather than, let’s say, (s, φ)), because with them the
the Poincaré return map preserves the phase space volume also in the (s, p)
parametrized Poincaré section. ✎ 5.8

page 89

☞ sect. 5.3Without loss of generality we will set m = |v| = |p| = 1 throughout.
Poincaré section condition eliminates one dimension, and the energy con-
servation |p| = const. another, hence the Poincaré section return map P is
(2D − 2)-dimensional.

The dynamics is given by the Poincaré return map P : (sn, pn) �→
(sn+1, pn+1) from the nth collision to the (n + 1)th collision. The discrete
time dynamics map P is equivalent to the Hamiltonian flow (5.1) in the
sense that both describe the same full trajectory. Let tn be the instant of
nth collision. Then the position of the pinball ∈ Q at time tn + τ ≤ tn+1 is
given by 2D− 2 Poincaré section coordinates (sn, pn) ∈ P together with τ ,
the distance reached by the pinball along the nth section of its trajectory.

Example 5.3 3-disk game of pinball In case of bounces off a circular disk, the
position coordinate s = rθ is given by angle θ ∈ [0, 2π]. For example, for the 3-disk
game of pinball of fig. 1.4 and fig. 1.6 we have two types of collisions: ✎ 5.1

page 88

P0 :
{

φ′ = −φ + 2arcsin p

p′ = −p + a
R sin φ′ back-reflection (5.14)
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P1 :
{

φ′ = φ− 2 arcsin p + 2π/3
p′ = p− a

R sinφ′ reflect to 3rd disk . (5.15)

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more than
high-school geometry is required. There is no need to compute arcsin’s either - one
only needs to compute a square root per each reflection, and the simulations can be
very fast.✎ 5.2

page 88 Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s
and P1’s. At each step on has to check whether the trajectory intersects the desired
disk (and no disk inbetween). With minor modifications, the above formulas are valid
for any smooth billiard as long as we replace a by the local curvature of the boundary
at the point of collision.

5.3 Stability of billiards

We turn next to the question of local stability of discrete time systems.
Infinitesimal equations of variations (4.2) do not apply, but the multiplica-
tive structure (4.27) of the finite-time Jacobian matrices does. As they are
more physical than most maps studied by dynamicists, let us turn to the
case of billiards first.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by
the fact that the magnitude of the velocity is constant. We shall now show
how going to the local frame of motion leads to a [2×2] Jacobian matrix.

Consider a 2-dimensional billiard with phase space coordinates x =
(q1, q2, p1, p2). Let tk be the instant of the kth collision of the pinball with
the billiard boundary, and t±k = tk±ε, ε positive and infinitesimal. With the
mass and the velocity equal to 1, the momentum direction can be specified
by angle θ: x = (q1, q2, sin θ, cos θ). Now parametrize the 2-d neighborhood
of a trajectory segment by δx = (δz, δθ), where

δz = δq1 cos θ − δq2 sin θ , (5.16)

δθ is the variation in the direction of the pinball. Due to energy conser-
vation, there is no need to keep track of δq‖, variation along the flow, as
that remains constant. (δq1, δq2) is the coordinate variation transverse to
the kth segment of the flow. From the Hamilton’s equations of motion for
a free particle, dqi/dt = pi, dpi/dt = 0, we obtain the equations of motion
(4.1) for the linearized neighborhood

d

dt
δθ = 0,

d

dt
δz = δθ . (5.17)

Let δθk = δθ(t+k ) and δzk = δz(t+k ) be the local coordinates immediately
after the kth collision, and δθ−k = δθ(t−k ), δz−k = δz(t−k ) immediately before.
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Integrating the free flight from t+k−1 to t−k we obtain

δz−k = δzk−1 + τkδθk−1 , τk = tk − tk−1

δθ−k = δθk−1 , (5.18)

and the stability matrix (4.26) for the kth free flight segment is

JT (xk) =
(

1 τk

0 1

)
. (5.19)

At incidence angle φk (the angle between the outgoing particle and the
outgoing normal to the billiard edge), the incoming transverse variation δz−k
projects onto an arc on the billiard boundary of length δz−k / cos φk. The
corresponding incidence angle variation δφk = δz−k /ρk cos φk, ρk = local
radius of curvature, increases the angular spread to

δzk = −δz−k

δθk = − δθ−k −
2

ρk cos φk
δz−k , (5.20)

so the Jacobian matrix associated with the reflection is

JR(xk) = −
(

1 0
rk 1

)
, rk =

2
ρk cos φk

. (5.21)

The full Jacobian matrix for np consecutive bounces describes a beam of
trajectories defocused by JT along the free flight (the τk terms below) and
defocused/refocused at reflections by JR (the rk terms below)

Jp = (−1)np

1∏
k=np

(
1 τk

0 1

)(
1 0
rk 1

)
, (5.22)

✎ 5.4
page 88where τk is the flight time of the kth free-flight segment of the orbit, rk =

2/ρk cos φk is the defocusing due to the kth reflection, and ρk is the radius
of curvature of the billiard boundary at the kth scattering point (for our
3-disk game of pinball, ρ = 1). As the billiard dynamics is phase space
volume preserving, detJ = 1 and the eigenvalues are given by (5.11).

This is still another example of the Jacobian matrix chain rule (4.31)
for discrete time systems, rather similar to the Hénon map stability (4.32).
Stability of every flight segment or reflection taken alone is a shear with two
unit eigenvalues, but acting in concert in the intervowen sequence (5.22)
they can lead to a hyperbolic deformation of the infinitesimal neighborhood
of a billiard trajectory. ✎ 5.5

page 89As a concrete application, consider the 3-disk pinball system of sect. 1.3.
Analytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles
follow from elementary geometrical considerations. Longer cycles require ✎ 5.6

page 89

✎ 5.3
page 88

numerical evaluation by methods such as those described in chapter 14.

☞ chapter 14
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86 CHAPTER 5. NEWTONIAN DYNAMICS

Figure 5.5: Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

ϕθ

Commentary

Remark 5.1 Billiards. The 3-disk game of pinball is to chaotic
dynamics what a pendulum is to integrable systems; the simplest
physical example that captures the essence of chaos. Another con-
tender for the title of the “harmonic oscillator of chaos” is the baker’s
map which is used as the red thread through Ott’s introduction to
chaotic dynamics [1.7]. The baker’s map is the simplest reversible dy-
namical system which is hyperbolic and has positive entropy. We will
not have much use for the baker’s map here, as due to its piecewise
linearity it is so nongeneric that it misses all of the subtleties of cycle
expansions curvature corrections that will be central to this treatise.

☞ chapter 15
That the 3-disk game of pinball is a quintessential example of de-

terministic chaos appears to have been first noted by B. Eckhardt [3.8].
The model was studied in depth classically, semiclassically and quan-
tum mechanically by P. Gaspard and S.A. Rice [3.9], and used by
P. Cvitanović and B. Eckhardt [3.10] to demonstrate applicability of
cycle expansions to quantum mechanical problems. It has been used
to study the higher order � corrections to the Gutzwiller quantization
by P. Gaspard and D. Alonso Ramirez [3.11], construct semiclassi-
cal evolution operators and entire spectral determinants by P. Cvi-
tanović and G. Vattay [3.12], and incorporate the diffraction effects
into the periodic orbit theory by G. Vattay, A. Wirzba and P.E. Rosen-
qvist [3.13]. The full quantum mechanics and semiclassics of scatter-
ing systems is developed here in the 3-disk scattering context in chap-
ter 27. Gaspard’s monograph [1.4], which we warmly recommend,
utilizies the 3-disk system in much more depth than will be attained
here. For further links check www.nbi.dk/ChaosBook.

A pinball game does miss a number of important aspects of chaotic
dynamics: generic bifurcations in smooth flows, the interplay between
regions of stability and regions of chaos, intermittency phenomena,
and the renormalization theory of the “border of order” between

these regions. To study these we shall have to face up to much harder
challenge, dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials.
The game of pinball may be thought of as the infinite potential wall
limit of a smooth potential, and pinball symbolic dynamics can serve
as a covering symbolic dynamics in smooth potentials. One may start
with the infinite wall limit and adiabatically relax an unstable cycle
onto the corresponding one for the potential under investigation. If

☞ sect. 14.4.1
things go well, the cycle will remain unstable and isolated, no new
orbits (unaccounted for by the pinball symbolic dynamics) will be
born, and the lost orbits will be accounted for by a set of pruning rules.

billiards - 2mar2003 draft 9.4.0, June 18 2003
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5.3. STABILITY OF BILLIARDS 87

The validity of this adiabatic approach has to be checked carefully in
each application, as things can easily go wrong; for example, near a
bifurcation the same naive symbol string assignments can refer to a
whole island of distinct periodic orbits.

Remark 5.2 Further reading. The chapter 1 of Gaspard mono-
graph [1.4] is recommended reading if you are interested in Hamilto-
nian flows, and billiards in particular. A. Wirzba has generalized the
stability analysis of sect. 5.3 to scattering off 3-dimensional spheres
(follow the links in www.nbi.dk/ChaosBook/extras). A clear discus-
sion of linear stability for the general d-dimensional case is given in
Gaspard [1.4], sect. 1.4.

Résumé

Visualization of strange attractors is greatly facilitated by felicitous choice
of Poincaré sections, and reduction of flows to Poincaré section return maps.
A particulary natural application of the Poincaré section method is the
reduction of a billiard flow to a boundary-to-boundary return map.
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Exercises

Exercise 5.1 A pinball simulator. Implement the disk → disk maps to
compute a trajectory of a pinball for a given starting point, and a given R:a
= (center-to-center distance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and circles together with
specular reflections, implementation should be within reach of a high-school
student. Please start working on this program now; it will be continually
expanded in chapters to come, incorporating the Jacobian calculations, Newton
root–finding, and so on.

Fast code will use elementary geometry (only one
√· · · per iteration, rest

are multiplications) and eschew trigonometric functions. Provide a graphic
display of the trajectories and of the Poincaré section iterates. To be able to
compare with the numerical results of coming chapters, work with R:a = 6
and/or 2.5 values. Draw the correct versions of fig. 1.8 or fig. 9.4 for R:a =
2.5 and/or 6.

Exercise 5.2 Trapped orbits. Shoot 100,000 trajectories from one of the
disks, and trace out the strips of fig. 1.8 for various R:a by color coding the
initial points in the Poincaré section by the number of bounces preceeding their
escape. Try also R:a = 6:1, though that might be too thin and require some
magnification. The initial conditions can be randomly chosen, but need not
- actually a clearer picture is obtained by systematic scan through regions of
interest.

Exercise 5.3 Pinball stability. Add to your exercise 5.1 pinball simulator a
routine that computes the the [2×x2] Jacobian matrix. To be able to compare
with the numerical results of coming chapters, work with R:a = 6 and/or 2.5
values.

Exercise 5.4 Stadium billiard. Consider the Bunimovich stadium [3.16, 3.17]
defined in fig. 5.2. The Jacobian matrix associated with the reflection is given by
(5.21). Here we take ρk = −1 for the semicircle sections of the boundary, and cos φk

remains constant for all bounces in a rotation sequence. The time of flight between two
semicircle bounces is τk = 2 cos φk. The Jacobian matrix of one semicircle reflection
folowed by the flight to the next bounce is

J = (−1)
(

1 2 cos φk

0 1

)(
1 0

−2/ cos φk 1

)
= (−1)

(
−3 2 cos φk

2/ cos φk 1

)
.

A shift must always be followed by k = 1, 2, 3, · · · bounces along a semicircle, hence the
natural symbolic dynamics for this problem is n-ary, with the corresponding Jacobian
matrix given by shear (ie. the eigenvalues remain equal to 1 throughout the whole
rotation), and k bounces inside a circle lead to

Jk = (−1)k

(
−2k − 1 2k cos φ
2k/ cos φ 2k − 1

)
. (5.23)

The Jacobian matrix of a cycle p of length np is given by

Jp = (−1)
∑

nk

np∏
k=1

(
1 τk

0 1

)(
1 0

nkrk 1

)
. (5.24)

Adopt your pinball simulator to the Bunimovich stadium.
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Exercise 5.5 Fundamental domain fixed points. Use the formula (5.22)
for billiard Jacobian matrix to compute the periods Tp and the expanding
eigenvalues Λp of the fundamental domain 0 (the 2-cycle of the complete 3-
disk space) and 1 (the 3-cycle of the complete 3-disk space) fixed points:

Tp Λp

0: R− 2 R− 1 + R
√

1− 2/R

1: R−
√

3 − 2R√
3

+ 1− 2R√
3

√
1−

√
3/R

(5.25)

We have set the disk radius to a = 1.

Exercise 5.6 Fundamental domain 2-cycle. Verify that for the 10-cycle the
cycle length and the trace of the Jacobian matrix are given by

L10 = 2
√

R2 −
√

3R + 1− 2,

trJ10 = 2L10 + 2 +
1
2

L10(L10 + 2)2√
3R/2− 1

. (5.26)

The 10-cycle is drawn in fig. 9.5. The unstable eigenvalue Λ10 follows from (4.16).

Exercise 5.7 A test of your pinball simulator. Test your exercise 5.3
pinball simulator by comparing what it yields with the analytic formulas of
exercise 5.5 and 5.6.

Exercise 5.8 Birkhoff coordinates. Prove that the Birkhoff coordinates are

phase-space volume preserving. Hint: compute the determinant of (5.22).
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Chapter 6

Get straight

A Hamiltonian system is said to be “integrable” if one can find a change
of coordinates to an action-angle coordinate frame where the phase space
dynamics is described by motion on circles, one circle for each degree of
freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame
where the stable/unstable manifolds are straight lines, and the flow is along
hyperbolas. Achieving this globally for anything but a handful of contrived
examples is too much to hope for. Still, as we shall now show, we can make
some headway on straightening out the flow locally.

Even though such nonlinear coordinate transformations are very impor-
tant, especially in celestial mechanics, we shall not use them much in what
follows, so you can safely skip this chapter. Except, perhaps, you might
want to convince yourself that cycle stabilities are indeed metric invariants
of flows.

fast track:

chapter 6.4, p. 96

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are
not always expressed in the most convenient way. In order to simplify a
given problem, one may stretch, rotate, bend and mix the coordinates, but
in doing so, the vector field will also change. The vector field lives in a
(hyper)plane tangent to phase space and changing the coordinates of phase
space affects the coordinates of the tangent space as well, in a way that we
will now describe.

Denote by h the conjugation function which maps the coordinates of the
initial phase space M into the reparametrized phase space M′ = h(M),
with a point x ∈ M related to a point y ∈ M′ by y = h(x). The change
of coordinates must be one-to-one and span both M and M′, so given any

91



92 CHAPTER 6. GET STRAIGHT

point y we can go back to x = h−1(y). For smooth flows the reparametrized
dynamics should support the same number of derivatives as the initial one.
If h is a (piecewise) analytic function, we refer to h as a smooth conjugacy.

The evolution rule gt(y0) on M′ can be computed from the evolution
rule f t(x0) on M by taking the initial point y0 ∈ M′, going back to M,
evolving, and then mapping the final point x(t) back to M′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (6.1)

Here “◦” stands for functional composition h ◦ f(x) = h(f(x)), so (6.1) is
a shorthand for y(t) = h(f t(h−1(y0))).

The vector field ẋ = v(x) in M, locally tangent the flow f t, is related
to the flow by differentiation (2.4) along the trajectory. The vector field
ẏ = w(y) in M′, locally tangent to gt follows by the chain rule:

w(y) =
dgt

dt
(y)

∣∣∣∣
t=0

=
d

dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣
t=0

= h′(h−1(y))v(h−1(y)) = h′(x)v(x) . (6.2)

With the indices reinstated, this stands for✎ 6.1
page 99

wi(y) =
∂hi(x)
∂xj

vj(x) , yi = hi(x) . (6.3)

Imagine that the phase space is a rubber sheet with the flow lines drawn
on it. A coordinate change corresponds to pulling and tugging on the rubber
sheet, with h sufficiently smooth to preclude violent and irreversible acts
such as cutting, glueing, or self-intersections of the distorted rubber sheet.
Trajectories that are closed loops in M will remain closed loops in the new
manifold M′, by their shapes will change. Globally h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears
the tangent field by ∂jhi, hence the simple transformation law (6.2) for the
velocity fields.

The time itself is a parametrization of points along flow lines, and it can
also be reparametrized, s = s(t), with the attendent modification of (6.2).
An example is the 2-body collision regularization of the helium Hamiltonian
(5.3), to be undertaken in sect. 6.2 below.

6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conju-
gacies is to use it to pick out the simplest possible representative of an
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6.2. RECTIFICATION OF FLOWS 93

equivalence class. In general and globally these are just words, as we have
no clue how to pick such “canonical” representative, but for smooth flows
we can always do it localy and for sufficiently short time, by appealing to
the rectification theorem, a fundamental theorem of ordinary differential
equations. The theorem assures us that there exists a solution (at least
for a short time interval) and what the solution looks like. The rectifica-
tion theorem holds in the neighborhood of points of the vector field v(x)
that are not singular, that is, everywhere except for the equilibrium points
(2.7), and points at which v is infinite. According to the theorem, in a small
neighborhood of a non-singular point there exists a change of coordinates
y = h(x) such that ẋ = v(x) in the new coordinates takes the standard
form

ẏ1 = 1
ẏ2 = ẏ3 = · · · = ẏd = 0 ,

(6.4)

with unit velocity flow along y1, and no flow along any of the remaining
directions.

Example 6.1 Harmonic oscillator, rectified.

As a simple example of global rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (6.5)

The trajectories x(t) = (p(t), q(t)) just go around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :
{

q = h−1
1 (r, θ) = r cos θ

p = h−1
2 (r, θ) = r sin θ

. (6.6)

The Jacobian matrix of the transformation is

h′ =

[
cos θ sin θ

− sin θ

r
−cos θ

r

]
(6.7)

resulting in (6.2) of rectified form

ṙ = 0 , θ̇ = −1 . (6.8)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h−1 is not the plane R

2, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics takes
place; the coordinate transformation is not defined on the equilibrium point x = (0, 0),
or r = 0.

Example 6.2 Colinear helium, regularized.

Though very simple in form, the Hamiltonian (5.3) is not the most convenient
for numerical investigations of the dynamics of the classical helium system. In the
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(r1, r2) coordinates the potential is singular for ri → 0 nucleus-electron collisions, with
velocity diverging to ∞. These 2-body collisions can be regularized by a rescaling of
the time and the coordinates (r1, r2, p1, p2) → (Q1, Q2, P1, P2), in a manner to be
described in chapter 28. For the purpose at hand it is sufficient to state the result: In
the rescaled coordinates the equations of motion are

Ṗ1 = 2Q1

[
2− P 2

2

8
−Q2

2

(
1 +

Q2
2

R4

)]
; Q̇1 =

1
4
P1Q

2
2

Ṗ2 = 2Q2

[
2− P 2

1

8
−Q2

1

(
1 +

Q2
1

R4

)]
; Q̇2 =

1
4
P2Q

2
1 . (6.9)

where R = (Q2
1 + Q2

2)
1/2. These equations look harder to tackle than the harmonic

oscillators that you are familiar with from other learned treatises, and indeed they are.
But they are also a typical example of kinds of flows that one works with in practice,
and the skill required in finding a good re-coordinatization h(x).

in depth:

chapter 28, p. 489

fast track:

chapter 6.4, p. 96

6.3 Rectification of maps

In sect. 6.2 we had argued that nonlinear coordinate transformations
can be profitably employed to simplify the representation of a flow. We
shall now apply the same idea to nonlinear maps, and determine a smooth
nonlinear change of coordinates that flattens out the vicinity of a fixed point
and makes the map linear in an open neighborhood. In its simplest form
the idea can be implemented only for an isolated nondegenerate fixed point
(otherwise are needed in the normal form expansion around the point),
and only in a finite neigborhood of a point, as the conjugating function in
general has a finite radius of convergence. In sect. 6.3.2 we will extend the
method to periodic orbits.

6.3.1 Rectification of a fixed point in one dimension

✎ 6.2
page 99 Consider a 1-dimensional map xn+1 = f(xn) with a fixed point at x = 0,

with stability Λ = f ′(0). If |Λ| 	= 1, one can determine term-by-term the
power series for a smooth conjugation h(x) centered at the fixed point,
h(0) = 0, that flattens out the neighborhood of the fixed point

f(x) = h−1(Λh(x)) (6.10)

and replaces the nonlinear map f(x) by a linear map yn+1 = Λyn.

To compute the conjugation h we use the functional equation h−1(Λx) =
f(h−1(x)) and the expansions

f(x) = Λx + x2f2 + x3f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (6.11)
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If h(x) is a conjugation, so is any scaling h(bx) of the function for a real
number b. Hence the value of h′(0) is not determined by the functional
equation (6.10); it is convenient to set h′(0) = 1.

The algebra is not particularly illuminating and best left to computers.
In any case, for the time being we will not use much beyond the first, linear
term in these expansions.

Here we assume Λ 	= 1. If the fixed point has first k−1 derivatives
vanishing, the conjugacy is to the kth normal form.

In several dimensions, Λ is replaced by the Jacobian matrix, and one
has to check that the eigenvalues J are non-resonant, that is, there is no
integer linear relation between the stability exponents (4.37).

6.3.2 Rectification of a 1-dimensional periodic orbit

Now that we have constructed the conjugation function for a fixed point,
we turn to the problem of constructing it for periodic orbits. Each point
around the cycle has a differently distorted neighborhood, with differing
second and higher order derivatives, so we need to compute a different
conjugation function ha at each cycle point xa. We expand the map f
around each cycle point along the cycle,

ya(φ) = fa(φ)− xa+1 = φfa,1 + φ2fa,2 + . . .

where xa is a point on the cycle, fa(φ) = f(xa+φ) is centered on the periodic
orbit, and the index k in fa,k refers to the kth order in the expansion (6.11).

For a periodic orbit the conjugation formula (6.10) generalizes to

fa(φ) = h−1
a+1(f

′
a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same way
as before, by equating coefficients of the expansion (6.11), and assuming
that the cycle stability Λ =

∏n−1
a=0 f ′(xa) is not marginal, |Λ| 	= 1. The

explicit expressions for ha in terms of f are obtained by iterating around
the whole cycle,

fn(xa + φ) = h−1
a (Λha(φ)) + xa . (6.12)

evaluated at each cycle point a. Again we have the freedom to set h′
a(0) = 1

☞ remark 6.1
for all a.
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6.3.3 Repeats of cycles

We have traded in our initial nonlinear map f for a (locally) linear map
Λy and an equally complicated conjugation function h. What is gained
by rewriting the map f in terms of the conjugacy function h? Once the
neighborhood of a fixed point is linearized, the repeats of it are trivialized;
from the conjugation formula (6.11) one can compute the derivatives of a
function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for arbitrary repeats; the
answer will depend on the conjugacy function h(x) computed for a single
repeat, and all the dependence on the repeat number will be carried by
factors polynomial in Λr, a considerable simplification. The beauty of the
idea is difficult to gauge at this stage - an appreciation only sets in when
one starts computing perturbative corrections, be it in celestial mechanics
(where the method was born), be it the quantum or stochastic corrections
to “semiclassical” approximations.

6.4 Smooth conjugacies and cycle stability

In sect. 4.5.2 we have established that for a given flow the cycle stabil-
ity eigenvalues are intrinsic to a given cycle, independent of the staring
point along the cycle. Now we can prove a much stronger statement; cy-
cle stability eigenvalues are metric invariants of the flow, the same in any
representation of the dynamical system.

That the cycle stability eigenvalues are an invariant property of the
given dynamical system follows from elementary considerations of sect. 6.1:
If the same dynamics is given by a map f in x coordinates, and a map g in
the y = h(x) coordinates, then f and g (or any other good representation)
are related by (6.2), a reparametrization and a coordinate transformation
g = h ◦ f ◦ h−1. As both f and g are arbitrary representations of the
dynamical system, the explicit form of the conjugacy h is of no interest,
only the properties invariant under any transformation h are of general
import. Furthermore, a good representation should not mutilate the data;
h must be a smooth conjugacy which maps nearby cycle points of f into
nearby cycle points of g. This smoothness guarantees that the cycles are
not only topological invariants, but that their linearized neighborhoods are
also metrically invariant. For a fixed point f(x) = x of a 1-dimensional
map this follows from the chain rule for derivatives,

g′(y) = h′(f ◦ h−1(y))f ′(h−1(y))
1

h′(x)

= h′(x)f ′(x)
1

h′(x)
= f ′(x) , (6.13)
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and the generalization to the stability eigenvalues of periodic orbits of d-
dimensional flows is immediate.

As stability of a flow can always be rewritten as stability of a Poincaré
section return map, we find that the stability eigenvalues of any cycle, for a
flow or a map in arbitrary dimension, is a metric invariant of the dynamical
system. ✎ 6.2

page 99

in depth:

appendix C.1, p. 565

Commentary

Remark 6.1 Rectification of maps. The methods outlined above
are standard in the analysis of fixed points and construction of nor-
mal forms for bifurcations, see for example ref. [1.11, 6.2, 6.4, 6.5, 6.6,
6.7, 6.8, 6.9, 3.5]. The geometry underlying such methods is pretty,
and we enjoyed reading, for example, Percival and Richards [6.10],
chaps. 2 and 4 of Ozorio de Almeida’s monograph [6.11], and, as al-
ways, Arnol’d [6.1].

Recursive formulas for evaluation of derivatives needed to evaluate
(6.11) are given, for example, in Appendix A of ref. [7.3]).

Résumé

Dynamics (M, f) is invariant under the group of all smooth conjugacies

(M, f) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the
flow and (ii) identify a set of invariants, numbers computed within a par-
ticular choice of (M, f), but invariant under all M→ h(M) smooth con-
jugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system
of D degrees of freedom is fully foliated by D-tori. In the same spirit, for
a uniformly hyperbolic, chaotic dynamical system one would like to change
into a coordinate frame where the stable/unstable manifolds form a set of
transversally interesecting hyper-planes, with the flow everywhere locally
hyperbolic. That, cannot be done in general: Fully globally integrable and
fully globally chaotic flows are a very small subset of all possible flows.

Nevertheless, we can profitably straighten out local neighborhoods of
periodic orbits. Periodic orbits play a central role in any invariant charac-
terization of the dynamics, as they form an infinite set of metric invariants:
The stability eigenvalues of a periodic orbit remain invariant under any
smooth nonlinear change of coordinates f → h ◦ f ◦ h−1 .

draft 9.4.0, June 18 2003 conjug - 9mar2003



98 References

What we really care about is developping invariant notions of what a
given dynamical system is. The totality of smooth one-to-one nonlinear co-
ordinate transformations h which map all trajectories of a given dynamical
system (M, f t) onto all trajectories of dynamical systems (M′, gt) gives us
a huge equivalence class, much larger than the equivalence classes familiar
from the theory of linear transformations, such as the rotation group O(d)
or the Galilean group of all rotations and translations in R

d. In the theory
of Lie groups, the full invariant specification of an object is given by a finite
set of Casimir invariants. What a good full set of invariants for a group of
general nonlinear smooth conjugacies might be is not known, but the set of
all periodic orbits and their stability eigenvalues will turn out to be a good
start.
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Exercises

Exercise 6.1 Coordinate transformations. Changing coordinates is con-
ceptually simple, but can become confusing when carried out in detail. The difficulty
arises from confusing functional relationships, such as x(t) = h−1(y(t)) with numer-
ical relationships, such as w(y) = h′(x)v(x). Working through an example will clear
this up.

(a) The differential equation in the M space is ẋ = {2x1, x2} and the change of
coordinates from M to M′ is h(x1, x2) = {2x1 + x2, x1 − x2}. Solve for x(t).
Find h−1.

(b) Show that in the transformed space M′, the differential equation is

d

dt

[
y1

y2

]
=

1
3

[
5y1 + 2y2

y1 + 4y2

]
. (6.14)

Solve this system. Does it match the solution in the M space?

Exercise 6.2 Linearization for maps. Let f : C → C be a map from the
complex numbers into themselves, with a fixed point at the origin and analytic there.
By manipulating power series, find the first few terms of the map h that conjugates f
to αz, that is,

f(z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin to assure that the conjugation
is always possible. Can you formulate these conditions by examining the series?

(difficulty: medium)
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Chapter 7

Transporting densities

O what is my destination? (I fear it is henceforth
chaos;)
Walt Whitman,
Leaves of Grass: Out of the Cradle Endlessly Rocking

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3 and 5 we learned how to track an individual trajectory,
and saw that such a trajectory can be very complicated. In chapter 4 we
studied a small neighborhood of a trajectory and learned that such neigh-
borhood can grow exponentially with time, making the concept of tracking
an individual trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly
convoluted, the density of these points might evolve in a manner that is
relatively smooth. The evolution of the density of representative points is
for this reason (and other that will emerge in due course) of great interest.
So are the behaviors of other properties carried by the evolving swarm of
representative points.

We shall now show that the global evolution of the density of represen-
tative points is conveniently formulated in terms of evolution operators.

7.1 Measures

Do I then measure, O my God, and know not what I
measure?
St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system
is that of measure, which we denote by dµ(x) = ρ(x)dx. An intuitive way
to define and construct a physically meaningful measure is by a process
of coarse-graining. Consider a sequence 1, 2, ..., n, ... of more and more
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(a)

0

1

2

(b)

01

12

22

02

00

20

21

11
10

Figure 7.1: (a) First level of partitioning: A coarse partition of M into regions M0,
M1, and M2. (b) n = 2 level of partitioning: A refinement of the above partition,
with each region Mi subdivided into Mi0, Mi1, and Mi2.

refined partitions of the phase space, fig. 7.1, into regions Mi defined by
the characteristic function

χi(x) =
{

1 if x ∈ region Mi

0 otherwise . (7.1)

A coarse-grained measure is obtained by assigning the “mass”, or the frac-
tion of trajectories contained in the ith region Mi ⊂M at the nth level of
partitioning of the phase space:

∆µi =
∫
M

dµ(x)χi(x) =
∫
Mi

dµ(x) =
∫
Mi

dx ρ(x) . (7.2)

ρ(x) = ρ(x, t) is the density of representative points in the phase space at
time t. This density can be (and in chaotic dynamics often is) an arbitrarily
ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect
to the Lebesgue measure. As our intent is to sprinkle the phase space with
a finite number of initial points, we shall assume that the measure can be
normalized

(n)∑
i

∆µi = 1 , (7.3)

where the sum is over subregions i at the nth level of partitioning. The
infinitesimal measure dxρ(x) can be thought of as a n →∞ infinitely refined
partition limit of ∆µi = |Mi|ρ(xi) , xi ∈Mi, with normalization

∫
M

dx ρ(x) = 1 . (7.4)

So far, any arbitrary sequence of partitions will do. What are intelligent
ways of partitioning the phase space? We postpone the answer to chapter 9,
after we have developed some intuition about how the dynamics transports
densities.

☞ chapter 9
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7.2 Perron-Frobenius operator

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.
W. Shakespeare: The Winter’s Tale

Given a density, the question arises as to what it might evolve into with
time. Consider a swarm of representative points making up the measure
contained in a regionMi at t = 0. As the flow evolves, this region is carried
into f t(Mi), as in fig. 2.1(b). No trajectory is created or destroyed, so the
conservation of representative points requires that

∫
f t(Mi)

dx ρ(x, t) =
∫
Mi

dx0 ρ(x0, 0) .

If the flow is invertible and the transformation x0 = f−t(x) is single valued,
we can transform the integration variable in the expression on the left to

∫
Mi

dx0 ρ(f t(x0), t)
∣∣detJt(x0)

∣∣ .

We conclude that the density changes with time as the inverse of the Jaco-
bian (4.46)

ρ(x, t) =
ρ(x0, 0)

|detJt(x0)|
, x = f t(x0) , (7.5)

which makes sense: the density varies inversely to the infinitesimal volume
occupied by the trajectories of the flow.

The manner in which a flow transports densities may be recast into
language of operators, by writing

ρ(x, t) = Ltρ(x) =
∫
M

dx0 δ
(
x− f t(x0)

)
ρ(x0, 0) . (7.6)

Let us check this formula. Integrating Dirac delta functions is easy:
∫
M dx δ(x) =

1 if 0 ∈ M, zero otherwise. Integral over a one-dimensional Dirac delta
function picks up the Jacobian of its argument evaluated at all of its zeros:

∫
dx δ(h(x)) =

∑
x∈Zero [h]

1
|h(x)′| , (7.7)

and in d dimensions the denominator is replaced by ✎ 7.1
page 114
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Figure 7.2: A piecewise-linear repeller (7.11):
All trajectories that land in the gap between the
f0 and f1 branches escape (Λ0 = 4, Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

∫
dx δ(h(x)) =

∑
x∈Zero [h]

1∣∣∣det ∂h(x)
∂x

∣∣∣ . (7.8)

Now you can check that (7.6) is just a rewrite of (7.5):✎ 7.2
page 114

Ltρ(x) =
∑

x0=f−t(x)

ρ(x0)
|f t(x0)

′|
(1-dimensional)

=
∑

x0=f−t(x)

ρ(x0)
|detJt(x0)|

(d-dimensional) . (7.9)

For a deterministic, invertible flow there is only one x0 preimage of x; al-
lowing for multiple preimages also takes account of noninvertible mappings
such as the “stretch&fold” maps of the interval, to be discussed in the next
example, or more generally in sect. 9.4.

We shall refer to the kernel of (7.6) as the Perron-Frobenius operator:

✎ 7.3
page 114

Lt(x, y) = δ
(
x− f t(y)

)
. (7.10)

☞ sect. 13.3.1

If you do not like the word “kernel” you might prefer to think of Lt(x, y)
as a matrix with indices x, y. The Perron-Frobenius operator assembles

☞ remark 12.4
the density ρ(x, t) at time t by going back in time to the density ρ(x0, 0)
at time t = 0.

in depth:

appendix D, p. 571

Example 7.1 A piecewise-linear example

What is gained by reformulation of dynamics in terms of “operators”? We start by
considering a simple example where the operator is a [2 × 2] matrix. Assume the
expanding 1-d map f(x) of fig. 7.2, a piecewise-linear 2–branch repeller with slopes
Λ0 > 1 and Λ1 < −1 :

f(x) =

{
f0 = Λ0x if x ∈M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈M1 = [1 + 1/Λ1, 1]
. (7.11)
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Both f(M0) and f(M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =
{

ρ0 if x ∈M0

ρ1 if x ∈M1
. (7.12)

There is no need to define ρ(x) in the gap between M0 and M1, as any point that
lands in the gap escapes. The physical motivation for studying this kind of mapping is
the pinball game: f is the simplest model for the pinball escape, fig. 1.7, with f0 and
f1 modelling its two strips of survivors.

As can be easily checked by using (7.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] “transfer” matrix with matrix elements✎ 7.1

page 114

✎ 7.5
page 115

(
ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

)(
ρ0

ρ1

)
, (7.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at
every iteration. As in this example the density is constant after one iteration, L has only
one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|, with the constant density eigenvector
ρ0 = ρ1. 1/|Λ0|, 1/|Λ1| are respectively the sizes of |M0|, |M1| intervals, so the exact
escape rate (1.3) – the log of the fraction of survivors at each iteration for this linear
repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0|+ 1/|Λ1|) . (7.14)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rate at infinite time. This simple explicit matrix
representation of the Perron-Frobenius operator is a consequence of piecewise linearity
of f , and the restriction of the densities ρ to the space of piecewise constant functions.
The example gives a foretaste of the enterprise upon which we are to embark in this
book, but the full story is much subtler: in general case there will exist no such finite-
dimensional representation for the Perron-Frobenius operator.

To a student with practical bend the example does suggest a strategy for con-
structing evolution operators for smooth maps, as limits of partitions of phase space
into regions Mi, with a piecewise-linear approximation fi to dynamics in each region,
but that would be too naive; much of the physically interesting spectrum would be
missed. As we shall see, the choice of function space for ρ is crucial, and the physically

☞ chapter 13
motivated choice is a space of smooth functions, rather than the space of piecewise
constant functions.

7.3 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (7.15)

Conversely, if such a density exists, the transformation f t(x) is said to be
measure preserving. As we are given deterministic dynamics and our goal is
computation of asymptotic averages of observables, our task is to identify
interesting invariant measures for a given f t(x). Invariant measures remain
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unaffected by dynamics, so they are fixed points (in the infinite-dimensional
function space of ρ densities) of the Perron-Frobenius operator (7.10), with
the unit eigenvalue: ✎ 7.3

page 114

Ltρ(x) =
∫
M

dy δ(x− f t(y))ρ(y) = ρ(x). (7.16)

In general, depending on the choice of f t(x) and the function space for ρ(x),
there may be no, one, or many solutions of the eigenfunction condition
(7.16). For instance, a singular measure dµ(x) = δ(x− x∗)dx concentrated
on an equilibrium point x∗ = f t(x∗), or any linear combination of such
measures, each concentrated on a different equilibrium point, is stationary.
So there are infinitely many stationary measures you can construct, almost
all of them unnatural in the sense that a slightest perturbation will destroy
them.

From a physical point of view, there is no way to prepare initial densi-
ties which are singular, so it makes sense to concentrate on measures which
are limits of transformations which an initial smooth distribution ρ(x) ex-
periences under the action of f , rather than as a limit computed from a
single trajectory,

ρ0(x) = lim
t→∞

∫
M

dy δ(x− f t(y))ρ(y, 0) ,

∫
M

dy ρ(y, 0) = 1 . (7.17)

Intuitively, the “natural” measure should also be the one least sensitive to
inevitable facts of life, such as noise, not matter how weak.

7.3.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory
gives us useful insight into the foundation of statis-
tical mechanics?
Yang: I don’t think so.
Kerson Huang, C.N. Yang interview

The natural or equilibrium measure can be defined as the limit

ρx0
(y) =

{
limt→∞ 1

t

∫ t
0 dτ δ(y − f τ (x0)) flows

limn→∞ 1
n

∑n−1
k=0 δ

(
y − fk(x0)

)
maps

, (7.18)

✎ 7.8
page 116

✎ 7.9
page 116

where x0 is a generic inital point. Staring at an average over ∞ many
Dirac deltas is not a prospect we cherish. Generated by the action of
f , the natural measure satisfies the stationarity condition (7.16) and is
thus invariant by construction. From the computational point of view,
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the natural measure is the visitation frequency defined by coarse-graining,
integrating (7.18) over the Mi region

∆µi = lim
t→∞

ti
t

, (7.19)

where ti is the accumulated time that a trajectory of total duration t spends
in theMi region, with the initial point x0 picked from some smooth density
ρ(x).

Let a = a(x) be any observable. In mathematical literature a(x) is a
function belonging to some function space, for instance the space of inte-
grable functions L1, that associates to each point in phase space a number
or a set of numbers. In physical application the observable a(x) is of ne-
cessity a smooth function. The observable reports on some property of the
dynamical system (several examples will be given in sect. 8.1).

The space average of the observable a with respect to measure ρ is given
by the d-dimensional integral over the phase space M:

〈a〉ρ =
1
|ρM|

∫
M

dx ρ(x)a(x) , |ρM| =
∫
M

dx ρ(x) = mass in M .(7.20)

For the time being we assume that the phase spaceM has a finite dimension
and a finite volume. By its definition 〈a〉ρ is a function(al) of ρ.

Inserting the right hand side of (7.18) into (7.20) we see that the natural
measure corresponds to time average of the observable a along a trajectory
of the initial point x0,

a(x0) = lim
t→∞

1
t

∫ t

0
dτ a(f τ (x0)) . (7.21)

Analysis of the above asymptotic time limit is the central problem of
ergodic theory. More precisely, the Birkhoff ergodic theorem asserts that

☞ appendix A
if a natural measure ρ exists, the limit a(x0) for the time average (7.21)
exists for all initial x0. As we shall not rely on this result in what follows
we forgo a proof here. Furthermore, if the dynamical system is ergodic, the
time average over almost any trajectory tends to the space average

lim
t→∞

1
t

∫ t

0
dτ a(f τ (x0)) = 〈a〉 (7.22)

for “almost all” initial x0. By “almost all” we mean that the time average
is independent of the initial point apart from a set of ρ-measure zero.

For future reference, we note a further property, stronger than ergodic-
ity: if you can establish the space average of a product of any two variables
decorrelates with time,

lim
t→∞

〈
a(x)b(f t(x))

〉
= 〈a〉 〈b〉 , (7.23)
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Figure 7.3: Natural measure (7.19) for the
Hénon map (3.10) strange attractor at param-
eter values (a, b) = (1.4, 0.3). See fig. 3.4 for a
sketch of the attractor without the natural mea-
sure binning. (Courtesy of J.-P. Eckmann) -0.4
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☞ sect. 16.3

the dynamical system is said to be mixing.

An example of a numerical calculation of the natural measure (7.19) for
the Hénon attractor (3.10) is given by the histogram of fig. 7.3. The phase
space is partitioned into many equal size areas Mi, and the coarse grained
measure (7.19) computed by a long time iteration of the Hénon map, and
represented by the height of the column over area Mi. What you see is a
typical invariant measure - a complicated, singular function concentrated
on a fractal set. If an invariant measure is quite singular (for instance a
Dirac δ concentrated on a fixed point or a cycle), its existence is most likely
of limited physical import. No smooth inital density will converge to this
measure if the dynamics is unstable. In practice the average (7.18) is prob-
lematic and often hard to control, as generic dynamical systems are neither
uniformly hyperbolic nor structurally stable: it is not known whether even
the simplest model of a strange attractor, the Hénon attractor, is a strange
attractor or merely a long stable cycle.✎ 8.1

page 135

While dynamics can lead to very singular ρ’s, in any physical setting
we cannot do better than to measure it averaged over some region Mi; the
coarse-graining is not an approximation but a physical necessity. One is
free to think of a measure as a probability density, as long as one keeps
in mind the distinction between deterministic and stochastic flows. In
deterministic evolution the evolution kernels are not probabilistic, the den-
sity of trajectories is transported deterministically. What this distinction

☞ chapter 12
means will became apparent later on: for deterministic flows our trace and
determinant formulas will be exact, while for quantum and stochastic flows
they will only be the leading saddlepoint approximations. Clearly, while
deceptively easy to define, measures spell trouble. The good news is that if
you hang on, you will never ever need to compute them, not in this book.
How so? The evolution operators that we turn to next, and the trace and
determinant formulas that they will lead us to will assign the correct nat-
ural measure weights to desired averages without recourse to any explicit
computation of the coarse-grained measure ∆ρi.
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7.4 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an in-
finitesimal step δτ , by expanding the action of Lδτ to linear order in δτ :

Lδτρ(y) =
∫
M

dx δ
(
y − f δτ (x)

)
ρ(x) =

∫
M

dx δ(y − x− δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣det
(
1 + δτ ∂v(y)

∂x

)∣∣∣ =
ρ(y)− δτ

∑d
i=1 vi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0)− δτ

d∑
i=1

∂

∂xi
(vi(x)ρ(x, 0)) . (7.24)

Here we have used the infinitesimal form of the flow (2.5), Dirac delta
jacobian (7.9), and the lndet = trln relation. Moving ρ(y, 0) to the left
hand side and dividing by δτ , we discover that the rate of the deformation of
ρ under the infinitesimal action of the Perron-Frobenius operator is nothing
but the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (7.25)

The family of Perron-Frobenius operators operators
{
Lt
}

t∈R+
forms a semi-

group parametrized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

The generator of the semigroup, the generator of infinitesimal time trans-
lation by an infinitesimal step δτ is determined by (7.24)

Aρ(x) = + lim
δτ→0+

1
δτ

(
Lδτ − I

)
ρ(x) . = −∂i(vi(x)ρ(x)) . (7.26)

(If the flow is finite-dimensional and invertible, A is a generator of a group).
Of course, the left hand side is the definition of the time derivative, so the
evolution equation for ρ(x) is

(
∂

∂t
−A

)
ρ(x) = 0 . (7.27)

☞ appendix D.3

The above statements apply to any deterministic flow. If the density
itself is a material invariant, combining (D.1) and (7.25) we conclude that
∂ivi = 0 and Jt(x0) = 1. An example of such incompressible flow is the
Hamiltonian flow of sect. 5.1.1. For incompressible flows the continuity
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equation (7.25) becomes a statement of conservation of the phase space
volume (see sect. 5.1.1), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (7.28)

The finite time Perron-Frobenius operator (7.10) can be formally ex-
pressed by exponentiating the time evolution generator A as

Lt = etA . (7.29)

The generator A looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothing but a translation
by time× velocity:✎ 7.11

page 116

e−tv ∂
∂x a(x) = a(x− tv) . (7.30)

As we will not need to implement a computational formula for general etA in
what follows, we relegate making sense of such operators to appendix D.3.
Here we limit ourselves to a brief remark about the notion of “spectrum”

☞ appendix D.3
of a linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it
is reasonable to suppose that there exist constants M > 0, β ≥ 0 such
that ||Lt|| ≤ Metβ for all t ≥ 0. What does that mean? The operator
norm is defined in the same spirit in which we defined the matrix norms
in sect. K.2: We are assuming that no value of Ltρ(x) grows faster than
exponentially for any choice of function ρ(x), so that the fastest possible
growth can be bounded by etβ, a reasonable expectation in the light of the
simplest example studied so far, the exact escape rate (7.14). If that is
so, multiplying Lt by e−tβ we construct a new operator e−tβLt = et(A−β)

which decays exponentially for large t, ||et(A−β)|| ≤M . We say that e−tβLt

is an element of a bounded semigroup with generator A − βI. Given this
bound, it follows by the Laplace transform

∫ ∞

0
dt e−stLt =

1
s−A , Re s > β , (7.31)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to
☞ sect. K.2

cause separation into constituents)

∣∣∣∣∣∣∣∣ 1
s−A

∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−stMetβ =

M

s− β
.

If one is interested in the spectrum of L, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for
the continuous time flows the Laplace transform is the tool that brings
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down the generator in (7.29) into the resolvent form (7.31) and enables us
to study its spectrum.

in depth:

appendix D.3, p. 574

7.4.1 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow
defined by the time-independent Hamilton’s equations of motion (5.1). A
reader versed in quantum mechanics will have observed by now that with
replacement A → − i

�
Ĥ , where Ĥ is the quantum Hamiltonian operator,

(7.27) looks rather much like the time dependent Schrödinger equation, so
this is probably the right moment to figure out what all this means in the
case of Hamiltonian flows.

For separable Hamiltonians of form H = p2/2m + V (q), the equations
of motion are

q̇i =
pi

m
, ṗi = −∂V (q)

∂qi
. (7.32)

The evolution equations for any p, q dependent quantity Q = Q(p, q) are
given by

dQ

dt
=

∂Q

∂qi

dqi

dt
+

∂Q

∂pi

dpi

dt
=

∂H

∂pi

∂Q

∂qi
− ∂Q

∂pi

∂H

∂qi
. (7.33)

As equations with this structure arise frequently for symplectic flows, it is
convenient to introduce a notation for them, the Poisson bracket

[A, B] =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
. (7.34)

In terms of Poisson brackets the time evolution equation (7.33) takes the
compact form

dQ

dt
= [H, Q] . (7.35)

The phase space flow velocity is v = (q̇, ṗ), where the dot signifies time
derivative for fixed initial point. Hamilton’s equations (5.1) imply that the
flow is incompressible, ∂ivi = 0, so for Hamiltonian flows the equation for
ρ reduces to the continuity equation for the density:

☞ appendix D

∂tρ + ∂i(ρvi) = 0 . (7.36)
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Consider evolution of the phase space density ρ of an ensemble of nonin-
teracting particles subject to the potential V (q); the particles are conserved,
so

d

dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (5.1) we obtain the Liouville equation, a
special case of (7.27):

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = [H, ρ(q, p, t)] , (7.37)

where [ , ] is the Poisson bracket (7.34). The generator of the flow (7.26)
is now the generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
. (7.38)

or, by the Hamilton’s equations for separable Hamiltonians

A = −pi

m

∂

∂qi
+ ∂iV (q)

∂

∂pi
. (7.39)

✎ 7.12
page 117 This special case of the time evolution generator (7.26) for the case of sym-

plectic flows is called the Liouville operator. You might have encountered
it in statistical mechanics, while discussing what ergodicity means for 1023

hard balls, or along a road from Liouville to Boltzmann. Here its action will
be very tangible; we shall apply the evolution operator to systems as small
as 1 or 2 hard balls and to our surprise learn that that suffices to get a grip
on the foundations of the classical nonequilibrium statistical mechanics.

in depth:

sect. D.3, p. 574

Commentary

Remark 7.1 Ergodic theory. An overview of ergodic theory
is outside the scope of this book: the interested reader may find it
useful to consult [7.1]. The existence of time average (7.21) is the
basic result of ergodic theory, known as the Birkhoff theorem, see
for example refs. [7.1, 1.11], or the statement of the theorem 7.3.1 in
ref. [D.1]. The natural measure (7.19) (more carefully defined than
in the above sketch) is often referred to as the SBR or Sinai-Bowen-
Ruelle measure [1.14, 1.13, 1.16].

Remark 7.2 Bounded semigroup. For a discussion of bounded
semigroups of page 110 see, for example, Marsden and Hughes [7.2].
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Résumé

In physically realistic setting initial state of a system can be specified only
to a finite precision. Depending on the desired precision, and given a de-
terministic law of evolution, h, the system can then be tracked for some
finite time, however, if dynamics is chaotic, it is not possible to calculate
accurately the long time trajectory of a given initial point. Hence, the
study of long time dynamics requires going into a trading in evolution of a
single phase space point for the evolution of the measure, or the density of
representative points in phase space, acted upon by an evolution operator.
Essentially this means trading in nonlinear dynamical equations on finite
low-dimensional spaces x = (x1, x2 · · ·xd) for linear equations on infinite
dimensional vector spaces of density functions ρ(x).

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the no-
tion of an individual deterministic trajectory loses meaning, is much shorter
than the observation time, the “sharp” observables are dual to time, the
eigenvalues of evolution operators. This is very much the same situation as
in quantum mechanics, as atomic time scales are so short, what is accessible
to measure is the energy spectrum.

For long times the dynamics is described in terms of stationary mea-
sures, that is, fixed points of certain evolution operators. The most physical
of stationary measures is the natural measure, a measure robust under per-
turbations by weak noise.

In what follows we shall find the second formulation more convenient,
but the alternative is worth keeping in mind when posing and solving in-
variant density problems. However, as the classical evolution operators are
not unitary, their eigenstates can be quite singular and difficult to work
with. In what follows we shall learn how to avoid this altogether.
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Exercises

Exercise 7.1 Integrating over Dirac delta functions. Let us verify a
few of the properties of the delta function and check (7.9), as well as the
formulas (7.7) and (7.8) to be used later.

(a) If f : R
d → R

d, then show that∫
Rd

dx δ (f(x)) =
∑

x∈f−1(0)

1
|det ∂xf | .

(b) The delta function can be approximated by delta sequences, for example

∫
dx δ(x)f(x) = lim

σ→0

∫
dx

e−
x2

2σ

√
2πσ

f(x) .

Use this approximation to see whether the formal expression∫
R

dx δ(x2)

makes sense.

Exercise 7.2 Derivatives of Dirac delta functions. Consider δ(k)(x) =
∂k

∂xk δ(x) , and show that

(a) Using integration by parts, determine the value of∫
R

dx δ′(y) .

where y = f(x)− x.

(b)

∫
dx δ(2) (y) =

∑
x:y(x)=0

1
|y′|

{
3
(y′′)2

(y′)4
− y′′′

(y′)3

}
. (7.40)

(c)

∫
dx b(x)δ(2)(y) =

∑
x:y(x)=0

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3
+ b

(
3
(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(7.41)

These formulas are useful incomputing effects of weak noise on deterministic dynam-

ics [7.3].

Exercise 7.3 Lt generates a semigroup. Check that the Perron-Frobenius
operator has the semigroup property,

∫
M

dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) , t1, t2 ≥ 0 . (7.42)

As the flows that we tend to be interested in are invertible, the L’s that we
will use often do form a group, with t1, t2 ∈ R.
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Exercise 7.4 Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of the fraction of trajectories
remaining trapped in the interval [0, 1] for the tent map

f(x) = a(1− 2|x− 0.5|)

for several values of a.

(b) Determine analytically the a dependence of the escape rate γ(a).

(c) Compare your results for (a) and (b).

Exercise 7.5 Invariant measure. We will compute the invariant measure
for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (7.13).

(b) The maximum of the first map has value 1. Compute an invariant mea-
sure for this map.

(c) Compute the leading eigenvalue of L for this map.

(d) For this map there is an infinite number of invariant measures, but only
one of them will be found when one carries out a numerical simulation.
Determine that measure, and explain why your choice is the natural
measure for this map.

(e) In the second map the maximum is at α = (3 −
√

5)/2 and the slopes
are ±(

√
5 + 1)/2. Find the natural measure for this map. Show that it

is piecewise linear and that the ratio of its two values is (
√

5 + 1)/2.

(medium difficulty)

Exercise 7.6 Escape rate for a flow conserving map. Adjust Λ0, Λ1 in

(7.11) so that the gap between the intervals M0, M1 vanishes. Check that in that

case the escape rate equals zero.

Exercise 7.7 Eigenvalues of the skew Ulam tent map Perron-Frobenius oper-
ator. Show that for the skew Ulam tent map
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f(x) =
{

f0(x) = Λ0x , x ∈M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1− x) , x ∈M1 = (1/Λ0, 1] . (7.43)

the eigenvalues are available analytically, compute the first few.

Exercise 7.8 “Kissing disks”∗ (continuation of exercises 5.1 and 5.2). Close off

the escape by setting R = 2, and look in the real time at the density of the Poincaré

section iterates for a trajectory with a randomly chosen initial condition. Does it

look uniform? Should it be uniform? (hint - phase space volumes are preserved for

Hamiltonian flows by the Liouville theorem). Do you notice the trajectories that loiter

around special regions of phase space for long times? These exemplify “intermittency”,

a bit of unpleasantness that we shall return to in chapter 18.

Exercise 7.9 Invariant measure for the Gauss map. Consider the Gauss
map (we shall need this map in chapter 21):

f(x) =
{

1
x −

[
1
x

]
x 	= 0

0 x = 0

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2
1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

Exercise 7.10 Exponential form of the semigroup. Check that the Koopman

operator and the evolution generator commute, KtA = AKt, by considering the action

of both operators on an arbitrary phase space function a(x).

Exercise 7.11 A as a generator of translations. Verify that for a constant
velocity field the evolution generator A n (7.30) is the generator of translations,

etv ∂
∂x a(x) = a(x + tv) .

(hint: expand a(x) in a Tylor series.)
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Exercise 7.12 Incompressible flows. Show that (7.9) implies that ρ0(x) = 1
is an eigenfunction of a volume preserving flow with eigenvalue s0 = 0. In particular,

this implies that the natural measure of hyperbolic and mixing Hamiltonian flows is

uniform. Compare with the numerical experiment of exercise 7.8.
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Chapter 8

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.
Walt Whitman,
Leaves of Grass: Song of the Universal

We start by discussing the necessity of studying the averages of observ-
ables in chaotic dynamics, and then cast the formulas for averages in a
multiplicative form that motivates the introduction of evolution operators
and further formal developments to come. The main result is that any
dynamical average measurable in a chaotic system can be extracted from
the spectrum of an appropriately constructed evolution operator. In order
to keep our toes closer to the ground, in sect. 8.3 we try out the formal-
ism on the first quantitative diagnosis that a system’s got chaos, Lyapunov
exponents.

8.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely speci-
fied initial condition, no matter how precise, will fill out the entire accessible
phase space. Hence for chaotic dynamics one cannot follow individual tra-
jectories for a long time; what is attainable is a description of the geometry
of the set of possible outcomes, and evaluation of long time averages. Exam-
ples of such averages are transport coefficients for chaotic dynamical flows,
such as escape rate, mean drift and diffusion rate; power spectra; and a
host of mathematical constructs such as generalized dimensions, entropies
and Lyapunov exponents. Here we outline how such averages are evaluated
within the evolution operator framework. The key idea is to replace the
expectation values of observables by the expectation values of generating
functionals. This associates an evolution operator with a given observable,
and relates the expectation value of the observable to the leading eigenvalue
of the evolution operator.

119



120 CHAPTER 8. AVERAGING

8.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in
phase space a number, a vector, or a tensor. The observable reports on a
property of the dynamical system. It is a device, such as a thermometer or
laser Doppler velocitometer. The device itself does not change during the
measurement. The velocity field ai(x) = vi(x) is an example of a vector
observable; the length of this vector, or perhaps a temperature measured in
an experiment at instant τ are examples of scalar observables. We define the
integrated observable At as the time integral of the observable a evaluated
along the trajectory of the initial point x0,

At(x0) =
∫ t

0
dτ a(f τ (x0)) . (8.1)

If the dynamics is given by an iterated mapping and the time is discrete,
t → n, the integrated observable is given by

An(x0) =
n−1∑
k=0

a(fk(x0)) (8.2)

(we suppress possible vectorial indices for the time being). For example,
if the observable is the velocity, ai(x) = vi(x), its time integral At

i(x0) is
the trajectory At

i(x0) = xi(t). Another familiar example, for Hamiltonian
flows, is the action associated with a trajectory x(t) = [p(t), q(t)] passing
through a phase space point x0 = [p(0), q(0)] (this function will be the key
to the semiclassical quantization of chapter 26):

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (8.3)

The time average of the observable along a trajectory is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (8.4)

If a does not behave too wildly as a function of time – for example, if ai(x)
is the Chicago temperature, bounded between −80oF and +130oF for all
times – At(x0) is expected to grow not faster than t, and the limit (8.4)
exists. For an example of a time average - the Lyapunov exponent - see
sect. 8.3.

The time average depends on the trajectory, but not on the initial point
on that trajectory: if we start at a later phase space point fT (x0) we get a
couple of extra finite contributions that vanish in the t →∞ limit:

a(fT (x0)) = lim
t→∞

1
t

∫ t+T

T
dτ a(f τ (x0))
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(a)

x

M (b)

Figure 8.1: (a) A typical chaotic trajectory explores the phase space with the long
time visitation frequency building up the natural measure ρ0(x). (b) time average
evaluated along an atypical trajectory such as a periodic orbit fails to explore the
entire accessible phase space. (A. Johansen)

= a(x0)− lim
t→∞

1
t

(∫ T

0
dτ a(f τ (x0))−

∫ t+T

t
dτ a(f τ (x0))

)
= a(x0) .

The integrated observable At(x0) and the time average a(x0) take a
particularly simple form when evaluated on a periodic orbit. Define ✎ 4.3

page 77

flows: Ap = apTp =
∫ Tp

0
a (f τ (x0)) dτ , x0 ∈ p

maps: = apnp =
np−1∑
i=0

a
(
f i(x0)

)
, (8.5)

where p is a prime cycle, Tp is its period, and np is its discrete time period
in the case of iterated map dynamics. Ap is a loop integral of the observable
along a single parcourse of a prime cycle p, so it is an intrinsic property
of the cycle, independent of the starting point x0 ∈ p. (If the observable
a is not a scalar but a vector or matrix we might have to be more careful
in defining an average which is independent of the starting point on the
cycle). If the trajectory retraces itself r times, we just obtain Ap repeated
r times. Evaluation of the asymptotic time average (8.4) requires therefore
only a single traversal of the cycle:

ap =
1
Tp

Ap . (8.6)

However, a(x0) is in general a wild function of x0; for a hyperbolic
system ergodic with respect to a smooth measure, it takes the same value
〈a〉 for almost all initial x0, but a different value (8.6) on any periodic
orbit, that is, on a dense set of points (fig. 8.1(b)). For example, for an open
system such as the Sinai gas of sect. 20.1 (an infinite 2-dimensional periodic

☞ chapter 20
array of scattering disks) the phase space is dense with initial points that
correspond to periodic runaway trajectories. The mean distance squared
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traversed by any such trajectory grows as x(t)2 ∼ t2, and its contribution to
the diffusion rate D ≈ x(t)2/t, (8.4) evaluated with a(x) = x(t)2, diverges.
Seemingly there is a paradox; even though intuition says the typical motion
should be diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust av-
eraging, that is, averaging also over the initial x, and worrying about the
measure of the “pathological” trajectories.

8.1.2 Space averages

The space average of a quantity a that may depend on the point x of phase
space M and on the time t is given by the d-dimensional integral over the
d coordinates of the dynamical system:

〈a〉(t) =
1
|M|

∫
M

dx a(x(t))

|M| =
∫
M

dx = volume of M . (8.7)

The spaceM is assumed to have finite dimension and volume (open systems
like the 3-disk game of pinball are discussed in sect. 8.1.3).

What is it we really do in experiments? We cannot measure the time
average (8.4), as there is no way to prepare a single initial condition with
infinite precision. The best we can do is to prepare some initial density
ρ(x) perhaps concentrated on some small (but always finite) neighborhood
ρ(x) = ρ(x, 0), so one should abandon the uniform space average (8.7), and
consider instead

〈a〉ρ(t) =
1
|M|

∫
M

dx ρ(x)a(x(t)) . (8.8)

We do not bother to lug the initial ρ(x) around, as for the ergodic and
mixing systems that we shall consider here any smooth initial density will
tend to the asymptotic natural measure t →∞ limit ρ(x, t) → ρ0(x), so we
can just as well take the initial ρ(x) = const. . The worst we can do is to
start out with ρ(x) = const., as in (8.7); so let us take this case and define
the expectation value 〈a〉 of an observable a to be the asymptotic time and
space average over the phase space M

〈a〉 = lim
t→∞

1
|M|

∫
M

dx
1
t

∫ t

0
dτ a(f τ (x)) . (8.9)

We use the same 〈· · ·〉 notation as for the space average (8.7), and distin-
guish the two by the presence of the time variable in the argument: if the
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quantity 〈a〉(t) being averaged depends on time, then it is a space average,
if it does not, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every
x ∈ M used as a starting point of a time average. The advantage of
averaging over space is that it smears over the starting points which were
problematic for the time average (like the periodic points). While easy to
define, the expectation value 〈a〉 turns out not to be particularly tractable
in practice. Here comes a simple idea that is the basis of all that follows:
Such averages are more conveniently studied by investigating instead of 〈a〉
the space averages of form

〈
eβ·At

〉
=

1
|M|

∫
M

dx eβ·At(x). (8.10)

In the present context β is an auxiliary variable of no particular physical
significance. In most applications β is a scalar, but if the observable is a
d-dimensional vector ai(x) ∈ R

d, then β is a conjugate vector β ∈ R
d; if

the observable is a d× d tensor, β is also a rank-2 tensor, and so on. Here
we will mostly limit the considerations to scalar values of β.

If the limit a(x0) for the time average (8.4) exists for “almost all” initial
x0 and the system is ergodic and mixing (in the sense of sect. 1.3.1), we
expect the time average along almost all trajectories to tend to the same
value a, and the integrated observable At to tend to ta. The space average
(8.10) is an integral over exponentials, and such integral also grows expo-
nentially with time. So as t → ∞ we would expect the space average of〈
exp(β ·At)

〉
itself to grow exponentially with time

〈
eβ·At

〉
∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·At

〉
. (8.11)

Now we understand one reason for why it is smarter to compute
〈
exp(β ·At)

〉
rather than 〈a〉: the expectation value of the observable (8.9) and the mo-
ments of the integrated observable (8.1) can be computed by evaluating the
derivatives of s(β)

∂s

∂β

∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At
〉

= 〈a〉 ,

∂2s

∂β2

∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉
−
〈
At
〉 〈

At
〉)

= lim
t→∞

1
t

〈
(At − t 〈a〉)2

〉
,

(8.12)
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and so forth. We have written out the formulas for a scalar observable; the ✎ 8.2
page 135

vector case is worked out in the exercise 8.2. If we can compute the function
s(β), we have the desired expectation value without having to estimate any
infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such
formulas good for? A typical application is to the problem of describing a
particle scattering elastically off a 2-dimensional triangular array of disks.
If the disks are sufficiently large to block any infinite length free flights, the
particle will diffuse chaotically, and the transport coefficient of interest is
the diffusion constant given by

〈
x(t)2

〉
≈ 4Dt. In contrast to D estimated

numerically from trajectories x(t) for finite but large t, the above formulas
yield the asymptotic D without any extrapolations to the t →∞ limit. For
example, for ai = vi and zero mean drift 〈vi〉 = 0, the diffusion constant is
given by the curvature of s(β) at β = 0,

D = lim
t→∞

1
2dt

〈
x(t)2

〉
=

1
2d

d∑
i=1

∂2s

∂β2
i

∣∣∣∣
β=0

, (8.13)

☞ sect. 20.1

so if we can evaluate derivatives of s(β), we can compute transport coef-
ficients that characterize deterministic diffusion. As we shall see in chap-
ter 20, periodic orbit theory yields an explicit closed form expression for
D.

fast track:

sect. 8.2, p. 125

8.1.3 Averaging in open systems

If theM is a compact region or set of regions to which the dynamics
is confined for all times, (8.9) is a sensible definition of the expectation
value. However, if the trajectories can exit M without ever returning,

∫
M

dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0)
will eventually leave the region M, unless the initial point x0 is on the
repeller, so the identity

∫
M

dy δ(y−f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set(8.14)

might apply only to a fractal subset of initial points a set of zero Lebesgue
measure. Clearly, for open systems we need to modify the definition of the
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expectation value to restrict it to the dynamics on the non–wandering set,
the set of trajectories which are confined for all times.

Note by M a phase space region that encloses all interesting initial
points, say the 3-disk Poincaré section constructed from the disk boundaries
and all possible incidence angles, and denote by |M| the volume of M.
The volume of the phase space containing all trajectories which start out
within the phase space region M and recur within that region at the time
t

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

)
∼ |M|e−γt (8.15)

is expected to decrease exponentially, with the escape rate γ. The integral
☞ sect. 1.4.2

over x takes care of all possible initial points; the integral over y checks
whether their trajectories are still within M by the time t. For example,

☞ sect. 16.1
any trajectory that falls off the pinball table in fig. 1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for
any finite time we can construct a normalized measure from the finite-time
covering volume (8.15), by redefining the space average (8.10) as

〈
eβ·At

〉
=
∫
M

dx
1

|M(t)|e
β·At(x) ∼ 1

|M|

∫
M

dx eβ·At(x)+γt . (8.16)

in order to compensate for the exponential decrease of the number of sur-
viving trajectories in an open system with the exponentially growing factor
eγt. What does this mean? Once we have computed γ we can replenish the
density lost to escaping trajectories, by pumping in eγt in such a way that
the overall measure is correctly normalized at all times, 〈1〉 = 1.

We now turn to the problem of evaluating
〈
eβ·At

〉
.

8.2 Evolution operators

The above simple shift of focus, from studying 〈a〉 to studying
〈
exp

(
β ·At

)〉
is the key to all that follows. Make the dependence on the flow explicit by
rewriting this quantity as

〈
eβ·At

〉
=

1
|M|

∫
M

dx

∫
M

dy δ
(
y − f t(x)

)
eβ·At(x) . (8.17)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an

initial point x maps into a unique point y at time t. Formally, all we have
done above is to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (8.18)
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Figure 8.2: Space averaging pieces together
the time average computed along the t → ∞
trajectory of fig. 8.1 by a space average over in-
finitely many short t trajectory segments start-
ing at all initial points at once. (A. Johansen) M M

into (8.10) to make explicit the fact that we are averaging only over the
trajectories that remain in M for all times. However, having made this
substitution we have replaced the study of individual trajectories f t(x) by
the study of the evolution of density of the totality of initial conditions.
Instead of trying to extract a temporal average from an arbitrarily long
trajectory which explores the phase space ergodically, we can now probe
the entire phase space with short (and controllable) finite time pieces of
trajectories originating from every point in M.

As a matter of fact (and that is why we went to the trouble of defin-
ing the generator (7.26) of infinitesimal transformations of densities) in-
finitesimally short time evolution can suffice to determine the spectrum
and eigenvalues of Lt.

We shall refer to the kernel of Lt = etA in the phase-space representation
(8.17) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβ·At(x) . (8.19)

The simplest example is the Perron-Frobenius operator introduced in sec-
tion 5.2. Another example - designed to deliver the Lyapunov exponent -
will be the evolution operator (8.31). The evolution operator acts on scalar
functions a(x) as

Lta(y) =
∫
M

dx δ
(
y − f t(x)

)
eβ·At(x)a(x) . (8.20)

In terms of the evolution operator, the expectation value of the generating
function (8.17) is given by

〈
eβ·At

〉
=
〈
Ltι

〉
,

where the initial density ι(x) is the constant function that always returns
1.

The evolution operator is different for different observables, as its def-
inition depends on the choice of the integrated observable At in the ex-
ponential. Its job is deliver to us the expectation value of a, but before
showing that it accomplishes that, we need to verify the semigroup prop-
erty of evolution operators.
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By its definition, the integral over the observable a is additive along the
trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2(x0) =
∫ t1

0
dτ a(x(τ)) +

∫ t1+t2

t1

dτ a(x(τ))

= At1(x0) + At2(f t1(x0)) .

✎ 7.3
page 114If At(x) is additive along the trajectory, the evolution operator generates a

semigroup
☞ sect. 7.4

Lt1+t2(y, x) =
∫
M

dz Lt2(y, z)Lt1(z, x) , (8.21)

as is easily checked by substitution

Lt2Lt1a(x) =
∫
M

dy δ(x− f t2(y))eβ·At2 (y)(Lt1a)(y) = Lt1+t2a(x) .

This semigroup property is the main reason why (8.17) is preferable to
(8.9) as a starting point for evaluation of dynamical averages: it recasts
averaging in form of operators multiplicative along the flow.

8.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this
subject: Is a given system “chaotic”? And if so, how chaotic? If all points
in a neighborhood of a trajectory converge toward the same trajectory, the
attractor is a fixed point or a limit cycle. However, if the attractor is

☞ sect. 1.3.1
strange, two trajectories

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx(0)) (8.22)

that start out very close to each other separate exponentially with time,
and in a finite time their separation attains the size of the accessible phase
space. This sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)| (8.23)

where λ, the mean rate of separation of trajectories of the system, is called
the Lyapunov exponent.
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128 CHAPTER 8. AVERAGING

8.3.1 Lyapunov exponent as a time average

We can start out with a small δx and try to estimate λ from (8.23), but
now that we have quantified the notion of linear stability in chapter 4
and defined the dynamical time averages in sect. 8.1.1, we can do better.
The problem with measuring the growth rate of the distance between two
points is that as the points separate, the measurement is less and less a
local measurement. In study of experimental time series this might be the
only option, but if we have the equations of motion, a better way is to
measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance |δx(t)|/|δx(0)| between neighbor-
ing trajectories (8.23) is given by the Lyapunov exponent

λ = lim
t→∞

1
t

ln |δx(t)|/|δx(0)| (8.24)

(For notational brevity we shall often suppress the dependence of quantities
such as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the time t).
For infinitesimal δx we know the δxi(t)/δxj(0) ratio exactly, as this is by
definition the Jacobian matrix (4.26)

lim
δx→0

δxi(t)
δxj(0)

=
∂xi(t)
∂xj(0)

= Jt
ij(x0) ,

so the leading Lyapunov exponent can be computed from the linear ap-
proximation (4.20)

λ = lim
t→∞

1
t

ln

∣∣Jt(x0)δx(0)
∣∣

|δx(0)| = lim
t→∞

1
2t

ln
∣∣∣n̂T (Jt)TJtn̂

∣∣∣ . (8.25)

In this formula the scale of the initial separation drops out, only its orien-
tation given by the unit vector n̂ = δx/|δx| matters. The eigenvalues of
J are either real or come in complex conjugate pairs. As J is in general
not symmetric and not diagonalizable, it is more convenient to work with
the symmetric and diagonalizable matrix M = (Jt)TJt, with real positive
eigenvalues {|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete orthonormal set of eigen-
vectors of {u1, . . . , ud}. Expanding the initial orientation n̂ =

∑
(n̂ · ui)ui

in the Mui = |Λi|ui eigenbasis, we have

n̂TMn̂ =
d∑

i=1

(n̂·ui)2|Λi|2 = (n̂·u1)2e2λ1t
(
1 + O(e−2(λ1−λ2)t)

)
, (8.26)

where tλi = ln |Λi(x0, t)|, and we assume that λ1 > λ2 ≥ λ3 · · ·. For
long times the largest Lyapunov exponent dominates exponentially (8.25),
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Figure 8.3: A numerical estimate of the lead-
ing Lyapunov exponent for the Rössler system
(2.11) from the dominant expanding eigenvalue
formula (8.25). The leading Lyapunov expo-
nent λ ≈ 0.09 is positive, so numerics sup-
ports the hypothesis that the Rössler attractor
is strange. (J. Mathiesen)
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provided the orientation n̂ of the initial separation was not chosen per-
pendicular to the dominant expanding eigendirection u1. The Lyapunov
exponent is the time average

λ(x0) = lim
t→∞

1
t

{
ln |n̂ · u1|+ ln |Λ1(x0, t)|+ O(e−2(λ1−λ2)t)

}
= lim

t→∞
1
t

ln |Λ1(x0, t)| , (8.27)

where Λ1(x0, t) is the leading eigenvalue of Jt(x0). By choosing the initial
displacement such that n̂ is normal to the first (i-1) eigendirections we can
define not only the leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (8.28)

The leading Lyapunov exponent now follows from the Jacobian matrix
by numerical integration of (4.28). The equations can be integrated ac-
curately for a finite time, hence the infinite time limit of (8.25) can be
only estimated from plots of 1

2 ln |n̂TMn̂| as function of time, such as the
fig. 8.3 for the Rössler system (2.11). As the local expansion and contrac-
tion rates vary along the flow, the temporal dependence exhibits small and
large humps. The sudden fall to a low level is caused by a close passage to
a folding point of the attractor, an illustration of why numerical evaluation
of the Lyapunov exponents, and proving the very existence of a strange
attractor is a very difficult problem. The approximately monotone part of
the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate
the Lyapunov exponent by using the definition (8.27) directly. First of
all, the phase space is dense with atypical trajectories; for example, if x0

happened to lie on a periodic orbit p, λ would be simply ln |Λp|/Tp, a
local property of cycle p, not a global property of the dynamical system.
Furthermore, even if x0 happens to be a “generic” phase space point, it
is still not obvious that ln |Λ(x0, t)|/t should be converging to anything in
particular. In a Hamiltonian system with coexisting elliptic islands and
chaotic regions, a chaotic trajectory gets every so often captured in the
neighborhood of an elliptic island and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln |Λ(x0, t)|/t
can dip arbitrarily close to 0+. For phase space volume non-preserving flows
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the trajectory can traverse locally contracting regions, and ln |Λ(x0, t)|/t
can occasionally go negative; even worse, one never knows whether the
asymptotic attractor is periodic or “strange”, so any finite estimate of λ
might be dead wrong.✎ 8.1

page 135

8.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect. 8.2. We shall now replace time
averaging along a single trajectory by action of a multiplicative evolution
operator on the entire phase space, and extract the Lyapunov exponent
from its leading eigenvalue. If the chaotic motion fills the whole phase
space, we are indeed computing the asymptotic Lyapunov exponent. If the
chaotic motion is transient, leading eventually to some long attractive cycle,
our Lyapunov exponent, computed on nonwandering set, will characterize
the chaotic transient; this is actually what any experiment would measure,
as even very small amount of external noise will suffice to destabilize a long
stable cycle with a minute immediate basin of attraction.

Due to the chain rule (4.31) for the derivative of an iterated map, the
stability of a 1-d mapping is multiplicative along the flow, so the integral
(8.1) of the observable a(x) = ln |f ′(x)|, the local trajectory divergence
rate, evaluated along the trajectory of x0 is additive:

An(x0) = ln
∣∣fn′(x0)

∣∣ =
n−1∑
k=0

ln
∣∣f ′(xk)

∣∣ . (8.29)

The Lyapunov exponent is then the expectation value (8.9) given by a
spatial integral (8.8) weighted by the natural measure

λ =
〈
ln |f ′(x)|

〉
=
∫
M

dx ρ0(x) ln |f ′(x)| . (8.30)

The associated (discrete time) evolution operator (8.19) is

L(y, x) = δ(y − f (x)) eβ ln |f ′(x)| . (8.31)

☞ appendix H.1

Here we have restricted our considerations to 1 − d maps, as for higher-
dimensional flows only the Jacobian matrices are multiplicative, not the
individual eigenvalues. Construction of the evolution operator for evalua-
tion of the Lyapunov spectra in the general case requires more cleverness
than warranted at this stage in the narrative: an extension of the evolution
equations to a flow in the tangent space.

in depth:

appendix H.1, p. 603
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All that remains is to determine the value of the Lyapunov exponent

λ =
〈
ln |f ′(x)|

〉
=

∂s(β)
∂β

∣∣∣∣
β=1

= s′(1) (8.32)

from (8.12), the derivative of the leading eigenvalue s0(β) of the evolution
operator (8.31). The only question is: how?

☞ sect. 15.2.4

8.4 Why not just run it on a computer?

(R. Artuso and P. Cvitanović)

All of the insight gained in this chapter and the preceding one was
nothing but an elegant way of thinking of the evolution operator, L, as a
matrix (this point of view will be further elaborated in chapter 13). There
are many textbook methods of approximating an operator L by sequences of
finite matrix approximations L, but in what follows the great achievement
will be that we shall avoid constructing any matrix approximation to L
altogether. Why a new method? Why not just run it on a computer, as
many do with such relish in diagonalizing quantum Hamiltonians?

The simplest possible way of introducing a phase space discretization,
fig. 8.4, is to partition the phase spaceM with a non-overlapping collection
of sets Mi, i = 1, . . . , N , and to consider densities (7.2) that are locally
constant on each Mi:

ρ(x) =
N∑

i=1

ρi
χi(x)
|Mi|

where χi(x) is the characteristic function (7.1) of the set Mi. The density
ρi at a given instant is related to the densities at the previous step in time
by the action of the Perron-Frobenius operator, as in (7.6):

ρ′j =
∫
M

dy χj(y)ρ′(y) =
∫
M

dx dy χj(y) δ(y − f(x)) ρ(x)

=
N∑

i=1

ρi
|Mi ∩ f−1(Mj)|

|Mi|
.

In this way

Lij =
|Mi ∩ f−1(Mj)|

|Mi|
, ρ′ = ρL (8.33)
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Figure 8.4: Phase space discretization ap-
proach to computing averages.

is a matrix approximation to the Perron-Frobenius operator, and its lead-
ing left eigenvector is a piecewise constant approximation to the invariant
measure. It is an old idea of Ulam that such an approximation for the
Perron-Frobenius operator is a meaningful one.

The problem with such phase space discretization approaches is that
they are blind, the grid knows not what parts of the phase space are more
or less important. This observation motivates the next step in developing
the theory of long-time dynamics of chaotic systems: in chapter 9 we shall
exploit the intrinsic topology of the flow to give us both an invariant par-
tition of the phase space and a measure of the partition volumes, in the
spirit of fig. 1.9.

Furthermore, a piecewise constant ρ belongs to an unphysical function
space, and with such approximations one is plagued by numerical artifacts
such as spurious eigenvalues. In chapter 13 we shall employ a more refined
approach to extracting spectra, by expanding the initial and final densities
ρ, ρ′ in some basis ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and
replacing L(y, x) by its ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art
is then the subtle art of finding a “good” basis for which finite truncations
of Lαβ give accurate estimates of the eigenvalues of L.

☞ chapter 13

Regardless of how sophisticated the choice of basis might be, the basic
problem cannot be avoided - as illustrated by the natural measure for the
Hénon map (3.10) sketched in fig. 7.3, eigenfunctions of L are complicated,
singular functions concentrated on fractal sets, and in general cannot be
represented by a nice basis set of smooth functions. We shall resort to
matrix representations of L and the ϕα basis approach only insofar this
helps us prove that the spectrum that we compute is indeed the correct
one, and that finite periodic orbit truncations do converge.

in depth:

chapter 1, p. 1
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Commentary

Remark 8.1 “Pressure”. The quantity 〈exp(β ·At)〉 is called a
“partition function” by Ruelle [12.1]. Mathematicians decorate it with
considerably more Greek and Gothic letters than is the case in this
treatise. Ruelle [12.2] and Bowen [8.1] had given name “pressure”
P (a) to s(β) (where a is the observable introduced here in sect. 8.1.1),
defined by the “large system” limit (8.11). As we shall apply the the-
ory also to computation of the physical gas pressure exerted on the
walls of a container by a bouncing particle, we prefer to s(β) as simply
the leading eigenvalue of the evolution operator introduced in sect. 7.4.
The “convexity” properties such as P (a) ≤ P (|a|) will be pretty ob-
vious consequence of the definition (8.11). In the case that L is the
Perron-Frobenius operator (7.10), the eigenvalues {s0(β), s1(β), · · ·}
are called the Ruelle-Pollicott resonances [8.2, 8.3, 8.4], with the lead-
ing one, s(β) = s0(β) being the one of main physical interest.
In order to aid the reader in digesting the mathematics literature,
we shall try to point out the notational correspondences whenever
appropriate. The rigorous formalism is replete with lims, sups, infs,
Ω-sets which are not really essential to understanding the physical
applications of the theory, and are avoided in this presentation.

Remark 8.2 Microcanonical ensemble. In statistical mechanics
the space average (8.7) performed over the Hamiltonian system con-
stant energy surface invariant measure ρ(x)dx = dqdp δ(H(q, p)− E)
of volume |M| =

∫
Mdqdp δ(H(q, p)− E)

〈a(t)〉 =
1
|M|

∫
M

dqdp δ(H(q, p)− E)a(q, p, t) (8.34)

is called the microcanonical ensemble average.

Remark 8.3 Lyapunov exponents. The Multiplicative Ergodic
Theorem of Oseledec [8.5] states that the limit (8.28) exists for almost
all points x0 and all tangent vectors n̂. There are at most d distinct
values of λ as we let n̂ range over the tangent space. These are the
Lyapunov exponents [8.6] λi(x0).

There is much literature on numerical computation of the Lya-
punov exponents, see for example refs. [4.1, 8.12, 8.13, 8.14].

Résumé

The expectation value 〈a〉 of an observable a(x) measured At(x) =
∫ t
0 dτa(x(τ))

and averaged along the flow x→ f t(x) is given by the derivative ∂s/∂β of
the leading eigenvalue ets(β) of the corresponding evolution operator Lt.

Using the Perron-Frobenius operator (7.10) whose leading eigenfunc-
tion, the natural measure, once computed, yields expectation value (7.20)
of any observable a(x) a separate evolution operator L has to be constructed

draft 9.4.0, June 18 2003 average - 6jun2003



134 References

for each and every observable. However, by the time the scaffolding is re-
☞ chapter 15

moved both L’s and their eigenfunctions will be gone, and only the formulas
for expectation value of observables will remain.

The next question is: how do we evaluate the eigenvalues of L? We
saw in sect. 7.1, in the case of piecewise-linear dynamical systems, that
these operators reduce to finite matrices, but for generic smooth flows,
they are infinite-dimensional linear operators, and finding smart ways of
computing their eigenvalues requires some thought. In chapter 9 we take
the first step, and replace the ad hoc partitioning (8.33) by the intrinsic,
topologically invariant partitioning. In chapter 10 we apply this information
to our first application of the evolution operator formalism, evaluation of
the topological entropy, the growth rate of the number of topologically
distinct orbits. This small victory will then be refashioned in chapters 11
and 12 into a systematic method for computing eigenvalues of evolution
operators in terms of periodic orbits.
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Exercises

Exercise 8.1 How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent by iterating the Hénon map[
x′
y′

]
=
[

1− ax2 + y
bx

]
for a = 1.4, b = 0.3.

(b) Now check how robust is the Lyapunov exponent for the Hénon attractor?
Evaluate numerically the Lyapunov exponent by iterating the Hénon map
for a = 1.39945219, b = 0.3. How much do you trust now your result
for the part (a) of this exercise?

Exercise 8.2 Expectation value of a vector observable and its moments.
Check and extend the expectation value formulas (8.12) by evaluating the
derivatives of s(β) up to 4-th order for the space average

〈
exp(β ·At)

〉
with

ai a vector quantity:

(a)

∂s

∂βi

∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

i

〉
= 〈ai〉 , (8.35)

(b)

∂2s

∂βi∂βj

∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
At

iA
t
j

〉
−
〈
At

i

〉 〈
At

j

〉)
= lim

t→∞
1
t

〈
(At

i − t 〈ai〉)(At
j − t 〈aj〉)

〉
. (8.36)

Note that the formalism is cmart: it automatically yields the variance
from the mean, rather than simply the 2nd moment

〈
a2
〉
.

(c) compute the third derivative of s(β).

(d) compute the fourth derivative assuming that the mean in (8.35) vanishes,
〈ai〉 = 0. The 4-th order moment formula

K(t) =

〈
x4(t)

〉
〈x2(t)〉2

− 3 (8.37)

that you have derived is known as kurtosis: it measures a deviation
from what the 4-th order moment would be were the distribution a pure
gaussian (see (20.22) for a concrete example). If the observable is a
vector, the kurtosis is given by

K(t) =

∑
ij [〈AiAiAjAj〉+ 2 (〈AiAj〉 〈AjAi〉 − 〈AiAi〉 〈AjAj〉)]

(
∑

i 〈AiAi〉)2
(8.38)
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Chapter 9

Qualitative dynamics, for
pedestrians

In this chapter we begin to learn how to use qualitative properties of a
flow in order to partition the phase space in a topologically invariant way,
and name topologically distinct orbits. This will enable us (in the next
chapter) to count the distinct orbits, and in the process touch upon all the
main themes of this book, going the whole distance from diagnosing chaotic
dynamics to computing zeta functions.

We start by a simple physical example, symbolic dynamics of a 3-disk
game of pinball, and then show that also for smooth flows the qualitative
dynamics of stretching and folding flows enables us to partition the phase
space and assign symbolic dynamics itineraries to trajectories. Here we
illustrate the method on a 1 − d approximation to Rössler flow. We then
turn this topological dynamics into a multiplicative operation on the phase
space partition by means of transition matrices/Markov graphs.

Even though by inclination you might only care about the serious stuff,
like Rydberg atoms or mesoscopic devices, and resent wasting time on
things formal, this chapter and the next are good for you. Read them.

9.1 Itineraries

(R. Mainieri and P. Cvitanović)

What can a flow do to the phase space points? This is a very difficult
question to answer because we have assumed very little about the evolution
function f t; continuity, and differentiability a sufficient number of times.
Trying to make sense of this question is one of the basic concerns in the
study of dynamical systems. One of the first answers was inspired by the
motion of the planets: they appear to repeat their motion through the
firmament. Motivated by this observation, the first attempts to describe
dynamical systems were to think of them as periodic.
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Figure 9.1: A trajectory with itinerary 021012.
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However, periodicity is almost never quite exact. What one tends to
observe is recurrence. A recurrence of a point x0 of a dynamical system
is a return of that point to a neighborhood of where it started. How close
the point x0 must return is up to us: we can choose a volume of any size
and shape as long as it encloses x0, and call it the neighborhood M0. For
chaotic dynamical systems, the evolution might bring the point back to the
starting neighborhood infinitely often. That is, the set

{
y ∈M0 : y = f t(x0), t > t0

}
(9.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This
suggests another way of describing how points move in phase space, which
turns out to be the important first step on the way to a theory of dynamical
systems: qualitative, topological dynamics, or, as it is usually called, sym-
bolic dynamics. As the subject can get quite technical, a summary of the
basic notions and definitions of symbolic dynamics is relegated to sect. 9.7;
check that section whenever you run into obscure symbolic dynamics jar-
gon.

We start by cutting up the phase space up into regionsMA,MB, . . . ,MZ .
This can be done in many ways, not all equally clever. Any such division
of the phase space into topologically distinct regions is a partition, and we
associate with each region (sometimes referred to as a state) a symbol s
from an N -letter alphabet or state set A = {A, B, C, · · · , Z}. As the dy-
namics moves the point through the phase space, different regions will be
visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabet A. If, as in the example
sketched in fig. 9.1, the phase space is divided into three regions M0, M1,
and M2, the “letters” are the integers {0, 1, 2}, and the itinerary for the
trajectory sketched in the figure is 0 �→ 2 �→ 1 �→ 0 �→ 1 �→ 2 �→ · · ·.

If there is no way to reach partition Mi from partition Mj , and con-
versely, partition Mj from partition Mi, the phase space consists of at
least two disconnected pieces, and we can analyze it piece by piece. An
interesting partition should be dynamically connected, that is one should
be able to go from any regionMi to any other regionMj in a finite number
of steps. A dynamical system with such partition is said to be metrically
indecomposable.

knead - 5jun2003 draft 9.4.0, June 18 2003



9.1. ITINERARIES 139

In general one also encounters transient regions - regions to which the
dynamics does not return to once they are exited. Hence we have to dis-
tinguish between (for us uninteresting) wandering trajectories that never
return to the initial neighborhood, and the non–wandering set (2.2) of the
recurrent trajectories.

The allowed transitions between the regions of a partition are encoded
in the [N×N ]-dimensional transition matrix whose elements take values

Tij =
{

1 if a transition region Mj → region Mi is possible
0 otherwise .

(9.2)

An example is the complete N -ary dynamics for which all transition matrix
entries equal unity (one can reach any region from any other region in one
step)

Tc =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 . (9.3)

Further examples of transition matrices, such as the 3-disk transition matrix
(9.5) and the 1-step memory sparse matrix (9.14), are peppered through-
out the text. The transition matrix encodes the topological dynamics as
an invariant law of motion, with the allowed transitions at any instant
independent of the trajectory history, requiring no memory.

Knowing that a point fromMi reachesMj in one step is not quite good
enough. We would be happier if we knew that any point inMi reachesMj ;
otherwise we have to subpartition Mi into the points which land in Mj ,
and those which do not, and often we will find ourselves partitioning ad
infinitum.

Such considerations motivate the notion of a Markov partition, a parti-
tion for which no memory of preceding steps is required to fix the transitions
allowed in the next step. Dynamically, finite Markov partitions can be gen-
erated by expanding d-dimensional iterated mappings f : M→M, if M
can be divided into N regions {M0,M1, . . . ,MN−1} such that in one step
points from an initial region Mi either fully cover a region Mj , or miss it
altogether,

either Mj ∩ f(Mi) = ∅ or Mj ⊂ f(Mi) . (9.4)

An example is the 1-dimensional expanding mapping sketched in fig. 9.8,
and more examples are worked out in sect. 20.2.

Example 9.1 3-disk symbolic dynamics
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Figure 9.2: Two pinballs that start out very
close to each other exhibit the same qualitative
dynamics 2313 for the first three bounces, but
due to the exponentially growing separation of
trajectories with time, follow different itineraries
thereafter: one escapes after 2313 , the other
one escapes after 23132321 .

1
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Figure 9.3: The 3-disk game of pinball Poincaré section, trajectories emanating from
the disk 1 with x0 = (arclength, parallel momentum) = (s0, p0) , disk radius : center
separation ratio a:R = 1:2.5. (a) Strips of initial points M12, M13 which reach disks
2, 3 in one bounce, respectively. (b) Strips of initial points M121, M131 M132 and
M123 which reach disks 1, 2, 3 in two bounces, respectively. (Y. Lan)

The key symbolic dynamics concepts are easily illustrated by a game of pinball.
Consider the motion of a free point particle in a plane with N elastically reflecting
convex disks. After a collision with a disk a particle either continues to another disk
or escapes, and any trajectory can be labelled by the disk sequence. For example, if
we label the three disks by 1, 2 and 3, the two trajectories in fig. 9.2 have itineraries
2313 , 23132321 respectively. The 3-disk prime cycles given in figs. 1.5 and 9.5 are✎ 1.1

page 29
further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see fig. 1.7),
and in order to attain a desired longer and longer itinerary of bounces the initial point
x0 = (s0, p0) has to be specified with a larger and larger precision, and lie within
initial phase space strips drawn in fig. 9.3. Similarly, it is intuitively clear that as
we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of x0 = (s0, p0) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Ms1.s2 ,
the intersection of M.s2 with the strips Ms1. obtained by time reversal (the velocity
changes sign sin φ → − sinφ). Ms1.s2 is a “rectangle” of nearby trajectories which
have arrived from the disk s1 and are heading for the disk s2.

We see that a finite length trajectory is not uniquely specified by its finite
itinerary, but an isolated unstable cycle (consisting of infinitely many repetitions of a
prime building block) is. More generally, for hyperbolic flows the intersection of the
future and past itineraries, the bi-infinite itinerary S-.S+ = · · · s−2s−1s0.s1s2s3 · · ·
specifies a unique trajectory. This is intuitively clear for our 3-disk game of pinball,
and is stated more formally in the definition (9.4) of a Markov partition. The definition
requires that the dynamics be expanding forward in time in order to ensure that the
cone of trajectories with a given itinerary becomes sharper and sharper as the number
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Figure 9.4: The Poincaré section of the phase space for the binary labelled pinball,
see also fig. 9.5(b). For definitiveness, this set is generated by starting from disk 1,
preceded by disk 2. Indicated are the fixed points 0, 1 and the 2-cycle periodic points
01, 10, together with strips which survive 1, 2, . . . bounces. Iteration corresponds to
the decimal point shift; for example, all points in the rectangle [01.01] map into the
rectangle [010.1] in one iteration.
PC: do this figure right, in terms of strips!

of specified symbols is increased.

As the disks are convex, there can be no two consecutive reflections off the same
disk, hence the covering symbolic dynamics consists of all sequences which include no
symbol repetitions 11 , 22 , 33 . This is a finite set of finite length pruning rules,
hence, the dynamics is a subshift of finite type, with the transition matrix (9.2) given
by

T =

 0 1 1
1 0 1
1 1 0

 . (9.5)

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the stability matrix has an expanding eigenvalue. By the Liouville phase-
space volume conservation (5.10), the other transverse eigenvalue is contracting. This
example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks), pruned (for example, for touching or overlapping disks), or
only a first coarse graining of the topology (as, for example, for smooth potentials with
islands of stability) requires case-by-case investigation. For the time being we assume
that the disks are sufficiently separated that there is no additional pruning beyond the
prohibition of self-bounces.

fast track:

sect. 9.2, p. 143

9.1.1 A brief detour; recoding, symmetries, tilings

Though a useful tool, Markov partitioning is not without drawbacks.
One glaring shortcoming is that Markov partitions are not unique: any of
many different partitions might do the job. The 3-disk system offers a

draft 9.4.0, June 18 2003 knead - 5jun2003



142 CHAPTER 9. QUALITATIVE DYNAMICS, FOR PEDESTRIANS

simple illustration of different Markov partitioning strategies for the same
dynamical system.

TheA = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to exploit the
symmetries of the pinball in order to obtain a more efficient description.
As we shall see in chapter 19, rewards of this desymmetrization will be
handsome.

As the three disks are equidistantly spaced, our game of pinball has a
sixfold symmetry. For instance, the cycles 12, 23, and 13 are related to each
other by rotation by ±2π/3 or, equivalently, by a relabelling of the disks.
Further examples of such symmetries are shown in fig. 1.5. We note that
the disk labels are arbitrary; what is important is how a trajectory evolves
as it hits subsequent disks, not what label the starting disk had. We exploit
this symmetry by recoding, in this case replacing the absolute disk labels by
relative symbols, indicating the type of the collision. For the 3-disk game✎ 9.1

page 159
of pinball there are two topologically distinct kinds of collisions, fig. 1.4:

0 : pinball returns to the disk it came from
1 : pinball continues to the third disk . (9.6)

✎ 9.2
page 159

This binary symbolic dynamics has two immediate advantages over the
ternary one; the prohibition of self-bounces is automatic, and the coding
utilizes the symmetry of the 3-disk pinball game in elegant manner. If the
disks are sufficiently far apart there are no further restrictions on symbols,
the symbolic dynamics is complete, and all binary sequences are admissible
itineraries. As this type of symbolic dynamics pops up frequently, we list
the shortest binary prime cycles in table 9.2.✎ 9.3

page 159
Given a ternary sequence and labels of 2 preceding disks these rules fix

the corresponding binary symbol. For example

ternary: 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3
binary: . 0 1 0 1 1 0 1 0 1 1 0 1 0 0 (9.7)

The first 2 disks initialize the trajectory and its direction. Due to the 3-
disk symmetry the six 3-disk sequences initialized by 12, 13, 21, 23, 31, 32
respectively have the same weights, the same size partitions, and are coded
by a single binary sequence. For periodic orbits, the equivalent ternary
cycles reduce to binary cycles of 1/3, 1/2 or the same length. How this
works is best understood by inspection of table 9.1, fig. 9.5 and fig. 19.3.

The 3-disk game of pinball is tiled by six copies of the fundamental
domain, a one-sixth slice of the full 3-disk system, with the symmetry axes
acting as reflecting mirrors, see fig. 9.5b. A global 3-disk trajectory maps
into its fundamental domain mirror trajectory by replacing every crossing of
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9.2. STRETCH AND FOLD 143

(a) (b)

Figure 9.5: The 3-disk game of pinball with the disk radius : center separation ratio
a:R = 1:2.5. (a) The three disks, with 12, 123 and 121232313 cycles indicated. (b)
The fundamental domain, that is the small 1/6th wedge indicated in (a), consisting
of a section of a disk, two segments of symmetry axes acting as straight mirror walls,
and an escape gap. The above cycles restricted to the fundamental domain are now
the two fixed points 0, 1, and the 100 cycle.

a symmetry axis by a reflection. Depending on the symmetry of the global
trajectory, a repeating binary symbols block corresponds either to the full
periodic orbit or to an irreducible segment (examples are shown in fig. 9.5
and table 9.1). An irreducible segment corresponds to a periodic orbit in the
fundamental domain. Table 9.1 lists some of the shortest binary periodic
orbits, together with the corresponding full 3-disk symbol sequences and
orbit symmetries. For a number of reasons that will be elucidated in ✎ 9.5

page 159
chapter 19, life is much simpler in the fundamental domain than in the full
system, so whenever possible our computations will be carried out in the
fundamental domain.

Symbolic dynamics for N -disk game of pinball is so straightforward
that one may altogether fail to see the connection between the topology
of hyperbolic flows and their symbolic dynamics. This is brought out
more clearly by the 1-d visualization of “stretch & fold” flows to which
we turn now. Inspecting the fig. 9.3b we see that the relative ordering of
regions with differing finite itineraries is a qualitative, topological property
of the flow, so it makes sense to define a simple “canonical” representative
partition which in a simple manner exhibits spatial ordering common to an
entire class of topologically similar nonlinear flows.

in depth:

sect. 19, p. 349

9.2 Stretch and fold

Suppose concentrations of certain chemical reactants worry you, or the
variations in the Chicago temperature, humidity, pressure and winds affect
your mood. All such properties vary within some fixed range, and so do
their rates of change. Even if we are studying an operator system such as

draft 9.4.0, June 18 2003 knead - 5jun2003



144 CHAPTER 9. QUALITATIVE DYNAMICS, FOR PEDESTRIANS

p̃ p gp̃

0 1 2 σ12

1 1 2 3 C3

01 12 13 σ23

001 121 232 313 C3

011 121 323 σ13

0001 1212 1313 σ23

0011 1212 3131 2323 C2
3

0111 1213 2123 σ12

00001 12121 23232 31313 C3

00011 12121 32323 σ13

00101 12123 21213 σ12

00111 12123 e
01011 12131 23212 31323 C3

01111 12132 13123 σ23

p̃ p gp̃

000001 121212 131313 σ23

000011 121212 313131 232323 C2
3

000101 121213 e
000111 121213 212123 σ12

001011 121232 131323 σ23

001101 121231 323213 σ13

001111 121231 232312 313123 C3

010111 121312 313231 232123 C2
3

011111 121321 323123 σ13

0000001 1212121 2323232 3131313 C3

0000011 1212121 3232323 σ13

0000101 1212123 2121213 σ12

0000111 1212123 e
· · · · · · · · ·

Table 9.1: C3v correspondence between the binary labelled fundamental domain
prime cycles p̃ and the full 3-disk ternary labelled cycles p, together with the C3v

transformation that maps the end point of the p̃ cycle into the irreducible segment
of the p cycle, see sect. 19.2.2. Breaks in the ternary sequences mark repeats of the
irreducible segment. The degeneracy of p cycle is mp = 6np̃/np. The shortest pair of
the fundamental domain cycles related by time symmetry are the 6-cycles 001011 and
001101.

the 3-disk pinball game, we tend to be interested in a finite region around
the disks and ignore the escapees. So a typical dynamical system that we
care about is bounded. If the price for keeping going is high - for example, we
try to stir up some tar, and observe it come to a dead stop the moment we
cease our labors - the dynamics tends to settle into a simple limiting state.
However, as the resistance to change decreases - the tar is heated up and
we are more vigorous in our stirring - the dynamics becomes unstable. We
have already quantified this instability in sect. 4.1 - for now, suffice it to say
that a flow is locally unstable if nearby trajectories separate exponentially
with time.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back.

9.3 Going global: Stable/unstable manifolds

In sects. 7.1 and 9.1 we introduced the concept of partitioning the phase
space, in any way you please. Here we show that the dynamics itself gen-
erates a natural partition.

In sect. 4.5 we established that stability eigenvalues of periodic orbits
are invariants of a given flow. The invariance of stabilities of a periodic
orbit is a local property of the flow. Now we show that every periodic orbit
carries with it stable and unstable manifolds which provide a topologically
invariant global foliation of the phase space.

A neighborhood of a trajectory deforms as it is transported by the
flow. In the linear approximation, the matrix of variations A describes this
shearing of an infinitesimal neighborhood in an infinitesimal time step. The
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Figure 9.6: (a) A recurrent flow that stretches and folds. (b) The “stretch & fold”
return map on the Poincaré section.

shearing after finite time is described by the Jacobian matrix Jt. Its eigen-
values and eigendirections describe deformation of an initial infinitesimal
sphere of neighboring trajectories into an ellipsoid time t later. Nearby
trajectories separate exponentially along the unstable directions, approach
each other along the stable directions, and maintain their distance along
the marginal directions.

The fixed or periodic point x∗ stability matrix Jp(x∗) eigenvectors (4.42)
describe the flow into or out of the fixed point only infinitesimally close
to the fixed point. The global continuations of the local stable, unstable
eigendirections are called the stable, respectively unstable manifolds. They
consist of all points which march into the fixed point forward, respectively
backward in time

W s =
{
x ∈M : f t(x)− x∗ → 0 as t →∞

}
W u =

{
x ∈M : f−t(x)− x∗ → 0 as t →∞

}
. (9.8)

The stable/unstable manifolds of a flow are rather hard to visualize, so as
long as we are not worried about a global property such as the number of
times they wind around a periodic trajectory before completing a parcourse,
we might just as well look at their Poincaré section return maps. Stable,
unstable manifolds for maps are defined by

W s = {x ∈ P : fn(x)− x∗ → 0 as n →∞}
W u =

{
x ∈ P : f−n(x)− x∗ → 0 as n →∞

}
. (9.9)

For n → ∞ any finite segment of W s, respectively W u converges to the
linearized map eigenvector e(e), respectively e(c). In this sense each eigen-
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Figure 9.7: The Poincaré return map of the
Kuramoto-Sivashinsky system (2.17) fig. 3.3,
from the unstable manifold of the 1 fixed point
to the (neighborhood of) the unstable manifold.
Also indicated are the periodic points 0 and 01.
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vector defines a (curvilinear) axis of the stable, respectively unstable man-
ifold. Conversely, we can use an arbitrarily small segment of a fixed point
eigenvector to construct a finite segment of the associated manifold: The
stable (unstable) manifold of the central hyperbolic fixed point (x1, x1) can
be constructed numerically by starting with a small interval along the local
stable (unstable) eigendirection, and iterating the interval n steps back-
wards (forwards).

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we have learned that the attractor is very thin, but otherwise the
return maps that we found were disquieting – neither fig. 3.2 nor fig. 3.3 ap-
peared to be one-to-one maps. This apparent loss of invertibility is an arti-
fact of projection of higher-dimensional return maps onto lower-dimensional
subspaces. As the choice of lower-dimensional subspace was entirely arbi-
trary, the resulting snapshots of return maps look rather arbitrary, too.
Other projections might look even less suggestive. Such observations beg
a question: Does there exist a “natural”, intrinsically optimal coordinate
system in which we should plot of a return map?

9.4 Temporal ordering: itineraries

In this section we learn how to name and count periodic orbits for the
simplest, and nevertheless very instructive case, for 1-d maps of an interval.

Our next task is to relate the spatial ordering of phase-space points to
their temporal itineraries. The easiest point of departure is to start out
by working out this relation for the symbolic dynamics of 1-dimensional
mappings. As it appears impossible to present this material without getting
bogged down in a sea of 0’s, 1’s and subscripted symbols, let us state the
main result at the outset: the admissibility criterion stated in sect. 9.5
eliminates all itineraries that cannot occur for a given unimodal map.

Suppose that the compression of the folded interval in fig. 9.6 is so fierce
that we can neglect the thickness of the attractor. For example, the Rössler
flow (2.11) is volume contracting, and an interval transverse to the attractor
is stretched, folded and pressed back into a nearly 1-dimensional interval,
typically compressed transversally by a factor of ≈ 1013 in one Poincaré
section return. In such cases it makes sense to approximate the return
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(a) (b)

Figure 9.8: (a) The complete tent map together with intervals that follow the
indicated itinerary for n steps. (b) A unimodal repeller with the remaining intervals
after 1, 2 and 3 iterations. Intervals marked s1s2 · · · sn are unions of all points that
do not escape in n iterations, and follow the itinerary S+ = s1s2 · · · sn. Note that the
spatial ordering does not respect the binary ordering; for example x00 < x01 < x11 <
x10. Also indicated: the fixed points x0, x1, the 2-cycle 01, and the 3-cycle 011.

map of a “stretch & fold” flow by a 1-dimensional map. Simplest mapping
of this type is unimodal; interval is stretched and folded only once, with
at most two points mapping into a point in the new refolded interval. A
unimodal map f (x) is a 1-d function R → R defined on an intervalM with a
monotonically increasing (or decreasing) branch, a critical point or interval
xc for which f(xc) attains the maximum (minimum) value, followed by a
monotonically decreasing (increasing) branch. The name is uninspiring - it
refers to any one-humped map of interval into itself.

Example 9.2 Tent map. The simplest examples of unimodal maps are the complete
tent map fig. 9.8(a),

f (γ) = 1− 2|γ − 1/2| , (9.10)

and the quadratic map (sometimes also called the logistic map)

xt+1 = 1− ax2
t , (9.11)

with the one critical point at xc = 0. Another example is the repelling unimodal map of
fig. 9.8b. We refer to (9.10) as the “complete” tent map because its symbolic dynamics
is a complete binary dynamics.

Such dynamical systems are irreversible (the inverse of f is double-valued), but,
they may nevertheless serve as effective descriptions of hyperbolic flows.

For the unimodal maps of fig. 9.8 a Markov partition of the unit interval
M is given by the two intervals {M0,M1}. The symbolic dynamics is
complete binary: as both f (M0) and f (M1) fully cover M0 and M1, the
corresponding transition matrix is a [2×2] matrix with all entries equal
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to 1, as in (9.3). The critical value denotes either the maximum or the
minimum value of f (x) on the defining interval; we assume here that it is
a maximum, f(xc) ≥ f (x) for all x ∈ M. The critical value f(xc) belongs
neither to the left nor to the right partition Mi, and is denoted by its own
symbol s = C.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the it-
eration xn+1 = f (xn) . Iterating f and checking whether the point lands
to the left or to the right of xc generates a temporally ordered topological
itinerary (9.16) for a given trajectory,

sn =
{

1 if xn > xc

0 if xn < xc
. (9.12)

We shall refer to S+(x0) = .s1s2s3 · · · as the future itinerary. Our next task
is answer the reverse problem: given an itinerary, what is the corresponding
spatial ordering of points that belong to a given trajectory?

As binary type symbolic dynamics pops up frequently, we list the short-
est binary prime cycles in table 9.2.✎ 9.3

page 159

9.5 Spatial ordering

The tent map (9.10) consists of two straight segments joined at x = 1/2.
The symbol sn defined in (9.12) equals 0 if the function increases, and 1 if
the function decreases. The piecewise linearity of the map makes it possible
to analytically determine an initial point given its itinerary, a property that
we now use to define a topological coordinatization common to all unimodal
maps.

Here we have to face the fundamental problems of combinatorics and
symbolic dynamics: combinatorics cannot be taught. The best one can do
is to state the answer, and then hope that you will figure it out by yourself.
The tent map point γ(S+) with future itinerary S+ is given by converting
the sequence of sn’s into a binary number by the following algorithm:

wn+1 =
{

wn if sn = 0
1− wn if sn = 1 , w1 = s1

γ(S+) = 0.w1w2w3 . . . =
∞∑

n=1

wn/2n. (9.13)

This follows by inspection from the binary tree of fig. 9.9. For example,✎ 9.6
page 159

γ whose itinerary is S+ = 0110000 · · · is given by the binary number γ =
.010000 · · ·. Conversely, the itinerary of γ = .01 is s1 = 0, f (γ) = .1 →
s2 = 1, f2(γ) = f (.1) = 1 → s3 = 1, etc..

We shall refer to γ(S+) as the (future) topological coordinate. wt’s are
nothing more than digits in the binary expansion of the starting point γ

knead - 5jun2003 draft 9.4.0, June 18 2003



9.5. SPATIAL ORDERING 149

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 9.2: Prime cycles for the binary symbolic dynamics up to length 9.
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Figure 9.9: Alternating binary tree relates the
itinerary labelling of the unimodal map fig. 9.8
intervals to their spatial ordering. Dotted line
stands for 0, full line for 1; the binary sub-tree
whose root is a full line (symbol 1) reverses the
orientation, due to the orientation reversing fold
in figs. 9.8 and 9.6.

000

0 1

00 01 11 10

001 011 010 110 111 101 100

for the complete tent map (9.10). In the left half-interval the map f (x)
acts by multiplication by 2, while in the right half-interval the map acts as
a flip as well as multiplication by 2, reversing the ordering, and generating
in the process the sequence of sn’s from the binary digits wn.

The mapping x0 → S+(x0) → γ0 = γ(S+) is a topological
conjugacy which maps the trajectory of an initial point x0 under iteration
of a given unimodal map to that initial point γ for which the trajectory of
the “canonical” unimodal map (9.10) has the same itinerary. The virtue of
this conjugacy is that it preserves the ordering for any unimodal map in
the sense that if x > x, then γ > γ.

9.6 Topological dynamics

9.6.1 Finite memory

In the complete N -ary symbolic dynamics case (see example (9.3)) the
choice of the next symbol requires no memory of the previous ones. How-
ever, any further refinement of the partition requires finite memory.

For example, for the binary labelled repeller with complete binary sym-
bolic dynamics, we might chose to partition the phase space into four re-
gions {M00,M01,M10,M11}, a 1-step refinement of the initial partition
{M0,M1}. Such partitions are drawn in fig. 9.4, as well as fig. 1.8. Topo-
logically f acts as a left shift, and its action on the rectangle [.01] is to
move the decimal point to the right, to [0.1], forget the past, [.1], and land
in either of the two rectangles {[.10], [.11]}. Filling in the matrix elements
for the other three initial states we obtain the 1-step memory transition
matrix acting on the 4-state vector✎ 9.8

page 160

φ′ = Tφ =


T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11




φ00

φ01

φ10

φ11

 . (9.14)

By the same token, for M -step memory the only nonvanishing matrix ele-
ments are of the form Ts1s2...sM+1,s0s1...sM , sM+1 ∈ {0, 1}. This is a sparse
matrix, as the only non vanishing entries in the m = s0s1 . . . sM column
of Tdm are in the rows d = s1 . . . sM0 and d = s1 . . . sM1. If we increase✎ 10.1

page 182
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(a)

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

B

A

C

GFED

(b)

A=B=C

Figure 9.10: (a) The self-similarity of the complete binary symbolic dynamics rep-
resented by a binary tree (b) identification of nodes B = A, C = A leads to the finite
1-node, 2-links Markov graph. All admissible itineraries are generated as walks on this
finite Markov graph.

(b) (a)

Figure 9.11: (a) The 2-step memory Markov graph, links version obtained by iden-
tifying nodes A = D = E = F = G in fig. 9.10(a). Links of this graph correspond
to the matrix entries in the transition matrix (9.14). (b) the 2-step memory Markov
graph, node version.

the number of steps remembered, the transition matrix grows big quickly,
as the N -ary dynamics with M -step memory requires an [NM+1 ×NM+1]
matrix. Since the matrix is very sparse, it pays to find a compact represen-
tation for T . Such representation is afforded by Markov graphs, which are
not only compact, but also give us an intuitive picture of the topological
dynamics.

Construction of a good Markov graph is, like combinatorics, unexplain-
able. The only way to learn is by some diagrammatic gymnastics, so we
work our way through a sequence of exercises in lieu of plethora of baffling
definitions. ✎ 10.4

page 183

✎ 10.1
page 182

To start with, what do finite graphs have to do with infinitely long
trajectories? To understand the main idea, let us construct a graph that
enumerates all possible iteneraries for the case of complete binary symbolic
dynamics.

Mark a dot “·” on a piece of paper. Draw two short lines out of the
dot, end each with a dot. The full line will signify that the first symbol
in an itinerary is “1”, and the dotted line will signifying “0”. Repeat the
procedure for each of the two new dots, and then for the four dots, and so
on. The result is the binary tree of fig. 9.10(a). Starting at the top node,
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(a)

0110

0111

0101

1101

1111

1110

1010

1011

A

E

B C

(b)

BA=C=E

Figure 9.12: (a) The self-similarity of the 00 pruned binary tree: trees originating
from nodes C and E are the same as the entire tree. (b) Identification of nodes
A = C = E leads to the finite 2-node, 3-links Markov graph; as 0 is always followed
by 1, the walks on this graph generate only the admissible itineraries.

the tree enumerates exhaustively all distinct finite itineraries

{0, 1}, {00, 01, 10, 11}, {000, 001, 010, · · ·}, · · · .

The M = 4 nodes in fig. 9.10(a) correspond to the 16 distinct binary strings
of length 4, and so on. By habit we have drawn the tree as the alternating
binary tree of fig. 9.9, but that has no significance as far as enumeration of
itineraries is concerned - an ordinary binary tree would serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of
paper. On the other hand, we are not doing much - at each node we
are turning either left or right. Hence all nodes are equivalent, and can
be identified. To say it in other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The
result of identifying B = A, C = A is a single node, 2-link Markov graph
of fig. 9.10(b): any itinerary generated by the binary tree fig. 9.10(a), no
matter how long, corresponds to a walk on this graph.

This is the most compact encoding of the complete binary symbolic
dynamics. Any number of more complicated Markov graphs can do the job
as well, and might be sometimes preferable. For example, identifying the
trees originating in D, E, F and G with the entire tree leads to the 2-step
memory Markov graph of fig. 9.11a. The corresponding transition matrix
is given by (9.14).

fast track:

chapter 10, p. 161
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9.7 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic dy-
namics. The reader might prefer to skim through this material on first
reading, return to it later as the need arises.

Shifts.

We associate with every initial point x0 ∈ M the future itinerary, a se-
quence of symbols S+(x0) = s1s2s3 · · · which indicates the order in which
the regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0

is generated by

xn+1 = f(xn) , (9.15)

then the itinerary is given by the symbol sequence

sn = s if xn ∈Ms . (9.16)

Similarly, the past itinerary S-(x0) = · · · s−2s−1s0 describes the history of
x0, the order in which the regions were visited before arriving to the point
x0. To each point x0 in the dynamical space we thus associate a bi-infinite
itinerary

S(x0) = (sk)k∈Z = S-.S+ = · · · s−2s−1s0.s1s2s3 · · · . (9.17)

The itinerary will be finite for a scattering trajectory, entering and then es-
capingM after a finite time, infinite for a trapped trajectory, and infinitely
repeating for a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters
of the alphabet A is called the full shift

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (9.18)

The jargon is not thrilling, but this is how professional dynamicists talk to
each other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering symbolic
dynamics. The name shift is descriptive of the way the dynamics acts on
these sequences. As is clear from the definition (9.16), a forward iteration
x → x′ = f(x) shifts the entire itinerary to the left through the “decimal
point”. This operation, denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (9.19)
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demoting the current partition label s1 from the future S+ to the “has
been” itinerary S-. The inverse shift σ−1 shifts the entire itinerary one
step to the right.

A finite sequence b = sksk+1 · · · sk+nb−1 of symbols from A is called a
block of length nb. A phase space trajectory is periodic if it returns to its
initial point after a finite time; in the shift space the trajectory is periodic
if its itinerary is an infinitely repeating block p∞. We shall refer to the set
of periodic points that belong to a given periodic orbit as a cycle

p = s1s2 · · · snp = {xs1s2···snp
, xs2···snps1 , · · · , xsnps1···snp−1} . (9.20)

By its definition, a cycle is invariant under cyclic permutations of the sym-
bols in the repeating block. A bar over a finite block of symbols denotes
a periodic itinerary with infinitely repeating basic block; we shall omit the
bar whenever it is clear from the context that the trajectory is periodic.
Each cycle point is labeled by the first np steps of its future itinerary. For
example, the 2nd cycle point is labelled by

xs2···snps1 = xs2···snps1·s2···snps1 .

A prime cycle p of length np is a single traversal of the orbit; its label is a
block of np symbols that cannot be written as a repeat of a shorter block
(in literature such cycle is sometimes called prime; we shall refer to it as
“prime” throughout this text).

Partitions.

A partition is called generating if every infinite symbol sequence corre-
sponds to a distinct point in the phase space. Finite Markov partition (9.4)
is an example. Constructing a generating partition for a given system is a
difficult problem. In examples to follow we shall concentrate on cases which
allow finite partitions, but in practice almost any generating partition of
interest is infinite.

A mapping f : M→M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (9.21)

is the set of all admissible infinite itineraries, and σ : Σ → Σ is the shift
operator (9.19). The designation “subshift” comes form the fact that Σ ⊂
AZ is the subset of the full shift (9.18). One of our principal tasks in
developing symbolic dynamics of dynamical systems that occur in nature
will be to determine Σ, the set of all bi-infinite itineraries S that are actually
realized by the given dynamical system.
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A partition too coarse, coarser than, for example, a Markov partition,
would assign the same symbol sequence to distinct dynamical trajectories.
To avoid that, we often find it convenient to work with partitions finer than
strictly necessary. Ideally the dynamics in the refined partition assigns a
unique infinite itinerary · · · s−2s−1s0.s1s2s3 · · · to each distinct trajectory,
but there might exist full shift symbol sequences (9.18) which are not real-
ized as trajectories; such sequences are called inadmissible, and we say that
the symbolic dynamics is pruned. The word is suggested by “pruning” of
branches corresponding to forbidden sequences for symbolic dynamics or-
ganized hierarchically into a tree structure, as explained in sect. 9.6.

Pruning.

If the dynamics is pruned, the alphabet must be supplemented by a gram-
mar, a set of pruning rules. After the inadmissible sequences have been
pruned, it is often convenient to parse the symbolic strings into words of
variable length - this is called coding. Suppose that the grammar can be
stated as a finite number of pruning rules, each forbidding a block of finite
length,

G = {b1, b2, · · · bk} , (9.22)

where a pruning block b is a sequence of symbols b = s1s2 · · · snb
, s ∈ A,

of finite length nb. In this case we can always construct a finite Markov
partition (9.4) by replacing finite length words of the original partition by
letters of a new alphabet. In particular, if the longest forbidden block is of
length M + 1, we say that the symbolic dynamics is a shift of finite type
with M -step memory. In that case we can recode the symbolic dynamics
in terms of a new alphabet, with each new letter given by an admissible
block of at most length M . In the new alphabet the grammar rules are
implemented by setting Tij = 0 in (9.3) for forbidden transitions.

A topological dynamical system (Σ, σ) for which all admissible itineraries
are generated by a finite transition matrix

Σ =
{
(sk)k∈Z : Tsksk+1

= 1 for all k
}

(9.23)

is called a subshift of finite type. Such systems are particularly easy to han-
dle; the topology can be converted into symbolic dynamics by representing
the transition matrix by a finite directed Markov graph, a convenient visu-
alization of topological dynamics.

Markov graphs.

A Markov graph describes compactly the ways in which the phase-space
regions map into each other, accounts for finite memory effects in dynamics,
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(a) T =
(

1 1
1 0

)
(b)

0 1a

b

c

Figure 9.13: (a) The transition matrix for a simple subshift on two-state partition
A = {0, 1}, with grammar G given by a single pruning block b = 11 (consecutive
repeat of symbol 1 is inadmissible): the state M0 maps both onto M0 and M1,
but the state M1 maps only onto M0. (b) The corresponding finite 2-node, 3-links
Markov graph, with nodes coding the symbols. All admissible itineraries are generated
as walks on this finite Markov graph.

and generates the totality of admissible trajectories as the set of all possible
walks along its links.

A Markov graph consists of a set of nodes (or vertices, or states), one
for each state in the alphabet A = {A, B, C, · · · , Z}, connected by a set of
directed links (edges, arcs). Node i is connected by a directed link to
node j whenever the transition matrix element (9.2) takes value Tij = 1.
There might be a set of links connecting two nodes, or links that originate
and terminate on the same node. Two graphs are isomorphic if one can
be obtained from the other by relabelling links and nodes; for us they are
one and the same graph. As we are interested in recurrent dynamics, we
restrict our attention to irreducible or strongly connected graphs, that is
graphs for which there is a path from any node to any other node.

The simplest example is given in fig. 9.13.

Résumé

Symbolic dynamics is the coarsest example of coarse graining, the way
irreversibility enters chaotic dynamics. The exact trajectory is determin-
istic, and given an initial point we know (in principle) both its past and
its future - its memory is infinite. In contrast, the partitioned phase space
is described by the quientessentially probabilistic tools, such as the finite
memory Markov graphs.

In chapters 11 and 12 we will establish that spectra of evolution oper-
ators can be extracted from periodic orbit sums:

∑
(spectral eigenvalues) =

∑
(periodic orbits) .

In order to implement this theory we need to know what periodic orbits
can exist, and the symbolic dynamics developed above is an invaluable tool
toward this end.

Importance of symbolic dynamics is sometime grossly unappreciated;
the crucial ingredient for nice analyticity properties of zeta functions is
existence of finite grammar (coupled with uniform hyperbolicity).
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Exercises

Exercise 9.1 Binary symbolic dynamics. Verify that the shortest prime
binary cycles of the unimodal repeller of fig. 9.8 are 0, 1, 01, 001, 011, · · ·.
Compare with table 9.2. Try to sketch them in the graph of the unimodal
function f(x); compare ordering of the periodic points with fig. 9.9. The point
is that while overlayed on each other the longer cycles look like a hopeless
jumble, the cycle points are clearly and logically ordered by the alternating
binary tree.

Exercise 9.2 3-disk fundamental domain symbolic dynamics. Try to
sketch 0, 1, 01, 001, 011, · · ·. in the fundamental domain, fig. 9.5, and
interpret the symbols {0, 1} by relating them to topologically distinct types of
collisions. Compare with table 9.1. Then try to sketch the location of periodic
points in the Poincaré section of the billiard flow. The point of this exercise is
that while in the configuration space longer cycles look like a hopeless jumble,
in the Poincaré section they are clearly and logically ordered. The Poincaré
section is always to be preferred to projections of a flow onto the configuration
space coordinates, or any other subset of phase space coordinates which does
not respect the topological organization of the flow.

Exercise 9.3 Generating prime cycles. Write a program that generates all

binary prime cycles up to given finite length.

Exercise 9.4 A contracting baker’s map. Consider a contracting (or “dissi-
pative”) baker’s defined in exercise 4.3.

The symbolic dynamics encoding of trajectories is realized via symbols 0 (y ≤ 1/2)
and 1 (y > 1/2). Consider the observable a(x, y) = x. Verify that for any periodic
orbit p (ε1 . . . εnp

), εi ∈ {0, 1}

Ap =
3
4

np∑
j=1

δj,1 .

Exercise 9.5 Reduction of 3-disk symbolic dynamics to binary.

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, · · ·,
correspond to the fundamental domain cycles 0, 1, 01, 001, 011, · · ·
respectively.

(b) Check the reduction for short cycles in table 9.1 by drawing them both
in the full 3-disk system and in the fundamental domain, as in fig. 9.5.

(c) Optional: Can you see how the group elements listed in table 9.1 relate
irreducible segments to the fundamental domain periodic orbits?

Exercise 9.6 Unimodal map symbolic dynamics. Show that the tent map

point γ(S+) with future itinerary S+ is given by converting the sequence of sn’s into

a binary number by the algorithm (9.13). This follows by inspection from the binary

tree of fig. 9.9.
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Exercise 9.7 “Golden mean” pruned map. Consider a symmetrical tent
map on the unit interval such that its highest point belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the absolute value Λ for the slope (the two different slopes ±Λ just
differ by a sign) where the maximum at 1/2 is part of a period three
orbit, as in the figure.

(b) Show that no orbit of this map can visit the region x > (1+
√

5)/4 more
than once. Verify that once an orbit exceeds x > (

√
5 − 1)/4, it does

not reenter the region x < (
√

5− 1)/4.

(c) If an orbit is in the interval (
√

5 − 1)/4 < x < 1/2, where will it be on
the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2 we use the symbol 0
and for x > 1/2 we use the symbol 1, show that no periodic orbit will
have the substring 00 in it.

(e) On the second thought, is there a periodic orbit that violates the above
00 pruning rule?

For continuation, see exercise 10.6 and exercise 10.8. See also exercise 10.7
and exercise 10.9.

Exercise 9.8 Binary 3-step transition matrix. Construct [8×8] binary 3-step

transition matrix analogous to the 2-step transition matrix (9.14). Convince yourself

that the number of terms of contributing to tr Tn is independent of the memory length,

and that this [2m×2m] trace is well defined in the infinite memory limit m →∞.
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Chapter 10

Counting, for pedestrians

That which is crooked cannot be made straight: and
that which is wanting cannot be numbered.
Ecclestiastes 1.15

We are now in position to develop our first prototype application of the
periodic orbit theory: cycle counting. This is the simplest illustration of
raison d’etre of the periodic orbit theory; we shall develop a duality trans-
formation that relates local information - in this case the next admissible
symbol in a symbol sequence - to global averages, in this case the mean rate
of growth of the number of admissible itineraries with increasing itinerary
length. We shall turn the topological dynamics of the preceding chapter into
a multiplicative operation by means of transition matrices/Markov graphs,
and show that the powers of a transition matrix count distinct itineraries.
The asymptotic growth rate of the number of admissible itineraries is there-
fore given by the leading eigenvalue of the transition matrix; the leading
eigenvalue is given by the leading zero of the characteristic determinant of
the transition matrix, which is in this context called the topological zeta
function. For flows with finite Markov graphs this determinant is a finite
polynomial which can be read off the Markov graph.

The method goes well beyond the problem at hand, and forms the core
of the entire treatise, making tangible a rather abstract notion of “spectral
determinants” yet to come.

10.1 Counting itineraries

In the 3-disk system the number of admissible trajectories doubles with
every iterate: there are Kn = 3 · 2n distinct itineraries of length n. If disks
are too close and some part of trajectories is pruned, this is only an upper
bound and explicit formulas might be hard to come by, but we still might
be able to establish a lower exponential bound of form Kn ≥ Cenĥ. Hence,
it is natural to characterize the growth of the number of trajectories as a
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function of the itinerary length by the topological entropy:

h = lim
n→∞

1
n

lnKn . (10.1)

We shall now relate this quantity to the leading eigenvalue of the transition
matrix.

The transition matrix element Tij ∈ {0, 1} in (9.2) indicates whether
the transition from the starting partition j into partition i in one step is
allowed or not, and the (i, j) element of the transition matrix iterated n
times✎ 10.1

page 182

(Tn)ij =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . . Tkn−1j

receives a contribution 1 from every admissible sequence of transitions, so
(Tn)ij is the number of admissible n symbol itineraries starting with j and
ending with i.

Example 10.1 3-disk itinerary counting

The (T 2)13 = 1 element of T 2 for the 3-disk transition matrix (9.5)

 c 1 1
1 0 1
1 1 0

2

=

 2 1 1
1 2 1
1 1 2

 . (10.2)

corresponds to 3 → 2 → 1, the only 2-step path from 3 to 1, while (T 2)33 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itineraries of n symbols is

Kn =
∑
ij

(Tn)ij = ( 1, 1, . . . , 1 ) Tn


1
1
...
1

 . (10.3)

We can also count the number of prime cycles and pruned periodic
points, but in order not to break up the flow of the main argument, we
relegate these pretty results to sects. 10.5.2 and 10.5.3. Recommended
reading if you ever have to compute lots of cycles.

T is a matrix with non-negative integer entries. A matrix M is said
to be Perron-Frobenius if some power k of M has strictly positive entries,
(Mk)rs > 0. In the case of the transition matrix T this means that every
partition eventually reaches all of the partitions, that is, the partition is
dynamically transitive or indecomposable, as assumed in (2.2). The notion
of transitivity is crucial in ergodic theory: a mapping is transitive if it has
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a dense orbit, and the notion is obviously inherited by the shift once we
introduce a symbolic dynamics. If that is not the case, phase space decom-
poses into disconnected pieces, each of which can be analyzed separately
by a separate indecomposable Markov graph. Hence it suffices to restrict
our considerations to the transition matrices of the Perron-Frobenius type.

A finite matrix T has eigenvalues Tϕα = λαϕα and (right) eigenvectors
{ϕ0, ϕ1, · · · , ϕN−1}. Expressing the initial vector in (10.3) in this basis

Tn


1
1
...
1

 = Tn
N−1∑
α=0

bαϕα =
N−1∑
α=0

bαλn
αϕα ,

and contracting with ( 1, 1, . . . , 1 ) we obtain

Kn =
N−1∑
α=0

cαλn
α .

✎ 10.2
page 182The constants cα depend on the choice of initial and final partitions: In

this example we are sandwiching Tn between the vector ( 1, 1, . . . , 1 ) and
its transpose, but any other pair of vectors would do, as long as they are
not orthogonal to the leading eigenvector ϕ0. Perron theorem states that
a Perron-Frobenius matrix has a nondegenerate positive real eigenvalue
λ0 > 1 (with a positive eigenvector) which exceeds the moduli of all other
eigenvalues. Therefore as n increases, the sum is dominated by the leading
eigenvalue of the transition matrix, λ0 > |Re λα|, α = 1, 2, · · · , N − 1, and
the topological entropy (10.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= lnλ0 . (10.4)

What have we learned? The transition matrix T is a one-step local op-
erator, advancing the trajectory from a partition to the next admissible
partition. Its eigenvalues describe the rate of growth of the total number
of trajectories at the asymptotic times. Instead of painstakingly counting
K1, K2, K3, . . . and estimating (10.1) from a slope of a log-linear plot, we
have the exact topological entropy if we can compute the leading eigenvalue
of the transition matrix T . This is reminiscent of the way the free energy
is computed from transfer matrix for one-dimensional lattice models with
finite range interactions: this analogy with statistical mechanics will be
developed further in chapter 17.
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10.2 Topological trace formula

There are two standard ways of getting at eigenvalues of a matrix - by evalu-
ating the trace trTn =

∑
λn

α, or by evaluating the determinant det (1−zT ).
We start by evaluating the trace of transition matrices.

Consider an M -step memory transition matrix, like the 1-step memory
example (9.14). The trace of the transition matrix counts the number of
partitions that map into themselves. In the binary case the trace picks up
only two contributions on the diagonal, T0···0,0···0 +T1···1,1···1, no matter how
much memory we assume (check (9.14) and exercise 9.8). We can even take
M →∞, in which case the contributing partitions are shrunk to the fixed
points, trT = T0,0 + T1,1.

More generally, each closed walk through n concatenated entries of T
contributes to trTn a product of the matrix entries along the walk. Each
step in such walk shifts the symbolic string by one symbol; the trace ensures
that the walk closes into a periodic string c. Define tc to be the local trace,
the product of matrix elements along a cycle c, each term being multiplied
by a book keeping variable z. zntr Tn is then the sum of tc for all cycles
of length n. For example, for [8×8] transition matrix Ts1s2s3,s0s1s2 version✎ 9.8

page 160
of (9.14), or any refined partition [2n×2n] transition matrix, n arbitrarily
large, the periodic point 100 contributes t100 = z3T100,010T010,001T001,100 to
z3tr T 3. This product is manifestly cyclically symmetric, t100 = t010 = t001,
and so a prime cycle p of length np contributes np times, once for each
periodic point along its orbit. For the binary labelled non–wandering set
the first few traces are given by (consult tables 9.2 and 10.1)

z tr T = t0 + t1,

z2tr T 2 = t20 + t21 + 2t10,

z3tr T 3 = t30 + t31 + 3t100 + 3t101,

z4tr T 4 = t40 + t41 + 2t210 + 4t1000 + 4t1001 + 4t1011. (10.5)

For complete binary symbolic dynamics tp = znp for every binary prime
cycle p; if there is pruning tp = znp if p is admissible cycle and tp = 0
otherwise. Hence tr Tn counts the number of admissible periodic points of
period n. In general, the nth order trace (10.5) picks up contributions
from all repeats of prime cycles, with each cycle contributing np periodic
points, so the total number of periodic points of period n is given by

Nn = tr Tn =
∑
np|n

npt
n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (10.6)

Here m|n means that m is a divisor of n, and we have taken z = 1 so tp = 1
if the cycle is admissible, and tp = 0 otherwise. In order to get rid of the
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n Nn # of prime cycles of length np

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

Table 10.1: The total numbers of periodic points Nn of period n for binary symbolic
dynamics. The numbers of prime cycles contributing illustrates the preponderance of
long prime cycles of length n over the repeats of shorter cycles of lengths np, n = rnp.
Further listings of binary prime cycles are given in tables 9.2 and 10.2. (L. Rondoni)

awkward divisibility constraint n = npr in the above sum, we introduce the
generating function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1− zT
. (10.7)

Substituting (10.6) into the left hand side, and replacing the right hand
side by the eigenvalue sum tr Tn =

∑
λn

α, we obtain our first example of a
trace formula, the topological trace formula

∑
α=0

zλα

1− zλα
=
∑

p

nptp
1− tp

. (10.8)

A trace formula relates the spectrum of eigenvalues of an operator - in
this case the transition matrix - to the spectrum of periodic orbits of the
dynamical system. The zn sum in (10.7) is a discrete version of the Laplace
transform, (see chapter 11), and the resolvent on the left hand side is the
antecedent of the more sophisticated trace formulas (11.9), (11.19) and
(26.3). We shall now use this result to compute the spectral determinant
of the transition matrix.

10.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an
[M ×M ] transition matrix

det (1− zT ) =
M−1∏
α=0

(1− zλα) . (10.9)
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We could now proceed to diagonalize T on a computer, and get this over
with. Nevertheless, it pays to dissect det (1 − zT ) with some care; under-
standing this computation in detail will be the key to understanding the
cycle expansion computations of chapter 15 for arbitrary dynamical aver-
ages. For T a finite matrix (10.9) is just the characteristic equation for T .
However, we shall be able to compute this object even when the dimension
of T and other such operators goes to ∞, and for that reason we prefer to
refer to (10.9) as the “spectral determinant”.

There are various definitions of the determinant of a matrix; they mostly
reduce to the statement that the determinant is a certain sum over all
possible permutation cycles composed of the traces tr T k, in the spirit of
the determinant–trace relation of chapter 1:✎ 4.1

page 77

det (1− zT ) = exp (tr ln(1− zT )) = exp

(
−
∑
n=1

zn

n
tr Tn

)

= 1− z tr T − z2

2
(
(tr T )2 − tr (T 2)

)
− . . . (10.10)

This is sometimes called a cumulant expansion. Formally, the right hand is
an infinite sum over powers of zn. If T is an [M×M ] finite matrix, then the
characteristic polynomial is at most of order M . Coefficients of zn, n > M
vanish exactly.

We now proceed to relate the determinant in (10.10) to the correspond-
ing Markov graph of chapter 9: to this end we start by the usual algebra
textbook expression

det (1−zT ) =
∑
{π}

(−1)Pπ (1−zT )1,π1 ·(1−zT )2,π2 · · · (1−zT )M,πM
(10.11)

where once again we suppose T is an [M×M ] finite matrix, {π} denotes
the set of permutations of M symbols, πk is what k is permuted into by
the permutation k, and Pπ is the parity of the considered permutation.
The right hand side of (10.11) yields a polynomial of order M in z: a
contribution of order n in z picks up M −n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)Pπ̃Tη1,π̃η1
· · ·Tηn,π̃ηn

(10.12)

where π̃ is the permutation of the subset of n distinct symbols η1 . . . ηn

indexing T matrix elements. As in (10.5), we refer to any combination
ti = Tη1η2Tη2η3 · · ·Tηkη1 , c = η1, η2, · · · , ηk fixed, as a local trace associated
with a closed loop c on the Markov graph. Each term of form (10.12) may
be factored in terms of local traces tc1tc2 · · · tck

, that is loops on the Markov
graph. These loops are non-intersecting, as each node may only be reached
by one link, and they are indeed loops, as if a node is reached by a link, it
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has to be the starting point of another single link, as each ηj must appear
exactly once as a row and column index. So the general structure is clear, a
little more thinking is only required to get the sign of a generic contribution.
We consider only the case of loops of length 1 and 2, and leave to the reader
the task of generalizing the result by induction. Consider first a term in
which only loops of unit length appear on (10.12) that is, only the diagonal
elements of T are picked up. We have k = n loops and an even permutation
π̃ so the sign is given by (−1)k, k being the number of loops. Now take
the case in which we have i single loops and j loops of length 2 (we must
thus have n = 2j + i). The parity of the permutation gives (−1)j and the
first factor in (10.12) gives (−1)n = (−1)2j+i. So once again these terms
combine into (−1)k, where k = i + j is the number of loops. We may ✎ 10.3

page 182
summarize our findings as follows:

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions π of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

det (1− zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk
(10.13)

Any self-intersecting loop is shadowed by a product of two loops that share
the intersection point. As both the long loop tab and its shadow tatb in
the case at hand carry the same weight zna+nb , the cancellation is exact,
and the loop expansion (10.13) is finite, with f the maximal number of
non-intersecting loops.

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tpf
}

as the the fundamental cycles. This is not a very good definition, as the
Markov graphs are not unique – the most we know is that for a given finite-
grammar language, there exist Markov graph(s) with the minimal number
of loops. Regardless of how cleverly a Markov graph is constructed, it is
always true that for any finite Markov graph the number of fundamental
cycles f is finite. If you know a better way to define the “fundamental
cycles”, let us know.

fast track:

sect. 10.4, p. 170

10.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily
grasped by a working through a few examples. The complete binary dy-
namics Markov graph of fig. 9.10(b) is a little bit too simple, but anyway,
let us start humbly; there are only two non-intersecting loops, yielding

det (1− zT ) = 1− t0 − t1 = 1− 2z . (10.14)
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Figure 10.1: The golden mean pruning rule
Markov graph, see also fig. 9.12.

1 0

Figure 10.2: (a) An incomplete Smale horseshoe: the inner forward fold does not
intersect the two rightmost backward folds. (b) The primary pruned region in the
symbol square and the corresponding forbidden binary blocks. (c) An incomplete
Smale horseshoe which illustrates (d) the monotonicity of the pruning front: the thick
line which delineates the left border of the primary pruned region is monotone on
each half of the symbol square. The backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are further missing intersections, all obtained
by the forward and backward iterations of the primary pruned region.

The leading (and only) zero of this characteristic polynomial yields the
topological entropy eh = 2. As we know that there are Kn = 2n binary
strings of length N , we are not surprised. Similarly, for complete sym-
bolic dynamics of N symbols the Markov graph has one node and N links,
yielding

det (1− zT ) = 1−Nz , (10.15)

whence the topological entropy h = lnN .

A more interesting example is the “golden mean” pruning of fig. 10.1.
There is only one grammar rule, that a repeat of symbol 0 is forbidden.

The non-intersecting loops are of length 1 and 2, so the topological✎ 10.4
page 183

polynomial is given by

det (1− zT ) = 1− t1 − t01 = 1− z − z2 . (10.16)

The leading root of this polynomial is the golden mean, so the entropy
(10.4) is the logarithm of the golden mean, h = ln 1+

√
5

2 .

Finally, the non-self-intersecting loops of the Markov graph of fig. 10.3(d)
are indicated in fig. 10.3(e). The determinant can be written down by in-
spection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1−T ) = 1− t0− t0011− t0001− t00011 + t0t0011 + t0011t0001(10.17)

With tp = znp , where np is the length of the p-cycle, the smallest root of✎ 10.10
page 184
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Figure 10.3: Conversion of the pruning front of fig. 10.2d into a finite Markov graph.
(a) Starting with the start node “.”, delineate all pruning blocks on the binary tree.
A solid line stands for “1” and a dashed line for “0”. Ends of forbidden strings are
marked with ×. Label all internal nodes by reading the bits connecting “.”, the base
of the tree, to the node. (b) Indicate all admissible starting blocks by arrows. (c) Drop
recursively the leading bits in the admissible blocks; if the truncated string corresponds
to an internal node in (a), connect them. (d) Delete the transient, non-circulating
nodes; all admissible sequences are generated as walks on this finite Markov graph.
(e) Identify all distinct loops and construct the determinant (10.17).
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0 = 1− z − 2z4 + z8 (10.18)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . .,
significantly smaller than the entropy of the covering symbolic dynamics,
the complete binary shift h = ln 2 = 0.693 . . .

in depth:

sect. P.1, p. 727

10.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the Markov
graph is infinite? If we are never sure that looking further into future
will reveal no further forbidden blocks? There is still a way to define the
determinant, and the idea is central to the whole treatise: the determinant
is then defined by its cumulant expansion (10.10)✎ 4.1

page 77

det (1− zT ) = 1−
∞∑

n=1

ĉnzn . (10.19)

For finite dimensional matrices the expansion is a finite polynomial, and
(10.19) is an identity; however, for infinite dimensional operators the cu-
mulant expansion coefficients ĉn define the determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary
transition matrix. In order to obtain an expression for the spectral det-
erminant (10.9) in terms of cycles, substitute (10.6) into (10.19) and sum
over the repeats of prime cycles

det (1− zT ) = exp

(
−
∑

p

∞∑
r=1

trp
r

)
=
∏
p

(1− tp) . (10.20)

where for the topological entropy the weight assigned to a prime cycle p of
length np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned.
This determinant is called the topological or the Artin-Mazur zeta function,
conventionally denoted by

1/ζtop =
∏
p

(1− znp) = 1−
∑
n=1

ĉnzn . (10.21)

Counting cycles amounts to giving each admissible prime cycle p weight
tp = znp and expanding the Euler product (10.21) as a power series in z.
As the precise expression for coefficients ĉn in terms of local traces tp is
more general than the current application to counting, we shall postpone
its derivation to chapter 15.
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The topological entropy h can now be determined from the leading zero
z = e−h of the topological zeta function. For a finite [N×N ] transition
matrix, the number of terms in the characteristic equation (10.13) is finite,
and we refer to this expansion as the topological polynomial of order ≤ N .
The power of defining a determinant by the cumulant expansion is that it
works even when the partition is infinite, N → ∞; an example is given in
sect. 10.6, and many more later on.

fast track:

sect. 10.6, p. 176

10.4.1 Topological zeta function for flows

We now apply the method we used in deriving (11.19) to the problem
of deriving the topological zeta functions for flows. By analogy to (11.17),
the time-weighted density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tpδ(t− rTp) . (10.22)

A Laplace transform smooths the sum over Dirac delta spikes and yields
the topological trace formula

∑
p

∑
r=1

Tp

∫ ∞

0+

dt e−st δ(t− rTp) =
∑

p

Tp

∞∑
r=1

e−sTpr (10.23)

and the topological zeta function for flows:

1/ζtop(s) =
∏
p

(
1− e−sTp

)
∑

p

Tp

∞∑
r=1

e−sTpr = − ∂

∂s
ln 1/ζtop(s) . (10.24)

This is the continuous time version of the discrete time topological zeta
function (10.21) for maps; its leading zero s = −h yields the topological
entropy for a flow.

10.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to
topological length n, so it is handy to know their exact number.
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10.5.1 Counting periodic points

Nn, the number of periodic points of period n can be computed from (10.19)
and (10.7) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnzn = tr
(
−z

d

dz
ln(1− zT )

)
= −z

d

dz
ln det (1− zT )

=
−z d

dz1/ζtop

1/ζtop
. (10.25)

We see that the trace formula (10.8) diverges at z → e−h, as the denomi-
nator has a simple zero there.

As a check of formula (10.19) in the finite grammar context, consider
the complete N -ary dynamics (9.3) for which the number of periodic points
of period n is simply tr Tn

c = Nn. Substituting

∞∑
n=1

zn

n
tr Tn

c =
∞∑

n=1

(zN)n

n
= ln(1− zN) ,

into (10.19) we verify (10.15). The logarithmic derivative formula (10.25)
in this case does not buy us much either, we recover

∑
n=1

Nnzn =
Nz

1−Nz
.

However, consider instead the nontrivial pruning of fig. 10.3(e). Substitut-
ing (10.18) we obtain

∑
n=1

Nnzn =
z + 8z4 − 8z8

1− z − 2z4 + z8
. (10.26)

Now the topological zeta function is not merely a tool for extracting the
asymptotic growth of Nn; it actually yields the exact and not entirely trivial
recursion relation for the numbers of periodic points: N1 = N2 = N3 = 1,
Nn = 2n+1 for n = 4, 5, 6, 7, 8, and Nn = Nn−1 +2Nn−4−Nn−8 for n > 8.

10.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to
evaluate the number of prime cycles Mn for a dynamical system whose
symbolic dynamics is built from N symbols. The problem of finding Mn is
classical in combinatorics (counting necklaces made out of n beads out of N
different kinds) and is easily solved. There are Nn possible distinct strings
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n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 −N)/5 6 48 204
6 (N6 −N3 −N2 + N)/6 9 116 670
7 (N7 −N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 −N5 −N2 + N)/10 99 5880 104754

Table 10.2: Number of prime cycles for various alphabets and grammars up to length
10. The first column gives the cycle length, the second the formula (10.28) for the
number of prime cycles for complete N -symbol dynamics, columns three through five
give the numbers for N = 2, 3 and 4.

of length n composed of N letters. These Nn strings include all Md prime d-
cycles whose period d equals or divides n. A prime cycle is a non-repeating
symbol string: for example, p = 011 = 101 = 110 = . . . 011011 . . . is prime,
but 0101 = 010101 . . . = 01 is not. A prime d-cycle contributes d strings
to the sum of all possible strings, one for each cyclic permutation. The
total number of possible periodic symbol sequences of length n is therefore
related to the number of prime cycles by

Nn =
∑
d|n

dMd , (10.27)

where Nn equals tr Tn. The number of prime cycles can be computed
recursively

Mn =
1
n

Nn −
d<n∑
d|n

dMd

 ,

or by the Möbius inversion formula ✎ 10.11
page 184

Mn = n−1
∑
d|n

µ
(n

d

)
Nd . (10.28)

where the Möbius function µ(1) = 1, µ(n) = 0 if n has a squared factor,
and µ(p1p2 . . . pk) = (−1)k if all prime factors are different. ✎ 10.12

page 185
We list the number of prime cycles up to length 10 for 2-, 3- and 4-

letter complete symbolic dynamics in table 10.2. The number of prime
cycles follows by Möbius inversion (10.28).
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10.5.3 Counting N-disk periodic points

A simple example of pruning is the exclusion of “self-bounces” in
the N -disk game of pinball. The number of points that are mapped back
onto themselves after n iterations is given by Nn = trTn. The pruning
of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the
number of the N -disk periodic points is

Nn = tr Tn
N−disk = (N − 1)n + (−1)n(N − 1) (10.29)

(here Tc is the complete symbolic dynamics transition matrix (9.3)). For
the N -disk pruned case (10.29) Möbius inversion (10.28) yields

MN−disk
n =

1
n

∑
d|n

µ
(n

d

)
(N − 1)d +

N − 1
n

∑
d|n

µ
(n

d

)
(−1)d

= M (N−1)
n for n > 2 . (10.30)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of

period 2 is N2 −N , hence there are MN−disk
2 = N(N − 1)/2 prime cycles

of length 2; for lengths n > 2, the number of prime cycles is the same as
for the complete (N − 1)-ary dynamics of table 10.2.

10.5.4 Pruning individual cycles

Consider the 3-disk game of pinball. The prohibition of repeat-
ing a symbol affects counting only for the fixed points and the 2-cycles.
Everything else is the same as counting for a complete binary dynamics
(eq (10.30)). To obtain the topological zeta function, just divide out the
binary 1- and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the
correct 3-disk 2-cycles (1− z2t12)(1− z2t13)(1− z2t23):✎ 10.15

page 186

✎ 10.16
page 186

1/ζ3−disk = (1− 2z)
(1− z2)3

(1− z)2(1− z2)
= (1− 2z)(1 + z)2 = 1− 3z2 − 2z3 . (10.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive
it in (19.25). As we shall see in chapter 19, symmetries lead to factorizations
of topological polynomials and topological zeta functions.

The example of exercise 10.17 with the alphabet {a, cbk; b} is more
interesting. In the cycle counting case, the dynamics in terms of a → z,✎ 10.17

page 186
cbk → z

1−z is a complete binary dynamics with the explicit fixed point
factor (1− tb) = (1− z):

1/ζtop = (1− z)
(

1− z − z

1− z

)
= 1− 3z + z2

✎ 10.20
page 187
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n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123 + 121213213) + 6·121231323
+ 6·(121231213 + 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 10.3: List of the 3-disk prime cycles up to length 10. Here n is the cycle length,
Mn the number of prime cycles, Nn the number of periodic points and Sn the number
of distinct prime cycles under the C3v symmetry (see chapter 19 for further details).
Column 3 also indicates the splitting of Nn into contributions from orbits of lengths
that divide n. The prefactors in the fifth column indicate the degeneracy mp of the
cycle; for example, 3·12 stands for the three prime cycles 12, 13 and 23 related by
2π/3 rotations. Among symmetry related cycles, a representative p̂ which is lexically
lowest was chosen. The cycles of length 9 grouped by parenthesis are related by time
reversal symmetry, but not by any other C3v transformation.

n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108

Table 10.4: List of the 4-disk prime cycles up to length 8. The meaning of the
symbols is the same as in table 10.3. Orbits related by time reversal symmetry (but
no other symmetry) already appear at cycle length 5. List of the cycles of length 7
and 8 has been omitted.
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Figure 10.4: (a) The logarithm of the difference between the leading zero of the
finite polynomial approximations to topological zeta function and our best estimate,
as a function of the length for the quadratic map A = 3.8. (b) The 90 zeroes of the
characteristic polynomial for the quadratic map A = 3.8 approximated by symbolic
strings up to length 90. (from ref. [1.3])

10.6 Topological zeta function for an infinite par-
tition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far as we
know - there is no proof) has an infinite partition, or an infinity of longer
and longer pruning rules. Take the 1-d quadratic map

f(x) = Ax(1− x)

with A = 3.8. It is easy to check numerically that the itinerary or the
“kneading sequence” of the critical point x = 1/2 is

K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of fig. 9.8. How
this kneading sequence is converted into a series of pruning rules is a dark
art, relegated to appendix E.1 For the moment it suffices to state the result,
to give you a feeling for what a “typical” infinite partition topological zeta
function looks like. Approximating the dynamics by a Markov graph corre-
sponding to a repeller of the period 29 attractive cycle close to the A = 3.8
strange attractor (or, much easier, following the algorithm of appendix E.1)
yields a Markov graph with 29 nodes and the characteristic polynomial

1/ζ
(29)
top = 1− z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (10.32)
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The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (10.33)

Constructing finite Markov graphs of increasing length corresponding to
A → 3.8 we find polynomials with better and better estimates for the
topological entropy. For the closest stable period 90 orbit we obtain our
best estimate of the topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (10.34)

Fig. 10.4 illustrates the convergence of the truncation approximations to
the topological zeta function as a plot of the logarithm of the difference
between the zero of a polynomial and our best estimate (10.34), plotted
as a function of the length of the stable periodic orbit. The error of the
estimate (10.33) is expected to be of order z29 ≈ e−14 because going from
length 28 to a longer truncation yields typically combinations of loops with
29 and more nodes giving terms ±z29 and of higher order in the polynomial.
Hence the convergence is exponential, with exponent of −0.47 = −h, the
topological entropy itself.

In fig. 10.4(b) we plot the zeroes of the polynomial approximation to the
topological zeta function obtained by accounting for all forbidden strings
of length 90 or less. The leading zero giving the topological entropy is the
point closest to the origin. Most of the other zeroes are close to the unit
circle; we conclude that for infinite Markov partitions the topological zeta
function has a unit circle as the radius of convergence. The convergence
is controlled by the ratio of the leading to the next-to-leading eigenvalues,
which is in this case indeed λ1/λ0 = 1/eh = e−h.

10.7 Shadowing

The topological zeta function is a pretty function, but the infinite product
(10.20) should make you pause. For finite transfer matrices the left hand
side is a determinant of a finite matrix, therefore a finite polynomial; but
the right hand side is an infinite product over the infinitely many prime
periodic orbits of all periods?

The way in which this infinite product rearranges itself into a finite
polynomial is instructive, and crucial for all that follows. You can already
take a peek at the full cycle expansion (15.5) of chapter 15; all cycles beyond
the fundamental t0 and t1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly,
if we are counting cycles as we do here, or if the dynamics is piecewise
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linear, as in exercise 12.2. As we have already argued in sect. 1.5.4 and
appendix J.1.2, for nice hyperbolic flows whose symbolic dynamics is a
subshift of finite type, the shadowing combinations almost cancel, and the
spectral determinant is dominated by the fundamental cycles from (10.13),
with longer cycles contributing only small “curvature” corrections.

These exact or nearly exact cancellations depend on the flow being
smooth and the symbolic dynamics being a subshift of finite type. If the
dynamics requires infinite Markov partition with pruning rules for longer
and longer blocks, most of the shadowing combinations still cancel, but the
few corresponding to the forbidden blocks do not, leading to a finite radius
of convergence for the spectral determinant as in fig. 10.4(b).

One striking aspect of the pruned cycle expansion (10.32) compared
to the trace formulas such as (10.7) is that coefficients are not growing
exponentially - indeed they all remain of order 1, so instead having a radius
of convergence e−h, in the example at hand the topological zeta function has
the unit circle as the radius of convergence. In other words, exponentiating
the spectral problem from a trace formula to a spectral determinant as in
(10.19) increases the analyticity domain: the pole in the trace (10.8) at
z = e−h is promoted to a smooth zero of the spectral determinant with a
larger radius of convergence.

A detailed discussion of the radius of convergence is given in appendix E.1.

The very sensitive dependence of spectral determinants on whether the
symbolic dynamics is or is not a subshift of finite type is the bad news
that we should announce already now. If the system is generic and not
structurally stable, a smooth parameter variation is in no sense a smooth
variation of topological dynamics - infinities of periodic orbits are created
or destroyed, Markov graphs go from being finite to infinite and back. That
will imply that the global averages that we intend to compute are generically
nowhere differentiable functions of the system parameters, and averaging
over families of dynamical systems can be a highly nontrivial enterprise; a
simple illustration is the parameter dependence of the diffusion constant
computed in a remark in chapter 20.

You might well ask: What is wrong with computing an entropy from
(10.1)? Does all this theory buy us anything? If we count Kn level by
level, we ignore the self-similarity of the pruned tree - examine for example
fig. 9.12, or the cycle expansion of (10.26) - and the finite estimates of
hn = ln Kn/n converge nonuniformly to h, and on top of that with a slow
rate of convergence, |h − hn| ≈ O(1/n) as in (10.4). The determinant
(10.9) is much smarter, as by construction it encodes the self-similarity of
the dynamics, and yields the asymptotic value of h with no need for any
finite n extrapolations.

So, the main lesson of learning how to count well, a lesson that will be
affirmed over and over, is that while the trace formulas are a conceptually
essential step in deriving and understanding periodic orbit theory, the spec-
tral determinant is the right object to use in actual computations. Instead
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of resumming all of the exponentially many periodic points required by trace
formulas at each level of truncation, spectral determinants incorporate only
the small incremental corrections to what is already known - and that makes
them more convergent and economical to use.

Commentary

Remark 10.1 “Entropy”. The ease with which the topological
entropy can be motivated obscures the fact that our definition does
not lead to an invariant characterization of the dynamics, as the choice
of symbolic dynamics is largely arbitrary: the same caveat applies to
other entropies to be discussed in chapter 17, and to get proper invari-
ants one needs to evaluate a supremum over all possible partitions.
The key mathematical point that eliminates the need of such search
is the existence of generators, i.e. partitions that under dynamics are
able to probe the whole phase space on arbitrarily small scales: more
precisely a generator is a finite partition Ω = ω1 . . . ωN , with the fol-
lowing property: take M the subalgebra of the phase space generated
by Ω, and consider the partition built upon all possible intersections
of sets φk(βi), where φ is dynamical evolution, βi is an element of M
and k takes all possible integer values (positive as well as negative),
then the closure of such a partition coincides with the algebra of all
measurable sets. For a thorough (and readable) discussion of gener-
ators and how they allow a computation of the Kolmogorov entropy,
see ref. [10.1] and chapter 17.

Remark 10.2 Perron-Frobenius matrices. For a proof of Perron
theorem on the leading eigenvalue see ref. [1.11]. Ref. [10.2], sect. A4.1
contains a clear discussion of the spectrum of the transition matrix.

Remark 10.3 Determinant of a graph. Many textbooks offer
derivations of the loop expansions of characteristic polynomials for
transition matrices and their Markov graphs, see for example refs. [10.3,
10.4, 10.5].

Remark 10.4 T is not trace class. Note to the erudite reader:
the transition matrix T (in the infinite partition limit (10.19)) is not
trace class in the sense of appendix K. Still the trace is well defined
in the n →∞ limit.

Remark 10.5 Artin-Mazur zeta functions. Motivated by A. Weil’s
zeta function for the Frobenius map [10.6], Artin and Mazur [12.13]
introduced the zeta function (10.21) that counts periodic points for
diffeomorphisms (see also ref. [10.7] for their evaluation for maps of the
interval). Smale [10.8] conjectured rationality of the zeta functions for
Axiom A diffeomorphisms, later proved by Guckenheimer [10.9] and
Manning [10.10]. See remark 12.4 on page 213 for more zeta function
history.
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Remark 10.6 Ordering periodic orbit expansions. In sect. 15.4
we will introduce an alternative way of hierarchically organizing cu-
mulant expansions, in which the order is dictated by stability rather
than cycle length: such a procedure may be better suited to perform
computations when the symbolic dynamics is not well understood.

Résumé

What have we accomplished? We have related the number of topologically
distinct paths from “this region” to “that region” in a chaotic system to
the leading eigenvalue of the transition matrix T . The eigenspectrum of T
is given by a certain sum over traces trTn, and in this way the periodic
orbit theory has entered the arena, already at the level of the topological
dynamics, the crudest description of dynamics.

The main result of this chapter is the cycle expansion (10.21) of the top-
ological zeta function (that is, the spectral determinant of the transition
matrix):

1/ζtop(z) = 1−
∑
k=1

ĉkz
k .

For subshifts of finite type, the transition matrix is finite, and the topolo-
gical zeta function is a finite polynomial evaluated by the loop expansion
(10.13) of det (1− zT ). For infinite grammars the topological zeta function
is defined by its cycle expansion. The topological entropy h is given by the
smallest zero z = e−h. This expression for the entropy is exact; in contrast
to the definition (10.1), no n →∞ extrapolations of lnKn/n are required.

Historically, these topological zeta functions were the inspiration for ap-
plying the transfer matrix methods of statistical mechanics to the problem
of computation of dynamical averages for chaotic flows. The key result
were the dynamical zeta functions that derived in chapter 11, the weighted
generalizations of the topological zeta function.

Contrary to claims one sometimes encounters in the literature, “expo-
nential proliferation of trajectories” is not the problem; what limits the
convergence of cycle expansions is the proliferation of the grammar rules,
or the “algorithmic complexity”, as illustrated by sect. 10.6, and fig. 10.4
in particular.
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Exercises

Exercise 10.1 A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-disk ternary symbolic dy-
namics, and write down the corresponding transition matrix correspond-
ing to the graph. Show that iteration of the transition matrix results in
two coupled linear difference equations, - one for the diagonal and one
for the off diagonal elements. (Hint: relate tr Tn to tr Tn−1 + . . ..)

b) Solve the above difference equation and obtain the number of periodic
orbits of length n. Compare with table 10.3.

c) Find the eigenvalues of the transition matrix T for the 3-disk system with
ternary symbolic dynamics and calculate the topological entropy. Com-
pare this to the topological entropy obtained from the binary symbolic
dynamics {0, 1}.

Exercise 10.2 Sum of Aij is like a trace. Let A be a matrix with eigen-
values λk. Show that

Γn =
∑
i,j

[An]ij =
∑

k

ckλ
n
k .

(a) Use this to show that ln |tr An| and ln |Γn| have the same asymptotic
behavior as n →∞, that is, their ratio converges to one.

(b) Do eigenvalues λk need to be distinct, λk 	= λl for k 	= l?

Exercise 10.3 Loop expansions. Prove by induction the sign rule in the
determinant expansion (10.13):

det (1− zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1tp2 · · · tpk
.

Exercise 10.4 Transition matrix and cycle counting.

Suppose you are given the Markov graph

0 1a

b

c

This diagram can be encoded by a matrix T , where the entry Tij means that
there is a link connecting node i to node j. The value of the entry is the weight
of the link.
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a) Walks on the graph are given the weight that is the product of the weights
of all links crossed by the walk. Convince yourself that the transition
matrix for this graph is:

T =
[

a b
c 0

]
.

b) Enumerate all the walks of length three on the Markov graph. Now
compute T 3 and look at the entries. Is there any relation between the
terms in T 3 and all the walks?

c) Show that Tn
ij is the number of walks from point i to point j in n steps.

(Hint: one might use the method of induction.)

d) Try to estimate the number N(n) of walks of length n for this simple
Markov graph.

e) The topological entropy h measures the rate of exponential growth of the
total number of walks N(n) as a function of n. What is the topological
entropy for this Markov graph?

Exercise 10.5 3-disk prime cycle counting. A prime cycle p of length np is
a single traversal of the orbit; its label is a non-repeating symbol string of np symbols.
For example, 12 is prime, but 2121 is not, since it is 21 = 12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime cycles of length 2, 3, 4, 5,

6, · · ·.

Exercise 10.6 “Golden mean” pruned map. Continuation of exercise 9.7:
Show that the total number of periodic orbits of length n for the “golden mean”
tent map is

(1 +
√

5)n + (1−
√

5)n

2n
.

For continuation, see exercise 10.8. See also exercise 10.9.

Exercise 10.7 Alphabet {0,1}, prune 00 . The Markov diagram fig. 9.12(b)
implements this pruning rule. The pruning rule implies that “0” must always be brack-
eted by “1”s; in terms of a new symbol 2 = 10, the dynamics becomes unrestricted
symbolic dynamics with with binary alphabet {1,2}. The cycle expansion (10.13)
becomes

1/ζ = (1− t1)(1− t2)(1− t12)(1− t112) . . .

= 1− t1 − t2 − (t12 − t1t2)− (t112 − t12t1)− (t122 − t12t2) . . .(10.35)

In the original binary alphabet this corresponds to:

1/ζ = 1− t1 − t10 − (t110 − t1t10)
−(t1110 − t110t1)− (t11010 − t110t10) . . . (10.36)

This symbolic dynamics describes, for example, circle maps with the golden mean

winding number, see chapter 21. For unimodal maps this symbolic dynamics is realized

by the tent map of exercise 10.6.
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Figure 10.5: (a) A unimodal map for which the critical point maps into the right
hand fixed point in three iterations, and (b) the corresponding Markov graph (Kai T.
Hansen).

Exercise 10.8 Spectrum of the “golden mean” pruned map. (medium
- Exercise 10.6 continued)

(a) Determine an expression for trLn, the trace of powers of the Perron-
Frobenius operator (7.10) for the tent map of exercise 10.6.

(b) Show that the spectral determinant for the Perron-Frobenius operator is

det (1−zL) =
∏

k even

(
1 +

z

Λk+1
− z2

Λ2k+2

) ∏
k odd

(
1 +

z

Λk+1
+

z2

Λ2k+2

)
.(10.37)

Exercise 10.9 A unimodal map example. Consider a unimodal map of
fig. 10.5(a) for which the critical point maps into the right hand fixed point in three
iterations, S+ = 1001. Show that the admissible itineraries are generated by the
Markov graph fig. 10.5(b).

(Kai T. Hansen)

Exercise 10.10 Glitches in shadowing.∗∗ Note that the combination t00011
minus the “shadow” t0t0011 in (10.17) cancels exactly, and does not contribute to the

topological polynomial (10.18). Are you able to construct a smaller Markov graph

than fig. 10.3(e)?

Exercise 10.11 Whence Möbius function? To understand where the Möbius
function comes from consider the function

f(n) =
∑
d|n

g(d) (10.38)

where d|n stands for sum over all divisors d of n. Invert recursively this infinite tower
of equations and derive the Möbius inversion formula

g(n) =
∑
d|n

µ(n/d)f(d) (10.39)
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Exercise 10.12 Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of the second column of
table 10.2.

Write a program that determines the number of prime cycles of length n.
You might want to have this program later on to be sure that you have missed
no 3-pinball prime cycles.

Exercise 10.13 Counting subsets of cycles. The techniques developed above
can be generalized to counting subsets of cycles. Consider the simplest example of a
dynamical system with a complete binary tree, a repeller map (9.10) with two straight
branches, which we label 0 and 1. Every cycle weight for such map factorizes, with
a factor t0 for each 0, and factor t1 for each 1 in its symbol string. Prove that the
transition matrix traces (10.5) collapse to tr(T k) = (t0 + t1)k, and 1/ζ is simply

∏
p

(1− tp) = 1− t0 − t1 (10.40)

Substituting (10.40) into the identity

∏
p

(1 + tp) =
∏
p

1− tp
2

1− tp

we obtain

∏
p

(1 + tp) =
1− t20 − t21
1− t0 − t1

= 1 + t0 + t1 +
2t0t1

1− t0 − t1

= 1 + t0 + t1 +
∞∑

n=2

n−1∑
k=1

2
(

n− 2
k − 1

)
tk0tn−k

1 . (10.41)

Hence for n ≥ 2 the number of terms in the cumulant expansion with k 0’s and n− k
1’s in their symbol sequences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each such subset we denote with
Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n− 1 for n ≥ 2) the number
of prime n-cycles whose labels contain k zeros. Show that

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣n

k

µ(m)
(

n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n− 1

where the sum is over all m which divide both n and k.

Exercise 10.14 Logarithmic periodicity of ln Nn
∗. Plot ln Nn − nh for a

system with a nontrivial finite Markov graph. Do you see any periodicity? If yes, why?
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Exercise 10.15 4-disk pinball topological polynomial. Show that the 4-
disk pinball topological polynomial (the pruning affects only the fixed points and the
2-cycles) is given by

1/ζ4−disk = (1− 3z)
(1− z2)6

(1− z)3(1− z2)3

= (1− 3z)(1 + z)3 = 1− 6z2 − 8z3 − 3z4 . (10.42)

Exercise 10.16 N-disk pinball topological polynominal. Show that for an
N -disk pinball, the topological polynominal is given by

1/ζN−disk = (1− (N − 1)z)
(1− z2)N(N−1)/2

(1− z)N−1(1− z2)(N−1)(N−2)/2

= (1− (N − 1)z) (1 + z)N−1 . (10.43)

The topological polynomial has a root z−1 = N − 1, as we already know it should

from (10.29) or (10.15). We shall see in sect. 19.4 that the other roots reflect the

symmetry factorizations of zeta functions.

Exercise 10.17 Alphabet {a, b, c}, prune ab . The pruning rule implies that
any string of “b”s must be preceeded by a “c”; so one possible alphabet is {a, cbk; b},
k=0,1,2. . .. As the rule does not prune the fixed point b, it is explicitly included in the
list. The cycle expansion (10.13) becomes

1/ζ = (1− ta)(1− tb)(1− tc)(1− tcb)(1− tac)(1− tcbb) . . .

= 1− ta − tb − tc + tatb − (tcb − tctb)− (tac − tatc)− (tcbb − tcbtb) . . .

The effect of the ab pruning is essentially to unbalance the 2 cycle curvature tab−tatb;

the remainder of the cycle expansion retains the curvature form.

Exercise 10.18 Alphabet {0,1}, prune n repeats. of “0” 000 . . . 00 .

This is equivalent to the n symbol alphabet {1, 2, . . ., n} unrestricted symbolic
dynamics, with symbols corresponding to the possible 10. . .00 block lengths: 2=10,
3=100, . . ., n=100. . .00. The cycle expansion (10.13) becomes

1/ζ = 1− t1 − t2 . . .− tn − (t12 − t1t2) . . .− (t1n − t1tn) . . . (10.44)

.

Exercise 10.19 Alphabet {0,1}, prune 1000 , 00100 , 01100 .

Show that the topological zeta function is given by

1/ζ = (1− t0)(1− t1 − t2 − t23 − t113) (10.45)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}. Here 2, 3, refer to 10, 100
respectively, as in exercise 10.18.
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Exercise 10.20 Alphabet {0,1}, prune 1000 , 00100 , 01100 , 10011 .
The first three pruning rules were incorporated in the preceeding exercise.

(a) Show that the last pruning rule 10011 leads (in a way similar to exercise 10.19)
to the alphabet {21k, 23, 21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1 − t2 − t23 + t1t23 − t2113) (10.46)

Note that this says that 1, 23, 2, 2113 are the fundamental cycles; not all cycles up
to length 7 are needed, only 2113.

(b) Show that the topological polynomial is

1/ζtop = (1− z)(1− z − z2 − z5 + z6 − z7) (10.47)

and check that it yields the exact value of the entropy h = 0.522737642 . . ..
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Chapter 11

Trace formulas

The trace formula is not a formula, it is an idea.
Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages
require global information. How can we use a local description of a flow to
learn something about the global behavior? We have given a quick sketch of
this program in sects. 1.5 and 1.6; now we redo the same material in greater
depth. In chapter 8 we have related global averages to the eigenvalues
of appropriate evolution operators. Traces of evolution operators can be
evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators become related to periodic orbits. If there is one idea
that one should learn about chaotic dynamics, it happens in this chapter,
and it is this: there is a fundamental local↔ global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics
on well-tiled manifolds, Selberg traces and zetas; and for generic nonlinear
dynamical systems the duality is embodied in the trace formulas that we
will now introduce. These objects are to dynamics what partition functions
are to statistical mechanics.

11.1 Trace of an evolution operator

Our extraction of the spectrum of L commences with the evaluation of the
trace. To compute an expectation value using (8.17) we have to integrate
over all the values of the kernel Lt(x, y). If Lt were a matrix we would
be computing a weighted sum of its eigenvalues which is dominated by the
leading eigenvalue as t → ∞. As the trace of Lt is also dominated by the
leading eigenvalue as t →∞, we might just as well look at the trace ✎ 10.2

page 182

trLt =
∫

dxLt(x, x) =
∫

dx δ
(
x− f t(x)

)
eβ·At(x) . (11.1)
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Assume that L has a spectrum of discrete eigenvalues s0, s1, s2, · · · ordered
so that Re sα ≥ Re sα+1. We ignore for the time being the question of
what function space the eigenfunctions belong to, as we shall compute the
eigenvalue spectrum without constructing any explicit eigenfunctions.

By definition, the trace is the sum over eigenvalues (for the time being
we choose not to worry about convergence of such sums),

trLt =
∞∑

α=0

esαt . (11.2)

On the other hand, we have learned in sect. 7.2 how to evaluate the delta-
function integral (11.1).

As the case of discrete time mappings is somewhat simpler, we first
derive the trace formula for maps, and then for flows. The final formula
(11.19) covers both cases.

11.1.1 Hyperbolicity assumption

According to (7.8) the trace (11.1) picks up a contribution whenever x −
fn(x) = 0, that is whenever x belongs to a periodic orbit. For reasons which
we will explain in sect. 11.3, it is wisest to start by focusing on discrete time
systems. The contribution of an isolated prime cycle p of period np for a
map f can be evaluated by restricting the integration to an infinitesimal
open neighborhood Mp around the cycle,

tr pLnp =
∫
Mp

dx δ(x− fnp(x)) =
np∣∣det
(
1− Jp

)∣∣ = np

d∏
i=1

1
|1− Λp,i|

(11.3)

(in (7.9) and here we set the observable eAp = 1 for the time being). Pe-
riodic orbit Jacobian matrix Jp is also known as the monodromy matrix
(from Greek mono- = alone, single, and dromo = run, racecourse), and
its eigenvalues Λp,1, Λp,2, . . ., Λp,d as the Floquet multipliers. We sort the
eigenvalues Λp,1, Λp,2, . . ., Λp,d of the p-cycle [d×d] Jacobian matrix Jp

into expanding, marginal and contracting sets {e, m, c}, as in (4.35).
As the integral (11.3) can be carried out only if Jp has no eigenvalue of
unit magnitude, we assume that no eigenvalue is marginal (we shall show
in sect. 11.3, the longitudinal Λp,d+1 = 1 eigenvalue for flows can be elim-
inated by restricting the consideration to the transverse Jacobian matrix
Jp), and factorize the trace (11.3) into a product over the expanding and
the contracting eigenvalues

∣∣det
(
1− Jp

)∣∣−1 =
1
|Λp|

∏
e

1
1− 1/Λp,e

∏
c

1
1− Λp,c

, (11.4)
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where Λp =
∏

e Λp,e is the product of expanding eigenvalues. Both Λp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or
come in complex conjugate pairs we are allowed to drop the absolute value
brackets | · · · | in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles
included in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding eigenvalue |Λp,e| > 1
|Λp,c| < e−λcTp any p, any contracting eigenvalue |Λp,c| < 1 ,(11.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting
cycle Lyapunov exponents. If a dynamical system satisfies the hyperbolicity
assumption (for example, the well separated 3-disk system clearly does), the
Lt spectrum will be relatively easy to control. If the expansion/contraction
is slower than exponential, let us say |Λp,i| ∼ Tp

2, the system may exhibit
“phase transitions”, and the analysis is much harder - we shall discuss this
in chapter 18.

It follows from (11.4) that for long times, t = rTp →∞, only the product
of expanding eigenvalues matters,

∣∣det
(
1− Jr

p

)∣∣→ |Λp|r. We shall use this
fact to motivate the construction of dynamical zeta functions in sect. 12.3.
However, for evaluation of the full spectrum the exact cycle weight (11.3)
has to be kept.

11.2 A trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points
have stability eigenvalues |Λp,i| 	= 1 strictly bounded away from unity, the
trace Ln is given by the sum over all periodic points i of period n:

trLn =
∫

dxLn(x, x) =
∑

xi∈Fixfn

eβ·Ai

|det (1− Jn(xi))|
. (11.6)

Here Fix fn = {x : fn(x) = x} is the set of all periodic points of period n,
and Ai is the observable (8.5) evaluated over n discrete time steps along
the cycle to which the periodic point xi belongs. The weight follows from
the properties of the Dirac delta function (7.8) by taking the determinant
of ∂i(xj−fn(x)j). If a trajectory retraces itself r times, its Jacobian matrix
is Jr

p, where Jp is the [d×d] Jacobian matrix (4.5) evaluated along a single
traversal of the prime cycle p. As we saw in (8.5), the integrated observable
An is additive along the cycle: If a prime cycle p trajectory retraces itself r
times, n = rnp, we obtain Ap repeated r times, Ai = An(xi) = rAp, xi ∈ p.

A prime cycle is a single traversal of the orbit, and its label is a non-
repeating symbol string. There is only one prime cycle for each cyclic
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permutation class. For example, the four cycle points 0011 = 1001 = 1100
☞ chapter 9

= 0110 belong to the same prime cycle p = 0011 of length 4. As both the
stability of a cycle and the weight Ap are the same everywhere along the
orbit, each prime cycle of length np contributes np terms to the sum, one
for each cycle point. Hence (11.6) can be rewritten as a sum over all prime
cycles and their repeats

trLn =
∑

p

np

∞∑
r=1

erβ·Ap∣∣det
(
1− Jr

p

)∣∣δn,npr , (11.7)

with the Kronecker delta δn,npr projecting out the periodic contributions
of total period n. This constraint is awkward, and will be more awkward
still for the continuous time flows, where it will yield a series of Dirac delta
spikes (11.17). Such sums are familiar from the density-of-states sums of
statistical mechanics, where they are dealt with in the same way as we shall
do here: we smooth this distribution by taking a Laplace transform which
rids us of the δn,npr constraint.

We define the trace formula for maps to be the Laplace transform of
trLn which, for discrete time mappings, is simply the generating function
for the trace sums

∞∑
n=1

zntrLn = tr
zL

1− zL =
∑

p

np

∞∑
r=1

znprerβ·Ap∣∣det
(
1− Jr

p

)∣∣ . (11.8)

Expressing the trace as in (11.2), in terms of the sum of the eigenvalues of
L, we obtain the trace formula for maps:

∞∑
α=0

zesα

1− zesα
=
∑

p

np

∞∑
r=1

znpr erβ·Ap∣∣det
(
1− Jr

p

)∣∣ . (11.9)

This is our first example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this
chapter.

fast track:

sect. 11.3, p. 193

11.2.1 A trace formula for transfer operators

For a piecewise-linear map (7.11), we can explicitly evaluate the
trace formula. By the piecewise linearity and the chain rule Λp = Λn0

0 Λn1
1 ,
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11.3. A TRACE FORMULA FOR FLOWS 193

where the cycle p contains n0 symbols 0 and n1 symbols 1, the trace (11.6)
reduces to

trLn =
n∑

m=0

(
n

m

)
1

|1− Λm
0 Λn−m

1 |
=

∞∑
k=0

(
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

)n

.(11.10)

The eigenvalues are simply

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (11.11)

For k = 0 this is in agreement with the explicit transfer matrix (7.13)
eigenvalues (7.14).

Alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (7.13),
and that it is clear by inspection that it has only one eigenvalue es0 =
1/|Λ0| + 1/|Λ1|? The example at hand is one of the simplest illustrations
of necessity of defining the space that the operator acts on in order to
define the spectrum. The transfer operator (7.13) is the correct operator
on the space of functions piecewise constant on the two defining intervals
{M0,M1}; on this space the operator indeed has only the eigenvalue es0 .
As we shall see in sect. 13.1, the full spectrum (11.11) corresponds to the
action of the transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear
map (7.11) follows from (11.8)

tr
zL

1− zL =
z
(

1
|Λ0−1| + 1

|Λ1−1|
)

1− z
(

1
|Λ0−1| + 1

|Λ1−1|
) , (11.12)

verifying the trace formula (11.9).

11.3 A trace formula for flows

Amazing! I did not understand a single word.
Fritz Haake

(R. Artuso and P. Cvitanović)

As any pair of nearby points on a cycle returns to itself exactly at each
cycle period, the eigenvalue of the Jacobian matrix corresponding to the
eigenvector along the flow necessarily equals unity for all periodic orbits.
Hence for flows the trace integral trLt requires a separate treatment for the
longitudinal direction. To evaluate the contribution of an isolated prime
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cycle p of period Tp, restrict the integration to an infinitesimally thin tube
Mp enveloping the cycle (see fig. 1.10), and choose a local coordinate system
with a longitudinal coordinate dx‖ along the direction of the flow, and d
transverse coordinates x⊥

tr pLt =
∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t

‖(x)
)

. (11.13)

(here we again set the observable exp(β · At) = 1 for the time being). Let
v(x) be the magnitude of the velocity at the point x along the flow. v(x)
is strictly positive, as otherwise the orbit would stagnate for infinite time
at v(x) = 0 points, and that would get us nowhere. Therefore we can
parametrize the longitudinal coordinate x‖ by the flight time

x‖(τ) =
∫ τ

0
dσ v(σ)

∣∣∣∣
mod Lp

where v(σ) = v(x‖(σ)), and Lp is the length of the circuit on which the peri-
odic orbit lies (for the time being the mod operation in the above definition
is redundant, as τ ∈ [0, Tp]). With this parametrization

(
f t
‖(x)− x‖

)
=
∫ t+τ

τ
dσ v(σ)

∣∣∣∣
mod Lp

so that the integral around the longitudinal coordinate is rewritten as

∫ Lp

0
dx‖ δ

(
x‖ − f t

‖(x)
)

=
∫ Tp

0
dτ v(τ) δ

(∫ t+τ

τ
dσ v(σ)

∣∣∣∣
mod Lp

)
.(11.14)

Now we notice that the zeroes of the argument of the delta function do not
depend on τ , as v is positive, so we may rewrite (11.14) as

∫ Lp

0
dx‖ δ

(
x‖ − f t

‖(x)
)

=
∞∑

r=1

δ(t− rTp)
∫ Tp

0
dτ v(τ)

1
v(τ + t)

,

having used (7.7). The r sum starts from one as we are considering strictly
positive times. Now we use another elementary property of delta functions,
namely that

h(x)δ(x− x0) = h(x0)δ(x− x0)

so that velocities cancel, and we get

∮
p
dx‖ δ

(
x‖ − f t

‖(x)
)

= Tp

∞∑
r=1

δ(t− rTp) . (11.15)
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The fact that it is the prime period which arises also for repeated orbits
comes from the fact that the space integration just sweeps once the circuit
in phase space: a similar observation will be important for the derivation of
the semiclassical trace formula in chapter 26. For the remaining transverse
integration variables the Jacobian is defined in a reduced Poincaré surface
of section P of constant x‖. Linearization of the periodic flow transverse
to the orbit yields∫

P
dx⊥δ

(
x⊥ − f

rTp

⊥ (x)
)

=
1∣∣det

(
1− Jr

p

)∣∣ , (11.16)

where Jp is the p-cycle [d×d] transverse Jacobian matrix, and as in (11.5) we
have to assume hyperbolicity, that is that the magnitudes of all transverse
eigenvalues are bounded away from unity.

Substituting (11.15), (11.16) into (11.13), we obtain an expression for
trLt as a sum over all prime cycles p and their repetitions

trLt =
∑

p

Tp

∞∑
r=1

erβ·Ap∣∣det
(
1− Jr

p

)∣∣δ(t− rTp) . (11.17)

A trace formula follows by taking a Laplace transform. This is a delicate
step, since the transfer operator becomes the identity in the t → 0+ limit.
In order to make sense of the trace we regularize the Laplace transform by
a lower cutoff ε smaller than the period of any periodic orbit, and write

∫ ∞

ε
dt e−st trLt = tr

e−(s−A)ε

s−A =
∞∑

α=0

e−(s−sα)ε

s− sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jr

p

)∣∣ , (11.18)

where A is the generator of the semigroup of dynamical evolution, sect. 7.4.
The classical trace formula for flows is the ε → 0 limit of the above expres-
sion:

∞∑
α=0

1
s− sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jr

p

)∣∣ . (11.19)

✎ 11.1
page 199This is another example of the duality between the (local) cycles and

(global) eigenvalues. If Tp takes only integer values, we can replace e−s → z
throughout. We see that the trace formula for maps (11.9) is a special case
of the trace formula for flows. The relation between the continuous and
discrete time cases can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (11.20)
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We could now proceed to estimate the location of the leading singularity
of tr (s − A)−1 by extrapolating finite cycle length truncations of (11.19)
by methods such as Padé approximants. However, it pays to first perform
a simple resummation which converts this divergence of a trace into a zero
of a spectral determinant. We shall do this in sect. 12.2, after we complete
our offering of trace formulas.

11.4 An asymptotic trace formula

In order to illuminate the manipulations of sect. 11.2 and relate
them to something we already possess intuition about, we now rederive
the heuristic sum of sect. 1.5.1 from the exact trace formula (11.9). The
Laplace transforms (11.9) or (11.19) are designed to capture the time →∞
asymptotic behavior of the trace sums. By the hyperbolicity assumption
(11.5) for t = Tpr large the cycle weight approaches

∣∣det
(
1− Jr

p

)∣∣→ |Λp|r , (11.21)

where Λp is the product of the expanding eigenvalues of Jp. Denote the
corresponding approximation to the nth trace (11.6) by

Γn =
(n)∑
i

1
|Λi|

, (11.22)

and denote the approximate trace formula obtained by replacing the cycle
weights

∣∣det
(
1− Jr

p

)∣∣ by |Λp|r in (11.9) by Γ(z). Equivalently, think of this
as a replacement of the evolution operator (8.19) by a transfer operator (as
in sect. 11.2.1). For concreteness consider a dynamical system whose sym-
bolic dynamics is complete binary, for example the 3-disk system fig. 1.4. In
this case distinct periodic points that contribute to the nth periodic points
sum (11.7) are labelled by all admissible itineraries composed of sequences
of letters si ∈ {0, 1}:

Γ(z) =
∞∑

n=1

znΓn =
∞∑

n=1

zn
∑

xi∈Fixfn

eβ·An(xi)

|Λi|

= z

{
eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|2
}

+z3

{
e3β·A0

|Λ0|3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}
(11.23)

Both the cycle averages Ai and the stabilities Λi are the same for all points
xi ∈ p in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp
1− tp

, tp = znpeβ·Ap/|Λp| . (11.24)
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This is precisely our initial heuristic estimate (1.8). Note that we could not
perform such sum over r in the exact trace formula (11.9) as

∣∣det
(
1− Jr

p

)∣∣ 	=∣∣det
(
1− Jp

)∣∣r; the correct way to resum the exact trace formulas is to first
expand the factors 1/|1− Λp,i|, as we shall do in (12.9).

☞ sect. 12.2

If the weights eβAn(x) are multiplicative along the flow, and the flow is
hyperbolic, for given β the magnitude of each |eβAn(xi)/Λi| term is bounded
by some constant Mn. The total number of cycles grows as 2n (or as ehn,
h = topological entropy, in general), and the sum is convergent for z
sufficiently small, |z| < 1/2M . For large n the nth level sum (11.6) tends
to the leading Ln eigenvalue ens0 . Summing this asymptotic estimate level
by level

Γ(z) ≈
∞∑

n=1

(zes0)n =
zes0

1− zes0
(11.25)

we see that we should be able to determine s0 by determining the smallest
value of z = e−s0 for which the cycle expansion (11.24) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to
consider the approximate trace Γ(z). We will use this fact below to motivate
the introduction of dynamical zeta functions (12.11), and in sect. 12.5.1 we
shall give the exact relation between the exact and the approximate trace
formulas.

Commentary

Remark 11.1 Who’s dunne it? Continuous time flow traces
weighted by the cycle periods were introduced by Bowen [11.1] who
treated them as Poincaré section suspensions weighted by the “time
ceiling” function (3.2). They were used by Parry and Pollicott [11.2].
The derivation presented here [11.3] was designed to parallel as closely
as possible the derivation of the Gutzwiller semiclassical trace formula,
chapters 25 and 26.

Remark 11.2 Flat and sharp traces. In the above formal deriva-
tion of trace formulas we cared very little whether our sums were well
posed. In the Fredholm theory traces like (11.1) require compact op-
erators with continuous function kernels. This is not the case for our
Dirac delta evolution operators: nevertheless, there is a large class
of dynamical systems for which our results may be shown to be per-
fectly legal. In the mathematical literature expressions like (11.6)
are called flat traces (see the review [11.4] and chapter 13). Other
names for traces appear as well: for instance, in the context of 1−d

mappings, sharp traces refer to generalizations of (11.6) where con-
tributions of periodic points are weighted by the Lefschetz sign ±1,
reflecting whether the periodic point sits on a branch of nth iterate
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of the map which crosses the diagonal starting from below or starting
from above [12.12]. Such traces are connected to the theory of knead-
ing invariants (see ref. [11.4] and references therein). Traces weighted
by ±1 sign of the derivative of the fixed point have been used to study
the period doubling repeller, leading to high precision estimates of the
Feigenbaum constant δ, refs. [11.5, 15.6, 11.6].

Résumé

The description of a chaotic dynamical system in terms of cycles can be
visualized as a tessellation of the dynamical system, fig. 1.9, with a smooth
flow approximated by its periodic orbit skeleton, each region Mi centered
on a periodic point xi of the topological length n, and the size of the region
determined by the linearization of the flow around the periodic point. The
integral over such topologically partitioned phase space yields the classical
trace formula

∞∑
α=0

1
s− sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣det
(
1− Jr

p

)∣∣ .

Now that we have a trace formula we might ask what it is good for? It’s not
good for much as it stands, a scary formula which relates the unspeakable
infinity of global eigenvalues to the unthinkable infinity of local unstable
cycles. However, it is a good stepping stone on the way to construction of
spectral determinants (to which we turn next) and starting to grasp that
the theory might turn out to be convergent beyond our wildest dreams
(chapter 13). In order to implement such formulas, we have to determine
“all” prime cycles. This task we postpone to chapter 14.
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Exercises

Exercise 11.1 t → 0+ regularization of eigenvalue sums∗∗. In taking

the Laplace transform (11.19) we have ignored the t → 0+ divergence, as we do not

know how to regularize the delta function kernel in this limit. In the quantum (or heat

kernel) case this limit gives rise to the Weyl or Thomas-Fermi mean eigenvalue spacing

(see sect. 26.1.1). Regularize the divergent sum in (11.19) following (for example) the

prescription of appendix K.6 and assign to such volume term some interesting role in

the theory of classical resonance spectra. E-mail the solution to the authors.

Exercise 11.2 General weights. (easy) Let f t be a flow and Lt the
operator

Ltg(x) =
∫

dy δ(x− f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will try and determine some
of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the most general form of
w is

w(n, x) = g(x)g(f(x))g(f2(x)) · · · g(fn−1(x)) ,

for some g that can be multiplied. Could g be a function from R
n1 �→

R
n2? (ni ∈ N.)
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Chapter 12

Spectral determinants

“It seems very pretty,” she said when she had finished
it, “but it’s rather hard to understand!” (You see
she didn’t like to confess, even to herself, that she
couldn’t make it out at all.) “Somehow it seems to
fill my head with ideas — only I don’t exactly know
what they are!”
Lewis Carroll, Through the Looking Glass

The problem with trace formulas (11.9), (11.19) and (11.24) is that they
diverge at z = e−s0 , respectively s = s0, that is, precisely where one would
like to use them. While this does not prevent numerical estimation of some
“thermodynamic” averages for iterated mappings, in the case of the Gutz-
willer trace formula of chapter 26 this leads to a perplexing observation that
crude estimates of the radius of convergence seem to put the entire physical
spectrum out of reach (see chapter 13). We shall now cure this problem
by going from trace formulas to determinants. The idea is illustrated by
fig. 1.11: Determinants tend to have larger analyticity domains because if
trL/(1− zL) = − d

dz ln det (1− zL) diverges at a particular value of z, then
det (1 − zL) might have an isolated zero there, and a zero of a function is
easier to determine than its radius of convergence.

The eigenvalues of evolution operators are given by the zeros of corre-
sponding determinants, and one way to evaluate determinants is to expand
them in terms of traces, using the matrix identity log det = tr log. Traces
of evolution operators can be evaluated as integrals over Dirac delta func-
tions, and in this way the spectra of evolution operators become related to
periodic orbits.
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12.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the deter-
minant

det (1− zL) =
∏
k

(1− z/zk) . (12.1)

For finite matrices this is the characteristic determinant; for operators this
is the Hadamard representation of the spectral determinant (here again we
spare the reader from pondering possible regularization factors). Consider
first the case of maps, for which the evolution operator advances the den-
sities by integer steps in time. In this case we can use the formal matrix
identity✎ 4.1

page 77

ln det (1−M) = tr ln(1−M) = −
∞∑

n=1

1
n

tr Mn , (12.2)

to relate the spectral determinant of an evolution operator for a map to its
traces (11.7), that is, periodic orbits:

det (1− zL) = exp

(
−

∞∑
n

zn

n
trLn

)

= exp

(
−
∑

p

∞∑
r=1

1
r

znprerβ·Ap∣∣det
(
1− Jr

p

)∣∣
)

. (12.3)

Going the other way, the trace formula (11.9) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1− zL = −z
d

dz
ln det (1− zL) . (12.4)

fast track:

sect. 12.2, p. 203

Example 12.1 Spectral determinants of transfer operators

For a piecewise-linear map (7.11) with a finite Markov partition, an
explicit formula for the spectral determinant follows by substituting the trace formula
(11.10) into (12.3):

det (1− zL) =
∞∏

k=0

(
1− t0

Λk
0

− t1
Λk

1

)
, (12.5)
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12.2. SPECTRAL DETERMINANT FOR FLOWS 203

where ts = z/|Λs|. The eigenvalues are - as they should be - (11.11), the ones that we
already determined from the trace formula (11.9).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (12.5) is an entire function. It is this property that will generalize to piecewise
smooth flows with finite Markov parititions, and single out spectral determinants rather
than the trace formulas or dynamical zeta functions as the tool of choice for evaluation
of spectra.

12.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. How-
ever we will mention a wild idea in this direction. [· · ·]
define l(γ) to be the minimal period of γ [· · ·] then de-
fine formally (another zeta function!) Z(s) to be the
infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1− [exp l(γ)]−s−k

)
.

Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy
to (12.3)

det (s−A) = exp

(
−
∑

p

∞∑
r=1

1
r

er(β·Ap−sTp)∣∣det
(
1− Jr

p

)∣∣
)

, (12.6)

and then check that the trace formula (11.19) is the logarithmic derivative
of the spectral determinant so defined

tr
1

s−A =
d

ds
ln det (s−A) . (12.7)

To recover det (s −A) integrate both sides
∫ s
s0

ds. With z set to z = e−s

as in (11.20), the spectral determinant (12.6) has the same form for both
maps and flows. We shall refer to (12.6) as spectral determinant, as the
spectrum of the operator A is given by the zeros of

det (s−A) = 0 . (12.8)

We now note that the r sum in (12.6) is close in form to the expansion of
a logarithm. This observation enables us to recast the spectral determinant
into an infinite product over periodic orbits as follows:

Let Jp be the p-cycle [d×d] transverse Jacobian matrix, with eigenval-
ues Λp,1, Λp,2, . . ., Λp,d. Expanding 1/(1− 1/Λp,e), 1/(1− Λp,c) in (11.4)
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204 CHAPTER 12. SPECTRAL DETERMINANTS

as geometric series, substituting back into (12.6), and resumming the log-
arithms, we find that the spectral determinant is formally given by the
infinite product

det (s−A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc

1/ζk1···lc =
∏
p

(
1− tp

Λl1
p,e+1Λ

l2
p,e+2 · · ·Λlc

p,d

Λk1
p,1Λ

k2
p,2 · · ·Λke

p,e

)
(12.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (12.10)

Here we have inserted a topological cycle length weigth znp for reasons
which will become apparent in chapter 15; eventually we shall set z = 1.
The observable whose average we wish to compute contributes through the
Ap term, which is the p cycle average of the multiplicative weight eAt(x).
By its definition (8.1), for maps the weight is a product along the cycle
points

eAp =
np−1∏
j=0

ea(fj(xp)) ,

and for the flows the weight is an exponential of the integral (8.5) along
the cycle

eAp = exp
(∫ Tp

0
a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general ma-
trix valued weights require a time-ordering prescription as in the Jacobian
matrix of sect. 4.1.

Now we are finally poised to deal with the problem posed at the begin-
ning of chapter 11; how do we actually evaluate the averages introduced
in sect. 8.1? The eigenvalues of the dynamical averaging evolution oper-
ator are given by the values of s for which the spectral determinant (12.6)
of the evolution operator (8.19) vanishes. If we can compute the leading
eigenvalue s0(β) and its derivatives, we are done. Unfortunately, the infi-
nite product formula (12.9) is no more than a shorthand notation for the
periodic orbit weights contributing to the spectral determinant; more work
will be needed to bring such cycle formulas into a tractable form. This we
shall accomplish in chapter 15, but this point in the narrative is a natural
point to introduce a still another variant of a determinant, the dynamical
zeta function.
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12.3 Dynamical zeta functions

It follows from sect. 11.1.1 that if one is interested only in the leading
eigenvalue of Lt, the size of the p cycle neighborhood can be approximated
by 1/|Λp|r, the dominant term in the rTp = t → ∞ limit, where Λp =∏

e Λp,e is the product of the expanding eigenvalues of the Jacobian matrix
Jp. With this replacement the spectral determinant (12.6) is replaced by
the dynamical zeta function

1/ζ = exp

(
−
∑

p

∞∑
r=1

1
r
trp

)
(12.11)

that we have already derived heuristically in sect. 1.5.2. Resumming the
logarithms using

∑
r trp/r = − ln(1 − tp) we obtain the Euler product rep.

of the dynamical zeta function:

1/ζ =
∏
p

(1− tp) . (12.12)

For reasons of economy of the notation, we shall usually omit the explicit
dependence of 1/ζ, tp on z, s, β whenever the dependence is clear from the
context.

The approximate trace formula (11.24) plays the same role vis-a-vis the
dynamical zeta function

Γ(s) =
d

ds
ln ζ−1 =

∑
p

Tptp
1− tp

, (12.13)

as the exact trace formula (11.19) plays vis-a-vis the spectral determin-
ant (12.6), see (12.7). The heuristically derived dynamical zeta function of
sect. 1.5.2 now re-emerges as the 1/ζ0···0(z) part of the exact spectral det-
erminant; other factors in the infinite product (12.9) affect the non-leading
eigenvalues of L.

To summarize: the dynamical zeta function (12.12) associated with the
flow f t(x) is defined as the product over all prime cycles p. Tp, np and
Λp are the period, topological length and stability of prime cycle p, Ap

is the integrated observable a(x) evaluated on a single traversal of cycle
p (see (8.5)), s is a variable dual to the time t, z is dual to the discrete
“topological” time n, and tp(z, s, β) is the local trace over the cycle p. We
have included the factor znp in the definition of the cycle weight in order to
keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because

1/ζ(s) = 0 (12.14)
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206 CHAPTER 12. SPECTRAL DETERMINANTS

vanishes at s equal to s0, the leading eigenvalue of Lt = etA, and often the
leading eigenvalue is all that is needed in applications. The above completes
our derivation of the trace and determinant formulas for classical chaotic
flows. In chapters that follow we shall make these formulas tangible by
working out a series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 15, p. 271

12.3.1 A contour integral formulation

The following observation is sometimes useful, in particular when
the zeta functions have richer analytic structure than just zeros and poles,
as in the case of intermittency (chapter 18): Γn , the trace sum (11.22), can
be expressed in terms of the dynamical zeta function (12.12)

1/ζ(z) =
∏
p

(
1− znp

|Λp|

)
. (12.15)

as a contour integral

Γn =
1

2πi

∮
γ−

r

z−n

(
d

dz
log ζ−1(z)

)
dz , (12.16)

✎ 12.7
page 218 where a small contour γ−

r encircles the origin in negative (clockwise) di-
rection. If the contour is small enough, that is it lies inside the unit circle
|z| = 1, we may write the logarithmic derivative of ζ−1(z) as a convergent
sum over all periodic orbits. Integrals and sums can be interchanged, the
integrals can be solved term by term, and the trace formula (11.22) is recov-
ered. For hyperbolic maps, cycle expansion or other techniques provide an
analytic extension of the dynamical zeta function beyond the leading zero;
we may therefore deform the orignal contour into a larger circle with radius
R which encircles both poles and zeros of ζ−1(z), see fig. 12.1. Residue cal-
culus turns this into a sum over the zeros zα and poles zβ of the dynamical
zeta function, that is

Γn =
zeros∑
|zα|<R

1
zn
α

−
poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−

R

dz z−n d

dz
log ζ−1, (12.17)

where the last term gives a contribution from a large circle γ−
R . We thus find

exponential decay of Γn dominated by the leading zero or pole of ζ−1(z).
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Figure 12.1: The survival probability Γn can
be split into contributions from poles (x) and
zeros (o) between the small and the large circle
and a contribution from the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

12.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the
topological zeta function (10.21) that we shall discuss in chapter 10 to a
function that assigns different weights to different cycles:

ζ(z) = exp
∞∑

n=1

zn

n

 ∑
xi∈Fixfn

tr
n−1∏
j=0

g(f j(xi))

 .

✎ 11.2
page 199Here the sum goes over all periodic points xi of period n, and g(x) is any

(matrix valued) weighting function, with weight evaluated multiplicatively
along the trajectory of xi.

By the chain rule (4.30) the stability of any n-cycle of a 1-d map is
given by Λp =

∏n
j=1 f ′(xi), so the 1-d map cycle stability is the simplest

example of a multiplicative cycle weight g(xi) = f ′(xi), and indeed - via
the Perron-Frobenius evolution operator (7.9) - the historical motivation
for Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition,
the dynamical zeta function is given by a finite polynomials, a straight-
forward generalization of determinant of the topological transition matrix
(9.2). As explained in sect. 10.3, for a finite [N×N ] dimensional matrix the
determinant is given by

∏
p

(1− tp) =
N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of
length n together with products of all non-intersecting closed paths of total
length n. We illustrate this by the piecewise linear repeller (7.11).

Example 12.2 Piecewise linear repeller
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Due to the piecewise linearity, the stability of any n-cycle factorizes as Λs1s2...sn
=

Λm
0 Λn−m

1 , where m is total number of times letter sj = 0 appears in the p symbol se-
quence, so the traces in the sum (11.24) are of a particularly simple form

tr Tn = Γn =
(

1
|Λ0|

+
1
|Λ1|

)n

.

The dynamical zeta function (12.11) evaluated by resumming the traces✎ 12.2
page 216 1/ζ(z) = 1− z/|Λ0| − z/|Λ1| (12.18)

is indeed the determinant det (1− zT ) of the transfer operator (7.13), almost as simple
as the topological zeta function (10.25).

More generally, piecewise-linear approximations to dynamical systems
yield polynomial or rational polynomial cycle expansions, provided that the
symbolic dynamics is a subshift of finite type (see sect. 9.7).

We see that the exponential proliferation of cycles so dreaded by quan-
tum chaoticists is a bogus anxiety; we are dealing with exponentially many
cycles of increasing length and instability, but all that really matters in this
example are the stabilities of the two fixed points. Clearly the information
carried by the infinity of longer cycles is highly redundant; we shall learn
in chapter 15 how to exploit systematically this redundancy.

12.4 False zeros

Compare (12.18) with the Euler product (12.12). For simplicity take the
two scales equal, |Λ0| = |Λ1| = eλ. Our task is to determine the leading
zero z = eγ of the Euler product. It is a novice error to assume that the
infinite Euler product (12.12) vanishes whenever one of its factors vanishes.
If that were true, each factor (1− znp/|Λp|) would yield

0 = 1− enp(γ−λp), (12.19)

that is the escape rate γ would equal the stability exponent of a repulsive
fixed point. False! The exponentially growing number of cycles with grow-
ing period conspires to shift the zeros of the infinite product. The correct
formula follows from (12.18)

0 = 1− eγ−λ+h , h = ln 2. (12.20)

This particular formula for the escape rate is a special case of a general
relation between escape rates, Lyapunov exponents and entropies that is
not yet included into this book. The physical interpretation is that the
escape induced by repulsion by each unstable fixed point is diminished by
the rate of backscatter from other repelling segments, that is the entropy h;
the positive entropy of orbits of the same stability shifts the “false zeros”
z = eλp of the Euler product (12.12) to the true zero z = eλ−h.

det - 24nov2002 draft 9.4.0, June 18 2003



12.5. MORE EXAMPLES OF SPECTRAL DETERMINANTS 209

12.5 More examples of spectral determinants

For expanding 1-d mappings the spectral determinant (12.9) takes
form

det (s−A) =
∏
p

∞∏
k=0

(
1− tp/Λk

p

)
, tp =

eβAp−sTp

|Λp|
znp . (12.21)

For a periodic orbit of a 2-dimensional hyperbolic Hamiltonian flow
with one expanding transverse eigenvalue Λ, |Λ| > 1, and one contracting
transverse eigenvalue 1/Λ, the weight in (11.4) is expanded as follows:

1∣∣det
(
1− Jr

p

)∣∣ =
1

|Λ|r(1− 1/Λr
p)2

=
1
|Λ|r

∞∑
k=0

k + 1
Λkr

p

. (12.22)

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1
r

e(βAp−sTp)r∣∣det
(
1− Jr

p

)∣∣ =
∞∑

k=0

(k + 1) log
(

1− eβAp−sTp

|Λp|Λk
p

)
,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian
flow rewritten as an infinite product over prime cycles

det (s−A) =
∏
p

∞∏
k=0

(
1− tp/Λk

p

)k+1
. (12.23)

✎ 13.4
page 243In such formulas, tp is a weight associated with the p cycle (letter t refers

to the “local trace” evaluated along the p cycle trajectory), and the index
p runs through all distinct prime cycles. We use z as a formal parameter
which keeps track of the topological cycle lengths, to assist us in expanding
zeta functions and determinants, then set it to z = 1 in calculations.

12.5.1 Spectral determinants vs. dynamical zeta functions

In sect. 12.3 we derived the dynamical zeta function as an approximation
to the spectral determinant. Here we relate dynamical zeta functions to the
spectral determinants exactly, by showing that a dynamical zeta function
can be expressed as a ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices

1 =
1

det (1− J)

d∑
k=0

(−1)ktr
(
∧kJ

)
, (12.24)
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inserted into the exponential representation (12.11) of the dynamical zeta
function, relates the dynamical zeta function to weighted spectral determin-
ants. For 1-d maps the identity

1 =
1

(1− 1/Λ)
− 1

Λ
1

(1− 1/Λ)

substituted into (12.11) yields an expression for the dynamical zeta function
for 1-d maps as a ratio of two spectral determinants

1/ζ =
det (1− L)

det (1− L(1))
(12.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As
we shall see in chapter 13, this establishes that for nice hyperbolic flows
1/ζ is meromorphic, with poles given by the zeros of det (1 − L(1)). The
dynamical zeta function and the spectral determinant have the same zeros
- only in exceptional circumstances some zeros of det (1 − L(1)) might be
cancelled by coincident zeros of det (1−L(1)). Hence even though we have
derived the dynamical zeta function in sect. 12.3 as an “approximation” to
the spectral determinant, the two contain the same spectral information.

For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ| =

1
|Λ|(1− 1/Λ)2

(1− 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1− L) det (1− L(2))

det (1− L(1))
. (12.26)

This establishes that for nice hyperbolic flows dynamical zeta function is
meromorphic in 2-d.

Example 12.3 Dynamical zeta functions for 2-d Hamiltonian flows

The relation (12.26) is not particularly useful for our purposes. Instead we insert
the identity

1 =
1

(1− 1/Λ)2
− 2

Λ
1

(1− 1/Λ)2
+

1
Λ2

1
(1− 1/Λ)2

into the exponential representation (12.11) of 1/ζk, and obtain

1/ζk =
FkFk+2

F 2
k+1

. (12.27)

Even though we have no guarantee that Fk are entire, we do know that the upper bound
on the leading zeros of Fk+1 lies strictly below the leading zeros of Fk, and therefore we
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Figure 12.2: The classical resonances α =
{k, n} for a 2-disk game of pinball, equation
(12.28).
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expect that for 2-dimensional Hamiltonian flows the dynamical zeta function 1/ζk has
generically a double leading pole coinciding with the leading zero of the Fk+1 spectral
determinant. This might fail if the poles and leading eigenvalues come in wrong order,
but we have not encountered such situation in our numerical investigations. This result
can also be stated as follows: the theorem that establishes that the spectral determinant
(12.23) is entire, implies that the poles in 1/ζk must have right multiplicities in order
that they be cancelled in the F =

∏
1/ζk+1

k product.

12.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral
determinant (12.23) tell us? Consider one of the simplest conceivable
hyperbolic flows: the game of pinball of fig. 12.3 consisting of two disks of
equal size in a plane. There is only one periodic orbit, with the period T
and the expanding eigenvalue Λ is given by elementary considerations (see
exercise 5.5), and the resonances det (sα − A) = 0, α = {k, n} plotted in
fig. 12.2

sα = −(k+1)λ+n
2πi

T
, n ∈ Z , k ∈ Z+ , multiplicity k+1 , (12.28)

can be read off the spectral determinant (12.23) for a single unstable cycle:

det (s−A) =
∞∏

k=0

(
1− e−sT/|Λ|Λk

)k+1
. (12.29)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open
system, the real part of the eigenvalue sα gives the decay rate of αth eigen-
state, and the imaginary part gives the “node number” of the eigenstate.
The negative real part of sα indicates that the resonance is unstable, and
the decay rate in this simple case (zero entropy) equals to the cycle Lya-
punov exponent.

Fast decaying eigenstates with large negative Re sα are not a problem,
but as there are eigenvalues arbitrarily far in the imaginary direction, this
might seem like all too many eigenvalues. However, they are necessary -
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Figure 12.3: A game of pinball consisting of
two disks of equal size in a plane, with its only
periodic orbit. (A. Wirzba) R

a L a

1 2

we can check this by explicit computation of the right hand side of (11.19),
the trace formula for flows:

∞∑
α=0

esαt =
∞∑

k=0

∞∑
n=−∞

(k + 1)e(k+1)λt+i2πnt/T

=
∞∑

k=0

(k + 1)
(

1
|Λ|Λk

)t/T ∞∑
n=−∞

ei2πn/T

=
∞∑

k=0

k + 1
|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T

∞∑
r=−∞

δ(t− rT)
|Λ|(1− 1/Λr)2

(12.30)

So the two sides of the trace formula (11.19) check. The formula is fine for
t > 0; for t → 0+ both sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete
time we work in the variable z = es, an infinite strip along Im s maps into
an anulus in the complex z plane, and the Dirac delta sum in the above
is replaced by the Kronecker delta sum in (11.7). In case at hand there is
only one time scale T, and we could as well replace s by variable z = e−s/T .
In general the flow has a continuum of cycle periods, and the resonance
arrays are more irregular, cf. fig. 15.1.

Commentary

Remark 12.1 Piecewise monotone maps. A partial list of cases
for which the transfer operator is well defined: expanding Hölder case,
weighted subshifts of finite type, expanding differentiable case, see
Bowen [1.13]: expanding holomorphic case, see Ruelle [13.9]; piecewise
monotone maps of the interval, see Hofbauer and Keller [12.15] and
Baladi and Keller [12.18].

Remark 12.2 Smale’s wild idea. Smale’s wild idea quoted on
page 203 was technically wrong because 1) the Selberg zeta yields the
spectrum of a quantum mechanical Laplacian rather than the classi-
cal resonances, 2) the spectral determinant weights are different from
what Smale conjectured, as the individual cycle weights also depend
on the stability of the cycle, 3) the formula is not dimensionally cor-
rect, as k is an integer and s is dimensionally inverse time. Only
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for spaces of constant negative curvature do all cycles have the same
Lyapunov exponent λ = ln |Λp|/Tp. In this case normalizing the time
so that λ = 1 the factors e−sTp/Λk

p in (12.9) simplify to s−(s+k)Tp , as
intuited in Smale’s wild idea quoted on page 203 (where l(γ) is the
cycle period denoted here by Tp). Nevertheless, Smale’s intuition was
remarkably on the target.

Remark 12.3 Is this a generalization of the Fourier analysis? The
Fourier analysis is a theory of the space ↔ eignfunctions duality for
dynamics on a circle. The sense in which the periodic orbit theory
is the generalization of the Fourier analysis to nonlinear flows is dis-
cussed in ref. [12.4], a very readable introduction to the Selberg Zeta
function.

Remark 12.4 Zeta functions, antecedents. For a function to
be deserving of the appellation “zeta function”, one expects it to
have an Euler product (12.12) representation, and perhaps also satisfy
a functional equation. Various kinds of zeta functions are reviewed
in refs. [12.8, 12.9, 12.10]. Historical antecedents of the dynamical
zeta function are the fixed-point counting functions introduced by
Weil [12.11], Lefschetz [12.12] and Artin and Mazur [12.13], and the
determinants of transfer operators of statistical mechanics [1.14].

In his review article Smale [1.12] already intuited, by analogy to
the Selberg Zeta function, that the spectral determinant is the right
generalization for continuous time flows. In dynamical systems the-
ory dynamical zeta functions arise naturally only for piecewise linear
mappings; for smooth flows the natural object for study of classi-
cal and quantal spectra are the spectral determinants. Ruelle had
derived the relation (12.3) between spectral determinants and dyn-
amical zeta functions, but as he was motivated by the Artin-Mazur
zeta function (10.21) and the statistical mechanics analogy, he did
not consider the spectral determinant a more natural object than the
dynamical zeta function. This has been put right in papers on “flat
traces” [9.22, 13.27].

The nomenclature has not settled down yet; what we call evolution
operators here is called transfer operators [1.16], Perron-Frobenius
operators [12.6] and/or Ruelle-Araki operators elsewhere. Here we re-
fer to kernels such as (8.19) as evolution operators. We follow Ruelle
in usage of the term “dynamical zeta function”, but elsewhere in the
literature function (12.12) is often called the Ruelle zeta function. Ru-
elle [1.17] points out the corresponding transfer operator T was never
considered by either Perron or Frobenius; a more appropriate designa-
tion would be the Ruelle-Araki operator. Determinants similar to or
identical with our spectral determinants are sometimes called Selberg
Zetas, Selberg-Smale zetas [1.4], functional determinants, Fredholm
determinants, or even - to maximize confusion - dynamical zeta func-
tions [12.14]. A Fredholm determinant is a notion that applies only
to the trace class operators - as we consider here a somewhat wider
class of operators, we prefer to refer to their determinants losely as
“spectral determinants”.
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Résumé

The spectral problem is now recast into a problem of determining zeros of
either the spectral determinant

det (s−A) = exp

(
−
∑

p

∞∑
r=1

1
r

e(β·Ap−sTp)r∣∣det
(
1− Jr

p

)∣∣
)

,

or the leading zeros of the dynamical zeta function

1/ζ =
∏
p

(1− tp) , tp =
1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as
it has superior convergence properties (this will be discussed in chapter 13
and is illustrated, for example, by table 15.2). In practice both spectral
determinants and dynamical zeta functions are preferable to trace formulas
because they yield the eigenvalues more readily; the main difference is that
while a trace diverges at an eigenvalue and requires extrapolation methods,
determinants vanish at s corresponding to an eigenvalue sα, and are analytic
in s in an open neighborhood of sα.

The critical step in the derivation of the periodic orbit formulas for
spectral determinants and dynamical zeta functions is the hyperbolicity
assumption, that is the assumption that all cycle stability eigenvalues are
bounded away from unity, |Λp,i| 	= 1. By dropping the prefactors in (1.4),
we have given up on any possibility of recovering the precise distribution
of starting x (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gain an effective
description of the asymptotic behavior of the system. The pleasant surprise
(to be demonstrated in chapter 15) is that the infinite time behavior of an
unstable system turns out to be as easy to determine as its short time
behavior.
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[12.11] A. Weil, “Numbers of solutions of equations in finite fields”, Bull. Am.
Math. Soc. 55, 497 (1949).

[12.12] D. Fried, “Lefschetz formula for flows”, The Lefschetz centennial confer-
ence, Contemp. Math. 58, 19 (1987).

[12.13] E. Artin and B. Mazur, Annals. Math. 81, 82 (1965)

[12.14] M. Sieber and F. Steiner, Phys. Lett. A 148, 415 (1990).

[12.15] F. Hofbauer and G. Keller, “Ergodic properties of invariant measures for
piecewise monotonic transformations”, Math. Z. 180, 119 (1982).

[12.16] G. Keller, “On the rate of convergence to equilibrium in one-dimensional
systems”, Comm. Math. Phys. 96, 181 (1984).

[12.17] F. Hofbauer and G. Keller, “Zeta-functions and transfer-operators for
piecewise linear transformations”, J. reine angew. Math. 352, 100 (1984).

[12.18] V. Baladi and G. Keller, “Zeta functions and transfer operators for piece-
wise monotone transformations”, Comm. Math. Phys. 127, 459 (1990).

draft 9.4.0, June 18 2003 refsDet - 25sep2001



216 References

Exercises

Exercise 12.1 Escape rate for a 1-d repeller, numerically. Consider
the quadratic map

f(x) = Ax(1− x) (12.31)

on the unit interval. The trajectory of a point starting in the unit interval
either stays in the interval forever or after some iterate leaves the interval and
diverges to minus infinity. Estimate numerically the escape rate (16.8), the rate
of exponential decay of the measure of points remaining in the unit interval,
for either A = 9/2 or A = 6. Remember to compare your numerical estimate
with the solution of the continuation of this exercise, exercise 15.2.

Exercise 12.2 Dynamical zeta functions (easy)

(a) Evaluate in closed form the dynamical zeta function

1/ζ(z) =
∏
p

(
1− znp

|Λp|

)
,

for the piecewise-linear map (7.11) with the left branch slope Λ0, the
right branch slope Λ1.

x

f(x)

Λ0 Λ1

x

f(x)

s10s00

s01 s11

(b) What if there are four different slopes s00, s01, s10, and s11 instead of
just two, with the preimages of the gap adjusted so that junctions of
branches s00, s01 and s11, s10 map in the gap in one iteration? What
would the dynamical zeta function be?

Exercise 12.3 Dynamical zeta functions from Markov graphs. Extend

sect. 10.3 to evaluation of dynamical zeta functions for piecewise linear maps with

finite Markov graphs. This generalizes the results of exercise 12.2.

Exercise 12.4 Zeros of infinite products. Determination of the quantities of
interest by periodic orbits involves working with infinite product formulas.
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(a) Consider the infinite product

F (z) =
∞∏

k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This infinite product can be
converted into an infinite sum by the use of a logarithm. Use the properties of
infinite sums to develop a sensible definition of infinite products.

(b) If zroot is a root of the function F , show that the infinite product diverges
when evaluated at zroot.

(c) How does one compute a root of a function represented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet {0, 1}. Apply your definition of
F (z) to the infinite product

F (z) =
∏
p

(1− znp

Λnp
)

(e) Are the roots of the factors in the above product the zeros of F (z)?

(Per Rosenqvist)

Exercise 12.5 Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

(
−
∑

p

∑
r>0

1
r

znp

|Λp|r

)

can be written as the ratio 1/ζ(z) = det (1−zL(0))

det (1−zL(1))
,

where det (1− zL(s)) =
∏

p,k(1− znp/|Λp|Λk+s
p ).

Exercise 12.6 Escape rate for the Ulam map. (medium) We will try and
compute the escape rate for the Ulam map (14.35)

f(x) = 4x(1− x),

using cycle expansions. The answer should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map. Show that Λ0 = 4, Λ1 = −2,
Λ01 = −4, Λ001 = −8 and Λ011 = 8.

(b) Show that

Λε1...εn
= ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for this system

ζ−1 = 1− t0 − t1 − (t01 − t0t1)− · · ·

You might note that the convergence as function of the truncation cycle length
is slow. Try to fix that by treating the Λ0 = 4 cycle separately.
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Exercise 12.7 Contour integral for survival probability. Perform explicitly

the contour integral appearing in (12.16).

Exercise 12.8 Dynamical zeta function for maps. In this problem we
will compare the dynamical zeta function and the spectral determinant. Compute the
exact dynamical zeta function for the skew Ulam tent map (7.43)

1/ζ(z) =
∏
p∈P

(
1− znp

|Λp|

)
.

What are its roots? Do they agree with those computed in exercise 7.7?

Exercise 12.9 Dynamical zeta functions for Hamiltonian maps. Starting
from

1/ζ(s) = exp

(
−
∑

p

∞∑
r=1

1
r
trp

)

for a two-dimensional Hamiltonian map and using the equality

1 =
1

(1− 1/Λ)2
(1− 2/Λ + 1/Λ2) ,

show that 1/ζ = det (1−L)det (1−L(2))

det (1−L(1))2
. In this expression det (1 − zL(k)) is the ex-

pansion one gets by replacing tp → tp/Λk
p in the spectral determinant.

Exercise 12.10 Riemann ζ function. The Riemann ζ function is defined as
the sum

ζ(s) =
∞∑

n=1

1
ns

, s ∈ C .

(a) Use factorization into primes to derive the Euler product representation

ζ(s) =
∏
p

1
1− p−s

.

The dynamical zeta function exercise 12.12 is called a “zeta” function because
it shares the form of the Euler product representation with the Riemann zeta
function.

(b) (Not trivial:) For which complex values of s is the Riemann zeta sum conver-
gent?

(c) Are the zeros of the terms in the product, s = − ln p, also the zeros of the
Riemann ζ function? If not, why not?
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Exercise 12.11 Finite truncations. (easy) Suppose we have a one-dimensional
system with complete binary dynamics, where the stability of each orbit is given
by a simple multiplicative rule:

Λp = Λnp,0

0 Λnp,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ3
0Λ

2
1.

(a) Compute the dynamical zeta function for this system; perhaps by creating
a transfer matrix analogous to (7.13), with the right weights.

(b) Compute the finite p truncations of the cycle expansion, that is take the
product only over the p up to given length with np ≤ N , and expand as
a series in z∏

p

(
1− znp

|Λp|

)
.

Do they agree? If not, how does the disagreement depend on the trun-
cation length N?

Exercise 12.12 Pinball escape rate from numerical simulation∗ Es-
timate the escape rate for R : a = 6 3-disk pinball by shooting 100,000
randomly initiated pinballs into the 3-disk system and plotting the logarithm of
the number of trapped orbits as function of time. For comparison, a numerical
simulation of ref. [3.9] yields γ = .410 . . ..
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Chapter 13

Why does it work?

Bloch: “Space is the field of linear operators.” Heisen-
berg: “Nonsense, space is blue and birds fly through
it.”
Felix Bloch, Heisenberg and the early days of quantum
mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

The trace formulas and spectral determinants work well, sometimes
very well indeed. The question is: why? The heuristic manipulations of
chapter 11 were naive and reckless, as we are facing infinite-dimensional
vector spaces and singular integral kernels.

In this chapter we outline some of the ingredients in the proofs that put
the above trace and determinant formulas on solid mathematical footing.
This requires taking a closer look at the Perron-Frobenius operator from a
mathematical point of view, since up to now we have talked about eigen-
values without any reference to an underlying function space. In sect. 13.1
we show, by a simple example, that the spectrum is quite sensitive to the
regularity properties of the functions considered, so what we referred to as
the set of eigenvalues acquires a meaning only if the functional setting is
properly tuned: this sets the stage for a discussion of analyticity properties
mentioned in chapter 12. The program is enunciated in sect. 13.2, with
the focus on expanding maps. In sect. 13.3 we concentrate on piecewise
real-analytic maps acting on appropriate densities. For expanding and hy-
perbolic flows analyticity leads to a very strong result; not only do the
determinants have better analyticity properties than the trace formulas,
but the spectral determinants are singled out as being entire functions in
the complex s plane.

This chapter is not meant to provide an exhaustive review of rigorous
results about properties of the Perron-Frobenius operator or analyticity re-
sults of spectral determinants or dynamical zeta functions (see remark 13.1),
but rather to point out that heuristic considerations about traces and de-
terminant can be put on firmer bases, under suitable hypotheses, and the
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mathematics behind this construction is both hard and profound.

If you are primarily interested in physical applications of periodic orbit
theory, you should probably skip this chapter on the first reading.

fast track:

chapter 16, p. 293

13.1 The simplest of spectral determinants: A
single fixed point

In order to get some feeling for the determinants defined so formally in
sect. 12.2, let us work out a trivial example: a repeller with only one
expanding linear branch

f(x) = Λx , |Λ| > 1 ,

and only one fixed point x = 0. The action of the Perron-Frobenius oper-
ator (7.10) is

Lφ(y) =
∫

dx δ(y − Λx)φ(x) =
1
|Λ|φ(y/Λ) . (13.1)

From this one immediately gets that the monomials yn are eigenfunctions:

Lyn =
1

|Λ|Λn
yn , n = 0, 1, 2, . . . (13.2)

We note that the eigenvalues Λ−n−1 fall off exponentially with n, and that
the trace of L is

trL =
1
|Λ|

∞∑
n=0

Λ−n =
1

|Λ|(1− Λ−1)
=

1
|f(0)′ − 1| ,

in agreement with (11.6). A similar result is easily obtained for powers of
L, and for the spectral determinant (12.3) one obtains:

det (1− zL) =
∞∏

k=0

(
1− z

|Λ|Λk

)
=

∞∑
k=0

Qkt
k , t = −z/|Λ| , (13.3)

where the coefficients Qk are given explicitly by the Euler formula✎ 13.3
page 243
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Qk =
1

1− Λ−1

Λ−1

1− Λ−2
· · · Λ−k+1

1− Λ−k
. (13.4)

(if you cannot figure out exercise 13.3 check the solutions on 709 for proofs
of this formula).

Note that the coefficients Qk decay asymptotically faster than expo-
nentially, as Λ−k(k−1)/2. As we shall see in sect. 13.3.1, these results carry
over to any single-branch repeller. This super-exponential decay of Qk en-
sures that for a repeller consisting of a single repelling point the spectral
determinant (13.3) is entire in the complex z plane.

What is the meaning of (13.3)? It gives us an interpretation of the index
k in the Selberg product representation of the spectral determinant (12.9):
k labels the kth local fixed-point eigenvalue 1/|Λ|Λk.

Now if the spectral determinant is entire, on the basis of (12.25) we
get that the dynamical zeta function is a meromorphic function. These
mathematical properties are of direct physical import: they guarantee that
finite order estimates of zeroes of dynamical zeta functions and spectral
determinants converge exponentially or super-exponentially to the exact
values, and so the cycle expansions of chapter 15 represent a true pertur-
bative approach to chaotic dynamics. To see how exponential convergence
comes out of analytic properties we take the simplest possible model of a
meromorphic function. Consider the function

h(z) =
z − a

z − b

with a, b real and positive and a < b. Within the cycle |z| < b we may
represent h as a power series

h(z) =
∞∑

k=0

σkz
k

where σ0 = a/b and higher order coefficients are given by σj = (a− b)/bj+1

Now we take the truncation of order N of the power series

hN (z) =
N∑

k=0

σkz
k =

a

b
+

z(a− b)(1− zN/bN )
b2(1− z/b)

.

Let ẑN be the solution of the truncated series hN (ẑN ) = 0. To estimate the
distance between a and ẑN it is sufficient to calculate hN (a), which is of
order (a/b)N+1, and so finite order estimates indeed converge exponentially
to the asymptotic value.

The discussion of our simple example confirms that our formal ma-
nipulations with traces and determinants are justified, namely the Perron-
Frobenius operator has isolated eigenvalues: trace formulas are then explic-
itly verified, the spectral determinant is an analytic function whose zeroes
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Figure 13.1: Spectrum for Perron-Frobenius
operator in an extended function space: only
a few isolated eigenvalues remain between the
spectral radius and the essential spectral radius,
bounding continuous spectrum

essential spectrum

isolated eigenvaluespectral radius

yield the eigenvalues. Life is actually harder, as we may appreciate through
the following considerations

• Our discussion tacitly assumed something that is physically entirely
reasonable: our evolution operator is acting on the space of ana-
lytic functions, that is, we are allowed to represent the initial density
ρ(x) by its Taylor expansions in the neighborhoods of periodic points.
This is however far from being the only possible choice: we might✎ 13.1

page 243
choose the function space Ck+α, that is the space of k times differen-
tiable functions whose k’th derivatives are Hölder continuous with an
exponent 0 < α ≤ 1: then every yη with Re η > k is an eigenfunction
of Perron-Frobenius operator and we have

Lyη =
1

|Λ|Λη
yη

This spectrum is quite different from the analytic case: only a small
number of isolated eigenvalues remain, enclosed between the unit disk
and a smaller disk of radius 1/|Λ|k+1, (the so-called essential spectral
radius) see fig. 13.1.

In sect. 13.2 we will discuss this point further, with the aid of a less
trivial one-dimensional example. We remark that our point of view
is complementary to the standard setting of ergodic theory, where
many chaotic properties of a dynamical system are encoded by the
presence of a continuous spectrum, which is necessary in order to
prove asymptotic decay of correlations in L2(dµ) setting.✎ 13.2

page 243 • A deceptively innocent assumption hides behind many features dis-
cussed so far: that (13.1) maps a given function space into itself.
This is strictly related to the expanding property of the map: if f(x)
is smooth in a domain D then f(x/Λ) is smooth on a larger domain,
provided |Λ| > 1. This is not obviously the case for hyperbolic sys-
tems in higher dimensions, and, as we shall see in sect. 13.3, extensions
of the results obtained for expanding maps will be highly nontrivial,

• It is not a priori clear that the above analysis of a simple one-branch,
one fixed point repeller can be extended to dynamical systems with
a Cantor set infinity of periodic points: we show that next.
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13.2 Analyticity of spectral determinants

They savored the strange warm glow of being much
more ignorant than ordinary people, who were only
ignorant of ordinary things.
Terry Pratchett

We now choose another paradigmatic example (the Bernoulli shift) and
sketch the steps that lead to the proof that the corresponding spectral
determinant is an entire function. Before doing that it is convenient to
summarize a few facts about classical theory of integral equations.

13.2.1 Classical Fredholm theory

He who would valiant be
’Gainst all disaster
Let him in constancy
Follow the Master.
John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =
∫

dy δ(x− f(y))φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =
∫
Q

dyK(x, y)ϕ(y) , (13.5)

and one is tempted to resort to the classical Fredholm theory in order
to establish analyticity properties of spectral determinants. This path to
enlightenment is blocked by the singular nature of the kernel, which is
a distribution, whereas the standard theory of integral equations usually
concerns itself with regular kernels K(x, y) ∈ L2(Q2). Here we briefly recall
some steps of the Fredholm theory, before going to our major example in
sect. 13.2.2.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =
∫
Q

dyK(x, y)ϕ(y) + ξ(x) (13.6)

where ξ(x) is a given function in L2(Q) and the kernel K(x, y) ∈ L2(Q2)
(Hilbert-Schmidt condition). The natural object to study is then the lin-
ear integral operator (13.5), acting on the Hilbert space L2(Q): and the
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fundamental property that follows from the L2(Q) nature of the kernel is
that such an operator is compact, that is close to a finite rank operator (see
appendix K). A compact operator has the property that for every δ > 0
only a finite number of linearly independent eigenvectors exist correspond-
ing to eigenvalues whose absolute value exceeds δ, so we immediately realize
(fig. 13.1) that much work is needed to bring Perron-Frobenius operators
into this picture.

We rewrite (13.6) in the form

T ϕ = ξ , T = 11−K . (13.7)

The Fredholm alternative is now stated as follows: the equation T ϕ = ξ as
a unique solution for every ξ ∈ L2(Q) or there exists a non-zero solution
of T ϕ0 = 0, with an eigenvector of K corresponding to the eigenvalue 1.

The theory remains the same if instead of T we consider the operator
Tλ = 11−λK with λ 	= 0. As K is a compact operator there will be at most
a denumerable set of λ for which the second part of Fredholm alternative
holds: so apart from this set the inverse operator ( 11 − λT )−1 exists and
is a bounded operator. When λ is sufficiently small we may look for a
perturbative expression for such an inverse, as a geometric series

( 11− λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (13.8)

where each Kn is still a compact integral operator with kernel

Kn(x, y) =
∫
Qn−1

dz1 . . . dzn−1K(x, z1) · · · K(zn−1, y) ,

and W is also compact, as it is given by the convergent sum of compact
operators. The problem with (13.8) is that the series has a finite radius of
convergence, while apart from a denumerable set of λ’s the inverse operator
is well defined. A fundamental result in the theory of integral equations
consists in rewriting the resolving kernel W as a ratio of two analytic func-
tions of λ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K
(

x1 . . . xn

y1 . . . yn

)
=

∣∣∣∣∣∣
K(x1, y1) . . . K(x1, yn)

. . . . . . . . .
K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣
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we may write the explicit expressions

D(λ) = 1 +
∞∑

n=1

(−1)n λn

n!

∫
Qn

dz1 . . . dznK
(

z1 . . . zn

z1 . . . zn

)

= exp−
∞∑

m=1

λm

m
trKm (13.9)

and

D(x, y; λ) = K
(

x
y

)
+

∞∑
n=1

(−λ)n

n!

∫
Qn

dz1 . . . dznK
(

x z1 . . . zn

y z1 . . . zn

)

D(λ) is known as the Fredholm determinant (see (12.24) and appendix K):
it is an entire analytic function of λ, and D(λ) = 0 only if 1/λ is an
eigenvalue of K.

We remark again that the whole theory is based on the compactness of
the integral operator, that is on the functional properties (summability) of
its kernel.

13.2.2 Bernoulli shift

Consider now the Bernoulli shift

x �→ 2x mod 1 x ∈ [0, 1] (13.10)

and look at spectral properties in appropriate function spaces. The Perron-
Frobenius operator associated with this map is given by

Lh(y) =
1
2
h
(y

2

)
+

1
2
h

(
y + 1

2

)
. (13.11)

Spaces of summable functions as L1([0, 1]) or L2([0, 1]) are mapped into
themselves by the Perron-Frobenius operator, and in both spaces the con-
stant function h ≡ 1 is an eigenfunction with eigenvalue 1. This obviously
does not exhaust the spectrum: if we focus our attention on L1([0, 1]) we
also have a whole family of eigenfunctions, parametrized by complex θ with
Re θ > 0. One verifies that

hθ(y) =
∑
k 
=0

exp(2πiky)
1
|k|θ (13.12)

is indeed an L1-eigenfunction with (complex) eigenvalue 2−θ, by varying θ
one realizes that such eigenvalues fill out the entire unit disk. This casts
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out a ‘spectral rug’, also known as an essential spectrum, which hides all
the finer details of the spectrum.

For a bounded linear operator A on a Banach space Ω, the spectral
radius is the smallest positive number ρspec such the spectrum is inside
the disk of radius ρspec, while the essential spectral radius is the smallest
positive number ρess such that outside the disk of radius ρess the spectrum
consists only of isolated eigenvalues of finite multiplicity (see fig. 13.1).✎ 13.5

page 243
We may shrink the essential spectrum by letting the Perron-Frobenius

operator act on a space of smoother functions, exactly as in the one-branch
repeller case of sect. 13.1. We thus consider a smaller space, Ck+α, the
space of k times differentiable functions whose k’th derivatives are Hölder
continuous with an exponent 0 < α ≤ 1: the expansion property guarantees
that such a space is mapped into itself by the Perron-Frobenius operator.
In the strip 0 < Re θ < k + α most hθ will cease to be eigenfunctions in
the space Ck+α. Only for integer valued θ = n the function hn survives.
In this way we arrive at a finite set of isolated eigenvalues 1, 2−1, · · · , 2−k,
and an essential spectral radius ρess = 2−(k+α).

For this simple example, we may actually exactly write down the eigen-
functions: they coincide, up to a constant, with the Bernoulli polyno-
mials Bn(x). These polynomials are defined as successive derivatives of
text/(et − 1) evaluated at t = 0:

Gt(x) =
text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!

so B0(x) = 1, B1(x) = x− 1/2, etc. .

If we let the Perron-Frobenius operator (13.11) act on the generating
function G, we get

LGt(x) =
1
2

(
text/2

et − 1
+

tet/2ext/2

et − 1

)
=

t/2ext/2

et/2 − 1
=

∞∑
n=1

Bn(x)
(t/2)n

n!

it follows that each Bn(x) is an eigenfunction of the Perron-Frobenius oper-
ator L with eigenvalue 1/2n. The persistence of a finite essential spectral
radius would suggest that traces and determinants do not exist in this case
either. The pleasant surprise is that they do, see remark 13.3.

We follow a simpler path and restrict the function space even further,
namely to a space of analytic functions, i.e. for which the is convergent at
each point of the interval [0, 1]. With this choice things turn out easy and
elegant. To be more specific let h be a holomorphic and bounded function
on the disk D = B(0, R) of radius R > 0 centered at the origin. Our
Perron-Frobenius operator preserves the space of such functions provided
(1 + R)/2 < R so all we need is to choose R > 1. In this the expansion
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property of the Bernoulli shift enter). If F denotes one of the inverse
branches of the Bernoulli shift (13.10) the corresponding part of the Perron-
Frobenius operator is given by LF h(y) = s F ′(y) h◦F (y), using the Cauchy
integral formula:

LF h(y) = s

∮
∂D

h(w)F ′(y)
w − F (y)

dw.

For reasons that will be made clear later we have introduced a sign s = ±1
of the given real branch |F ′(y)| = sF (y). For both branches of the Bernoulli
shift s2 +1, one is not allowed to take absolute values as this could destroy
analyticity. In the above formula one may also replace the domain D by
any domain containing [0, 1] such that the inverse branches maps the clo-
sure of D into the interior of D. Why? simply because the kernel stays
non-singular under this condition, ı.e. w−F (y) 	= 0 whenever w ∈ ∂D and
y ∈ Cl D.

The problem is now reduced to the standard theory for Fredholm deter-
minants. The integral kernel is no longer singular, traces and determinants
are well-defined and we may even calculate the trace of LF as a contour
integral:

tr LF =
∮

sF ′(w)
w − F (w)

dw.

Elementary complex analysis shows that since F maps the closure of D
into its own interior, F has a unique (real-valued) fixed point x∗ with a
multiplier strictly smaller than one in absolute value. Residue calculus ✎ 13.6

page 243
therefore yields

tr LF =
sF ′(x∗)

1− F ′(x∗)
=

1
|f ′(x∗)− 1| ,

justifies our previous ad hoc calculations of traces by means of Dirac delta
functions. The full operator has two components corresponding to the two
branches og the . For the n times iterated operator we have a full binary
shift and for each of the 2n branches the above calculations carry over in
each , yielding the trace (2n − 1)−1. Without further ado we substitute
everything back and obtain the determinant,

det(1− zL) = exp

(
−
∑
n=1

zn

n

2n

2n − 1

)
=
∏
k=0

(
1− z

2k

)
,

verifying the fact that the Bernoulli polynomials are eigenfunctions with
eigenvalues 1/2n, n = 0, 1, 2, . . ..

We worked out a very specific example, yet our conclusions can be
generalized, provided a number of restrictive requirements are met by our
dynamical systems:
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1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded
away from 1),
4) the map (or the flow) is real analytic, that is it has a piecewise
analytic continuation to a complex extension of the phase space.

These assumptions are romantic projections not lived up to by the dy-
namical systems that we actually desire to understand. Still, they are not
devoid of physical interest; for example, nice repellers like our 3-disk game
of pinball of changes do satisfy the above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a
matrix in an appropriate basis space; properties 3 and 4 enable us to bound
the size of the matrix elements and control the eigenvalues. To see what
can go wrong consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow.
Semiclassical quantum mechanics suggest operators of this form with β =
1/2, (see chapter 26). The problem with such operators is due to the fact
that when considering the Jacobian matrices Jab = JaJb for two successive
trajectory segments a and b, the corresponding eigenvalues are in general
not multiplicative, Λab 	= ΛaΛb (unless a, b are repeats of the same prime
cycle p, so JaJb = Jra+rb

p ). Consequently, this evolution operator is not
multiplicative along the trajectory. The theorems require that the evolution
be represented as a matrix in an appropriate polynomial basis, and thus
cannot be applied to non-multiplicative kernels, that is kernels that do not
satisfy the semi-group property Lt′ ◦ Lt = Lt′+t. Cure for this problem in
this particular case will be given in sect. H.1.

Property 2 is violated by the 1-d tent map (see fig. 13.2)

f(x) = α(1 − |1− 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point xc =
1/2 is not a pre-periodic point, there is no finite Markov partition and the
symbolic dynamics does not have a finite grammar. In practice this means
that while the leading eigenvalue of L might be computable, the rest of the
spectrum is very hard to control; as the parameter α is varied, non-leading
zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see fig. 13.3)

f(x) =
{

x + 2x2 , x ∈ I0 = [0, 1
2 ]

2− 2x , x ∈ I1 = [12 , 1]
.
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Figure 13.2: A (hyperbolic) tent map without
a finite Markov partition.
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Figure 13.3: A Markov map with a marginal
fixed point.
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Here the interval [0, 1] has a Markov partition into the two subintervals I0

and I1; f is monotone on each. However, the fixed point at x = 0 has
marginal stability Λ0 = 1, and violates the condition 3. This type of map
is called intermittent and necessitates much extra work. The problem is
that the dynamics in the neighborhood of a marginal fixed point is very
slow, with correlations decaying as power laws rather than exponentially.
We will discuss such flows in chapter 18.

The property 4 is required as the heuristic approach of chapter 11 faces
two major hurdles:

1. The trace (11.7) is not well defined since the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually this property is quite restrictive, but we need it in the present
approach, in order that the Banach space of analytic functions in a disk is
preserved by the Perron-Frobenius operator.

In attempting to generalize the results we encounter several problems.
First, in higher dimensions life is not as simple. Multi-dimensional residue
calculus is at our disposal but in general requires that we find poly-domains
(direct product of domains in each coordinate) and this need not be the
case. Second, and perhaps somewhat surprisingly, the ‘counting of periodic
orbits’ presents a difficult problem. For example, instead of the Bernoulli
shift consider the doubling map of the circle, x �→ 2x mod 1, x ∈ R/Z.
Compared to the shift on the interval [0, 1] the only difference is that the
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endpoints 0 and 1 are now glued together. But since these endpoints are
fixed points of the map the number of cycles of length n decreases by 1.
The determinant becomes:

det(1− zL) = exp

(
−
∑
n=1

zn

n

2n − 1
2n − 1

)
= 1− z. (13.13)

The value z = 1 still comes from the constant eigenfunction but the Bernoulli
polynomials no longer contribute to the spectrum (they are not periodic).
Proofs of these facts, however, are difficult if one sticks to the space of
analytic functions.

Third, our Cauchy formulas a priori work only when considering purely
expanding maps. When stable and unstable directions co-exist we have to
resort to stranger function spaces, as shown in the next section.

13.3 Hyperbolic maps

(H.H. Rugh)

Moving on to hyperbolic systems, one faces the following paradox: If f is an
area-preserving hyperbolic and real-analytic map of e.g. a two dimensional
torus then the Perron-Frobenius operator is clearly unitary on the space
of L2 functions. The spectrum is then confined to the unit-circle. On the
other hand when we compute determinants we find eigenvalues scattered
around inside the unit disk. Thinking back on our Bernoulli shift example
one would like to imagine these eigenvalues as popping up from the L2

spectrum by shrinking the function space. Shrinking the space, however,
can only make the spectrum smaller so this is obviously not what happens.
Instead one needs to introduce a ‘mixed’ function space where in the un-
stable direction one resort to analytic functions as before but in the stable
direction one considers a ‘dual space’ of distributions on analytic functions.
Such a space is neither included in nor does it include the L2-space and we
have thus resolved the paradox. But it still remains to be seen how traces
and determinants are calculated.

First, let us consider the apparently trivial linear example (0 < λs < 1,
Λu > 1):

f(z) = (f1(z1, z2), f2(z1, z2)) = (λsz1, Λuz2) (13.14)

The function space, alluded to above, is then a mixture of Laurent series
in the z1 variable and analytic functions in the z2 variable. Thus, one
considers expansions in terms of ϕn1,n2(z1, z2) = z−n1−1

1 zn2
2 with n1, n2 =

0, 1, 2, . . . If one looks at the corresponding Perron-Frobenius operator, one
gets a simple generalization of the 1-d repeller:

Lh(z1, z2) =
1

λs · Λu
h(z1/λs, z2/Λu) (13.15)
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The action of Perron-Frobenius operator on the basis functions yields

Lϕn1,n2(z1, z2) =
λn1

s

Λ1+n2
u

ϕn1,n2(z1, z2)

so that the above basis elements are eigenvectors with eigenvalues λn1
s Λ−n2−1

u

and one verifies by an explicit calculation that the trace indeed equals
det(f ′ − 1)−1 = (Λu − 1)−1(1− λs)−1.

This example is somewhat misleading, however, as we have made ex-
plicit use of an analytic ‘splitting’ into stable/unstable directions. For a
more general hyperbolic map, if one attempts to make such a splitting it
will not be analytic and the whole argument falls apart. Nevertheless, one
may introduce ‘almost’ analytic splittings and write down a generalization
of the above operator as follows (s is the signature of the derivative in the
unstable direction):

Lh(z1, z2) =
∮ ∮

s h(w1, w2)
(z1 − f1(w1, w2)(f2(w1, w2)− z2)

dw1

2πi

dw2

2πi
. (13.16)

Here the ‘function’ h should belong to a space of functions analytic respec-
tively outside a disk and inside a disk in the first and the second coordinate
and with the additional property that the function decays to zero as the first
coordinate tends to infinity. The contour integrals are along the boundaries
of these disks. It is but an exercise in multi-dimensional residue calculus to
verify that for the above linear example this expression reduces to (13.15).
Such operators form the building bricks in the calculation of traces and
determinants and one is able to prove the following:

Theorem: The spectral determinant for hyperbolic analytic maps is
entire.

The proof, apart from the Markov property which is the same as for
the purely expanding case, relies heavily on analyticity of the map in the
explicit construction of the function space. As we have also seen in the pre-
vious example the basic idea is to view the hyperbolicity as a cross product
of a contracting map in the forward time and another contracting map in
the backward time. In this case the Markov property introduced above has
to be elaborated a bit. Instead of dividing the phase space into intervals,
one divides it into rectangles. The rectangles should be viewed as a direct
product of intervals (say horizontal and vertical), such that the forward
map is contracting in, for example, the horizontal direction, while the in-
verse map is contracting in the vertical direction. For Axiom A systems (see
remark 13.11) one may choose coordinate axes close to the stable/unstable
manifolds of the map. With the phase space divided into N rectangles
{M1,M2, . . . ,MN}, Mi = Ih

i × Iv
i one needs complex extension Dh

i ×Dv
i ,

with which the hyperbolicity condition (which at the same time guarantees
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Figure 13.4: For an analytic hyperbolic map, specifying the contracting coordinate
wh at the initial rectangle and the expanding coordinate zv at the image rectangle
defines a unique trajectory between the two rectangles. In particular, wv and zh (not
shown) are uniquely specified.

the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f(Mi)∩Int(Mj) = ∅, or for each
pair wh ∈ Cl(Dh

i ), zv ∈ Cl(Dv
j ) there exist unique analytic functions of

wh, zv: wv = wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j ), such that
f(wh, wv) = (zh, zv). Furthermore, if wh ∈ Ih

i and zv ∈ Iv
j , then wv ∈ Iv

i

and zh ∈ Ih
j (see fig. 13.4).

What this means for the iterated map is that one replaces coordinates
zh, zv at time n by the contracting pair zh, wv, where wv is the contracting
coordinate at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (13.16) is acting on functions analytic
outside Dh

i in the horizontal direction (and tending to zero at infinity) and
inside Dv

i in the vertical direction. The contour integrals are precisely along
the boundaries of these domains.

A map f satisfying the above condition is called analytic hyperbolic
and the theorem states that the associated spectral determinant is entire,
and that the trace formula (11.7) is correct.

13.3.1 Matrix representations

When considering analytic maps there is another, and for numerical pur-
poses, sometimes convenient way to look at the operators, namely through
matrix representations. The size of these matrices is infinite but entries
in the matrix decay exponentially fast with the indisize. Hence, within an
exponentially small error one may safely do calculations using finite matrix
truncations.

Furthermore, from bounds on the elements Lmn one calculates bounds
on tr

(
∧kL

)
and verifies that they fall off as Λ−k2/2, concluding that the L
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Figure 13.5: A nonlinear one-branch repeller
with a single fixed point w∗.
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eigenvalues fall off exponentially for a general Axiom A 1-d map. In order
to illustrate how this works, we work out a simple example.

As in sect. 13.1 we start with a map with a single fixed point, but this
time with a nonlinear map f with a nonlinear inverse F = f−1, s = sgn(F ′)

L ◦ φ(z) =
∫

dx δ(z − f(x))φ(x) = s F ′(z) φ(F (z)) .

Assume that F is a contraction of the unit disk, that is

|F (z)| < θ < 1 and |F ′(z)| < C <∞ for |z| < 1 , (13.17)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =
∮

dw

2πi

φ(w)
w − z

, φn =
∮

dw

2πi

φ(w)
wn+1

In this basis, L is a represented by the matrix

L ◦ φ(w) =
∑
m,n

wmLmnφn , Lmn =
∮

dw

2πi

s F ′(w)(F (w))n

wm+1
.(13.18)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =
∮

dw

2πi

s F ′(w)
w − F (w)

.

This integral has but one simple pole at the unique fix point w∗ = F (w∗) =
f(w∗). Hence

tr L =
s F ′(w∗)

1− F ′(w∗)
=

1
|f ′(w∗)− 1| .
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✎ 13.6
page 243We recognize this result as a generalization of the single piecewise-linear

fixed-point example (13.2), φn = yn, and L is diagonal (no sum on repeated
n here), Lnn = 1/|Λ|Λ−n, so we have verified the heuristic trace formula
for an expanding map with a single fixed point. The requirement that map
be analytic is needed to substitute bound (13.17) into the contour integral
(13.18) and obtain the inequality

|Lmn| ≤ sup
|w|≤1

|F ′(w)| |F (w)|n ≤ Cθn

which shows that finite [N×N ] matrix truncations approximate the opera-
tor within an error exponentially small in N . It also follows that eigenvalues
fall off as θn. In higher dimension similar considerations show that the en-
tries in the matrix fall off as 1/Λk1+1/d

, and eigenvalues as 1/Λk1/d
.

13.4 Physics of eigenvalues and eigenfunctions

We appreciate by now that any serious attempt to look at spectral
properties of the Perron-Frobenius operator involves hard mathematics:
but the effort is rewarded by the fact that we are finally able to control
analyticity properties of dynamical zeta functions and spectral determin-
ants, and thus substantiate the claim that these objects provide a powerful
and well founded perturbation theory.

Quite often (see for instance chapter 8) the physical interest is concen-
trated in the leading eigenvalue, as it gives the escape rate from a repeller,
or, when considering generalized transfer operators, it yields expressions
for generating functions for observables. We recall (see chapter 7) that also
the eigenfunction associated to the leading eigenvalue has a remarkable
property: it provides the density of the invariant measure, with singular
measures ruled out by the choice of the function space. Such a conclusion
is coherent with a the validity of a generalized Perron-Frobenius theorem
for the evolution operator. In the finite dimensional setting such theorem
is formulated as follows:

• let Lnm be a nonnegative matrix, such that some n exists for which
(Ln)ij > 0 ∀i, j: then

1. the maximal modulus eigenvalue is non degenerate, real and pos-
itive

2. the corresponding eigenvector (defined up to a constant) has
nonnegative coordinates

We may ask what physical information is contained in eigenvalues be-
yond the leading one: suppose that we have a probability conserving system
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(so that the dominant eigenvalue is 1), for which the essential spectral ra-
dius is such that 0 < ρess < θ < 1 on some Banach space B and denote by
P the projection corresponding to the part of the spectrum inside a disk of
radius θ. We denote by λ1, λ2 . . . λM the eigenvalues outside of this disk,
ordered by the size of their absolute value (so that λ1 = 1). Then we have
the following decomposition

Lϕ =
M∑
i=1

λiψiLiψ
∗
i ϕ + PLϕ (13.19)

when Li are (finite) matrices in Jordan normal form (L1 = 1 is a 1 × 1
matrix, as λ1 is simple, due to Perron-Frobenius theorem), while ψi is a
row vector whose elements are a basis on the eigenspace corresponding to
λi, and ψ∗

i is a column vector of elements of B∗ (the dual space, of linear
functionals over B) spanning the eigenspace of L∗ corresponding to λi. For
iterates of Perron-Frobenius operator (13.19) becomes

Lnϕ =
M∑
i=1

λn
i ψiL

n
i ψ∗

i ϕ + PLnϕ (13.20)

If we now consider expressions like

C(n)ξ,ϕ =
∫
M

dy ξ(y) (Lnϕ) (y) =
∫
M

dw (ξ ◦ fn)(w)ϕ(w) (13.21)

we have

C(n)ξ,ϕ = λn
1ω1(ξ, ϕ) +

L∑
i=2

λn
i ω(n)i(ξ, ϕ) +O(θn) (13.22)

where

ω(n)i(ξ, ϕ) =
∫
M

dy ξ(y)ψiL
n
i ψ∗

i ϕ

In this way we see how eigenvalues beyond the leading one provide a twofold
piece of information: they rule the convergence of expressions containing
high powers of evolution operator to the leading order (the λ1 contribu-
tion). Moreover if ω1(ξ, ϕ) = 0 then (13.21) defines a correlation function: ✎ 13.7

page 243
as each term in (13.22) vanishes exponentially in the n → ∞ limit, the
eigenvalues λ2, . . . λM rule the exponential decay of correlations for our
dynamical system. We observe that prefactors ω depend on the choice of
functions, while the exponential decay rates (logarithms of λi) do not: the
correlation spectrum is thus an universal property of the dynamics (once
we fix the overall functional space our Perron-Frobenius operator acts on).
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So let us come back the Bernoulli shift example (13.10), on the space
of analytic functions on a disk: apart from the origin we have only simple
eigenvalues λk = 2−k k = 0, 1, . . .. The eigenvalue λ0 = 1 corresponds
to probability conservation: the corresponding eigenfunction B0(x) = 1
indicates that the natural, measure has a constant density over the unit
interval. If we now take any analytic function η(x) with zero average (with
respect to the Lebesgue measure), we have that ω1(η, η) = 0, and from
(13.22) we have that the asymptotic decay of correlation function is (unless
also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) (13.23)

thus − log λ1 gives the exponential decay rate of correlations (with a pref-
actor that depends on the choice of the function). Actually the Bernoulli
shift case may be treated exactly, as for analytic functions we can employ
the Euler-MacLaurin summation formula

η(z) =
∫ 1

0
dw η(w) +

∞∑
m=1

η(m−1)(1)− η(m−1)(0)
m!

Bm(z) . (13.24)

As we are considering zero–average functions, we have from (13.21), and
the fact that Bernoulli polynomials are eigenvectors of the Perron-Frobenius
operator

Cη,η(n) =
∞∑

m=1

(2−m)n(η(m)(1)− η(m)(0))
m!

∫ 1

0
dz η(z)Bm(z) .

The decomposition (13.24) is also useful to make us realize that the linear
functionals ψ∗

i are quite singular objects: if we write it as

η(z) =
∞∑

m=0

Bm(z)ψ∗
m[η]

we see that these functionals are of the form

ψ∗
i [ε] =

∫ 1

0
dw Ψi(w)ε(w)

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1)− δ(i−1)(w)

)
(13.25)

when i ≥ 1, while Ψ0(w) = 1. Such a representation is only meaningful
when the function ε is analytic in w, w − 1 neighborhoods.
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Commentary

Remark 13.1 Surveys of rigorous theory. For a physicist, Driebe’s
monograph [1.22] might be the most accessible introduction into main
theories touched upon in this chapter. We recommend references
listed in sect. 1.8 for an introduction into the mathematical literature
on this subject. There are a number of reviews of the mathemati-
cal approach to dynamical zeta functions and spectral determinants,
with pointers to the original references, such as refs. [13.1, 13.2]. An
alternative approach to spectral properties of the Perron-Frobenius
operator is illustrated in ref. [13.3].

The ergodic theory, as presented by Sinai [13.15] and others, tempts
one to describe the densities that the evolution operator acts on in
terms of either integrable or square integrable functions. As we have
already seen, for our purposes, this space is not suitable. An introduc-
tion to ergodic theory is given by Sinai, Kornfeld and Fomin [13.16];
more advanced and more old fashioned presentations are Walters [13.17]
and Denker, Grillenberger and Sigmund [13.18]; and a more formal
Peterson [13.19].

Remark 13.2 Fredholm theory. Our brief summary of Fred-
holm theory is based on the exposition in ref. [13.4]. A technical
introduction of the theory from an operatorial point of view is con-
tained in ref. [13.5]. The theory has been generalized in ref. [13.6].

Remark 13.3 Bernoulli shift. For a more detailed discussion,
consult chapter 17.1 or The extension of Fredholm theory to the case
or Bernoulli shift on Ck+α (in which the Perron-Frobenius operator is
not compact technically it is only quasi-compact, that is the essential
spectral radius is strictly smaller than the spectral radius) has been
given by Ruelle [13.7]: a concise and readable statement of the results
is contained in ref. [13.8].

Remark 13.4 Higher dimensions and generalized Fredholm theory.

When extending Bernoulli shift to higher dimensions. Extensions of
Fredholm theory [13.6], which avoid problems with multi-dimensional
residue calculus, may be used: see ref. [13.9].

Remark 13.5 Hyperbolic dynamics. When dealing with hyper-
bolic systems one might try to reduce back to the expanding case by
projecting the dynamics along the unstable directions. As mentioned
in the text this might be technically quite involved, as usually such
the unstable foliation is not characterized by very strong smoothness
properties. For such an approach, see ref. [13.3].

Remark 13.6 Spectral determinants for smooth flows. The the-
orem on p. 169 applies also to hyperbolic analytic maps in d dimen-
sions and smooth hyperbolic analytic flows in (d + 1) dimensions,
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provided that the flow can be reduced to a piecewise analytic map
by suspension on a Poincaré section complemented by an analytic
“ceiling” function (3.2) which accounts for a variation in the sec-
tion return times. For example, if we take as the ceiling function
g(x) = esT (x), where T (x) is the time of the next Poincaré section for
a trajectory staring at x, we reproduce the flow spectral determinant
(12.23). Proofs are getting too hard for the purposes of this chapter;
details are discussed in ref.(?).

Remark 13.7 Examples. Examples of analytic hyperbolic maps
are provided by small analytic perturbations of the cat map (where
the Markov partitioning is non-trivial [13.10]), the 3-disk repeller, and
the 2-d baker’s map.

Remark 13.8 Explicit diagonalization. For 1-d repellers a di-
agonalization of an explicit truncated Lmn matrix evaluated in a ju-
diciously chosen basis may yield many more eigenvalues than a cycle
expansion (see refs. [13.11, 13.12]). The reasons why one persists any-
way in using the periodic orbit theory are partially aesthetic, and
partially pragmatic. Explicit Lmn demands explicit choice of a basis
and is thus non-invariant, in contrast to cycle expansions which uti-
lize only the invariant information about the flow. In addition, we
usually do not know how to construct Lmn for a realistic flow, such
as the hyperbolic 3-disk game of pinball flow of sect. 1.3, whereas the
periodic orbit formulas are general and straightforward to apply.

Remark 13.9 Perron-Frobenius theorem. A proof of the Perron-
Frobenius theorem may be found in ref. [13.13]. For positive transfer
operators such theorem has been generalized by Ruelle [13.14].

Remark 13.10 Fried estimates. The form of the fall-off of
the coefficients in the F (z) expansion, as un1+1/d

, is in agreement
with the estimates of Fried [13.20] for the spectral determinants of
d-dimensional expanding flows.

Remark 13.11 Axiom A systems. Proofs outlined in sect. 13.3
follow the thesis work of H.H. Rugh [13.9, 13.20, 13.21]. For math-
ematical introduction to the subject, consult the excellent review by
V. Baladi [13.1]. Rigorous treatment is given in refs. [13.9, 13.20,
13.21]. It would take us too far to give and explain the definition
of the Axiom A systems (see refs. [13.22, 13.23]). Axiom A implies,
however, the existence of a Markov partition of the phase space from
which the properties 2 and 3 assumed on p. 165 follow.

Remark 13.12 Exponential mixing speed of the Bernoulli shift. We
see from (13.23) that for the Bernoulli shift the exponential decay rate
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of correlations coincides with the Lyapunov exponent: while such an
identity holds for a number of systems, it is by no means a general
result, and there exist explicit counterexamples.

Remark 13.13 Left eigenfunctions. We shall never use explicit
form of left eigenfunctions, corresponding to highly singular kernels
like (13.25). Many details have been elaborated in a number of papers,
like ref. [13.24], with a daring physical interpretation.

Remark 13.14 Ulam’s idea. The approximation of Perron-
Frobenius operator defined by (8.33) has been shown to reproduce cor-
rectly the spectrum for expanding maps, once finer and finer Markov
partitions are used [13.25]. The subtle point of choosing a phase space
partitioning for a “generic case” is discussed in ref. [13.26].

Résumé

A serious theory of cycle expansions requires a deeper understanding of their
analyticity and convergence. If we restrict the considerations to those few
ideal systems where symbolic dynamics and hyperbolicity can be controlled,
it is possible to treat traces and determinants in a rigorous fashion, and
beautiful rigorous results about analyticity properties of dynamical zeta
functions and spectral determinants outlined above follow.

Most systems of interest are not of the “axiom A” category; they are
neither purely hyperbolic nor do they have a simple symbolic dynamics
grammar. Importance of symbolic dynamics is sometime grossly unappre-
ciated; the crucial ingredient for nice analyticity properties of zeta functions
is existence of finite grammar (coupled with uniform hyperbolicity). The
dynamical systems that we are really interested in - for example, smooth
bound Hamiltonian potentials - are presumably never really chaotic, and
the central question remains: how to attack the problem in systematic and
controllable fashion?
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[13.21] H.H. Rugh, Nonlinearity 5, 1237 (1992).

[13.22] S. Smale, Bull. Amer. Math. Soc. 73, 747 (1967).

[13.23] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomor-
phisms, Springer Lect. Notes in Math. 470, 1975.

[13.24] H.H. Hasegawa and W.C. Saphir, Phys. Rev. A46, 7401 (1992).

[13.25] G. Froyland, Commun. Math. Phys. 189, 237 (1997)

[13.26] G. Froyland, Extracting dynamical behaviour via markov models, in A.
Mees (ed.) Nonlinear dynamics and statistics: Proceedings Newton Institute,
Cambridge 1998 (Birkhauser,2000).

[13.27] V. Baladi, A. Kitaev, D. Ruelle, and S. Semmes, “Sharp determinants and
kneading operators for holomorphic maps”, IHES preprint (1995).

[13.28] A. Zygmund, Trigonometric series (Cambridge Univ. Press, Cambridge
1959).

refsConverg - 29jan2001 draft 9.4.0, June 18 2003



EXERCISES 243

Exercises

Exercise 13.1 What space does L act on? Show that (13.2) is a complete

basis on the space of analytic functions on a disk (and thus that we found the complete

set of eigenvalues).

Exercise 13.2 What space does L act on? What can be said about the

spectrum of (13.1) on L1[0, 1]? Compare the result with fig. 13.1.

Exercise 13.3 Euler formula. Derive the Euler formula (13.4)

∞∏
k=0

(1 + tuk) = 1 +
t

1− u
+

t2u

(1− u)(1− u2)
+

t3u3

(1− u)(1− u2)(1− u3)
· · ·

=
∞∑

k=0

tk
u

k(k−1)
2

(1− u) · · · (1− uk)
, |u| < 1. (13.26)

Exercise 13.4 2-d product expansion∗∗. We conjecture that the expansion
corresponding to (13.26) is in this case

∞∏
k=0

(1 + tuk)k+1 =
∞∑

k=0

Fk(u)
(1− u)2(1− u2)2 · · · (1− uk)2

tk

= 1 +
1

(1− u)2
t +

2u

(1− u)2(1− u2)2
t2

+
u2(1 + 4u + u2)

(1− u)2(1− u2)2(1− u3)2
t3 + · · · (13.27)

Fk(u) is a polynomial in u, and the coefficients fall off asymptotically as Cn ≈ un3/2
.

Verify; if you have a proof to all orders, e-mail it to the authors. (See also solu-

tion 13.3).

Exercise 13.5 Bernoulli shift on L spaces. Check that the family (13.12) be-

longs to L1([0, 1]). What can be said about the essential spectral radius on L2([0, 1])?
A useful reference is [13.28].

Exercise 13.6 Cauchy integrals. Rework all complex analysis steps used in

the Bernoulli shift example on analytic functions on a disk.

Exercise 13.7 Escape rate. Consider the escape rate from a strange repeller:

find a choice of trial functions ξ and ϕ such that (13.21) gives the fraction on particles

surviving after n iterations, if their initial density distribution is ρ0(x). Discuss the

behavior of such an expression in the long time limit.
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Chapter 14

Fixed points, and how to get
them

(F. Christiansen)

Having set up the dynamical context, now we turn to the key and
unavoidable piece of numerics in this subject; search for the solutions (x, T),
x ∈ R

d, T ∈ R of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (14.1)

for a given flow or mapping.

We know from chapter 11 that cycles are the necessary ingredient for
evaluation of spectra of evolution operators. In chapter 9 we have developed
a qualitative theory of how these cycles are laid out topologically. This
chapter is intended as a hands-on guide to extraction of periodic orbits,
and should be skipped on first reading - you can return to it whenever the
need for finding actual cycles arises.

fast track:

chapter 7, p. 101

A prime cycle p of period Tp is a single traversal of the orbit, so our task
will be to find a cycle point x ∈ p and the shortest time Tp for which (14.1)
has a solution. A cycle point of a flow which crosses a Poincaré section
np times is a fixed point of the fnp iterate of the Poincaré section return
map, hence we shall refer to all cycles as “fixed points” in this chapter.
By cyclic invariance, stability eigenvalues and the period of the cycle are
independent of the choice of the initial point, so it will suffice to solve (14.1)
at a single cycle point.

If the cycle is an attracting limit cycle with a sizable basin of attraction,
it can be found by integrating the flow for sufficiently long time. If the
cycle is unstable, simple integration forward in time will not reveal it, and
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Figure 14.1: The inverse time path to the 01-
cycle of the logistic map f(x)=4x(1-x) from an
initial guess of x=0.2. At each inverse iteration
we chose the 0, respectively 1 branch.
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methods to be described here need to be deployed. In essence, any method
for finding a cycle is based on devising a new dynamical system which
possesses the same cycle, but for which this cycle is attractive. Beyond
that, there is a great freedom in constructing such systems, and many
different methods are used in practice. Due to the exponential divergence
of nearby trajectories in chaotic dynamical systems, fixed point searches
based on direct solution of the fixed-point condition (14.1) as an initial
value problem can be numerically very unstable. Methods that start with
initial guesses for a number of points along the cycle are considerably more
robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding
of the topology of the flow: a preliminary step to any serious periodic orbit
calculation is preparation of a list of all distinct admissible prime periodic
symbol sequences, such as the list given in table 9.2. The relations between
the temporal symbol sequences and the spatial layout of the topologically
distinct regions of the phase space discussed in chapter 9 should enable us
to guess location of a series of periodic points along a cycle. Armed with
such informed guess we proceed to improve it by methods such as the
Newton-Raphson iteration; we illustrate this by considering 1-dimensional
and d-dimensional maps.

14.1 One-dimensional mappings

14.1.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1-d maps
are attracting cycles of the inverse map. The inverse map is not single
valued, so at each backward iteration we have a choice of branch to make.
By choosing branch according to the symbolic dynamics of the cycle we are
trying to find, we will automatically converge to the desired cycle. The rate
of convergence is given by the stability of the cycle, i.e. the convergence is
exponentially fast. Fig. 14.1 shows such path to the 01-cycle of the logistic
map.✎ 14.13

page 270
The method of inverse iteration is fine for finding cycles for 1-d maps and

some 2-d systems such as the repeller of exercise 14.13. It is not particularly
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fast, especially if the inverse map is not known analytically. However, it
completely fails for higher dimensional systems where we have both stable
and unstable directions. Inverse iteration will exchange these, but we will
still be left with both stable and unstable directions. The best strategy is
to directly attack the problem of finding solutions of fT (x) = x.

14.1.2 Newton’s method

Newton’s method for determining a zero x∗ of a function F (x) of one vari-
able is based on a linearization around a starting guess x0:

F (x) ≈ F (x0) + F ′(x0)(x− x0). (14.2)

An approximate solution x1 of F (x) = 0 is

x1 = x0 − F (x0)/F ′(x0). (14.3)

The approximate solution can then be used as a new starting guess in an
iterative process. A fixed point of a map f is a solution to F (x) = x−f(x) =
0. We determine x by iterating

xm = g(xm−1) = xm−1 − F (xm−1)/F ′(xm−1)

= xm−1 −
1

1− f ′(xm−1)
(xm−1 − f(xm−1)) . (14.4)

Privided that the fixed point is not marginally stable, f ′(x) 	= 1 at the
fixed point x, a fixed point of f is a super-stable fixed point of the Newton-
Raphson map g, g′(x) = 0, and with a sufficiently good inital guess, the
Newton-Raphson iteration will converge super-exponentially fast. In fact,
as is illustrated by fig. 14.2, in the typical case the number of significant
digits of the accuracy of x estimate doubles with each iteration.

14.1.3 Multipoint shooting method

Periodic orbits of length n are fixed points of fn so in principle we could
use the simple Newton’s method described above to find them. However,
this is not an optimal strategy. fn will be a highly oscillating function with
perhaps as many as 2n or more closely spaced fixed points, and finding a
specific periodic point, for example one with a given symbolic sequence,
requires a very good starting guess. For binary symbolic dynamics we must
expect to improve the accuracy of our initial guesses by at least a factor of
2n to find orbits of length n. A better alternative is the multipoint shooting
method. While it might very hard to give a precise initial point guess
for a long periodic orbit, if our guesses are informed by a good phase-space
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partition, a rough guess for each point along the desired trajectory might
suffice, as for the individual short trajectory segments the errors have no
time to explode exponentially.

A cycle of length n is a zero of the n-dimensional vector function F :

F (x) = F

 x1

x2

·
xn

 =

 x1 − f(xn)
x2 − f(x1)

· · ·
xn − f(xn−1)

 .

The relations between the temporal symbol sequences and the spatial layout
of the topologically distinct regions of the phase space discussed in chapter 9
enable us to guess location of a series of periodic points along a cycle.
Armed with such informed initial guesses we can initiate a Newton-Raphson
iteration. The iteration in the Newton’s method now takes the form of

d

dx
F (x)(x′ − x) = −F (x), (14.5)

where d
dxF (x) is an [n× n] matrix:

d
dxF (x) =


1 −f ′(xn)

−f ′(x1) 1
· · · 1

· · · 1
−f ′(xn−1) 1

 .(14.6)

This matrix can easily be inverted numerically by first eliminating the el-
ements below the diagonal. This creates non-zero elements in the n’th
column. We eliminate these and are done. Let us take it step by step for a
period 3 cycle. Initially the setup for the Newton step looks like this:

 1 0 −f ′(x3)
−f ′(x1) 1 0

0 −f ′(x2) 1

 δ1

δ2

δ3

 =

 −F1

−F2

−F3

 , (14.7)

where δi = x′
i − xi is the correction of our guess for a solution and where

Fi = xi−f(xi−1). First we eliminate the below diagonal elements by adding
f ′(x1) times the first row to the second row, then adding f ′(x2) times the
second row to the third row. We then have

 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1− f ′(x2)f ′(x1)f ′(x3)

 δ1

δ2

δ3

 = −F1

−F2 − f ′(x1)F1

−F3 − f ′(x2)F2 − f ′(x2)f ′(x1)F1

 . (14.8)
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The next step is to invert the last element in the diagonal, i.e. divide the
third row by 1−f ′(x2)f ′(x1)f ′(x3). It is clear that if this element is zero at
the periodic orbit this step might lead to problems. In many cases this will
just mean a slower convergence, but it might throw the Newton iteration
completely off. We note that f ′(x2)f ′(x1)f ′(x3) is the stability of the cycle
(when the Newton iteration has converged) and that this therefore is not a
good method to find marginally stable cycles. We now have

 1 0 −f ′(x3)
0 1 −f ′(x1)f ′(x3)
0 0 1

 δ1

δ2

δ3

 = −F1

−F2 − f ′(x1)F1
−F3−f ′(x2)F2−f ′(x2)f ′(x1)F1

1−f ′(x2)f ′(x1)f ′(x3)

 . (14.9)

Finally we add f ′(x3) times the third row to the first row and f ′(x1)f ′(x3)
times the third row to the second row. On the left hand side the matrix
is now the unit matrix, on the right hand side we have the corrections to
our initial guess for the cycle, i.e. we have gone through one step of the
Newton iteration scheme.

When one sets up the Newton iteration on the computer it is not nec-
essary to write the left hand side as a matrix. All one needs is a vector
containing the f ′(xi)’s, a vector containing the n’th column, that is the
cumulative product of the f ′(xi)’s and a vector containing the right hand
side. After the iteration the vector containing the right hand side should
be the correction to the initial guess. ✎ 14.1

page 268
To illustrate the efficiency of the Newton method we compare it to the

inverse iteration method in fig. 14.2. The advantage with respect to speed
of Newton’s method is obvious.

14.2 d-dimensional mappings

(F. Christiansen)

Armed with symbolic dynamics informed initial guesses we can
utilize the Newton-Raphson iteration in d-dimensions as well.

14.2.1 Newton’s method for d-dimensional mappings

Newton’s method for 1-dimensional mappings is easily extended to higher
dimensions. In this case f ′(xi) is a [d × d] matrix. d

dxF (x) is then an
[nd × nd] matrix. In each of the steps that we went through above we
are then manipulating d rows of the left hand side matrix. (Remember
that matrices do not commute - always multiply from the left.) In the
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Figure 14.2: Convergence of Newton’s method (♦) vs. inverse iteration (+). The
error after n iterations searching for the 01-cycle of the logistic map f(x) = 4x(1−x)
with an initial starting guess of x1 = 0.2, x2 = 0.8. y-axis is log10 of the error. The
difference between the exponential convergence of the inverse iteration method and
the super-exponential convergence of Newton’s method is obvious.

inversion of the n’th element of the diagonal we are inverting a [d×d] matrix
(1−

∏
f ′(xi)) which can be done if none of the eigenvalues of

∏
f ′(xi) equals

1, i.e. the cycle must not have any marginally stable directions.

Some d-dimensional mappings (such as the Hénon map (3.10)) can be
written as 1-dimensional time delay mappings of the form

f(xi) = f(xi−1, xi−2, . . . , xi−d). (14.10)

In this case d
dxF (x) is an [n×n] matrix as in the case of usual 1-dimensional

maps but with non-zero matrix elements on d off-diagonals. In the elimi-
nation of these off-diagonal elements the last d columns of the matrix will
become non-zero and in the final cleaning of the diagonal we will need to
invert a [d × d] matrix. In this respect, nothing is gained numerically by
looking at such maps as 1-dimensional time delay maps.

14.3 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that for a periodic or-
bit the stability eigenvalue corresponding to the flow direction of necessity
equals unity; the separation of any two points along a cycle remains un-
changed after a completion of the cycle. More unit eigenvalues can arise if

☞ sect. 4.5.3
the flow satisfies conservation laws, such as the energy invariance for Hamil-
tonian systems. We now show how such problems are solved by increasing
the number of fixed point conditions.
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14.3.1 Newton’s method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow
to a mapping on the Poincaré surface of section. An autonomous flow (2.5)
is given as

ẋ = v(x), (14.11)

The corresponding Jacobian matrix J (4.26) is obtained by integrating the
linearized equation (4.28)

J̇ = AJ , Aij(x) =
∂vi(x)
∂xj

along the trajectory. The flow and the corresponding Jacobian matrix are
integrated simultaneously, by the same numerical routine. Integrating an
initial condition on the Poincaré surface until a later crossing of the same
and linearizing around the flow we can write

f(x′) ≈ f(x) + J(x′ − x). (14.12)

Notice here, that, even though all of x′, x and f(x) are on the Poincaré
surface, f(x′) is usually not. The reason for this is that J corresponds to a
specific integration time and has no explicit relation to the arbitrary choice
of Poincaré section. This will become important in the extended Newton
method described below.

To find a fixed point of the flow near a starting guess x we must solve
the linearized equation

(1− J)(x′ − x) = −(x− f(x)) = −F (x) (14.13)

where f(x) corresponds to integrating from one intersection of the Poincaré
surface to another and J is integrated accordingly. Here we run into prob-
lems with the direction along the flow, since this corresponds to a unit
eigenvector of J. The matrix (1− J) does therefore not have full rank. A
related problem is that the solution x′ of (14.13) is not guaranteed to be in
the Poincaré surface of section. The two problems are solved simultaneously
by adding a small vector along the flow plus an extra equation demanding
that x be in the Poincaré surface. Let us for the sake of simplicity assume
that the Poincaré surface is a (hyper)-plane, i.e. it is given by the linear
equation

(x− x0) · a = 0, (14.14)
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where a is a vector normal to the Poincaré section and x0 is any point in
the Poincaré section. (14.13) then becomes

(
1− J v(x)

a 0

)(
x′ − x

δT

)
=
(
−F (x)

0

)
. (14.15)

The last row in this equation ensures that x will be in the surface of section,
and the addition of v(x)δT, a small vector along the direction of the flow,
ensures that such an x can be found at least if x is sufficiently close to a
solution, i.e. to a fixed point of f .

To illustrate this little trick let us take a particularly simple example;
consider a 3-d flow with the (x, y, 0)-plane as Poincaré section. Let all tra-
jectories cross the Poincaré section perpendicularly, i.e. with v = (0, 0, vz),
which means that the marginally stable direction is also perpendicular to
the Poincaré section. Furthermore, let the unstable direction be parallel to
the x-axis and the stable direction be parallel to the y-axis. In this case
the Newton setup looks as follows

 1− Λ 0 0 0
0 1− Λs 0 0
0 0 0 vz

0 0 1 0


 δx

δy

δz

δt

 =

 −Fx

−Fy

−Fz

0

 . (14.16)

If you consider only the upper-left [3× 3] matrix (which is what we would
have without the extra constraints that we have introduced) then this ma-
trix is clearly not invertible and the equation does not have a unique solu-
tion. However, the full [4×4] matrix is invertible, as det (·) = vzdet (1−J⊥),
where J⊥ is the monodromy matrix for a surface of section transverse to
the orbit, see for ex. (26.2).

For periodic orbits (14.15) generalizes in the same way as (14.6), but
with n additional equations – one for each point on the Poincaré surface.
The Newton setup looks like this



1 −Jn

−J1 1
· · · 1

· · · 1
−Jn−1 1

v1

. . .
vn

a
. . .

a

0
. . .

0





δ1

δ2

·
·

δn

δt1
·

δtn


=



−F1

−F2

·
·

−Fn

0
.
0


.

Solving this equation resembles the corresponding task for maps. However,
in the process we will need to invert an [(d + 1)n× (d + 1)n] matrix rather
than a [d× d] matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems
if other eigenvalues of the Jacobian matrix equal 1. This happens if the
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flow has an invariant of motion, the most obvious example being energy
conservation in Hamiltonian systems. In this case we add an extra equation
for x to be on the energy shell plus and extra variable corresponding to
adding a small vector along the gradient of the Hamiltonian. We then
have to solve

(
1− J v(x) ∇H(x)

a 0 0

) x′ − x
δt
δE

 =

 −(x− f(x))
0
0

 (14.17)

simultaneously with

H(x′)−H(x) = 0. (14.18)

This last equation is nonlinear. It is often best to treat this separately
in the sense that we really solve this equation in each Newton step. This
might mean putting in an additional Newton routine to solve the single
step of (14.17) and (14.18) together. One might be tempted to linearize
(14.18) and put it into (14.17) to do the two different Newton routines
simultaneously, but this will not guarantee a solution on the energy shell.
In fact, it may not even be possible to find any solution of the combined
linearized equations, if the initial guess is not very good.

14.3.2 Newton’s method with optimal surface of section

(F. Christiansen)

In some systems it might be hard to find a good starting guess
for a fixed point, something that could happen if the topology and/or the
symbolic dynamics of the flow is not well understood. By changing the
Poincaré section one might get a better initial guess in the sense that x and
f(x) are closer together. In fig. 14.3 there is an illustration of this. The
figure shows a Poincaré section, y = 0, an initial guess x, the corresponding
f(x) and pieces of the trajectory near these two points.

If the Newton iteration does not converge for the initial guess x we
might have to work very hard to find a better guess, particularly if this is
in a high-dimensional system (high-dimensional might in this context mean
a Hamiltonian system with 3 degrees of freedom.) But clearly we could
easily have a much better guess by simply shifting the Poincaré section to
y = 0.7 where the distance x − f(x) would be much smaller. Naturally,
one cannot see by eye the best surface in higher dimensional systems. The
way to proceed is as follows: We want to have a minimal distance between
our initial guess x and the image of this f(x). We therefore integrate the
flow looking for a minimum in the distance d(t) = |f t(x)− x|. d(t) is now
a minimum with respect to variations in f t(x), but not necessarily with
respect to x. We therefore integrate x either forward or backward in time.
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Figure 14.3: Illustration of the optimal Poincaré surface. The original surface y = 0
yields a large distance x − f(x) for the Newton iteration. A much better choice is
y = 0.7.

Doing this we minimize d with respect to x, but now it is no longer minimal
with respect to f t(x). We therefore repeat the steps, alternating between
correcting x and f t(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector (f(x) − x) connecting the
two end points is perpendicular to the flow at both points. We can now
choose to define a Poincaré surface of section as the hyper-plane that goes
through x and is normal to the flow at x. In other words the surface of
section is determined by

(x′ − x) · v(x) = 0. (14.19)

Note that f(x) lies on this surface. This surface of section is optimal in
the sense that a close return on the surface is really a local minimum of
the distance between x and f t(x). But more importantly, the part of the
stability matrix that describes linearization perpendicular to the flow is
exactly the stability of the flow in the surface of section when f(x) is close
to x. In this method, the Poincaré surface changes with each iteration of the
Newton scheme. Should we later want to put the fixed point on a specific
Poincaré surface it will only be a matter of moving along the trajectory.

14.4 Periodic orbits as extremal orbits

If you have some insight into the topology of the flow and its symbolic
dynamics, or have already found a set of short cycles, you might be able
to construct a rough approximation to a longer cycle p of cycle length
np as a sequence of points (x(0)

1 , x
(0)
2 , · · · , x(0)

np ) with the periodic boundary
condition xnp+1 = x1. Suppose you have an iterative method for improving
your guess; after k iterations the cost function

E(x(k)) =
np∑
i

(
x

(k)
i+1 − f(x(k)

i )
)2

(14.20)

or some other more cleverly constructed function is a measure of the devi-
ation of the kth approximate cycle from the true cycle. This observation
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motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, and one for
billiards. In sect. 14.4.1 we start out by converting a problem of finding an
unstable fixed point of a map into a problem of constructing a differential
flow for which the desired fixed point is an attracting stationary point.
Solving differential equations can be time intensive, so in sect. 14.4.2 we
replace such flows by discrete iterations. In sect. 14.4.3 we show that for
2D-dimensional billiard flows variation of D coordinates (where D is the
number of Hamiltonian degrees of freedom) suffices to determine cycles in
the full 2D-dimensional phase space.

Unlike the Newton-Raphson method, variational methods are very ro-
bust. As each step around a cycle is short, they do not suffer from exponen-
tial instabilities, and with rather coarse initial guesses one can determine
cycles of arbitrary length.

14.4.1 Cyclists relaxation method

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles is based on the
observation that a trajectory of a map such as the Hénon map (3.10),

xi+1 = 1− ax2
i + byi

yi+1 = xi , (14.21)

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dτ
= vi, i = 1, . . . , n (14.22)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ
is an auxiliary “time” variable, unrelated to the dynamical time (in this
example, the discrete time of map iteration). As the simplest example,
take vi to be the deviation of an approximate trajectory from the exact
2-step recurrence form of the Hénon map (3.11)

vi = xi+1 − 1 + ax2
i − bxi−1. (14.23)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These
solutions are the two extremal points of a local “potential” function (no
sum on i)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a

3
x3

i . (14.24)
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Figure 14.4: “Potential” Vi(x) (14.24) for
a typical point along an inital guess trajectory.
For σi = +1 the flow is toward the local maxi-
mum of Vi(x), and for σi = −1 toward the local
minimum. A large deviation of xi’s is needed
to destabilize a trajectory passing through such
local extremum of Vi(x), hence the basin of at-
traction is expected to be large. −1 0 1 xi

−1

0

1

Vi(x)

Assuming that the two extremal points are real, one is a local minimum
of Vi(x) and the other is a local maximum. Now here is the idea; replace
(14.22) by

dxi

dτ
= σivi, i = 1, . . . , n, (14.25)

where σi = ±1.

The modified flow will be in the direction of the extremal point given
by the local maximum of Vi(x) if σi = +1 is chosen, or in the direction of
the one corresponding to the local minimum if we take σi = −1. This is not
quite what happens in solving (14.25) - all xi and Vi(x) change at each in-
tegration step - but this is the observation that motivates the method. The
differential equations (14.25) then drive an approximate initial guess to-
ward the exact trajectory. A sketch of the landscape in which xi converges
towards the proper fixed point is given in fig. 14.4. As the “potential”
function (14.24) is not bounded for a large |xi|, the flow diverges for initial
guesses which are too distant from the true trajectory. The basin of attrac-
tion of inital guesses that converge to a given cycle is very large, with the
spread in acceptable initial guesses for fig. 14.4 of order 1, in contrast to
the exponential precision required of initial guesses by the Newton-Raphson
method.

Example 14.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n, in principle at most 2n orbits. We start by choosing an initial guess
trajectory (x1, x2, · · · , xn) and impose the periodic boundary condition xn+1 = x1. A
convenient choice of the initial condition in the Hénon map example is xi = 0 for all
i. In order to find a given orbit one sets σi = −1 for all iterates i which are local
minima of Vi(x), and σi = 1 for iterates which are local maxima. In practice one runs
through a complete list of prime cycles, such as the table 9.2. The real issue for all
searches for periodic orbits, this one included, is how large is the basin of attraction of
the desired periodic orbit? There is no easy answer to this question, but empirically
it turns out that for the Hénon map such initial guess almost always converges to the
desired trajectory as long as the initial |x| is not too large compared to 1/

√
a. Fig. 14.4

gives some indication of a typical basin of attraction of the method (see also fig. 14.6).

The calculation is carried out by solving the set of n ordinary differential equa-
tions (14.25) using a simple Runge-Kutta method with a relatively large step size
(h = 0.1) until |v| becomes smaller than a given value ε (in a typical calculation
ε ∼ 10−7). Empirically, in the case that an orbit corresponding to the desired itinerary
does not exist, the initial guess escapes to infinity since the “potential” Vi(x) grows
without bound.✎ 14.12

page 269
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n p ( yp , xp ) λp

1 0 (-1.13135447 , -1.13135447) 1.18167262
1 (0.63135447 , 0.63135447) 0.65427061

2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 14.1: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period np, the itinerary (defined in remark 14.3), a cycle point
(yp, xp), and the cycle Lyapunov exponent λp = ln |Λp|/np. While most of the cycles
have λp ≈ 0.5, several significantly do not. The 0 cycle point is very unstable, isolated
and transient fixed point, with no other cycles returning close to it. At period 13 one
finds a pair of cycles with exceptionally low Lyapunov exponents. The cycles are close
for most of the trajectory, differing only in the one symbol corresponding to two cycle
points straddle the (partition) fold of the attractor. As the system is not hyperbolic,
there is no known lower bound on cycle Lyapunov exponents, and the Hénon’s strange
“attractor” might some day turn out to be nothing but a transient on the way to
a periodic attractor of some long period. The odds, however, are that it indeed is
strange.
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Figure 14.5: The repeller for the Hénon map
at a = 1.8, b = 0.3 . (O. Biham) −1.5 −0.5 0.5 1.5
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n Mn Nn

11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn

17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn

23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520

Table 14.2: The number of unstable periodic orbits of the Hénon map for a = 1.4,
b = 0.3, of all periods n ≤ 28. Mn is the number of prime cycles of length n, and Nn

is the total number of periodic points of period n (including repeats of shorter prime
cycles).

Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. We list all prime cycles up to period 10 for
the Hénon map, a = 1.4 and b = 0.3 are listed in table 14.1. The number of unstable
periodic orbits for periods n ≤ 28 is given in table 14.2. Comparing this with the list
of all possible 2-symbol alphabet prime cycles, table 9.2, we see that the pruning is quite
extensive, with the number of cycle points of period n growing as e0.4645·n = (1.592)n

rather than as 2n .

As another example we plot all unstable periodic points up to period n = 14
for a = 1.8, b = 0.3 in fig. 14.5. Comparing this set with the strange attractor for the
Hénon’s parameters fig. 3.4, we note the existence of gaps in the set, cut out by the
preimages of the escaping regions.

In practice, this method finds (almost) all periodic orbits which exist and indi-
cates which ones do not. For the Hénon map the method enables us to calculate almost
all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the above Hénon
map example is that instead of searching for an unstable periodic orbit of
a map, one searches for a stable attractor of a vector field. More generally,
consider a d-dimensional map x′ = f(x) with a hyperbolic fixed point x∗.
Any fixed point x∗ is by construction a stationary point of the vector field

dx

dτ
= f(x)− x. (14.26)

If all eigenvalues of the Jacobian matrix J(x∗) = Df(x∗) have real parts
smaller than unity, then x∗ is a stable stationary point of the flow.

If some of the eigenvalues have real parts larger than unity, then one
needs to modify the vector field so that the corresponding directions of the

cycles - 20may2003 draft 9.4.0, June 18 2003



14.4. PERIODIC ORBITS AS EXTREMAL ORBITS 259

Figure 14.6: Typical trajectories of the vector
field (14.26) for the stabilization of a hyperbolic
fixed point of the Ikeda map (14.28) located
at (x, y) ≈ (0.53275, 0.24689). The circle in-
dicates the position of the fixed point. Note
that the basin of attraction of this fixed point
is large, larger than the entire Ikeda attractor. 0 1

−2

0

x

y

x
*
 

flow are turned into stable directions in a neighborhood of the fixed point.
In the spirit of (14.25), modify the flow by

dx

dτ
= C (f(x)− x) , (14.27)

where C is a [d× d] invertible matrix. The aim is to turn x∗ into a stable
stationary point of the flow by an appropriate choice of C. It can be shown

☞ appendix G.2
that a set of permutation / reflection matrices with one and only one non-
vanishing entry ±1 per row or column (for d-dimensional systems, there
are d!2d such matrices) suffices to stabilize any fixed point. In practice, one
chooses a particular matrix C, and the flow is integrated. For each choice
of C, one or more hyperbolic fixed points of the map may turn into stable
stationary points of the flow.

Example 14.2 Ikeda map. We illustrate the method with the determination of
the periodic orbits of the Ikeda map:

x′ = 1 + a(x cos w − y sinw)
y′ = a(x sin w + y cos w) (14.28)

where w = b− c

1 + x2 + y2
,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow
is already stabilized with C = 1. Fig. 14.6 depicts the flow of the vector field around
the fixed point x∗. In order to determine x∗, one needs to integrate the vector field
(14.26) foward in time (the convergence is exponential in time), using a fourth order
Runge-Kutta or any other integration routine.

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of the third iterate f3 of the Ikeda map. The flow of the
vector field for C = 1, Fig. 14.7(a), indicates a hyperbolic stationary point, while for

C =
(

1
0

0
−1

)
the flow of the vector field, fig. 14.7(b) indicates that x∗ is an attracting

stationary point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searches for cycles
is straighforward. In order to determine a prime cycle X = (x1, x2, . . . , xn)
of a d-dimensional map x′ = f(x), we generalize the multipoint shooting
method of sect. 14.2.1, and consider the nd-dimensional vector field

dX

dτ
= C (F (X)−X) , (14.29)
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Figure 14.7: Typical trajectories of the vector field (14.27) for a hyperbolic fixed
point (x, y) ≈ (−0.13529,−0.37559) of f3, where f is the Ikeda map (14.28). The
circle indicates the position of the fixed point. For the vector field corresponding to

(a) C = 1, x∗ is a hyperbolic stationary point of the flow, while for (b) C =
(

1
0

0
−1

)
,

x∗ is an attracting stationary point.

where F (X) = (f(xn), f(x1), f(x2), . . . , f(xn−1)), and C is an invertible
[nd×nd] matrix. For the Hénon map, we saw that it is sufficient to consider
a set of 2d matrices with eigenvalues ±1.

14.4.2 Discrete cyclist relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

In sect. 14.1.1 we converted orbits unstable forward in time into orbits
stable backwards in time. Indeed, all methods for finding unstable cycles
are based on the idea of constructing a new dynamical system such that
(i) the position of the cycle is the same for the original system and the
transformed one, (ii) the unstable cycle in the original system is a stable
cycle of the transformed system.

The Newton-Raphson method for determining a fixed point x∗ for a
map x′ = f(x) is an example. The method replaces iteration of f(x) by
iteration of the Newton-Raphson map (14.4)

x′
i = gi(x) = xi −

(
1

J(x)− 1

)
ij

(f(x)− x)j . (14.30)

A fixed point x∗ for a map f(x) is also a fixed point of g(x), indeed a super-
stable fixed point since ∂gi(x∗)/∂xj = 0. This makes the convergence to
the fixed point super-exponential.

The problem with the Newton-Raphson iteration is that it requires very
precise initial guesses. For example, the nth iterate of a unimodal map has
as many as 2n periodic points crammed into the unit interval, so determi-
nation of all cycles of length n requires that the initial guess for each one
of them has to be accurate to roughly 2−n. This is not much of a problem
for 1-dimensional maps, but making a good initial guess for where a cycle
might lie for a d-dimensional flow can be a challenge.
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Inspired by the success of the cyclist relaxation trick (14.25) of manually
turning instability into stability by a sign change, we now abandon the
Newton-Raphson method altogether, and devise instead a map g with a
larger basin of attraction (not restricted to a linear neighborhood of the
fixed point), at some sacrifice in the speed of convergence. The idea is to
construct a very simple map g, a linear transformation of the original f , for
which the fixed point is stable. We replace the Jacobian matrix prefactor
in (14.30) (whose inversion can be time-consuming) by a constant matrix
prefactor

x′ = g(x) = x + γC(f(x)− x), (14.31)

where γ is a positive real number, and C is a [d×d] permutation and re-
flection matrix with one and only one non-vanishing entry ±1 per row or
column. A fixed point of f is also a fixed point of g. Since C is invertible,
the inverse is also true.

This construction is motivated by the observation that for small γ the
map (14.31) is the Euler method for integrating the modified flow (14.27),
with the integration step γ. The argument why a suitable choice of matrix
C can lead to the stabilization of an unstable periodic orbit is similar to
the one used to motivate the construction of the modified vector field in
sect. 14.4.1.

For a given fixed point of f(x) we again chose a C such that the flow
in the expanding directions of J(x∗) is turned into a contracting flow. The
aim is to stabilize x∗ by a suitable choice of C. In the case where the map
has multiple fixed points, the set of fixed points is obtained by changing the
matrix C (in general different for each unstable fixed point) and varying
initial conditions for the map g. For example, for 2-dimensional dissipative
maps it can be shown that the 3 matrices

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}
☞ appendix G.2

suffice to stabilize all kinds of possible hyperbolic fixed points.

If γ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed point x∗ in the transformed system are smaller than one, and one has
a stable fixed point. However, γ should not be chosen too small: Since
the convergence is geometrical with a ratio 1 − αγ (where α is a constant
depending on the stability of the fixed point in the original system), small γ
can slow down the speed of convergence. The critical value of γ, which just
suffices to make the fixed point stable, can be read off from the quadratic
equations relating the stability coefficients of the original system and those
of the transformed system. In practice, one can find the optimal γ by
iterating the dynamical system stabilized with a given C and γ. In general,
all starting points converge on the attractor provided γ is small enough. If
this is not the case, the trajectory either diverges (if γ is far too large) or it
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oscillates in a small section of the phase space (if γ is close to its stabilizing
value).

The search for the fixed points is now straightforward: A starting point
chosen in the global neighborhood of the fixed point iterated with the trans-
formed dynamical system g converges to the fixed point due to its stability.
Numerical investigations show that the domain of attraction of a stabilized
fixed point is a rather extended connected area, by no means confined to
a linear neighborhood. At times the basin of attraction encompasses the
complete phase space of the attractor, so one can be sure to be within the
attracting basin of a fixed point regardless of where on the on the attractor
on picks the initial condition.

The step size |g(x) − x| decreases exponentially when the trajectory
approaches the fixed point. To get the coordinates of the fixed points with
a high precision, one therefore needs a large number of iterations for the
trajectory which is already in the linear neighborhood of the fixed point.
To speed up the convergence of the final part of the approach to a fixed
point we recommend a combination of the above approach with the Newton-
Raphson method (14.30).

The fixed points of the nth iterate fn are cycle points of a cycle of
period n. If we consider the map

x′ = g(x) = x + γC(fn(x)− x) , (14.32)

the iterates of g converge to a fixed point provided that γ is sufficiently
small and C is a d × d constant matrix chosen such that it stabilizes the
flow. It works well for n ≤ 20. It should be noticed that as n grows, γ has
to be chosen smaller and smaller.

As in (14.29), the multipoint shooting method is the method of prefer-
ence for detemining longer cycles. Consider X = (x1, x2, . . . , xn) and the
nd-dimensional map

X ′ = F (X) = (f(xn), f(x1), . . . , f(xn−1)) .

Determining cycles with period n for f is equivalent to determining fixed
points of F . The idea is to construct a matrix C such that the fixed point
of F becomes stable for the map:

X ′ = X + γC(F (X)−X),

where C is now a [nd×nd] permutation/reflection matrix with only one
non-zero matrix element ±1 per row or column. For any choice of C, a
certain fraction of the cycles becomes stable and can be found by iterating
the transformed map which is now a n × d dimensional map. This set of
stabilized cycles depends on the transformation used.
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For a d-dimensional flow ẋ = v(x), the method described above can be
extended by considering a Poincaré surface of section. The Poincaré section
yields a map f with dimension d-1, and the above procedure can be carried
out.

From a practical point of view, the main advantage of this method
compared to the Newton-Raphson method is that the stability matrix of
the flow is not needed, there is no matrix to invert, and this simplifies
considerably the implementation. The price is a reduction in the speed of
convergence.

14.4.3 Orbit length extremization method for billiards

(P. Dahlqvist)

The simplest method for determining billiard cycles is given by the
principle of least action, or equivalently, by extremizing the length of an
approximate orbit that visits a given sequence of disks. In contrast to the
multipoint shooting method of sect. 14.2.1 which requires variation of 2N
phase-space points, extremization of a cycle length requires variation of
only N bounce positions si.

The problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sN ), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂jL(s0)δsj + . . .

✎ 14.9
page 269and use Jij(s0) = ∂i∂jL(s0) in the N -dimensional Newton-Raphson itera-

tion scheme of sect. 14.1.2

si �→ si −
∑

j

(
1

J(s)

)
ij

∂jL(s) (14.33)

The extremization is achieved by recursive implementation of the above
algorithm, with proviso that if the dynamics is pruned, one also has to
check that the final extremal length orbit does not penetrate any of the
disks. ✎ 14.10

page 269

✎ 14.11
page 269

As an example, the short periods and stabilities of 3-disk cycles com-
puted this way are listed table 14.3.

14.5 Stability of cycles for maps

No matter what method we had used to determine the unstable cycles,
the theory to be developed here requires that their stability eigenvalues be
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p Λp Tp

0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676

Table 14.3: All prime cycles up to 6 bounces for the three-disk fundamental domain,
center-to-center separation R = 6, disk radius a = 1. The columns list the cycle
itinerary, its expanding eigenvalue Λp, and the length of the orbit (if the velocity=1
this is the same as its period or the action). Note that the two 6 cycles 001011 and
001101 are degenerate due to the time reversal symmetry, but are not related by any
discrete spatial symmetry. (computed by P.E. Rosenqvist)
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evaluated as well. For maps a Jacobian matrix is easily evaluated by picking
any cycle point as a starting point, running once around a prime cycle,
and multiplying the individual cycle point stability matrices according to
(4.31). For example, the Jacobian matrix Jp for a Hénon map (3.10) prime
cycle p of length np is given by (4.32), and the Jacobian matrix Jp for a
2-dimensional billiard prime cycle p of length np follows from (5.22). As
explained on page 69, evaluation of the Jacobian matrix for a flow will
require an integration along the prime cycle.

Commentary

Remark 14.1 Piece-wise linear maps. The Lozi map (3.12) is
linear, and 100,000’s of cycles can be be easily computed by [2x2]
matrix multiplication and inversion.

Remark 14.2 Relaxation method. The relaxation (or gradient)
algorithm is one of the methods for solving extremal problems [14.12].
The method described above was introduced by Biham and Wen-
zel [14.13], who have also generalized it (in the case of the Hénon map)
to determination of all 2n cycles of period n, real or complex [14.14].
The applicability and reliability of the method is discussed in detail
by Grassberger, Kantz and Moening [14.16], who give examples of the
ways in which the method fails: (a) it might reach a limit cycle rather
than a stationary saddlepoint (that can be remedied by the complex
Biham-Wenzel algorithm [14.14]) (b) different symbol sequences can
converge to the same cycle (that is, more refined initial conditions
might be needed). Furthermore, Hansen (ref. [14.17] and chapter 4.
of ref. [1.3]) has pointed out that the method cannot find certain cycles
for specific values of the Hénon map parameters.

In practice, the relaxation method for determining periodic orbits
of maps appears to be effective almost always, but not always. It is
much slower than the multipoint shooting method of sect. 14.2.1, but
also much quicker to program, as it does not require evaluation of
stability matrices and their inversion. If the complete set of cycles is
required, the method has to be supplemented by other methods.

Remark 14.3 Relation to the Smale horseshoe symbolic dynamics.
For a complete horseshoe Hénon repeller (a sufficiently large), such as
the one given in fig. 14.5, the signs σi ∈ {1,−1} are in a 1-to-1 corre-
spondence with the Smale horsheshoe symbolic dynamics si ∈ {0, 1}:

si =
{

0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (14.34)

For arbitrary parameter values with a finite subshift symbolic dy-
namics or with arbitrarily complicated pruning, the relation of sign
sequences {σ1, σ2, · · · , σn} to the intineraries {s1, s2, · · · , sn} can be
much subtler; this is discussed in ref. [14.16].

Remark 14.4 A compilation of the Hénon map numerical results. For
the record - the most accurate estimates of various averages for the
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Hénon map, Hénon’s parameters choice a = 1.4, b = 0.3, known to
the authors, are: the topological entropy (10.1) is h = 0.4645, the
Lyapunov exponent = 0.463, the Hausdorff dimension DH = 1.274(2).

Remark 14.5 Ikeda map. Ikeda map (14.28) was introduced
in ref. [14.21] is a model which exhibits complex dynamics observed
in nonlinear optical ring cavities.

Remark 14.6 Hybrid Newton-Raphson/relaxation methods. The
method discussed in sect. 14.4.2 was introduced by Schmelcher et
al [14.18]. The method was extended to flows by means of the Poincaré
surface of section technique in ref. [14.19]. It is also possible to com-
bine the Newton-Raphson method and (14.31) in the construction of
a transformed map [14.22]. In this approach, each step of the iteration
scheme is a linear superposition of a step of the stability transformed
system and a step of the Newton-Raphson algorithm. Far from the
linear neighborhood the weight is dominantly on the globally acting
stability transformation algorithm. Close to the fixed point, the steps
of the iteration are dominated by the Newton-Raphson procedure.

Remark 14.7 Stability ordering. The parameter γ in (14.31) is
a key quantity here. It is related to the stability of the desired cycle
in the transformed system: The more unstable a fixed point is, the
smaller γ has to be to stabilize it. With increasing cycle periods, the
unstable eigenvalue of the stability matrix increases and therefore γ

has to be reduced to achieve stabilization of all fixed points. In many
cases the least unstable cycles of a given period n are of physically
most important [14.20]. In this context γ operates as a stability filter.

☞ sect. 15.4
It allows the selective stabilization of only those cycles which posses
Lyapunov exponents smaller than a cut-off value. If one starts the
search for cycles within a given period n with a value γ ≈ O(10−1),
and gradually lowers γ one obtains the sequence of all unstable orbits
of order n sorted with increasing values of their Lyapunov exponents.
For the specific choice of C the relation between γ and the stabil-
ity coefficients of the fixed points of the original system is strictly
monotonous. Transformed dynamical systems with other Cs do not
obey such a strict behavior but show a rough ordering of the sequence
of stability eigenvalues of the fixed points stabilized in the course of
decreasing values for γ. As will be explained in sect. 15.4, stabil-
ity ordered cycles are needed to order cycle expansions of dynamical
quantities of chaotic systems for which a symbolic dynamics is not
known. For such systems, an ordering of cycles with respect to their
stability has been proposed [15.13, 15.14, 15.12], and show to yield
good results in practical applications.
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Exercises

Exercise 14.1 Cycles of the Ulam map. Test your cycle-searching routines
by computing a bunch of short cycles and their stabilities for the Ulam map

f(x) = 4x(1− x) . (14.35)

Exercise 14.2 Cycles stabilities for the Ulam map, exact. In exercise 14.1

you should have observed that the numerical results for the cycle stability eigenvalues

(4.30) are exceptionally simple: the stability eigenvalue of the x0 = 0 fixed point is 4,

while the eigenvalue of any other n-cycle is ±2n. Prove this. (Hint: the Ulam map

can be conjugated to the tent map (9.10). This problem is perhaps too hard, but give

it a try - the answer is in many introductory books on nolinear dynamics.)

Exercise 14.3 Stability of billiard cycles. Compute stabilities of few simple
cycles.

(a) A simple scattering billiard is the two-disk billiard. It consists of a disk of radius
one centered at the origin and another disk of unit radius located at L+2. Find
all periodic orbits for this system and compute their stabilities. (You might have
done this already in exercise 1.2; at least now you will be able to see where you
went wrong when you knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard ball bouncing between the
diagonal y = x and one of the hyperbola branches y = 1/x.

Exercise 14.4 Cycle stability. Add to the pinball simulator of exercise 5.1
a routine that evaluates the expanding eigenvalue for a given cycle.

Exercise 14.5 Newton-Raphson method. Implement the Newton-Raphson
method in 2-d and apply it to determination of pinball cycles.

Exercise 14.6 Pinball cycles. Determine the stability and length of all
fundamental domain prime cycles of the binary symbol string lengths up to 5
(or longer) for R : a = 6 3-disk pinball.

Exercise 14.7 Cycle stability, helium. Add to the helium integrator of
exercise 2.9 a routine that evaluates the expanding eigenvalue for a given cycle.

Exercise 14.8 Colinear helium cycles. Determine the stability and length
of all fundamental domain prime cycles up to symbol sequence length 5 or
longer for collinear helium of fig. 28.5.
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Exercise 14.9 Evaluation of cycles by minimization∗. Given a symbol
sequence, you can construct a guess trajectory by taking a point on the boundary
of each disk in the sequence, and connecting them by straight lines. If this were a
rubber band wrapped through 3 rings, it would shrink into the physical trajectory,
which minimizes the action (in this case, the length) of the trajectory.

Write a program to find the periodic orbits for your billiard simulator. Use the

least action principle to extremize the length of the periodic orbit, and reproduce the

periods and stabilities of 3-disk cycles, table 14.3. After that check the accuracy of the

computed orbits by iterating them forward with your simulator. What is |fTp(x)−x|?

Exercise 14.10 Tracking cycles adiabatically∗. Once a cycle has been

found, orbits for different system parameters values may be obtained by varying slowly

(adiabatically) the parameters, and using the old orbit points as starting guesses in the

Newton method. Try this method out on the 3-disk system. It works well for R : a

sufficiently large. For smaller values, some orbits change rather quickly and require

very small step sizes. In addition, for ratios below R : a = 2.04821419 . . . families

of cycles are pruned, that is some of the minimal length trajectories are blocked by

intervening disks.

Exercise 14.11 Uniqueness of unstable cycles∗∗∗. Prove that there exists

only one 3-disk prime cycle for a given finite admissible prime cycle symbol string.

Hints: look at the Poincaré section mappings; can you show that there is exponential

contraction to a unique periodic point with a given itinerary? Exercise 14.9 might be

helpful in this effort.

Exercise 14.12 Find cycles of the Hénon map. Apply the method of

sect. 14.4.1 to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,

and compute all prime cycles for at least n ≤ 6. Estimate the topological entropy,

either from the definition (10.1), or as the zero of a truncated topological zeta function

(10.21). Do your cycles agree with the cycles listed in table 14.1?

Exercise 14.13 Inverse iteration method for a Hamiltonian repeller. For
the complete repeller case (all binary sequences are realized), the cycles are evaluated
as follows. According to (3.10), the coordinates of a periodic orbit of length np satisfy
the equation

xp,i+1 + xp,i−1 = 1− ax2
p,i , i = 1, ..., np , (14.36)

with the periodic boundary condition xp,0 = xp,np
. In the complete repeller case, the

Hénon map is a realization of the Smale horseshoe, and the symbolic dynamics has a
very simple description in terms of the binary alphabet ε ∈ {0, 1}, εp,i = (1 + Sp,i)/2,
where Sp,i are the signs of the corresponding cycle point coordinates, Sp,i = σxp,i

. We
start with a preassigned sign sequence Sp,1, Sp,2, . . . , Sp,np

, and a good initial guess
for the coordinates x′

p,i. Using the inverse of the equation (14.36)

x′′
p,i = Sp,i

√
1− x′

p,i+1 − x′
p,i−1

a
, i = 1, ..., np (14.37)

draft 9.4.0, June 18 2003 exerCycles - 18may2002



270 References

p Λp

∑
xp,i

0 0.71516752438×101 -0.6076252185107
1 -0.29528463259×101 0.2742918851774
10 -0.98989794855×101 0.3333333333333
100 -0.13190727397×103 -0.2060113295833
110 0.55896964996×102 0.5393446629166
1000 -0.10443010730×104 -0.8164965809277
1100 0.57799826989×104 0.0000000000000
1110 -0.10368832509×103 0.8164965809277
10000 -0.76065343718×104 -1.4260322065792
11000 0.44455240007×104 -0.6066540777738
10100 0.77020248597×103 0.1513755016405
11100 -0.71068835616×103 0.2484632276044
11010 -0.58949885284×103 0.8706954728949
11110 0.39099424812×103 1.0954854155465
100000 -0.54574527060×105 -2.0341342556665
110000 0.32222060985×105 -1.2152504370215
101000 0.51376165109×104 -0.4506624359329
111000 -0.47846146631×104 -0.3660254037844
110100 -0.63939998436×104 0.3333333333333
101100 -0.63939998436×104 0.3333333333333
111100 0.39019387269×104 0.5485837703548
111010 0.10949094597×104 1.1514633582661
111110 -0.10433841694×104 1.3660254037844

Table 14.4: All periodic orbits up to 6 bounces for the Hamiltonian Hénon mapping
(14.36) with a = 6. Listed are the cycle itinerary, its expanding eigenvalue Λp, and
its “center of mass”. (The last one because we do not understand why the “center of
mass” tends to be a simple rational every so often.)

we converge iteratively, at exponential rate, to the desired cycle points xp,i. Given the
cycle points, the cycle stabilities and periods are easily computed using (4.32). Verify
that the times and the stabilities of the short periodic orbits for the Hénon repeller
(3.10) at a = 6 are listed in table 14.4; in actual calculations all prime cycles up to
topological length n = 20 have been computed.

(G. Vattay)
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Chapter 15

Cycle expansions

Recycle... It’s the Law!
Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (12.9) and dyn-
amical zeta functions (12.12) are really only a shorthand notation - the zeros
of the individual factors are not the zeros of the zeta function, and conver-
gence of such objects is far from obvious. Now we shall give meaning to the
dynamical zeta functions and spectral determinants by expanding them as
cycle expansions, series representations ordered by increasing topological
cycle length, with products in (12.9), (12.12) expanded as sums over pseu-
docycles, products of tp’s. The zeros of correctly truncated cycle expansions
yield the desired eigenvalues, and the expectation values of observables are
given by the cycle averaging formulas obtained from the partial derivatives
of dynamical zeta functions (or spectral determinants).

15.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (12.12) evaluated? We start by
computing the lengths and stability eigenvalues of the shortest cycles. This
always requires numerical work, such as the Newton’s method searches for
periodic solutions; we shall assume that the numerics is under control, and
that all short cycles up to a given (topological) length have been found. Ex-
amples of the data required for application of periodic orbit formulas are the
lists of cycles given in tables 14.3 and 14.4. It is important not to miss any
short cycles, as the calculation is as accurate as the shortest cycle dropped
- including cycles longer than the shortest omitted does not improve the
accuracy (more precisely, improves it, but painfully slowly).

Expand the dynamical zeta function (12.12) as a formal power series,

1/ζ =
∏
p

(1− tp) = 1−
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk

(15.1)
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where the prime on the sum indicates that the sum is over all distinct non-
repeating combinations of prime cycles. As we shall frequently use such
sums, let us denote by tπ = (−1)k+1tp1tp2 . . . tpk

an element of the set of
all distinct products of the prime cycle weights tp. The formal power series
(15.1) is now compactly written as

1/ζ = 1−
∑′

π

tπ . (15.2)

For k > 1, tπ are weights of pseudocycles; they are sequences of shorter
cycles that shadow a cycle with the symbol sequence p1p2 . . . pk along seg-
ments p1, p2, . . ., pk.

∑′ denotes the restricted sum, for which any given
prime cycle p contributes at most once to a given pseudocycle weight tπ.

The pseudocycle weight

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπznπ . (15.3)

depends on the pseudocycle topological length, integrated observable, pe-
riod, and stability

nπ = np1 + . . . + npk
, Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk
, Λπ = Λp1Λp2 · · ·Λpk

. (15.4)

15.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a
complete binary symbolic dynamics. In this case the Euler product (12.12)
is given by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011)
(1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)
(1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

(see table 9.2), and the first few terms of the expansion (15.2) ordered by
increasing total pseudocycle length are:

1/ζ = 1− t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .

+t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1

−t0t01t1 − . . .

We refer to such series representation of a dynamical zeta function or a
spectral determinant, expanded as a sum over pseudocycles, and ordered
by increasing cycle length and instability, as a cycle expansion.
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The next step is the key step: regroup the terms into the dominant
fundamental contributions tf and the decreasing curvature corrections ĉn.
For the binary case this regrouping is given by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)]− [(t001 − t01t0) + (t011 − t01t1)]
−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]− . . .

= 1−
∑

f

tf −
∑

n

ĉn . (15.5)

All terms in this expansion up to length np = 6 are given in table 15.1.
We refer to such regrouped series as curvature expansions.

Such separation into “fundamental” and “curvature” parts of cycle ex-
pansions is possible only for dynamical systems whose symbolic dynamics
has finite grammar. The fundamental cycles t0, t1 have no shorter approx-
imants; they are the “building blocks” of the dynamics in the sense that
all longer orbits can be approximately pieced together from them. The
fundamental part of a cycle expansion is given by the sum of the products
of all non-intersecting loops of the associated Markov graph (see sect. 10.3
and sect. 15.3). The terms grouped in brackets are the curvature correc-
tions; the terms grouped in parenthesis are combinations of longer cycles
and corresponding sequences of “shadowing” pseudocycles. If all orbits
are weighted equally (tp = znp), such combinations cancel exactly, and
the dynamical zeta function reduces to the topological polynomial (10.21).
If the flow is continuous and smooth, orbits of similar symbolic dynamics
will traverse the same neighborhoods and will have similar weights, and the
weights in such combinations will almost cancel. The utility of cycle expan-
sions of dynamical zeta functions and spectral determinants, lies precisely in
this organization into nearly cancelling combinations: cycle expansions are
dominated by short cycles, with long cycles giving exponentially decaying
corrections.

In the case that there is no finite grammar symbolic dynamics to help
organize the cycles, the best thing to use is a stability cutoff which we
shall discuss in sect. 15.4. The idea is to truncate the cycle expansion by
including only the pseudocycles such that |Λp1 · · ·Λpk

| ≤ Λmax, with the
cutoff Λmax larger than the most unstable Λp in the data set.

15.1.2 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by
first computing the weights tp = tp(β, s) of all prime cycles p of topological
length np ≤ N for given fixed β and s. Denote by subscript (i) the ith
prime cycle computed, ordered by the topological length n(i) ≤ n(i+1). The
dynamical zeta function 1/ζN truncated to the np ≤ N cycles is computed
recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1− t(i)z
n(i)) ,
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–t0
–t1
–t10 + t1t0
–t100 + t10t0
–t101 + t10t1
–t1000 + t100t0
–t1001 + t100t1 + t101t0 – t1t10t0
–t1011 + t101t1
–t10000 + t1000t0
–t10001 + t1001t0 + t1000t1 – t0t100t1
–t10010 + t100t10
–t10101 + t101t10
–t10011 + t1011t0 + t1001t1 – t0t101t1
–t10111 + t1011t1
–t100000 + t10000t0
–t100001 + t10001t0 + t10000t1 – t0t1000t1
–t100010 + t10010t0 + t1000t10 – t0t100t10
–t100011 + t10011t0 + t10001t1 – t0t1001t1
–t100101 –t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 – t0t10t101 – t1t10t100
–t101110 + t10110t1 + t1011t10 – t1t101t10
–t100111 + t10011t1 + t10111t0 – t0t1011t1
–t101111 + t10111t1

Table 15.1: The binary curvature expansion (15.5) up to length 6, listed in such way
that the sum of terms along the pth horizontal line is the curvature ĉp associated with
a prime cycle p, or a combination of prime cycles such as the t100101 + t100110 pair.

and truncating the expansion at each step to a finite polynomial in zn,
n ≤ N . The result is the Nth order polynomial approximation

1/ζN = 1−
N∑

n=1

ĉnzn . (15.6)

In other words, a cycle expansion is a Taylor expansion in the dummy
variable z raised to the topological cycle length. If both the number of
cycles and their individual weights grow not faster than exponentially with
the cycle length, and we multiply the weight of each cycle p by a factor znp ,
the cycle expansion converges for sufficiently small |z|.

If the dynamics is given by iterated mapping, the leading zero of (15.6)
as function of z yields the leading eigenvalue of the appropriate evolution
operator. For continuous time flows, z is a dummy variable that we set to
z = 1, and the leading eigenvalue of the evolution operator is given by the
leading zero of (15.6) as function of s.

15.1.3 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight, det (1− Jp1p2) 	=
det (1− Jp1) det (1− Jp2) , the cycle expansions for the spectral determin-
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ant (12.9) are somewhat less transparent than is the case for the dynamical
zeta functions.

We commence the cycle expansion evaluation of a spectral determinant
by computing recursively the trace formula (11.9) truncated to all prime
cycles p and their repeats such that npr ≤ N :

tr
zL

1− zL

∣∣∣∣
(i)

= tr
zL

1− zL

∣∣∣∣
(i−1)

+ n(i)

n(i)r≤N∑
r=1

e(β·A(i)−sT(i))r∣∣∣∏(
1− Λr

(i),j

)∣∣∣zn(i)r

tr
zL

1− zL

∣∣∣∣
N

=
N∑

n=1

Cnzn , Cn = trLn . (15.7)

This is done numerically: the periodic orbit data set consists of the list
of the cycle periods Tp, the cycle stability eigenvalues Λp,1, Λp,2, . . . ,Λp,d,
and the cycle averages of the observable Ap for all prime cycles p such that
np ≤ N . The coefficient of znpr is then evaluated numerically for the given
(β, s) parameter values. Now that we have an expansion for the trace
formula (11.8) as a power series, we compute the Nth order approximation
to the spectral determinant (12.3)

det (1− zL)|N = 1−
N∑

n=1

Qnzn , Qn = Qn(L) = nth cumulant(15.8)

as follows. The logarithmic derivative relation (12.4) yields

(
tr

zL
1− zL

)
det (1− zL) = −z

d

dz
det (1− zL)

(C1z + C2z
2 + · · ·)(1−Q1z −Q2z

2 − · · ·) = Q1z + 2Q2z
2 + 3Q3z

3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the
cumulant) expansion is given recursively by the trace formula expansion
coefficients

Qn =
1
n

(Cn − Cn−1Q1 − · · ·C1Qn−1) . (15.9)

Given the trace formula (15.7) truncated to zN we now also have the spec-
tral determinant truncated to zN .

The same method can also be used to compute the dynamical zeta
function cycle expansion (15.6), by replacing

∏(
1− Λr

(i),j

)
in (15.7) by

the product of expanding eigenvalues Λ(i) =
∏

e Λ(i),e, as in sect. 12.3.

The calculation of the leading eigenvalue of a given evolution operator
is now straightforward. After the prime cycles and the pseudocycles have
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R:a N . det (s−A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606

Table 15.2: 3-disk repeller escape rates computed from the cycle expansions of the
spectral determinant (12.6) and the dynamical zeta function (12.12), as function of the
maximal cycle length N . The first column indicates the disk-disk center separation to
disk radius ratio R:a, the second column gives the maximal cycle length used, and the
third the estimate of the classical escape rate from the fundamental domain spectral
determinant cycle expansion. As for larger disk-disk separations the dynamics is more
uniform, the convergence is better for R:a = 6 than for R:a = 3. For comparison,
the fourth column lists a few estimates from from the fundamental domain dynamical
zeta function cycle expansion (15.5), and the fifth from the full 3-disk cycle expansion
(15.32). The convergence of the fundamental domain dynamical zeta function is
significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.
(P.E. Rosenqvist.)

been grouped into subsets of equal topological length, the dummy variable
can be set equal to z = 1. With z = 1, expansion (15.8) is the cycle
expansion for (12.6), the spectral determinant det (s − A) . We vary s
in cycle weights, and determine the eigenvalue sα by finding s = sα for
which (15.8) vanishes. The convergence of a leading eigenvalue for a
nice hyperbolic system is illustrated by the listing of pinball escape rate
γ estimates computed from truncations of (15.5) and (15.8) to different
maximal cycle lengths, table 15.2.

The pleasant surprise is that the coefficients in these expansions can be
proven to fall off exponentially or even faster , due to analyticity of det (s−

☞ chapter 13 A) or 1/ζ(s) for s values well beyond those for which the corresponding
trace formula diverges.

15.1.4 Newton algorithm for determination of the evolution
operator eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues
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Figure 15.1: Examples of the complex s plane scans: contour plots of the logarithm
of the absolute values of (a) 1/ζ(s), (b) spectral determinant det (s−A) for the 3-disk
system, separation a : R = 6, A1 subspace are evaluated numerically. The eigenvalues
of the evolution operator L are given by the centers of elliptic neighborhoods of the
rapidly narrowing rings. While the dynamical zeta function is analytic on a strip
Im s ≥ −1, the spectral determinant is entire and reveals further families of zeros.
(P.E. Rosenqvist)

of the evolution operator beyond the leading one. A convenient way to
search for these is by plotting either the absolute magnitude ln |det (1 −
L)| or the phase of spectral determinants and dynamical zeta functions as
functions of complex s. The eye is guided to the zeros of spectral determin-
ants and dynamical zeta functions by means of complex s plane contour
plots, with different intervals of the absolute value of the function under
investigation assigned different colors; zeros emerge as centers of elliptic
neighborhoods of rapidly changing colors. Detailed scans of the whole area
of the complex s plane under investigation and searches for the zeros of
spectral determinants, fig. 15.1, reveal complicated patterns of resonances
even for something so simple as the 3-disk game of pinball. With a good
starting guess (such as a location of a zero suggested by the complex s scan
of fig. 15.1), a zero 1/ζ(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (14.3)

sn+1 = sn −
(

ζ(sn)
∂

∂s
ζ−1(sn)

)−1

= sn −
1/ζ(sn)
〈T〉ζ

. (15.10)

The derivative of 1/ζ(s) required for the Newton iteration is given by the
cycle expansion (15.18) that we need to evaluate anyhow, as 〈T〉ζ enters
our cycle averaging formulas.

15.2 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so
far - the level sum (16.18), the dynamical zeta function (15.2), the spectral
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Figure 15.2: The eigenvalue condition is sat-
isfied on the curve F = 0 the (β, s) plane. The
expectation value of the observable (8.12) is
given by the slope of the curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

determinant (15.8):

1 =
(n)∑
i

ti , ti = ti(β, s(β)) =
1
|Λi|

eβ·Ai−s(β)Ti (15.11)

0 = 1−
∑′

π

tπ , tπ = tπ(z, β, s(β)) (15.12)

0 = 1−
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (15.13)

is an implicit equation for the eigenvalue s = s(β) of form F (β, s(β)) = 0.
The eigenvalue s = s(β) as a function of β is sketched in fig. 15.2; the
eigenvalue condition is satisfied on the curve F = 0. The cycle averaging
formulas for the slope and the curvature of s(β) are obtained by taking
derivatives of the eigenvalue condition. Evaluated along F = 0, the first
derivative leads to

0 =
d

dβ
F (β, s(β))

=
∂F

∂β
+

ds

dβ

∂F

∂s

∣∣∣∣
s=s(β)

=⇒ ds

dβ
= −∂F

∂β
/
∂F

∂s
, (15.14)

and the second derivative of F (β, s(β)) = 0 yields

d2s

dβ2
= −

[
∂2F

∂β2
+ 2

ds

dβ

∂2F

∂β∂s
+

(
ds

dβ

)2 ∂2F

∂s2

]
/
∂F

∂s
. (15.15)

Denoting by

〈A〉F = − ∂F

∂β

∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F

∂s

∣∣∣∣
β,s=s(β)〈

(A− 〈A〉)2
〉
F

=
∂2F

∂β2

∣∣∣∣
β,s=s(β)

(15.16)
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respectively the mean cycle expectation value of A and the mean cycle
period computed from the F (β, s(β)) = 0 condition, we obtain the cycle
averaging formulas for the expectation value of the observable (8.12) and
its variance

〈a〉 =
〈A〉F
〈T〉F〈

(a− 〈a〉)2
〉

=
1
〈T〉F

〈
(A− 〈A〉)2

〉
F

. (15.17)

These formulas are the central result of the periodic orbit theory. As we
shall see below, for each choice of the eigenvalue condition function F (β, s)
in (16.18), (15.2) and (15.8), the above quantities have explicit cycle ex-
pansions.

15.2.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (15.12), the cycle averaging for-
mulas (15.14), (15.17) require evaluation of the derivatives of dynamical
zeta function at a given eigenvalue. Substituting the cycle expansion (15.2)
for dynamical zeta function we obtain

〈A〉ζ := − ∂

∂β

1
ζ

=
∑′

Aπtπ (15.18)

〈T〉ζ :=
∂

∂s

1
ζ

=
∑′

Tπtπ , 〈n〉ζ := −z
∂

∂z

1
ζ

=
∑′

nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average
over prime cycles, Aπ, Tπ, and nπ are evaluated on pseudocycles (15.4), and
pseudocycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).
In most applications, s(β) is typically the leading eigenvalue.

For bounded flows the leading eigenvalue (the escape rate) vanishes,
s(0) = 0, so

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · ·+ Apk

|Λp1 · · ·Λpk
| , (15.19)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period 〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+
(

T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
+
(

T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+
(

T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . . .(15.20)
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Note that the cycle expansions for averages are grouped into the same
shadowing combinations as the dynamical zeta function cycle expansion
(15.5), with nearby pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable
〈a〉 follow by substitution into (15.17). Assuming zero mean drift 〈a〉 = 0,
the cycle expansion for the variance

〈
(A− 〈A〉)2

〉
ζ

is given by

〈
A2

〉
ζ

=
∑′

(−1)k+1 (Ap1 + Ap2 · · ·+ Apk
)2

|Λp1 · · ·Λpk
| . (15.21)

15.2.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple
structure, with the shadowing apparent already by a term-by-term inspec-
tion of table 15.2. For “nice” hyperbolic systems the shadowing ensures
exponential convergence of the dynamical zeta function cycle expansions.
This, however, is not the best achievable convergence. As has been ex-
plained in chapter 13, for such systems the spectral determinant constructed
from the same cycle data base is entire, and its cycle expansion converges
faster than exponentially. Hence in practice, the best convergence is at-
tained by the spectral determinant cycle expansion (15.13) and its deriva-
tives.

The ∂/∂s, ∂/∂β derivatives are in this case computed recursively, by
taking derivatives of the spectral determinant cycle expansion contributions
(15.9) and (15.7). The cycle averaging formulas formulas are exact, and
highly convergent for nice hyperbolic dynamical systems. An example of
its utility is the cycle expansion formula for the Lyapunov exponent of
sect. 15.2.4. Further applications of cycle expansions will be discussed in
chapter 16.

15.2.3 Continuous vs. discrete mean return time

The mean cycle period 〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return
time. For example, if we have evaluated a billiard expectation value 〈a〉
in terms of continuous time, and would like to also have the corresponding
average 〈a〉dscr measured in discrete time given by the number of reflections
off billiard walls, the two averages are related by

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ , (15.22)

where 〈n〉ζ is the average of the number of bounces np along the cycle p.
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15.2.4 Cycle expansion formula for Lyapunov exponents

In sect. 8.3 we defined the Lyapunov exponent for a 1-d mapping, related it
to the leading eigenvalue of an evolution operator and promised to evaluate
it. Now we are finally in position to deliver on our promise.

The cycle averaging formula (15.19) yields a closed expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 |+ · · ·+ log |Λpk

|
|Λp1 · · ·Λpk

| . (15.23)

For a repeller, the 1/|Λp| weights are replaced by normalized measure
(16.10) exp(γnp)/|Λp|, where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such
as our game of pinball there is only one expanding eigenvalue and (15.23)
applies as it stands.

in depth:

chapter H.1, p. 603

15.3 Cycle expansions for finite alphabets

A finite Markov graph like the one given in fig. 10.3(d) is a compact
encoding of the transition or the Markov matrix for a given subshift. It is
a sparse matrix, and the associated determinant (10.17) can be written
down by inspection: it is the sum of all possible partitions of the graph
into products of non-intersecting loops, with each loop carrying a minus
sign:

det (1−T ) = 1− t0− t0011− t0001− t00011 + t0t0011 + t0011t0001(15.24)

The simplest application of this determinant is to the evaluation of the
topological entropy; if we set tp = znp , where np is the length of the p-
cycle, the determinant reduces to the topological polynomial (10.18).

The determinant (15.24) is exact for the finite graph fig. 10.3(e), as
well as for the associated transfer operator of sect. 7.1. For the associated
(infinite dimensional) evolution operator, it is the beginning of the cycle
expansion of the corresponding dynamical zeta function:

1/ζ = 1− t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . . (15.25)
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The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (15.5);
they are not shadowed by any combinations of shorter cycles, and are the
basic building blocks of the dynamics. All other cycles appear together with
their shadows (for example, t00011−t0t0011 combination is of that type) and
yield exponentially small corrections for hyperbolic systems.

For the cycle counting purposes both tab and the pseudocycle combina-
tion ta+b = tatb in (15.2) have the same weight zna+nb , so all curvature com-
binations tab − tatb vanish exactly, and the topological polynomial (10.21)
offers a quick way of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to poly-
nomials, we are assured that there are just a few fundamental cycles and
that all long cycles can be grouped into curvature combinations. For ex-
ample, the fundamental cycles in exercise 9.5 are the three 2-cycles which
bounce back and forth between two disks and the two 3-cycles which visit
every disk. It is only after these fundamental cycles have been included that
a cycle expansion is expected to start converging smoothly, that is, only
for n larger than the lengths of the fundamental cycles are the curvatures
ĉn, a measure of the deviations between long orbits and their short cycle
approximants, expected to fall off rapidly with n.

15.4 Stability ordering of cycle expansions

There is never a second chance. Most often there is
not even the first chance.
John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, so at any
order in z a cycle expansion may contain unmatched terms which do not
fit neatly into the almost cancelling curvature corrections. Similarly, for
intermittent systems that we shall discuss in chapter 18, curvature correc-
tions are in general not small, so again the cycle expansions may converge
slowly. For such systems schemes which collect the pseudocycle terms ac-
cording to some criterion other than the topology of the flow may converge
more quickly than expansions based on the topological length.

All chaotic systems exhibit some degree of shadowing, and a good trun-
cation criterion should do its best to respect the shadowing at least approx-
imately. If a long cycle is shadowed by two or more shorter cycles and the
flow is smooth, the period and the action will be additive in sense that the
period of the longer cycle is approximately the sum of the shorter cycle pe-
riods. Similarly, stability is multiplicative, so shadowing is approximately
preserved by including all terms with pseudocycle stability

|Λp1 · · ·Λpk
| ≤ Λmax (15.26)
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and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately
respect shadowing are truncations by the pseudocycle period (or action)
and the stability ordering that we shall discuss here. In these schemes a
dynamical zeta function or a spectral determinant is expanded keeping all
terms for which the period, action or stability for a combination of cycles
(pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to
the ordering by topological cycle length are the cases of bad grammar and
of intermittency.

15.4.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the phase space
generates the “optimal” symbolic dynamics. Stability ordering does not
require understanding dynamics in such detail: if you can find the cycles,
you can use stability ordered cycle expansions. Stability truncation is thus
easier to implement for a generic dynamical system than the curvature
expansions (15.5) which rely on finite subshift approximations to a given
flow.

Cycles can be detected numerically by searching a long trajectory for
near recurrences. The long trajectory method for finding cycles preferen-
tially finds the least unstable cycles, regardless of their topological length.
Another practical advantage of the method (in contrast to the Newton
method searches) is that it only finds cycles in a given connected ergodic
component of phase space, even if isolated cycles or other ergodic regions
exist elsewhere in the phase space.

Why should stability ordered cycle expansion of a dynamical zeta func-
tion converge better than the rude trace formula (16.9)? The argument
has essentially already been laid out in sect. 10.7: in truncations that re-
spect shadowing most of the pseudocycles appear in shadowning combina-
tions and nearly cancel, and only the relatively small subset affected by
the longer and longer pruning rules appears not shadowed. So the error is
typically of the order of 1/Λ, smaller by factor ehT than the trace formula
(16.9) error, where h is the entropy and T typical cycle length for cycles of
stability Λ.

15.4.2 Smoothing

The breaking of exact shadowing cancellations deserves further
comment. Partial shadowing which may be present can be (partially) re-
stored by smoothing the stability ordered cycle expansions by replacing
the 1/Λ weigth for each term with pseudocycle stability Λ = Λp1 · · ·Λpk

by
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f(Λ)/Λ. Here, f(Λ) is a monotonically decreasing function from f(0) = 1
to f(Λmax) = 0. No smoothing corresponds to a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudo-
cycles of stability Λ separated by ∆Λ, and whose contribution is of opposite
signs. Ignoring possible weighting factors the magnitude of the resulting
term is of order 1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is
an extra term of the form f ′(Λ)∆Λ/Λ, which we want to minimise. A rea-
sonable guess might be to keep f ′(Λ)/Λ constant and as small as possible,
that is

f(Λ) = 1−
(

Λ
Λmax

)2

The results of a stability ordered expansion should always be tested for
robustness by varying the cutoff. If this introduces significant variations,
smoothing is probably necessary.

15.4.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a
cycle expansion than short but highly unstable cycles. In such situation
truncation by length may require an exponentially large number of very
unstable cycles before a significant longer cycle is first included in the ex-
pansion. This situation is best illustrated by intermittent maps that we
shall study in detail in chapter 18, the simplest of which is the Farey map

f(x) =
{

x/(1− x) 0 ≤ x ≤ 1/2 L
(1− x)/x 1/2 ≤ x ≤ 1 R ,

(15.27)

a map which will reappear in the intermittency chapter 18, and in chap-
ter 21, in context of circle maps.

For this map the symbolic dynamics is of complete binary type, so lack
of shadowing is not due to lack of a finite grammar, but rather to the
intermittency caused by the existence of the marginal fixed point xL = 0,
for which the stability equals ΛL = 1. This fixed point does not participate
directly in the dynamics and is omitted from cycle expansions. Its presence
is felt in the stabilities of neighboring cycles with n consecutive repeats
of the symbol L’s whose stability falls of only as Λ ∼ n2, in contrast to
the most unstable cycles with n consecutive R’s which are exponentially
unstable, |ΛLRn | ∼ [(

√
5 + 1)/2]2n.

The symbolic dynamics is of complete binary type, so a quick count in
the style of sect. 10.5.2 leads to a total of 74,248,450 prime cycles of length
30 or less, not including the marginal point xL = 0. Evaluating a cycle
expansion to this order would be no mean computational feat. However, the
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Figure 15.3: Comparison of cycle expansion truncation schemes for the Farey map
(15.27); the deviation of the truncated cycles expansion for |1/ζN (0)| from the exact
flow conservation value 1/ζ(0) = 0 is a measure of the accuracy of the truncation.
The jagged line is logarithm of the stability ordering truncation error; the smooth
line is smoothed according to sect. 15.4.2; the diamonds indicate the error due the
topological length truncation, with the maximal cycle length N shown. They are
placed along the stability cutoff axis at points determined by the condition that the
total number of cycles is the same for both truncation schemes.

least unstable cycle omitted has stability of roughly ΛRL30 ∼ 302 = 900, and
so amounts to a 0.1% correction. The situation may be much worse than
this estimate suggests, because the next, RL31 cycle contributes a similar
amount, and could easily reinforce the error. Adding up all such omitted
terms, we arrive at an estimated error of about 3%, for a cycle-length
truncated cycle expansion based on more than 109 pseudocycle terms! On
the other hand, truncating by stability at say Λmax = 3000, only 409 prime
cycles suffice to attain the same accuracy of about 3% error (see fig. 15.3).

As the Farey map maps the unit interval onto itself, the leading eigen-
value of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) = 0.
Deviation from this exact result serves as an indication of the convergence
of a given cycle expansion. The errors of different truncation schemes are
indicated in fig. 15.3. We see that topological length truncation schemes
are hopelessly bad in this case; stability length truncations are somewhat
better, but still rather bad. In simple cases like this one, where intermit-
tency is caused by a single marginal fixed point, the convergence can be
improved by going to infinite alphabets.

15.5 Dirichlet series

A Dirichlet series is defined as

f(s) =
∞∑

j=1

aje
−λjs (15.28)
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where s, aj are complex numbers, and {λj} is a monotonically increasing
series of real numbers λ1 < λ2 < · · · < λj < · · ·. A classical example of
a Dirichlet series is the Riemann zeta function for which aj = 1, λj = ln j.
In the present context, formal series over individual pseudocycles such as
(15.2) ordered by the increasing pseudocycle periods are often Dirichlet
series. For example, for the pseudocycle weight (15.3), the Dirichlet series
is obtained by ordering pseudocycles by increasing periods λπ = Tp1 +Tp2 +
. . . + Tpk

, with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk

)

|Λp1Λp2 . . .Λpk
| dπ ,

where dπ is a degeneracy factor, in the case that dπ pseudocycles have the
same weight.

If the series
∑
|aj | diverges, the Dirichlet series is absolutely convergent

for Re s > σa and conditionally convergent for Re s > σc, where σa is the
abscissa of absolute convergence

σa = lim
N→∞

sup
1

λN
ln

N∑
j=1

|aj | , (15.29)

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1

λN
ln

∣∣∣∣∣∣
N∑

j=1

aj

∣∣∣∣∣∣ . (15.30)

We shall encounter another example of a Dirichlet series in the semi-
classical quantization chapter 25, where the inverse Planck constant is a
complex variable s = i/�, λπ = Sp1 + Sp2 + . . . + Spk

is the pseudocy-
cle action, and aπ = 1/

√
|Λp1Λp2 . . .Λpk

| (times possible degeneracy and
topological phase factors). As the action is in general not a linear function
of energy (except for billiards and for scaling potentials, where a variable
s can be extracted from Sp), semiclassical cycle expansions are Dirichlet
series in variable s = i/� but not in E, the complex energy variable.

Commentary

Remark 15.1 Pseudocycle expansions. Bowen’s introduction
of shadowing ε-pseudoorbits [1.13] was a significant contribution to
Smale’s theory. Expression “pseudoorbits” seems to have been in-
troduced in the Parry and Pollicott’s 1983 paper [12.5]. Following
them M. Berry [15.9] had used the expression “pseudoorbits” in his
1986 paper on Riemann zeta and quantum chaology. Cycle and curva-
ture expansions of dynamical zeta functions and spectral determinants
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were introduced in refs. [15.10, 15.2]. Some literature [12.14] refers to
the pseudoorbits as “composite orbits”, and to the cycle expansions
as “Dirichlet series” (see also remark 15.6 and sect. 15.5).

Remark 15.2 Cumulant expansion. To statistical mechanician
the curvature expansions are very reminiscent of cumulant expan-
sions. Indeed, (15.9) is the standard Plemelj-Smithies cumulant for-
mula (K.28) for the Fredholm determinant, discussed in more detail
in appendix K.

Remark 15.3 Exponential growth of the number of cycles. Go-
ing from Nn ≈ Nn periodic points of length n to Mn prime cycles
reduces the number of computations from Nn to Mn ≈ Nn−1/n. Use
of discrete symmetries (chapter 19) reduces the number of nth level
terms by another factor. While the formulation of the theory from
the trace (11.24) to the cycle expansion (15.5) thus does not eliminate
the exponential growth in the number of cycles, in practice only the
shortest cycles are used, and for them the computational labor saving
can be significant.

Remark 15.4 Shadowing cycle-by-cycle. A glance at the low
order curvatures in the table 15.1 leads to a temptation of associating
curvatures to individual cycles, such as ĉ0001 = t0001 − t0t001. Such
combinations tend to be numerically small (see for example ref. [15.3],
table 1). However, splitting ĉn into individual cycle curvatures is not
possible in general [9.34]; the first example of such ambiguity in the
binary cycle expansion is given by the t001011, t010011 0 ↔ 1 symmetric
pair of 6-cycles; the counterterm t001t011 in table 15.1 is shared by the
two cycles.

Remark 15.5 Stability ordering. The stability ordering was in-
troduced by Dahlqvist and Russberg [15.12] in a study of chaotic
dynamics for the (x2y2)1/a potential. The presentation here runs
along the lines of Dettmann and Morriss [15.13] for the Lorentz gas
which is hyperbolic but the symbolic dynamics is highly pruned, and
Dettmann and Cvitanović [15.14] for a family of intermittent maps.
In the applications discussed in the above papers, the stability or-
dering yields a considerable improvement over the topological length
ordering.

Remark 15.6 Are cycle expansions Dirichlet series? Even though
some literature [12.14] refers to cycle expansions as “Dirichlet series”,
they are not Dirichlet series. Cycle expansions collect contributions
of individual cycles into groups that correspond to the coefficients in
cumulant expansions of spectral determinants, and the convergence of
cycle expansions is controlled by general properties of spectral deter-
minants. Dirichlet series order cycles by their periods or actions, and
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are only conditionally convergent in regions of interest. The abscissa
of absolute convergence is in this context called the “entropy barrier”;
contrary to the frequently voiced anxieties, this number does not nec-
essarily have much to do with the actual convergence of the theory.

Résumé

A cycle expansion is a series representation of a dynamical zeta function,
trace formula or a spectral determinant, with products in (12.12), (26.18)
expanded as sums over pseudocycles, products of the prime cycle weigths
tp.

If a flow is hyperbolic and has a topology of a Smale horseshoe, the
associated zeta functions have nice analytic structure: the dynamical zeta
functions are holomorphic, the spectral determinants are entire, and the
spectrum of the evolution operator is discrete. The situation is considerably
more reassuring than what practitioners of quantum chaos fear; there is no
“abscissa of absolute convergence” and no “entropy barier”, the exponential
proliferation of cycles is no problem, spectral determinants are entire and
converge everywhere, and the topology dictates the choice of cycles to be
used in cycle expansion truncations.

The basic observation is that the motion in dynamical systems of few
degrees of freedom is in this case organized around a few fundamental cycles,
with the cycle expansion of the Euler product

1/ζ = 1−
∑

f

tf −
∑

n

ĉn,

regrouped into dominant fundamental contributions tf and decreasing cur-
vature corrections ĉn. The fundamental cycles tf have no shorter approxi-
mants; they are the “building blocks” of the dynamics in the sense that all
longer orbits can be approximately pieced together from them. A typical
curvature contribution to ĉn is a difference of a long cycle {ab} minus its
shadowing approximation by shorter cycles {a} and {b}:

tab − tatb = tab(1− tatb/tab)

The orbits that follow the same symbolic dynamics, such as {ab} and a
“pseudocycle” {a}{b}, lie close to each other, have similar weights, and for
longer and longer orbits the curvature corrections fall off rapidly. Indeed,
for systems that satisfy the “axiom A” requirements, such as the open disks
billiards, curvature expansions converge very well.

Once a set of the shortest cycles has been found, and the cycle periods,
stabilities and integrated observable computed, the cycle averaging formulas

〈a〉 = 〈A〉ζ / 〈T〉ζ
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〈A〉ζ = − ∂

∂β

1
ζ

=
∑′

Aπtπ , 〈T〉ζ =
∂

∂s

1
ζ

=
∑′

Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–
wandering set) of the observable a(x).
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plications”, Nonlinearity 3, 361 (1990).

[15.4] S. Grossmann and S. Thomae, Z. Naturforsch. 32 a, 1353 (1977); reprinted
in ref. [15.5].

[15.5] Universality in Chaos, 2. edition, P. Cvitanović, ed., (Adam Hilger, Bristol
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Exercises

Exercise 15.1 Cycle expansions. Write programs that implement binary
symbolic dynamics cycle expansions for (a) dynamical zeta functions, (b) spec-
tral determinants. Combined with the cycles computed for a 2-branch repeller
or a 3-disk system they will be useful in problem that follow.

Exercise 15.2 Escape rate for a 1-d repeller. (Continuation of exer-
cise 12.1 - easy, but long)
Consider again the quadratic map (12.31)

f(x) = Ax(1− x)

on the unit interval, for definitivness take either A = 9/2 or A = 6. Describing
the itinerary of any trajectory by the binary alphabet {0, 1} (’0’ if the iterate
is in the first half of the interval and ’1’ if is in the second half), we have a
repeller with a complete binary symbolic dynamics.

(a) Sketch the graph of f and determine its two fixed points 0 and 1, together
with their stabilities.

(b) Sketch the two branches of f−1. Determine all the prime cycles up to
topological length 4 using your pocket calculator and backwards iteration
of f (see sect. 14.1.1).

(c) Determine the leading zero of the zeta function (12.12) using the weigths
tp = znp/|Λp| where Λp is the stability of the p cycle.

(d) Show that for A = 9/2 the escape rate of the repeller is 0.361509 . . .
using the spectral determinant, with the same cycle weight. If you have
taken A = 6, the escape rate is in 0.83149298 . . ., as shown in solu-
tion 15.2. Compare the coefficients of the spectral determinant and the
zeta function cycle expansions. Which expansion converges faster?

(Per Rosenqvist)

Exercise 15.3 Escape rate for the Ulam map. Check that the escape rate
for the Ulam map, A = 4 in (12.31)

f(x) = 4x(1− x),

equals zero. You might note that the convergence as function of the truncation cycle

length is slow. Try to fix that by treating the Λ0 = 4 cycle separately.

Exercise 15.4 Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate for R : a = 6 by substituting analytical cycle stabilities
and periods (exercise 5.5 and exercise 5.6) into the appropriate binary cycle
expansion. Compare with the numerical estimate exercise 12.12
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Exercise 15.5 Pinball escape rate, from numerical cycles. Compute
the escape rate for R : a = 6 3-disk pinball by substituting list of numerically
computed cycle stabilities of exercise 14.6 into the binary cycle expansion.

Exercise 15.6 Pinball resonances, in the complex plane. Plot the logarithm

of the absolute value of the dynamical zeta function and/or the spectral determinant

cycle expansion (15.5) as contour plots in the complex s plane. Do you find zeros

other than the one corresponding to the complex one? Do you see evidence for a finite

radius of convergence for either cycle expansion?

Exercise 15.7 Counting the 3-disk pinball counterterms. Verify that the
number of terms in the 3-disk pinball curvature expansion (15.31) is given by

∏
p

(1 + tp) =
1− 3z4 − 2z6

1− 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)
1− 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit

3-disk cycle expansion (15.32).

Exercise 15.8 3–disk unfactorized zeta cycle expansions. Check that the
curvature expansion (15.2) for the 3-disk pinball, assuming no symmetries between
disks, is given by

1/ζ = (1− z2t12)(1− z2t13)(1− z2t23)(1− z3t123)(1− z3t132)
(1− z4t1213)(1− z4t1232)(1− z4t1323)(1− z5t12123) · · ·

= 1− z2t12 − z2t23 − z2t31 − z3t123 − z3t132

−z4[(t1213 − t12t13) + (t1232 − t12t23) + (t1323 − t13t23)]
−z5[(t12123 − t12t123) + · · ·]− · · · (15.31)

The symmetrically arranged 3-disk pinball cycle expansion of the Euler product
(15.2) (see table 10.4 and fig. 19.2) is given by:

1/ζ = (1− z2t12)3(1− z3t123)2(1− z4t1213)3

(1− z5t12123)6(1− z6t121213)6(1− z6t121323)3 . . .

= 1− 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t212)− 6z5 (t12123 − t12t123)
−z6 (6 t121213 + 3 t121323 + t312 − 9 t12t1213 − t2123)
−6z7 (t1212123 + t1212313 + t1213123 + t212t123 − 3 t12t12123 − t123t1213)
−3z8 (2 t12121213 + t12121313 + 2 t12121323 + 2 t12123123

+ 2 t12123213 + t12132123 + 3 t212t1213 + t12t
2
123

− 6 t12t121213 − 3 t12t121323 − 4 t123t12123 − t21213)− · · · (15.32)

Remark 15.7 Unsymmetrized cycle expansions. The above 3-disk
cycle expansions might be useful for cross-checking purposes, but, as we
shall see in chapter 19, they are not recommended for actual computa-
tions, as the factorized zeta functions yield much better convergence.
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Exercise 15.9 4–disk unfactorized dynamical zeta function cycle expansions
For the symmetriclly arranged 4-disk pinball the symmetry group is C4v, of order 8.
The degenerate cycles can have multiplicities 2, 4 or 8 (see table 10.2):

1/ζ = (1− z2t12)4(1− z2t13)2(1− z3t123)8(1− z4t1213)8(1− z4t1214)4

(1− z4t1234)2(1− z4t1243)4(1− z5t12123)8(1− z5t12124)8(1− z5t12134)8

(1− z5t12143)8(1− z5t12313)8(1− z5t12413)8 · · · (15.33)

and the cycle expansion is given by

1/ζ = 1− z2(4 t12 + 2 t13)− 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243 − 6 t212 − t213 − 8 t12t13)
−8z5(t12123 + t12124 + t12134 + t12143 + t12313 + t12413 − 4 t12t123 − 2 t13t123)
−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t

2
13 − 8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243 − 4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2123)− · · · (15.34)

where in the coefficient to z6 the abbreviations S8 and S4 stand for the sums over

the weights of the 12 orbits with multiplicity 8 and the 5 orbits of multiplicity 4,

respectively; the orbits are listed in table 10.4.

Exercise 15.10 Tail resummations. A simple illustration of such tail resum-
mation is the ζ function for the Ulam map (14.35) for which the cycle structure is
exceptionally simple: the eigenvalue of the x0 = 0 fixed point is 4, while the eigenvalue
of any other n-cycle is ±2n. Typical cycle weights used in thermodynamic averaging
are t0 = 4τz, t1 = t = 2τz, tp = tnp for p 	= 0. The simplicity of the cycle eigenvalues
enables us to evaluate the ζ function by a simple trick: we note that if the value of
any n-cycle eigenvalue were tn, (12.18) would yield 1/ζ = 1 − 2t. There is only one
cycle, the x0 fixed point, that has a different weight (1 − t0), so we factor it out,
multiply the rest by (1− t)/(1− t), and obtain a rational ζ function

1/ζ(z) =
(1− 2t)(1− t0)

(1− t)
(15.35)

Consider how we would have detected the pole at z = 1/t without the above trick.
As the 0 fixed point is isolated in its stability, we would have kept the factor (1− t0) in
(15.5) unexpanded, and noted that all curvature combinations in (15.5) which include
the t0 factor are unbalanced, so that the cycle expansion is an infinite series:

∏
p

(1− tp) = (1− t0)(1− t− t2 − t3 − t4 − . . .) (15.36)

(we shall return to such infinite series in chapter 18). The geometric series in the

brackets sums up to (15.35). Had we expanded the (1 − t0) factor, we would have

noted that the ratio of the successive curvatures is exactly cn+1/cn = t; summing we

would recover the rational ζ function (15.35).
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Chapter 16

Why cycle?

“Progress was a labyrinth ... people plunging blindly
in and then rushing wildly back, shouting that they
had found it ... the invisible king the lan vital the
principle of evolution ... writing a book, starting a
war, founding a school....”
F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the
evolution operator formalism. Here we slow down in order to develop some
fingertip feeling for the traces of evolution operators. We start out by ex-
plaining how qualitatively how local exponential instability and exponential
growth in topologically distinct trajectories lead to a global exponential in-
stability.

16.1 Escape rates

We start by verifying the claim (8.11) that for a nice hyperbolic flow the
trace of the evolution operator grows exponentially with time. Consider
again the game of pinball of fig. 1.1. Designate by M a phase space region
that encloses the three disks, say the surface of the table × all pinball
directions. The fraction of initial points whose trajectories start out within
the phase space region M and recur within that region at the time t is
given by

Γ̂M(t) =
1
|M|

∫ ∫
M

dxdy δ
(
y − f t(x)

)
. (16.1)

This quantity is eminently measurable and physically interesting in a vari-
ety of problems spanning from nuclear physics to celestial mechanics. The
integral over x takes care of all possible initial pinballs; the integral over y
checks whether they are still within M by the time t. If the dynamics is
bounded, and M envelops the entire accessible phase space, Γ̂M(t) = 1 for
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all t. However, if trajectories exit M the recurrence fraction decreases with
time. For example, any trajectory that falls off the pinball table in fig. 1.1
is gone for good.

These observations can be made more concrete by examining the pinball
phase space of fig. 1.8. With each pinball bounce the initial conditions that
survive get thinned out, each strip yielding two thiner strips within it. The
total fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (16.2)

where i is a binary label of the ith strip, and |Mi| is the area of the ith
strip. The phase space volume is preserved by the flow, so the strips of
survivors are contracted along the stable eigendirections, and ejected along
the unstable eigendirections. As a crude estimate of the number of survivors
in the ith strip, assume that the spreading of a ray of trajectories per
bounce is given by a factor Λ, the mean value of the expanding eigenvalue
of the corresponding Jacobian matrix of the flow, and replace |Mi| by the
phase space strip width estimate |Mi|/|M| ∼ 1/Λi. This estimate of a
size of a neighborhood (given already on p. 71) is right in spirit, but not
without drawbacks. One problem is that in general the eigenvalues of a
Jacobian matrix have no invariant meaning; they depend on the choice of
coordinates. However, we saw in chapter 11 that the sizes of neighborhoods
are determined by stability eigenvalues of periodic points, and those are
invariant under smooth coordinate transformations.

In this approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1
Λ

+
1
Λ

, · · · , Γ̂n ∼
2n

Λn
= e−n(λ−h) := e−nγ , (16.3)

up to preexponential factors. We see here the interplay of the two key
ingredients of chaos first alluded to in sect. 1.3.1: the escape rate γ equals
local expansion rate (the Lyapunov exponent λ = ln Λ), minus the rate of
global reinjection back into the system (the topological entropy h = ln 2).
As we shall see in (17.16), with correctly defined “entropy” this result is
exact.

As at each bounce one loses routinely the same fraction of trajectories,
one expects the sum (16.2) to fall off exponentially with n. More precisely,
by the hyperbolicity assumption of sect. 11.1.1 the expanding eigenvalue of
the Jacobian matrix of the flow is exponentially bounded from both above
and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (16.4)

and the area of each strip in (16.2) is bounded by |Λ−n
max| ≤ |Mi| ≤

|Λ−n
min|. Replacing |Mi| in (16.2) by its over (under) estimates in terms

getused - 2mar2003 draft 9.4.0, June 18 2003



16.1. ESCAPE RATES 295

of |Λmax|, |Λmin| immediately leads to exponential bounds (2/|Λmax|)n ≤
Γ̂n ≤ (2/|Λmin|)n , that is

ln |Λmax| ≥ −
1
n

ln Γ̂n + ln 2 ≥ ln |Λmin| . (16.5)

The argument based on (16.5) establishes only that the sequence γn =
− 1

n ln Γn has a lower and an upper bound for any n. In order to prove that
γn converge to the limit γ, we first show that for hyperbolic systems the
sum over survivor intervals (16.2) can be replaced by the sum over periodic
orbit stabilities. By (16.4) the size of Mi strip can be bounded by the
stability Λi of ith periodic point:

C1
1
|Λi|

<
|Mi|
|M| < C2

1
|Λi|

, (16.6)

for any periodic point i of period n, with constants Cj dependent on the
dynamical system but independent of n. The meaning of these bounds
is that for longer and longer cycles in a system of bounded hyperbolicity,
the shrinking of the ith strip is better and better approximated by by the
derivaties evaluated on the periodic point within the strip. Hence the
survival probability can be bounded close to the cycle point stability sum

Ĉ1 Γn <

(n)∑
i

|Mi|
|M| < Ĉ2 Γn , (16.7)

where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (11.22). In this way we
have established that for hyperbolic systems the survival probability sum
(16.2) can be replaced by the periodic orbit sum (11.22).

We conclude that for hyperbolic, locally unstable flows the fraction
(16.1) of initial x whose trajectories remain trapped within M up to time
t is expected to decay exponentially,

ΓM(t) ∝ e−γt ,

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (16.8)

✎ 16.1
page 304

✎ 7.4
page 115

16.1.1 Periodic orbit averages

We now refine the reasoning of sect. 16.1. Consider the trace (11.6) in the
asymptotic limit (11.21):

trLn =
∫

dx δ(x− fn(x)) eβAn(x) ≈
(n)∑
i

eβAn(xi)

|Λi|
.
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The factor 1/|Λi| was interpreted in (16.2) as the area of the ith phase space
strip. Hence trLn is a discretization of the integral

∫
dxeβAn(x) approxi-

mated by a tessellation into strips centered on periodic points xi, fig. 1.9,
with the volume of the ith neighborhood given by estimate |Mi| ∼ 1/|Λi|,
and eβAn(x) estimated by eβAn(xi), its value at the ith periodic point. If
the symbolic dynamics is a complete, any rectangle [s−m · · · s0.s1s2 · · · sn]
always contains the cycle point s−m · · · s0s1s2 · · · sn; hence even though the
periodic points are of measure zero (just like rationals in the unit inter-
val), they are dense on the non–wandering set. Equiped with a measure
for the associated rectangle, periodic orbits suffice to cover the entire non–
wandering set. The average of eβAn

evaluated on the non–wandering set is
therefore given by the trace, properly normalized so 〈1〉 = 1:

〈
eβAn

〉
n
≈
∑(n)

i eβAn(xi)/|Λi|∑(n)
i 1/|Λi|

=
(n)∑
i

µi e
βAn(xi) . (16.9)

Here µi is the normalized natural measure

(n)∑
i

µi = 1 , µi = enγ/|Λi| , (16.10)

correct both for the closed systems as well as the open systems of sect. 8.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary
lattice (for a critique, see sect. 8.4), the periodic orbit theory is smart, as
it automatically partitions integrals by the intrinsic topology of the flow,
and assigns to each tile the invariant natural measure µi.

16.1.2 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 8.1 was to evaluate the space and time averaged expecta-
tion value (8.9). An average over all periodic orbits can accomplish the job
only if the periodic orbits fully explore the asymptotically accessible phase
space.

Why should the unstable periodic points end up being dense? The cy-
cles are intuitively expected to be dense because on a connected chaotic set
a typical trajectory is expected to behave ergodically, and pass infinitely
many times arbitrarily close to any point on the set, including the initial
point of the trajectory itself. The argument is more or less the following.
Take a partition of M in arbitrarily small regions, and consider particles
that start out in region Mi, and return to it in n steps after some peregri-
nation in phase space. In particular, a particle might return a little to the
left of its original position, while a close neighbor might return a little to
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the right of its original position. By assumption, the flow is continuous, so
generically one expects to be able to gently move the initial point in such
a way that the trajectory returns precisely to the initial point, that is one
expects a periodic point of period n in cell i. (This is by no means guar-
anteed to always work, and it must be checked for the particular system
at hand. A variety of ergodic but insufficiently mixing counter-examples
can be constructed - the most familiar being a quasiperiodic motion on a
torus.) As we diminish the size of regions Mi, aiming a trajectory that
returns to Mi becomes increasingly difficult. Therefore, we are guaranteed
that unstable (because of the expansiveness of the map) orbits of larger and
larger period are densely interspersed in the asymptotic non–wandering set.

16.2 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remain confined for
all times, escape rate (16.8) equals γ = −s0 = 0, and the leading eigen-
value (J.2) of the Perron-Frobenius operator (7.10) is simply exp(−tγ) = 1.
Conservation of material flow thus implies that for bound flows cycle expan-
sions of dynamical zeta functions and spectral determinants satisfy exact
flow conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk
| = 0

F (0, 0) = 1−
∞∑

n=1

cn(0, 0) = 0 (16.11)

obtained by setting s = 0 in (15.12), (15.13) cycle weights tp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the
observable a(x) under investigation, but only on the cycle stabilities Λp,1,
Λp,2, · · ·, Λp,d, and their significance is purely geometric: they are a mea-
sure of how well periodic orbits tesselate the phase space. Conservation of
material flow provides the first and very useful test of the quality of finite
cycle length truncations, and is something that you should always check
first when constructing a cycle expansion for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes
in two varieties, one for the maps, and another for the flows. By flow
conservation the leading eigenvalue is s0 = 0, and for maps (15.11) yields

trLn =
∑

i∈Fixfn

1
|det (1− Jn(xi)) |

= 1 + es1n + . . . . (16.12)

For flows one can apply this rule by grouping together cycles from t = T
to t = T + ∆T

1
∆T

T≤rTp≤T+∆T∑
p,r

Tp∣∣det
(
1− Jr

p

)∣∣ =
1

∆T

∫ T+∆T

T
dt
(
1 + es1t + . . .

)
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= 1 +
1

∆T

∞∑
α=1

esαT

sα

(
esα∆T − 1

)
≈ 1 + es1T + · · · .(16.13)

As is usual for the the fixed level trace sums, the convergence of (16.12) is
controled by the gap between the leading and the next-to-leading eigenval-
ues of the evolution operator.

16.3 Correlation functions

The time correlation function CAB(t) of two observables A and B along the
trajectory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) .(16.14)

If the system is ergodic, with invariant continuous measure �(x)dx, then
correlation functions do not depend on x0 (apart from a set of zero mea-
sure), and may be computed by a phase average as well

CAB(t) =
∫
M

dx0 �(x0)A(f t(x0))B(x0) . (16.15)

For a chaotic system we expect that time evolution will loose the informa-
tion contained in the initial conditions, so that CAB(t) will approach the
uncorrelated limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of
correlation functions

ĈAB := CAB − 〈A〉 〈B〉 (16.16)

for any pair of observables coincides with the definition of mixing, a fun-
damental property in ergodic theory. We now assume 〈B〉 = 0 (otherwise
we may define a new observable by B(x) − 〈B〉). Our purpose is now to
connect the asymptotic behavior of correlation functions with the spectrum
of L. We can write (16.15) as

C̃AB(t) =
∫
M

dx

∫
M

dy A(y)B(x)�(x)δ(y − f t(x)),

and recover the evolution operator

C̃AB(t) =
∫
M

dx

∫
M

dy A(y)Lt(y, x)B(x)�(x)

We also recall that in sect. 7.1 we showed that ρ(x) is the eigenvector
of L corresponding to probability conservation∫

M
dy Lt(x, y)ρ(y) = ρ(x) .
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Now, we can expand the x dependent part in terms of the eigenbasis of L:

B(x)�(x) =
∞∑

α=0

cαϕα(x),

where ϕ0 = �(x). Since the average of the left hand side is zero the coeffi-
cient c0 must vanish. The action of L then can be written as

C̃AB(t) =
∑
α 
=0

e−sαtcα

∫
M

dy A(y)ϕα(y). (16.17)

✎ 16.2
page 304We see immediately that if the spectrum has a gap, that is the second

largest leading eigenvalue is isolated from the largest eigenvalue (s0 = 0)
then (16.17) implies an exponential decay of correlations

C̃AB(t) ∼ e−νt.

The correlation decay rate ν = s1 then depends only on intrinsic properties
of the dynamical system (the position of the next-to-leading eigenvalue of
the Perron-Frobenius operator), while the choice of particular observables
influences just the prefactor.

The importance of correlation functions, beyond the mentioned theoret-
ical features, is that they are often accessible from time series measurable
in laboratory experiments and numerical simulations: moreover they are
linked to transport exponents.

16.4 Trace formulas vs. level sums

Trace formulas (11.9) and (11.19) diverge precisely where one would like to
use them, at s equal to eigenvalues sα. Instead, one can proceed as follows;
according to (11.23) the “level” sums (all symbol strings of length n) are
asymptotically going like es0n

∑
i∈Fixfn

eβAn(xi)

|Λi|
= es0n ,

so an nth order estimate s(n) is given by

1 =
∑

i∈Fixfn

eβAn(xi)e−s(n)n

|Λi|
(16.18)

which generates a “normalized measure”. The difficulty with estimating
this n →∞ limit is at least twofold:
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1. due to the exponential growth in number of intervals, and the expo-
nential decrease in attainable accuracy, the maximal n attainable experi-
mentally or numerically is in practice of order of something between 5 to
20.

2. the preasymptotic sequence of finite estimates s(n) is not unique,
because the sums Γn depend on how we define the escape region, and
because in general the areas Mi in the sum (16.2) should be weighted by
the density of initial conditions x0. For example, an overall measuring unit
rescaling Mi → αMi introduces 1/n corrections in s(n) defined by the log
of the sum (16.8): s(n) → s(n) − lnα/n. This can be partially fixed by
defining a level average

〈
eβA(s)

〉
(n)

:=
∑

i∈Fixfn

eβAn(xi)esn

|Λi|
(16.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉

(n)

.

This avoids the worst problem with the formula (16.18), the inevitable 1/n
corrections due to its lack of rescaling invariance. However, even though
much published pondering of “chaos” relies on it, there is no need for such
gymnastics: the dynamical zeta functions and spectral determinants are
already invariant under all smooth nonlinear conjugacies x → h(x), not
only linear rescalings, and require no n → ∞ extrapolations. Comparing
with the cycle expansions (15.5) we see what the difference is; while in the
level sum approach we keep increasing exponentially the number of terms
with no reference to the fact that most are already known from shorter
estimates, in the cycle expansions short terms dominate, longer ones enter
only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization in-
dependent: both

∣∣det
(
1− Jp

)∣∣ = |det (1 − JTp(x))| and eβAp = eβATp(x)

contribution to the cycle weight tp are independent of the starting periodic
point point x. For the Jacobian matrix Jp this follows from the chain rule
for derivatives, and for eβAp from the fact that the integral over eβAt(x) is
evaluated along a closed loop. In addition,

∣∣det
(
1− Jp

)∣∣ is invariant under
smooth coordinate transformations.

16.4.1 Equipartition measures

There exist many strange sets which cannot be partitioned by the
topology of a dynamical flow: some well known examples are the Mandel-
brot set, the period doubling repeller and the probabilistically generated
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fractal aggregates. In such cases the choice of measure is wide open. One
easy choice is the equipartition or cylinder measure: given a symbolic dy-
namics partition, weigh all symbol sequences of length n equally. Given
a symbolic dynamics, the equipartition measure is easy to implement:
the rate of growth of the number of admissible symbol sequences Kn with
the sequence length n is given by the topological entropy h (discussed in
sect. 10.1) and the equipartition measure for the ith region Mi is simply

∆µi = 1/Kn → e−nh . (16.20)

The problem with the equipartition measure is twofold: it usually has no
physical basis, and it is not an intrinsic invariant property of the strange set,
as it depends on the choice of a partition. One is by no means forced to use
either the natural or the equipartition measure; there is a variety of other
choices, depending on the problem. Also the stability eigenvalues Λi need
not refer to motion in the dynamical space; in more general settings it can
be a renormalization scaling function, or even a scaling function describing
a non–wandering set in the parameter space (sect. 21.3).

Commentary

Remark 16.1 Nonhyperbolic measures. µi = 1/|Λi| is the natu-
ral measure only for the strictly hyperbolic systems. For non-hyperbolic
systems, the measure develops folding cusps. For example, for Ulam
type maps (unimodal maps with quadratic critical point mapped onto
the “left” unstable fixed point x0, discussed in more detail in chap-
ter 18), the measure develops a square-root singularity on the 0 cycle:

µ0 =
1

|Λ0|1/2
. (16.21)

The thermodynamics averages are still expected to converge in the
“hyperbolic” phase where the positive entropy of unstable orbits dom-
inates over the marginal orbits, but they fail in the “non-hyperbolic”
phase. The general case remains unclear, and we refer the reader to
the literature [H.19, H.15, H.12, 9.23].

Remark 16.2 Trace formula periodic orbit averaging. The cy-
cle averaging formulas are not the first thing that one would intu-
itively write down; the approximate trace formulas are more accessibly
heuristically. The trace formula averaging (16.13) seems to have be
discussed for the first time by Hannay and Ozorio de Almeida [H.1,
6.11]. Another novelty of the cycle averaging formulas and one of
their main virtues, in contrast to the explicit analytic results such
as those of ref. [15.4], is that their evaluation does not require any
explicit construction of the (coordinate dependent) eigenfunctions of
the Perron-Frobenius operator (that is, the natural measure ρ0).
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Remark 16.3 The choice of observables We have been quite
sloppy on the mathematical side, as in discussing the spectral features
of L the choice of the function space is crucial (especially when one is
looking beyond the dominant eigenvalue). As a matter of fact in the
function space where usually ergodic properties are defined, L2(dµ)
there is no gap, due to unitarity property of the Koopman operator:
this means that there exist (ugly yet summable) functions for which
no exponential decay is present even if the Fredholm determinant has
isolated zeroes. A particularly nice example is worked out in [H.21],
and a more mathematical argument is presented in [H.22].

Remark 16.4 Lattice models The relationship between the
spectral gap and exponential decay properties is very well known in
the statistical mechanical framework, where one deals with spatial cor-
relations in lattice systems and links them to the gap of the transfer
matrix.

Remark 16.5 Role of noise in dynamical systems. In most prac-
tical applications in addition to the chaotic deterministic dynamics
there is always an additional external noise. The noise can be char-
acterized by its strength σ and distribution. Lyapunov exponents,
correlation decay and dynamo rate can be defined in this case the
same way as in the deterministic case. We can think that noise com-
pletely destroys the results derived here. However, one can show that
the deterministic formulas remain valid until the noise level is small. A
small level of noise even helps as it makes the dynamics ergodic. Non-
communicating parts of the phase space become weakly connected due
to the noise. This is a good argument to explain why periodic orbit
theory works in non-ergodic systems. For small amplitude noise one
can make a noise expansion

λ = λ0 + λ1σ
2 + λ2σ

4 + ...,

around the deterministic averages λ0. The expansion coefficients
λ1, λ2, ... can also be expressed via periodic orbit formulas. The cal-
culation of these coefficients is one of the challenges facing periodic
orbit theory today.

Résumé

We conclude this chapter by a general comment on the relation of the finite
trace sums such as (16.2) to the spectral determinants and dynamical zeta
functions. One might be tempted to believe that given a deterministic rule,
a sum like (16.2) could be evaluated to any desired precision. For short
finite times this is indeed true: every region Mi in (16.2) can be accurately
delineated, and there is no need for fancy theory. However, if the dynamics
is unstable, local variations in initial conditions grow exponentially and in
finite time attain the size of the system. The difficulty with estimating
the n →∞ limit from (16.2) is then at least twofold:
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1. due to the exponential growth in number of intervals, and the expo-
nential decrease in attainable accuracy, the maximal n attainable experi-
mentally or numerically is in practice of order of something between 5 to
20;

2. the preasymptotic sequence of finite estimates γn is not unique,
because the sums Γn depend on how we define the escape region, and
because in general the areas Mi in the sum (16.2) should be weighted by
the density of initial x0.

In contrast, the dynamical zeta functions and spectral determinants are
already invariant under all smooth nonlinear conjugacies x → h(x), not
only linear rescalings, and require no n →∞ extrapolations.
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Exercises

Exercise 16.1 Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining trapped in the interval
[0, 1] for the logistic map

f(x) = a(1− 4(x− 0.5)2), (16.22)

and determine the a dependence of the escape rate γ(a) numerically.

(b) Work out a numerical method for calculating the lengths of intervals of
trajectories remaining stuck for n iterations of the map.

(c) What is your expectation about the a dependence near the critical value
ac = 1?

Exercise 16.2 Four scale map decay. Compute the second largest eigenvalue
of the Perron-Frobenius operator for the four scale map

f(x) =


a1x if 0 < x < b/a1,
(1− b)((x− b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x− b) if b < x < b + b/a2,
(1− b)((x− b− b/a2)/(1− b− b/a2)) + b if b + b/a2 < x < 1.

(16.23)

Exercise 16.3 Lyapunov exponents for 1-dimensional maps. Extend
your cycle expansion programs so that the first and the second moments of
observables can be computed. Use it to compute the Lyapunov exponent for
some or all of the following maps:

(a) the piecewise-linear flow conserving map, the skew tent map

f(x) =
{

ax if 0 ≤ x ≤ a−1,
a

a−1(1− x) if a−1 ≤ x ≤ 1.

(b) the Ulam map f(x) = 4x(1− x)

(c) the skew Ulam map

f(x) = 0.1218x(1− x)(1− 0.6x)

with a peak at 0.7.

(d) the repeller of f(x) = Ax(1− x), for either A = 9/2 or A = 6 (this is a
continuation of exercise 15.2).
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(e) for the 2-branch flow conserving map

f0(x) =
h− p +

√
(h− p)2 + 4hx

2h
, x ∈ [0, p] (16.24)

f1(x) =
h + p− 1 +

√
(h + p− 1)2 + 4h(x− p)

2h
, x ∈ [p, 1]

This is a nonlinear perturbation of (h = 0) Bernoulli map (13.10);
the first 15 eigenvalues of the Perron-Frobenius operator are listed in
ref. [16.1] for p = 0.8, h = 0.1. Use these parameter values when
computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases (c), (d) and (e)
require numerical computation of cycle stabilities. Just to see whether the
theory is worth the trouble, also cross check your cycle expansions results
for cases (c) and (d) with Lyapunov exponent computed by direct numerical
averaging along trajectories of randomly chosen initial points:

(f) trajectory-trajectory separation (8.23) (hint: rescale δx every so often,
to avoid numerical overflows),

(g) iterated stability (8.27).

How good is the numerical accuracy compared with the periodic orbit theory
predictions?

draft 9.4.0, June 18 2003 exerGetused - 27aug2001





Chapter 17

Thermodynamic formalism

So, naturalists observe, a flea hath smaller fleas that
on him prey; and those have smaller still to bite ’em;
and so proceed ad infinitum.
Jonathan Swift

(G. Vattay)

In the preceding chapters we characterized chaotic systems via global quan-
tities such as averages. It turned out that these are closely related to very
fine details of the dynamics like stabilities and time periods of individual pe-
riodic orbits. In statistical mechanics a similar duality exists. Macroscopic
systems are characterized with thermodynamic quantities (pressure, tem-
perature and chemical potential) which are averages over fine details of the
system called microstates. One of the greatest achievements of the theory
of dynamical systems was when in the sixties and seventies Bowen, Ruelle
and Sinai made the analogy between these two subjects explicit. Later this
“Thermodynamic Formalism” of dynamical systems became widely used
when the concept of fractals and multifractals has been introduced. The
formalism made it possible to calculate various fractal dimensions in an
elegant way and become a standard instrument in a wide range of scientific
fields. Next we sketch the main ideas of this theory and show how periodic
orbit theory helps to carry out calculations.

17.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be char-
acterized by their symbolic sequences from a generating Markov partition.
We can locate the set of starting points Ms1s2...sn of trajectories whose
symbol sequence starts with a given set of n symbols s1s2...sn. We can
associate many different quantities to these sets. There are geometric
measures such as the volume V (s1s2...sn), the area A(s1s2...sn) or the
length l(s1s2...sn) of this set. Or in general we can have some measure
µ(Ms1s2...sn) = µ(s1s2...sn) of this set. As we have seen in (16.10) the
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308 CHAPTER 17. THERMODYNAMIC FORMALISM

most important is the natural measure, which is the probability that a
non-periodic trajectory visits the set µ(s1s2...sn) = P (s1s2...sn). The nat-
ural measure is additive. Summed up for all possible symbol sequences of
length n it gives the measure of the whole phase space:

∑
s1s2...sn

µ(s1s2...sn) = 1 (17.1)

expresses probability conservation. Also, summing up for the last symbol
we get the measure of a one step shorter sequence∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce
the exponents

λ(s1s2...sn) = − 1
n

log µ(s1s2...sn). (17.2)

To get full information on the distribution of the natural measure in the
symbolic space we can study the distribution of exponents. Let the number
of symbol sequences of length n with exponents between λ and λ + dλ be
given by Nn(λ)dλ. For large n the number of such sequences increases
exponentially. The rate of this exponential growth can be characterized by
g(λ) such that

Nn(λ) ∼ exp(ng(λ)).

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully
characterizes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution.
However it is very time consuming to calculate the distribution directly by
making statistics for millions of symbolic sequences. Instead, we introduce
auxiliary quantities which are easier to calculate and to handle. These are
called partition sums

Zn(β) =
∑

s1s2...sn

µβ(s1s2...sn), (17.3)

as they are obviously motivated by Gibbs type partition sums of statistical
mechanics. The parameter β plays the role of inverse temperature 1/kBT
and E(s1s2...sn) = − log µ(s1s2...sn) is the energy associated with the mi-
crostate labelled by s1s2...sn We are tempted also to introduce something
analogous with the Free energy. In dynamical systems this is called the
Rényi entropy [H.6] defined by the growth rate of the partition sum

Kβ = lim
n→∞

1
n

1
1− β

log

( ∑
s1s2...sn

µβ(s1s2...sn)

)
. (17.4)
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In the special case β → 1 we get Kolmogorov’s entropy

K1 = lim
n→∞

1
n

∑
s1s2...sn

−µ(s1s2...sn) log µ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

log N(n),

where N(n) is the number of existing length n sequences. To connect the
partition sums with the distribution of the exponents, we can write them
as averages over the exponents

Zn(β) =
∫

dλNn(λ) exp(−nλβ),

where we used the definition (17.2). For large n we can replace Nn(λ) with
its asymptotic form

Zn(β) ∼
∫

dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which
maximize the exponent

g(λ)− λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (17.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β))− λ∗(β)β]).

Using the definition (17.4) we can now connect the Rényi entropies and
g(λ)

(β − 1)Kβ = λ∗(β)β − g(λ∗(β)). (17.6)

Equations (17.5) and (17.6) define the Legendre transform of g(λ). This
equation is analogous with the thermodynamic equation connecting the
entropy and the free energy. As we know from thermodynamics we can
invert the Legendre transform. In our case we can express g(λ) from the
Rényi entropies via the Legendre transformation

g(λ) = λβ∗(λ)− (β∗(λ)− 1)Kβ∗(λ), (17.7)

where now β∗(λ) can be determined from

d

dβ∗ [(β∗ − 1)Kβ∗ ] = λ. (17.8)
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Obviously, if we can determine the Rényi entropies we can recover the
distribution of probabilities from (17.7) and (17.8).

The periodic orbit calculation of the Rényi entropies can be carried out
by approximating the natural measure corresponding to a symbol sequence
by the expression (16.10)

µ(s1, ..., sn) ≈ enγ

|Λs1s2...sn |
. (17.9)

The partition sum (17.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|β
, (17.10)

where the summation goes for periodic orbits of length n. We can define
the characteristic function

Ω(z, β) = exp

(
−
∑

n

zn

n
Zn(β)

)
. (17.11)

According to (17.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (17.12)

Substituting this into (17.11) we can see that the leading zero of the char-
acteristic function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (17.10)
into (17.11) and introducing prime and repeated periodic orbits as usual
we get

Ω(z, β) = exp

(
−
∑
p,r

znpreβγnpr

r|Λr
p|β

)
.

We can see that the characteristic function is the same as the zeta function
we introduced for Lyapunov exponents (H.14) except we have zeβγ instead
of z. Then we can conclude that the Rényi entropies can be expressed with
the pressure function directly as

P (β) = (β − 1)Kβ + βγ, (17.13)

since the leading zero of the zeta function is the pressure. The Rényi
entropies Kβ , hence the distribution of the exponents g(λ) as well, can be
calculated via finding the leading eigenvalue of the operator (H.4).
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Figure 17.1: 0
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Figure 17.2: g(λ) and P (β) for the map of Ex-
ercise 17.4 at a = 3 and b = 3/2. See Solutions
O for calculation details.
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From (17.13) we can get all the important quantities of the thermody-
namic formalism. For β = 0 we get the topological entropy

P (0) = −K0 = −htop. (17.14)

For β = 1 we get the escape rate

P (1) = γ. (17.15)

Taking the derivative of (17.13) in β = 1 we get Pesin’s formula [H.2]
connecting Kolmogorov’s entropy and the Lyapunov exponent

P ′(1) = λ = K1 + γ. (17.16)

✎ 17.1
page 317It is important to note that, as always, these formulas are strictly valid for

nice hyperbolic systems only. At the end of this Chapter we discuss the
important problems we are facing in non-hyperbolic cases.

On fig. 17.2 we show a typical pressure and g(λ) curve computed for
the two scale tent map of Exercise 17.4. We have to mention, that all
typical hyperbolic dynamical system produces a similar parabola like curve.
Although this is somewhat boring we can interpret it like a sign of a high
level of universality: The exponents λ have a sharp distribution around the
most probable value. The most probable value is λ = P ′(0) and g(λ) = htop

is the topological entropy. The average value in closed systems is where g(λ)
touches the diagonal: λ = g(λ) and 1 = g′(λ).

Next, we are looking at the distribution of trajectories in real space.
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17.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure.
In the 3-disk case the starting points of trajectories not leaving the system
after the first bounce form two strips. Then these strips are subdivided
into an infinite hierarchy of substrips as we follow trajectories which do not
leave the system after more and more bounces. The finer strips are similar
to strips on a larger scale. Objects with such self similar properties are
called fractals.

We can characterize fractals via their local scaling properties. The first
step is to draw a uniform grid on the surface of section. We can look at
various measures in the square boxes of the grid. The most interesting
measure is again the natural measure located in the box. By decreasing
the size of the grid ε the measure in a given box will decrease. If the
distribution of the measure is smooth then we expect that the measure of
the ith box is proportional with the dimension of the section

µi ∼ εd.

If the measure is distributed on a hairy object like the repeller we can
observe unusual scaling behavior of type

µi ∼ εαi ,

where αi is the local “dimension” or Hölder exponent of the the object.
As α is not necessarily an integer here we are dealing with objects with
fractional dimensions. We can study the distribution of the measure on the
surface of section by looking at the distribution of these local exponents.
We can define

αi =
log µi

log ε
,

the local Hölder exponent and then we can count how many of them are
between α and α + dα. This is Nε(α)dα. Again, in smooth objects this
function scales simply with the dimension of the system

Nε(α) ∼ ε−d,

while for hairy objects we expect an α dependent scaling exponent

Nε(α) ∼ ε−f(α).

f(α) can be interpreted [H.8] as the dimension of the points on the surface
of section with scaling exponent α. We can calculate f(α) with the help of
partition sums as we did for g(λ) in the previous section. First we define

Zε(q) =
∑

i

µq
i . (17.17)

Then we would like to determine the asymptotic behavior of the partition
sum characterized by the τ(q) exponent

Zε(q) ∼ ε−τ(q).
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The partition sum can be written in terms of the distribution function of
α-s

Zε(q) =
∫

dαNε(α)εqα.

Using the asymptotic form of the distribution we get

Zε(q) ∼
∫

dαεqα−f(α).

As ε goes to zero the integral is dominated by the term maximizing the
exponent. This α∗ can be determined from the equation

d

dα∗ (qα∗ − f(α∗)) = 0,

leading to
q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f(α∗).

In a uniform fractal characterized by a single dimension both α and f(α)
collapse to α = f(α) = D. The scaling exponent then has the form τ(q) =
(q − 1)D. In case of non uniform fractals we can introduce generalized
dimensions [H.10] Dq via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum
(17.17) counts the number of non empty boxes N̄ε. Consequently

D0 = − lim
ε→0

log N̄ε

log ε
,

is called the box counting dimension. For q = 1 the dimension can be
determined as the limit of the formulas for q → 1 leading to

D1 = lim
ε→0

∑
i

µi log µi/ log ε.

This is the scaling exponent of the Shannon information entropy [H.17] of
the distribution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead,
we can rewrite (17.17) into the more convenient form

∑
i

µq
i

ετ (q)
∼ 1. (17.18)

If we cover the ith branch of the fractal with a grid of size li instead of ε
we can use the relation [H.9]

∑
i

µq
i

li
τ (q)

∼ 1, (17.19)
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the non-uniform grid generalization of 17.18. Next we show how can we
use the periodic orbit formalism to calculate fractal dimensions. We have
already seen that the width of the strips of the repeller can be approximated
with the stabilities of the periodic orbits situating in them

li ∼
1
|Λi|

.

Then using this relation and the periodic orbit expression of the natural
measure we can write (17.19) into the form

∑
i

eqγn

|Λi|q−τ(q)
∼ 1, (17.20)

where the summation goes for periodic orbits of length n. The sum for
stabilities can be expressed with the pressure function again∑

i

1
|Λi|q−τ(q)

∼ e−nP (q−τ(q)),

and (17.20) can be written as

eqγne−nP (q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P (q − (q − 1)Dq) = qγ. (17.21)

Solving this equation directly gives us the partial dimensions of the mul-
tifractal repeller along the stable direction. We can see again that the
pressure function alone contains all the relevant information. Setting q = 0
in (17.21) we can prove that the zero of the pressure function is the box-
counting dimension of the repeller

P (D0) = 0.

Taking the derivative of (17.21) in q = 1 we get

P ′(1)(1−D1) = γ.

This way we can express the information dimension with the escape rate
and the Lyapunov exponent

D1 = 1− γ/λ. (17.22)

If the system is bound (γ = 0) the information dimension and all other
dimensions are Dq = 1. Also since D10 is positive (17.22) proves that the
Lyapunov exponent must be larger than the escape rate λ > γ in general.

✎ 17.4
page 318

✎ 17.5
page 318

✎ 17.6
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Commentary

Remark 17.1 Mild phase transition. In non-hyperbolic systems
the formulas derived in this chapter should be modified. As we men-
tioned in 16.1 in non-hyperbolic systems the periodic orbit expression
of the measure can be

µ0 = eγn/|Λ0|δ,

where δ can differ from 1. Usually it is 1/2. For sufficiently negative β
the corresponding term 1/|Λ0|β can dominate (17.10) while in (17.3)
eγn/|Λ0|δβ plays no dominant role. In this case the pressure as a
function of β can have a kink at the critical point β = βc where
βc log |Λ0| = (βc − 1)Kβc

+ βcγ. For β < βc the pressure and the
Rényi entropies differ

P (β) 	= (β − 1)Kβ + βγ.

This phenomena is called phase transition. This is however not a
very deep problem. We can fix the relation between pressure and the
entropies by replacing 1/|Λ0| with 1/|Λ0|δ in (17.10).

Remark 17.2 Hard phase transition The really deep trouble
of thermodynamics is caused by intermittency. In that case we have
periodic orbits with |Λ0| → 1 as n →∞. Then for β > 1 the contribu-
tion of these orbits dominate both (17.10) and (17.3). Consequently
the partition sum scales as Zn(β) → 1 and both the pressure and
the entropies are zero. In this case quantities connected with β ≤ 1
make sense only. These are for example the topological entropy, Kol-
mogorov entropy, Lyapunov exponent, escape rate, D0 and D1. This
phase transition cannot be fixed. It is probably fair to say that quan-
tities which depend on this phase transition are only of mathematical
interest and not very useful for characterization of realistic dynamical
systems.

Remark 17.3 Multifractals. For reasons that remain mysterious
to the authors - perhaps so that Mandelbrot can refer to himself both
as the mother of fractals and the grandmother of multifractals - some
physics literature referes to any fractal generated by more than one
scale as a “multi”-fractal. This usage seems to divide fractals into 2
classes; one consisting essentially of the above Cantor set and the Ser-
apinski gasket, and the second consisting of anything else, including
all cases of physical interest.

Résumé

In this chapter we have shown that thermodynamic quantities and various
fractal dimensions can be expressed in terms of the pressure function. The
pressure function is the leading eigenvalue of the operator which generates
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the Lyapunov exponent. In the Lyapunov case β is just an auxiliary vari-
able. In thermodynamics it plays an essential role. The good news of the
chapter is that the distribution of locally fluctuating exponents should not
be computed via making statistics. We can use cyclist formulas for deter-
mining the pressure. Then the pressure can be found using short cycles +
curvatures. Here the head reach the tail of the snake. We just argued that
the statistics of long trajectories coded in g(λ) and P (β) can be calculated
from short cycles. To use this intimate relation between long and short
trajectories effectively is still a research level problem.
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Exercises

Exercise 17.1 Thermodynamics in higher dimensions Introduce the time
averages of the eigenvalues of the Jacobian

λi = lim
t→∞

1
t

log |Λt
i(x0)|, (17.23)

as a generalization of (8.27).

Show that in higher dimensions Pesin’s formula is

K1 =
∑

i

λi − γ, (17.24)

where the summation goes for the positive λi-s only. (Hint: Use the higher dimensional
generalization of (16.10)

µi = enγ/|
∏
j

Λi,j |,

where the product goes for the expanding eigenvalues of the Jacobian of the periodic

orbit.

Exercise 17.2 Bunimovich stadium Kolmogorov entropy. Take for defini-

tiveness a = 1.6 and d = 1 in the Bunimovich stadium of exercise 5.4,

2a

d

estimate the Lyapunov exponent by averaging over a very long trajectory. Biham and

Kvale [17.14] estimate the discrete time Lyapunov to λ ≈ 1.0±.1, the continuous time

Lyapunov to λ ≈ 0.43 ± .02, the topological entropy (for their symbolic dynamics)

h ≈ 1.15± .03.

Exercise 17.3 Entropy of rugged-edge billiards. Take a semi-circle of
diameter ε and replace the sides of a unit square by �1/ε� catenated copies of the
semi-circle.

(a) Is the billiard ergodic as ε → 0?
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(b) (hard) Show that the entropy of the billiard map is

K1 → − 2
π

ln ε + const ,

as ε → 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the Bunimovich stadium are far
apart, say L, the entropy for the flow decays as

K1 →
2 ln L

πL
.

Exercise 17.4 Two scale map Compute all those quantities - dimensions,
escape rate, entropies, etc. - for the repeller of the one dimensional map

f(x) =
{

1 + ax if x < 0,
1− bx if x > 0.

(17.25)

where a and b are larger than 2. Compute the fractal dimension, plot the pressure and

compute the f(α) spectrum of singularities.

Exercise 17.5 Four scale map Compute the Rényi entropies and g(λ) for the
four scale map

f(x) =


a1x if 0 < x < b/a1,
(1− b)((x− b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x− b) if b < x < b + b/a2,
(1− b)((x− b− b/a2)/(1− b− b/a2)) + b if b + b/a2 < x < 1.

(17.26)

Hint: Calculate the pressure function and use (17.13).

Exercise 17.6 Transfer matrix Take the unimodal map f(x) = sin(πx) of

the interval I = [0, 1]. Calculate the four preimages of the intervals I0 = [0, 1/2] and

I1 = [1/2, 1]. Extrapolate f(x) with piecewise linear functions on these intervals. Find

a1, a2 and b of the previous exercise. Calculate the pressure function of this linear

extrapolation. Work out higher level approximations by linearly extrapolating the map

on the 2n-th preimages of I.
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Chapter 18

Intermittency

Sometimes They Come Back
Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that the
evolution operators have discrete spectra {z0, z1, z2, . . .} given by the zeros
of

1/ζ(z) = (· · ·)
∏
k

(1− z/zk) .

The assumption was based on the tacit premise that the dynamics is every-
where exponentially unstable. Real life is nothing like that - phase spaces
are generically infinitely interwoven patterns of stable and unstable behav-
iors. The stable (in the case of Hamiltonian flows, integrable) orbits do not
communicate with the ergodic components of the phase space, and can be
treated by classical methods. In general, one is able to treat the dynamics
near stable orbits as well as chaotic components of the phase space dynam-
ics well within a periodic orbit approach. Problems occur at the broderline
between chaos and regular dynamics where marginally stable orbits and
manifolds present difficulties and still unresolved challenges.

We shall use the simplest example of such behavior - intermittency in
1-dimensional maps - to illustrate effects of marginal stability. The main
message will be that spectra of evolution operators are no longer discrete,
dynamical zeta functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1− z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.
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Figure 18.1: Typical phase space for an area-preserving map with mixed phase space
dynamics; here the standard map for k=1.2.

18.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from regu-
lar behaviors to behaviors where long time intervals of regular behavior
(“laminar phases”) are interrupted by fast irregular bursts. The closer the
parameter is to the onset of such bursts, the longer are the intervals of regu-
lar behavior. The distributions of laminar phase intervals are well described
by power laws.

This phenomenon is called intermittency, and it is a very general as-
pect of dynamics, a shadow cast by non-hyperbolic, marginally stable phase
space regions. Complete hyperbolicity assumed in (11.5) is the exception
rather than the rule, and for almost any dynamical system of interest (dy-
namics in smooth potentials, billiards with smooth walls, the infinite hori-
zon Lorentz gas, etc.) one encounters mixed phase spaces with islands of
stability coexisting with hyperbolic regions, see fig. 18.1. Wherever stable
islands are interspersed with chaotic regions, trajectories which come close
to the stable islands can stay ‘glued’ for arbitrarily long times. These inter-
vals of regular motion are interrupted by irregular bursts as the trajectory
is re-injected into the chaotic part of the phase space. How the trajecto-
ries are precisely ‘glued’ to the marginally stable region is often hard to
describe. What coarsely looks like a border of an island will under magni-
fication dissolve into infinities of island chains of decreasing sizes, broken
tori and bifurcating orbits, as illustrated in fig. 18.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (4.35), or (in studies of the onset of intermittency) to the proximity
of a nearly marginal complex or unstable orbits. In Hamiltonian systems
intermittency goes hand in hand with the existence of (marginally stable)
KAM tori. In more general settings, the existence of marginal or nearly
marginal orbits is due to incomplete intersections of stable and unstable
manifolds in a Smale horseshoe type dynamics (see fig. 10.2). Following
the stretching and folding of the invariant manifolds in time one will in-
evitably find phase space points at which the stable and unstable manifolds
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Figure 18.2: A complete binary repeller with
a marginal fixed point.
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are almost or exactly tangential to each other, implying non-exponential
separation of nearby points in phase space or, in other words, marginal sta-
bility. Under small parameter perturbations such neighborhoods undergo
tangent bifurcations - a stable/unstable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pruning and the
intermittency discussed here are two sides of the same coin.

How to deal with the full complexity of a typical Hamiltonian system
with mixed phase space is a very difficult, still open problem. Nevertheless,
it is possible to learn quite a bit about intermittency by considering rather
simple examples. Here we shall restrict our considerations to 1-dimensional
maps which in the neighborhood of a single marginally stable fixed point
at x=0 take the form

x �→ f(x) = x + O(x1+s) , (18.1)

and are expanding everywhere else. Such a map may allow for escape, like
the map shown in fig. 18.2 or the dynamics may be bounded, like the Farey
map (15.27) 163,164c153,154

x �→ f(x) =
{

x/(1− x) x ∈ [0, 1/2[
(1− x)/x x ∈ [1/2, 1]

introduced in sect. 15.4.

Fig. 18.3 compares a trajectory of the tent map (9.10) side by side
with a trajectory of the Farey map. In a stark contrast to the uniformly
chaotic trajectory of the tent map, the Farey map trajectory alternates
intermittently between slow regular motion close to the marginally stable
fixed point, and chaotic bursts.

☞ sect. 15.4.3

The presence of marginal stability has striking dynamical consequences:
correlation decay may exhibit long range power law asymptotic behavior
and diffusion processes can assume anomalous character. Escape from a
repeller of the form fig. 18.2 may be algebraic rather than exponential.
In long time explorations of the dynamics intermittency manifests itself
by enhancement of natural measure in the proximity of marginally stable
cycles.
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Figure 18.3: (a) A tent map trajectory. (b) A Farey map trajectory.

The questions we shall address here are: how does marginal stability
affect zeta functions or spectral determinants? And, can we deduce power
law decays of correlations from cycle expansions?

In sect. 13.2.2 we saw that marginal stability violates one of the con-
ditions which ensure that the spectral determinant is an entire function.
Already the simple fact that the cycle weight 1/|1−Λr

p| in the trace (11.3)
or the spectral determinant (12.3) diverges for marginal orbits with |Λp| = 1
tells us that we have to treat these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-
expansions in a systematic manner. To get to know the difficulties lying
ahead, we will start in sect. 18.2 with a piecewise linear map, with the
asymptotics (18.1). We will construct a dynamical zeta function in the
usual way without worrying too much about its justification and show that
it has a branch cut singularity. We will calculate the rate of escape from our
piecewise linear map and find that it is characterized by decay, rather than
exponential decay, a power law. We will show that dynamical zeta functions
in the presence of marginal stability can still be written in terms of periodic
orbits, exactly as in chapters 8 and 16, with one exception: the marginally
stable orbits have to be explicitly excluded. This innocent looking step has
far reaching consequences; it forces us to change the symbolic dynamics
from a finite to an infinite alphabet, and entails a reorganization of the
order of summations in cycle expansions, sect. 18.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated
marginally stable fixed points and cycles. In sect. 18.3, we discuss the
cycle expansions and curvature combinations for zeta functions of smooth
maps tailored to intermittency. The knowledge of the type of singularity
one encounters enables us to develop the efficient resummation method
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Figure 18.4: A piecewise linear intermittent
map of (18.2) type: more specifically, the map
piecewise linear over intervals (18.8) of the toy
example studied below, a = .5, b = .6, s = 1.0. x
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presented in sect. 18.3.1.

Finally, in sect. 18.4, we discuss a probabilistic approach to intermit-
tency that yields approximate dynamical zeta functions and provides valu-
able information about more complicated systems, such as billiards.

18.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting
dynamics, it is also at the root of many sorrows such as slow convergence
of cycle expansions. In order to get to know the kind of problems which
arise when studying dynamical zeta functions in the presence of marginal
stability we will consider an artfully concocted piecewise linear model first.
From there we will move on to the more general case of smooth intermittant
maps, sect. 18.3.

18.2.1 A toy map

The Bernoulli shift map (13.10) is an idealized, but highly instructive, ex-
ample of a hyperbolic map. To study intermittency we will now construct
a likewise piecewise linear model, an intermittent map stripped down to its
bare essentials.

Consider a map x �→ f(x) on the unit interval M = [0, 1] with two
monotone branches

f(x) =
{

f0(x) for x ∈M0 = [0, a]
f1(x) for x ∈M1 = [b, 1] . (18.2)

The two branches are assumed complete, that is f0(M0) = f1(M1) = M.
The map allows escape if a < b and is bounded if a = b (see fig. 18.2 and
fig. 18.4). We take the right branch to be expanding and linear:

f1(x) =
1

1− b
(x− b) .
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Next, we will construct the left branch in a way, which will allow us
to model the intermittent behavior (18.1) near the origin. We chose a
monotonically decreasing sequence of points qn in [0, a] with q1 = a and
qn → 0 as n →∞. This sequence defines a partition of the left interval M0

into an infinite number of connected intervals Mn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =
∞⋃

n=2

Mn. (18.3)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervals Mn for n ≥ 2.

• f0(qn) = qn−1, that is Mn = f−n+1
0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition ensures
the existence of a simple Markov partition. The slopes of the various linear
segments are

f ′
0(x) = f0(qn−1)−f0(qn)

qn−1−qn
= |Mn−1|

|Mn| for x ∈Mn, n ≥ 3

f ′
0(x) = f0(q1)−f0(q2)

q1−q2
= 1−a

|M2| for x ∈M2

f ′
0(x) = 1

1−b = |M|
|M1| for x ∈M1

(18.4)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that
the map exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a
key role for intermittent maps of the form (18.1). An orbit 10n enters the
intervals M1 → Mn+1 → Mn → . . . → M2 successively and the family
approaches the marginal stable fixed point at x = 0 for n → ∞. The
stability of a cycle 10n for n ≥ 1 is given by the chain rule (4.30),

Λ10n = f ′
0(xn+1)f ′

0(xn) . . . f ′
0(x2)f ′

1(x1) =
1

|Mn+1|
1− a

1− b
, (18.5)

with xi ∈Mi.

The properties of the map (18.2) are completely determined by the se-
quence {qn}. By choosing qn = 2−n, for example, we recover the uniformly
hyperbolic Bernoulli shift map (13.10). An intermittent map of the form
(18.3) having the asymptotic behavior (18.1) can be constructed by choos-
ing an algebraically decaying sequence {qn} behaving asymptotically like

qn ∼
1

n1/s
, (18.6)
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where s is the intermittency exponent in (18.1). Such a partition leads to
intervals whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (18.7)

As can be seen from (18.5), the stability eigenvalues of periodic orbit fam-
ilies approaching the marginal fixed point, such as the 10n family increase
in turn only algebraically with the cycle length.

It may now seem natural to construct an intermittent toy map in terms
of a partition |Mn| = 1/n1+1/s, that is, a partition which follows (18.7)
exactly. Such a choice leads to a dynamical zeta function which can be
written in terms of so-called Jonquière functions (or polylogarithms) which
arise naturally also in the context of the Farey map (15.27), and the anoma-
lous diffusion of sect. 20.3. We will, however, not go along this route here;

☞ remark 20.8
instead, we will engage in a bit of reverse engineering and construct a less
obvious partition which will simplify the algebra considerably later without
loosing any of the key features typical for intermittent systems. We fix the
intermittent toy map by specifying the intervals Mn in terms of Gamma
functions according to

|Mn| = C Γ(n + m− 1/s− 1)
Γ(n + m)

for n ≥ 2, (18.8)

where m = [1/s] denotes the integer part of 1/s and C is a normalization
constant fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

[ ∞∑
n=m+1

Γ(n− 1/s)
Γ(n + 1)

]−1

. (18.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as required
by the condition (18.7).

Next, let us write down the dynamical zeta function of the toy map in
terms of its periodic orbits, that is

1/ζ(z) =
∏
p

(
1− znp

|Λp|

)

One may be tempted to expand the dynamical zeta function in terms of the
binary symbolic dynamics of the map; we saw, however, in sect. 15.4 that
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such cycle expansion converges extremely slowly. The shadowing mecha-
nism between orbits and pseudo-orbits fails for orbits of the form 10n with
stabilities given by (18.5), due to the marginal stability of the fixed point 0.
It is therefore advantageous to choose as the fundamental cycles the fam-
ily of orbits with code 10n or, equivalently, switch from the finite (binary)
alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals Mn

exactly onto Mn−1, all periodic orbits entering the left branch at least
twice are canceled exactly by pseudo cycles, and the cycle expanded dyn-
amical zeta function depends only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏
p 
=0

(
1− znp

|Λp|

)
= 1−

∞∑
n=1

zn

|Λ10n−1 |

= 1− (1− b)z − C 1− b

1− a

∞∑
n=2

Γ(n + m− 1/s− 1)
Γ(n + m)

zn .(18.10)

The fundamental term (15.5) consists here of an infinite sum over alge-
braically decaying cycle weights. The sum is divergent for |z| ≥ 1. We will
see that this behavior is due to a branch cut of 1/ζ starting at z = 1. We
need to find analytic continuations of sums over algebraically decreasing
terms in (18.10). Note also that we omitted the fixed point 0 in the above
Euler product; we will discussed this point as well as a proper derivation
of the zeta function in more detail in sect. 18.2.4.

18.2.2 Branch cuts

Starting from the dynamical zeta function (18.10), we first have to worry
about finding an analytical continuation of the sum for |z| ≥ 1. We do,
however, get this part for free here due to the particular choice of interval
lengths made in (18.8). The sum over ratios of Gamma functions in (18.10)
can be evaluated analytically by using the following identities valid for
1/s = α > 0 (the famed binomial theorem in disguise),

• α non-integer

(1− z)α =
∞∑

n=0

Γ(n− α)
Γ(−α)Γ(n + 1)

zn (18.11)

• α integer

(1− z)α log(1− z) =
α∑

n=1

(−1)ncnzn (18.12)

+ (−1)α+1α!
∞∑

n=α+1

(n− α− 1)!
n!

zn
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with

cn =
(

α
n

) n−1∑
k=0

1
α− k

.

In order to simplify the notation, we restrict the intermittency parameter
to the range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows can easily
be generalized to arbitrary s > 0 using equations (18.11) and (18.12). The
infinite sum in (18.10) can now be evaluated with the help of (18.11) or
(18.12), that is,

∞∑
n=2

Γ(n− 1/s)
Γ(n + 1)

zn =
{

Γ(−1
s )
[
(1− z)1/s − 1 + 1

sz
]

for 1 < 1/s < 2;
(1− z) log(1− z) + z for s = 1 .

The normalization constant C in (18.8) can be evaluated explicitly using
(18.9) and the dynamical zeta function can be given in closed form. We
obtain for 1 < 1/s < 2

1/ζ(z) = 1− (1− b)z − a

1/s− 1
1− b

1− a

(
(1− z)1/s − 1 +

1
s
z

)
.(18.13)

and for s = 1,

1/ζ(z) = 1− (1− b)z − a
1− b

1− a
((1− z) log(1− z) + z) . (18.14)

It now becomes clear why the particular choice of intervals Mn made in
the last section is useful; by summing over the infinite family of periodic
orbits 0n1 explicitly, we have found the desired analytical continuation for
the dynamical zeta function for |z| ≥ 1. The function has a branch cut
starting at the branch point z = 1 and running along the positive real axis.
That means, the dynamical zeta function takes on different values when
approaching the positive real axis for Re z > 1 from above and below. The
dynamical zeta function for general s > 0 takes on the form

1/ζ(z) = 1− (1− b)z − a

gs(1)
1− b

1− a

1
zm−1

(
(1− z)1/s − gs(z)

)
(18.15)

for non-integer s with m = [1/s] and

1/ζ(z) = 1−(1−b)z− a

gm(1)
1− b

1− a

1
zm−1

((1− z)m log(1− z)− gm(z)) (18.16)

for 1/s = m integer and gs(z) are polynomials of order m = [1/s] which
can be deduced from (18.11) or (18.12). We thus find algebraic branch cuts
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for non integer intermittency exponents 1/s and logarithmic branch cuts
for 1/s integer. We will see in sect. 18.3 that branch cuts of that form are
generic for 1-dimensional intermittent maps.

Branch cuts are the all important new feature of dynamical zeta func-
tions due to intermittency. So, how do we calculate averages or escape rates
of the dynamics of the map from a dynamical zeta function with branch
cuts? We take ‘a learning by doing’ approach and calculate the escape from
our toy map for a < b.

18.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n
time steps, is the integral representation (12.16)

Γn =
1

2πi

∮
γ−

r

z−n

(
d

dz
log ζ−1(z)

)
dz , (18.17)

where the contour encircles the origin in the clockwise direction. If the
contour lies inside the unit circle |z| = 1, we may expand the logarithmic
derivative of ζ−1(z) as a convergent sum over all periodic orbits. Integrals
and sums can be interchanged, the integrals can be solved term by term,
and the formula (11.22) is recovered. For hyperbolic maps, cycle expansion
methods or other techniques may provide an analytic extension of the dyn-
amical zeta function beyond the leading zero; we may therefore deform the
original contour into a larger circle with radius R which encircles both poles
and zeros of ζ−1(z), see fig. 18.5(a). Residue calculus turns this into a sum
over the zeros zα and poles zβ of the dynamical zeta function, that is

Γn =
zeros∑
|zα|<R

1
zn
α

−
poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−

R

dz z−n d

dz
log ζ−1, (18.18)

where the last term gives a contribution from a large circle γ−
R . We thus find

exponential decay of Γn dominated by the leading zero or pole of ζ−1(z),
see chapter 17.1 for more details.

Things change considerably in the intermittent case. The point z = 1
is a branch cut singularity and there exists no Taylor series expansion of
ζ−1 around z = 1. Secondly, the path deformation that led us to (18.18)
requires more care, as it must not cross the branch cut. When expanding
the contour to large |z| values, we have to deform it along the branch
Re (z) ≥ 1, Im (z) = 0 encircling the branch cut in anti-clockwise direction,
see fig. 18.5(b). We will denote the detour around the cut as γcut. We may
write symbolically

∮
γr

=
zeros∑

−
poles∑

+
∮

γR

+
∮

γcut
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(a)

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

(b)

Im z

- z = 1
zα

γ

γ
R 
-

γcut

r
Re z

Figure 18.5: The survival probability Γn calculated by contour integration; inte-
grating (18.17) inside the domain of convergence |z| < 1 (shaded area) of 1/ζ(z) in
periodic orbit representation yields (11.22). A deformation of the contour γ−

r (dashed
line) to a larger circle γ−

R gives contributions from the poles and zeros (x) of 1/ζ(z)
between the two circles. These are the only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise, given by the contour γcut running
along the branch cut (b).

where the sums include only the zeros and the poles in the area enclosed by
the contours. The asymptotics is controlled by the zero, pole or cut closest
to the origin.

Let us now go back to our intermittent toy map. The asymptotics of
the survival probability of the map is here governed by the behavior of
the integrand d

dz log ζ−1 in (18.17) at the branch point z = 1. We restrict
ourselves again to the case 1 < 1/s < 2 first and write the dynamical zeta
function (18.13) in the form

1/ζ(z) = a0 + a1(1− z) + b0(1− z)1/s ≡ G(1− z)

and

a0 =
b− a

1− a
, b0 =

a

1− 1/s

1− b

1− a
.

Setting u = 1− z, we need to evaluate

1
2πi

∮
γcut

(1− u)−n d

du
log G(u)du (18.19)

where γcut goes around the cut (that is, the negative u axis). Expanding
the integrand d

du log G(u) = G′(u)/G(u) in powers of u and u1/s at u = 0,
one obtains

d

du
log G(u) =

a1

a0
+

1
s

b0

a0
u1/s−1 + O(u) . (18.20)
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Figure 18.6: The asymptotic escape from an
intermittent repeller is a power law. Normally
it is preceded by an exponential, which can be
related to zeros close to the cut but beyond the
branch point z = 1, as in fig. 18.5(b). 0 200 400 600 800 1000

10
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The integrals along the cut may be evaluated using the general formula

1
2πi

∮
γcut

uα(1− u)−ndu =
Γ(n− α− 1)
Γ(n)Γ(−α)

∼ 1
nα+1

(1 + O(1/n))(18.21)

which can be obtained by deforming the contour back to a loop around the
point u = 1, now in positive (anti-clockwise) direction. The contour integral
then picks up the (n−1)st term in the Taylor expansion of the function uα at
u = 1, cf. (18.11). For the continuous time case the corresponding formula
is

1
2πi

∮
γcut

zαeztdz =
1

Γ(−α)
1

tα+1
. (18.22)

Plugging (18.20) into (18.19) and using (18.21) we get the asymptotic
result

Γn ∼
b0

a0

1
s

1
Γ(1− 1/s)

1
n1/s

=
a

s− 1
1− b

b− a

1
Γ(1− 1/s)

1
n1/s

. (18.23)

We see that, asymptotically, the escape from an intermittent repeller is
described by power law decay rather than the exponential decay we are
familiar with for hyperbolic maps; a numerical simulation of the power-law
escape from an intermittent repeller is shown in fig. 18.6.

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1− z and A(u), B(u) are functions analytic in a disc of radius 1
around u = 0. The leading terms in the Taylor series expansions of A(u)
and B(u) are

a0 =
b− a

1− a
, b0 =

a

gs(1)
1− b

1− a
,
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see (18.15). Expanding d
du log G(u) around u = 0, one again obtains lead-

ing order contributions according to (18.20) and the general result follows
immediately using (18.21), that is,

Γn ∼
a

sgs(1)
1− b

b− a

1
Γ(1− 1/s)

1
n1/s

. (18.24)

Applying the same arguments for integer intermittency exponents 1/s = m,
one obtains

Γn ∼ (−1)m+1 a

sgm(1)
1− b

b− a

m!
nm

. (18.25)

So far, we have considered the survival probability for a repeller, that
is we assumed a < b. The formulas (18.24) and (18.25) do obviously not
apply for the case a = b, that is, for the bounded map. The coefficient
a0 = (b − a)/(1 − a) in the series representation of G(u) is zero, and the
expansion of the logarithmic derivative of G(u) (18.20) is no longer valid.
We get instead

d

du
log G(u) =

{
1
u

(
1 + O(u1/s−1)

)
s < 1

1
u

(
1
s + O(u1−1/s)

)
s > 1

,

assuming non-integer 1/s for convenience. One obtains for the survival
probability.

Γn ∼
{

1 + O(n1−1/s) s < 1
1/s + O(n1/s−1) s > 1

.

For s > 1, this is what we expect. There is no escape, so the survival
probability is equal to 1, which we get as an asymptotic result here. The
result for s > 1 is somewhat more worrying. It says that Γn defined as sum
over the instabilities of the periodic orbits as in (16.12) does not tend to
unity for large n. However, the case s > 1 is in many senses anomalous.
For instance, the invariant density cannot be normalized. It is therefore
not reasonable to expect that periodic orbit theories will work without
complications.

18.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous
section, we had the nice property that interval lengths did exactly coincide
with the inverse of the stability of periodic orbits of the system, that is

|Mn| = |/Λn−1
10 .
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There is thus no problem in replacing the survival probability Γn given by
(1.2), (16.2), that is the fraction of phase space M surviving n iterations
of the map,

Γn =
1
|M|

(n)∑
i

|Mi| .

by a sum over periodic orbits of the form (11.22). The only orbit to worry
about is the marginal fixed point 0 itself which we excluded from the zeta
function (18.10).

For smooth intermittent maps, things are less clear and the fact that
we had to prune the marginal fixed point is a warning sign that interval
estimates by periodic orbit stabilities might go horribly wrong. The deriva-
tion of the survival probability in terms of cycle stabilities in chapter 16
did indeed rely heavily on a hyperbolicity assumption which is clearly not
fulfilled for intermittent maps. We therefore have to carefully reconsider
this derivation in order to show that periodic orbit formulas are actually
valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of say
s branches defined on intervalsMs and we assume that the map maps each
interval Ms onto M, that is f(Ms) =M. This ensures the existence of a
complete symbolic dynamics - just to make things easy (see fig. 18.2).

The generating partition is composed of the domainsMs . The nth level
partition C(n) = {Mi} can be constructed iteratively. Here i’s are words
i = s2s2 . . . sn of length n, and the intervalsMi are constructed recursively

Msj = f−1
s (Mj) , (18.26)

where sj is the concatenation of letter s with word j of length nj < n.

In what follows we will concentrate on the survival probability Γn ,
postponing other quantities of interest, such as averages, to later consid-
erations. In establishing the equivalence of the survival probability and
the periodic orbit formula for the escape rate for hyperbolic systems we
have assumed that the map is expanding, with a minimal expansion rate
|f ′(x)| ≥ Λmin > 1. This enabled us to bound the size of every survivor
strip Mi by (16.6), the stability Λi of the periodic orbit i within the Mi,
and bound the survival probability by the periodic orbit sum (16.7).

The bound (16.6)

C1
1
|Λi|

<
|Mi|
|M| < C2

1
|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent systems.
The problem is that now there is no lower bound on the expansion rate, the
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minimal expansion rate is Λmin = 1. The survivor stripM0n which includes
the marginal fixed point is thus completely overestimated by 1/|Λ0n | = 1
which is constant for all n. ✎ 12.7

page 218
However, bounding survival probability strip by strip is not what is re-

quired for establishing the bound (16.7). For intermittent systems a some-
what weaker bound can be established, saying that the average size of
intervals along a periodic orbit can be bounded close to the stability of the
periodic orbit for all but the interval M0n . The weaker bound applies to
averaging over each prime cycle p separately

C1
1
|Λp|

<
1
np

∑
i∈p

|Mi|
|M| < C2

1
|Λp|

, (18.27)

where the word i represents a code of the periodic orbit p and all its cyclic
permutations. It can be shown that one can find positive constants C1,
C2 independent of p. Summing over all periodic orbits leads then again to
(16.7).

To study averages of multiplicative weights we follow sect. 8.1 and in-
troduce a phase space observable a(x) and the integrated quantity

An(x) =
n−1∑
k=0

a(fk(x)).

This leads us to introduce the generating function (8.10)

〈eβ An(x)〉,

where 〈.〉 denote some averaging over the distribution of initial points, which
we choose to be uniform (rather than the a priori unknown invariant den-
sity). Again, all we have to show is, that constants C1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑
i∈p

1
|M|

∫
MQ

eβAn(x)dx < C2
eβAp

|Λp|
, (18.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫
M

eβA(x,n)dx < C2Γn(β), (18.29)

with

Γn(β) =
n∑
p

eβAp

|Λp|
. (18.30)
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and a dynamical zeta function can be derived. In the intermittent case
one can expect that the bound (18.28) holds using an averaging argument
similar to the one discussed in (18.27). This justifies the use of dynamical
zeta functions for intermittent systems.

One lesson we should have learned so far is that the natural alphabet
to use is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}. The
symbol 0 occurs unaccompanied by any 1’s only in the 0 marginal fixed
point which is disconnected from the rest of the Markov graph .

What happens if we remove a single prime cycle from a dynamical zeta
function? In the hyperbolic case such a removal introduces a pole in the
1/ζ and slows down the convergence of cycle expansions. The heuristic
interpretation of such a pole is that for a subshift of finite type removal of a
single prime cycle leads to unbalancing of cancellations within the infinity
of of shadowing pairs. Nevertheless, removal of a single prime cycle is an
exponentially small perturbation of the trace sums, and the asymptotics of
the associated trace formulas is unaffected.

☞ chapter 13

In the intermittent case, the fixed point 0 does not provide any shad-
owing (cf. sect. J.1), and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,

is meaningless. It seems therefore sensible to take out the factor (1− t0) =
1−z from the product representation of the dynamical zeta function (12.12),
that is, to consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1− z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the
nice properties we know from the hyperbolic case, that is, we can find a
cycle expansion with - in the toy model case - vanishing curvature contri-
butions and we can calculate dynamical properties like escape after having
understood, how to handle the branch cut. But you might still be worried
about leaving out the extra factor 1− z all together. It turns out, that this
is not only a matter of convenience, omitting the marginal 0 cycle is a dire
necessity. The cycle weight Λn

0 = 1 overestimates the corresponding inter-
val length of M0n in the partition of the phase space M by an increasing
amount thus leading to wrong results when calculating escape. By leaving
out the 0 cycle (and thus also the M0n contribution), we are guaranteed
to get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determinant (12.3),
given in product form as

det (1− zL) =
∏
p

∞∏
m=0

(
1− znp

|Λp|Λm
p

)
,

inter - 3dec2002 draft 9.4.0, June 18 2003



18.3. INTERMITTENCY FOR CYCLISTS 335

for intermittent maps the marginal stable cycle has to be excluded. It
introduces an (unphysical) essential singularity at z = 1 due the presence
of a factor (1− z)∞ stemming from the 0 cycle.

18.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise
linearity of the map led to exact cancellations of the curvature contributions
leaving only the fundamental terms. There are still infinitely many orbits
included in the fundamental term, but the cycle weights were chosen in such
a way that the zeta function could be written in closed form. For a smooth
intermittent map this all will not be the case in general; still, we will argue
that we have already seen almost all the fundamentally new features due
to intermittency. What remains are technicalities - not necessarily easy to
handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques
work for general 1-dimensional maps with a single isolated marginal fixed
point. To keep the notation simple, we will consider two-branch maps
with a complete binary symbolic dynamics as for example the Farey map,
fig. 18.3, or the repeller depicted in fig. 18.2. We again assume that the
behavior near the fixed point is given by (18.1). This implies that the
stability of a family of periodic orbits approaching the marginally stable
orbit, as for example the family 10n, will increase only algebraically, that
is we find again for large n

1
Λ10n

∼ 1
n1+1/s

,

where s denotes the intermittency exponent.

When considering zeta functions or trace formulas, we again have to
take out the marginal orbit 0; periodic orbit contributions of the form t0n1

are now unbalanced and we arrive at a cycle expansion in terms of infinitely
many fundamental terms as for our toy map. This corresponds to moving
from our binary symbolic dynamics to an infinite symbolic dynamics by
making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also table 18.1. The topological length of the orbit is thus no longer
determined by the iterations of our two-branch map, but by the number
of times the cycle goes from the right to the left branch. Equivalently, one
may define a new map, for which all the iterations on the left branch are
done in one step. Such a map is called an induced map and the topological
length of orbits in the infinite alphabet corresponds to the iterations of
this induced map.
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∞ – alphabet binary alphabet
n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

Table 18.1: Infinite alphabet versus the original binary alphabet for the shortest
periodic orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and
their cyclic repeats (110 = 101, 1110 = 1101, . . .) are accounted for by cancellations
and combination factors in the cycle expansion (18.31).

For generic intermittent maps, curvature contributions in the cycle ex-
panded zeta function will not vanish exactly. The most natural way to
organize the cycle expansion is to collect orbits and pseudo orbits of the
same topological length with respect to the infinite alphabet. Denoting
cycle weights in the new alphabet as tnm... = t10n−110m−1..., one obtains

ζ−1 =
∏
p 
=0

(1− tp) = 1−
∞∑

n=1

ce (18.31)

= 1−
∞∑

n=1

tn −
∞∑

m=1

∞∑
n=1

1
2
(tmn − tmtn)

−
∞∑

k=1

∞∑
m=1

∞∑
n=1

(
1
3
tkmn −

1
2
tkmtn +

1
6
tktmtn)−

∞∑
l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .

The first sum is the fundamental term, which we have already seen in the
toy model, (18.10). The curvature terms cn in the expansion are now e-fold
infinite sums where the prefactors take care of double counting of prime
periodic orbits.

Let us consider the fundamental term first. For generic intermittent
maps, we can not expect to obtain an analytic expression for the infinite
sum of the form

f(z) =
∞∑

n=0

hnzn. (18.32)
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with algebraically decreasing coefficients

hn ∼
1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the
power series diverges for z > 1, that is, exactly in the ‘interesting’ region
where poles, zeros or branch cuts of the zeta function are to be expected.
By carefully subtracting the asymptotic behavior with the help of (18.11)
or (18.12), one can in general construct an analytic continuation of f(z)
around z = 1 of the form

f(z) ∼ A(z) + (1− z)α−1B(z) α /∈ N (18.33)
f(z) ∼ A(z) + (1− z)α−1 ln(1− z) α ∈ N ,

where A(z) and B(z) are functions analytic in a disc around z = 1. We thus
again find that the zeta function (18.31) has a branch cut along the real axis
Re z ≥ 1. From here on we can switch to auto-pilot and derive algebraic
escape, decay of correlation and all the rest. We find in particular that the
asymptotic behavior derived in (18.24) and (18.25) is a general result, that
is, the survival probability is given asymptotically by

Γn ∼ C
1

n1/s
(18.34)

for all 1-dimensional maps of the form (18.1). We have to work a bit harder
if we want more detailed information like the prefactor C, exponential pre-
cursors given by zeros or poles of the dynamical zeta function or higher
order corrections. This information is buried in the functions A(z) and
B(z) or more generally in the analytically continued zeta function. To
get this analytic continuation, one may follow either of the two different
strategies which we will sketch next.

18.3.1 Resummation

One way to get information about the zeta function near the branch cut
is to derive the leading coefficients in the Taylor series of the functions
A(z) and B(z) in (18.33) at z = 1. This can be done in principle, if the
coefficients hn in sums like (18.32) are known (as for our toy model). One
then considers a resummation of the form

∞∑
j=0

hjz
j =

∞∑
j=0

aj(1− z)j + (1− z)α−1
∞∑

j=0

bj(1− z)j , (18.35)
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and the coefficients aj and bj are obtained in terms of the hj ’s by expanding
(1−z)j and (1−z)j+α−1 on the right hand side around z = 0 using (18.11)
and equating the coefficients.

In practical calculations one often has only a finite number of coefficients
hj , 0 ≤ j ≤ N , which may have been obtained by finding periodic orbits
and their stabilities numerically. One can still design a resummation scheme
for the computation of the coefficients aj and bj in (18.35). We replace the
infinite sums in (18.35) by finite sums of increasing degrees na and nb, and
require that

na∑
i=0

ai(1−z)i +(1−z)α−1
nb∑
i=0

bi(1−z)i =
N∑

i=0

hiz
i +O(zN+1) .(18.36)

One proceeds again by expanding the right hand side around z = 0, skipping
all powers zN+1 and higher, and then equating coefficients. It is natural to
require that |nb + α− 1− na| < 1, so that the maximal powers of the two
sums in (18.36) are adjacent. If one chooses na + nb + 2 = N + 1, then,
for each cutoff length N , the integers na and nb are uniquely determined
from a linear system of equations. The price we pay is that the so obtained
coefficients depend on the cutoff N . One can now study convergence of the
coefficients aj , and bj , with respect to increasing values of N , or various
quantities derived from aj and bj . Note that the leading coefficients a0

and b0 determine the prefactor C in (18.34), cf. (18.23). The resummed
expression can also be used to compute zeros, inside or outside the radius
of convergence of the cycle expansion

∑
hjz

j .

The scheme outlined in this section tacitly assumes that a representation
of form (18.33) holds in a disc of radius 1 around z = 1. Convergence is
improved further if additional information about the asymptotics of sums
like (18.32) is used to improve the ansatz (18.35).

18.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation
of sums of the form (18.32) without explicitly relying on an ansatz (18.35).
The main idea is to rewrite the sum (18.32) as a sum over integrals with the
help of the Poisson summation formula and find an analytic continuation
of each integral by contour deformation. In order to do so, we need to know
the n dependence of the coefficients hn ≡ h(n) explicitly for all n. If the
coefficients are not known analytically, one may proceed by approximating
the large n behavior in the form

h(n) = n−α(C1 + C2n
−1 + . . .) , n 	= 0 ,
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and determine the constants Ci numerically from periodic orbit data. By
using the Poisson resummation identity

∞∑
n=−∞

δ(x− n) =
∞∑

m=−∞
exp(2πimx) , (18.37)

we may write the sum as (18.32)

f(z) =
1
2
h(0) +

∞∑
m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (18.38)

The continuous variable x corresponds to the discrete summation index n
and it is convenient to write z = r exp(iσ) from now on. The integrals are
still not convergent for r > 0, but an analytical continuation can be found
by considering the contour integral, where the contour goes out along the
real axis, makes a quarter circle to either the positive or negative imaginary
axis and goes back to zero. By letting the radius of the circle go to infinity,
we essentially rotate the line of integration from the real onto the imaginary
axis. For the m = 0 term in (18.38), we transform x→ ix and the integral
takes on the form

∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ 	= 0 or
2π. The last condition reminds us again of the existence of a branch cut
at Re z ≥ 1. By the same technique, we find the analytic continuation for
all the other integrals in (18.38). The real axis is then rotated according to
x→ sign(m)ix where sign(m) refers to the sign of m.

∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over |m|
explicitly and one finally obtains the compact expression

f(z) =
1
2
h(0) + i

∫ ∞

0
dx h(ix) rixe−xσ (18.39)

+ i

∫ ∞

0
dx

e−2πx

1− e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (18.39)
is exact for r ≤ 1, and provides an analytic continuation for r > 0. The
expression (18.39) is especially useful for an efficient numerical calculations
of a dynamical zeta function for |z| > 1, which is essential when searching
for its zeros and poles.
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18.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (18.31),
and showed how to deal with such power series with algebraically decreasing
coefficients. The fundamental term determines the main structure of the
zeta function in terms of the leading order branch cut. Corrections to both
the zeros and poles of the dynamical zeta function as well as the leading
and subleading order terms in expansions like (18.33) are contained in the
curvature terms in (18.31). The first curvature correction is the 2-cycle
sum

∞∑
m=1

∞∑
n=1

1
2
(tmn − tmtn) ,

with algebraically decaying coefficients which again diverge for |z| > 1. The
analytically continued curvature terms have as usual branch cuts along the
positive real z axis. Our ability to calculate the higher order curvature
terms depends on how much we know about the cycle weights tmn. The
form of the cycle stability (18.5) suggests that tmn decrease asymptotically
as

tmn ∼
1

(nm)1+1/s
(18.40)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼
1

(m1m2 . . . mn)1+1/s
.

If we happen to know the cycle weights tm1m2...mn analytically, we may pro-
ceed as in sect. 18.3.2, transform the multiple sums into multiple integrals
and rotate the integration contours.

We have reached the edge of what has been accomplished so far in com-
puting and what is worth the dynamical zeta functions from periodic orbit
data. In the next section, we describe a probabilistic method applicable to
intermittent maps which does not rely on periodic orbits.

18.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in which
to investigate dynamical implications of marginal fixed points. We now take
an altogether different track and describe how probabilistic methods may
be employed in order to write down approximate dynamical zeta functions
for intermittent systems.
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We will discuss the method in a very general setting, for a flow in
arbitrary dimension. The key idea is to introduce a surface of section P
such that all trajectories traversing this section will have spent some time
both near the marginal stable fixed point and in the chaotic phase. An
important quantity in what follows is (3.2), the first return time τ(x), or
the time of flight of a trajectory starting in x to the next return to the
surface of section P. The period of a periodic orbit p intersecting the P
section np times is

Tp =
np−1∑
k=0

τ(fk(xp)),

where f(x) is the Poincaré map, and xp ∈ P is a cycle point. The dynamical
zeta function (12.12)

1/ζ(z, s, β) =
∏
p

(
1− znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑
k=0

a(fk(xp)), (18.41)

☞ chapter 8

associated with the observable a(x) captures the dynamics of both the flow
and the Poincaré map. The dynamical zeta function for the flow is obtained
as 1/ζ(s, β) = 1/ζ(1, s, β), and the dynamical zeta function for the discrete
time Poincaré map is 1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the
chaotic interludes render the consecutive return (or recurrence) times T (xi),
T (xi+1) and observables a(xi), a(xi+1) effectively uncorrelated. Consider
the quantity eβA(x0,n)−sT (x0,n) averaged over the surface of section P. With
the above probabilistic assumption the large n behavior is

〈eβA(x0,n)−sT (x0,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n

,

where ρ(x) is the invariant density of the Poincaré map. This type of behav-
ior is equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx

of 1/ζ(z, s, β) in the z-β plane. In the language of Ruelle-Pollicott reso-
nances this means that there is an infinite gap to the first resonance.
This in turn implies that 1/ζ(z, s, β) may be written as

☞ remark 8.1

1/ζ(z, s, β) = z −
∫
P

eβa(x)−sτ(x)ρ(x)dx , (18.42)

where we have neglected a possible analytic and non-zero prefactor. The
dynamical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1−
∫
P

eβa(x)ρ(x)e−sτ(x)dx . (18.43)
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Normally, the best one can hope for is a finite gap to the leading reso-
nance of the Poincaré map. with the above dynamical zeta function only
approximatively valid. As it is derived from an approximation due to Bal-
adi, Eckmann, and Ruelle, we shall refer to it as the BER zeta function
1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫
P

δ(τ − τ(x))ρ(x)dx (18.44)

✎ 20.7
page 394 The BER zeta function at β = 0 is then given in terms of the Laplace

transform of this distribution

1/ζBER(s) = 1−
∫ ∞

0
ψ(τ)e−sτdτ.

✎ 18.5
page 346

Example 18.1 Return times for the Bernoulli map. For the Bernoulli shift map
(13.10)

x �→ f(x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (11.8))

1/ζBER(z) = 1−
∞∑

n=1

ψnzn = 1−
∞∑

n=1

zn

2n

=
1− z

1− z/2
= ζ−1(z)/(1− z/Λ0) . (18.45)

Thanks to the uniformity of the piecewise linear map measure (7.13) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point 0
pruned.

Example 18.2 Return times for the model of sect. 18.2.1. For the toy model of
sect. 18.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1− b)/(1− a), for n ≥ 2, leading to
a BER zeta function

1/ζBER(z) = 1− z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (18.10).
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It may seem surprising that the BER approximation produces exact re-
sults in the two examples above. The reason for this peculiarity is that both
these systems are piecewise linear and have complete Markov partitions. As
long as the map is piecewise linear and complete, and the probabilistic ap-
proximation is exactly fulfilled, the cycle expansion curvature terms vanish.
The BER zeta function and the fundamental part of a cycle expansion dis-
cussed in sect. 15.1.1 are indeed intricately related, but not identical in
general. In particular, note that the BER zeta function obeys the flow con-
servation sum rule (16.11) by construction, whereas the fundamental part
of a cycle expansion as a rule does not.

Commentary

Remark 18.1 What about the evolution operator formalism? The
main virtue of evolution operators was their semigroup property (8.21).
This was natural for hyperbolic systems where instabilities grow expo-
nentially, and evolution operators capture this behavior due to their
multiplicative nature. Whether the evolution operator formalism is
a good way to capture the slow, power law instabilities of intermit-
tent dynamics is less clear. The approach taken here leads us to a
formulation in terms of dynamical zeta functions rather than spec-
tral determinants, circumventing evolution operators altogether. It is
not known if the spectral determinants formulation would yield any
benefits when applied to intermittent chaos. Some results on spec-
tral determinants and intermittency can be found in [18.2]. A useful
mathematical technique to deal with isolated marginally stable fixed
point is that of inducing, that is, replacing the intermittent map by a
completely hyperbolic map with infinite alphabet and redefining the
discrete time; we have used this method implicitly by changing from a
finite to an infinite alphabet. We refer to refs. [18.3, 18.19] for detailed
discussions of this technique, as well as applications to 1-dimensional
maps.

Remark 18.2 Intermittency. Intermittency was discovered by
Manneville and Pomeau [18.1] in their study of the Lorentz sys-
tem. They demonstrated that in neighborhood of parameter value
rc = 166.07 the mean duration of the periodic motion scales as (r −
rc)1/2. In ref. [18.5] they explained this phenomenon in terms of
a 1-dimensional map (such as (18.1)) near tangent bifurcation, and
classified possible types of intermittency.

Piecewise linear models like the one considered here have been
studied by Gaspard and Wang [18.6]. The escape problem has here
been treated following ref. [18.7], resummations following ref. [18.8].
The proof of the bound (18.27) can be found in P. Dahlqvist’s notes
on www.nbi.dk/ChaosBook/extras/PDahlqvistEscape.ps.gz.

Farey map (15.27) has been studied widely in the context of in-
termittent dynamics, for example in refs. [18.16, 18.17, 15.3, 18.18,
L.23, 15.14, 18.2]. The Fredholm determinant and the dynamical zeta
functions for the Farey map (15.27) and the related Gauss shift map
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(21.38) have been studied by Mayer [18.16]. He relates the continued
fraction transformation to the Riemann zeta function, and constructs
a Hilbert space on which the evolution operator is self-adjoint, and its
eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [18.23] for “Axiom A” hyperbolic systems.

Remark 18.3 Tauberian theorems. In this chapter we used
Tauberian theorems for power series and Laplace transforms: Feller’s
monograph [18.9] is a highly recommended introduction to these meth-
ods.

Remark 18.4 Probabilistic methods, BER zeta functions. Prob-
abilistic description of intermittent chaos was introduced by Geisal
and Thomae [18.10]. The BER approximation studied here is inspired
by Baladi, Eckmann and Ruelle [18.14], with further developments in
refs. [18.13, 18.15].

Résumé

The presence of marginally stable fixed points and cycles changes the an-
alytic structure of dynamical zeta functions and the rules for constructing
cycle expansions. The marginal orbits have to be omitted, and the cy-
cle expansions now need to include families of infinitely many longer and
longer unstable orbits which accumulate toward the marginally stable cy-
cles. Correlations for such non-hyperbolic systems may decay algebraically
with the decay rates controlled by the branch cuts of dynamical zeta func-
tions. Compared to pure hyperbolic systems, the physical consequences
are drastic: exponential decays are replaced by slow power-law decays, and
transport properties, such as the diffusion may become anomalous.
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[18.22] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher
trashendental functions, Vol. I (McGraw-Hill, New York, 1953).

[18.23] D. Ruelle, Inventiones math. 34, 231 (1976)

[18.24] S. Grossmann and H. Fujisaka, Phys. Rev. A 26, 1779 (1982).

[18.25] R. Lombardi, Laurea thesis, Universitá degli studi di Milano (1993).
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Exercises

Exercise 18.1 Integral representation of Jonquière functions. Check the
integral representation

J(z, α) =
z

Γ(α)

∫ ∞

0

dξ
ξα−1

eξ − z
for α > 0 . (18.46)

Note how the denominator is connected to Bose-Einstein distribution. Compute J(x+
iε)− J(x− iε) for a real x > 1.

Exercise 18.2 Power law correction to a power law. Expand (18.20) further

and derive the leading power law correction to (18.23).

Exercise 18.3 Power-law fall off. In cycle expansions the stabilities of orbits
do not always behave in a geometric fashion. Consider the map f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x → 0. Define a symbolic dynamics for this map by
assigning 0 to the points that land on the interval [0, 1/2) and 1 to the points that
land on (1/2, 1]. Show that the stability of orbits that spend a long time on the 0 side
goes as n2. In particular, show that

Λ00···0︸︷︷︸
n

1 ∼ n2

Exercise 18.4 Power law fall-off of stability eigenvalues in the stadium
billiard∗∗. From the cycle expansions point of view, the most important con-
sequence of the shear in Jn for long sequences of rotation bounces nk in (5.23) is that
the Λn grows only as a power law in number of bounces:

Λn ∝ n2
k . (18.47)

Check.

Exercise 18.5 Probabilistic zeta function for maps. Derive the probabilistic

zeta function for a map with recurrence distribution ψn.

Exercise 18.6 Accelerated diffusion. Consider a map h, such that ĥ = f̂ ,
but now running branches are turner into standing branches and vice versa, so that
1, 2, 3, 4 are standing while 0 leads to both positive and negative jumps. Build the
corresponding dynamical zeta function and show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)
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Exercise 18.7 Anomalous diffusion (hyperbolic maps). Anomalous diffusive
properties are associated to deviations from linearity of the variance of the phase
variable we are looking at: this means the the diffusion constant (8.13) either vanishes
or diverges. We briefly illustrate in this exercise how the local local properties of a
map are crucial to account for anomalous behavior even for hyperbolic systems.

Consider a class of piecewise linear maps, relevant to the problem of the onset of
diffusion, defined by

fε(x) =


Λx for x ∈

[
0, x+

1

]
a− Λε,γ |x− x+| for x ∈

[
x+

1 , x+
2

]
1− Λ′(x− x+

2 ) for x ∈
[
x+

2 , x−
1

]
1− a + Λε,γ |x− x−| for x ∈

[
x−

1 , x−
2

]
1 + Λ(x− 1) for x ∈

[
x−

2 , 1
] (18.48)

where Λ = (1/3− ε1/γ)−1, Λ′ = (1/3− 2ε1/γ), Λε,γ = ε1−1/γ , a = 1 + ε, x+ = 1/3,
x+

1 = x+ − ε1/γ , x+
2 = x+ + ε1/γ , and the usual symmetry properties (20.11) are

satisfied.

Thus this class of maps is characterized by two escaping windows (through which
the diffusion process may take place) of size 2ε1/γ : the exponent γ mimicks the
order of the maximum for a continuous map, while piecewise linearity, besides making
curvatures vanish and leading to finite cycle expansions, prevents the appearance of
stable cycles. The symbolic dynamics is easily described once we consider a sequence
of parameter values {εm}, where εm = Λ−(m+1): we then partition the unit interval
though the sequence of points 0, x+

1 , x+, x+
2 , x−

1 , x−, x−
2 , 1 and label the corresponding

sub–intervals 1, sa, sb, 2, db, da, 3: symbolic dynamics is described by an unrestricted
grammar over the following set of symbols

{1, 2, 3, s# · 1i, d# · 3k} # = a, b i, k = m,m + 1,m + 2, . . .

This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1− 2z

Λ
− z

Λ′ − 4 cosh(α)ε1/γ−1
m

zm+1

Λm

(
1− z

Λ

)−1

from which, by (20.8) we get

D =
2ε

1/γ−1
m Λ−m(1− 1/Λ)−1

1− 2
Λ −

1
Λ′ − 4ε

1/γ−1
m

(
m+1

Λm(1−1/Λ) + 1
Λm+1(1−1/Λ)2

) (18.49)

The main interest in this expression is that it allows exploring how D vanishes in the
ε �→ 0 (m �→ ∞) limit: as a matter of fact, from (18.49) we get the asymptotic
behavior D ∼ ε1/γ , which shows how the onset of diffusion is governed by the order
of the map at its maximum.

Remark 18.5 Onset of diffusion for continuous maps. The zool-
ogy of behavior for continuous maps at the onset of diffusion is described
in refs. [20.11, 20.12, 18.24]: our treatment for piecewise linear maps
was introduced in ref. [18.25].
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Chapter 19

Discrete symmetries

Utility of discrete symmetries in reducing spectrum calculations is familiar
from quantum mechanics. Here we show that the classical spectral deter-
minants factor in essentially the same way as in quantum mechanics. In
the process we also learn how to simplify the classical dynamics. The main
result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cy-
cle p of multiplicity mp to a dynamical zeta function factorizes into a prod-
uct over the dα-dimensional irreducible representations Dα of the symmetry
group,

(1− tp)mp =
∏
α

det (1−Dα(hp̃)tp̃)
dα , tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the fundamental domain, g is the
dimension of the group, hp̃ is the group element relating the fundamental
domain cycle p̃ to a segment of the full space cycle p, and mp is the mul-
tiplicity of the p cycle. As the dynamical zeta functions have particularly
simple cycle expansions, a simple geometrical shadowing interpretation of
their convergence, and as they suffice for determination of leading eigen-
values, we shall concentrate in this chapter on their factorizations; the full
spectral determinants can be factorized by the same techniques. To em-
phasize the group theoretic structure of zeta functions, we shall combine
all the non-group-theory dependence of a p-cycle into a cycle weight tp.

This chapter is meant to serve as a detailed guide to computation of dyn-
amical zeta functions and spectral determinants for systems with discrete
symmetries. Familiarity with basic group-theoretic notions is assumed,
with the definitions relegated to appendix I.1. We develop here the cycle
expansions for factorized determinants, and exemplify them by working out
a series of cases of physical interest: C2, C3v symmetries in this chapter,
and C2v, C4v symmetries in appendix I below.
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19.1 Preview

Dynamical systems often come equipped with discrete symmetries, such
as the reflection and the rotation symmetries of various potentials. Such
symmetries simplify and improve the cycle expansions in a rather beautiful
way; they can be exploited to relate classes of periodic orbits and reduce
dynamics to a fundamental domain. Furthermore, in classical dynamics,
just as in quantum mechanics, the symmetrized subspaces can be probed by
linear operators of different symmetries. If a linear operator commutes with
the symmetry, it can be block-diagonalized, and, as we shall now show, the
associated spectral determinants and dynamical zeta functions factorize.

Invariance of a system under symmetries means that the symmetry
image of a cycle is again a cycle, with the same weight. The new orbit may
be topologically distinct (in which case it contributes to the multiplicity of
the cycle) or it may be the same cycle, shifted in time. A cycle is symmetric
if some symmetry operations act on it like a shift in time, advancing the
starting point to the starting point of a symmetry related segment. A
symmetric cycle can thus be subdivided into a sequence of repeats of an
irreducible segment. The period or any average evaluated along the full
orbit is given by the sum over the segments, whereas the stability is given
by the product of the stability matrices of the individual segments.

Cycle degeneracies induced by the symmetry are removed by desym-
metrization, reduction of the full dynamics to the dynamics on a fundamen-
tal domain. The phase space can be completely tiled by a fundamental
domain and its symmetry images. The irreducible segments of cycles in the
full space, folded back into the fundamental domain, are closed orbits in
the reduced space.

19.1.1 3-disk game of pinball

We have already exploited a discrete symmetry in our introduction to the 3-
disk game of pinball, sect. 1.3. As the three disks are equidistantly spaced,
our game of pinball has a sixfold symmetry. The symmetry group of rela-
belling the 3 disks is the permutation group S3; however, it is better to think
of this group geometrically, as C3v, the group of rotations by ±2π/3 and
reflections across the three symmetry axes. Applying an element (identity,
rotation by ±2π/3, or one of the three possible reflections) of this sym-
metry group to any trajectory yields another trajectory. For instance, the
cycles 12, 23, and 13, are related to each other by rotation by ±2π/3, or,
equivalently, by a relabelling of the disks.

An irreducible segment corresponds to a periodic orbit in the fundamen-
tal domain, a one-sixth slice of the full 3-disk system, with the symmetry
axes acting as reflecting mirrors, see fig. 9.5. A set of orbits related in
the full space by discrete symmetries maps onto a single fundamental do-
main orbit. The reduction to the fundamental domain desymmetrizes the
dynamics and removes all global discrete symmetry induced degeneracies:
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rotationally symmetric global orbits (such as the 3-cycles 123 and 132) have
degeneracy 2, reflectionally symmetric ones (such as the 2-cycles 12, 13 and
23) have degeneracy 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 9.1 lists some of the shortest binary symbols strings, together
with the corresponding full 3-disk symbol sequences and orbit symmetries.
Some examples of such orbits are shown in fig. 19.3.

We shall return to the 3-disk game of pinball desymmetrization in
sects. 19.2.2 and 19.6, but first we develop a feeling for discrete symme-
tries by working out a simple 1-d example.

19.1.2 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f(−x) = −f(x).
A simple example is the piecewise-linear sawtooth map of fig. 19.1. De-
note the reflection operation by Cx = −x. The symmetry of the map
implies that if {xn} is a trajectory, than also {Cxn} is a trajectory be-
cause Cxn+1 = Cf(xn) = f(Cxn) . The dynamics can be restricted to a
fundamental domain, in this case to one half of the original interval; every
time a trajectory leaves this interval, it can be mapped back using C. Fur-
thermore, the evolution operator commutes with C, L(y, x) = L(Cy,Cx).
C satisfies C2 = e and can be used to decompose the phase space into
mutually orthogonal symmetric and antisymmetric subspaces by means of
projection operators

PA1 =
1
2
(e + C) , PA2 =

1
2
(e−C) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) + L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x)− L(−y, x)) . (19.1)

To compute the traces of the symmetrization and antisymmetrization
projection operators (19.1), we have to distinguish three kinds of cycles:
asymmetric cycles a, symmetric cycles s built by repeats of irreducible
segments s̃, and boundary cycles b. Now we show that the spectral det-
erminant can be written as the product over the three kinds of cycles:
det (1− L) = det (1− L)adet (1− L)s̃det (1− L)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa}∩{Cxa} =
∅, where {xa} is the set of periodic points belonging to the cycle a. Thus
C generates a second orbit with the same number of points and the same
stability properties. Both orbits give the same contribution to the first term
and no contribution to the second term in (19.1); as they are degenerate,
the prefactor 1/2 cancels. Resumming as in the derivation of (12.12) we
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Figure 19.1: The Ulam sawtooth map with the C2 symmetry f(−x) = −f(x).
(a) boundary fixed point C, (b) symmetric 2-cycle LR, (c) asymmetric 2-cycles pair
{LC,CR}. The Ulam sawtooth map restricted to the fundamental domain; pieces of
the global map (a) are reflected into the upper right quadrant. (d) Boundary fixed
point C maps into the fixed point c, symmetric 2-cycle LR maps into fixed point s,
and the asymmetric fixed point pair {L,R} maps into a single fixed point r, (e) the
asymmetric 2-cycles pair {LC,CR} maps into a single 2-cycle cr.

find that asymmetric orbits yield the same contribution to the symmetric
and the antisymmetric subspaces:

det (1− L±)a =
∏
a

∞∏
k=0

(
1− ta

Λk
a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with C
on the set of cycle points reproduces the set. The period of a symmetric
cycle is always even (ns = 2ns̃) and the mirror image of the xs cycle point is
reached by traversing the irreducible segment s̃ of length ns̃, fns̃(xs) = Cxs.
δ(x− fn(x)) picks up 2ns̃ contributions for every even traversal, n = rns̃, r
even, and δ(x + fn(x)) for every odd traversal, n = rns̃, r odd. Absorb the
group-theoretic prefactor in the stability eigenvalue by defining the stability
computed for a segment of length ns̃,

Λs̃ = − ∂fns̃(x)
∂x

∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhood Ms of the s
cycle, we obtain the contribution to trLn±:

zntrLn
± →

∫
Ms

dx zn 1
2

(δ(x− fn(x))± δ(x + fn(x)))
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= ns̃

(
even∑
r=2

δn,rns̃

trs̃
1− 1/Λr

s̃

±
odd∑
r=1

δn,rns̃

trs̃
1− 1/Λr

s̃

)

= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1− 1/Λr
s̃

.

Substituting all symmetric cycles s into det (1 − L±) and resumming we
obtain:

det (1− L±)s̃ =
∏
s̃

∞∏
k=0

(
1∓ ts̃

Λk
s̃

)

Boundary cycles: In the example at hand there is only one cycle which
is neither symmetric nor antisymmetric, but lies on the boundary of the
fundamental domain, the fixed point at the origin. Such cycle contributes
simultaneously to both δ(x− fn(x)) and δ(x + fn(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(δ(x− fn(x))± δ(x + fn(x)))

=
∞∑

r=1

δn,r trb
1
2

(
1

1− 1/Λr
b

± 1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
trb

1− 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1
Λr

b

trb
1− 1/Λ2r

b

.

Boundary orbit contributions to the factorized spectral determinants follow
by resummation:

det (1− L+)b =
∞∏

k=0

(
1− tb

Λ2k
b

)
, det (1− L−)b =

∞∏
k=0

(
1− tb

Λ2k+1
b

)

Only even derivatives contribute to the symmetric subspace (and odd to
the antisymmetric subspace) because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collect-
ing the above results:

F+(z) =
∏
a

∞∏
k=0

(
1− ta

Λk
a

)∏
s̃

∞∏
k=0

(
1− ts̃

Λk
s̃

) ∞∏
k=0

(
1− tb

Λ2k
b

)

F−(z) =
∏
a

∞∏
k=0

(
1− ta

Λk
a

)∏
s̃

∞∏
k=0

(
1 +

ts̃

Λk
s̃

) ∞∏
k=0

(
1− tb

Λ2k+1
b

)
(19.2)
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We shall work out the symbolic dynamics of such reflection symmetric sys-
tems in some detail in sect. 19.5. As reflection symmetry is essentially the
only discrete symmetry that a map of the interval can have, this exam-
ple completes the group-theoretic factorization of determinants and zeta
functions for 1-d maps. We now turn to discussion of the general case.✎ 19.1

page 370

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry group G = {e, g2, . . . , g|G|}
if the equations of motion are invariant under all symmetries g ∈ G. For
a map xn+1 = f(xn) and the evolution operator L(y, x) defined by (8.19)
this means

f(x) = g−1f(gx)
L(y, x) = L(gy,gx) . (19.3)

Bold face letters for group elements indicate a suitable representation on
phase space. For example, if a 2-dimensional map has the symmetry x1 →
−x1, x2 → −x2, the symmetry group G consists of the identity and C,
a rotation by π around the origin. The map f must then commute with
rotations by π, f(Cx) = Cf(x), with C given by the [2× 2] matrix

C =
(
−1 0
0 −1

)
. (19.4)

C satisfies C2 = e and can be used to decompose the phase space into mutu-
ally orthogonal symmetric and antisymmetric subspaces by means of projec-
tion operators (19.1). More generally the projection operator onto the α ir-
reducible subspace of dimension dα is given by Pα = (dα/|G|)

∑
χα(h)h−1,

where χα(h) = trDα(h) are the group characters, and the transfer oper-
ator L splits into a sum of inequivalent irreducible subspace contributions∑

α trLα,

Lα(y, x) =
dα

|G|
∑
h∈G

χα(h)L(h−1y, x) . (19.5)

The prefactor dα in the above reflects the fact that a dα-dimensional rep-
resentation occurs dα times.

19.2.1 Cycle degeneracies

If g ∈ G is a symmetry of the dynamical problem, the weight of a cycle p
and the weight of its image under a symmetry transformation g are equal,
tgp = tp. The number of degenerate cycles (topologically distinct, but

symm - 5apr2002 draft 9.4.0, June 18 2003



19.2. DISCRETE SYMMETRIES 355

Figure 19.2: The symmetries of three disks
on an equilateral triangle. The fundamental do-
main is indicated by the shaded wedge.

mapped into each other by symmetry transformations) depends on the cycle
symmetries. Associated with a given cycle p is a maximal subgroupHp ⊆ G,
Hp = {e, b2, b3, . . . , bh} of order hp, whose elements leave p invariant. The
elements of the quotient space b ∈ G/Hp generate the degenerate cycles bp,
so the multiplicity of a degenerate cycle is mp = g/hp.

Taking into account these degeneracies, the Euler product (12.12) takes
the form

∏
p

(1− tp) =
∏
p̂

(1− tp̂)mp̂ . (19.6)

Here p̂ is one of the mp degenerate cycles, picked to serve as the label for
the entire class. Our labelling convention is usually lexical, i.e., we label a
cycle p by the cycle point whose label has the lowest value, and we label
a class of degenerate cycles by the one with the lowest label p̂. In what
follows we shall drop the hat in p̂ when it is clear from the context that we
are dealing with symmetry distinct classes of cycles.

19.2.2 Example: C3v invariance

An illustration of the above is afforded by C3v, the group of symmetries
of a game of pinball with three equal size, equally spaced disks, fig. 19.2.
The group consists of the identity element e, three reflections across axes
{σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C3, C

2
3}, so

its dimension is g = 6. On the disk labels {1, 2, 3} these symmetries act
as permutations which map cycles into cycles. For example, the flip across
the symmetry axis going through disk 1 interchanges the symbols 2 and 3;
it maps the cycle 12123 into 13132, fig. 19.3a.

The subgroups of C3v are Cv, consisting of the identity and any one
of the reflections, of dimension h = 2, and C3 = {e, C3, C

2
3}, of dimension

h = 3, so possible cycle multiplicities are g/h = 2, 3 or 6.

The C3 subgroup invariance is exemplified by the cycles 123 and 132
which are invariant under rotations by 2π/3 and 4π/3, but are mapped

draft 9.4.0, June 18 2003 symm - 5apr2002



356 CHAPTER 19. DISCRETE SYMMETRIES

Figure 19.3: Some examples of 3-disk cy-
cles: (a) 12123 and 13132 are mapped into each
other by σ23, the flip across 1 axis; this cycle
has degeneracy 6 under C3v symmetries. (C3v

is the symmetry group of the equilateral trian-
gle.) Similarly (b) 123 and 132 and (c) 1213,
1232 and 1323 are degenerate under C3v. (d)
The cycles 121212313 and 121212323 are re-
lated by time reversal but not by any C3v sym-
metry. These symmetries are discussed in more
detail in chapter 19. (from ref. [1.2])

into each other by any reflection, fig. 19.3b; Hp = {e, C3, C
2
3}, and the

degeneracy is g/hc3 = 2.

The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213.
This cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the
invariant subgroup is Hp̂ = {e, σ23}. Its order is hCv = 2, so the degeneracy
is mp̂ = g/hCv = 3; the cycles in this class, 1213, 1232 and 1323, are related
by 2π/3 rotations, fig. 19.3(c).

A cycle of no symmetry, such as 12123, has Hp = {e} and contributes
in all six terms (the remaining cycles in the class are 12132, 12313, 12323,
13132 and 13232), fig. 19.3a.

Besides the above discrete symmetries, for Hamiltonian systems cycles
may be related by time reversal symmetry. An example are the cycles
121212313 and 121212323 = 313212121 which are related by no space sym-
metry (fig. 19.3(d)).

The Euler product (12.12) for the C3v symmetric 3-disk problem is given
in (15.32).

19.3 Dynamics in the fundamental domain

So far we have used the discrete symmetry to effect a reduction in the
number of independent cycles in cycle expansions. The next step achieves
much more: the symmetries can be used to restrict all computations to a
fundamental domain. We show here that to each global cycle p corresponds
a fundamental domain cycle p̃. Conversely, each fundamental domain cycle
p̃ traces out a segment of the global cycle p, with the end point of the cycle
p̃ mapped into the irreducible segment of p with the group element hp̃.
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An important effect of a discrete symmetry is that it tesselates the phase
space into copies of a fundamental domain, and thus induces a natural
partition of phase space. The group elements g = {a, b, · · · , d} which map
the fundamental domain M̃ into its copies gM̃ , can double in function as
letters of a symbolic dynamics alphabet. If the dynamics is symmetric
under interchanges of disks, the absolute disk labels εi = 1, 2, · · · , N can
be replaced by the symmetry-invariant relative disk→disk increments gi,
where gi is the discrete group element that maps disk i− 1 into disk i. We
demonstrate the reduction for a series of specific examples in sect. 19.4.
An immediate gain arising from symmetry invariant relabelling is that N -
disk symbolic dynamics becomes (N − 1)-nary, with no restrictions on the
admissible sequences. However, the main gain is in the close connection
between the symbol string symmetries and the phase space symmetries
which will aid us in the dynamical zeta function factorizations. Once the
connection between the full space and the reduced space is established,
working in the fundamental domain (ie., with irreducible segments) is so
much simpler that we never use the full space orbits in actual computations.

If the dynamics is invariant under a discrete symmetry, the phase space
M can be completely tiled by the fundamental domain M̃ and its images
aM̃ , bM̃ , . . . under the action of the symmetry group G = {e, a, b, . . .},

M =
∑
a∈G

Ma =
∑
a∈G

aM̃ .

In the above example (19.4) with symmetry group G = {e, C}, the phase
space M = {x1-x2 plane} can be tiled by a fundamental domain M̃ = {half-
plane x1 ≥ 0}, and CM̃ = {half-plane x1 ≤ 0}, its image under rotation
by π.

If the space M is decomposed into g tiles, a function φ(x) over M
splits into a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈
Ma, φa(x) = 0 otherwise. Let h = ab−1 conflicts with be the symmetry
operation that maps the endpoint domain Mb into the starting point domain
Ma, and let D(h)ba, the left regular representation, be the [g × g] matrix
whose b, a-th entry equals unity if a = hb and zero otherwise; D(h)ba =
δbh,a. Since the symmetries act on phase space as well, the operation h
enters in two guises: as a [g × g] matrix D(h) which simply permutes
the domain labels, and as a [d × d] matrix representation h of a discrete
symmetry operation on the d phase-space coordinates. For instance, in the
above example (19.4) h ∈ C2 and D(h) can be either the identity or the
interchange of the two domain labels,

D(e) =
(

1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (19.7)

Note that D(h) is a permutation matrix, mapping a tile Ma into a different
tile Mha 	= Ma if h 	= e. Consequently only D(e) has diagonal elements,
and trD(h) = gδh,e. However, the phase-space transformation h 	= e leaves
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invariant sets of boundary points; for example, under reflection σ across a
symmetry axis, the axis itself remains invariant. The boundary periodic
orbits that belong to such point-wise invariant sets will require special care
in trL evaluations.

One can associate to the evolution operator (8.19) a [g × g] matrix
evolution operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (19.3) to move the starting point x into the fundamental domain
x = ax̃, L(y, x) = L(a−1y, x̃), and then use the relation a−1b = h−1 to also
relate the endpoint y to its image in the fundamental domain, L̃(ỹ, x̃) :=
L(h−1ỹ, x̃). With this operator which is restricted to the fundamental
domain, the global dynamics reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M , the restricted tra-
jectory is brought back into the fundamental domain M̃ any time it crosses
into adjoining tiles; the two trajectories are related by the symmetry opera-
tion h which maps the global endpoint into its fundamental domain image.

Now the traces (12.3) required for the evaluation of the eigenvalues of
the transfer operator can be evaluated on the fundamental domain alone

trL =
∫

M
dxL(x, x) =

∫
M̃

dx̃
∑

h

tr D(h) L(h−1x̃, x̃) (19.8)

The fundamental domain integral
∫

dx̃ L(h−1x̃, x̃) picks up a contribution
from every global cycle (for which h = e), but it also picks up contri-
butions from shorter segments of global cycles. The permutation matrix
D(h) guarantees by the identity trD(h) = 0, h 	= e, that only those repeats
of the fundamental domain cycles p̃ that correspond to complete global
cycles p contribute. Compare, for example, the contributions of the 12
and 0 cycles of fig. 9.5. trD(h)L̃ does not get a contribution from the 0
cycle, as the symmetry operation that maps the first half of the 12 into
the fundamental domain is a reflection, and trD(σ) = 0. In contrast,
σ2 = e, trD(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t20, gives the correct contribution to the global
trace trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain and hp̃ an
element of Hp, the symmetry group of p. Restricting the volume integra-
tions to the infinitesimal neighborhoods of the cycles p and p̃, respectively,
and performing the standard resummations, we obtain the identity

(1− tp)mp = det (1−D(hp̃)tp̃) , (19.9)
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valid cycle by cycle in the Euler products (12.12) for det (1 − L). Here
“det” refers to the [g × g] matrix representation D(hp̃); as we shall see,
this determinant can be evaluated in terms of standard characters, and no
explicit representation of D(hp̃) is needed. Finally, if a cycle p is invariant
under the symmetry subgroupHp ⊆ G of order hp, its weight can be written
as a repetition of a fundamental domain cycle

tp = t
hp

p̃ (19.10)

computed on the irreducible segment that coresponds to a fundamental
domain cycle. For example, in fig. 9.5 we see by inspection that t12 = t20
and t123 = t31.

19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations of dynamical
zeta functions for the different symmetries we have to discuss an effect that
arises for orbits that run on a symmetry line that borders a fundamental
domain. In our 3-disk example, no such orbits are possible, but they exist in
other systems, such as in the bounded region of the Hénon-Heiles potential
and in 1-d maps. For the symmetrical 4-disk billiard, there are in principle
two kinds of such orbits, one kind bouncing back and forth between two
diagonally opposed disks and the other kind moving along the other axis
of reflection symmetry; the latter exists for bounded systems only. While
there are typically very few boundary orbits, they tend to be among the
shortest orbits, and their neglect can seriously degrade the convergence of
cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their
neighborhoods are not. This affects the stability matrix Jp of the lin-
earization perpendicular to the orbit and thus the eigenvalues. Typically,
e.g. if the symmetry is a reflection, some eigenvalues of Jp change sign.
This means that instead of a weight 1/det (1 − Jp) as for a regular orbit,
boundary cycles also pick up contributions of form 1/det (1− hJp), where
h is a symmetry operation that leaves the orbit pointwise invariant; see for
example sect. 19.1.2.

Consequences for the dynamical zeta function factorizations are that
sometimes a boundary orbit does not contribute. A derivation of a dyn-
amical zeta function (12.12) from a determinant like (12.9) usually starts
with an expansion of the determinants of the Jacobian. The leading order
terms just contain the product of the expanding eigenvalues and lead to
the dynamical zeta function (12.12). Next to leading order terms contain
products of expanding and contracting eigenvalues and are sensitive to their
signs. Clearly, the weights tp in the dynamical zeta function will then be
affected by reflections in the Poincaré surface of section perpendicular to
the orbit. In all our applications it was possible to implement these effects
by the following simple prescription.
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If an orbit is invariant under a little group Hp = {e, b2, . . . , bh}, then the
corresponding group element in (19.9) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (19.11)

In the cases that we have considered, the change of sign may be taken into
account by defining a sign function εp(g) = ±1, with the “-” sign if the
symmetry element g flips the neigborhood. Then (19.11) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (19.12)

We have illustrated the above in sect. 19.1.2 by working out the full factor-
ization for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta functions

In the above we have shown that a discrete symmetry induces degeneracies
among periodic orbits and decomposes periodic orbits into repetitions of
irreducible segments; this reduction to a fundamental domain furthermore
leads to a convenient symbolic dynamics compatible with the symmetry,
and, most importantly, to a factorization of dynamical zeta functions. This
we now develop, first in a general setting and then for specific examples.

19.4.1 Factorizations of dynamical dynamical zeta functions

According to (19.9) and (19.10), the contribution of a degenerate class of
global cycles (cycle p with multiplicity mp = g/hp) to a dynamical zeta
function is given by the corresponding fundamental domain cycle p̃:

(1− t
hp

p̃ )g/hp = det (1−D(hp̃)tp̃) (19.13)

Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix representa-
tion D(h) into the dα dimensional irreducible representations α of a finite
group G. Such decompositions are block-diagonal, so the corresponding
contribution to the Euler product (12.9) factorizes as

det (1−D(h)t) =
∏
α

det (1−Dα(h)t)dα , (19.14)
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where now the product extends over all distinct dα-dimensional irreducible
representations, each contributing dα times. For the cycle expansion pur-
poses, it has been convenient to emphasize that the group-theoretic factor-
ization can be effected cycle by cycle, as in (19.13); but from the transfer
operator point of view, the key observation is that the symmetry reduces
the transfer operator to a block diagonal form; this block diagonalization
implies that the dynamical zeta functions (12.12) factorize as

1
ζ

=
∏
α

1
ζdα
α

,
1
ζα

=
∏
p̃

det (1−Dα(hp̃)tp̃) . (19.15)

Determinants of d-dimensional irreducible representations can be eval-
uated using the expansion of determinants in terms of traces,

det (1 + M) = 1 + trM +
1
2
(
(tr M)2 − tr M2

)
+

1
6
(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · ·+ 1

d!

(
(tr M)d − · · ·

)
, (19.16)

(see (K.26), for example) and each factor in (19.14) can be evaluated by
looking up the characters χα(h) = trDα(h) in standard tables [19.14]. In
terms of characters, we have for the 1-dimensional representations

det (1−Dα(h)t) = 1− χα(h)t ,

for the 2-dimensional representations

det (1−Dα(h)t) = 1− χα(h)t +
1
2
(
χα(h)2 − χα(h2)

)
t2,

and so forth.

In the fully symmetric subspace trDA1(h) = 1 for all orbits; hence a
straightforward fundamental domain computation (with no group theory
weights) always yields a part of the full spectrum. In practice this is the
most interesting subspectrum, as it contains the leading eigenvalue of the
transfer operator. ✎ 19.2

page 370

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (12.3) proceeds in essentially
the same manner as the factorization of dynamical zeta functions outlined
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above. By (19.5) and (19.8) the trace of the transfer operator L splits into
the sum of inequivalent irreducible subspace contributions

∑
α trLα, with

trLα = dα

∑
h∈G

χα(h)
∫

M̃
dx̃L(h−1x̃, x̃) .

This leads by standard manipulations to the factorization of (12.9) into

F (z) =
∏
α

Fα(z)dα

Fα(z) = exp

−∑
p̃

∞∑
r=1

1
r

χα(hr
p̃)z

np̃r

|det
(
1− J̃r

p̃

)
|

 , (19.17)

where J̃p̃ = hp̃Jp̃ is the fundamental domain Jacobian. Boundary orbits
require special treatment, discussed in sect. 19.3.1, with examples given in
the next section as well as in the specific factorizations discussed below.

The factorizations (19.15), (19.17) are the central formulas of this chap-
ter. We now work out the group theory factorizations of cycle expansions
of dynamical zeta functions for the cases of C2 and C3v symmetries. The
cases of the C2v, C4v symmetries are worked out in appendix I below.

19.5 C2 factorization

As the simplest example of implementing the above scheme consider the
C2 symmetry. For our purposes, all that we need to know here is that
each orbit or configuration is uniquely labelled by an infinite string {si},
si = +,− and that the dynamics is invariant under the +↔ − interchange,
i.e., it is C2 symmetric. The C2 symmetry cycles separate into two classes,
the self-dual configurations +−, ++−−, +++−−−, +−−+−++−, · · ·,
with multiplicity mp = 1, and the asymmetric configurations +, −, + +−,
−−+, · · ·, with multiplicity mp = 2. For example, as there is no absolute
distinction between the “up” and the “down” spins, or the “left” or the
“right” lobe, t+ = t−, t++− = t+−−, and so on.✎ 19.5

page 371
The symmetry reduced labelling ρi ∈ {0, 1} is related to the standard

si ∈ {+,−} Ising spin labelling by

If si = si−1 then ρi = 1
If si 	= si−1 then ρi = 0 (19.18)

For example, + = · · ·++++ · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · ·−+−+ · · · maps into · · · 000 · · · = 0, −+ +− = · · ·−−++−−+
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p̃ p mp

1 + 2
0 −+ 1
01 −− ++ 1
001 −+ + 2
011 −−− + ++ 1
0001 −+−− +−++ 1
0011 −+ ++ 2
0111 −−−− + + ++ 1
00001 −+−+− 2
00011 −+−−− +−+ ++ 1
00101 −+ +−− +−−++ 1
00111 −+−−− +−+ ++ 1
01011 −−+ + + 2
01111 −−−−− + + + ++ 1
001011 −+ +−−− +−−+ ++ 1
001101 −+ + +−− +−−−++ 1

Table 19.1: Correspondence between the C2 symmetry reduced cycles p̃ and the
standard Ising model periodic configurations p, together with their multiplicities mp.
Also listed are the two shortest cycles (length 6) related by time reversal, but distinct
under C2.

+ · · · maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is
given in table 19.1.

Depending on the maximal symmetry group Hp that leaves an orbit p
invariant (see sects. 19.2 and 19.3 as well as sect. 19.1.2), the contributions
to the dynamical zeta function factor as

A1 A2

Hp = {e} : (1− tp̃)2 = (1− tp̃)(1− tp̃)
Hp = {e, σ} : (1− t2p̃) = (1− tp̃)(1 + tp̃) , (19.19)

For example:

H++− = {e} : (1− t++−)2 = (1− t001)(1− t001)
H+− = {e, σ} : (1− t+−) = (1− t0) (1 + t0), t+− = t20

This yields two binary cycle expansions. The A1 subspace dynamical zeta
function is given by the standard binary expansion (15.5). The antisym-
metric A2 subspace dynamical zeta function ζA2 differs from ζA1 only by a
minus sign for cycles with an odd number of 0’s:

1/ζA2 = (1 + t0)(1− t1)(1 + t10)(1− t100)(1 + t101)(1 + t1000)
(1− t1001)(1 + t1011)(1− t10000)(1 + t10001)
(1 + t10010)(1− t10011)(1− t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0)− (t100 − t10t0) + (t101 − t10t1)
−(t1001 − t1t001 − t101t0 + t10t0t1)− . . . . . . (19.20)
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Note that the group theory factors do not destroy the curvature corrections
(the cycles and pseudo cycles are still arranged into shadowing combina-
tions).

If the system under consideration has a boundary orbit (cf. sect. 19.3.1)
with group-theoretic factor hp = (e + σ)/2, the boundary orbit does not
contribute to the antisymmetric subspace

A1 A2

boundary: (1− tp) = (1− tp̃)(1− 0tp̃) (19.21)

This is the 1/ζ part of the boundary orbit factorization of sect. 19.1.2.

19.6 C3v factorization: 3-disk game of pinball

The next example, the C3v symmetry, can be worked out by a glance at
fig. 9.5a. For the symmetric 3-disk game of pinball the fundamental domain
is bounded by a disk segment and the two adjacent sections of the symmetry
axes that act as mirrors (see fig. 9.5b). The three symmetry axes divide
the space into six copies of the fundamental domain. Any trajectory on the
full space can be pieced together from bounces in the fundamental domain,
with symmetry axes replaced by flat mirror reflections. The binary {0, 1}
reduction of the ternary three disk {1, 2, 3} labels has a simple geometric
interpretation: a collision of type 0 reflects the projectile to the disk it comes
from (back–scatter), whereas after a collision of type 1 projectile continues
to the third disk. For example, 23 = · · · 232323 · · · maps into · · · 000 · · · = 0
(and so do 12 and 13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and so
does 132), and so forth. A list of such reductions for short cycles is given
in table 9.1.

C3v has two 1-dimensional irreducible representations, symmetric and
antisymmetric under reflections, denoted A1 and A2, and a pair of degen-
erate 2-dimensional representations of mixed symmetry, denoted E. The
contribution of an orbit with symmetry g to the 1/ζ Euler product (19.14)
factorizes according to

det (1−D(h)t) = (1− χA1(h)t) (1− χA2(h)t)
(
1− χE(h)t + χA2(h)t2

)2 (19.22)

with the three factors contributing to the C3v irreducible representations
A1, A2 and E, respectively, and the 3-disk dynamical zeta function factor-
izes into ζ = ζA1ζA2ζ

2
E . Substituting the C3v characters [19.14]

C3v A1 A2 E
e 1 1 2

C3, C
2
3 1 1 −1

σv 1 −1 0
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into (19.22), we obtain for the three classes of possible orbit symmetries
(indicated in the first column)

hp̃ A1 A2 E

e : (1− tp̃)6 = (1− tp̃)(1− tp̃)(1− 2tp̃ + t2p̃)
2

C3, C
2
3 : (1− t3p̃)

2 = (1− tp̃)(1− tp̃)(1 + tp̃ + t2p̃)
2

σv : (1− t2p̃)
3 = (1− tp̃)(1 + tp̃)(1 + 0tp̃ − t2p̃)

2. (19.23)

where σv stands for any one of the three reflections.

The Euler product (12.12) on each irreducible subspace follows from
the factorization (19.23). On the symmetric A1 subspace the ζA1 is given
by the standard binary curvature expansion (15.5). The antisymmetric A2

subspace ζA2 differs from ζA1 only by a minus sign for cycles with an odd
number of 0’s, and is given in (19.20). For the mixed-symmetry subspace
E the curvature expansion is given by

1/ζE = (1 + zt1 + z2t21)(1− z2t20)(1 + z3t100 + z6t2100)(1− z4t210)
(1 + z4t1001 + z8t21001)(1 + z5t10000 + z10t210000)
(1 + z5t10101 + z10t210101)(1− z5t10011)2 . . .

= 1 + zt1 + z2(t21 − t20) + z3(t001 − t1t
2
0)

+z4
[
t0011 + (t001 − t1t

2
0)t1 − t201

]
+z5

[
t00001 + t01011 − 2t00111 + (t0011 − t201)t1 + (t21 − t20)t100

]
+ · · ·(19.24)

We have reinserted the powers of z in order to group together cycles and
pseudocycles of the same length. Note that the factorized cycle expansions
retain the curvature form; long cycles are still shadowed by (somewhat less
obvious) combinations of pseudocycles.

Refering back to the topological polynomial (10.31) obtained by setting
tp = 1, we see that its factorization is a consequence of the C3v factorization
of the ζ function:

1/ζA1 = 1− 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (19.25)

as obtained from (15.5), (19.20) and (19.24) for tp = 1.

Their symmetry is K = {e, σ}, so according to (19.11), they pick up
the group-theoretic factor hp = (e + σ)/2. If there is no sign change in tp,
then evaluation of det (1− e+σ

2 tp̃) yields

A1 A2 E

boundary: (1− tp)3 = (1− tp̃)(1− 0tp̃)(1− tp̃)2 , tp = tp̃ .(19.26)
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However, if the cycle weight changes sign under reflection, tσp̃ = −tp̃, the
boundary orbit does not contribute to the subspace symmetric under re-
flection across the orbit;

A1 A2 E

boundary: (1− tp)3 = (1− 0tp̃)(1− tp̃)(1− tp̃)2 , tp = tp̃ .(19.27)

Commentary

Remark 19.1 Some examples of systems with discrete symmetries.

This chapter is based on ref. [19.1]. One has a C2 symmetry in the
Lorenz system [2.1, 19.15], the Ising model, and in the 3-dimensional
anisotropic Kepler potential [26.18, 26.32, 26.33], a C3v symmetry
in Hénon-Heiles type potentials [19.2, 19.6, 19.7, 19.5], a C4v sym-
metry in quartic oscillators [19.9, 19.10], in the pure x2y2 poten-
tial [19.11, 19.12] and in hydrogen in a magnetic field [19.13], and
a C2v = C2×C2 symmetry in the stadium billiard [19.4]. A very nice
application of the symmetry factorization is carried out in ref. [19.8].

Remark 19.2 Who did it? This chapter is based on long col-
laborative effort with B. Eckhardt, ref. [19.1]. The group-theoretic
factorizations of dynamical zeta functions that we develop here were
first introduced and applied in ref. [3.10]. They are closely related to
the symmetrizations introduced by Gutzwiller [26.18] in the context of
the semiclassical periodic orbit trace formulas, put into more general
group-theoretic context by Robbins [19.4], whose exposition, together
with Lauritzen’s [19.5] treatment of the boundary orbits, has influ-
enced the presentation given here. A related group-theoretic decom-
position in context of hyperbolic billiards was utilized in ref. [19.8].

Remark 19.3 Computations The techniques of this chapter
have been applied to computations of the 3-disk classical and quantum
spectra in refs. [1.2, 27.9], and to a “Zeeman effect” pinball and the
x2y2 potentials in refs. [19.3, 15.12]. In a larger perspective, the factor-
izations developed above are special cases of a general approach to ex-
ploiting the group-theoretic invariances in spectra computations, such
as those used in enumeration of periodic geodesics [19.8, 12.4, 12.14]
for hyperbolic billiards [26.16] and Selberg zeta functions [22.2].

Remark 19.4 Other symmetries. In addition to the symmetries
exploited here, time reversal symmetry and a variety of other non-
trivial discrete symmetries can induce further relations among orbits;
we shall point out several of examples of cycle degeneracies under time
reversal. We do not know whether such symmetries can be exploited
for further improvements of cycle expansions.
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Remark 19.5 Cycles and symmetries. We conclude this section
with a few comments about the role of symmetries in actual extrac-
tion of cycles. In the example at hand, the N -disk billiard systems,
a fundamental domain is a sliver of the N -disk configuration space
delineated by a pair of adjoining symmetry axes, with the directions
of the momenta indicated by arrows. The flow may further be re-
duced to a return map on a Poincaré surface of section, on which an
appropriate transfer operator may be constructed. While in principle
any Poincaré surface of section will do, a natural choice in the present
context are crossings of symmetry axes.

In actual numerical integrations only the last crossing of a symme-
try line needs to be determined. The cycle is run in global coordinates
and the group elements associated with the crossings of symmetry
lines are recorded; integration is terminated when the orbit closes in
the fundamental domain. Periodic orbits with non-trivial symmetry
subgroups are particularly easy to find since their points lie on cross-
ings of symmetry lines.

Remark 19.6 C2 symmetry The C2 symmetry arises, for ex-
ample, in the Lorenz system [19.15], in the 3-dimensional anisotropic
Kepler problem [26.18, 26.32, 26.33] or in the cycle expansions treat-
ments of the Ising model [19.16].

Remark 19.7 Hénon-Heiles potential An example of a system
with C3v symmetry is provided by the motion of a particle in the
Hénon-Heiles potential [19.2]

V (r, θ) =
1
2
r2 +

1
3
r3 sin(3θ) .

Our coding is not directly applicable to this system because of the
existence of elliptic islands and because the three orbits that run along
the symmetry axis cannot be labelled in our code. However, since
these orbits run along the boundary of the fundamental domain, they
require the special treatment discussed in sect. 19.3.1.

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be
exploited; much is gained, both in understanding of the spectra and ease of
their evaluation. Once this is appreciated, it is hard to conceive of a calcu-
lation without factorization; it would correspond to quantum mechanical
calculations without wave–function symmetrizations.

Reduction to the fundamental domain simplifies symbolic dynamics and
eliminates symmetry induced degeneracies. While the resummation of the
theory from the trace sums to the cycle expansions does not reduce the
exponential growth in number of cycles with the cycle length, in practice
only the short orbits are used, and for them the labor saving is dramatic.
For example, for the 3-disk game of pinball there are 256 periodic points of
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length 8, but reduction to the fundamental domain non-degenerate prime
cycles reduces the number of the distinct cycles of length 8 to 30.

In addition, cycle expansions of the symmetry reduced dynamical zeta
functions converge dramatically faster than the unfactorized dynamical zeta
functions. One reason is that the unfactorized dynamical zeta function has
many closely spaced zeros and zeros of multiplicity higher than one; since
the cycle expansion is a polynomial expansion in topological cycle length,
accomodating such behavior requires many terms. The dynamical zeta
functions on separate subspaces have more evenly and widely spaced ze-
ros, are smoother, do not have symmetry-induced multiple zeros, and fewer
cycle expansion terms (short cycle truncations) suffice to determine them.
Furthermore, the cycles in the fundamental domain sample phase space
more densely than in the full space. For example, for the 3-disk problem,
there are 9 distinct (symmetry unrelated) cycles of length 7 or less in full
space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 dif-
ferent periodic points in 1/6-th the phase space, i.e., an increase in density
by a factor 3 with the same numerical effort.

We emphasize that the symmetry factorization (19.23) of the dynam-
ical zeta functionis intrinsic to the classical dynamics, and not a special
property of quantal spectra. The factorization is not restricted to the
Hamiltonian systems, or only to the configuration space symmetries; for
example, the discrete symmetry can be a symmetry of the Hamiltonian
phase space [19.4]. In conclusion, the manifold advantages of the symme-
try reduced dynamics should thus be obvious; full space cycle expansions,
such as those of exercise 15.8, are useful only for cross checking purposes.
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Exercises

Exercise 19.1 Sawtooth map desymmetrization. Work out the some
of the shortest global cycles of different symmetries and fundamental domain
cycles for the sawtooth map of fig. 19.1. Compute the dynamical zeta function
and the spectral determinant of the Perron-Frobenius operator for this map;
check explicitely the factorization (19.2).

Exercise 19.2 2-d asymmetric representation. The above expressions
can sometimes be simplified further using standard group-theoretical methods. For
example, the 1

2

(
(tr M)2 − tr M2

)
term in (19.16) is the trace of the antisymmetric

part of the M ×M Kronecker product; if α is a 2-dimensional representation, this is
the A2 antisymmetric representation, so

2-dim: det (1−Dα(h)t) = 1− χα(h)t + χA2(h)t2. (19.28)

Exercise 19.3 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for the 0 and 1 cycles, i.e.
which symmetry do they have, what is the degeneracy in full space and
how do they factorize (how do they look in the A1, A2 and the E
representations).

b) Find the shortest cycle with no symmetries and factorize it like in a)

c) Find the shortest cycle that has the property that its time reversal is not
described by the same symbolic dynamics.

d) Compute the dynamical zeta functions and the spectral determinants
(symbolically) in the three representations; check the factorizations (19.15)
and (19.17).

(Per Rosenqvist)

Exercise 19.4 The group C3v. We will compute a few of the properties
of the group C3v, the group of symmetries of an equilateral triangle

1

2  3

(a) All discrete groups are isomorphic to a permutation group or one of its
subgroups, and elements of the permutation group can be expressed as
cycles. Express the elements of the group C3v as cycles. For example,
one of the rotations is (123), meaning that vertex 1 maps to 2 and 2 to
3 and 3 to 1.
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(b) Find the subgroups of the group C3v.

(c) Find the classes of C3v and the number of elements in them.

(d) Their are three irreducible representations for the group. Two are one
dimensional and the other one is formed by 2× 2 matrices of the form[

cos θ sin θ
− sin θ cos θ

]
.

Find the matrices for all six group elements.

(e) Use your representation to find the character table for the group.

Exercise 19.5 C2 factorizations: the Lorenz and Ising systems. In the

Lorenz system [2.1, 19.15] the labels + and − stand for the left or the right lobe of

the attractor and the symmetry is a rotation by π around the z-axis. Similarly, the

Ising Hamiltonian (in the absence of an external magnetic field) is invariant under spin

flip. Work out the factorizations for some of the short cycles in either system.

Exercise 19.6 Ising model. The Ising model with two states εi = {+,−} per
site, periodic boundary condition, and Hamiltonian

H(ε) = −J
∑

i

δεi,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of that symmetry and factorize

the dynamical zeta function for the model, that is, find all the periodic orbits that

contribute to each factor and their weights.

Exercise 19.7 One orbit contribution. If p is an orbit in the fundamental
domain with symmetry h, show that it contributes to the spectral determinant with a
factor

det
(

1−D(h)
tp
λk

p

)
,

where D(h) is the representation of h in the regular representation of the group.
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Chapter 20

Deterministic diffusion

This is a bizzare and discordant situation.
M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a
constant energy surface for a Hamiltonian system in equilibrium to dissi-
pative systems in nonequilibrium stationary states. In this more general
setting the attractor plays the role of a constant energy surface, and the
SRB measure of sect. 7.1 is a generalization of the Liouville measure. Such
measures are purely microscopic and indifferent to whether the system is
at equilibrium, close to equilibrium or far from it. “Far for equilibrium” in
this context refers to systems with large deviations from Maxwell’s equilib-
rium velocity distribution. Furthermore, the theory of dynamical systems
has yielded new sets of microscopic dynamics formulas for macroscopic ob-
servables such as diffusion constants and the pressure, to which we turn
now.

We shall apply cycle expansions to the analysis of transport properties
of chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made,
and the all correlations are taken into account by the inclusion of cycles of
all periods. The infinite extent systems for which the periodic orbit theory
yields formulas for diffusion and other transport coefficients are spatially
periodic, the global phase space being tiled with copies of a elementary
cell. The motivation are physical problems such as beam defocusing in
particle accelerators or chaotic behavior of passive tracers in 2-d rotating
flows, problems which can be described as deterministic diffusion in periodic
arrays.

In sect. 20.1 we derive the formulas for diffusion coefficients in a simple
physical setting, the 2-d periodic Lorentz gas. This system, however, is
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Figure 20.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (Courtesy of T.
Schreiber)

not the best one to exemplify the theory, due to its complicated symbolic
dynamics. Therefore we apply the theory first to diffusion induced by a 1-d
maps in sect. 20.2.

20.1 Diffusion in periodic arrays

The 2-d Lorentz gas is an infinite scatterer array in which diffusion of a
light molecule in a gas of heavy scatterers is modelled by the motion of
a point particle in a plane bouncing off an array of reflecting disks. The
Lorentz gas is called “gas” as one can equivalently think of it as consist-
ing of any number of pointlike fast “light molecules” interacting only with
the stationary “heavy molecules” and not among themselves. As the scat-
terer array is built up from only defocusing concave surfaces, it is a pure
hyperbolic system, and one of the simplest nontrivial dynamical systems
that exhibits deterministic diffusion, fig. 20.1. We shall now show that the
periodic Lorentz gas is amenable to a purely deterministic treatment. In
this class of open dynamical systems quantities characterizing global dy-
namics, such as the Lyapunov exponent, pressure and diffusion constant,
can be computed from the dynamics restricted to the elementary cell. The
method applies to any hyperbolic dynamical system that is a periodic tiling
M̂ =

⋃
n̂∈T Mn̂ of the dynamical phase space M̂ by translates Mn̂ of an

elementary cell M, with T the Abelian group of lattice translations. If the
scattering array has further discrete symmetries, such as reflection symme-
try, each elementary cell may be built from a fundamental domain M̃ by
the action of a discrete (not necessarily Abelian) group G. The symbol M̂
refers here to the full phase space, i.e., both the spatial coordinates and the
momenta. The spatial component of M̂ is the complement of the disks in
the whole space.

We shall now relate the dynamics in M to diffusive properties of the
Lorentz gas in M̂.
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Figure 20.2: Tiling of M̂, a periodic lattice
of reflecting disks, by the fundamental domain
M̃. Indicated is an example of a global trajec-
tory x̂(t) together with the corresponding ele-
mentary cell trajectory x(t) and the fundamen-
tal domain trajectory x̃(t). (Courtesy of J.-P.
Eckmann)

These concepts are best illustrated by a specific example, a Lorentz gas
based on the hexagonal lattice Sinai billiard of fig. 20.2. We distinguish
two types of diffusive behavior; the infinite horizon case, which allows for
infinite length flights, and the finite horizon case, where any free particle
trajectory must hit a disk in finite time. In this chapter we shall restrict our
consideration to the finite horizon case, with disks sufficiently large so that
no infinite length free flight is possible. In this case the diffusion is normal,
with x̂(t)2 growing like t. We shall return to the anomalous diffusion case
in sect. 20.3.

As we will work with three kinds of phase spaces, good manners require
that we repeat what hats, tildas and nothings atop symbols signify:

˜ fundamental domain, triangle in fig. 20.2
elementary cell, hexagon in fig. 20.2

ˆ full phase space, lattice in fig. 20.2 (20.1)

It is convenient to define an evolution operator for each of the 3 cases of
fig. 20.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached
by the flow in time t. x(t) = f t(x0) denotes the corresponding flow in the
elementary cell; the two are related by

n̂t(x0) = f̂ t(x0)− f t(x0) ∈ T , (20.2)

the translation of the endpoint of the global path into the elementary cell
M. The quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain
M̃; f̃ t(x̃) is related to f t(x̃) by a discrete symmetry g ∈ G which maps
x̃(t) ∈ M̃ to x(t) ∈M .

☞ chapter 19

Fix a vector β ∈ R
d, where d is the dimension of the phase space. We

will compute the diffusive properties of the Lorentz gas from the leading
eigenvalue of the evolution operator (8.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (20.3)
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where the average is over all initial points in the elementary cell, x ∈M.

If all odd derivatives vanish by symmetry, there is no drift and the
second derivatives

∂

∂βi

∂

∂βj
s(β)

∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t)− x)i(x̂(t)− x)j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion con-
stant is then given by the Einstein relation (8.13)

D =
1
2d

∑
i

∂2

∂β2
i

s(β)
∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t)− q)2〉M ,

where the i sum is restricted to the spatial components qi of the phase space
vectors x = (q, p), that is if the dynamics is Hamiltonian to the number of
the degrees of freedom.

We now turn to the connection between (20.3) and periodic orbits in
the elementary cell. As the full M̂ → M̃ reduction is complicated by the

☞ remark 20.6
nonabelian nature of G, we shall introduce the main ideas in the abelian
M̂ →M context.

20.1.1 Reduction from M̂ to M

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M

=
1
|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. As in sect. 8.2, we

have used the identity 1 =
∫
Mdy δ(y − x̂(t)) to motivate the introduction of

the evolution operator Lt(ŷ, x). There is a unique lattice translation n̂ such
that ŷ = y − n̂, with y ∈M, and f t(x) given by (20.2). The difference is a
translation by a constant, and the Jacobian for changing integration from
dŷ to dy equals unity. Therefore, and this is the main point, translation
invariance can be used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x,y∈M

dxdy eβ·(f̂ t(x)−x)δ(y − f t(x)) . (20.4)

As this is a translation, the Jacobian is δŷ/δy = 1. In this way the global
f̂ t(x) flow averages can be computed by following the flow f t(x0) restricted
to the elementary cell M. The equation (20.4) suggests that we study the
evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (20.5)

diffusion - 2sep2002 draft 9.4.0, June 18 2003



20.1. DIFFUSION IN PERIODIC ARRAYS 377

where x̂(t) = f̂ t(x) ∈ M̂, but x, f t(x), y ∈ M. It is straightforward to
check that this operator satisfies the semigroup property (8.21),

∫
M dz Lt2(y, z)Lt1(z, x) =

Lt2+t1(y, x) . For β = 0, the operator (20.5) is the Perron-Frobenius oper-
ator (7.10), with the leading eigenvalue es0 = 1 because there is no escape
from this system (this will lead to the flow conservation sum rule (16.11)
later on).

The rest is old hat. The spectrum of L is evaluated by taking the trace
☞ sect. 11.3

trLt =
∫
M

dx eβ·n̂t(x)δ(x− x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (20.2). Two kinds of
orbits periodic in the elementary cell contribute. A periodic orbit is called
standing if it is also periodic orbit of the infinite phase space dynamics,
f̂Tp(x) = x, and it is called running if it corresponds to a lattice translation
in the dynamics on the infinite phase space, f̂Tp(x) = x + n̂p. In the
theory of area–preserving maps such orbits are called accelerator modes,
as the diffusion takes place along the momentum rather than the position
coordinate. The travelled distance n̂p = n̂Tp(x0) is independent of the
starting point x0, as can be easily seen by continuing the path periodically
in M̂.

The final result is the spectral determinant (12.6)

det (s(β)−A) =
∏
p

exp

(
−

∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣det
(
1− Jr

p

)∣∣
)

, (20.6)

or the corresponding dynamical zeta function (12.12)

1/ζ(β, s) =
∏
p

(
1− e(β·n̂p−sTp)

|Λp|

)
. (20.7)

The dynamical zeta function cycle averaging formula (15.17) for the diffu-
sion constant (8.13), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1
2d

〈
x̂2
〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · ·+ n̂pk
)2

|Λp1 · · ·Λpk
| . (20.8)

where the sum is over all distinct non-repeating combination of prime cy-
cles. The derivation is standard, still the formula is strange. Diffusion is
unbounded motion accross an infinite lattice; nevertheless, the reduction to
the elementary cell enables us to compute relevant quantities in the usual
way, in terms of periodic orbits.

A sleepy reader might protest that xp = x(Tp)−x(0) is manifestly equal
to zero for a periodic orbit. That is correct; n̂p in the above formula refers
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to a displacement on the infinite periodic lattice, while p refers to closed
orbit of the dynamics reduced to the elementary cell, with xp belonging to
the closed prime cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have
x̂2

p = 0, and contribute only to the time normalization 〈T〉ζ . The mean
square displacement

〈
x̂2
〉
ζ

gets contributions only from the periodic run-
away trajectories; they are closed in the elementary cell, but on the periodic
lattice each one grows like x̂(t)2 = (n̂p/Tp)2 = v2

pt
2. So the orbits that con-

tribute to the trace formulas and spectral determinants exhibit either bal-
listic transport or no transport at all: diffusion arises as a balance between
the two kinds of motion, weighted by the 1/|Λp| measure. If the system is
not hyperbolic such weights may be abnormally large, with 1/|Λp| ≈ 1/Tp

α

rather than 1/|Λp| ≈ e−Tpλ, where λ is the Lyapunov exponent, and they
may lead to anomalous diffusion - accelerated or slowed down depending
on whether the probabilities of the running or the standing orbits are en-
hanced.

☞ sect. 20.3

We illustrate the main idea, tracking of a globally diffusing orbit by
the associated confined orbit restricted to the elementary cell, with a class
of simple 1-d dynamical systems where all transport coefficients can be
evaluated analytically.

20.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from a
given scatterer reach a finite set of neighboring scatterers in one bounce,
and then the process is repeated. As was shown in chapter 9, the essential
part of this process is the stretching along the unstable directions of the
flow, and in the crudest approximation the dynamics can be modelled by
1-d expanding maps. This observation motivates introduction of a class of
particularly simple 1-d systems, chains of piecewise linear maps.

We start by defining the map f̂ on the unit interval as

f̂(x̂) =
{

Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1− Λ x̂ ∈ (1/2, 1] , Λ > 2 , (20.9)

and then extending the dynamics to the entire real line, by imposing the
translation property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (20.10)

As the map is dicontinuous at x̂ = 1/2, f̂(1/2) is undefined, and the x =
1/2 point has to be excluded from the Markov partition. The map is
antisymmetric under the x̂-coordinate flip

f̂ (x̂) = −f̂ (−x̂) , (20.11)
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(a) (b)

Figure 20.3: (a) f̂ (x̂), the full space sawtooth map (20.9), Λ > 2. (b) f (x), the
sawtooth map restricted to the unit circle (20.12), Λ = 6.

so the dynamics will exhibit no mean drift; all odd derivatives of the gen-
erating function (8.11) with respect to β, evaluated at β = 0, will vanish.

The map (20.9) is sketched in fig. 20.3(a). Initial points sufficiently
close to either of the fixed points in the initial unit interval remain in the
elementary cell for one iteration; depending on the slope Λ, other points
jump n̂ cells, either to the right or to the left. Repetition of this process
generates a random walk for almost every initial condition.

The translational symmetry (20.10) relates the unbounded dynamics on
the real line to dynamics restricted to the elementary cell - in the example
at hand, the unit interval curled up into a circle. Associated to f̂ (x̂) we
thus also consider the circle map

f (x) = f̂ (x̂)−
[
f̂ (x̂)

]
, x = x̂− [x̂] ∈ [0, 1] (20.12)

fig. 20.3(b), where [· · ·] stands for the integer part (20.2). As noted above,
the elementary cell cycles correspond to either standing or running orbits
for the map on the full line: we shall refer to n̂p ∈ Z as the jumping number
of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (20.13)

For the piecewise linear map of fig. 20.3 we can evaluate the dynamical zeta
function in closed form. Each branch has the same value of the slope, and
the map can be parametrized by a single parameter, for example its critical
value a = f̂ (1/2), the absolute maximum on the interval [0, 1] related to the
slope of the map by a = Λ/2. The larger Λ is, the stronger is the stretching
action of the map.
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The diffusion constant formula (20.8) for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(20.14)

where the “mean cycle time” is given by (15.18)

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · ·+ npk

|Λp1 · · ·Λpk
| , (20.15)

and the “mean cycle displacement squared” by (17.1)

〈
n̂2
〉
ζ

=
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · ·+ n̂pk
)2

|Λp1 · · ·Λpk
| , (20.16)

the primed sum indicating all distinct non-repeating combinations of prime
cycles. The evaluation of these formulas in this simple system will require
nothing more than pencil and paper.

20.2.1 Case of unrestricted symbolic dynamics

Whenever Λ is an integer number, the symbolic dynamics is exceedingly
simple. For example, for the case Λ = 6 illustrated in fig. 20.3(b), the ele-
mentary cell map consists of 6 full branches, with uniform stretching factor
Λ = 6. The branches have different jumping numbers: for branches 1 and
2 we have n̂ = 0, for branch 3 we have n̂ = +1, for branch 4 n̂ = −1,
and finally for branches 5 and 6 we have respectively n̂ = +2 and n̂ = −2.
The same structure reappears whenever Λ is an even integer Λ = 2a: all
branches are mapped onto the whole unit interval and we have two n̂ = 0
branches, one branch for which n̂ = +1 and one for which n̂ = −1, and so
on, up to the maximal jump |n̂| = a−1. The symbolic dynamics is thus full,
unrestricted shift in 2a symbols {0+, 1+, . . . , (a− 1)+, (a− 1)−, . . . , 1−, 0−},
where the symbol indicates both the length and the direction of the corre-
sponding jump.

For the piecewise linear maps with uniform stretching the weight asso-
ciated with a given symbol sequence is a product of weights for individual
steps, tsq = tstq. For the map of fig. 20.3 there are 6 distinct weigths
(20.13):

t1 = t2 = z/Λ
t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full
cancellation of all curvature corrections in (15.5). The exact dynamical zeta
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function (10.13) is given by the fixed point contributions:

1/ζ(β, z) = 1− t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1− z

a

1 +
a−1∑
j=1

cosh(βj)

 . (20.17)

The leading (and only) eigenvalue of the evolution operator (20.5) is

s(β) = log

1
a

1 +
a−1∑
j=1

cosh(βj)

 , Λ = 2a, a integer .(20.18)

The flow conservation (16.11) sum rule is manifestly satisfied, so s(0) = 0.
The first derivative s(0)′ vanishes as well by the left/right symmetry of the
dynamics, implying vanishing mean drift 〈x̂〉 = 0. The second derivative
s(β)′′ yields the diffusion constant (20.14):

〈n〉ζ = 2a
1
Λ

= 1 ,
〈
x̂2
〉
ζ

= 2
02

Λ
+2

12

Λ
+2

22

Λ
+· · ·+2

(a− 1)2

Λ
(20.19)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1
24

(Λ− 1)(Λ− 2) , Λ even integer . (20.20)

Similar calculation for odd integer Λ = 2k − 1 yields ✎ 20.1
page 393

D =
1
24

(Λ2 − 1) , Λ odd integer . (20.21)

20.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣
β=0

, B2 = D , (20.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher
order coefficients yields information on the relaxation to the asymptotic
distribution function generated by the diffusive process. Here x̂t is the rel-
evant dynamical variable and Bk’s are related to moments

〈
x̂k

t

〉
of arbitrary

order.
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(a)
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Figure 20.4: (a) A partition of the unit interval into six intervals, labeled by the
jumping number n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is Markov, as the
critical point is mapped onto the right border of M1+ . (b) The Markov graph for this
partition. (c) The Markov graph in the compact notation of (20.26) (introduced by
Vadim Moroz).

Were the diffusive process purely gaussian

ets(β) =
1√

4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ2Dt (20.23)

the only Bk coefficient different from zero would be B2 = D. Hence, nonva-
nishing higher order coefficients signal deviations of deterministic diffusion
from a gaussian stochastic process.

For the map under consideration the first Burnett coefficient coefficient
B4 is easily evaluated. For example, using (20.18) in the case of even integer
slope Λ = 2a we obtain✎ 20.2

page 393

B4 = − 1
4! · 60

(a− 1)(2a− 1)(4a2 − 9a + 7) . (20.24)

We see that deterministic diffusion is not a gaussian stochastic process.
Higher order even coefficients may be calculated along the same lines.

20.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the criti-
cal points are mapped in finite numbers of iterations onto partition bound-
ary points, or onto unstable periodic orbits. We will work out here an
example for which this occurs in two iterations, leaving other cases as ex-
ercises.

The key idea is to construct a Markov partition (9.4), with intervals
mapped onto unions of intervals. As an example we determine a value of
the parameter 4 ≤ Λ ≤ 6 for which f (f (1/2)) = 0. As in the integer
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Λ case, we partition the unit interval into six intervals, labeled by the
jumping number n̂(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0−}, ordered by
their placement along the unit interval, fig. 20.4(a).

In general the critical value a = f̂ (1/2) will not correspond to an in-
terval border, but now we choose a such that the critical point is mapped
onto the right border of M1+ . Equating f (1/2) with the right border of
M1+ , x = 1/Λ, we obtain a quadratic equation with the expanding solu-
tion Λ = 2(

√
2 + 1). For this parameter value f(M1+) = M0+

⋃
M1+ ,

f(M2−) =M0−
⋃
M1− , while the remaining intervals map onto the whole

unit interval M. The transition matrix (9.2) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+

φ1+

φ2+

φ2−
φ1−
φ0−

 . (20.25)

One could diagonalize (20.25) on a computer, but, as we saw in sect. 9.6, the
Markov graph fig. 20.4(b) corresponding to fig. 20.4(a) offers more insight
into the dynamics. The graph fig. 20.4(b) can be redrawn more compactly
as Markov graph fig. 20.4(c) by replacing parallel lines in a graph by their
sum

2

3

2 311
= t1 + t2 + t3 . (20.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (10.13) of sect. 10.3, we are led to the dyn-
amical zeta function

1/ζ(β, z) = 1− t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1− 2z

Λ
(1 + cosh(β))− 2z2

Λ2
(cosh(2β) + cosh(3β)) .(20.27)

For grammar as simple as this one, the dynamical zeta function is the sum
over fixed points of the unrestricted alphabet. As the first check of this
expression for the dynamical zeta function we verify that

1/ζ(0, 1) = 1− 4
Λ
− 4

Λ2
= 0 ,

as required by the flow conservation (16.11). Conversely, we could have
started by picking the desired Markov partition, writing down the corre-
sponding dynamical zeta function, and then fixing Λ by the 1/ζ(0, 1) = 0
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condition. For more complicated Markov graphs this approach, together
with the factorization (20.35), is helpful in reducing the order of the poly-
nomial condition that fixes Λ.

The diffusion constant follows from (20.14)✎ 20.3
page 393

〈n〉ζ = 4
1
Λ

+ 4
2
Λ2

,
〈
n̂2
〉
ζ

= 2
12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (20.28)

It is by now clear how to build an infinite hierarchy of finite Markov par-
titions: tune the slope in such a way that the critical value f(1/2) is
mapped into the fixed point at the origin in a finite number of iterations p
fP (1/2) = 0. By taking higher and higher values of p one constructs a dense
set of Markov parameter values, organized into a hierarchy that resembles
the way in which rationals are densely embedded in the unit interval. For
example, each of the 6 primary intervals can be subdivided into 6 intervals
obtained by the 2-nd iterate of the map, and for the critical point map-
ping into any of those in 2 steps the grammar (and the corresponding cycle
expansion) is finite. So, if we can prove continuity of D = D(Λ), we can
apply the periodic orbit theory to the sawtooth map (20.9) for a random
“generic” value of the parameter Λ, for example Λ = 4.5. The idea is to
bracket this value of Λ by a sequence of nearby Markov values, compute
the exact diffusion constant for each such Markov partition, and study their
convergence toward the value of D for Λ = 4.5. Judging how difficult such
problem is already for a tent map (see sect. 10.6 and appendix E.1), this is
not likely to take only a week of work.

Expressions like (20.20) may lead to an expectation that the diffusion
coefficient (and thus transport properties) are smooth functions of parame-
ters controling the chaoticity of the system. For example, one might expect
that the diffusion coefficient increases smoothly and monotonically as the
slope Λ of the map (20.9) is increased, or, perhaps more physically, that
the diffusion coefficient is a smooth function of the Lyapunov exponent λ.
This turns out not to be true: D as a function of Λ is a fractal, nowhere dif-
ferentiable curve illustrated in fig. 20.5. The dependence of D on the map
parameter Λ is rather unexpected - even though for larger Λ more points
are mapped outside the unit cell in one iteration, the diffusion constant
does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely
hyperbolic systems such as the Lozi map and the 1-d diffusion map (20.9).
The trouble arises due to non-smooth dependence of the topological entropy
on system parameters - any parameter change, no mater how small, leads
to creation and destruction of ininitely many periodic orbits. As far as
diffusion is concerned this means that even though local expansion rate is
a smooth function of Λ, the number of ways in which the trajectory can
re-enter the the initial cell is an irregular function of Λ.
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Figure 20.5: The dependence of D on the map parameter a is continuous, but not
monotone. (From ref. [20.7]). Here a stands for the slope Λ in (20.9).

The lesson is that lack of structural stabily implies lack of spectral
stability, and no global observable is expected to depend smoothly on the
system parameters. If you want to master the material, working through
the project P.1 and/or project P.2 is strongly recommended.

20.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter 18 have on transport prop-
erties of 1-d maps? Consider a 1− d map of the real line on itself with the
same properties as in sect. 20.2, except for a marginal fixed point at x = 0.

A marginal fixed point unbalances the role of running and standing
orbits, thus generating a mechanism that may result in anomalous diffusion.
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(a) (b)

Figure 20.6: (a) A map with marginal fixed point. (b) The map restricted to the
unit circle.

Our model example is the map shown in fig. 20.6(a), with the corresponding
circle map shown in fig. 20.6(b). As in sect. 18.2.1, a branch with support
in Mi, i = 1, 2, 3, 4 has constant slope Λi, while f |M0 is of intermittent
form. To keep you nimble, this time we take a slightly different choice
of slopes. The toy example of sect. 18.2.1 was cooked up so that the 1/s
branch cut in dynamical zeta function was the whole answer. Here we shall
take a slightly different route, and pick piecewise constant slopes such that
the dynamical zeta function for intermittent system can be expressed in
terms of the Jonquière function

☞ remark 20.8

J(z, s) =
∞∑

k=1

zk/ks (20.29)

Once the 0 fixed point is pruned away, the symbolic dynamics is given
by the infinite alphabet {1, 2, 3, 4, 0i1, 0j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (com-
pare with table 18.1). The partitioning of the subinterval M0 is induced
by M0k(right) = φk

(right)(M3
⋃
M4) (where φ(right) denotes the inverse of

the right branch of f̂ |M0) and the same reasoning applies to the leftmost
branch. These are regions over which the slope of f̂ |M0 is constant. Thus
we have the following stabilities and jumping numbers associated to letters:

0k3, 0k4 Λp = k1+α

q/2 n̂p = 1

0l1, 0l2 Λp = l1+α

q/2 n̂p = −1
3, 4 Λp = ±Λ n̂p = 1
2, 1 Λp = ±Λ n̂p = −1 , (20.30)
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where α = 1/s is determined by the intermittency exponent (18.1), while q
is to be determined by the flow conservation (16.11) for f̂ : —PCdefine R

4
Λ

+ 2qζ(α + 1) = 1

so that q = (Λ − 4)/2Λζ(α + 1). The dynamical zeta function picks up
contributions just by the alphabet’s letters, as we have imposed piecewise
linearity, and can be expressed in terms of a Jonguiere function (20.29):

1/ζ0(z, β) = 1− 4
Λ

z cosh β − Λ− 4
Λζ(1 + α)

z cosh β · J(z, α + 1) .(20.31)

Its first zero z(β) is determined by

4
Λ

z +
Λ− 4

Λζ(1 + α)
z · J(z, α + 1) =

1
cosh β

.

By using implicit function derivation we see that D vanishes (that is z′′(β)|β=1 =
0) when α ≤ 1. The physical interpretion is that a typical orbit will stick for
long times near the 0 marginal fixed point, and the ‘trapping time’ will be
larger for higher values of the intermittency parameter s (recall α = s−1).
Hence, we need to look more closely at the behavior of traces of high powers
of the transfer operator.

The evaluation of transport coefficient requires one more derivative with
respect to expectation values of phase functions (see sect. 20.1): if we use
the diffusion dynamical zeta function (20.7), we may write the diffusion co-
efficient as an inverse Laplace transform,in such a way that any distinction
between maps and flows has vanished. In the case of 1-d diffusion we thus
have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣
β=0

(20.32)

where the ζ ′ refers to the derivative with respect to s.

The evaluation of inverse Laplace transforms for high values of the argu-
ment is most conveniently performed using Tauberian theorems. We shall
take

ω(λ) =
∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ �→ 0 and x �→ ∞ respectively
(and ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)
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if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1.
Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ + Λ−4

Λζ(1+α) (J(e−s, α + 1) + J(e−s, α))
)

cosh β

1− 4
Λe−s cosh β − Λ−4

Λζ(1+α)e
−s(e−s, α + 1) cosh βJ

.

We then take the double derivative with respect to β and obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=
4
Λ + Λ−4

Λζ(1+α) (J(e−s, α + 1) + J(e−s, α))(
1− 4

Λe−s − Λ−4
Λζ(1+α)e

−sJ(e−s, α + 1)
)2 = gα(s) (20.33)

The asymptotic behavior of the inverse Laplace transform (20.32) may then
be evaluated via Tauberian theorems, once we use our estimate for the
behavior of Jonquière functions near z = 1. The deviations from normal
behavior correspond to an explicit dependence of D on time. Omitting
prefactors (which can be calculated by the same procedure) we have

gα(s) ∼


s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:✎ 20.6
page 393

〈(x− x0)2〉t ∼

 t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1 .

(20.34)

Commentary

Remark 20.1 Lorentz gas. The original pinball model proposed
by Lorentz [20.3] consisted of randomly, rather than regularly placed
scatterers.
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Remark 20.2 Who’s dun it? Cycle expansions for the diffusion
constant of a particle moving in a periodic array have been introduced
independently by R. Artuso [20.4] (exact dynamical zeta function for
1-d chains of maps (20.8)), by W.N. Vance [20.5], and by P. Cvi-
tanović, J.-P. Eckmann, and P. Gaspard [20.6] (the dynamical zeta
function cycle expansion (20.8) applied to the Lorentz gas).

Remark 20.3 Lack of structural stability for D. Expressions like
(20.20) may lead to an expectation that the diffusion coefficient (and
thus transport properties) are smooth functions of the chaoticity of
the system (parametrized, for example, by the Lyapunov exponent
λ = ln Λ). This turns out not to be true: D as a function of Λ is
a fractal, nowhere differentiable curve shown in fig. 20.5. The de-
pendence of D on the map parameter Λ is rather unexpected - even
though for larger Λ more points are mapped outside the unit cell in
one iteration, the diffusion constant does not necessarily grow. The
fractal dependence of diffusion constant on the map parameter is dis-
cussed in refs. [20.7, 20.8, 20.9]. Statistical mechanicians tend to be-
lieve that such complicated behavior is not to be expected in systems
with very many degrees of freedom, as the addition to a large integer
dimension of a number smaller than 1 should be as unnoticeable as
a microscopic perturbation of a macroscopic quantity. No fractal-like
behavior of the conductivity for the Lorentz gas has been detected so
far [20.10].

Remark 20.4 Diffusion induced by 1-d maps. We refer the reader
to refs. [20.11, 20.12] for early work on the deterministic diffusion in-
duced by 1-dimenional maps. The sawtooth map (20.9) was intro-
duced by Grossmann and Fujisaka [20.13] who derived the integer
slope formulas (20.20) for the diffusion constant. The sawtooth map
is also discussed in refs. [20.14].

Remark 20.5 Symmetry factorization in one dimension. In the
β = 0 limit the dynamics (20.11) is symmetric under x → −x, and
the zeta functions factorize into products of zeta functions for the
symmetric and antisymmetric subspaces, as described in sect. 19.1.2:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
,

∂

∂z

1
ζ

=
1
ζs

∂

∂z

1
ζa

+
1
ζa

∂

∂z

1
ζs

.(20.35)

The leading (material flow conserving) eigenvalue z = 1 belongs to
the symmetric subspace 1/ζs(0, 1) = 0, so the derivatives (20.15) also
depend only on the symmetric subspace:

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

=
1

ζa(0, z)
z

∂

∂z

1
ζs(0, z)

∣∣∣∣
z=1

. (20.36)

Implementing the symmetry factorization is convenient, but not es-
sential, at this level of computation.

Remark 20.6 Lorentz gas in the fundamental domain. The vec-
tor valued nature of the generating function (20.3) in the case under
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 20.1: Fundamental domain, w=0.3 .

consideration makes it difficult to perform a calculation of the diffu-
sion constant within the fundamental domain. Yet we point out that,
at least as regards scalar quantities, the full reduction to M̃ leads
to better estimates. A proper symbolic dynamics in the fundamental
domain has been introduced in ref. [20.15], numerical estimates for
scalar quantities are reported in table 20.1, taken from ref. [20.16].

In order to perform the full reduction for diffusion one should ex-
press the dynamical zeta function (20.7) in terms of the prime cycles
of the fundamental domain M̃ of the lattice (see fig. 20.2) rather than
those of the elementary (Wigner-Seitz) cell M. This problem is com-
plicated by the breaking of the rotational symmetry by the auxilliary
vector β, or, in other words, the non-commutativity of translations
and rotations: see ref. [20.6].

Remark 20.7 Anomalous diffusion. Anomalous diffusion for
1-d intermittent maps was studied in the continuous time random
walk approach in refs. [18.10, 18.11]. The first approach within the
framework of cycle expansions (based on truncated dynamical zeta
functions) was proposed in ref. [18.12]. Our treatment follows methods
introduced in ref. [18.13], applied there to investigate the behavior of
the Lorentz gas with unbounded horizon.

Remark 20.8 Jonquière functions. In statistical mechanics Jon-
quière functions

J(z, s) =
∞∑

k=1

zk/ks (20.37)

appear in the theory of free Bose-Einstein gas, see refs. [18.21, 18.22].

Résumé

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-
particle collision. It is a very good approximate description of dilute gas
dynamics, but a difficult starting point for inclusion of systematic correc-
tions. In the theory developed here, no correlations are neglected - they
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are all included in the cycle averaging formula such as the cycle expansion
for the diffusion constant

D =
1
2d

1
〈T〉ζ

∑′
(−1)k+1 (n̂p + · · ·)

|Λp · · · |
(n̂p1 + · · ·+ n̂pk

)2

|Λp1 · · ·Λpk
| .

Such formulas are exact; the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums required for their eval-
uation. Unlike most statistical mechanics, here there are no phenomenolog-
ical macroscopic parameters; quantities such as transport coefficients are
calculable to any desired accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probabilistic random
walk diffusion, deterministic diffusion is quite recognizable, at least in low
dimensional settings, through fractal dependence of the diffusion constant
on the system parameters, and through non-gaussion relaxation to equilib-
rium (non-vanishing Burnett coefficients).

For systems of a few degrees of freedom these results are on rigorous
footing, but there are indications that they capture the essential dynamics
of systems of many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques
developped above in physical settings. In cases of severe pruning the trace
formulas and ergodic sampling of dominant cycles might be more effective
strategy than the cycle expansions of dynamical zeta functions and system-
atic enumeration of all cycles.
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[20.6] P. Cvitanović, J.-P. Eckmann, and P. Gaspard, Chaos, Solitons and Fractals
6, 113 (1995).

[20.7] R. Klages, Deterministic diffusion in one-dimensional chaotic dy-
namical systems (Wissenschaft & Technik-Verlag, Berlin, 1996);
www.mpipks-dresden.mpg.de/∼rklages/publ/phd.html.

[20.8] R. Klages and J.R. Dorfman, Phys. Rev. Lett. 74, 387 (1995); Phys. Rev.
E 59, 5361 (1999).

[20.9] R. Klages and J.R. Dorfman, “Dynamical crossover in deterministic diffu-
sion”, Phys. Rev. E 55, R1247 (1997).

draft 9.4.0, June 18 2003 refsDiff - 7aug2002



392 References

[20.10] J. Lloyd, M. Niemeyer, L. Rondoni and G.P. Morriss, CHAOS 5, 536
(1995).

[20.11] T. Geisel and J. Nierwetberg, Phys. Rev. Lett. 48, 7 (1982).

[20.12] M. Schell, S. Fraser and R. Kapral, Phys. Rev. A 26, 504 (1982).

[20.13] S. Grossmann, H. Fujisaka, Phys. Rev. A 26, 1179 (1982); H. Fujisaka and
S. Grossmann, Z. Phys. B 48, 261 (1982).

[20.14] P. Gaspard and F. Baras, in M. Mareschal and B.L. Holian, eds., Mi-
croscopic simulations of Complex Hydrodynamic Phenomena (Plenum, NY
1992).

[20.15] F. Christiansen, Master’s Thesis, Univ. of Copenhagen (June 1989)
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Exercises

Exercise 20.1 Diffusion for odd integer Λ. Show that when the slope
Λ = 2k − 1 in (20.9) is an odd integer, the diffusion constant is given by
D = (Λ2 − 1)/24, as stated in (20.21).

Exercise 20.2 Fourth-order transport coefficient. Verify (20.24). You
will need the identity

n∑
k=1

k4 =
1
30

n(n + 1)(2n + 1)(3n2 + 3n− 1) .

Exercise 20.3 Finite Markov partitions. Verify (20.28).

Exercise 20.4 Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =


3x

1−δ for x ∈
[
0, 1

3 (1− δ)
]

3
2 −

(
2
δ

∣∣ 4−δ
12 − x

∣∣) for x ∈
[
1
3 (1− δ), 1

6 (2 + δ)
]

1− 3
1−δ

(
x− 1

6 (2 + δ)
)

for x ∈
[
1
6 (2 + δ), 1

2

] (20.38)

and the map in [1/2, 1] is obtained by antisymmetry with respect to x = 1/2, y = 1/2.
Write the corresponding dynamical zeta function relevant to diffusion and then show
that

D =
δ(2 + δ)
4(1− δ)

See refs. [20.17, 20.18] for further details.

Exercise 20.5 Two-symbol cycles for the Lorentz gas. Write down all

cycles labelled by two symbols, such as (0 6), (1 7), (1 5) and (0 5).

Appendix P contains several project-length deterministic diffusion exer-
cises.

Exercise 20.6 Accelerated diffusion. Consider a map h, such that ĥ = f̂
of fig. 20.6(b), but now running branches are turner into standing branches and vice
versa, so that 1, 2, 3, 4 are standing while 0 leads to both positive and negative jumps.
Build the corresponding dynamical zeta function and show that

σ2(t) ∼


t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)
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Exercise 20.7 Recurrence times for Lorentz gas with infinite horizon. Con-
sider the Lorentz gas with unbounded horizon with a square lattice geometry, with disk
radius R and unit lattice spacing. Label disks according to the (integer) coordinates
of their center: the sequence of recurrence times {tj} is given by the set of collision
times. Consider orbits that leave the disk sitting at the origin and hit a disk far away
after a free flight (along the horizontal corridor). Initial conditions are characterized
by coordinates (φ, α) (φ determines the initial position along the disk, while α gives
the angle of the initial velocity with respect to the outward normal: the appropriate
measure is then dφ cos α dα (φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find how ψ(T ) scales
for large values of T : this is equivalent to investigating the scaling of portions of the
phase space that lead to a first collision with disk (n, 1), for large values of n (as
n �→ ∞ n  T ).

Suggested steps

(a) Show that the condition assuring that a trajectory indexed by (φ, α) hits the
(m,n) disk (all other disks being transparent) is written as∣∣∣∣dm,n

R
sin (φ− α− θm,n) + sin α

∣∣∣∣ ≤ 1 (20.39)

where dm,n =
√

m2 + n2 and θm,n = arctan(n/m). You can then use a small
R expansion of (20.39).

(b) Now call jn the portion of the phase space leading to a first collision with disk
(n, 1) (take into account screening by disks (1, 0) or (n − 1, 1)). Denote by
Jn =

⋃∞
k=n+1 jk and show that Jn ∼ 1/n2, from which the result for the

distribution function follows.
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Chapter 21

Irrationally winding

I don’t care for islands, especially very small ones.
D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at
the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative sys-
tems. In the context of dissipative dynamical systems one of the most com-
mon and experimentally well explored routes to chaos is the two-frequency
mode-locking route. Interaction of pairs of frequencies is of deep theoretical
interest due to the generality of this phenomenon; as the energy input into
a dissipative dynamical system (for example, a Couette flow) is increased,
typically first one and then two of intrinsic modes of the system are excited.
After two Hopf bifurcations (a fixed point with inward spiralling stability
has become unstable and outward spirals to a limit cycle) a system lives
on a two-torus. Such systems tend to mode-lock: the system adjusts
its internal frequencies slightly so that they fall in step and minimize the
internal dissipation. In such case the ratio of the two frequencies is a ratio-
nal number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states
overlap, chaos sets in. The likelihood that a mode-locking occurs depends
on the strength of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of
circle maps, connected with universality properties of the whole irrational
winding set. We shall see that critical global properties may be expressed
via cycle expansions involving “local” renormalization critical exponents.
The renormalization theory of critical circle maps demands rather tedious
numerical computations, and our intuition is much facilitated by approxi-
mating circle maps by number-theoretic models. The models that arise in
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396 CHAPTER 21. IRRATIONALLY WINDING

this way are by no means mathematically trivial, they turn out to be re-
lated to number-theoretic abysses such as the Riemann conjecture, already
in the context of the “trivial” models.

21.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a cir-
cle is by 1-dimensional circle maps x → x′ = f(x), restricted to the one
dimensional torus, such as the sine map

xn+1 = f(xn) = xn + Ω − k

2π
sin(2πxn) mod 1 . (21.1)

f(x) is assumed to be continuous, have a continuous first derivative, and
a continuous second derivative at the inflection point (where the second
derivative vanishes). For the generic, physically relevant case (the only one
considered here) the inflection is cubic. Here k parametrizes the strength
of the nonlinear interaction, and Ω is the bare frequency.

The phase space of this map, the unit interval, can be thought of as the
elementary cell of the map

x̂n+1 = f̂(x̂n) = x̂n + Ω − k

2π
sin(2πx̂n) . (21.2)

where ˆ is used in the same sense as in chapter 20.

The winding number is defined as

W (k, Ω) = lim
n→∞(x̂n − x̂0)/n. (21.3)

and can be shown to be independent of the initial value x̂0.

For k = 0, the map is a simple rotation (the shift map) see fig. 21.1

xn+1 = xn + Ω mod 1 , (21.4)

and the rotation number is given by the parameter Ω.

W (k = 0, Ω) = Ω .

For given values of Ω and k the winding number can be either rational
or irrational. For invertible maps and rational winding numbers W = P/Q
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Figure 21.1: Unperturbed circle map (k = 0 in (21.1)) with golden mean rotation
number.

the asymptotic iterates of the map converge to a unique attractor, a stable
periodic orbit of period Q

f̂Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · , Q− 1 .

This is a consequence of the independence of x̂0 previously mentioned.
There is also an unstable cycle, repelling the trajectory. For any rational
winding number, there is a finite interval of values of Ω values for which
the iterates of the circle map are attracted to the P/Q cycle. This interval ✎ 21.1

page 415
is called the P/Q mode-locked (or stability) interval, and its width is given
by

∆P/Q = Q−2µP/Q = Ωright
P/Q − Ωleft

P/Q . (21.5)

where Ωright
P/Q (Ωleft

P/Q) denote the biggest (smallest) value of Ω for which
W (k, Ω) = P/Q. Parametrizing mode lockings by the exponent µ rather
than the width ∆ will be convenient for description of the distribution of
the mode-locking widths, as the exponents µ turn out to be of bounded
variation. The stability of the P/Q cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0)f ′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “center”
of the stability interval) and 1 (the Ωright

P/Q , Ωleft
P/Q endpoints of (21.5)). For
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Figure 21.2: The critical circle map (k = 1 in (21.1)) devil’s staircase [21.3]; the
winding number W as function of the parameter Ω.

the shift map (21.4), the stability intervals are shrunk to points. As Ω is
varied from 0 to 1, the iterates of a circle map either mode-lock, with the
winding number given by a rational number P/Q ∈ (0, 1), or do not mode-
lock, in which case the winding number is irrational. A plot of the winding
number W as a function of the shift parameter Ω is a convenient visual-
ization of the mode-locking structure of circle maps. It yields a monotonic
“devil’s staircase” of fig. 21.2 whose self-similar structure we are to unravel.
Circle maps with zero slope at the inflection point xc (see fig. 21.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (21.1)) are called critical: they delineate the borderline
of chaos in this scenario.

As the nonlinearity parameter k increases, the mode-locked intervals
become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstable P/Q cycle for any rational
P/Q, as the stability of any cycle that includes the inflection point equals
zero. If the map is non-invertible (k > 1), it is called supercritical; the
bifurcation structure of this regime is extremely rich and beyond the scope
of this exposition.

The physically relevant transition to chaos is connected with the critical
case, however the apparently simple “free” shift map limit is quite instruc-
tive: in essence it involves the problem of ordering rationals embedded in
the unit interval on a hierarchical structure. From a physical point of view,
the main problem is to identify a (number-theoretically) consistent hierar-
chy susceptible of experimental verification. We will now describe a few
ways of organizing rationals along the unit interval: each has its own ad-
vantages as well as its drawbacks, when analyzed from both mathematical
and physical perspective.
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Figure 21.3: Critical circle map (k = 1 in (21.1)) with golden mean bare rotation
number.

21.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω
required to attain it; given finite time and resolution, we expect to be
able to resolve cycles up to some maximal length Q. This is the physical
motivation for partitioning mode lockings into sets of cycle length up to
Q. In number theory such sets of rationals are called Farey series. They
are denoted by FQ and defined as follows. The Farey series of order Q is
the monotonically increasing sequence of all irreducible rationals between
0 and 1 whose denominators do not exceed Q. Thus Pi/Qi belongs to FQ

if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =
{

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}

A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi

are consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey series FQ is given by

Φ(Q) =
Q∑

n=1

φ(Q) =
3Q2

π2
+ O(Q lnQ). (21.6)
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Here the Euler function φ(Q) is the number of integers not exceeding
and relatively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) =
2, . . . , φ(12) = 4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction parti-
tioning of the unit interval is the most venerable organization of ratio-
nals, preferred already by Gauss. The continued fraction partitioning is
obtained by ordering rationals corresponding to continued fractions of in-
creasing length. If we turn this ordering into a way of covering the com-
plementary set to mode-lockings in a circle map, then the first level is
obtained by deleting ∆[1], ∆[2], · · · , ∆[a1], · · · mode-lockings; their comple-
ment are the covering intervals �1, �2, . . . , �a1 , . . . which contain all wind-
ings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · , ∆[2,2], ∆[2,3], · · · , ∆[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined
as the monotonically increasing sequence of all rationals Pi/Qi between 0
and 1 whose continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1
an

The object of interest, the set of the irrational winding numbers, is in
this partitioning labeled by S∞ = {a1a2a3 · · ·}, ak ∈ Z+, that is, the
set of winding numbers with infinite continued fraction expansions. The
continued fraction labeling is particularly appealing in the present context
because of the close connection of the Gauss shift to the renormalization
transformation R, discussed below. The Gauss map

T (x) =
1
x
−
[

1
x

]
x 	= 0

0 , x = 0 (21.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction
representation of numbers on the unit interval

x = [a1, a2, a3, . . .] → T (x) = [a2, a3, . . .] . (21.8)

into the “mother” interval �a2a3....

However natural the continued fractions partitioning might seem to a
number theorist, it is problematic in practice, as it requires measuring
infinity of mode-lockings even at the first step of the partitioning. Thus
numerical and experimental use of continued fraction partitioning requires
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at least some understanding of the asymptotics of mode–lockings with large
continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is
based on the observation that roughly halfways between any two large sta-
bility intervals (such as 1/2 and 1/3) in the devil’s staircase of fig. 21.2 there
is the next largest stability interval (such as 2/5). The winding number of
this interval is given by the Farey mediant (P +P ′)/(Q+Q′) of the parent
mode-lockings P/Q and P ′/Q′. This kind of cycle “gluing” is rather gen-
eral and by no means restricted to circle maps; it can be attained whenever
it is possible to arrange that the Qth iterate deviation caused by shifting
a parameter from the correct value for the Q-cycle is exactly compensated
by the Q′th iterate deviation from closing the Q′-cycle; in this way the two
near cycles can be glued together into an exact cycle of length Q+Q′. The
Farey tree is obtained by starting with the ends of the unit interval written
as 0/1 and 1/1, and then recursively bisecting intervals by means of Farey
mediants.

We define the nth Farey tree level Tn as the monotonically increasing
sequence of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥
1, i = 1, 2, . . . , k − 1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 = {[4], [2, 2], [1, 1, 2], [1, 3]} =
(

1
4
,
1
5
,
3
5
,
3
4

)
. (21.9)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters”
in Tn, given by

[· · · , a]
[· · · , a− 1, 2] [· · · , a + 1]

Iteration of this rule places all rationals on a binary tree, labelling each by
a unique binary label, fig. 21.4.

The smallest and the largest denominator in Tn are respectively given
by

[n− 2] =
1

n− 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (21.10)

where the Fibonacci numbers Fn are defined by Fn+1 = Fn + Fn−1; F0 =
0, F1 = 1, and ρ is the golden mean ratio

ρ =
1 +

√
5

2
= 1.61803 . . . (21.11)

Note the enormous spread in the cycle lengths on the same level of the Farey
tree: n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the
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Figure 21.4: Farey tree: alternating binary ordered labelling of all Farey denominators
on the nth Farey tree level.

Farey tree level will cause strong non-hyperbolic effects in the evaluation
of various averages.

Having defined the partitioning schemes of interest here, we now briefly
summarize the results of the circle-map renormalization theory.

21.2 Local theory: “Golden mean” renormaliza-
tion

The way to pinpoint a point on the border of order is to recursively
adjust the parameters so that at the recurrence times t = n1, n2, n3, · · ·
the trajectory passes through a region of contraction sufficiently strong
to compensate for the accumulated expansion of the preceding ni steps,
but not so strong as to force the trajectory into a stable attracting orbit.
The renormalization operation R implements this procedure by recursively
magnifying the neighborhood of a point on the border in the dynamical
space (by rescaling by a factor α), in the parameter space (by shifting
the parameter origin onto the border and rescaling by a factor δ), and by
replacing the initial map f by the nth iterate fn restricted to the magnified
neighborhood

fp(x) → Rfp(x) = αfn
p/δ(x/α)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, that
is the fix-point function of the renormalization operator R. The best known
is the period doubling renormalization, with the recurrence times ni =
2i. The simplest circle map example is the golden mean renormalization,
with recurrence times ni = Fi given by the Fibonacci numbers (21.10).
Intuitively, in this context a metric self-similarity arises because iterates of
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critical maps are themselves critical, that is they also have cubic inflection
points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a gen-
eralization of the Gauss shift (21.38); it maps a circle map (represented as
a pair of functions (g, f), of winding number [a, b, c, . . .] into a rescaled map
of winding number [b, c, . . .]:

Ra

(
g

f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (21.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map
with the same winding number [a, a, . . .], so the fixed point of Ra has a
quadratic irrational winding number W = [a, a, a, . . .]. This fixed point
has a single expanding eigenvalue δa. Similarly, the renormalization trans-
formation Rap . . . Ra2Ra1 ≡ Ra1a2...ap has a fixed point of winding number
Wp = [a1, a2, . . . , anp , a1, a2, . . .], with a single expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by compar-
ing successive continued fraction approximants to W . Consider the Pr/Qr

rational approximation to a quadratic irrational winding number Wp whose
continued fraction expansion consists of r repeats of a block p. Let Ωr be
the parameter for which the map (21.1) has a superstable cycle of rotation
number Pr/Qr = [p, p, . . . , p]. The δp can then be estimated by extrapolat-
ing from

Ωr − Ωr+1 ∝ δ−r
p . (21.13)

What this means is that the “devil’s staircase” of fig. 21.2 is self-similar
under magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the rea-
son why all this is so interesting) is that the ratios of successive Pr/Qr

mode-locked intervals converge to universal limits. The simplest example
of (21.13) is the sequence of Fibonacci number continued fraction approxi-
mants to the golden mean winding number W = [1, 1, 1, ...] = (

√
5− 1)/2.

When global problems are considered, it is useful to have at least and
idea on extemal scaling laws for mode–lockings. This is achieved, in a first
analysis, by fixing the cycle length Q and describing the range of possible
asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks
with a power law

∆1/Q ∝ Q−3 (21.14)

For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth
continued fraction approximant to the golden mean. The intuitive reason
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is that the golden mean winding sits as far as possible from any short cycle
mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (21.15)

where P = Fn−1, Q = Fn and µ1 is related to the universal Shenker
number δ1 (21.13) and the golden mean (21.11) by

µ1 =
ln |δ1|
2 ln ρ

= 1.08218 . . . (21.16)

The closeness of µ1 to 1 indicates that the golden mean approximant mode-
lockings barely feel the fact that the map is critical (in the k=0 limit this
exponent is µ = 1).

To summarize: for critical maps the spectrum of exponents arising from
the circle maps renormalization theory is bounded from above by the har-
monic scaling, and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218 · · · . (21.17)

21.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (21.5):

Ω(τ) =
∞∑

Q=1

∑
(P |Q)=1

∆−τ
P/Q. (21.18)

The sum is over all irreducible rationals P/Q, P < Q, and ∆P/Q is the
width of the parameter interval for which the iterates of a critical circle
map lock onto a cycle of length Q, with winding number P/Q.

The qualitative behavior of (21.18) is easy to pin down. For sufficiently
negative τ , the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as
for the critical circle maps the mode-lockings fill the entire Ω range [21.11].
However, as τ increases, the contributions of the narrow (large Q) mode-
locked intervals ∆P/Q get blown up to 1/∆τ

P/Q, and at some critical value
of τ the sum diverges. This occurs for τ < 0, as Ω(0) equals the number of
all rationals and is clearly divergent.

The sum (21.18) is infinite, but in practice the experimental or numer-
ical mode-locked intervals are available only for small finite Q. Hence it
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is necessary to split up the sum into subsets Sn = {i} of rational wind-
ing numbers Pi/Qi on the “level” n, and present the set of mode-lockings
hierarchically, with resolution increasing with the level:

Z̄n(τ) =
∑
i∈Sn

∆−τ
i . (21.19)

The original sum (21.18) can now be recovered as the z = 1 value of a
“generating” function Ω(z, τ) =

∑
n znZ̄n(τ). As z is anyway a formal

parameter, and n is a rather arbitrary “level” in some ad hoc partitioning of
rational numbers, we bravely introduce a still more general, P/Q weighted
generating function for (21.18):

Ω(q, τ) =
∞∑

Q=1

∑
(P |Q)=1

e−qνP/QQ2τµP/Q . (21.20)

The sum (21.18) corresponds to q = 0. Exponents νP/Q will reflect the
importance we assign to the P/Q mode-locking, that is the measure used
in the averaging over all mode-lockings. Three choices of of the νP/Q hi-
erarchy that we consider here correspond respectively to the Farey series
partitioning

Ω(q, τ) =
∞∑

Q=1

Φ(Q)−q
∑

(P |Q)=1

Q2τµP/Q , (21.21)

the continued fraction partitioning

Ω(q, τ) =
∞∑

n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an] , (21.22)

and the Farey tree partitioning

Ω(q, τ) =
∞∑

k=n

2−qn
2n∑
i=1

Q2τµi
i , Qi/Pi ∈ Tn . (21.23)

We remark that we are investigating a set arising in the analysis of the
parameter space of a dynamical system: there is no “natural measure”
dictated by dynamics, and the choice of weights reflects only the choice of
hierarchical presentation.
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21.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution”
is obtained by deleting the parameter values corresponding to the mode-
lockings in the subset Sn; left behind is the set of complement covering
intervals of widths

�i = Ωmin
Pr/Qr

− Ωmax
Pl/Ql

. (21.24)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-
locking intervals ∆Pr/Qr

(∆Pl/Ql
) bounding �i and i is a symbolic dynam-

ics label, for example the entries of the continued fraction representation
P/Q = [a1, a2, ..., an] of one of the boundary mode-lockings, i = a1a2 · · · an.
�i provide a finite cover for the irrational winding set, so one may consider
the sum

Zn(τ) =
∑
i∈Sn

�−τ
i (21.25)

The value of −τ for which the n →∞ limit of the sum (21.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking,
this is the Hausdorff dimension only if the choice of covering intervals �i

is optimal; otherwise it provides an upper bound to DH . As by construc-
tion the �i intervals cover the set of irrational winding with no slack, we
expect that this limit yields the Hausdorff dimension. This is supported
by all numerical evidence, but a proof that would satisfy mathematicians
is lacking.

The physically relevant statement is that for critical circle maps DH =
0.870 . . . is a (global) universal number.✎ 21.2

page 415

21.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (21.25) from finite numbers of covering
intervals �i is a rather unilluminating chore. Fortunately, there exist con-
siderably more elegant ways of extracting DH . We have noted that in the
case of the “trivial” mode-locking problem (21.4), the covering intervals are
generated by iterations of the Farey map (21.37) or the Gauss shift (21.38).
The nth level sum (21.25) can be approximated by Ln

τ , where

Lτ (y, x) = δ(x− f−1(y))|f ′(y)|τ

This amounts to approximating each cover width �i by |dfn/dx| evaluated
on the ith interval. We are thus led to the following determinant

det (1− zLτ ) = exp

(
−
∑

p

∞∑
r=1

zrnp

r

|Λr
p|τ

1− 1/Λr
p

)
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=
∏
p

∞∏
k=0

(
1− znp |Λp|τ/Λk

p

)
. (21.26)

The sum (21.25) is dominated by the leading eigenvalue of Lτ ; the
Hausdorff dimension condition Zn(−DH) = O(1) means that τ = −DH

should be such that the leading eigenvalue is z = 1. The leading eigenvalue
is determined by the k = 0 part of (21.26); putting all these pieces together,
we obtain a pretty formula relating the Hausdorff dimension to the prime
cycles of the map f(x):

0 =
∏
p

(
1− 1/|Λp|DH

)
. (21.27)

For the Gauss shift (21.38) the stabilities of periodic cycles are available
analytically, as roots of quadratic equations: For example, the xa fixed
points (quadratic irrationals with xa = [a, a, a . . .] infinitely repeating con-
tinued fraction expansion) are given by

xa =
−a +

√
a2 + 4

2
, Λa = −

(
a +

√
a2 + 4
2

)2

(21.28)

and the xab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab +

√
(ab)2 + 4ab

2b
(21.29)

Λab = (xabxba)−2 =

(
ab + 2 +

√
ab(ab + 4)

2

)2

We happen to know beforehand that DH = 1 (the irrationals take the
full measure on the unit interval, or, from another point of view the Gauss
map is not a repeller), so is the infinite product (21.27) merely a very con-
voluted way to compute the number 1? Possibly so, but once the meaning
of (21.27) has been grasped, the corresponding formula for the critical circle
maps follows immediately:

0 =
∏
p

(
1− 1/|δp|DH

)
. (21.30)

The importance of this formula relies on the fact that it expresses DH in
terms of universal quantities, thus providing a nice connection from local
universal exponents to global scaling quantities: actual computations using
(21.30) are rather involved, as they require a heavy computational effort to
extract Shenker’s scaling δp for periodic continued fractions, and moreover
dealing with an infinite alphabet requires control over tail summation if an
accurate estimate is to be sought. In table 21.1 we give a small selection of
computed Shenker’s scalings.
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p δp

[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

Table 21.1: Shenker’s δp for a few periodic continued fractions, from ref. [21.1].

21.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical
model motivated by the mode-locking phenomenology. We will consider it
by means of the thermodynamic formalism of chapter 17, by looking at the
free energy.

Consider the Farey tree partition sum (21.23): the narrowest mode-
locked interval (21.15) at the nth level of the Farey tree partition sum
(21.23) is the golden mean interval

∆Fn−1/Fn
∝ |δ1|−n. (21.31)

It shrinks exponentially, and for τ positive and large it dominates q(τ) and
bounds dq(τ)/dτ :

q′max =
ln |δ1|
ln 2

= 1.502642 . . . (21.32)

However, for τ large and negative, q(τ) is dominated by the interval (21.14)
which shrinks only harmonically, and q(τ) approaches 0 as

q(τ)
τ

=
3 lnn

n ln 2
→ 0. (21.33)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n →∞ limit,
the q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but
is a non-trivial function of τ for −DH ≤ τ . This non-analyticity is rather
severe - to get a clearer picture, we illustrate it by a few number-theoretic
models (the critical circle maps case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given
by the “Farey model”, in which the intervals �P/Q are replaced by Q−2:

Zn(τ) =
2n∑
i=1

Q2τ
i . (21.34)
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Here Qi is the denominator of the ith Farey rational Pi/Qi. For example
(see fig. 21.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (21.38) of the Gauss shift on rationals, the
nth Farey level sum Zn(−1) can be written as the integral

Zn(−1) =
∫

dxδ(fn(x)) =
∑

1/|f ′
a1...ak

(0)| ,

and in general

Zn(τ) =
∫

dxLn
τ (0, x) ,

with the sum restricted to the Farey level a1 + . . . + ak = n + 2. It is easily
checked that f ′

a1...ak
(0) = (−1)kQ2

[a1,...,ak], so the Farey model sum is a
partition generated by the Gauss map preimages of x = 0, that is by
rationals, rather than by the quadratic irrationals as in (21.26). The sums
are generated by the same transfer operator, so the eigenvalue spectrum
should be the same as for the periodic orbit expansion, but in this variant
of the finite level sums we can can evaluate q(τ) exactly for τ = k/2, k a
nonnegative integer. First one observes that Zn(0) = 2n. It is also easy
to check that Zn(1/2) =

∑
i Qi = 2 · 3n. More surprisingly, Zn(3/2) =∑

i Q
3 = 54 · 7n−1. A few of these “sum rules” are listed in the table 21.2,

they are consequence of the fact that the denominators on a given level are
Farey sums of denominators on preceding levels. ✎ 21.3

page 415
A bound on DH can be obtained by approximating (21.34) by

Zn(τ) = n2τ + 2nρ2nτ . (21.35)

In this approximation we have replaced all �P/Q, except the widest interval
�1/n, by the narrowest interval �Fn−1/Fn

(see (21.15)). The crossover from
the harmonic dominated to the golden mean dominated behavior occurs at
the τ value for which the two terms in (21.35) contribute equally:

Dn = D̂ + O

(
lnn

n

)
, D̂ =

ln 2
2 ln ρ

= .72 . . . (21.36)

For negative τ the sum (21.35) is the lower bound on the sum (21.25) ,
so D̂ is a lower bound on DH .

From a general perspective the analysis of circle maps thermodynamics
has revealed the fact that physically interesting dynamical systems often
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 21.2: Partition function sum rules for the Farey model.

exhibit mixtures of hyperbolic and marginal stabilities. In such systems
there are orbits that stay ‘glued’ arbitrarily close to stable regions for arbi-
trarily long times. This is a generic phenomenon for Hamiltonian systems,
where elliptic islands of stability coexist with hyperbolic homoclinic webs.
Thus the considerations of chapter 18 are important also in the analysis of
renomarmalization at the onset of chaos.

Commentary

Remark 21.1 The physics of circle maps. Mode–locking phe-
nomenology is reviewed in ref. [21.5], a more theoretically oriented
discussion is contained in ref. [21.3]. While representative of dissipa-
tive systems we may also consider circle mapsas a crude approxima-
tion to Hamiltonian local dynamics: a typical island of stability in a
Hamiltonian 2-d map is an infinite sequence of concentric KAM tori
and chaotic regions. In the crudest approximation, the radius can
here be treated as an external parameter Ω, and the angular motion
can be modelled by a map periodic in the angular variable [21.8, 21.9].
By losing all of the “island-within-island” structure of real systems,
circle map models skirt the problems of determining the symbolic dy-
namics for a realistic Hamiltonian system, but they do retain some of
the essential features of such systems, such as the golden mean renor-
malization [14.7, 21.8] and non-hyperbolicity in form of sequences of
cycles accumulating toward the borders of stability. In particular, in
such systems there are orbits that stay “glued” arbitrarily close to sta-
ble regions for arbitrarily long times. As this is a generic phenomenon
in physically interesting dynamical systems, such as the Hamiltonian
systems with coexisting elliptic islands of stability and hyperbolic ho-
moclinic webs, development of good computational techniques is here
of utmost practical importance.

Remark 21.2 Critical mode–locking set The fact that mode-
lockings completely fill the unit interval at the critical point has been
proposed in refs. [21.3, 21.10]. The proof that the set of irrational
windings is of zero Lebesgue measure in given in ref. [21.11].

Remark 21.3 Counting noise for Farey series. The number of
rationals in the Farey series of order Q is φ(Q), which is a highly
irregular function of Q: incrementing Q by 1 increases Φ(Q) by any-
thing from 2 to Q terms. We refer to this fact as the “Euler noise”.
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The Euler noise poses a serious obstacle for numerical calculations
with the Farey series partitionings; it blocks smooth extrapolations to
Q →∞ limits from finite Q data. While this in practice renders inac-
curate most Farey-sequence partitioned averages, the finite Q Haus-
dorff dimension estimates exhibit (for reasons that we do not under-
stand) surprising numerical stability, and the Farey series partitioning
actually yields the best numerical value of the Hausdorff dimension
(21.25) of any methods used so far; for example the computation in
ref. [21.12] for critical sine map (21.1), based on 240 ≤ Q ≤ 250 Farey
series partitions, yields DH = .87012±.00001. The quoted error refers
to the variation of DH over this range of Q; as the computation is
not asymptotic, such numerical stability can underestimate the actual
error by a large factor.

Remark 21.4 Farey tree presentation function. The Farey tree
rationals can be generated by backward iterates of 1/2 by the Farey
presentation function [21.13]:

f0(x) = x/(1− x) 0 ≤ x < 1/2
f1(x) = (1− x)/x 1/2 < x ≤ 1 .

(21.37)

The Gauss shift (21.7) corresponds to replacing the binary Farey pre-
sentation function branch f0 in (21.37) by an infinity of branches

fa(x) = f1 ◦ f
(a−1)
0 (x) =

1
x
− a,

1
a− 1

< x ≤ 1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (21.38)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the
Gauss shift, fa1a2···ak

(x) = 0. The above maps look innocent enough,
but note that what is being partitioned is not the dynamical space, but
the parameter space. The flow described by (21.37) and by its non-
trivial circle-map generalizations will turn out to be a renormalization
group flow in the function space of dynamical systems, not an ordinary
flow in the phase space of a particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as
“flipping heads and tails” relations obtained by reversing the order of
the continued-fraction entries) with as yet unexploited implications for
the renormalization theory: some of these are discussed in ref. [21.4].

An alternative labelling of Farey denominators has been intro-
duced by Knauf [21.6] in context of number-theoretical modeling of
ferromagnetic spin chains: it allows for a number of elegant manipu-
lations in thermodynamic averages connected to the Farey tree hier-
archy.

Remark 21.5 Circle map renormalization The idea underlying
golden mean renormalization goes back to Shenker [21.9]. A renor-
malization group procedure was formulated in refs. [21.7, 21.14], where
moreover the uniqueness of the relevant eigenvalue is claimed. This
statement has been confirmed by a computer–assisted proof [21.15],
and in the following we will always assume it. There are a number of
experimental evidences for local universality, see refs. [21.16, 21.17].

On the other side of the scaling tale, the power law scaling for
harmonic fractions (discussed in refs. [21.2, 21.3, 21.4]) is derived by
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methods akin to those used in describing intermittency [21.21]: 1/Q

cycles accumulate toward the edge of 0/1 mode-locked interval, and as
the successive mode-locked intervals 1/Q, 1/(Q−1) lie on a parabola,
their differences are of order Q−3.

Remark 21.6 Farey series and the Riemann hypothesis The Farey
series thermodynamics is of a number theoretical interest, because the
Farey series provide uniform coverings of the unit interval with ratio-
nals, and because they are closely related to the deepest problems in
number theory, such as the Riemann hypothesis [21.22, 21.23] . The
distribution of the Farey series rationals across the unit interval is
surprisingly uniform - indeed, so uniform that in the pre-computer
days it has motivated a compilation of an entire handbook of Farey
series [21.24]. A quantitive measure of the non-uniformity of the distri-
bution of Farey rationals is given by displacements of Farey rationals
for Pi/Qi ∈ FQ from uniform spacing:

δi =
i

Φ(Q)
− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta
function lie on the s = 1/2+iτ line in the complex s plane, and would
seem to have nothing to do with physicists’ real mode-locking widths
that we are interested in here. However, there is a real-line version
of the Riemann hypothesis that lies very close to the mode-locking
problem. According to the theorem of Franel and Landau [21.25,
21.22, 21.23], the Riemann hypothesis is equivalent to the statement
that ∑

Qi≤Q

|δi| = o(Q
1
2+ε)

for all ε as Q → ∞. The mode-lockings ∆P/Q contain the neces-
sary information for constructing the partition of the unit interval
into the �i covers, and therefore implicitly contain the δi information.
The implications of this for the circle-map scaling theory have not
been worked out, and is not known whether some conjecture about
the thermodynamics of irrational windings is equivalent to (or harder
than) the Riemann hypothesis, but the danger lurks.

Remark 21.7 Farey tree partitioning. The Farey tree partition-
ing was introduced in refs. [21.26, 21.27, 21.4] and its thermodynamics
is discussed in detail in refs. [21.12, 21.13]. The Farey tree hierarchy
of rationals is rather new, and, as far as we are aware, not previously
studied by number theorists. It is appealing both from the experimen-
tal and from the the golden-mean renormalization point of view, but
it has a serious drawback of lumping together mode-locking intervals
of wildly different sizes on the same level of the Farey tree.

Remark 21.8 Local and global universality. Numerical evidences
for global universal behavior have been presented in ref. [21.3]. The
question was reexamined in ref. [21.12], where it was pointed out how
a high-precision numerical estimate is in practice very hard to obtain.
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It is not at all clear whether this is the optimal global quantity to
test but at least the Hausdorff dimension has the virtue of being inde-
pendent of how one partitions mode-lockings and should thus be the
same for the variety of thermodynamic averages in the literature.

The formula (21.30), linking local to global behavior, was pro-
posed in ref. [21.1].

The derivation of (21.30) relies only on the following aspects of
the “hyperbolicity conjecture” of refs. [21.4, 21.18, 21.19, 21.20]:

1. limits for Shenker δ’s exist and are universal. This should follow
from the renormalization theory developed in refs. [21.7, 21.14,
21.15], though a general proof is still lacking.

2. δp grow exponentially with np, the length of the continued frac-
tion block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n
grows as a power of n. According to (21.14), limn→∞ δp ∝ n3. In
the calculation of ref. [21.1] the explicit values of the asymptotic
exponents and prefactors were not used, only the assumption
that the growth of δp with n is not slower than a power of n.

Remark 21.9 Farey model. The Farey model (21.33) has been
proposed in ref. [21.12]; though it might seem to have been pulled out
of a hat, the Farey model is as sensible description of the distribution
of rationals as the periodic orbit expansion (21.26).

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer
an opportunity to use cycle expansions on hierarchical structures in parame-
ter space: this is not just an application of the conventional thermodynamic
formalism, but offers a clue on how to extend universality theory from local
scalings to global quantities.
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EXERCISES 415

Exercises

Exercise 21.1 Mode-locked intervals. Check that when k 	= 0 the interval

∆P/Q have a non-zero width (look for instance at simple fractions, and consider k

small). Show that for small k the width of ∆0/1 is an increasing function of k.

Exercise 21.2 Bounds on Hausdorff dimension. By making use of the
bounds (21.17) show that the Hausdorff dimension for critical mode lockings may be
bounded by

2/3 ≤ DH ≤ .9240 . . .

Exercise 21.3 Farey model sum rules. Verify the sum rules reported in

table 21.2. An elegant way to get a number of sum rules for the Farey model is

by taking into account an lexical ordering introduced by Contucci and Knauf, see

ref. [21.28].

Exercise 21.4 Metric entropy of the Gauss shift. Check that the Lyapunov

exponent of the Gauss map (21.7) is given by π2/6 ln 2. This result has been claimed

to be relevant in the discussion of “mixmaster” cosmologies, see ref. [21.30].

Exercise 21.5 Refined expansions. Show that the above estimates can be
refined as follows:

F (z, 2) ∼ ζ(2) + (1− z) log(1− z)− (1− z)

and

F (z, s) ∼ ζ(s) + Γ(1− s)(1− z)s−1 − S(s)(1− z)

for s ∈ (1, 2) (S(s) being expressed by a converging sum). You may use either more

detailed estimate for ζ(s, a) (via Euler summation formula) or keep on subtracting

leading contributions [21.31].

Exercise 21.6 Hitting condition. Prove (20.39). Hint: together with the real

trajectory consider the line passing through the starting point, with polar angle θm,n:

then draw the perpendiculars to the actual trajectory, passing through the center of

the (0, 0) and (m,n) disks.

Exercise 21.7 jn and αcr. Look at the integration region and how it scales

by plotting it for increasing values of n.

Exercise 21.8 Estimates of the Riemann zeta function. Try to approximate

numerically the Riemann zeta function for s = 2, 4, 6 using different acceleration

algorithms: check your results with refs. [21.32, 21.33].

Exercise 21.9 Farey tree and continued fractions I. Consider the Farey tree

presentation function f : [0, 1] �→ [0, 1], such that if I = [0, 1/2) and J = [1/2, 1],
f |I = x/(1− x) and f |J = (1− x)/x. Show that the corresponding induced map is

the Gauss map g(x) = 1/x− [1/x].

Exercise 21.10 Farey tree and continued fraction II. (Lethal weapon II).

Build the simplest piecewise linear approximation to the Farey tree presentation func-

tion (hint: substitute first the righmost, hyperbolic branch with a linear one): consider

then the spectral determinant of the induced map ĝ, and calculate the first two eigen-

values besides the probability conservation one. Compare the results with the rigorous

bound deduced in ref. [18.17].
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Chapter 22

Prologue

Anyone who uses words “quantum” and “chaos” in
the same sentence should be hung by his thumbs on
a tree in the park behind the Niels Bohr Institute
Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

You have read the first volume of this book. So far, so good – anyone
can play a game of classical pinball, and a skilled neuroscientist can poke
rat brains. Information about the chaotic dynamics was obtained by calcu-
lating spectra of linear operators such as the evolution operator of sect. 8.2
or the associated partial differential equations such as the Liouville equa-
tion (7.37). The spectra of these operators could then again be described
in terms of the periodic orbits of the deterministic dynamics by means of
trace formulas and cycle expansions.

But what happens quantum mechanically, that is, if we scatter waves
rather than point-like pinballs? Can we turn the problem round and study
linear PDE’s in terms of the underlying deterministic dynamics? And, is
there a link between structures in the spectrum or the eigenfunctions of a
PDE and the dynamical properties of the underlying classical flow? The
answer is yes, but . . . things are becoming somewhat more complicated
when studying 2nd or higher order linear PDE’s. We can find classical
dynamics associated with a linear PDE, just take geometric optics as a
familiar example. Propagation of light follows a second order wave equation
but may in certain limits be well described in terms of geometric rays. A
theory in terms of properties of the classical dynamics alone, referred to here
as the semiclassical theory, will not be exact, in contrast to the classical
periodic orbit formulas obtained so far. Waves exhibit new phenomena,
such as interference, diffraction, and the higher � corrections which will
here be only partially incorporated into the periodic orbit theory.

417



418 CHAPTER 22. PROLOGUE

22.1 Quantum pinball

We will restrict the discussion in what follows to a the non-relativistic
Schrödinger equation. The approach will be very much in the spirit of
the early days of quantum mechanics, before its wave character has been
fully uncovered by Schrödinger in the mid 1920’s. Indeed, were physicists
of the period as familiar with classical chaos as we are today, this theory
could have been developed 80 years ago. It was the discrete nature of the
hydrogen spectrum which inspired the Bohr - de Broglie picture of the old
quantum theory: one places a wave instead of a particle on a Keplerian orbit
around the hydrogen nucleus. The quantization condition is that only those
orbits contribute for which this wave is stationary; from this followed the
Balmer spectrum and the Bohr-Sommerfeld quantization which eventually
led to the more sophisticated theory of Heisenberg, Schrödinger and others.
Today we are very aware of the fact that elliptic orbits are an idiosyncracy of
the Kepler problem, and that chaos is the rule; so can the Bohr quantization
be generalized to chaotic systems?

The question was answered affirmatively by Gutzwiller, as late as 1971:
a chaotic system can indeed be quantized by placing a wave on each of
the infinity of unstable periodic orbits. Due to the instability of the orbits
the wave does not stay localized but leaks into neighborhoods of other
periodic orbits. Contributions of different periodic orbits interfere and the
quantization condition can no longer be attributed to a single periodic orbit:
A coherent summation over the infinity of periodic orbit contributions gives
the desired spectrum.

The pleasant surprise is that the zeros of the dynamical zeta function
(1.9)

1/ζ(z) =
∏
p

(1− tp)

also yield excellent estimates of quantum resonances, with the quantum
amplitude associated with a given cycle approximated semiclassically by
the weight

tp =
1

|Λp|
1
2

e
i
�

Sp−iπmp/2 , (22.1)

whose magnitude is the square root of the classical weight (12.10)

tp =
1
|Λp|

eβ·Ap−sTp ,

and the phase is given by the Bohr-Sommerfeld action integral Sp, to-
gether with an additional topological phase mp, the number of caustics
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along the periodic trajectory, points where the naive semiclassical approx-
imation fails.

chapter 25

In this approach, the quantal spectra of classically chaotic dynamical
systems are determined from the zeros of dynamical zeta functions, defined
by cycle expansions of infinite products of form

1/ζ =
∏
p

(1− tp) = 1−
∑

f

tf −
∑

p

cp (22.2)

with weight tp associated to every prime (non-repeating) periodic orbit (or
cycle) p.

The key observation is that the chaotic dynamics is often organized
around a few fundamental cycles. These short cycles capture the skeletal
topology of the motion in the sense that any long orbit can approximately
be pieced together from the fundamental cycles. In chapter 15 it was shown
that for this reason the cycle expansion (22.2) is a highly convergent ex-
pansion dominated by short cycles grouped into fundamental contributions,
with longer cycles contributing rapidly decreasing curvature corrections.
Computations with dynamical zeta functions are rather straightforward;
typically one determines lengths and stabilities of a finite number of short-
est periodic orbits, substitutes them into (22.2), and estimates the zeros of
1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace for-
mulas (both the exact Selberg and the semiclassical Gutzwiller trace for-
mula) fit into a general framework of replacing phase space averages by
sums over periodic orbits. For classical hyperbolic systems this is possi-
ble since the invariant density can be represented by sum over all periodic
orbits, with weights related to their instability. The semiclassical periodic
orbit sums differ from the classical ones only in phase factors and stability
weights; such differences may be traced back to the fact that in quantum
mechanics the amplitudes rather than the probabilities are added.

However, we should note that the type of the dynamics has a strong
influence on the convergence of cycle expansions and thus also on the spec-
tra; this necessitates development of different approaches for different types
of dynamical behavior such as, on one hand, the strongly hyperbolic and,
on the other hand, the intermittent dynamics of chapters 15 and 18. For
generic nonhyperbolic systems (which we shall not discuss here), with mixed
phase space and marginally stable orbits, periodic orbit summations are
hard to control, and it is still not clear that the periodic orbit sums should
necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the book is to
demonstrate that the cycle expansions, developped so far in classical set-
tings are also a powerful tool for evaluation of quantum resonances of clas-
sically chaotic systems.
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Figure 22.1: A typical collinear helium trajec-
tory in the r1 – r2 plane; the trajectory enters
along the r1 axis and escapes to infinity along
the r2 axis.
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First we shall warm up playing our game of pinball, this time in a quan-
tum version. Were the game of pinball a closed system, quantum mechan-
ically one would determine its stationary eigenfunctions and eigenenergies.
For open systems one seeks instead complex resonances, where the imagi-
nary part of the eigenenergy describes the rate at which the quantum wave
function leaks out of the central scattering region. This will turn out to
work well, except who trully wants to know accurately the resonaces of a
quantum pinball?

22.2 Quantization of helium

However, given (22.1) we are finally in position to accomplish something
altogether remarkable; we put together all ingredients that made the pin-
ball unpredictable, and compute a “chaotic” part of the helium spectrum
to shocking accuracy. From the classical dynamics point of view, helium
is an example of Poincaré’s dreaded and intractable 3-body problem. Un-
daunted, we forge ahead and consider the collinear helium, with zero total
angular momentum, and the two electrons on the opposite sides of the nu-
cleus.

++- -

We set the electron mass to 1, the nucleus mass to ∞, the helium nucleus
charge to 2, the electron charges to -1. The Hamiltonian is

H =
1
2
p2
1 +

1
2
p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (22.3)

Due to the energy conservation, only three of the phase space coordinates
(r1, r2, p1, p2) are independent. The dynamics can be visualized as a motion
in the (r1, r2), ri ≥ 0 quadrant, fig. 22.1, or, better still, by a well chosen
2-d Poincaré section.

The motion in the (r1, r2) plane is topologically similar to the pinball
motion in a 3-disk system, except that the motion is not free, but in the
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Coulomb potential. The classical collinear helium is also a repeller; almost
all of the classical trajectories escape. Miraculously, the symbolic dynamics
for the survivors again turns out to be binary, just as in the 3-disk game
of pinball, so we know what cycles need to be computed for the cycle
expansion (1.10). A set of shortest cycles up to a given symbol string length
then yields an estimate of the helium spectrum. This simple calculation

☞ chapter 28
yields surprisingly accurate eigenvalues; even though the cycle expansion
was based on the semiclassical approximation (22.1) which is expected to
be good only in the classical large energy limit, the eigenenergies are good
to 1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulate some ba-
sic notions of quantum mechanics; after having defined the main quantum
objects of interest, the quantum propagator and the Green’s function, we
will relate the quantum propagation to the classical flow of the underlying
dynamical system. We will then proceed to construct semiclassical approx-
imations to the quantum propagator and the Green’s function. A rederiva-
tion of classical Hamiltonian dynamics starting from the Hamilton-Jacobi
equation will be offered along the way. The derivation of the Gutzwiller
trace formula and the semiclassical zeta function as a sum and as a product
over periodic orbits will be given in chapter 26. In subsequent chapters we
buttress our case by applying and extending the theory: a cycle expan-
sion calculation of scattering resonances in a 3-disk billiard in chapter 27,
the spectrum of helium in chapter 28, and the incorporation of diffraction
effects in chapter 29.

Guide to literature

A key prerequisite to developing any theory of “quantum chaos” is solid un-
derstanding of Hamiltonian mechanics. For that, Arnol’d monograph [1.24]
is the essential reference. Ozorio de Almeida’s monograph [6.11] offers a
compact introduction to the aspects of Hamiltonian dynamics required for
the quantization of integrable and nearly integrable systems, with emphasis
on periodic orbits, normal forms, catastrophy theory and torus quantiza-
tion. The book by Brack and Bhaduri [22.1] is an excellent introduction to
the semiclassical methods. Gutzwiller’s monograph [22.2] is an advanced
introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing
through for its many insights and erudite comments on quantum and celes-
tial mechanics even if one is not working on problems of quantum chaology.
More suitable as a graduate course text is Reichl’s presentation [22.3].

This book does not discuss the random matrix theory approach to chaos
in quantal spectra; no randomness assumptions are made here, rather the
goal is to milk the deterministic chaotic dynamics for its full worth. The
book concentrates on the periodic orbit theory. For an introduction to
“quantum chaos” that focuses on the random matrix theory the reader is
referred to the excellent monograph by Haake [22.4], among others.
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Chapter 23

Quantum mechanics, briefly

We start with a review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula.

In coordinate representation the time evolution of a quantum mechan-
ical wave function is governed by the Schrödinger equation

i�
∂

∂t
ψ(q, t) = Ĥ(q,

�

i

∂

∂q
)ψ(q, t), (23.1)

where the Hamilton operator Ĥ(q,−i�∂q) is obtained from the classical
Hamiltonian by substitution p → −i�∂q. Most of the Hamiltonians we
shall consider here are of form

H(q, p) = T (p) + V (q) , T (p) = p2/2m, (23.2)

describing dynamics of a particle in a d-dimensional potential V (q). For
time independent Hamiltonians we are interested in finding stationary so-
lutions of the Schrödinger equation of the form

ψn(q, t) = e−iEnt/�φn(q), (23.3)

where En are the eigenenergies of the time-independent Schrödinger equa-
tion

Ĥφ(q) = Eφ(q) . (23.4)

If the kinetic term can be separated out as in (23.2), the time-independent
Schrödinger equation

− �
2

2m
∂2φ(q) + V (q)φ(q) = Eφ(q) (23.5)
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can be rewritten in terms of a local wavenumber

(∂2 + k2(q))φ = 0 , �
2k(q) =

√
2m(E − V (q)) . (23.6)

For bound systems the spectrum is discrete and the eigenfunctions form
an orthonormal∫

ddq φn(q)φ∗
m(q) = δnm (23.7)

and complete

∑
n

φn(q)φ∗
n(q′) = δ(q − q′) . (23.8)

set of functions in a Hilbert space. For simplicity we will assume that the
system is bound, although most of the results will be applicable to open

☞ chapter 27
systems, where one has complex resonances instead of real energies, and
the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/�φn(q) , (23.9)

where the expansion coefficient cn is given by the projection of the initial
wave function ψ(q, 0) onto the nth eigenstate

cn =
∫

ddq φ∗
n(q)ψ(q, 0). (23.10)

By substituting (23.10) into (23.9), we can cast the evolution of a wave
function into a multiplicative form

ψ(q, t) =
∫

ddq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEnt/�φ∗
n(q′) (23.11)

called the quantum evolution operator, or the propagator. Applied twice,
first for time t1 and then for time t2, it propagates the initial wave function
from q′ to q′′, and then from q′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (23.12)
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forward in time, hence the name “propagator”. In non-relativistic quantum
mechanics the range of q′′ is infinite, meaning that the wave can propagate
at any speed; in relativistic quantum mechanics this is rectified by restrict-
ing the propagation to the forward light cone.

Since the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it also satisfies the Schrödinger equation

i�
∂

∂t
K(q, q′, t) = Ĥ(q,

i

�

∂

∂q
)K(q, q′, t) , (23.13)

and is thus a wave function defined for t ≥ 0; from the completeness relation
(23.8) we obtain the boundary condition at t = 0:

lim
t→0+

K(q, q′, t) = δ(q − q′) . (23.14)

The propagator thus represents the time evolution of a wave packet which
starts out as a configuration space delta-function localized in the point q′

at the initial time t = 0.

For time independent Hamiltonians the time dependence of the wave
functions is known as soon as the eigenenergies En and eigenfunctions φn

have been determined. With time dependence rendered “trivial”, it makes
sense to focus on the Green’s function, the Laplace transformation of the
propagator

G(q, q′, E+iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

tK(q, q′, t) =
∑

n

φn(q)φ∗
n(q′)

E − En + iε
.(23.15)

Here ε is a small positive number, ensuring the existence of the integral.
The eigenenergies show up as poles in the Green’s function with residues
corresponding to the wave function amplitudes. If one is only interested in
the spectrum, one may restrict the considerations to the (formal) trace of
the Green’s function,

tr G(q, q′, E) =
∫

ddq G(q, q, E) =
∑

n

1
E − En

, (23.16)

where E is complex, with a positive imaginary part, and we have used the
eigenfunction orthonormality (23.7). This trace is formal, since as it stands,
the sum in (23.16) is divergent. We shall return to this point in sects. 26.1.1
and 26.1.2.

A a useful characterization of the set of eigenvalues is given in terms
of the density of states, with a delta function peak at each eigenenergy,
fig. 23.1(a),

d(E) =
∑

n

δ(E − En). (23.17)
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426 CHAPTER 23. QUANTUM MECHANICS, BRIEFLY

Figure 23.1: Schematic picture of a) the density of states d(E), and b) the spectral
staircase function N(E). The dashed lines denote the mean density of states d̄(E)
and the average number of states N̄(E) discussed in more detail in sect. 17.1.

Using the identity✎ 25.1
page 456

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(23.18)

we can express the density of states in terms of the trace of the Green’s
function, that is

d(E) =
∑

n

δ(E − En) = − lim
ε→0

1
π

Im tr G(q, q′, E + iε). (23.19)

☞ sect. 26.1.1

This relation is the reason why we chose to describe the quantum spectrum
in terms of the density of states. As we shall see, a semiclassical formula for
right hand side of this relation will yield the quantum spectrum in terms
of periodic orbits.

The density of states can be written as the derivative d(E) = dN(E)/dE
of another useful quantity, the spectral staircase function

N(E) =
∑

n

Θ(E − En) (23.20)

which counts the number of eigenenergies below E, fig. 23.1(b). Here Θ is
the Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (23.21)

This completes our lightning review of quantum mechanics.
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Chapter 24

WKB quantization

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− �
2

2m
ψ′′(q) + V (q)ψ(q) = Eψ(q) . (24.1)

with potential V (q) growing sufficiently fast as q → ±∞ so that the particle
motion is confined for any E. Define the local momentum, wavenumber

p(q) =
√

2m(E − V (q)), p(q) = �k(q) . (24.2)

Then

ψ′′ + k2(q)ψ = 0 . (24.3)

Substitution ψ = Ae
i
�

S , A, S real functions of q, yields

(S′)2 = p2 + �
2 A′′

A
(24.4)

S′′A + 2S′A′ =
1
A

d

dq
(S′A2) = 0 . (24.5)

(D-dimensional version of these equations will be given below, in (25.3)
and (25.4).) The Wentzel-Kramers-Brillouin (WKB) or semiclassical ap-
proximation consists in dropping the �

2 term in (24.4). Recalling that
p = �k, dropping this term amounts to claiming that k2 � A′′

A which in
turn implies that the phase of the wavefunction is changing much faster
than its overall amplitude. This justifies the standard interpretation as
a short wavelength approximation. This approximation is also consistent
with saying hbar ! 1.
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Integrating (24.4) we obtain the phase increment of a wave function
initially at q, at energy E

S(q, q′, E) =
∫ q

q′
dq” · p(q”) . (24.6)

Integration of (24.5) is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)| 12 ψ(q′) , (24.7)

where C is the integration constant, fixed by requiring that the wave func-
tion is single-valued everywhere, including the initial point q′. The WKB
ansatz, or the semi-classical wave function is given by

ψsc(q) =
C

|p(q)| 12
e

i
�

S(qq′E) . (24.8)

This is fine, except at the turning points, where all energy is potential, and

p(q) → 0 as q → qT . (24.9)

What to do? The answer is given in every quantum mechanics textbook,
usually by expanding the potential close to the turning point

V (q) = V (qT ) + (q − qT )V ′(qT ) + · · · ,

solving the Airy equation and matching the oscillatory and the exponen-
tially decaying “forbidden” region wave function pieces by means of the
WKB connection formulas. That requires staring at Airy functions and
learning about their asymptotics - a challenge that we will have to eventu-
ally face up to, in order to incorporate diffraction phenomena into semiclas-
sical quantization. However, for the task at hand a simple physical picture,
due to Maslov, does the job. In the q coordinate, the turning points are
defined by the zero kinetic energy condition, and the motion appears singu-
lar. Not so in the full phase space: the trajectory in a smooth confining 1-d
potential is always a smooth loop, with the “special” role of the turning
points qL, qR seen to be an artifact of the particular choice of the (q, p)
coordinate frame. Maslov’s idea was to proceed from (q′, p′) to (qA, pA) in
the ψ(q) representation, then switch by means of a Fourier transform to
the momentum representation

ψ̃(p) =
1√
2π�

∫
dq e−

i
�

qpψ(q) , (24.10)
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24.1. METHOD OF STATIONARY PHASE 429

continue from (qA, pA) to (qB, pB), switch back to the coordinate represen-
tation,

ψ(q) =
1√
2π�

∫
dp e

i
�

qp ψ̃(p) , (24.11)

and so on.

The only rub is that we do not know how to evaluate these transforms
exactly. As the WKB wave function (24.8) is anyhow approximate, it suf-
fices to estimate these transforms with leading order in � accuracy. This
we do by the stationary phase method.

24.1 Method of stationary phase

Semiclassical approximations are based on saddlepoint evaluations of inte-
grals of the type

I =
∫

ddx A(x) eisΦ(x) , x,Φ(x) ∈ R , (24.12)

where s is assumed to be a large, real parameter, and Φ(x) is a real-valued
function. In our applications s = 1/� will always be assumed large.

For large s the phase oscillates rapidly and “averages to zero” every-
where except at the extremal points Φ′(x0) = 0, where Φ′′(x0) 	= 0 but can
have either sign. The method of approximating an integral by its values
at extremal points is called the method of stationary phase. Consider first
the case of a one-dimensional integral, and expand Φ(x0 + δx) around x0

to second order in δx,

I =
∫

dx A(x) eis(Φ(x0)+ 1
2
Φ′′(x0)δx2+...) .

If A(x) varies slowly around x0 compared to the exponential function, we
may retain the leading term in the Taylor expansion of the amplitude, and
approximate the integral up to quadratic terms in the phase by

I ≈ A(x0)eisΦ(x0)

∫ ∞

−∞
dx eisΦ′′(x0)x2

2 .

Using the Fresnel integral formula ✎ 24.6
page 433

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2 e
i π
4

a
|a| (24.13)
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430 CHAPTER 24. WKB QUANTIZATION

we obtain

I ≈ A(x0)
∣∣∣∣ 2π

sΦ′′(x0)

∣∣∣∣1/2

eisΦ(x0)±i π
4 , (24.14)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

24.2 WKB quantization

We can now evaluate the Fourier transforms (24.10), (24.11) to the same
order in � as the WKB wave function by means of the stationary phase
method

ψ̃sc(p) =
C√
2π�

∫
dq

|p(q)| 12
e

i
�
(S(q)−qp)

≈ C√
2π�

e
i
�
(S(q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2�

S′′(q∗)(q−q∗)2 , (24.15)

where q∗ is given implicitly by the stationary phase condition

0 = S′(q∗)− p = p(q∗)− p

and the sign of S′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(24.13)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
�
[S(q∗)−q∗p]+ iπ

4
sgn(S′′(q∗) . (24.16)

As we continue from (qA, pA) to (qB, pB), nothing problematic happens -
p(q∗) is finite, and so is the acceleration p′(q∗), otherwise the trajectory
would take infinite time to get across. We recognize the exponent as the
Legendre transform

S̃(p) = S(q(p))− q(p)p

which re-expresses everything in terms of the p variable

q∗ = q(p),
d

dq
q = 1 =

dp

dq

dq(p)
dp

= q′(p)p′(q∗) . (24.17)

As it crosses qL, the weight in (24.16)

d

dq
p2(qL) = 2p(qL)p′(qL) = −2mV ′(q) (24.18)
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is finite, and S′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant,
including (qA, pA), hence the phase loss in (24.16) is −π

4 . To go back from p
to q representation, just turn the phase space loop a quarter turn anticlock-
wise. Everything is the same if you replace (q, p) → (−p, q); so, without
much ado we get at the point (qB, pB)

ψsc(q) =
e

i
�
(S̃(p∗)+qp∗)− iπ

4

|q∗(p∗)| 12
ψ̃sc(p∗) =

e
i
�

S(q)− iπ
2

|p(q)| 12
C . (24.19)

The extra |p′(q∗)|1/2 weight in (24.16) is cancelled by the |q′(p∗)|1/2 term,
by the Legendre relation (24.17).

We note in passing that the Fresnel integral phase slip requires a po-
tential with finite slope V ′(q). In case of infinite wall (billiards) a different
argument applies: the wave function must vanish at the wall, and the phase
slip due to a specular reflection is −π, not −π/2.

The main message is that going through a smooth potential turn-back
the WKB wave function phase slips by −π

2 . This is equally true for the
right and the left turn-backs, as can be seen by turning the phase space loop
by 1

2 turn, and flipping coordinates (q, p) → (−q,−p). While a turn-back is
not an invariant concept (for a short trajectory segment, it can be undone
by a 45o turn), for a complete period (q(T), p(T)) = (q′, p′) the total phase
slip is always by 2 · π/2, as a loop always has m = 2 turn-backs.

The WKB quantization condition follows by demanding that the wave
function computed after a complete period be single-valued. With normal-
ization (24.7) we obtain

ψ(q′) = ψ(q(T)) =
∣∣∣∣ p(q′)
p(q(T))

∣∣∣∣ 1
2

ei( 1
�

∮
p(q)dq−π)ψ(q′) .

The prefactor equals 1 by the periodic orbit condition q(T) = q′, hence the
phase must be a multiple of 2π

1
�

∮
p(q)dq = 2π

(
n +

m

4

)
. (24.20)

By definition, the action integral in (24.20) is the area enclosed by the
phase space loop, and the quantization condition says that eigenenergies
correspond to loops whose action is an integer multiple of the basis quantum
of action, the Planck constant �. Plus the extra topological phase, which,
even though it had been discovered many times in centuries past, had to
wait for its quantum mechanical (re)birth until 1970’s. This result involves
only canonically invariant classical quantities (action and phase) despite its
derivation in terms of noninvariant coordinates.
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24.2.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case whose quantum mechanics
we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mwq)2

)
.

The phase space loop is now a circle in the (mwq, p) plane, action is its
area S = 2πE/w, and the WKB spectrum

En = �w(n + 1/2) (24.21)

turns out to be the exact harmonic oscillator spectrum. Morally, stationary
phase condition (24.15) keeps V (q) accurate to order q2, which in this case is
the whole answer (but we were plain lucky, really). Nevertheless, for many
1-d problems WKB spectrum turns out to be very accurate. Surprisingly
so, if one interprets dropping the �

2 term in (24.4) as a short wavelength
approximation.

Commentary

Remark 24.1 Airy function. The stationary phase approxima-
tion is all that is needed for the semiclassical approximation, with the
proviso that D in (25.35) has no zero eigenvalues. The zero eigenvalue
case would require going beyond the Gaussian saddle-point approx-
imation, which typically leads to approximations of the integrals in
terms of Airy functions [26.12].✎ 24.9

page 434
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Exercises

Exercise 24.1 WKB ansatz. Try to show that no other ansatz other

than the (25.1) gives a meaningful definition of the momentum in the � → 0 limit.

Exercise 24.2 1-dimensional harmonic oscillator. Take a 1-dimensional
harmonic oscillator U(q) = 1

2kq2. Take a WKB wave function of form A(q, t) =
a(t) and R(q, t) = r(t)+ b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are time
dependent coefficients. Derive ordinary differential equations by using (25.3)
and (25.4) and solve them. Continuation: (24.5).

Exercise 24.3 1-dimensional linear potential. Take a 1-dimensional
linear potential U(q) = −Fq. Take a WKB wave function of form A(q, t) =
a(t) and R(q, t) = r(t)+ b(t)q + c(t)q2, where r(t), a(t), b(t) and c(t) are time
dependent coefficients. Derive and solve the ordinary differential equations
from (25.3) and (25.4).

Exercise 24.4 d-dimensional quadratic potentials. Generalize the above

method to general d-dimensional quadratic potentials.

Exercise 24.5 Time evolution of R. (Continuation of (24.2)). Calculate the

time evolution of R(q, 0) = a + bq + cq2 for a 1-dimensional harmonic oscillator using

(25.12) and (25.13).

Exercise 24.6 Fresnel integral. Show that

∫ ∞

−∞
dx eiax2/2 =

(
2π

|a|

)1/2

e
iπm

4 (24.22)

where m = a/|a| is the sign of a.

Exercise 24.7 Stationary phase approximation. All semiclassical ap-
proximations are based on saddlepoint evaluations of integrals of type

I =
∫

ddxA(x)eiΦ(x)/� (24.23)

for small values of �. Obtain the stationary phase estimate

I ≈
∑

n

A(xn)eiΦ(xn)/�
(2πi�)d/2√
detD2Φ(xn)

,

where D2Φ(xn) denotes the second derivative matrix.

Exercise 24.8 Sterling formula for n!. Compute an approximate value of n!
for large n with the help of stationary phase approximation. Hint: n! =

∫∞
0

dt tne−t.
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Exercise 24.9 Airy function for large arguments. Important
contributions as stationary phase points may arise from extremal points where the
first non-zero term in a Taylor expansion of the phase is of third or higher order. Such
situations occur, for example, at bifurcation points or in diffraction effects, (such as
waves near sharp corners, waves creeping around obstacles). In such calculations one
meets Airy functions integrals of the form

Ai(x) =
1
2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (24.24)

Calculate the Airy function Ai(x) by stationary phase approximation. What happens

when considering the limit x→ 0. Estimate for which value of x the stationary phase

approximation breaks down. Give it a go.
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Chapter 25

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects.
At age seventeen he began to think about optics,
and worked out his great principle of “Characteris-
tic Function”.
Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanović)

Semiclassical approximations to quantum mechanics are valid in the regime
where the de Broglie wavelength λ ∼ �/p of a particle with momentum p
is much shorter than the length scales across which the potential of the
system changes significantly. In the short wavelength approximation the
particle is a point-like object bouncing off potential walls the same way
it does in the classical mechanics. The real novelty of quantum mechan-
ics is the interference of the point-like particle with other versions of itself
travelling along different classical trajectories, a feat impossible in classical
mechanics. The short wavelength – or semiclassical – formalism is devel-

☞ remark 25.1
oped by formally taking the limit � → 0 in quantum mechanics in such a
way that quantum quantities go to their classical counterparts.

25.1 Hamilton-Jacobi theory

The mathematical formulation of the semiclassical approximation starts
out with a rewrite of the wave function

ψ(q, t) = A(q, t)eiR(q,t)/� , (25.1)

in terms of a pair of real functions R(q, t) and A(q, t), its phase and mag-
nitude. The time evolution of the phase and the magnitude of ψ follows ✎ 24.1
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from the Schrödinger equation (23.1)

(
i�

∂

∂t
+

�
2

2m

∂2

∂q2
− V (q)

)
ψ(q, t) = 0 . (25.2)

Take for concreteness a Hamiltonian Ĥ of form (23.2), assume A 	= 0, and
separate out the real and the imaginary parts. We get two equations: The
real part governs the time evolution of the phase

∂R

∂t
+

1
2m

(
∂R

∂q

)2

+ V (q)− �
2

2m

1
A

∂2

∂q2
A = 0 , (25.3)

and the imaginary part the time evolution of the amplitude✎ 24.2
page 433

✎ 24.3
page 433

∂A

∂t
+

1
m

d∑
i=1

∂A

∂qi

∂R

∂qi
+

1
2m

A
∂2R

∂q2
= 0 . (25.4)

✎ 24.4
page 433 In this way a linear PDE for a complex wave function is converted

into a set of coupled non-linear PDE’s for real-valued functions R and
A. The coupling term in (25.3) is, however, of order �

2 and thus small
in the semiclassical limit � → 0. Now we make the Wentzel-Kramers--
Brillouin (WKB) ansatz: we assume the magnitude A(q, t) varies slowly
compared to the phase R(q, t)/�, so we drop the �-dependent term. In this
approximation the phase R(q, t) and the corresponding “momentum field”
∂R
∂q (q, t) can be determined from the amplitude independent equation

∂R

∂t
+ H

(
q,

∂R

∂q

)
= 0 . (25.5)

In classical mechanics this equation is known as the Hamilton-Jacobi equa-
tion. We will refer to this step as the semiclassical approximation to wave
mechanics, and from now on work only within this approximation.

25.1.1 Hamilton’s equations

If you already understand the Hamilton-Jacobi theory, you can safely skip
this section.

fast track:

sect. 25.1.3, p. 440

The wave equation (23.1) describes how the wave function ψ evolves
with time, and if you think of ψ as an (infinite dimensional) vector, position
q plays a role of an index. In one spatial dimension the phase R plotted
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f t
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Figure 25.1: (a) A phase R(q, t) plotted as a function of the position q for two
infinitesimally close times. (b) The phase R(q, t) transported by a swarm of “particles”;
The Hamilton’s equations (25.10) construct R(q, t) by transporting q0 → q(t) and the
slope of R(q0, t0), that is p0 → p(t).

as a function of the position q for two different times looks something like
fig. 25.1(a): The phase R(q, t0) deforms smoothly with time into the phase
R(q, t) at time t. Hamilton’s idea was to let a swarm of particles transport
R and its slope ∂R/∂q at q at initial time t = t0 to a corresponding R(q, t)
and its slope at time t, fig. 25.1(b). For notational convenience, define

pi = pi(q, t) :=
∂R

∂qi
, i = 1, 2, . . . , d . (25.6)

We saw earlier that (25.3) reduces in the semiclassical approximation to
the Hamilton-Jacobi equation (25.5). To make life simple, we shall assume
throughout this chapter that the Hamilton’s function H(q, p) does not de-
pend explicitly on time t, that is the energy is conserved.

To start with, we also assume that the function R(q, t) is smooth and
well defined for every q at the initial time t. This is true for sufficiently short
times; as we will see later R develops folds and becomes multi-valued as t
progresses. Consider now the variation of the function R(q, t) with respect
to independent infinitesimal variations of the time and space coordinates
dt and dq, fig. 25.1(a)

dR =
∂R

∂t
dt +

∂R

∂q
dq . (25.7)

Dividing through by dt and substituting (25.5) we obtain the total deriva-
tive of R(q, t) with respect to time along as yet arbitrary direction q̇, that
is,

dR

dt
(q, q̇, t) = −H(q, p) + q̇ · p . (25.8)

Note that the “momentum” p = ∂R/∂q is a well defined function of q and
t. In order to integrate R(q, t) with the help of (25.8) we also need to know
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how p = ∂R/∂q changes along q̇. Varying p with respect to independent
infinitesimal variations dt and dq and substituting the Hamilton-Jacobi
equation (25.5) yields

d
∂R

∂q
=

∂2R

∂q∂t
dt +

∂2R

∂q2
dq = −

(
∂H

∂q
+

∂H

∂p

∂p

∂q

)
dt +

∂p

∂q
dq .

Note that H(q, p) depends on q also through p(q, t) = ∂R/∂q, hence the
∂H
∂p term in the above equation. Dividing again through by dt we get the
time derivative of ∂R/∂q, that is,

ṗ(q, q̇, t) +
∂H

∂q
=
(

q̇ − ∂H

∂p

)
∂p

∂q
. (25.9)

Time variation of p depends not only on the yet unknown q̇, but also on
the second derivatives of R with respect to q with yet unknown time de-
pendence. However, if we choose q̇ (which was arbitrary, so far) such that
the right hand side of the above equation vanishes, we can calculate the
function R(q, t) along a specific trajectory (q(t), p(t)) given by integrating
the ordinary differential equations

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
(25.10)

with initial conditions

q(t0) = q′, p(t0) = p′ =
∂R

∂q
(q′, t0). (25.11)

☞ sect. 5.1

We recognize (25.10) as the Hamilton’s equations of motion of classical
mechanics.

q̇ is no longer an independent function, and the phase R(q, t) can now
be computed by integrating equation (25.8) along the trajectory (q(t), p(t))

R(q, t) = R(q′, t0) + R(q, t; q′, t0)

R(q, t; q′, t0) =
∫ t

t0

dτ [q̇(τ) · p(τ)−H(q(τ), p(τ))] , (25.12)

with the initial conditions (25.11). In this way the Hamilton-Jacobi partial
differential equation (25.3) is solved by integrating a set of ordinary differ-
ential equations, the Hamilton’s equations. In order to determine R(q, t)
for arbitrary q and t we have to find a q′ such that the trajectory starting
in (q′, p′ = ∂qR(q′, t0)) reaches q in time t and then compute R along this
trajectory, see fig. 25.1(b). Erudite reader has already noticed that the
integrand of (25.12) is known as the Lagrangian, and that a variational
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principle lurks somewhere, but we shall not make much fuss about that
here.

Throughout this chapter we assume that the energy is conserved, and
that the only time dependence of H(q, p) is through (q(τ), p(τ)), so the
value of R(q, t; q′, t0) does not depend on t0, but only on the elapsed time
t− t0. To simplify notation we will set t0 = 0 and write

R(q, q′, t) = R(q, t; q′, 0) .

The initial momentum of the particle must coincide with the initial mo-
mentum of the trajectory connecting q′ and q:

p′ =
∂

∂q′
R(q′, 0) = − ∂

∂q′
R(q, q′, t). (25.13)

✎ 25.3
page 456Function R(q, q′, t) is known as the Hamilton’s principal function.
✎ 24.5
page 433To summarize: Hamilton’s achievement was to trade in the Hamilton-

Jacobi partial differential equation (25.5) describing the evolution of a wave
front for a finite number of ordinary differential equations of motion, with
the initial phase R(q, 0) incremented by the integral (25.12) evaluated along
the phase space trajectory (q(τ), p(τ)).

25.1.2 Action

Before proceeding, we note in passing a few facts about Hamiltonian dy-
namics that will be needed for the construction of semiclassical Green’s
functions. If the energy is conserved, the

∫
H(q, p)dτ integral in (25.12) is

simply Et. The first term, or the action

S(q, q′, E) =
∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (25.14)

is integrated along a trajectory from q′ to q with a fixed energy E. By
(25.12) the action is the Legendre transform of Hamilton’s principal func-
tion

S(q, q′, E) = R(q, q′, t) + Et . (25.15)

The time of flight t along the trajectory connecting q′ → q with fixed energy
E is given by

∂

∂E
S(q, q′, E) = t . (25.16)
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The way to think about the formula (25.15) for action is that the time
of flight is a function of the energy, t = t(q, q′, E). The left hand side is
explicitly a function of E; the right hand side is an implicit function of E
through energy dependence of the flight time t.

Going in the opposite direction, the energy of a trajectory E = E(q, q′, t)
connecting q′ → q with a given time of flight t is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (25.17)

and the second variations of R and S are related in the standard way of
Legendre transforms:

∂2

∂t2
R(q, q′, t)

∂2

∂E2
S(q, q′, E) = −1 . (25.18)

A geometric visualization of what the phase evolution looks like is very
helpful in understanding the origin of topological indices to be introduced
in what follows. Given an initial phase R(q, t0), the gradient ∂qR defines

☞ sect. 25.1.4
a d-dimensional Lagrangian manifold (q, p = ∂qR(q)) in the full 2d dimen-
sional phase space (q, p). The defining property of this manifold is that any
contractable loop γ in it has zero action,

0 =
∮

γ
dq · p,

a fact that follows from the definition of p as a gradient, and the Stokes
theorem. Hamilton’s equations of motion preserve this property and map
a Lagrangian manifold into a Lagrangian manifold time t later.

Returning back to the main line of our argument: we show next that the
velocity field given by the Hamilton’s equations together with the continuity
equation determines the amplitude of the wave function.

25.1.3 Density evolution

To obtain the full solution of the Schrödinger equation (23.1), we also have
to integrate (25.4). Already Schrödinger noted that

ρ = ρ(q, t) := A2 = ψ∗ψ

plays the role of a density, and that the gradient of R may be interpreted
as a local semiclassical momentum, as the momentum density is

ψ(q, t)∗(−i�
∂

∂q
)ψ(q, t) = −i�A

∂A

∂q
+ ρ

∂R

∂q
.
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Figure 25.2: Density evolution of an ini-
tial surface (q′, p′ = ∂qR(q′, 0) into (q(t), p(t))
surface time t later, sketched in 1 dimension.
While the number of trajectories and the phase
space Liouville volume are conserved, the den-
sity of trajectories projected on the q coordinate
varies; trajectories which started in dq′ at time
zero end up in the interval dq.

Evaluated along the trajectory (q(t), p(t)), the amplitude equation (25.4)
is equivalent to the continuity equation (7.36) after multiplying (25.4) by
2A, that is

∂ρ

∂t
+

∂

∂qi
(ρvi) = 0 . (25.19)

Here, vi = q̇i = pi/m denotes a velocity field, which is in turn determined by
the phase R(q, t) or equivalently by the Lagrangian manifold (q(t), p(t) =
∂qR(q, t)),

v =
1
m

∂

∂q
R(q, t).

As we already know how to solve the Hamilton-Jacobi equation (25.5), we
can also solve for the density evolution as follows:

The density ρ(q) can be visualized as the density of a configuration
space flow q(t) of a swarm of hypothetical particles; the trajectories q(t) are
solutions of Hamilton’s equations with initial conditions given by (q(0) =
q′, p(0) = p′ = ∂qR(q′, 0)).

If we take a small configuration space volume ddq around some point
q at time t, then the number of particles in it is ρ(q, t)ddq. They started
initially in a small volume ddq′ around the point q′ of the configuration
space. For the moment, we assume that there is only one solution, the case
of several paths will be considered below. The number of particles at time
t in the volume is the same as the number of particles in the initial volume
at t = 0,

ρ(q(t), t)ddq = ρ(q′, 0)ddq′ ,

see fig. 25.2. The ratio of the initial and the final volumes can be expressed
as

ρ(q(t), t) =
∣∣∣∣det

∂q′

∂q

∣∣∣∣ ρ(q′, 0) . (25.20)
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☞ sect. 7.2

As we know how to compute trajectories (q(t), p(t)), we know how to com-
pute this jacobian and, by (25.20), the density ρ(q(t), t) at time t.

25.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at
time t. Consider first the case when our initial wave function can be written
in terms of single-valued functions A(q′, 0) and R(q′, 0). For sufficiently
short times, R(q, t) will remain a single-valued function of q, and every ddq
configuration space volume element keeps its orientation. The evolved wave
function is in the semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/� =

√
det

∂q′

∂q
A(q′, 0)ei(R(q′,0)+R(q,q′,t))/�

=

√
det

∂q′

∂q
eiR(q,q′,t)/� ψ(q′, 0) .

As the time progresses the Lagrangian manifold ∂qR(q, t) can develop folds,
so for longer times the value of the phase R(q, t) is not necessarily unique; in
general more than one trajectory will connect points q and q′ with different
phases R(q, q′, t) accumulated along these paths, see fig. 25.3.

Whenever the Lagrangian manifold develops a fold, the density of the
phase space trajectories in the fold projected on the configuration coordi-
nates diverges. As illustrated in fig. 25.3, when the Lagrangian manifold
develops a fold at q = q1; the volume element dq1 in the neighborhood
of the folding point which steams from some inital volume element dq′ is
proportional to

√
dq′ instead of dq′ at the fold. The Jacobian ∂q′/∂q di-

verges like 1/
√

q1 − q(t) when computed along the trajectory going trough
the folding point at q1. After the folding the orientation of the interval
dq′ has changed when being mapped into dq2; in addition the function R,
as well as its derivative which defines the Lagrangian manifold, becomes
multi-valued. Distinct trajectories starting from different initial points q′

can now reach the same final point q2. Presence of a fold is signaled by
the divergence of an eigenvalue of the Jacobian ∂q′/∂q. The projection of
a simple fold, or of an envelope of a family of phase space trajectories, is
called a caustic; this expression comes from the Greek word for “capable of
burning”, evoking the luminous patterns that one observes swirling across
the bottom of a swimming pool.

We thus expect in general a collection of different trajectories from q′ to
q which we will index by j, with different phase increments Rj(q, q′, t). The
hypothetical particles of the density flow at a given configuration space
point can move with different momenta p = ∂qRj(q, t). This is not an
ambiguity, since in the full (q, p) phase space each particle follows its own
trajectory with a unique momentum.
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Figure 25.3: Folding of the Lagrangian sur-
face (q, ∂qR(q, t)).

The folding also changes the orientation of the pieces of the Lagrangian
manifold (q, ∂qR(q, t)) with respect to the initial manifold, so the eigenval-
ues of the Jacobian determinant change sign at each fold crossing. We can
keep track of the signs by writing the Jacobian determinant as

det
∂q′

∂q

∣∣∣∣
j

= e−iπmj(q,q′,t)
∣∣∣∣det

∂q′

∂q

∣∣∣∣
j

,

where mj(q, q′, t) counts the number of sign changes of the Jacobian deter-
minant on the way from q′ to q along the trajectory indexed with j, see
fig. 25.3. We shall refer to the integer mj(q, q′, t) as the topological or
Morse index of the trajectory. So in general the semiclassical approxima-
tion to the wave function is thus a sum over possible trajectories that start
in q′ and end in q in time t

ψsc(q, t) =
∑

j

∣∣∣∣det
∂q′

∂q

∣∣∣∣1/2

j

eiRj(q,q′,t)/�−iπmj(q,q′,t)/2ψ(q′j , 0) , (25.21)

each contribution weighted by corresponding density, phase increment and
the topological index.

That the correct topological index is obtained by simply counting the
number of eigenvalue sign changes and taking the square root is not obvious
- the careful argument requires that quantum wave functions evaluated
across the folds remain single valued.

25.2 Semiclassical propagator

We saw in chapter 23 that the evolution of an initial wave function ψ(q, 0) is
completely determined by the propagator (23.11). As K(q, q′, t) itself sat-
isfies the Schrödinger equation (23.13), we can treat it as a wave function
parameterized by the configuration point q′. In order to obtain a semiclas-
sical approximation to the propagator we follow now the ideas developed
in the last section. There is, however, one small complication: the initial
condition (23.14) demands that the propagator at t = 0 is a δ-function at
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q = q′, that is, the amplitude is infinite at q′ and the phase is not well
defined. Our hypothetical cloud of particles is thus initially localized at
q = q′ with any initial velocity. This is in contrast to the situation in the
previous section where we assumed that the particles at a given point q have
well defined velocity (or a discrete set of velocities) given by q̇ = ∂pH(q, p).
We will now derive at a semiclassical expression for K(q, q′, t) by consid-
ering the propagator for short times first, and extrapolating from there to
arbitrary times t.

25.2.1 Short time propagator

For infinitesimally short times δt away from the singular point t = 0 we
assume that it is again possible to write the propagator in terms of a well
defined phase and amplitude, that is

K(q, q′, δt) = A(q, q′, δt)e
i
�

R(q,q′,δt) .

As all particles start at q = q′, R(q, q′, δt) will be of the form (25.12), that
is

R(q, q′, δt) = pq̇δt−H(q, p)δt , (25.22)

with q̇ ≈ (q−q′)/δt. For Hamiltonians of the form (23.2) we have q̇ = p/m,
which leads to

R(q, q′, δt) =
m(q − q′)2

2δt
− V (q)δt .

Here V can be evaluated any place along the trajectory from q to q′, for
example at the midway point V ((q + a′)/2). Inserting this into our ansatz
for the propagator we obtain

Ksc(q, q′, δt) ≈ A(q, q′, δt)e
i
�
( m

2δt
(q−q′)2−V (q)δt) . (25.23)

For infinitesimal times we can neglecting the term V (q)δt, so Ksc(q, q′, δt)
is a d-dimensional gaussian with width σ2 = i�δt/m. This gaussian is a
finite width approximation to the Dirac delta function

δσ(z) = lim
σ→0

1√
2πσ2

e−z2/2σ2
(25.24)

if A = (m/2πi�δt)d/2, with A(q, q′, δt) fixed by the Dirac delta function
normalization condition. The correctly normalized propagator for in-✎ 25.4

page 456
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finitesimal times δt is therefore

Ksc(q, q′, δt) ≈
( m

2πi�δt

)d/2
e

i
�
(

m(q−q′)2
2δt

−V (q)δt) . (25.25)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corre-
sponds to the quantum propagator can now be deduced from (25.22); one
obtains

∂R

∂q
= p ≈ m

δt
(q − q′) ,

that is, is the particles start for short times on a Lagrangian manifold which
is a plane in phase space, see fig. 25.4. Note, that for δt → 0, this plane is
given by the condition q = q′, that is, particles start on a plane parallel to
the momentum axis. As we have already noted, all particles start at q = q′

but with different velocities for t = 0. The inital surface (q′, p′ = ∂qR(q′, 0))
is mapped into the surface (q(t), p(t)) some time t later. The slope of the
Lagrangian plane for a short finite time is given as

∂pi

∂qj
= − ∂2R

∂qj∂q′i
= −∂p′i

∂qj
=

m

δt
δij .

The prefactor (m/δt)d/2 in (25.25) can therefore be interpreted as the deter-
minant of the Jacobian of the transformation from final position coordinates
q to initial momentum coordinates p′, that is

Ksc(q, q′, δt) =
1

(2πi�)d/2

∥∥∥∥∂p′

∂q

∥∥∥∥1/2

eiR(q,q′,δt)/�, (25.26)

where

C(q, q′, δt)ji = − ∂p′i
∂qj

∣∣∣∣
t,q′

= −∂2R(q, q′, δt)
∂qj∂q′i

(25.27)

The subscript · · ·|t indicates that the partial derivatives are to be evaluated
with t, q′ fixed.

The propagator in (25.26) that has been obtained for short times is,
however, already more or less in its final form. We only have to evolve our
short time approximation of the propagator according to (25.21)

Ksc(q′′, q′, t′ + δt) =
∑

j

∣∣∣∣det
∂q

∂q”

∣∣∣∣1/2

j

eiRj(q
′′,q,t′)/�−iπmj(q

′′,q,t′)/2K(qj , q
′
j , δt) ,
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Figure 25.4: Evolution of the semiclassical
propagator. The configuration which corre-
sponds to the initial conditions of the propa-
gator is a Lagrangian manifold q = q′, that is,
a plane parallel to the p axis. The hypothet-
ical particles are thus initially all placed at q′

but take on all possible momenta p′. The Jaco-
bian matrix C (25.28) relates an initial volume
element in momentum space dp′ to a final con-
figuration space volume dq.

and we included here already the possibility that the phase becomes multi-
valued, that is, that there is more than one path from q′ to q′′. The topolog-
ical index mj = mj(q′′, q′, t) is the number of singularities in the Jacobian
along the trajectory j from q′ to q′′. We can write Ksc(q′′, q′, t′ + δt) in
closed form using the fact that R(q′′, q, t′) + R(q, q′, δt) = R(q′′, q′, t′ + δt)
and the multiplicativity of Jacobian determinants, that is

det
∂q

∂qi”
det C(q, q′, t) = det

∂q

∂q′′

∣∣∣∣
t

det
∂p′

∂q

∣∣∣∣
q′,δt

(25.28)

= det
∂p′

∂q′′

∣∣∣∣
q′,t′+δt

= detC(q′′, q′, t′ + δt) .

The final form of the semiclassical or Van Vleck propagator, is thus

Ksc(q, q′, t) =
∑

j

1
(2πi�)d/2

|det Cj(q, q′, t)|1/2eiRj(q,q′,t)/�−imjπ/2 .(25.29)

This Van Vleck propagator is the essential ingredient of the semiclassical
quantization to follow.

The apparent simplicity of the semiclassical propagator is deceptive.
The wave function is not evolved simply by multiplying by a complex num-
ber of magnitude

√
det ∂p′/∂q and phase R(q, q′, t); the more difficult task

in general is to find the trajectories connecting q′ and q in a given time t.

In addition, we have to treat the approximate propagator (25.29) with
some care. Unlike the full quantum propagator which satisfies the group
property (23.12) exactly the semiclassical propagator performs this only
approximately, that is

Ksc(q, q′, t1 + t2) ≈
∫

dq′′ Ksc(q, q′′, t2)Ksc(q′′, q′, t1) . (25.30)

The connection can be made explicit by the stationary phase approxima-
tion, sect. 24.1. Approximating the integral in (25.30) by integrating only
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over regions near points q′′ at which the phase is stationary, leads to the
stationary phase condition

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q′, t1)

∂q′′i
= 0. (25.31)

Classical trajectories contribute whenever the final momentum for a path
from q′ to q′′ and the initial momentum for a path from q′′ to q coincide.
Unlike the classical evolution of sect. 8.2, the semiclassical evolution is not
an evolution by linear operator multiplication, but evolution supplemented
by a stationary phase condition pout = pin that matches up the classical
momenta at each evolution step.

25.2.2 Free particle propagator

To develop some intuition about the above formalism, consider the case of
a free particle. For a free particle the potential energy vanishes, the kinetic
energy is m

2 q̇2, and the Hamilton’s principal function (25.12) is

R(q, q′, t) =
m(q − q′)2

2t
. (25.32)

The matrix C(q, q′, t) from (25.27) can be evaluated explicitly, and the Van
Vleck propagator is

Ksc(q, q′, t) =
( m

2πi�t

)d/2
eim(q−q′)2/2�t , (25.33)

identical to the short times propagator (25.25), with V (q) = 0. This case
is rather exceptional: for a free particle the semiclassical propagator turns
out to be the exact quantum propagator K(q, q′, t), as can be checked by
substitution in the Schrödinger equation (25.2). The Feynman path inte-

☞ remark 25.3
gral formalism uses this fact to construct an exact quantum propagator by
integrating the free particle propagator (with V (q) treated as constant for
short times) along all possible (not necessary classical) paths from q′ to q.

✎ 25.5
page 456

✎ 25.6
page 456

✎ 25.7
page 456

25.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the time evolution of wave
functions, that is, we obtained approximate solutions to the time dependent
Schrödinger equation (23.1). Even though we assumed in the calculation
a time independent Hamiltonian of the special form (23.2), the derivation
leads to the same final result (25.29) were one to consider more complicated
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or explicitly time dependent Hamiltonians. The propagator is thus impor-
tant when we are interested in finite time quantum mechanical effects. For
time independent Hamiltonians, the time dependence of the propagator as
well as of wave functions is, however, essentially given in terms of the energy
eigen-spectrum of the system, as in (23.9). It is therefore advantageous to
switch from a time representation to an energy representation, that is from
the propagator (23.11) to the energy dependent Green’s function (23.15).
A semiclassical approximation of the Green’s function Gsc(q, q′, E) is given
by the Laplace transform (23.15) of the Van Vleck propagator Ksc(q, q′, t):

Gsc(q, q′, E) =
1
i�

∫ ∞

0
δt eiEt/�Ksc(q, q′, t) . (25.34)

The expression as it stands is not very useful; in order to evaluate the
integral at least approximately we need to again turn to the method of
stationary phase.

25.3.1 Stationary phase in higher dimensions

✎ 24.6
page 433 Generalizing the method of sect. 24.1 to d dimensions, consider stationary

phase points fulfilling

d

dxi
Φ(x)

∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric
matrix of second derivatives of Φ(x), that is

Dij(x0) =
∂2

∂xi∂xj
Φ(x)

∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalizes D, we can
approximate the d-dimensional integral by d one-dimensional Fresnel inte-
grals; the stationary phase estimate of (24.12) is then

I ≈
∑
x0

(2πi/s)d/2 |det D(x0)|−1/2A(x0) eisΦ(x0)− iπ
2

m(x0) , (25.35)

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0)
counts the number of negative eigenvalues of D(x0).✎ 25.8

page 457

✎ 24.7
page 433

✎ 24.8
page 433

The stationary phase approximation is all that is needed for the semi-
classical approximation, with the proviso that D in (25.35) has no zero
eigenvalues.

VanVleck - 12jun2003 draft 9.4.0, June 18 2003



25.3. SEMICLASSICAL GREEN’S FUNCTION 449

25.3.2 Long trajectories

When evaluating the integral (25.34) approximately we have to distinguish
between two types of contributions: those coming from stationary points
of the phase and those coming from infinitesimally short times. The first
type of contributions can be obtained by stationary phase approximation
and will be treated in this section. The latter originate from the singular
behavior of the propagator for t → 0 where the assumption that the am-
plitude changes slowly compared to the phase is no longer valid. The short
time contributions therefore have to be treated separately, which we will
do in sect. 25.3.3.

The stationary phase points t∗ of the integrand in (25.34) are given by
the condition

∂

∂t
R(q, q′, t∗) + E = 0 . (25.36)

We recognize this condition as the solution of (25.17), the time t∗ = t∗(q, q′, E)
in which a particle of energy E starting out in q′ reaches q. Taking into ac-
count the second derivative of the phase evaluated at the stationary phase
point,

R(q, q′, t) + Et = R(q, q′, t∗) + Et∗ +
1
2
(t− t∗)2

∂2

∂t2
R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a spe-
cific branch j of the Van Vleck propagator (25.29) yields

Gj(q, q′, E) =
1

i�(2iπ�)(d−1)/2

∣∣∣∣∣det Cj

(
∂2Rj

∂t2

)−1
∣∣∣∣∣
1/2

e
i
�

Sj− iπ
2

mj , (25.37)

where mj = mj(q, q′, E) now includes a possible additional phase arising
from the time stationary phase integration (24.13), and Cj = Cj(q, q′, t∗),
Rj = Rj(q, q′, t∗) are evaluated at the transit time t∗. We re-express the
phase in terms of the energy dependent action (25.15)

S(q, q′, E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′, E) , (25.38)

the Legendre transform of the Hamilton’s principal function. Note that the
partial derivative of the action (25.38) with respect to qi

∂S(q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
+
(

∂R(q, q′, t)
∂t∗

+ E

)
∂t

∂qi
.
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is equal to

∂S(q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
, (25.39)

due to the stationary phase condition (25.36), so the definition of momen-
tum as a partial derivative with respect to q remains unaltered by the
Legendre transform from time to energy domain.✎ 25.9

page 457
Next we will simplify the amplitude term in (25.37) and rewrite it as

an explicit function of the energy. Consider the [(d + 1)×(d + 1)] matrix

D(q, q′, E) =

(
∂2S

∂q′∂q
∂2S

∂q′∂E
∂2S

∂q∂E
∂2S
∂E2

)
=

(
−∂p′

∂q −∂p′
∂E

∂t
∂q

∂t
∂E

)
, (25.40)

where S = S(q, q′, E) and we used (25.13–25.16) here to obtain the left
hand side of (25.40). The minus signs follow from observing from the
definition of (25.14) that S(q, q′, E) = −S(q′, q, E). Note that D is nothing
but the Jacobian matrix of the coordinate transformation (q, E) → (p′, t)
for fixed q′. We can therefore use the multiplication rules of determinants
of Jacobians, which are just ratios of volume elements, to obtain✎ 25.11

page 457

det D = (−1)d+1

∥∥∥∥ ∂(p′, t)
∂(q, E)

∥∥∥∥
q′

= (−1)d+1

∥∥∥∥∂(p′, t)
∂(q, t)

∂(q, t)
∂(q, E)

∥∥∥∥
q′

= (−1)d+1

∥∥∥∥∂p′

∂q

∥∥∥∥
t,q′

∥∥∥∥ ∂t

∂E

∥∥∥∥
q′,q

= det C

(
∂2R

∂t2

)−1

.

We use here the notation ‖.‖q′,t for a Jacobian determinant with partial
derivatives evaluated at t, q′ fixed, and likewise for other subscripts. Using
the relation (25.18) which relates the term ∂t

∂E to ∂2
t R we can write the

determinant of D as a product of the Van Vleck determinant (25.27) and
the amplitude factor arising from the stationary phase approximation. The
amplitude in (25.37) can thus be interpreted as the determinant of a Ja-
cobian of a coordinate transformation which includes time and energy as
independent coordinates. This causes the increase in the dimensionality of
the matrix D relative to the Van Vleck determinant (25.27).

We can now write down the semiclassical approximation of the contri-
bution of the jth trajectory to the Green’s function (25.37) in explicitly
energy dependent form:

Gj(q, q′, E) =
1

i�(2iπ�)(d−1)/2

∣∣det Dj
∣∣1/2

e
i
�

Sj− iπ
2

mj . (25.41)

However, for no purposes this is still not the most convenient form of the
Green’s function.
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The trajectory contributing to Gj(q, q′, E) is constrained to a given en-
ergy E, and will therefore be on a phase space manifold of constant energy,
that is H(q, p) = E. Writing this condition as partial differential equation
for S(q, q′, E), that is

H(q,
∂S

∂q
) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H

∂pj

∂pj

∂q′i
= q̇j

∂2S

∂qj∂q′i
∂

∂qi
H(q′, p′) = 0 =

∂2S

∂qi∂q′j
q̇′j , (25.42)

that is the sub-matrix ∂2S/∂qi∂q′j has (left- and right-) eigenvectors corre-
sponding to an eigenvalue 0. In the local coordinate system

q = (q‖, q⊥1, q⊥2, · · · , q⊥(d−1)) , with q̇ = (q̇, 0, 0, · · · , 0)

in which the longitudinal coordinate axis q‖ points along the velocity vector
q̇, the matrix of variations of S(q, q′, E) has a column and a row of zeros as
(25.42) takes form

q̇
∂2S

∂q‖∂q′i
=

∂2S

∂qi∂q′‖
q̇′ = 0 .

The initial and final velocities are non-vanishing except for points |q̇| = 0.
These are the turning points (where all energy is potential), and we assume
that neither q nor q′ is a turning point (in our application - periodic orbits
- we can always chose q = q′ not a turning point). In the local coordinate
system with one axis along the trajectory and all other perpendicular to it
the determinant of (25.40) is of the form

det D(q, q′, E) = (−1)d+1

∥∥∥∥∥∥∥∥
0 0 ∂2S

∂E∂q′‖
0 ∂2 S

∂q⊥∂q′⊥
∗

∂2S
∂q‖∂E ∗ ∗

∥∥∥∥∥∥∥∥ . (25.43)

The corner entries can be evaluated using (25.16)

∂2S

∂q‖∂E
=

∂

∂q‖
t =

1
q̇

,
∂2S

∂E∂q′‖
=

1
q̇′

.
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As the q‖ axis points along the velocity direction, velocities q̇, q̇′ are by
construction almost always positive non-vanishing numbers. In this way
the determinant of the [(d+1)×(d+1)] dimensional matrix D(q, q′, E) can
essentially be reduced to the determinant of a [(d−1)×(d−1)] dimensional
transverse matrix D⊥(q, q′, E)

det D(q, q′, E) =
1

q̇q̇′
det D⊥(q, q′, E)

D⊥(q, q′, E)ik = −∂2S(q, q′, E)
∂q⊥i∂q′⊥k

. (25.44)

Putting everything together we obtain the jth trajectory contribution to
the semiclassical Green’s function✎ 25.12

page 457

Gj(q, q′, E) =
1

i�(2π�)(d−1)/2

1

|q̇q̇′|1/2

∣∣∣det Dj
⊥
∣∣∣1/2

e
i
�

Sj− iπ
2

mj , (25.45)

where the topological index mj = mj(q, q′, E) now counts the number of
changes of sign of detDj

⊥ along the trajectory j which connects q′ to q at
energy E. The velocities q̇, q̇′ also depend on (q, q′, E) and the trajectory
j. While in the case of the propagator the initial momentum variations
δp′ are unrestricted, for the Green’s function the (δq′, δp′) variations are
restricted to the constant energy shell; the appearance of the 1/q̇q̇′ weights
in the Green’s function can be traced to this constraint.

25.3.3 Short trajectories

The stationary phase method cannot be used when t∗ is small, both be-
cause we cannot extend the integration in (24.13) to −∞, and because the
amplitude of K(q, q′, t) is divergent. In this case we have to evaluate the
integral involving the short time form of the exact quantum mechanical
propagator (25.25)

G0(q, q′, E) =
1
i�

∫ ∞

0
dt
( m

2πi�t

)d/2
e

i
�
(

m(q−q′)2
2t

−V (q)t+Et) . (25.46)

By introducing a dimensionless variable τ = t
√

2m(E − V (q))/m|q − q′|,
the integral can be rewritten as

G0(q, q′, E) =
m

i�2(2πi)d/2

(√
2m(E − V )
�|q − q′|

) d
2
−1 ∫ ∞

0

dτ

τd/2
e

i
2�

S0(q,q′,E)(τ+1/τ),

where S0(q, q′, E) =
√

2m(E − V )|q − q′| is the short distance form of the
action. Using the integral representation of the Hankel function of first
kind

H+
ν (z) = − i

π
e−iνπ/2

∫ ∞

0
e

1
2
iz(τ+1/τ)τ−ν−1dτ
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we can write the short distance form of the Green’s function as

G0(q, q′, E) ≈ − im

2�2

(√
2m(E − V )

2π�|q − q′|

) d−2
2

H+
d−2
2

(S0(q, q′, E)/�).(25.47)

There is nothing scary about the Hankel function - it is merely a useful ob-
servation, as for special functions the short wavelength asymptotics comes
for free and can be found in standard reference books. The short distance
Green’s function approximation is valid when S0(q, q′, E) ≤ �.

Commentary

Remark 25.1 Limit � → 0. The semiclassical limit “� → 0”
discussed in sect. 25 is a shorthand notation for the limit in which
typical quantities like the actions R or S in semiclassical expressions
for the propagator or the Green’s function become large compared
to �. In the world that we live in the quantity � is a fixed physical
constant whose value [25.6] is 1.054571596(82) 10−34 Js.

Remark 25.2 Madelung’s fluid dynamics. A very different in-
terpretation of (25.3–25.4) has been given by Madelung [25.2], and
then built upon by Bohm [25.4] and others [25.3, 25.5]. Keeping the �

dependent term in (25.3), the ordinary differential equations driving
the flow (25.10) have to be altered; if the Hamiltonian can be written
as kinetic plus potential term V (q) as in (23.2), the �

2 term modifies
the p equation of motion as

ṗi = − ∂

∂qi
(V (q) + Q(q, t)) , (25.48)

where, for the example at hand,

Q(q, t) = − �
2

2m

1
√

ρ

∂2

∂q2

√
ρ (25.49)

interpreted by Bohm [25.4] as the “quantum potential”. Madelung
observed that Hamilton’s equation for the momentum (25.48) can be
rewritten as

∂vi

∂t
+
(

v · ∂

∂q

)
vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
σij , (25.50)

where σij = �
2ρ

4m
∂2 ln ρ
∂qi∂qj

is the “pressure” stress tensor, vi = pi/m, and
ρ = A2 as defined [25.3] in sect. 25.1.3. We recall that the Eulerian
∂
∂t + ∂qi

∂t
∂

∂qi
is the ordinary derivative of Lagrangian mechanics, that is

d
dt . For comparison, the Euler equation for classical hydrodynamics
is

∂vi

∂t
+
(

v · ∂

∂q

)
vi = − 1

m

∂V

∂qi
− 1

mρ

∂

∂qj
(pδij) ,

where pδij is the pressure tensor.
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The classical dynamics corresponding to quantum evolution is
thus that of an “hypothetical fluid” experiencing � and ρ dependent
stresses. The “hydrodynamic” interpretation of quantum mechanics
has, however, not been very fruitful in practice.

Remark 25.3 Path integrals. The semiclassical propagator (25.29)
can also be derived from Feynman’s path integral formalism. Dirac
was the first to discover that in the short-time limit the quantum
propagator (25.33) is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrödinger equation
by formally summing over all possible (and emphatically not classical)
paths from q′ to q.

Gutzwiller started from the path integral to rederive Van Vleck’s
semiclassical expression for the propagator; Van Vleck’s original deriva-
tion is very much in the spirit of what has presented in this chapter.
He did, however, not consider the possibility of the formation of caus-
tics or folds of Lagrangian manifolds and thus did not include the
topological phases in his semiclassical expression for the propagator.
Some 40 years later Gutzwiller [26.16] added the topological indices
when deriving the semiclassical propagator from Feynman’s path in-
tegral by stationary phase conditions.

Résumé

The aim of the semiclassical or short-wavelength methods is to approximate
a solution of the Schrödinger equation with a semi-classical wave function

ψsc(q, t) =
∑

j

Aj(q, t)eiRj(q,t)/� ,

accurate to the leading order in �. Here the sum is over all classical tra-
jectories that connect the initial point q′ to the final point q in time t.
“Semi–” refers to �, the quantum unit of phase in the exponent. The quan-
tum mechanics enters only through this atomic scale, in units of which the
variation of the phase across the classical potential is assumed to be large.
“–classical” refers to the rest - both the amplitudes Aj(q, t) and the phases
Rj(q, t) - which are determined by the classical Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time evolution operator
is given by the semiclassical propagator

Ksc(q, q′, t) =
1

(2πi�)d/2

∑
j

∥∥∂p′/∂q
∥∥1/2

j
e

i
�

Rj− iπ
2

mj ,

where the topological index mj(q, q′, t) counts the number of the direction
reversal along the jth classical trajectory that connects q′ → q in time t.
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Until very recently it was not possible to resolve quantum evolution on
quantum time scales (such as one revolution of electron around a nucleus)
- physical measurements are almost always done at time scales asymptot-
ically large compared to the intrinsic quantum time scale. Formally this
information is extracted by means of a Laplace transform of the propagator
which yields the energy dependent semiclassical Green’s function

Gsc(q, q′, E) = G0(q, q′, E)+
1

i�(2πi�)
(d−1)

2

∑
j

∣∣∣∣ 1
q̇q̇′

∥∥∥∥∂p′⊥
∂q⊥

∥∥∥∥∣∣∣∣1/2

j

e
i
�

Sj− iπ
2

mj (25.51)

where G0(q, q′, E) is the contribution of short trajectories with S0(q, q′, E) ≤
�, while the sum is over the contributions of long trajectories (25.45) going
from q′ to q with fixed energy E, with Sj(q, q′, E)� �.
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Exercises

Exercise 25.1 Dirac delta function, Lorentzian representation. De-
rive (23.18).

Exercise 25.2 Transport equations. Write the wave-function in the
asymptotic form

ψ(q, t) = e
i
�

R(x,t)+ i
�

εt
∑
n≥0

(i�)nAn(x, t) .

Derive the transport equations for the An by substituting this into the Schrödinger

equation and then collecting terms by orders of �. Notice that equation for Ȧn only

requires knowledge of An−1 and R.

Exercise 25.3 Easy examples of the Hamilton’s principal function. Cal-
culate R(q, q′, t) for

a) a d-dimensional free particle

b) a 3-dimensional particle in constant magnetic field

c) a 1-dimensional harmonic oscillator.

Continuation: (25.9).

Exercise 25.4 Dirac delta function, gaussian representation. Con-
sider the gaussian distribution function

δσ(z) =
1√

2πσ2
e−z2/2σ2

.

Show that in σ → 0 limit this is the Dirac delta function (25.24).

Exercise 25.5 d-dimensional free particle propagator. Verify the re-
sults in sect. 25.2.2; show explicitely that (25.33), the semiclassical Van Vleck
propagator in d dimensions, solves the Schrödinger’s equation.

Exercise 25.6 Charged particle in constant magnetic field. Calculate the

semiclassical propagator for a charged particle in constant magnetic field in 3 dimen-

sions. Verify that the semiclassical expression coincides with the exact solution.

Exercise 25.7 1-dimensional harmonic oscillator propagator. Calculate the

semiclassical propagator for a 1-dimensional harmonic oscillator and verify that it is

identical to the exact quantum propagator.
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Exercise 25.8 d-dimensional gaussian integrals. Show that the gaussian
integral in d-dimensions is given by

1
(2π)d/2

∫
ddxe−

1
2
xT ·M−1·x+x·J = |det M | 12 e

1
2
JT ·M ·J , (25.52)

where M is a real positive definite [d× d] matrix, that is a matrix with strictly
positive eigenvalues. x, J are d-dimensional vectors, on xT is the transpose of
x.

Exercise 25.9 Free particle action. Calculate the energy dependent
action for a free particle, a charged particle in a constant magnetic field and
for the harmonic oscillator.

Exercise 25.10 Zero length orbits. Derive the classical trace (11.1)

rigorously and either add the t → 0+ zero length contribution to the trace formula,

or show that it vanishes. Send us a reprint of Phys. Rev. Lett. with the correct

derivation.

Exercise 25.11 A usefull determinant identity. Show that the following
two determinants equal each other:
A[(n + 1)× (n+?)]determinant

n + 1

det (M ′
n) =


x1,1 . . . x1,n y1

...
. . .

...
...

xn,1 . . . xn,n yn

z1 . . . zn E

 n + 1 (25.53)

and the [n× n] determinant:

n

E det (Mn) = E

 x1,1 − y1z1E
−1 . . . x1,n − y1znE−1

...
. . .

...
xn,1 − ynz1E

−1 . . . xn,n − ynznE−1

 n
(25.54)

Exercise 25.12 Free particle semiclassical Green’s functions. Calculate the

semiclassical Green’s functions for the systems of exercise 25.9.
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Chapter 26

Semiclassical quantization

If there exist fewer than � integrals of type (14), as is
the case, for example, according to POINCARÉ in the
three-body problem, then the pi are not expressible by
the qi and the quantum condition of SOMMERFELD-
EPSTEIN fails also in the slightly generalized form
that has been given here.
A. Einstein, Zum Quantensatz von Sommerfeld und
Epstein (1917)

(G. Vattay, G. Tanner and P. Cvitanović)

We derive here the Gutzwiller trace formula and the semiclassical zeta
function, the central results of the semiclassical quantization of classically
chaotic systems. In chapter 27 we will rederive these formulas for the case
of scattering in open systems. Quintessential wave mechanics effects such
as creeping, diffraction and tunneling will be taken up in chapter 29.

26.1 Trace formula

Our next task is to evaluate the Green’s function trace (23.16) in the semi-
classical approximation. The trace

tr Gsc(E) =
∫

ddq Gsc(q, q, E) = trG0(E) +
∑

j

∫
ddq Gj(q, q, E)

receives contributions from “long” classical trajectories labelled by j which
start and end in q after finite time, and the “zero length” trajectories whose
lengths approach zero as q′ → q.

First we work out the contributions coming from the finite time return-
ing classical orbits, that is trajectories that originate and end at a given
configuration point q. As we are identifying q with q′, taking of a trace
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Figure 26.1: A returning trajectory in the
configuration space. The orbit is periodic in
the full phase space only if the initial and the
final momenta of a returning trajectory coincide
as well.

Figure 26.2: A romanticized sketch of
Sp(E) = S(q, q, E) =

∮
p(q, E)dq landscape

orbit. Unstable periodic orbits traverse isolated
ridges and saddles of the mountainous land-
scape of the action S(q‖, q⊥, E). Along a peri-
odic orbit Sp(E) is constant; in the transverse
directions it generically changes quadratically.

involves (still another!) stationary phase condition in the q′ → q limit,

∂Sj(q, q′, E)
∂qi

∣∣∣∣
q′=q

+
∂Sj(q, q′, E)

∂q′i

∣∣∣∣
q′=q

= 0 ,

meaning that the initial and final momenta (25.39) of contributing trajec-
tories should coincide

pi(q, q, E)− p′i(q, q, E) = 0 , q ∈ jth periodic orbit , (26.1)

so the trace receives contributions only from those long classical trajectories
which are periodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one,
with q‖ axis pointing in the q̇ direction along the orbit, and q⊥, the rest of
the coordinates transverse to q̇. The jth periodic orbit contribution to the
trace of the semiclassical Green’s function in the intrinsic coordinates is

tr Gj(E) =
1

i�(2π�)(d−1)/2

∮
j

dq‖
q̇

∫
j
dd−1q⊥|det Dj

⊥|
1/2e

i
�

Sj− iπ
2

mj ,

where the integration in q‖ goes from 0 to Lj , the geometric length of
small tube around the orbit in the configuration space. As always, in the
stationary phase approximation we worry only about the fast variations in
the phase Sj(q‖, q⊥, E), and assume that the density varies smoothly and is
well approximated by its value Dj

⊥(q‖, 0, E) on the classical trajectory, q⊥ =
0 . The topological index mj(q‖, q⊥, E) is an integer which does not depend
on the initial point q‖ and not change in the infinitesimal neighborhood of
an isolated periodic orbit, so we set mj(E) = mj(q‖, q⊥, E).

The transverse integration is again carried out by the stationary phase
method, with the phase stationary on the periodic orbit, q⊥ = 0. The result
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of the transverse integration can depend only on the parallel coordinate

tr Gj(E) =
1
i�

∮
dq‖
q̇

∣∣∣∣∣det D⊥j(q‖, 0, E)
det D′

⊥j(q‖, 0, E)

∣∣∣∣∣
1/2

e
i
�

Sj− iπ
2

mj ,

where the new determinant in the denominator, detD′
⊥j =

det

(
∂2S(q, q′, E)

∂q⊥i∂q⊥j
+

∂2S(q, q′, E)
∂q′⊥i∂q⊥j

+
∂2S(q, q′, E)

∂q⊥i∂q′⊥j

+
∂2S(q, q′, E)

∂q′⊥i∂q′⊥j

)
,

is the determinant of the second derivative matrix coming from the sta-
tionary phase integral in transverse directions. Mercifully, this integral
also removes most of the 2π� prefactors in (??).

The ratio detD⊥j/det D′
⊥j is here to enforce the periodic boundary

condition for the semiclassical Green’s function evaluated on a periodic
orbit. It can be given a meaning in terms of the monodromy matrix of the
periodic orbit by following observations

det D⊥ =
∥∥∥∥∂p′⊥

∂q⊥

∥∥∥∥ =
∥∥∥∥∂(q′⊥, p′⊥)

∂(q⊥, q′⊥)

∥∥∥∥
det D′

⊥ =
∥∥∥∥∂p⊥

∂q⊥
− ∂p′⊥

∂q⊥
+

∂p⊥
∂q′⊥

− ∂p′⊥
∂q′⊥

∥∥∥∥ =
∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q′⊥)

∥∥∥∥ .

Defining the 2(d − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the
full phase space we can express the ratio

det D′
⊥

det D⊥
=

∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥)
∂(q′⊥, p′⊥)

∥∥∥∥ =
∥∥∥∥∂(x⊥ − x′

⊥)
∂x′

⊥

∥∥∥∥
= det (J− 1) , (26.2)

in terms of the monodromy matrix J for a surface of section transverse to
the orbit within the constant energy E = H(q, p) shell.

The classical periodic orbit action Sj(E) =
∮

p(q‖, E)dq‖ is an integral
around a loop defined by the periodic orbit, and does not depend on the
starting point q‖ along the orbit, see fig. 26.2. The eigenvalues of the
monodromy matrix are also independent of where Jj is evaluated along the
orbit, so det (1− Jj) can also be taken out of the the q‖ integral

tr Gj(E) =
1
i�

∑
j

1
|det (1− Jj)|1/2

er( i
�

Sj− iπ
2

mj)

∮
dq‖
q̇‖

.

Here we have assumed that Jj has no marginal eigenvalues. The deter-
minant of the monodromy matrix, the action Sp(E) =

∮
p(q‖, E)dq‖ and
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the topological index are all classical invariants of the periodic orbit. The
integral in the parallel direction we now do exactly.

First we take into account the fact that any repeat of a periodic orbit
is also a periodic orbit. The action and the topological index are additive
along the trajectory, so for rth repeat they simply get multiplied by r. The
monodromy matrix of the rth repeat of a prime cycle p is (by the chain rule
for derivatives) Jr

p, where Jp is the prime cycle monodromy matrix. Let us
denote the time period of the prime cycle p, the single, shortest traversal
of a periodic orbit by Tp. The remaining integral can be carried out by
change of variables dt = dq‖/q̇(t)

∫ Lp

0

dq‖
q̇(t)

=
∫ Tp

0
dt = Tp .

Note that the spatial integral corresponds to a single traversal. If you do
not see why this is so, rethink the derivation of the classical trace formula
(11.19) - that derivation takes only three pages of text. Regrettably, in the
quantum case we do not know of an honest derivation that takes less than
30 pages. The final result, the Gutzwiller trace formula

tr Gsc(E) = trG0(E)+
1
i�

∑
p

Tp

∞∑
r=1

1
|det (1− Jr

p)|1/2
er( i

�
Sp− iπ

2
mp) , (26.3)

an expression for the trace of the semiclassical Green’s function in terms of
periodic orbits, is beautiful in its simplicity and elegance.

The topological index mp(E) counts the number of changes of sign of
the matrix of second derivatives evaluated along the prime periodic orbit
p. By now we have gone through so many stationary phase approximations
that you have surely lost track of what the total mp(E) actually is. The
rule is this: The topological index of a closed curve in a 2-d phase space
is the sum of the number of times the partial derivatives ∂pi

∂qi
for each dual

pair (qi, pi), i = 1, 2, . . . , d (no sum on i) change their signs as one goes
once around the curve.

26.1.1 Average density of states

We still have to evaluate tr G0(E), the contribution coming from the in-
finitesimal trajectories. The real part of trG0(E) is infinite in the q′ → q
limit, so it makes no sense to write it down explicitly here. However, the
imaginary part is finite, and plays an important role in the density of states
formula, which we derive next.

The semiclassical contribution to the density of states (23.16) is given
by the imaginary part of the Gutzwiller trace formula (26.3) multiplied
with −1/π. The contribution coming from the zero length trajectories is
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the imaginary part of (25.47) for q′ → q integrated over the configuration
space

d0(E) = − 1
π

∫
ddq Im G0(q, q, E),

The resulting formula has a pretty interpretation; it estimates the num-
ber of quantum states that can be accomodated up to the energy E by
counting the available quantum cells in the phase space. This number is
given by the Weyl rule , as the ratio of the phase space volume bounded
by energy E divided by hd, the volume of a quantum cell,

Nsc(E) =
1
hd

∫
ddpddq Θ(E −H(q, p)) . (26.4)

where Θ(x) is the Heaviside function (23.21). Nsc(E) is an estimate of
the spectral staircase (23.20), so its derivative yields the average density of
states

d0(E) =
d

dE
Nsc(E) =

1
hd

∫
ddpddq δ(E −H(q, p)) , (26.5)

precisely the semiclassical result (26.6). For Hamiltonians of type p2/2m+
V (q), the energy shell volume in (26.5) is a sphere of radius

√
2m(E − V (q)).

The surface of a d-dimensional sphere of radius r is πd/2rd−1/Γ(d/2), so the ✎ 26.3
page 473

average density of states is given by

d0(E) =
2m

�d2dπd/2Γ(d/2)

∫
V (q)<E

ddq [2m(E − V (q))]d/2−1 , (26.6)

and

Nsc(E) =
1
hd

πd/2

Γ(1 + d/2)

∫
V (q)<E

ddq [2m(E − V (q))]d/2 . (26.7)

Physically this means that at a fixed energy the phase space can support
Nsc(E) distinct eigenfunctions; anything finer than the quantum cell hd

cannot be resolved, so the quantum phase space is effetively finite dimen-
sional. The average density of states is of a particularly simple form in one
spatial dimension ✎ 26.4

page 473

d0(E) =
T (E)
2π�

, (26.8)

where T (E) is the period of the periodic orbit of fixed energy E. In two
spatial dimensions the average density of states is

d0(E) =
mA(E)
2π�2

, (26.9)
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where A(E) is the classically allowed area of configuration space for which
V (q) < E. ✎ 26.5

page 473
The semiclassical density of states is a sum of the average density

of states and the oscillation of the density of states around the average,
dsc(E) = d0(E) + dosc(E), where

dosc(E) =
1
π�

∑
p

Tp

∞∑
r=1

cos(rSp(E)/�− rmpπ/2)
|det (1− Jr

p)|1/2
(26.10)

follows from the trace formula (26.3).

26.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (25.47) is ultraviolet
divergent in dimensions d > 1, and so is its formal trace (23.16). The short
distance behavior of the real part of the Green’s function can be extracted
from the real part of (25.47) by using the Bessel function expansion for
small z

Yν(z) ≈
{
− 1

πΓ(ν)
(

z
2

)−ν for ν 	= 0
2
π (ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s
function for short distance is dominated by the singular part

Gsing(|q − q′|, E) =


− m

2�2π
d
2
Γ((d− 2)/2) 1

|q−q′|d−2 for d 	= 2

m
2π�2 (ln(2m(E − V )|q − q′|/2�) + γ) for d = 2

.

The regularized Green’s function

Greg(q, q′, E) = G(q, q′, E)−Gsing(|q − q′|, E)

is obtained by subtracting the q′ → q ultraviolet divergence. For the regu-
larized Green’s function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1
i�

∑
p

Tp

∞∑
r=1

er( i
�

Sp(E)− iπ
2

mp(E))

|det (1− Jr
p)|1/2

. (26.11)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula
in your hands. You have no clue how good is the � → 0 approximation,
how to take care of the sum over an infinity of periodic orbits, and whether
the formula converges at all.
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Figure 26.3: A sketch of how spectral de-
terminants convert poles into zeros: The trace
shows 1/(E − En) type singularities at the
eigenenergies while the spectral determinant
goes smoothly through zeroes.

26.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where we need them,
at the individual energy eigenvalues. What to do? Much of the quantum
chaology literature responds to the challenge of wrestling the trace formulas
by replacing the delta functions in the density of states (23.17) by gaus-
sians. But there is no need to do this - we can compute the eigenenergies
without any further ado by remembering that the smart way to determine
the eigenvalues of linear operators is by determining zeros of their spectral
determinants.

A sensible way to compute energy levels is to construct the spectral det-
erminant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first
guess might be that the spectral determinant is the Hadamard product of
form

det (Ĥ − E) =
∏
n

(E − En),

but this product is not well defined, since for fixed E we multiply larger
and larger numbers (E−En). This problem is dealt with by regularization,
discussed below in appendix 26.1.2. Here we offer an impressionistic sketch
of regularization.

The logarithmic derivative of det (Ĥ − E) is the (formal) trace of the
Green’s function

− d

dE
ln det (Ĥ − E) =

∑
n

1
E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however,
opens a way to derive a convergent version of det (Ĥ − E)sc, by replacing
the trace with the regularized trace

− d

dE
ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E−En) poles at the semiclassical eigenen-
ergies, poles which can be generated only if det (Ĥ − E)sc has a zero at
E = En, see fig. 26.3. By integrating and exponentiating we obtain

draft 9.4.0, June 18 2003 traceSemicl - 11jun2003



466 CHAPTER 26. SEMICLASSICAL QUANTIZATION

det (Ĥ − E)sc = exp
(
−
∫ E

dE′ tr Greg(E′)
)

Now we can use (26.11) and integrate the terms coming from periodic orbits,
using the relation (25.16) between the action and the period of a periodic
orbit, dSp(E) = Tp(E)dE, and the relation (23.20) between the density
of states and the spectral staircase, dNsc(E) = d0(E)dE. We obtain the
semiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

(
−
∑

p

∞∑
r=1

1
r

eir(Sp/�−mpπ/2)

|det (1− Jr
p)|1/2

)
.(26.12)

☞ chapter 15

We already know from the study of classical evolution operator spectra of
chapter 12 that this can be evaluated by means of cycle expansions. The
beauty of this formula is that everything on the right side – the cycle action
Sp, the topological index mp and monodromy matrix Jp determinant – is
intrinsic, coordinate-choice independent property of the cycle p.

26.3 One-dimensional systems

It has been a long trek, a stationary phase upon stationary phase. Let us
check whether the result makes sense even in the simplest case, for quantum
mechanics in one spatial dimension.

In one dimension the average density of states follows from the one-
dimensional form of the oscillating density (26.10) and of the average den-
sity (26.8)

d(E) =
Tp(E)
2π�

+
∑

r

Tp(E)
π�

cos(rSp(E)/�− rmp(E)π/2). (26.13)

The classical particle oscillates in a single potential well with period Tp(E).
There is no monodromy matrix to evaluate, as in one dimension there is
only the parallel coordinate, and no transverse directions. The r repetition
sum in (26.13) can be rewritten by using the Fourier series expansion of a
delta spike train

∞∑
n=−∞

δ(x− n) =
∞∑

k=−∞
ei2πkx = 1 +

∞∑
k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)
2π�

∑
n

δ(Sp(E)/2π�−mp(E)/4− n). (26.14)
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This expression can be simplified by using the relation (25.16) between Tp

and Sp, and the identity (7.7) δ(x − x∗) = |f ′(x)|δ(f(x)), where x∗ is the
only zero of the function f(x∗) = 0 in the interval under consideration. We
obtain

d(E) =
∑

n

δ(E − En),

where the energies En are the zeroes of the arguments of delta functions in
(26.14)

Sp(En)/2π� = n−mp(E)/4 ,

where mp(E) = mp = 2 for smoth potential at both turning points, and
mp(E) = mp = 4 for two billiard (infinite potential) walls. These are pre-
cisely the Bohr-Sommerfeld quantized energies En, defined by the condition

∮
p(q, En)dq = h

(
n− mp

4

)
. (26.15)

In this way the trace formula recovers the well known 1-dimensional quan-
tization rule. In one dimension, the average of states can be expressed from
the quantization condition. At E = En the exact number of states is n,
while the average number of states is n − 1/2 since the staircase function
N(E) has a unit jump in this point

Nsc(E) = n− 1/2 = Sp(E)/2π�−mp(E)/4− 1/2. (26.16)

The 1-dimensional spectral determinant follows from (26.12) by drop-
ping the monodromy matrix part and using (26.16)

det (Ĥ − E)sc = e−
i

2�
Sp+ iπ

2
mpe−

∑
r

1
r
e

i
�

rSp− iπ
2 rmp

. (26.17)

Summation yields a logarithm by
∑

r tr/r = − ln(1− t) and we get

det (Ĥ − E)sc = e−
i

2�
Sp+

imp
4

+ iπ
2 (1− e

i
�

Sp−i
mp
2 )

= 2 sin (Sp(E)/�−mp(E)/4) .

So in one dimension, where there is only one periodic orbit for a given energy
E, nothing is gained by going from the trace formula to the spectral deter-
minant. The spectral determinant is a real function for real energies, and
its zeros are again the Bohr-Sommerfeld quantized eigenenergies (26.15).
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26.4 Two-dimensional systems

For flows in two configuration dimensions the monodromy matrix Jp has
two eigenvalues Λp and 1/Λp, as explained in sect. 5.1.1. Isolated periodic
orbits can be elliptic or hyperbolic. Here we discuss only the hyperbolic
case, when the eigenvalues are real and their absolute value is not equal to
one. The determinant appearing in the trace formulas can be written in
terms of the expanding eigenvalue as

|det (1− Jr
p)|1/2 = |Λr

p|1/2
(
1− 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1
|det (1− Jr

p)|1/2
=

∞∑
k=0

1
|Λr

p|1/2Λkr
p

.

With the 2-dimensional expression for the average density of states
(26.9) the spectral determinant becomes

det (Ĥ − E)sc = ei mAE
2�2 exp

(
−
∑

p

∞∑
r=1

∞∑
k=0

eir(Sp/�−mpπ/2)

r|Λr
p|1/2Λkr

p

)

= ei mAE
2�2

∏
p

∞∏
k=0

(
1− e

i
�

Sp− iπ
2

mp

|Λp|1/2Λk
p

)
. (26.18)

Commentary

Remark 26.1 Zeta functions. For “zeta function” nomencla-
ture, see remark 12.4 on page 213.

Résumé

Spectral determinants and dynamical zeta functions arise both in classical
and quantum mechanics because in both the dynamical evolution can be
described by the action of linear evolution operators on infinite-dimensional
vector spaces. In quantum mechanics the periodic orbit theory arose from
studies of semi-conductors, and the unstable periodic orbits have been mea-
sured in experiments on the very paradigm of Bohr’s atom, the hydrogen
atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary
phase approximation to quantum mechanics (the Gutzwiller trace formula,
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possibly improved by including tunneling periodic trajectories, diffraction
corrections, etc.) as the point of departure. Once the stationary phase
approximation is made, what follows is classical in the sense that all quan-
tities used in periodic orbit calculations - actions, stabilities, geometrical
phases - are classical quantities. The problem is then to understand and
control the convergence of classical periodic orbit formulas.

While various periodic orbit formulas are formally equivalent, practice
shows that some are preferable to others. Three classes of periodic orbit
formulas are frequently used:

Trace formulas. The trace of the semiclassical Green’s function

tr Gsc(E) =
∫

ddq Gsc(q, q, E)

is given by a sum over the periodic orbits (26.11). While easiest to derive, in
calculations the trace formulas are inconvenient for anything other than the
leading eigenvalue estimates, as they tend to be divergent in the region of
physical interest. In classical dynamics trace formulas hide under a variety
of appelations such as the f − α or multifractal formalism; in quantum
mechanics they are known as the Gutzwiller trace formulas.

Zeros of Ruelle or dynamical zeta functions

1/ζ(s) =
∏
p

(1− tp), tp =
1√
Λp

e
i
�

Sp−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of
quantum resonances. For hyperbolic systems the dynamical zeta functions
have good convergence and are a useful tool for determination of classical
and quantum mechanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determi-
nants, functional determinants are the natural objects for spectral calcula-
tions, with convergence better than for dynamical zeta functions, but with
less transparent cycle expansions. The 2-dimensional semiclassical spectral
determinant (26.18)

det (Ĥ − E)sc =
∏
p

eiπNsc(E)
∞∏

k=0

(
1− eiSp/�−iπmp/2

|Λp|1/2Λk
p

)

is a typical example. Most periodic orbit calculations are based on cycle
expansions of such determinants.

As we have assumed repeatedly during the derivation of the trace for-
mula that the periodic orbits are isolated, and do not form families (as is
the case for integrable systems or in KAM tori of systems with mixed phase
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space), the formulas dsicussed so far are valid only for the hyperbolic and
elliptic periodic orbits.

For the deterministic dynamical flows and number theory, spectral det-
erminants and zeta functions are exact. The quantum-mechanical ones,
derived by the Gutzwiller approach, are at best only the stationary phase
approximations to the exact quantum spectral determinants, and for quan-
tum mechanics an important conceptual problem arises already at the level
of derivation of the semiclassical formulas; how accurate are they, and can
the periodic orbit theory be systematically improved?
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Exercises

Exercise 26.1 Monodromy matrix from second variations of the action.
Show that

D⊥j/D′
⊥j = (1− J) (26.19)

Exercise 26.2 Jacobi gymnastics. Prove that the ratio of determinants
in (O.27) can be expressed as

det D′
⊥j(q‖, 0, E)

det D⊥j(q‖, 0, E)
= det

(
I − Jqq −Jqp

−Jpq I − Jpp

)
= det (1−Jj) , (26.20)

where Jj is the monodromy matrix of the periodic orbit.

Exercise 26.3 Volume of d-dimensional sphere. Show that the volume of a

d-dimensional sphere of radius r equals πd/2rd/Γ(1 + d/2). Show that Γ(1 + d/2) =
Γ(d/2)d/2.

Exercise 26.4 Average density of states in 1 dimension. Show that
in one dimension the average density of states is given by (26.8)

d̄(E) =
T (E)
2π�

,

where T (E) is the time period of the 1-dimensional motion and show that

N̄(E) =
S(E)
2π�

, (26.21)

where S(E) =
∮

p(q, E) dq is the action of the orbit.

Exercise 26.5 Average density of states in 2 dimensions. Show that in 2
dimensions the average density of states is given by (26.9)

d̄(E) =
mA(E)
2π�2

,

where A(E) is the classically allowed area of configuration space for which U(q) < E.
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Chapter 27

Chaotic scattering

(A. Wirzba, P. Cvitanović and N. Whelan)

So far the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclassics
of bound systems is all we need to understand the semiclassics for open,
scattering systems as well. We start by a brief review of the quantum
theory of elastic scattering of a point particle from a (repulsive) potential,
and then develop the connection to the standard Gutzwiller theory for
bound systems. We do this in two steps - first, a heuristic derivation which
helps us understand in what sense density of states is “density”, and then
we sketch a general derivation of the central result of the spectral theory
of quantum scattering, the Krein-Friedel-Lloyd formula.

27.1 Density of states

For a scattering problem the density of states (23.17) appear ill defined
since formulas such as (26.6) involve integration over infinite spatial extent.
What we will now show is that a quantity that makes sense physically is
the difference of two densities - the first with the scatterer present and the
second with the scatterer absent.

In nonrelativistic dynamics the relative motion can be separated from
the center-of-mass motion. Therefore the elastic scattering of two particles
can be treated as the scattering of one particle from a static potential V (q).
We will study the scattering of a point-particle of (reduced) mass m by
a short-range potential V (q), excluding inter alia the Coulomb potential.
Although we can choose the spatial coordinate frame freely, it is advisable to
place its origin somewhere near the geometrical center of the potential. The
scattering problem is solved, if a scattering solution to the time-independent
Schrödinger equation (23.5)

(
− �

2

2m

∂2

∂q2
+ V (q)

)
φ�k

(q) = Eφ�k
(q) (27.1)
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(a) (b)

Figure 27.1: (a) Incoming spherical waves running into an obstacle. (b) Superposi-
tion of outgoing spherical waves scattered from an obstacle.

can be constructed. Here E is the energy, �p = ��k the initial momentum of
the particle, and �k the corresponding wave vector.

When the argument r = |q| of the wave function is large compared to the
typical size a of the scattering region, the Schrödinger equation effectively
becomes a free particle equation because of the short-range nature of the
potential. In the asymptotic domain r � a, the solution φ�k

(q) of (27.1)
can be written as superposition of ingoing and outgoing solutions of the
free particle Schrödinger equation for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions) ,

where in 1-dimensional problems φ(−)(q), φ(+)(q) are the “left”, “right”
moving plane waves, and in higher-dimensional scattering problems the “in-
coming”, “outgoing” radial waves, with the constant matrices A, B fixed
by the boundary conditions. What are the boundary conditions? The
scatterer can modify only the outgoing waves (see fig. 27.1), since the in-
coming ones, by definition, still have to encounter the scattering region.
This defines the quantum mechanical scattering matrix, or the S matrix

φm(r) = φ(−)
m (r) + Smm′φ

(+)
m′ (r) . (27.2)

For concreteness, we now specialize to two dimensions, although the final
formula is true for arbitrary dimensions. The indices m and m′ are the
angular momenta quantum numbers for the incoming and outgoing state
of the scattering wave function, labeling the S-matrix elements Smm′ . More
generally, given a set of quantum numbers β, γ, the S matrix is a collection
Sβγ of transition amplitudes β → γ normalized such that |Sβγ |2 is the
probability of the β → γ transition. The total probability that the ingoing
state β ends up in whatever outgoing state must add up to unity

∑
γ

|Sβγ |2 = 1 , (27.3)
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so the S matrix is unitary: S†S = SS† = 1.

We have already encountered a solution to the 2-dimensional problem;
free particle propagation Green’s function (25.47) is a radial solution, given
in terms of the Hankel function

G0(r, 0, E) = − im

2�2
H

(+)
0 (kr) ,

where we have used S0(r, 0, E)/� = kr. The mth angular momentum eigen-
function is proportional to φ

(±)
m (q) ∝ H

(±)
m (kr), and given a potential V (q)

we can in principle compute the infinity of matrix elements Smm′ . We will
not need much information about H

(t)
m (kr), other than that for large r its

asymptotic form is

H± ∝ e±ikr

In general, the potential V (q) is not radially symmetric and (27.1) has
to be solved numerically, by explicit integration, or by diagonalizing a large
matrix in a specific basis. To simplify things a bit, we assume for time
being that a radially symmetric scatterer is centered at the origin; the final
formula will be true for arbitrary asymmetric potentials. Then the solutions
of the Schrödinger equation (23.5) are separable, φm(q) = φ(r)eimθ, r = |q|,
the scattering matrix cannot mix different angular momentum eigenstates,
and S is diagonal in the radial basis (27.2) with matrix elements given by

Sm(k) = e2iδm(k). (27.4)

The matrix is unitary so in a diagonal basis all entries are pure phases.
This means that an incoming state of the form H

(−)
m (kr)eimθ gets scattered

into an outgoing state of the form Sm(k)H(+)
m (kr)eimθ, where H

(∓)
m (z) are

incoming and outgoing Hankel functions respectively. We now embed the
scatterer in a infinite cylindrical well of radius R, and will later take R →∞.
Angular momentum is still conserved so that each eigenstate of this (now
bound) problem corresponds to some value of m. For large r � a each
eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(
Sm(k)H(+)

m (kr) + H(−)
m (kr)

)
≈ · · · cos(kr + δm(k)− χm) , (27.5)

where · · · is a common prefactor, and χm = mπ/2 + π/4 is an annoying
phase factor from the asymptotic expansion of the Hankel functions that
will play no role in what follows.

The state (27.5) must satisfy the external boundary condition that it
vanish at r = R. This implies the quantization condition

knR + δm(kn)− χm = π (n + 12) .
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Figure 27.2: The “difference” of two bounded
reference systems, one with and one without the
scattering system.

b b

-

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. Since R is large, the density of states is high, and the phase δm(k)
does not change much over such a small interval. Therefore, to leading
order we can include the effect of the change of the phase on state n+1 by
Taylor expanding. is

kn+1R + δm(kn) + (kn+1 − kn)δ′m(kn)− χm ≈ π + π(n + 12) .

Taking the difference of the two equations we obtain ∆k ≈ π(R+δ′m(k))−1.
This is the eigenvalue spacing which we now interpret as the inverse of the
density of states within m angular momentum sbuspace

dm(k) ≈ 1
π

(
R + δ′m(k)

)
.

The R term is essentially the 1− d Weyl term (26.8), appropriate to 1− d
radial quantization. For large R, the dominant behavior is given by the size
of the circular enclosure with a correction in terms of the derivative of the
scattering phase shift, approximation accurate to order 1/R. However, not
all is well: the area under consideration tends to infinity. We regularize this
by subtracting from the result from the free particle density of states d0(k),
for the same size container, but this time without any scatterer, fig. 27.2.
We also sum over all m values so that

d(k)− d0(k) =
1
π

∑
m

δ′m(k) =
1

2πi

∑
m

d

dk
log Sm

=
1

2πi
Tr

(
S†dS

dk

)
. (27.6)

The first line follows from the definition of the phase shifts (27.4) while the
second line follows from the unitarity of S so that S−1 = S†. We can now
take the limit R →∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since for the left hand side
we already have the semiclassical theory for the trace of the difference of
Green’s functions,

d(k)− d0(k) = − 1
2πk

Im (tr (G(k)−G0(k)) . (27.7)

There are a number of generalizations. This can be done in any number
of dimensions. It is also more common to do this as a function of energy
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and not wave number k. However, as the asymptotic dynamics is free wave
dynamics labeled by the wave number k, we have adapted k as the natural
variable in the above discussion.

Finally, we state without proof that the relation (27.6) applies even
when there is no circular symmetry. The proof is more difficult since one
cannot appeal to the phase shifts δm but must work directly a non-diagonal
S matrix.

27.2 Quantum mechanical scattering matrix

Suppose particles interact via forces of sufficiently short range, so that
in the remote past they were in a free particle state labelled β, and in
the distant future they will likewise be free, in a state labelled γ. In the
Heisenberg picture the S-matrix is defined as S = Ω−Ω†

+ in terms of the
Møller operators

Ω± = lim
t→±∞ eiHt/�e−iH0t/� , (27.8)

where H is the full Hamiltonian, whereas H0 is the free Hamiltonian. In
the interaction picture the S-matrix is given by

S = Ω†
+Ω− = lim

t→∞ eiH0t/�e−2iHt/�eiH0t/�

= T exp
(
−i

∫ +∞

−∞
dtH ′(t)

)
, (27.9)

where H ′ = V = H −H0 is the interaction Hamiltonian and T is the time-
ordering operator. In stationary scattering theory the S matrix has the
following spectral representation

S =
∫ ∞

0
dE S(E)δ(H0 − E)

S(E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iε)−1V ,(27.10)

such that

Tr
[
S†(E)

d

dE
S(E)

]
= Tr

[
1

H0 − E − iε
− 1

H − E − iε
− (ε ↔ −ε)

]
.(27.11)

The manipulations leading to (27.11) are justified if the operators Q±(E)
☞ appendix K

can be linked to trace-class operators.
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27.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering prob-
lems is provided by the semiclassical limit of the Krein-Friedel-Lloyd sum
for the spectral density which we now derive.

In chapter 25 we linked the spectral density (see (23.17)) of a bounded
system

d(E) ≡
∑

n

δ(En − E) (27.12)

via the identity

δ(En − E) = − lim
ε→0

1
π

Im
1

E − En + iε

= − lim
ε→0

1
π

Im〈En|
1

E −H + iε
|En〉

=
1

2π i
lim
ε→0

〈
En

∣∣∣∣ 1
E −H − iε

− 1
E −H + iε

∣∣∣∣En

〉
(27.13)

to the trace of the Green’s function (26.1.1). Furthermore, in the semi-
classical approximation, the trace of the Green’s function is given by the
Gutzwiller trace formula (26.11) in terms of a smooth Weyl term and an
oscillating contribution of periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering sys-
tem is completed, if we can find a connection between the spectral density
d(E) and the scattering matrix S. We will see that (27.11) provides the
clue. Note that the right hand side of (27.11) has nearly the structure of
(27.13) when the latter is inserted into (27.12). The principal difference
between these two types of equations is that the S matrix refers to out-
going scattering wave functions which are not L2 normalizable, but only
as delta-distributions and which have a continuous spectrum, whereas the
spectral density d(E) refers to a bound system with L2 normalizable sta-
tionary wave functions with a discrete spectrum which, are superpositions
of incoming and outgoing wave functions. Furthermore, the bound sys-
tem is characterized by a hermitian operator, the Hamiltonian H, whereas
the scattering system is characterized by a unitary operator, the S-matrix.
How can we reconcile these completely different classes of wave functions,
operators and spectra? The trick is to put our scattering system into a fi-
nite box. We choose a spherical conatiner with radius R and with its center
at the center of our finite scattering system. Our scattering potential V (�r)
will be unaltered within the box, whereas at the box walls we will choose
an infinitely high potential, with the Dirichlet boundary conditions at the
outside of the box:

φ(�r)|r=R = 0 . (27.14)
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In this way, for any finite value of the radius R of the box, we have mapped
our scattering system into a bound system with a spectral density d(E; R)
over discrete eigenenergies En(R). It is therefore important that our scat-
tering potential was chosen to be short-ranged to start with. The hope is
that in the limit R → ∞ we will recover the scattering system. But some
care is required in implementing this. The smooth Weyl term d̄(E; R) be-
longing to our box with the enclosed potential V diverges for a spherical
two-dimensional box of radius R quadratically, as πR2/(4π) or as R3 in the
three-dimensional case. This problem can easily be cured if the spectral
density of an empty reference box of the same size (radius R) is subtracted
(see fig. 27.2). Then all the divergences linked to the increasing radius R
in the limit R → ∞ drop out of the difference. Furthermore, in the limit
R → ∞ the energy-eigenfunctions of the box with and without the po-
tential are not L2 integrable any longer, but only normalizable as a delta
distribution, similarly to a plane wave. So we seem to recover a continous
spectrum. But still the problem remains that the wave functions do not
discriminate between incoming and outgoing waves, whereas this symme-
try, namely the hermiticity, is broken in the scattering problem. The last
problem can be tackled if we replace the spectral density over discrete delta
distributions by a smoothed spectral density with a small finite imaginary
part η in the energy E:

d(E+iη; R) ≡ 1
i 2π

∑
n

{
1

E − En(R)− iη
− 1

E − En(R) + iη

}
.(27.15)

Note that d(E + iη; R) 	= d(E − iη; R) = −d(E + iη; R). By the introduc-
tion of the positive finite imaginary part η the time-dependent behavior of
the wave function has effectively been altered from an oscillating one to a
decaying one and the hermiticity of the Hamiltonian is removed. Finally
the limit η → 0 can be carried out, respecting the order of the limiting
procedures. First the limit R → ∞ has to be performed for a finite value
of η, only then the limit η → 0 is allowed. In practice, one can try to
work with a finite value of R, but then it will turn out (see below) that the
scattering system is only recovered if R

√
η � 1.

Let us summarize the relation between the smoothed spectral densities
d(E+iη; R) of the boxed potential and d(0)(E+iη; R) of the empty reference
system and the S matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(
d(E+iη; R)− d(0)(E+iη; R)

)
=

1
2πi

Tr
[
S†(E)

d

dE
S(E)

]
=

1
2πi

Tr
d

dE
lnS(E) =

1
2πi

d

dE
ln det S(E) .(27.16)

This is the Krein-Friedel-Lloyd formula. It replaces the scattering problem
by the difference of two bounded reference billiards of the same radius
R which finally will be taken to infinity. The first billiard contains the
scattering region or potentials, whereas the other does not (see fig. 27.2).
Here d(E + iη; R) and d(0)(E + iη; R) are the smoothed spectral densities
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in the presence or in the absence of the scatterers, respectively. In the
semiclassical approximation, they are replaced by a Weyl term (26.10) and
an oscillating sum over periodic orbits. As in (26.2), the trace formula
(27.16) can be integrated to give a relation between the smoothed staircase
functions and the determinant of the S-matrix:

lim
η→+0

lim
R→∞

(
N(E+iη; R)−N (0)(E+iη; R)

)
=

1
2πi

ln det S(E) .(27.17)

Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the en-
ergy argument E+ iη can be replaced by the wavenumber argument k+ iη′.
These expression make only sense for wave numbers on or above the real
k-axis. In particular, if k is chosen to be real, η′ must be greater than zero.
Otherwise, the exact left hand sides (27.17) and (27.16) would give dis-
continuous staircase or even delta function sums, respectively, whereas the
right hand sides are continuous to start with, since they can be expressed
by continuous phase shifts. Thus the order of the two limits in (27.17) and
(27.16) is essential.

The necessity of the +iη prescription can also be understood by purely
phenomenological considerations in the semiclassical approximation: With-
out the iη term there is no reason why one should be able to neglect spu-
rious periodic orbits which are there solely because of the introduction of
the confining boundary. The subtraction of the second (empty) reference
system removes those spurious periodic orbits which never encounter the
scattering region – in addition to the removal of the divergent Weyl term
contributions in the limit R → ∞. The periodic orbits that do encounter
both the scattering region and the external wall would still survive the first
limit R → ∞, if they were not exponentially suppressed by the +iη term
because of their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the length L(R) of a spurious periodic orbit grows linearly
with the radius R. The bound Rη′ � 1 is an essential precondition on the
suppression of the unwanted spurious contributions of the container if the
Krein-Friedel-Lloyd formulas (27.16) and (27.17) are evaluated at a finite
value of R.✎ 27.1

page 487 Finally, the semiclassical approximation can also help us in the interpre-
tation of the Weyl term contributions for scattering problems. In scattering
problems the Weyl term appears with a negative sign. The reason is the
subtraction of the empty container from the container with the potential.
If the potential is a dispersing billiard system (or a finite collection of dis-
persing billiards), we expect an excluded volume (or the sum of excluded
volumes) relative to the empty container. In other words, the Weyl term
contribution of the empty container is larger than of the filled one and
therefore a negative net contribution is left over. Secondly, if the scattering
potential is a collection of a finite number of non-overlapping scattering re-
gions, the Krein-Friedel-Lloyd formulas show that the corresponding Weyl
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contributions are completely independent of the position of the single scat-
terers, as long as these do not overlap.

27.4 Wigner time delay

The term d
dE ln detS in the density formula (27.16) is dimensionally time.

This suggests another, physically important interpretation of such formulas
for scattering systems, the Wigner delay, defined as

d(k) =
d

dk
Argdet (S(k))

= −i
d

dk
log det (S(k)

= −i tr
(
S†(k)

dS
dk

(k)
)

(27.18)

and can be shown to equal the total delay of a wave packet in a scattering
system. We now review this fact.

A related quantity is the total scattering phase shift Θ(k) defined as

detS(k) = e+i Θ(k) ,

so that d(k) = d
dkΘ(k).

The time delay may be both positive and negative, reflecting attractive
respectively repulsive features of the scattering system. To elucidate the
connection between the scattering determinant and the time delay we study
a plane wave:

The phase of a wave packet will have the form:

φ = �k · �x− ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if
scattering is present. The center of the wave packet will be determined by
the principle of stationary phase:

0 = dφ = d�k · �x− dω t + dΘ .

Hence the packet is located at

�x =
∂ω

∂�k
t − ∂Θ

∂�k
.
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The first term is just the group velocity times the given time t. Thus the
the packet is retarded by a length given by the derivative of the phase shift
with respect to the wave vector �k. The arrival of the wave packet at the
position �x will therefore be delayed. This time delay can similarly be found
as

τ(ω) =
∂Θ(ω)

∂ω
.

To show this we introduce the slowness of the phase �s = �k/ω for which
�s · �vg = 1, where �vg is the group velocity to get

d�k · �x = �s · �x dω =
x

vg
dω ,

since we may assume �x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x

vg
+

∂Θ(ω)
∂ω

.

If the scattering matrix is not diagonal, one interprets

∆tij = Re
(
−i S−1

ij

∂Sij

∂ω

)
= Re

(
∂Θij

∂ω

)

as the delay in the jth scattering channel after an injection in the ith.
The probability for appearing in channel j goes as |Sij |2 and therefore the
average delay for the incoming states in channel i is

〈∆ti〉 =
∑

j

|Sij |2∆tij = Re (−i
∑

j

S∗
ij

∂Sij

∂ω
) = Re (−iS† · ∂S

∂ω
)ii

= −i

(
S† · ∂S

∂ω

)
ii

,

where we have used the derivative, ∂/∂ω, of the unitarity relation S · S† = 1
valid for real frequencies. This discussion can in particular be made for
wave packets related to partial waves and superpositions of these like an
incoming plane wave corresponding to free motion. The total Wigner delay
therefore corresponds to the sum over all channel delays (27.18).

Commentary

Remark 27.1 Krein-Friedel-Lloyd formula. The Krein-Friedel-
Lloyd formula (27.16) was derived in refs. [27.3, 27.4, 27.5, 27.6], see
also refs. [27.7, 27.8, 27.9, 27.10, 27.11].
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Remark 27.2 Weyl term for empty container. For a discussion
of why the Weyl term contribution of the empty container is larger
than of the filled one and therefore a negative net contribution is left
over, see ref. [27.9].
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Exercises

Exercise 27.1 Spurious orbits under the Krein-Friedel-Lloyd contruction.
Draw examples for the three types of period orbits under the Krein-Friedel-Lloyd con-
struction: (a) the genuine periodic orbits of the scattering region, (b) spurious periodic
orbits which can be removed by the subtraction of the reference system, (c) spurious
periodic orbits which cannot be removed by this subtraction. What is the role of the
double limit η → 0, container size b→∞?

Exercise 27.2 The one-disk scattering wave function. Derive the one-disk
scattering wave function.

(Andreas Wirzba)

Exercise 27.3 Quantum two-disk scattering. Compute the quasiclassical
spectral determinant

Z(ε) =
∏
p,j,l

(
1− tp

Λj+2l
p

)j+1

for the two disk problem. Use the geometry

a
a

R

The full quantum mechanical version of this problem can be solved by finding the
zeros in k for the determinant of the matrix

Mm,n = δm,n +
(−1)n

2
Jm(ka)

H
(1)
n (ka)

(
H

(1)
m−n(kR) + (−1)nH

(1)
m+n(kR)

)
,

where Jn is the nth Bessel function and H
(1)
n is the Hankel function of the first kind.

Find the zeros of the determinant closest to the origin by solving det M(k) = 0.

(Hints: notice the structure M = I + A to approximate the determinant; or read

Chaos 2, 79 (1992))

Exercise 27.4 Pinball topological index. Upgrade your pinball simulator so

that it computes the topological index for each orbit it finds.
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Chapter 28

Helium atom

“But,” Bohr protested, “nobody will believe me un-
less I can explain every atom and every molecule.”
Rutherford was quick to reply, “Bohr, you explain
hydrogen and you explain helium and everybody will
believe the rest.”
John Archibald Wheeler (1986)

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and
other curious but rather idealized dynamical systems. If you have became
impatient and started wondering what good are the methods learned so
far in solving real physical problems, we have good news for you. We
will show in this chapter that the concepts of symbolic dynamics, unstable
periodic orbits, and cycle expansions are essential tools to understand and
calculate classical and quantum mechanical properties of nothing less than
the helium, a dreaded three-body Coulomb problem.

This sounds almost like one step too much at a time; we all know how
rich and complicated the dynamics of the three-body problem is – can
we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces?
It turns out, we can, but we have to do it with care. The full problem is
indeed not accessible in all its detail, but we are able to analyze a somewhat
simpler subsystem – collinear helium. This system plays an important role
in the classical dynamics of the full three-body problem and its quantum
spectrum.

The main work in reducing the quantum mechanics of helium to a semi-
classical treatment of collinear helium lies in understanding why we are
allowed to do so. We will not worry about this too much in the beginning;
after all, 80 years and many failed attempts separate Heisenberg, Bohr and
others in the 1920ties from the insights we have today on the role chaos
plays for helium and its quantum spectrum. We will introduce collinear
helium in sect. 28.1 and discuss its dynamics in some detail. We will learn
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Figure 28.1: Coordinates for the helium three
body problem in the plane.
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how to integrate and find periodic orbits and how to determine the rele-
vant eigenvalues of the Jacobian matrix. We will explain in sect. 28.2 why
a quantization of the collinear dynamics in helium will enable us to find
parts of the full helium spectrum; we then set up the semiclassical spectral
determinant and evaluate its cycle expansion. A full quantum justification
of this treatment of helium is briefly discussed in sect. 28.2.1.

28.1 Classical dynamics of collinear helium

The full classical helium system consists of two electrons of mass me and
charge −e moving about a positively charged nucleus of mass mhe and
charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that
we may work in the infinite nucleus mass approximation mhe = ∞, fixing
the nucleus at the origin. Finite nucleus mass effects can be taken into ac-
count without any substantial difficulty. We are now left with two electrons
moving in three spatial dimensions around the origin. The total angular
momentum of the combined electron system is still conserved. In the spe-
cial case of angular momentum L = 0, the electrons move in a fixed plane
containing the nucleus. The three body problem can then be written in
terms of three independent coordinates only, the electron-nucleus distances
r1 and r2 and the inter-electron angle Θ, see fig. 28.1.✎ 28.2

page 513
This looks like something we can lay our hands on; the problem has

been reduced to three degrees of freedom, six phase space coordinates in
all, and the total energy is conserved. But let us go one step further; the
electrons are attracted by the nucleus but repelled by each other. They
will tend to stay as far away from each other as possible, preferably on
opposite sides of the nucleus. It is thus worth having a closer look at the
situation where the three particles are all on a line with the nucleus being
somewhere between the two electrons. If we, in addition, let the electrons
have momenta pointing towards the nucleus as in fig. 28.2, then there is no
force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspace Θ = π,
d
dtΘ = 0, the three particles will remain in this collinear configuration for
all times.
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Figure 28.2: Collinear helium, with the two
electrons on opposite sides of the nucleus.
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28.1.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It
is a system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2
1 + p2

2

)
− 2e

r1
− 2e

r2
+

e

r1 + r2
= E , (28.1)

where E is the total energy. We will first consider the dependence of the
dynamics on the energy E. A simple analysis of potential versus kinetic
energy tells us that if the energy is positive both electrons can escape to
ri →∞, i = 1, 2. More interestingly, a single electron can still escape even
if E is negative, carrying away an unlimited amount of kinetic energy, as
the total energy of the remaining inner electron has no lower bound. Not
only that, but one electron will escape eventually for almost all starting
conditions. The overall dynamics thus depends critically on whether E > 0
or E < 0. But how does the dynamics change otherwise with varying
energy? Fortunately, not at all. Helium dynamics remains invariant under
a change of energy up to a simple scaling transformation; a solution of the
equations of motion at a fixed energy E0 = −1 can be transformed into a
solution at an arbitrary energy E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m
1/2
e (−E)−3/2 t. We include

the electron mass and charge in the scaling transformation in order to obtain
a non–dimensionalized Hamiltonian of the form

H =
p2
1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (28.2)

The case of negative energies chosen here is the most interesting one for us.
It exhibits chaos, unstable periodic orbits and is responsible for the bound
states and resonances of the quantum problem treated in sect. 28.2.

There is another classical quantity important for a semiclassical treat-
ment of quantum mechanics, and which will also feature prominently in
the discussion in the next section; this is the classical action (25.14) which
scales with energy as

S(E) =
∮

dq(E) · p(E) =
e2m

1/2
e

(−E)1/2
S, (28.3)
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with S being the action obtained from (28.2) for E = −1, and coordinates
q = (r1, r2), p = (p1, p2). For the Hamiltonian (28.2), the period of a cycle
and its action are related by (25.16), Tp = 1

2Sp.

28.1.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (28.2).
Whenever two bodies come close to each other, accelerations become large,
numerical routines require lots of small steps, and numerical precision suf-
fers. No numerical routine will get us through the singularity itself, and in
collinear helium electrons have no option but to collide with the nucleus.
Hence a regularization of the differential equations of motions is a necessary
prerequisite to any numerical work on such problems, both in celestial me-
chanics (where a spaceship executes close approaches both at the start and
its destiantion) and in quantum mechanics (where much of semiclassical
physics is dominated by returning classical orbits that probe the quantum
wave function at the nucleus).

There is a fundamental difference between two–body collisions r1 = 0
or r2 = 0, and the triple collision r1 = r2 = 0. Two–body collisions can
be regularized, with the singularities in equations of motion removed by
a suitable coordinate transformation together with a time transformation
preserving the Hamiltonian structure of the equations. Such regularization
is not possible for the triple collision, and solutions of the differential equa-
tions can not be continued through the singularity at the origin. As we
shall see, the chaos in collinear helium originates from this singularity of
triple collisions.

A regularization of the two–body collisions is achieved by means of the
Kustaanheimo–Stiefel (KS) transformation, which consists of a coordinate
dependent time transformation which stretches the time scale near the ori-
gin, and a canonical transformation of the phase space coordinates. In
order to motivate the method, we apply it first to the 1-dimensional Kepler
problem

H =
1
2
p2 − 2

x
= E . (28.4)

To warm up, consider the E = 0 case, starting at x = 0 at t = 0. Even
though the equations of motion are singular at the intial point, we can
immediately integrate

1
2
ẋ2 − 2

x
= 0

by means of separation of variables

√
xdx =

√
2dt , x = (9/2)

1
3 t

2
3 , (28.5)
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and observe that the solution is not singular. The aim of regularization is
to compensate for the infinite acceleration at the origin by introducing a
fictitious time, in terms of which the passage through the origin is smooth.

A time transformation dt = f(q, p)dτ for a system described by a
Hamiltonian H(q, p) = E leaves the Hamiltonian structure of the equa-
tions of motion unaltered, if the Hamiltonian itself is transformed into
H(q, p) = f(q, p)(H(q, p) − E). For the 1– dimensional Coulomb problem
with (28.4) we choose the time transformation dt = xdτ which lifts the
|x| → 0 singularity in (28.4) and leads to a new Hamiltonian

H =
1
2
xp2 − 2− Ex = 0. (28.6)

The solution (28.5) is now parametrized by the fictitous time dτ through a
pair of equations

x =
1
2
τ2 , t =

1
6
τ3 .

The equations of motion are, however, still singular as x → 0:

d2x

dτ2
= − 1

2x

dx

dτ
+ xE .

Appearance of the square root in (28.5) now suggests a canonical transfor-
mation of form

x = Q2 , p =
P

2Q
(28.7)

which maps the Kepler problem into that of a harmonic oscillator with
Hamiltonian

H(Q, P ) =
1
8
P 2 − EQ2 = 2, (28.8)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that
one seeks a higher-dimensional generalization of the “square root removal”
trick (28.7), by introducing a new vector Q with property r = |Q|2 . In this
simple 1-dimensional example the KS transformation can be implemented
by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(28.9)
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Figure 28.3: a) A typical trajectory in the r1 – r2 plane; the trajectory enters here
along the r1 axis and escapes to infinity along the r2 axis; b) Poincaré map (r2=0)
for collinear helium. Strong chaos prevails for small r1 near the nucleus.

and reparametrization of time by dτ = dt/r1r2. The singular behavior in ✎ 28.1
page 513

the original momenta at r1 or r2 = 0 is again compensated by stretching
the time scale at these points. The Hamiltonian structure of the equations
of motions with respect to the new time τ is conserved, if we consider the
Hamiltonian

Hko =
1
8
(Q2

2P
2
1 + Q2

1P
2
2 )− 2R2

12 + Q2
1Q

2
2

(
1 +

1
R2

12

)
= 0 (28.10)

with R12 = (Q2
1 + Q2

2)
1/2. The equations of motion now have the form

Ṗ1 = 2Q1

[
2− P 2

2

8
−Q2

2

(
1 +

Q2
2

R4
12

)]
; Q̇1 =

1
4
P1Q

2
2 (28.11)

Ṗ2 = 2Q2

[
2− P 2

1

8
−Q2

1

(
1 +

Q2
1

R4
12

)]
; Q̇2 =

1
4
P2Q

2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations
(28.11) are singular only at the triple collision R12 = 0, that is, when both
electrons hit the nucleus at the same time.

The new coordinates and the Hamiltonian (28.10) are very useful when
calculating trajectories for collinear helium; they are, however, less intuitive
as a visualization of the three-body dynamics. We will therefore refer to
the old coordinates r1, r2 when discussing the dynamics and the periodic
orbits.

28.1.3 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium. The electrons
are attracted by the nucleus. During an electron–nucleus collision momen-
tum is transferred between the inner and outer electron. The inner electron
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Figure 28.4: The cycle 011 in the fundamen-
tal domain r1 ≥ r2 (full line) and in the full
domain (dashed line).
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has a maximal screening effect on the charge of the nucleus, diminishing the
attractive force on the outer electron. This electron – electron interaction
is negligible if the outer electron is far from the nucleus at a collision and
the overall dynamics is regular like in the 1-dimensional Kepler problem.

Things change drastically if both electrons approach the nucleus nearly
simultaneously. The momentum transfer between the electrons depends
now sensitively on how the particles approach the origin. Intuitively, these
nearly missed triple collisions render the dynamics chaotic. A typical tra-
jectory is plotted in fig. 28.3(a) where we used r1 and r2 as the relevant
axis. The dynamics can also be visualized in a Poincaré surface of section,
see fig. 28.3(b). We plot here the coordinate and momentum of the outer
electron whenever the inner particle hits the nucleus, that is, r1 or r2 =
0. As the unstructured gray region of the Poincaré section for small r1

illustrates, the dynamics is chaotic whenever the outer electron is close to
the origin during a collision. Conversely, regular motions dominate when-
ever the outer electron is far from the nucleus. As one of the electrons
escapes for almost any starting condition, the system is unbounded: one
electron (say electron 1) can escape, with an arbitrary amount of kinetic
energy taken by the fugative. The remaining electron is trapped in a Ke-
pler ellipse with total energy in the range [−1,−∞]. There is no energy
barrier which would separate the bound from the unbound regions of the
phase space. From general kinematic arguments one deduces that the outer
electron will not return when p1 > 0, r2 ≤ 2 at p2 = 0, the turning point of
the inner electron. Only if the two electrons approach the nucleus almost
symmetrically along the line r1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick
one of the particles out completely. In other words, the electron escape
originates from the near triple collisions.

The collinear helium dynamics has some important properties which we
now list.

Reflection symmetry

The Hamiltonian (28.1) is invariant with respect to electron–electron ex-
change; this symmetry corresponds to the mirror symmetry of the potential

draft 9.4.0, June 18 2003 helium - 17apr2002



496 CHAPTER 28. HELIUM ATOM

along the line r1 = r2, fig. 28.4. As a consequence, we can restrict ourselves
to the dynamics in the fundamental domain r1 ≥ r2 and treat a crossing
of the diagonal r1 = r2 as a hard wall reflection. The dynamics in the
full domain can then be reconstructed by unfolding the trajectory through
back-reflections. As explained in chapter 19, the dynamics in the funda-
mental domain is the key to the factorization of spectral determinants, to
be implemented here in (28.22). Note also the similarity between the fun-
damental domain of the collinear potential fig. 28.4, and the fundamental
domain fig. 9.5(b) in the 3–disk system, a simpler problem with the same
binary symbolic dynamics.

in depth:

sect. 19.6, p. 364

Symbolic dynamics

We have already made the claim that the triple collisions render the collinear
helium fully chaotic. We have no proof of the assertion, but the analysis of
the symbolic dynamics lends further credence to the claim.

The potential in (28.2) forms a ridge along the line r1 = r2. One can
show that a trajectory passing the ridge must go through at least one two-
body collision r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2.
This suggests a binary symbolic dynamics corresponding to the dynamics

in the fundamental domain r1 ≥ r2; the symbolic dynamics is linked to the
Poincaré map r2 = 0 and the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two
collisions with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions
with the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in
the fundamental domain, that is, there exists a one-to-one correspondence
between binary symbol sequences and collinear trajectories in the funda-
mental domain, with exception of the 0 cycle.

Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the
number of periodic orbits in the fundamental domain, as in sect. 10.5.2.
However, mere existence of these cycles does not suffice to calculate semi-
classical spectral determinants. We need to determine their phase space
trajectories and calculate their periods, topological indices and stabilities.
A restriction of the periodic orbit search to a suitable Poincaré surface of
section, e.g. r2 = 0 or r1 = r2, leaves us in general with a 2-dimensional
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search. Methods to find periodic orbits in multi-dimensional spaces have
been described in chapter 14. They depend sensitively on good starting
guesses. A systematic search for all orbits can be achieved only after com-
bining multi-dimensional Newton methods with interpolation algorithms
based on the binary symbolic dynamics phase space partitioning. All cycles
up to symbol length 16 (some 8000 primitive cycles) have been computed
by such methods, with some examples shown in fig. 28.5. All numerical
evidence indicates that the dynamics of collinear helium is hyperbolic, and
that all periodic orbits are unstable.

Note that the fixed point 0 cycle is not in this list. The 0 cycle would
correspond to the situation where the outer electron sits at rest infinitely
far from the nucleus while the inner electron bounces back and forth into
the nucleus. The orbit is the limiting case of an electron escaping to infinity
with zero kinetic energy. The orbit is in the regular (that is separable) limit
of the dynamics and is thus marginally stable. The existence of this orbit is
also related to intermittent behavior generating the quasi–regular dynamics
for large r1 that we have already noted in fig. 28.3(b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to
program. There is, however, a class of periodic orbits, orbits with symme-
tries, which can be easily found by a one-parameter search. The only sym-
metry left for the dynamics in the fundamental domain is time reversal sym-
metry; a time reversal symmetric periodic orbit is an orbit whose trajectory
in phase space is mapped onto itself when changing (p1, p2) → (−p1,−p2),
by reversing the direction of the momentum of the orbit. Such an orbit
must be a “libration” or self-retracing cycle, an orbit that runs back and
forth along the same path in the (r1, r2) plane. The cycles 1, 01 and 001 in
fig. 28.5 are examples of self-retracing cycles. Luckily, the shortest cycles
that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start per-
pendicular to the boundary of the fundamental domain, that is, on either of
the axis r2 = 0 or r1 = r2, or on the potential boundary − 2

r1
− 2

r2
+ 1′

r1+r2
=

−1. By shooting off trajectories perpendicular to the boundaries and mon-
itoring the orbits returning to the boundary with the right symbol length
we will find time reversal symmetric cycles by varying the starting point on
the boundary as the only parameter. But how can we tell whether a given
cycle is self-retracing or not? All the relevant information is contained in
the itineraries; a cycle is self-retracing if its itinerary is invariant under time
reversal symmetry (that is read backwards) and a suitable number of cyclic
permutations. All binary strings up to length 5 fulfill this condition. The
symbolic dynamics contains even more information; we can tell at which
boundary the total reflection occurs. One finds that an orbit starts out
perpendicular

• to the diagonal r1 = r2 if the itinerary is time reversal invariant and
has an odd number of 1’s; an example is the cycle 001 in fig. 28.5;

• to the axis r2 = 0 if the itinerary is time reversal invariant and has
an even number of symbols; an example is the cycle 0011 in fig. 28.5;
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Figure 28.5: Some of the shortest cycles in collinear helium. The classical collinear
electron motion is bounded by the potential barrier −1 = −2/r1− 2/r2 +1/(r1 + r2)
and the condition ri ≥ 0. The orbits are shown in the full r1–r2 domain, the itineraries
refers to the dynamics in the r1 ≥ r2 fundamental domain. The last figure, the 14-
cycle 00101100110111, is an example of a typical cycle with no symmetry.
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• to the potential boundary if the itinerary is time reversal invariant
and has an odd number of symbols; an example is the cycle 011 in
fig. 28.5.

All cycles up to symbol length 5 are time reversal invariant, the first two
non-time reversal symmetric cycles are cycles 001011 and 001101 in fig. 28.5.
Their determination would require a two-parameter search. The two cycles
are mapped onto each other by time reversal symmetry, that is, they have
the same trace in the r1–r2 plane, but they trace out distinct cycles in the
full phase space.

We are ready to integrate trajectories for classical collinear helium with
the help of the equations of motions (28.11) and to find all cycles up to
length 5. There is only one thing not yet in place; we need the gov- ✎ 28.5

page 513
erning equations for the matrix elements of the Jacobian matrix along a
trajectory in order to calculate stability indices. We will provide the main
equations in the next section, with the details of the derivation relegated
to the appendix C.2.

28.1.4 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion for the Jacobian
matrix along a collinear helium trajectory. The Jacobian matrix is 4-
dimensional; the two trivial eigenvectors corresponding to the conservation
of energy and displacements along a trajectory can, however, be projected
out by suitable orthogonal coordinates transformations, see appendix C.
We will give the transformation to local coordinates explicitly, here for the
regularized coordinates (28.9), and state the resulting equations of motion
for the reduced [2× 2] Jacobian matrix.

The vector locally parallel to the trajectory is pointing in the direction
of the phase space velocity (5.4)

vm = ẋm(t) = ωmn
∂H

∂xn
= (HP1 , HP2 ,−HQ1 ,−HQ2)

T ,

with HQi = ∂H
∂Qi

, and HPi = ∂H
∂Pi

, i = 1,2. The vector perpendicular to a
trajectory x(t) = (Q1(t), Q2(t), P1(t), P2(t)) and to the energy manifold is
given by the gradient of the Hamiltonian (28.10)

γ = ∇H = (HQ1 , HQ2 , HP1 , HP2)
T .

By symmetry vmγm = ωmn
∂H
∂xn

∂H
∂xm

, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

Oγ(t) = (γ1, γ2, γ/R, v) (28.12)
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=

 −HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2


with R = |∇H|2 = (H2

Q1
+H2

Q2
+H2

P1
+H2

P2
), which provides a transforma-

tion to local phase space coordinates centered on the trajectory x(t) along
the two vectors (γ, v). The vectors γ1,2 are phase space vectors perpen-✎ 28.6

page 514
dicular to the trajectory and to the energy manifold in the 4-dimensional
phase space of collinear helium. The Jacobian matrix (4.5) rotated to the
local coordinate system by O then has the form

m =

 m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1

 , J = OTmOσ

The linearized motion perpendicular to the trajectory on the energy mani-
fold is described by the [2× 2] matrix m; the ‘trivial’ directions correspond
to unit eigenvalues on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced Jacobian matrix m are given
by

ṁ = l(t)m(t), (28.13)

with m(0) = 1. The matrix l depends on the trajectory in phase space and
has the form

l =

 l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0

 ,

where the relevant matrix elements lij are given by

l11 =
1
R

[2HQ1Q2(HQ2HP1 + HQ1HP2) (28.14)

+(HQ1HP1 −HQ2HP2)(HQ1Q1 −HQ2Q2 −HP1P1 + HP2P2)]
l12 = −2HQ1Q2(HQ1HQ2 −HP1HP2)

+(H2
Q1

+ H2
P2

)(HQ2Q2 + HP1P1) + (H2
Q2

+ H2
P1

)(HQ1Q1 + HP2P2)

l21 =
1

R2
[2(HQ1P2 + HQ2P1)(HQ2HP1 + HQ1HP8)

−(H2
P1

+ H2
P2

)(HQ1Q1 + HQ2Q2)− (H2
Q1

+ H2
Q2

)(HP1P1 + HP2P2)]
l22 = −l11 .

Here HQiQj , HPiPj , i, j = 1, 2 are the second partial derivatives of H with
respect to the coordinates Qi, Pi, evaluated at the phase space coordinate
of the classical trajectory.
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p Sp/2π ln |Λp| σp mp

1 1.82900 0.6012 0.5393 2
01 3.61825 1.8622 1.0918 4

001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12

Table 28.1: Action Sp (in units of 2π), Lyapunov exponent |Λp|/Tp for the motion
in the collinear plane, winding number σp for the motion perpendicular to the collinear
plane, and the topological index mp for all fundamental domain cycles up to topological
length 6.
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28.1.5 Getting ready

Now everything is in place: the regularized equations of motion can be
implemented in a Runge–Kutta or any other integration scheme to calculate
trajectories. We have a symbolic dynamics and know how many cycles there
are and how to find them (at least up to symbol length 5). We know how
to compute the Jacobian matrix whose eigenvalues enter the semiclassical
spectral determinant (26.12). By (25.16) the action Sp is proportional to
the period of the orbit, Sp = 2Tp.

There is, however, still a slight complication. Collinear helium is an
invariant 4-dimensional subspace of the full helium phase space. If we re-
strict the dynamics to angular momentum equal zero, we are left with 6
phase space coordinates. That is not a problem when computing periodic
orbits, they are oblivious to the other dimensions. However, the Jacobian
matrix does pick up extra contributions. When we calculate the Jacobian
matrix for the full problem, we must also allow for displacements out of the
collinear plane, so the full Jacobian matrix for dynamics for L = 0 angular
momentum is 6 dimensional. Fortunately, the linearized dynamics in and
off the collinear helium subspace decouple, and the Jacobian matrix can
be written in terms of two distinct [2× 2] matrices, with trivial eigendirec-
tions providing the remaining two dimensions. The submatrix related to
displacements off the linear configuration characterizes the linearized dy-
namics in the additional degree of freedom, the Θ-coordinate in fig. 28.1. It
turns out that the linearized dynamics in the Θ coordinate is stable, corre-
sponding to a bending type motion of the two electrons. We will need the
stability exponents for all degrees of freedom in evaluating the semiclassical
spectral determinant in sect. 28.2.

The numerical values of the actions, stability exponents, stability angles,
and topological indices for the shortest cycles are listed in table 28.1.4.
These numbers, needed for the semiclassical quantization implemented in
the next section, an also be helpful in checking your own calculations.

28.2 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy
levels let us have a brief look at the overall structure of the spectrum. This
will give us a preliminary feel for which parts of the helium spectrum are
accessible with the help of our collinear model – and which are not. In
order to keep the discussion as simple as possible and to concentrate on the
semiclassical aspects of our calculations we offer here only a rough overview.
For a guide to more detailed accounts see remark 28.4.
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28.2.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like
one-electron atoms. The eigenenergies form a Rydberg series

EN = −e4me

�2

Z2

2N2
, (28.15)

where Ze is the charge of the nucleus and me is the mass of the electron.
Through the rest of this chapter we adopt the atomic units e = me = � = 1.

The simplest model for the helium spectrum is obtained by treating the
two electrons as independent particles moving in the potential of the nucleus
neglecting the electron–electron interaction. Both electrons are then bound
in hydrogen like states; the inner electron will see a charge Z = 2, screening
at the same time the nucleus, the outer electron will move in a Coulomb
potential with effective charge Z−1 = 1. In this way obtain a first estimate
for the total energy

EN,n = − 2
N2

− 1
2n2

with n > N. (28.16)

This double Rydberg formula contains already most of the information
we need to understand the basic structure of the spectrum. The (correct)
ionizations thresholds EN = − 2

N2 are obtained in the limit n →∞, yielding
the ground and excited states of the helium ion He+. We will therefore
refer to N as the principal quantum number. We also see that all states
EN,n with N ≥ 2 lie above the first ionization threshold for N = 1. As
soon as we switch on electron-electron interaction these states are no longer
bound states; they turn into resonant states which decay into a bound state
of the helium ion and a free outer electron. This might not come as a big
surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape
after some finite time. More remarkable is the fact that the first, N = 1
series consists of true bound states for all n, an effect which can only be
understood by quantum arguments.

The hydrogen-like quantum energies (28.15) are highly degenerate; states
with different angular momentum but the same principal quantum num-
ber N share the same energy. We recall from basic quantum mechanics
of hydrogen atom that the possible angular momenta for a given N span
l = 0, 1 . . . N −1. How does that affect the helium case? Total angular mo-
mentum L for the helium three-body problem is conserved. The collinear
helium is a subspace of the classical phase space for L = 0; we thus expect
that we can only quantize helium states corresponding to the total angular
momentum zero, a subspectrum of the full helium spectrum. Going back to
our crude estimate (28.16) we may now attribute angular momenta to the
two independent electrons, l1 and l2 say. In order to obtain total angular
momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that is, there are N
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Figure 28.6: The exact quantum helium spectrum for L = 0. The energy levels
denoted by bars have been obtained from full 3-dimensional quantum calculations
[28.3].

different states corresponding to L = 0 for fixed quantum numbers N, n.
That means that we expect N different Rydberg series converging to each
ionization threshold EN = −2/N2. This is indeed the case and the N dif-
ferent series can be identified also in the exact helium quantum spectrum,
see fig. 28.6. The degeneracies between the different N Rydberg series cor-
responding to the same principal quantum number N , are removed by the
electron-electron interaction. We thus already have a rather good idea of
the coarse structure of the spectrum.

In the next step, we may even speculate which parts of the L = 0
spectrum can be reproduced by the semiclassical quantization of collinear
helium. In the collinear helium, both classical electrons move back and
forth along a common axis through the nucleus, so each has zero angular
momentum. We therefore expect that collinear helium describes the Ryd-
berg series with l = l1 = l2 = 0. These series are the energetically lowest
states for fixed (N, n), corresponding to the Rydberg series on the outer-
most left side of the spectrum in fig. 28.6. We will see in the next section
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that this is indeed the case and that the collinear model holds down to
the N = 1 bound state series, including even the ground state of helium!
We will also find a semiclassical quantum number corresponding to the an-
gular momentum l and show that the collinear model describes states for
moderate angular momentum l as long as l ! N . .

☞ remark 28.4

28.2.2 Semiclassical spectral determinant for collinear he-
lium

Nothing but lassitude can stop us now from calculating our first semiclassi-
cal eigenvalues. The only thing left to do is to set up the spectral determin-
ant in terms of the periodic orbits of collinear helium and to write out the
first few terms of its cycle expansion with the help of the binary symbolic
dynamics. The semiclassical spectral determinant (26.12) has been written
as product over all cycles of the classical systems. The energy dependence
in collinear helium enters the classical dynamics only through simple scaling
transformations described in sect. 28.1.1 which makes it possible to write
the semiclassical spectral determinant in the form

det (Ĥ − E)sc = exp

(
−
∑

p

∞∑
r=1

1
r

eir(sSp−mp
π
2
)

(−det (1− Jr
p⊥))1/2|det (1− Jr

p‖)|1/2

)
, (28.17)

with the energy dependence absorbed into the variable

s =
e2

�

√
me

−E
,

obtained by using the scaling relation (28.3) for the action. As explained
in sect. 28.1.4, the fact that the [4× 4] Jacobian matrix decouples into two
[2×2] submatrices corresponding to the dynamics in the collinear space and
perpendicular to it makes it possible to write the denominator in terms of a
product of two determinants. Stable and unstable degrees of freedom enter
the trace formula in different ways, reflected by the absence of the modulus
sign and the minus sign in front of det (1− J⊥). The topological index mp

corresponds to the unstable dynamics in the collinear plane. Note that the
factor eiπN̄(E) present in (26.12) is absent in (28.17). Collinear helium is
an open system, that is the eigenenergies are resonances corresponding to
the complex zeros of the semiclassical spectral determinant and the mean
energy staircase N̄(E) not defined. In order to obtain a spectral determin-
ant as an infinite product of the form (26.18) we may proceed as in (12.9)
by expanding the determinants in (28.17) in terms of the eigenvalues of the
corresponding Jacobian matrices. The matrix representing displacements
perpendicular to the collinear space has eigenvalues of the form exp(±2πiσ),
reflecting stable linearized dynamics. σ is the full winding number along
the orbit in the stable degree of freedom, multiplicative under multiple
repetitions of this orbit .The eigenvalues corresponding to the unstable
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dynamics along the collinear axis are paired as {Λ, 1/Λ} with |Λ| > 1 and
real. As in (12.9) and (26.18) we may thus write

[
−det (1− Jr

⊥)|det (1− Jr
‖)|
]−1/2

(28.18)

=
[
−(1− Λr)(1− Λ−r)|(1− e2πirσ)(1− e−2πirσ)

]−1/2

=
∞∑

k,�=0

1
|Λr|1/2Λrk

e−ir(�+1/2)σ .

The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits
with positive/negative eigenvalues Λ. Using the relation (28.19) we see
that the sum over r in (28.17) is the expansion of the logarithm, so the
semiclassical spectral determinant can be rewritten as a product over dyn-
amical zeta functions, as in (12.9):

det (Ĥ − E)sc =
∞∏

k=0

∞∏
m=0

ζ−1
k,m =

∞∏
k=0

∞∏
m=0

∏
p

(1− t(k,m)
p ) , (28.19)

where the cycle weights are given by

t(k,m)
p =

1
|Λ|1/2Λk

ei(sSp−mp
π
2
−4π(�+1/2)σp) , (28.20)

and mp is the topological index for the motion in the collinear plane which
equals twice the topological length of the cycle. The two independent
directions perpendicular to the collinear axis lead to a twofold degeneracy
in this degree of freedom which accounts for an additional factor 2 in front
of the winding number σ. The values for the actions, winding numbers
and stability indices of the shortest cycles in collinear helium are listed in
table 28.1.4.

The integer indices � and k play very different roles in the semiclass-
ical spectral determinant (28.19). A linearized approximation of the flow
along a cycle corresponds to a harmonic approximation of the potential in
the vicinity of the trajectory. Stable motion corresponds to a harmonic
oscillator potential, unstable motion to an inverted harmonic oscillator.
The index � which contributes as a phase to the cycle weights in the dyn-
amical zeta functions can therefore be interpreted as a harmonic oscillator
quantum number; it corresponds to vibrational modes in the Θ coordinate
and can in our simplified picture developed in sect. 28.2.1 be related to
the quantum number l = l1 = l2 representing the single particle angular
momenta. Every distinct � value corresponds to a full spectrum which
we obtain from the zeros of the semiclassical spectral determinant 1/ζ�

keeping � fixed. The harmonic oscillator approximation will eventually
break down with increasing off-line excitations and thus increasing �. The
index k corresponds to ‘excitations’ along the unstable direction and can be
identified with local resonances of the inverted harmonic oscillator centered
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on the given orbit. The cycle contributions t
(k,m)
p decrease exponentially

with increasing k. Higher k terms in an expansion of the determinant give
corrections which become important only for large negative imaginary s
values. As we are interested only in the leading zeros of (28.19), that is the
zeros closest to the real energy axis, it is sufficient to take only the k = 0
terms into account.

Next, let us have a look at the discrete symmetries discussed in sect. 28.1.3.
Collinear helium has a C2 symmetry as it is invariant under reflection across
the r1 = r2 line corresponding to the electron-electron exchange symmetry.
As explained in sects. 19.1.2 and 19.5, we may use this symmetry to factor-
ize the semiclassical spectral determinant. The spectrum corresponding to
the states symmetric or antisymmetric with respect to reflection can be ob-
tained by writing the dynamical zeta functions in the symmetry factorized
form

1/ζ(�) =
∏
a

(1− ta)2
∏
s̃

(1− t2s̃) . (28.21)

Here, the first product is taken over all asymmetric prime cycles, that is
cycles that are not self-dual under the C2 symmetry. Such cycles come in
pairs, as two equivalent orbits are mapped into each other by the symmetry
transformation. The second product runs over all self-dual cycles; these
orbits cross the axis r1 = r2 twice at a right angle. The self-dual cycles close
in the fundamental domain r1 ≤ r2 already at half the period compared
to the orbit in the full domain, and the cycle weights ts̃ in (28.21) are the
weights of fundamental domain cycles. The C2 symmetry now leads to the
factorization of (28.21) 1/ζ = ζ−1

+ ζ−1
− , with

1/ζ
(�)
+ =

∏
a

(1− ta)
∏
s̃

(1− ts̃) ,

1/ζ
(�)
− =

∏
a

(1− ta)
∏
s̃

(1 + ts̃) , (28.22)

setting k = 0 in what follows. The symmetric subspace resonances are
given by the zeros of 1/ζ

(�)
+ , antisymmetric resonances by the zeros of 1/ζ

(�)
− ,

with the two dynamical zeta functions defined as products over orbits in
the fundamental domain. The symmetry properties of an orbit can be
read off directly from its symbol sequence, as explained in sect. 28.1.3. An
orbit with an odd number of 1’s in the itinerary is self-dual under the C2

symmetry and enters the spectral determinant in (28.22) with a negative or
a positive sign, depending on the symmetry subspace under consideration.

28.2.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral
determinant and have thereby picked up two good quantum numbers; the

draft 9.4.0, June 18 2003 helium - 17apr2002



508 CHAPTER 28. HELIUM ATOM

quantum number m has been identified with an excitation of the bend-
ing vibrations, the exchange symmetry quantum number ±1 corresponds
to states being symmetric or antisymmetric with respect to the electron-
electron exchange. We may now start writing down the binary cycle ex-
pansion (15.5) and determine the zeros of spectral determinant. There is,
however, still another problem: there is no cycle 0 in the collinear helium.
The symbol sequence 0 corresponds to the limit of an outer electron fixed
with zero kinetic energy at r1 = ∞, the inner electron bouncing back and
forth into the singularity at the origin. This introduces intermittency in
our system, a problem discussed in chapter 18. We note that the behavior
of cycles going far out in the channel r1 or r2 → ∞ is very different from
those staying in the near core region. A cycle expansion using the binary
alphabet reproduces states where both electrons are localized in the near
core regions: these are the lowest states in each Rydberg series. The states
converging to the various ionization thresholds EN = −2/N2 correspond
to eigenfunctions where the wave function of the outer electron is stretched
far out into the ionization channel r1, r2 → ∞. To include those states,
we have to deal with the dynamics in the limit of large r1, r2. This turns
out to be equivalent to switching to a symbolic dynamics with an infinite
alphabet. With this observation in mind, we may write the cycle expansion

☞ remark 28.5
(....) for a binary alphabet without the 0 cycle as

1/ζ�(s) = 1 − t
(�)
1 − t

(�)
01 − [t(�)001 + t

(�)
011 − t

(�)
01 t

(�)
1 ]

−[t(�)0001 + t
(�)
0011 − t

(�)
001t

(�)
1 + t

(�)
0111 − t

(�)
011t

(�)
1 ]− . . . .(28.23)

The weights t
(�)
p are given in (28.19), with contributions of orbits and com-

posite orbits of the same total symbol length collected within square brack-
ets. The cycle expansion depends only on the classical actions, stability
indices and winding numbers, given for orbits up to length 6 in table 28.1.4.
To get reacquainted with the cycle expansion formula (28.23), consider a
truncation of the series after the first term

1/ζ(�)(s) ≈ 1− t1 .

The quantization condition 1/ζ(�)(s) = 0 leads to

Em,N = − (S1/2π)2

[m + 1
2 + 2(N + 1

2)σ1]2
, m, N = 0, 1, 2, . . . , (28.24)

with S1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding num-
ber, see table 28.1.4, the 1 cycle in the fundamental domain. This cycle
can be described as the asymmetric stretch orbit, see fig. 28.5. The addi-
tional quantum number N in (28.24) corresponds to the principal quantum
number defined in sect. 28.2.1. The states described by the quantization
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N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

Table 28.2: Collinear helium, real part of the symmetric subspace resonances ob-
tained by a cycle expansion (28.23) up to cycle length j. The exact quantum ener-
gies [28.3] are in the last column. The states are labeled by their principal quantum
numbers. A dash as an entry indicates a missing zero at that level of approximation.

condition (28.24) are those centered closest to the nucleus and correspond
therefore to the lowest states in each Rydberg series (for a fixed m and N
values), in fig. 28.6. The simple formula (28.24) gives already a rather good
estimate for the ground state of helium! Results obtained from (28.24) are
tabulated in table 28.2, see the 3rd column under j = 1 and the comparison
with the full quantum calculations.

In order to obtain higher excited quantum states, we need to include
more orbits in the cycle expansion (28.23), covering more of the phase space
dynamics further away from the center. Taking longer and longer cycles
into account, we indeed reveal more and more states in each N -series for
fixed m. This is illustrated by the data listed in table 28.2 for symmetric
states obtained from truncations of the cycle expansion of 1/ζ+. ✎ 28.7

page 514Results of the same quality are obtained for antisymmetric states by
calculating the zeros of 1/ζ

(�)
− . Repeating the calculation with � = 1 or

higher in (28.22) reveals states in the Rydberg series which are to the right
of the energetically lowest series in fig. 28.6.

Commentary

Remark 28.1 Sources. The full 3-dimensional Hamiltonian af-
ter elimination of the center of mass coordinates, and an account of the
finite nucleus mass effects is given in ref. [28.2]. The general two–body
collision regularizing Kustaanheimo–Stiefel transformation [28.5], a
generalization of Levi-Civita’s [28.13] Pauli matrix two–body collision
regularization for motion in a plane, is due to Kustaanheimo [28.12]
who realized that the correct higher-dimensional generalization of the
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“square root removal” trick (28.7), by introducing a vector Q with
property r = |Q|2 , is the same as Dirac’s trick of getting linear equa-
tion for spin 1/2 fermions by means of spinors. Vector spaces equipped
with a product and a known satisfy |Q · Q| = |Q|2 define normed
algebras. They appear in various physical applications - as quater-
nions, octonions, spinors. The technique was originally developed in
celestial mechanics [28.6] to obtain numerically stable solutions for
planetary motions. The basic idea was in place as early as 1931,
when H. Hopf [28.14] used a KS transformation in order to illustrate
a Hopf’s invariant. The KS transformation for the collinear helium
was introduced in ref. [28.2].

Remark 28.2 Complete binary symbolic dynamics. No stable
periodic orbit and no exception to the binary symbolic dynamics of the
collinear helium cycles have been found in numerical investigations.
A proof that all cycles are unstable, that they are uniquely labelled
by the binary symbolic dynamcis, and that this dynamics is complete
is, however, still missing. The conjectured Markov partition of the
phase space is given by the triple collision manifold, that is by those
trajectories which start in or end at the singular point r1 = r2 = 0.
See also ref. [28.2].

Remark 28.3 Spin and particle exchange symmetry. In our pre-
sentation of collinear helium we have completely ignored all dynamical
effects due to the spin of the particles involved, such as the electronic
spin-orbit coupling. Electrons are fermions and that determines the
symmetry properties of the quantum states. The total wave function,
including the spin degrees of freedom, must be antisymmetric under
the electron-electron exchange transformation. That means that a
quantum state symmetric in the position variables must have an an-
tisymmetric spin wave function, i.e. the spins are antiparallel and the
total spin is zero (singletstate). Antisymmetric states have symmet-
ric spin wave function with total spin 1 (tripletstates). The threefold
degeneracy of spin 1 states is lifted by the spin-orbit coupling.

Remark 28.4 Helium quantum numbers. The classification of
the helium states in terms of single electron quantum numbers, sketched
in sect. 28.2.1, prevailed until the 1960’s; a growing discrepancy be-
tween experimental results and theoretical predictions made it neces-
sary to refine this picture. In particular, the different Rydberg series
sharing a given N -quantum number correspond, roughly speaking, to
a quantization of the inter electronic angle Θ, see fig. 28.1, and can not
be described in terms of single electron quantum numbers l1, l2. The
fact that something is slightly wrong with the single electron picture
laid out in sect. 28.2.1 is highlighted when considering the collinear
configuration where both electrons are on the same side of the nu-
cleus. As both electrons again have angular momentum equal to zero,
the corresponding quantum states should also belong to single elec-
tron quantum numbers (l1, l2) = (0, 0). However, the single electron
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picture breaks down completely in the limit Θ = 0 where electron-
electron interaction becomes the dominant effect. The quantum states
corresponding to this classical configuration are distinctively different
from those obtained from the collinear dynamics with electrons on dif-
ferent sides of the nucleus. The Rydberg series related to the classical
Θ = 0 dynamics are on the outermost rigth side in each N subspec-
trum in fig. 28.6, and contain the energetically highest states for given
N,n quantum numbers, see also remark 28.5. A detailed account of
the historical development as well as a modern interpretation of the
spectrum can be found in ref. [28.1].

Remark 28.5 Beyond the unstable collinear helium subspace. The
semiclassical quantization of the chaotic collinear helium subspace is
discussed in refs. [28.7, 28.8, 28.9]. Classical and semiclassical consid-
erations beyond what has been discussed in sect. 28.2 follow several
other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both
electrons are on the same side of the nucleus reveals that this configu-
ration is fully stable both in the collinear plane and perpendicular to
it. The corresponding quantum states can be obtained with the help
of an approximate EBK-quantization which reveals helium resonances
with extremely long lifetimes (quasi - bound states in the continuum).
These states form the energetically highest Rydberg series for a given
principal quantum number N , see fig. 28.6. Details can be found in
refs. [28.10, 28.11].

In order to obtain the Rydberg series structure of the spectrum,
that is the succession of states converging to various ionization thresh-
olds, we need to take into account the dynamics of orbits which make
large excursions along the r1 or r2 axis. In the chaotic collinear sub-
space these orbits are characterized by symbol sequences of form (a0n)
where a stands for an arbitrary binary symbol sequence and 0n is a
succession of n 0’s in a row. A summation of the form

∑∞
n=0 ta0n ,

where tp are the cycle weights in (28.19), and cycle expansion of in-
deed yield all Rydbergstates up the various ionization thresholds, see
ref. [28.4].
For a comprehensive overview on spectra of two-electron atoms and
semiclassical treatments ref. [28.1].

Résumé

We have covered a lot of ground starting with considerations of the clas-
sical properties of a three-body Coulomb problem, and ending with the
semiclassical helium spectrum. We saw that the three-body problem re-
stricted to the dynamics on a collinear appears to be fully chaotic; this
implies that traditional semiclassical methods such as WKBquantization
will not work and that we needed the full periodic orbit theory to obtain
leads to the semiclassical spectrum of helium. As a piece of unexpected
luck the symbolic dynamics is simple, and the semiclassical quantization of
the collinear dynamics yields an important part of the helium spectrum,
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including the ground state, to a reasonable accuracy. A sceptic might say:
“Why bother with all the semiclassical considerations? A straightforward
numerical quantum calculation achieves the same goal with better preci-
sion.” While this is true, the semiclassical analysis offers new insights into
the structure of the spectrum. We discovered that the dynamics perpendic-
ular to the collinear plane was stable, giving rise to an additional (approx-
imate) quantum number �. We thus understood the origin of the different
Rydberg series depicted in fig. 28.6, a fact which is not at all obvious from
a numerical solution of the quantum problem.

Having traversed the long road from the classical game of pinball all the
way to a credible helium spectrum computation, we could declare victory
and fold down this enterprise. Nevertheless, there is still much to think
about - what about such quintessentially quantum effects as diffraction,
tunnelling, ...? As we shall now see, the periodic orbit theory has still
much of interest to offer.
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Exercises

Exercise 28.1 Kustaanheimo–Stiefel transformation. Check the Kustaanheimo–
Stiefel regularization for collinear helium; derive the Hamiltonian (28.10) and
the collinear helium equations of motion (28.11).

Exercise 28.2 Helium in the plane. Starting with the helium Hamiltonian

in the infinite nucleus mass approximation mhe = ∞, and angular momentum L =
0, show that the three body problem can be written in terms of three independent

coordinates only, the electron-nucleus distances r1 and r2 and the inter-electron angle

Θ, see fig. 28.1.

Exercise 28.3 Helium trajectories. Do some trial integrations of the
collinear helium equations of motion (28.11). Due to the energy conservation,
only three of the phase space coordinates (Q1, Q2, P1, P2) are independent.
Alternatively, you can integrate in 4 dimensions and use the energy conservation
as a check on the quality of your integrator.

The dynamics can be visualized as a motion in the original configuration
space (r1, r2), ri ≥ 0 quadrant, or, better still, by an appropriately chosen
2-d Poincaré section, exercise 28.4. Most trajectories will run away, do not be
surprised - the classical collinear helium is unbound. Try to guess approximately
the shortest cycle of fig. 28.4.

Exercise 28.4 A Poincaré section for collinear Helium. Construct a
Poincaré section of fig. 28.3b that reduces the helium flow to a map. Try to
delineate regions which correspond to finite symbol sequences, that is initial
conditions that follow the same topological itinerary in the fig. 28.3a space for
a finite number of bounces. Such rough partition can be used to initiate 2–
dimensional Newton-Raphson method searches for helium cycles, exercise 28.5.

Exercise 28.5 Collinear helium cycles. The motion in the (r1, r2) plane
is topologically similar to the pinball motion in a 3-disk system, except that
the motion is in the Coulomb potential.

Just as in the 3-disk system the dynamics is simplified if viewed in the
fundamental domain, in this case the region between r1 axis and the r1 = r2

diagonal. Modify your integration routine so the trajectory bounces off the
diagonal as off a mirror. Miraculously, the symbolic dynamics for the survivors
again turns out to be binary, with 0 symbol signifying a bounce off the r1

axis, and 1 symbol for a bounce off the diagonal. Just as in the 3-disk game of
pinball, we thus know what cycles need to be computed for the cycle expansion
(28.23).

Guess some short cycles by requiring that topologically they correspond to
sequences of bounces either returning to the same ri axis or reflecting off the
diagonal. Now either Use special symmetries of orbits such as self-retracing to
find all orbits up to length 5 by a 1-dimensional Newton search.
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Exercise 28.6 Collinear helium cycle stabilities. Compute the eigenval-
ues for the cycles you found in exercise 28.5, as described in sect. 28.1.4. You
may either integrate the reduced 2×2 matrix using equations (28.13) together
with the generating function l given in local coordinates by (28.14) or integrate
the full 4 × 4 Jacobian matrix, see sect. 17.1. Integration in 4 dimensions
should give eigenvalues of the form (1, 1, Λp, 1/Λp); The unit eigenvalues are
due to the usual periodic orbit invariances; displacements along the orbit as well
as perpendicular to the energy manifold are conserved; the latter one provides
a check of the accuracy of your computation. Compare with table 28.1.4; you
should get the actions and Lyapunov exponents right, but topological indices
and stability angles we take on faith.

Exercise 28.7 Helium eigenenergies. Compute the lowest eigenenergies
of singlet and triplet states of helium by substituting cycle data into the cycle
expansion (28.23) for the symmetric and antisymmetric zeta functions (28.22).
Probably the quickest way is to plot the magnitude of the zeta function as
function of real energy and look for the minima. As the eigenenergies in
general have a small imaginary part, a contour plot such as fig. 15.1, can
yield informed guesses. Better way would be to find the zeros by Newton
method, sect. 15.1.4. How close are you to the cycle expansion and quantum
results listed in table 28.2? You can find more quantum data in ref. [28.3].
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Chapter 29

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

29.1 Quantum eavesdropping

As noted in chapter 28, the classical mechanics of the helium atom is un-
defined at the instant of a triple collision. This is a common phenomenon -
there is often some singularity or discontinuity in the classical mechanics of
physical systems. This discontinuity can even be helpful in classifying the
dynamics. The points in phase space which have a past or future at the
discontinuity form manifolds which divide the phase space and provide the
symbolic dynamics. The general rule is that quantum mechanics smoothes
over these discontinuities in a process we interpret as diffraction. We solve
the local diffraction problem quantum mechanically and then incorporate
this into our global solution. By doing so, we reconfirm the central leitmotif
of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is
somewhat involved. In fact, so involved that we do not have a clue how
to do it. In its place we illustrate the concept of diffractive effects with a
pinball game. There are various classes of discontinuities which a billiard
can have. There may be a grazing condition such that some trajectories
hit a smooth surface while others are unaffected - this leads to the creeping
described in chapter 27. There may be a vertex such that trajectories to
one side bounce differently from those to the other side. There may be a
point scatterer or a magnetic flux line such that we do not know how to
continue classical mechanics through the discontinuities. In what follows,
we specialize the discussion to the second example - that of vertices or
wedges. To further simplify the discussion, we consider the special case of
a half line which can be thought of as a wedge of angle zero.
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516 CHAPTER 29. DIFFRACTION DISTRACTION

Figure 29.1: Scattering of a plane wave off a
half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a
half line (see fig. 29.1). This is the local problem whose solution we will use
to construct a global solution of more complicated geometries. We define
the vertex to be the origin and launch a plane wave at it from an angle α.
What is the total field? This is a problem solved by Sommerfeld in 1896
and our discussion closely follows his.

The total field consists of three parts - the incident field, the reflected
field and the diffractive field. Ignoring the third of these for the moment,
we see that the space is divided into three regions. In region I there is both
an incident and a reflected wave. In region II there is only an incident field.
In region III there is nothing so we call this the shadowed region. However,
because of diffraction the field does enter this region. This accounts for
why you can overhear a conversation if you are on the opposite side of a
thick wall but with a door a few meters away. Traditionally such effects
have been ignored in semi-classical calculations because they are relatively
weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line
case, so let us briefly consider that much simpler problem. There we know
that the problem can be solved by images. An incident wave of amplitude
A is of the form

v(r, ψ) = Ae−ikr cos ψ (29.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then
given by the method of images as

vtot = v(r, φ− α)− v(r, φ + α), (29.2)

where the negative sign ensures that the boundary condition of zero field
on the line is satisfied.

Sommerfeld then argued that v(r, ψ) can also be given a complex inte-
gral representation

v(r, ψ) = A

∫
C

dβf(β, ψ)e−ikr cos β . (29.3)
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Figure 29.2: The contour in the complex β plane. The pole is at β = −ψ (marked
by × in the figure) and the integrand approaches zero in the shaded regions as the
magnitude of the imaginary part of β approaches infinity.

This is certainly correct if the function f(β, ψ) has a pole of residue 1/2πi
at β = −ψ and if the contour C encloses that pole. One choice is

f(β, ψ) =
1
2π

eiβ

eiβ − e−iψ
. (29.4)

(We choose the pole to be at β = −ψ rather than β = ψ for reasons
discussed later.) One valid choice for the contour is shown in fig. 29.2. This
encloses the pole and vanishes as |Im β| → ∞ (as denoted by the shading).
The sections D1 and D2 are congruent because they are displaced by 2π.
However, they are traversed in an opposite sense and cancel, so our contour
consists of just the sections C1 and C2. The motivation for expressing the
solution in this complicated manner should become clear soon.

What have we done? We extended the space under consideration by a
factor of two and then constructed a solution by assuming that there is also
a source in the unphysical space. We superimpose the solutions from the
two sources and at the end only consider the solution in the physical space
to be meaningful. Furthermore, we expressed the solution as a contour
integral which reflects the 2π periodicity of the problem. The half line
scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is
periodic in 4π. This can be seen by the fact that the field can be expanded
in a series of the form {sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend
the space by thinking of it as two sheeted. The physical sheet is as shown in
fig. 29.1 and the unphysical sheet is congruent to it. The sheets are glued
together along the half line so that a curve in the physical space which
intersects the half line is continued in the unphysical space and vice-versa.
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518 CHAPTER 29. DIFFRACTION DISTRACTION

The boundary conditions are that the total field is zero on both faces of
the half line (which are physically distinct boundary conditions) and that
as r →∞ the field is composed solely of plane waves and outgoing circular
waves of the form g(φ) exp(ikr)/

√
kr. This last condition is a result of

Huygens’ principle.

We assume that the complete solution is also given by the method of
images as

vtot = u(r, φ− α)− u(r, φ + α). (29.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative
sign guarantees that the solution vanishes on both faces of the half line.
Sommerfeld then made the ansatz that u is as given in equation (29.3)
with the same contour C1 + C2 but with the 4π periodicity accounted for
by replacing equation (29.4) with

f(β, ψ) =
1
4π

eiβ/2

eiβ/2 − e−iψ/2
. (29.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.)
The integral (29.3) can be thought of as a linear superposition of an infinity
of plane waves each of which satisfies the Helmholtz equation (∇2 +k2)v =
0, and so their combination also satisfies the Helmholtz equation. We will
see that the diffracted field is an outgoing circular wave; this being a result
of choosing the pole at β = −ψ rather than β = ψ in equation (29.4).
Therefore, this ansatz is a solution of the equation and satisfies all boundary
conditions and therefore constitutes a valid solution. By uniqueness this is
the only solution.

In order to further understand this solution, it is useful to massage
the contour. Depending on φ there may or may not be a pole between
β = −π and β = π. In region I, both functions u(r, φ ± α) have poles
which correspond to the incident and reflected waves. In region II, only
u(r, φ − α) has a pole corresponding to the incident wave. In region III
there are no poles because of the shadow. Once we have accounted for the
geometrical waves (i.e. the poles), we extract the diffracted waves by saddle
point analysis at β = ±π. We do this by deforming the contours C so that
they go through the saddles as shown in fig. 29.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where
the minus sign indicates that it is traversed in a negative sense. As a result,
F has no net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D
of fig. 29.2 but with a reversed sense. Since the integrand is no longer 2π
periodic, the contributions from these curves no longer cancel. We evaluate
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Figure 29.3: The contour used to evaluate the diffractive field after the contribution
of possible poles has been explicitly evaluated. The curve F is traversed twice in
opposite directions and has no net contribution.

both stationary phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4

√
8π

sec(ψ/2)
eikr

√
kr

(29.7)

so that the total diffracted field is

vdiff = −A
eiπ/4

√
8π

(
sec

(
φ− α

2

)
− sec

(
φ + α

2

))
eikr

√
kr

. (29.8)

Note that this expression breaks down when φ ± α = π. These angles
correspond to the borders among the three regions of fig. 29.1 and must be
handled more carefully - we can not do a stationary phase integral in the
vicinity of a pole. However, the integral representation (29.3) and (29.6) is
uniformly valid. ✎ 29.1

page 530We now turn to the simple task of translating this result into the lan-
guage of semiclassical Green’s functions. Instead of an incident plane
wave, we assume a source at point x′ and then compute the resulting field
at the receiver position x. If x is in region I, there is both a direct term,
and a reflected term, if x is in region II there is only a direct term and
if x is in region III there is neither. In any event these contributions to
the semiclassical Green’s function are known since the free space Green’s
function between two points x2 and x1 is

Gf(x2, x1, k) = − i

4
H

(+)
0 (kd) ≈ − 1√

8πkd
exp{i(kd + π/4)}, (29.9)

where d is the distance between the points. For a reflection, we need to
multiply by −1 and the distance is the length of the path via the reflection
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point. Most interesting for us, there is also a diffractive contribution to
the Green’s function. In equation (29.8), we recognize that the coefficient
A is simply the intensity at the origin if there were no scatterer. This is
therefore replaced by the Green’s function to go from the source to the
vertex which we label xV . Furthermore, we recognize that exp(ikr)/

√
kr

is, within a proportionality constant, the semiclassical Green’s function to
go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ′)Gf(xV , x′, k), (29.10)

where, by comparison with equations (29.8) and (29.9), we have

d(θ, θ′) = sec
(

θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (29.11)

Here θ′ is the angle to the source as measured from the vertex and θ is
the angle to the receiver. They were denoted as α and φ previously. Note
that there is a symmetry between the source and receiver as we expect
for a time-reversal invariant process. Also the diffraction coefficient d does
not depend on which face of the half line we use to measure the angles.
As we will see, a very important property of Gdiff is that it is a simple
multiplicative combination of other semiclassical Green’s functions.✎ 29.2

page 530 We now recover our classical perspective by realizing that we can still
think of classical trajectories. In calculating the quantum Green’s function,
we sum over the contributions of various paths. These include the classi-
cal trajectories which connect the points and also paths which connect the
points via the vertex. These have different weights as given by equations
(29.9) and (29.10) but the concept of summing over classical paths is pre-
served.

For completeness, we remark that there is an exact integral representa-
tion for the Green’s function in the presence of a wedge of arbitrary opening
angle [29.15]. It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ)− g(r, r′, k, θ′ + θ) (29.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as
measured from the vertex and the angles are measured from either face of
the wedge. The function g is given by

g(r, r′, k, ψ) =
i

8πν

∫
C1+C2

dβ
H+

0 (k
√

r2 + r′2 − 2rr′ cos β)

1− exp
(
iβ+ψ

ν

) (29.13)

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in
the case of the half plane). The contour C1 + C2 is the same as shown in
fig. 29.2.
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Figure 29.4: The billiard considered here.
The dynamics consists of free motion followed
by specular reflections off the faces. The top
vertex induces diffraction while the bottom one
is a right angle and induces two specular geo-
metric reflections.
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The poles of this integral give contributions which can be identified with
the geometric paths connecting x and x′. The saddle points at β = ±π give
contributions which can be identified with the diffractive path connecting
x and x′. The saddle point analysis allows us to identify the diffraction
constant as

d(θ, θ′) = −
4 sin π

ν

ν

sin θ
ν sin θ′

ν(
cos π

ν − cos θ+θ′
ν

) (
cos π

ν − cos θ−θ′
ν

) , (29.14)

which reduces to (29.11) when ν = 2. Note that the diffraction coefficient
vanishes identically if ν = 1/n where n is any integer. This corresponds
to wedge angles of γ = π/n (eg. n=1 corresponds to a full line and n=2
corresponds to a right angle). This demonstration is limited by the fact
that it came from a leading order asymptotic expansion but the result is
quite general. For such wedge angles, we can use the method of images
(we will require 2n − 1 images in addition to the actual source point) to
obtain the Green’s function and there is no diffractive contribution to any
order. Classically this corresponds to the fact that for such angles, there
is no discontinuity in the dynamics. Trajectories going into the vertex can
be continued out of them unambiguously. This meshes with the discussion
in the introduction where we argued that diffractive effects are intimately
linked with classical discontinuities.

The integral representation is also useful because it allows us to consider
geometries such that the angles are near the optical boundaries or the wedge
angle is close to π/n. For these geometries the saddle point analysis leading
to (29.14) is invalid due to the existence of a nearby pole. In that event,
we require a more sophisticated asymptotic analysis of the full integral
representation.

29.2 An application

Although we introduced diffraction as a correction to the purely classical
effects; it is instructive to consider a system which can be quantized solely
in terms of periodic diffractive orbits. Consider the geometry shown in
fig. 29.4 The classical mechanics consists of free motion followed by specular
reflections off faces. The upper vertex is a source of diffraction while the
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522 CHAPTER 29. DIFFRACTION DISTRACTION

Figure 29.5: The dashed line shows a simple
periodic diffractive orbit γ. Between the vertex
V and a point P close to the orbit there are
two geometric legs labeled ±. The origin of the
coordinate system is chosen to be at R. �
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lower one is a right angle and induces no diffraction. This is an open
system, there are no bound states - only scattering resonances. However,
we can still test the effectiveness of the theory in predicting them. Formally,
scattering resonances are the poles of the scattering S matrix and by an
identity of Balian and Bloch are also poles of the quantum Green’s function.
We demonstrate this fact in chapter 27 for 2-dimensional scatterers. The
poles have complex wave number k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of
G which we call g(k). Specifying the trace means that we must consider all
paths which close on themselves in the configuration space while stationary
phase arguments for large wavenumber k extract those which are periodic -
just as for classical trajectories. In general, g(k) is given by the sum over all
diffractive and geometric orbits. The contribution of the simple diffractive
orbit labeled γ shown in fig. 29.5 to g(k) is determined as follows.

We consider a point P just a little off the path and determine the
semiclassical Green’s function to return to P via the vertex using (29.9)
and (29.10). To leading order in y the lengths of the two geometric paths
connecting P and V are d± = (L ± x) + y2/(L ± x)2/2 so that the phase
factor ik(d+ +d−) equals 2ikL+ iky2/(L2−x2). The trace integral involves
integrating over all points P and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx√
L2 − x2

∫ ∞

−∞
dye

(
iky2 L

L2−x2

)
. (29.15)

We introduced an overall negative sign to account for the reflection at the
hard wall and multiplied by 2 to account for the two traversal senses, V RPV
and V PRV . In the spirit of stationary phase integrals, we have neglected
the y dependence everywhere except in the exponential. The diffraction
constant dγ is the one corresponding to the diffractive periodic orbit. To
evaluate the y integral, we use the identity

∫ ∞

−∞
dξeiaξ2

= eiπ/4

√
π

a
, (29.16)

and thus obtain a factor which precisely cancels the x dependence in the x
integral. This leads to the rather simple result

gγ ≈ −
ilγ
2k

{
dγ√
8πklγ

}
ei(klγ+π/4) (29.17)
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where lγ = 2L is the length of the periodic diffractive orbit. A more
sophisticated analysis of the trace integral has been done [29.6] using the
integral representation (29.13). It is valid in the vicinity of an optical
boundary and also for wedges with opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard
walls and µγ diffractions each with a diffraction constant dγ,j . The total
length of the orbit Lγ =

∑
lγ,j is the sum of the various diffractive legs and

lγ is the length of the corresponding prime orbit. For such an orbit, (29.17)
generalizes to

gγ(k) = − ilγ
2k


µγ∏
j=1

dγ,j√
8πklγ,j

 exp {i(kLγ + nγπ − 3µγπ/4)}. (29.18)

✎ 29.3
page 530Each diffraction introduces a factor of 1/

√
k and multi-diffractive orbits are

thereby suppressed.

If the orbit γ is prime then Lγ = lγ . If γ is the r’th repeat of a prime
orbit β we have Lγ = rlβ, nγ = rpβ and µγ = rσβ, where lβ, pβ and σβ all
refer to the prime orbit. We can then write

gγ = gβ,r = − ilβ
2k

trβ (29.19)

where

tβ =


σβ∏
j=1

dβ,j√
8πklβ,j

 exp {i(klβ + pβπ − 3σβπ/4)}. (29.20)

It then makes sense to organize the sum over diffractive orbits as a sum
over the prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑

β

∞∑
r=1

gβ,r = − i

2k

∑
β

lβ
tβ

1− tβ
. (29.21)

We cast this as a logarithmic derivative (12.7) by noting that dtβ
dk =

ilβtβ − σβtβ/2k and recognizing that the first term dominates in the semi-
classical limit. It follows that

gdiff(k) ≈ 1
2k

d

dk

ln
∏
β

(1− tβ)

 . (29.22)

In the case that there are only diffractive periodic orbits - as in the geometry
of fig. 29.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏
β

(1− tβ). (29.23)
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Figure 29.6: The two-node Markov graph
with all the diffractive processes connecting the
nodes.
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For geometric orbits, this function would be evaluated with a cycle expan-
sion as discussed in chapter 15. However, here we can use the multiplicative
nature of the weights tβ to find a closed form representation of the func-
tion using a Markov graph, as in sect. 9.6.1. This multiplicative property
of the weights follows from the fact that the diffractive Green’s function
(29.10) is multiplicative in segment semiclassical Green’s functions, unlike
the geometric case.

There is a reflection symmetry in the problem which means that all
resonances can be classified as even or odd. Because of this, the dynam-
ical zeta function factorizes as 1/ζ = 1/ζ+ζ− (as explained in sects. 19.5
and 19.1.2) and we determine 1/ζ+ and 1/ζ− separately using the ideas of
symmetry decomposition of chapter 19.

In the Markov graph shown in fig. 29.6, we enumerate all processes.
We start by identifying the fundamental domain as just the right half of
fig. 29.4. There are two nodes which we call A and B. To get to another
node from B, we can diffract (always via the vertex) in one of three direc-
tions. We can diffract back to B which we denote as process 1. We can
diffract to B’s image point B′ and then follow this by a reflection. This
process we denote as 2̄ where the bar indicates that it involves a reflection.
Thirdly, we can diffract to node A. Starting at A we can also diffract to a
node in three ways. We can diffract to B which we denote as 4. We can
diffract to B′ followed by a reflection which we denote as 4̄. Finally, we can
diffract back to A which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First
though, we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed
loops which do not intersect themselves in fig. 29.6. We do it first for 1/ζ+

because that is simpler. In that case, the processes with bars are treated
on an equal footing as the others. Appealing back to sect. 19.5 we find

1/ζ+ = 1− t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1− (t1 + t2̄ + t5)− 2t3t4 + t5(t1 + t2̄) (29.24)

where we have used the fact that t4 = t4̄ by symmetry. The last term
has a positive sign because it involves the product of shorter closed loops.
To calculate 1/ζ−, we note that the processes with bars have a relative
negative sign due to the group theoretic weight. Furthermore, process 5 is
a boundary orbit (see sect. 19.3.1) and only affects the even resonances -
the terms involving t5 are absent from 1/ζ−. The result is

1/ζ− = 1− t1 + t2̄ − t3t4 + t3t4̄ ,

= 1− (t1 − t2̄). (29.25)
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Note that these expressions have a finite number of terms and are not in ✎ 29.4
page 530

the form of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (29.20) but note
that each weight involves just one diffraction constant. It is then convenient
to define the quantities

u2
A =

exp{i(2kL + 2π)}√
16πkL

u2
B =

exp{i(2kH + π)}√
16πkH

. (29.26)

The lengths L and H = L/
√

2 are defined in fig. 29.4; we set L = 1
throughout. Bouncing inside the right angle at A corresponds to two spec-
ular reflections so that p = 2. We therefore explicitly include the factor
exp (i2π) in (29.26) although it is trivially equal to one. Similarly, there is
one specular reflection at point B giving p = 1 and therefore a factor of
exp (iπ). We have defined uA and uB because, together with some diffrac-
tion constants, they can be used to construct all of the weights. Altogether
we define four diffraction coefficients: dAB is the constant corresponding
to diffracting from B to A and is found from (29.11) with θ′ = 3π/4 and
θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we have
dAA and dBB = dB′B which equal 2 and 1 +

√
2 respectively. dij = dji due

to the Green’s function symmetry between source and receiver referred to
earlier. Finally, there is the diffractive phase factor s = exp (−i3π/4) each
time there is a diffraction. The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (29.27)

Each weight involves two u’s and one d. The u’s represent the contribution
to the weight from the paths connecting the nodes to the vertex and the d
gives the diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (29.25) this
means that there are no odd resonances because 1 can never equal 0. For
the even resonances equation (29.24) is an implicit equation for k which
has zeros shown in fig. 29.7.

For comparison we also show the result from an exact quantum cal-
culation. The agreement is very good right down to the ground state -
as is so often the case with semiclassical calculations. In addition we can
use our dynamical zeta function to find arbitrarily high resonances and the
results actually improve in that limit. In the same limit, the exact numer-
ical solution becomes more difficult to find so the dynamical zeta function
approximation is particularly useful in that case. ✎ 29.5

page 530
In general a system will consist of both geometric and diffractive or-

bits. In that case, the full dynamical zeta function is the product of the
geometric zeta function and the diffractive one. The diffractive weights are
typically smaller by order O(1/

√
k) but for small k they can be numerically
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Figure 29.7: The even resonances of the
wedge scatterer of fig. 29.4 plotted in the com-
plex k−plane, with L = 1. The exact reso-
nances are represented as circles and their semi-
classical approximations as crosses.
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competitive so that there is a significant diffractive effect on the low-lying
spectrum. It might be expected that higher in the spectrum, the effect
of diffraction is weaker due to the decreasing weights. However, it should
be pointed out that an analysis of the situation for creeping diffraction
[29.7] concluded that the diffraction is actually more important higher in
the spectrum due to the fact that an ever greater fraction of the orbits need
to be corrected for diffractive effects. The equivalent analysis has not been
done for edge diffraction but a similar conclusion can probably be expected.

To conclude this chapter, we return to the opening paragraph and dis-
cuss the possibility of doing such an analysis for helium. The important
point which allowed us to successfully analyze the geometry of fig. 29.4
is that when a trajectory is near the vertex, we can extract its diffrac-
tion constant without reference to the other facets of the problem. We
say, therefore, that this is a “local” analysis for the purposes of which we
have “turned off” the other aspects of the problem, namely sides AB and
AB′. By analogy, for helium, we would look for some simpler description of
the problem which applies near the three body collision. However, there is
nothing to “turn off”. The local problem is just as difficult as the global one
since they are precisely the same problem, just related by scaling. There-
fore, it is not at all clear that such an analysis is possible for helium.

Commentary

Remark 29.1 Classical discontinuities. Various classes of dis-
continuities for billiard and potential problems discussed in the liter-
ature:

• a grazing condition such that some trajectories hit a smooth
surface while others are unaffected, refs. [29.1, 29.2, 29.3, 29.7]

• a vertex such that trajectories to one side bounce differently
from those to the other side, refs. [29.2, 29.4, 29.5, 29.8, 29.9].

• a point scatterer [29.10, 29.11] or a magnetic flux line [29.12,
29.13] such that we do not know how to continue classical me-
chanics through the discontinuities.

Remark 29.2 Geometrical theory of diffraction. In the above dis-
cussion we borrowed heavily from the ideas of Keller who was inter-
ested in extending the geometrical ray picture of optics to cases where
there is a discontinuity. He maintained that we could hang onto that
ray-tracing picture by allowing rays to strike the vertex and then
leave at any angle with amplitude (29.8). Both he and Sommerfeld
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were thinking of optics and not quantum mechanics and they did not
phrase the results in terms of semiclassical Green’s functions but the
essential idea is the same.

Remark 29.3 Generalizations Consider the effect of replacing
our half line by a wedge of angle γ1 and the right angle by an arbi-
trary angle γ2. If γ2 > γ1 and γ2 ≥ π/2 this is an open problem whose
solution is given by equations (29.24) and (29.25) (there will then be
odd resonances) but with modified weights reflecting the changed ge-
ometry [29.8]. (For γ2 < π/2, more diffractive periodic orbits appear
and the dynamical zeta functions are more complicated but can be
calculated with the same machinery.) When γ2 = γ1, the problem in
fact has bound states [29.21, 29.22]. This last case has been of interest
in studying electron transport in mesoscopic devices and in microwave
waveguides. However we can not use our formalism as it stands be-
cause the diffractive periodic orbits for this geometry lie right on the
border between illuminated and shadowed regions so that equation
(29.7) is invalid. Even the more uniform derivation of [29.6] fails for
that particular geometry, the problem being that the diffractive or-
bit actually lives on the edge of a family of geometric orbits and this
makes the analysis still more difficult.

Remark 29.4 Diffractive Green’s functions. The result (29.17) is
proportional to the length of the orbit times the semiclassical Green’s
function (29.9) to go from the vertex back to itself along the classical
path. The multi-diffractive formula (29.18) is proportional to the to-
tal length of the orbit times the product of the semiclassical Green’s
functions to go from one vertex to the next along classical paths. This
result generalizes to any system — either a pinball or a potential —
which contains point singularities such that we can define a diffraction
constant as above. The contribution to the trace of the semiclassical
Green’s function coming from a diffractive orbit which hits the sin-
gularities is proportional to the total length (or period) of the orbit
times the product of semiclassical Green’s functions in going from one
singularity to the next. This result first appeared in reference [29.2]
and a derivation can be found in reference [29.9]. A similar structure
also exists for creeping [29.2].

Remark 29.5 Diffractive orbits for hydrogenic atoms. An anal-
ysis in terms of diffractive orbits has been made in a different atomic
physics system, the response of hydrogenic atoms to strong magnetic
fields [29.23]. In these systems, a single electron is highly excited and
takes long traversals far from the nucleus. Upon returning to a hydro-
gen nucleus, it is re-ejected with the reversed momentum as discussed
in chapter 28. However, if the atom is not hydrogen but sodium or
some other atom with one valence electron, the returning electron feels
the charge distribution of the core electrons and not just the charge of
the nucleus. This so-called quantum defect induces scattering in addi-
tion to the classical re-ejection present in the hydrogen atom. (In this
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case the local analysis consists of neglecting the magnetic field when
the trajectory is near the nucleus.) This is formally similar to the
vertex which causes both specular reflection and diffraction. There
is then additional structure in the Fourier transform of the quantum
spectrum corresponding to the induced diffractive orbits, and this has
been observed experimentally [29.24].

Résumé

In this chapter we have discovered new types of periodic orbits contributing
to the semiclassical traces and determinants. Unlike the periodic orbits we
had seen so far, these are not true classical orbits. They are generated by
singularities of the scattering potential. In these singular points the classi-
cal dynamics has no unique definition, and the classical orbits hitting the
singularities can be continued in many different directions. While the clas-
sical mechanics does not know which way to go, quantum mechanics solves
the dilemma by allowing us to continue in all possible directions. The like-
lihoods of different paths are given by the quantum mechanical weights
called diffraction constants. The total contribution to a trace from such or-
bit is given by the product of transmission amplitudes between singularities
and diffraction constants of singularities. The weights of diffractive peri-
odic orbits are at least of order 1/

√
k weaker than the weights associated

with classically realizable orbits, and their contribution at large energies is
therefore negligible. Nevertheless, they can strongly influence the low lying
resonances or energy levels. In some systems, such as the N disk scattering
the diffraction effects do not only perturb semiclassical resonances, but can
also create new low energy resonances. Therefore it is always important to
include the contributions of diffractive periodic orbits when semiclassical
methods are applied at low energies.
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Exercises

(N. Whelan)

Exercise 29.1 Stationary phase integral. Evaluate the two stationary phase
integrals corresponding to contours E1 and E2 of fig. 29.3 and thereby verify (29.7).

Exercise 29.2 Scattering from a small disk Imagine that instead of a wedge,
we have a disk whose radius a is much smaller than the typical wavelengths we are
considering. In that limit, solve the quantum scattering problem - find the scattered
wave which result from an incident plane wave. You can do this by the method of
partial waves - the analogous three dimensional problem is discussed in most quantum
textbooks. You should find that only the m = 0 partial wave contributes for small a.
Following the discussion above, show that the diffraction constant is

d =
2π

log
(

2
ka

)
− γe + iπ

2

(29.28)

where γe = 0.577 · · · is Euler’s constant. Note that in this limit d depends weakly on
k but not on the scattering angle.

Exercise 29.3 Several diffractive legs. Derive equation (29.18). The calcula-
tion involves considering slight variations of the diffractive orbit as in the simple case
discussed above. Here it is more complicated because there are more diffractive arcs
- however you should convince yourself that a slight variation of the diffractive orbit
only affects one leg at a time.

Exercise 29.4 Unsymmetrized dynamical zeta function. Assume you know
nothing about symmetry decomposition. Construct the three node Markov diagram
for fig. 29.1 by considering A, B and B′ to be physically distinct. Write down the
corresponding dynamical zeta function and check explicitly that for B = B′ it factorizes
into the product of the the even and odd dynamical zeta functions. Why is there no
term t2̄ in the full dynamical zeta function?

Exercise 29.5 Three point scatterers. Consider the limiting case of the
three disk game of pinball of fig. 1.1 where the disks are very much smaller than
their spacing R. Use the results of exercise 29.2 to construct the desymmetrized
dynamical zeta functions, as in sect. 19.6. You should find 1/ζA1 = 1 − 2t where
t = dei(kR−3π/4)/

√
8πkR. Compare this formula with that from chapter 9. By

assuming that the real part of k is much greater than the imaginary part show that
the positions of the resonances are knR = αn − iβn where αn = 2πn + 3π/4,
βn = log

(√
2παn/d

)
and n is a non-negative integer. (See also reference [29.11].)
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Epilogue

Nowadays, whatever the truth of the matter may be
(and we will probably never know), the simplest so-
lution is no longer emotionally satisfying. Everything
we know about the world militates against it. The
concepts of indeterminacy and chaos have filtered
down to us from the higher sciences to confirm our
nagging suspicions.
L. Sante, “Review of ‘American Tabloid’ by James
Ellroy”, New York Review of Books (May 11, 1995)

A motion on a strange attractor can be approximated by shadowing long
orbits by sequences of nearby shorter periodic orbits. This notion has here
been made precise by approximating orbits by prime cycles, and evaluating
associated curvatures. A curvature measures the deviation of a long cycle
from its approximation by shorter cycles; the smoothness of the dynamical
system implies exponential fall-off for (almost) all curvatures. We propose
that the theoretical and experimental non–wandering sets be expressed in
terms of the symbol sequences of short cycles (a topological characterization
of the spatial layout of the non–wandering set) and their eigenvalues (metric
structure)

Cycles as the skeleton of chaos

Étant données des équations ... et une solution parti-
culiére quelconque de ces équations, on peut toujours
trouver une solution périodique (dont la période peut,
il est vrai, étre trés longue), telle que la différence
entre les deux solutions soit aussi petite qu’on le
veut, pendant un temps aussi long qu’on le veut.
D’ailleurs, ce qui nous rend ces solutions périodiques
si précieuses, c’est qu’elles sont, pour ansi dire, la
seule bréche par où nous puissions esseyer de pénétrer
dans une place jusqu’ici réputée inabordable.
H. Poincaré, Les méthodes nouvelles de la méchanique
céleste

We wind down this chatty chapter by asking: why cycle?

We tend to think of a dynamical system as a smooth system whose
evolution can be followed by integrating a set of differential equations.
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Traditionally one used integrable motions as zeroth-order approximations
to physical systems, and accounted for weak nonlinearities perturbatively.
However, when the evolution is actually followed through to asymptotic
times, one discovers that the strongly nonlinear systems show an amaz-
ingly rich structure which is not at all apparent in their formulation in
terms of differential equations. In particular, the periodic orbits are impor-
tant because they form the skeleton onto which all trajectories trapped for
long times cling. This was already appreciated century ago by H. Poincaré,
who, describing in Les méthodes nouvelles de la méchanique céleste his dis-
covery of homoclinic tangles, mused that “the complexity of this figure will
be striking, and I shall not even try to draw it”. Today such drawings
are cheap and plentiful; but Poincaré went a step further and, noting that
hidden in this apparent chaos is a rigid skeleton, a tree of cycles (periodic
orbits) of increasing lengths and self-similar structure, suggested that the
cycles should be the key to chaotic dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very
different from those for the nearly integrable systems: a good starting ap-
proximation here is the stretching and kneading of a baker’s map, rather
than the winding of a harmonic oscillator.

For low dimensional deterministic dynamical systems description in
terms of cycles has many virtues:

1. cycle symbol sequences are topological invariants: they give the spatial
layout of a non–wandering set

2. cycle eigenvalues are metric invariants: they give the scale of each
piece of a non–wandering set

3. cycles are dense on the asymptotic non–wandering set

4. cycles are ordered hierarchically: short cycles give good approxima-
tions to a non–wandering set, longer cycles only refinements. Errors
due to neglecting long cycles can be bounded, and typically fall off
exponentially or super-exponentially with the cutoff cycle length

5. cycles are structurally robust: for smooth flows eigenvalues of short
cycles vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum me-
chanical eigenstates and other “thermodynamic” averages) can be
efficiently computed from short cycles by means of cycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant
properties of dynamical systems follows from elementary considerations. If
the same dynamics is given by a map f in one set of coordinates, and a map
g in the next, then f and g (or any other good representation) are related
by a reparametrization and a coordinate transformation f = h−1 ◦ g ◦ h.
As both f and g are arbitrary representations of the dynamical system,
the explicit form of the conjugacy h is of no interest, only the properties
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invariant under any transformation h are of general import. The most ob-
vious invariant properties are topological; a fixed point must be a fixed
point in any representation, a trajectory which exactly returns to the ini-
tial point (a cycle) must do so in any representation. Furthermore, a good
representation should not mutilate the data; h must be a smooth transfor-
mation which maps nearby cycle points of f into nearby cycle points of g.
This smoothness guarantees that the cycles are not only topological invari-
ants, but that their linearized neighborhoods are also metrically invariant.
In particular, the cycle eigenvalues (eigenvalues of the Jacobian matrixs
dfn(x)/dx of periodic orbits fn(x) = x) are invariant.

Point 5: An important virtue of cycles is their structural robustness.
Many quantities customarily associated with dynamical systems depend on
the notion of “structural stability”, that is robustness of non–wandering set
to small parameter variations.

Still, the sufficiently short unstable cycles are structurally robust in
the sense that they are only slightly distorted by such parameter changes,
and averages computed using them as a skeleton are insensitive to small
deformations of the non–wandering set. In contrast, lack of structural sta-
bility wreaks havoc with long time averages such as Lyapunov exponents,
for which there is no guarantee that they converge to the correct asymptotic
value in any finite time numerical computation.

The main recent theoretical advance is point 4: we now know how to
control the errors due to neglecting longer cycles. As we seen above, even
though the number of invariants is infinite (unlike, for example, the number
of Casimir invariants for a compact Lie group) the dynamics can be well
approximated to any finite accuracy by a small finite set of invariants. The
origin of this convergence is geometrical, as we shall see in appendix J.1.2,
and for smooth flows the convergence of cycle expansions can even be super-
exponential.

The cycle expansions such as (15.5) outperform the pedestrian meth-
ods such as extrapolations from the finite cover sums (16.2) for a number
of reasons. The cycle expansion is a better averaging procedure than the
naive box counting algorithms because the strange attractor is here pieced
together in a topologically invariant way from neighborhoods (“space aver-
age”) rather than explored by a long ergodic trajectory (“time average”).
The cycle expansion is co-ordinate and reparametrization invariant - a finite
nth level sum (16.2) is not. Cycles are of finite period but infinite duration,
so the cycle eigenvalues are already evaluated in the n →∞ limit, but for
the sum (16.2) the limit has to be estimated by numerical extrapolations.
And, crucially, the higher terms in the cycle expansion (15.5) are deviations
of longer prime cycles from their approximations by shorter cycles. Such
combinations vanish exactly in piecewise linear approximations and fall off
exponentially for smooth dynamical flows.

In the above we have reviewed the general properties of the cycle expan-
sions; those have been applied to a series of examples of low-dimensional
chaos: 1-d strange attractors, the period-doubling repeller, the Hénon-type
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maps and the mode locking intervals for circle maps. The cycle expansions
have also been applied to the irrational windings set of critical circle maps,
to the Hamiltonian period-doubling repeller, to a Hamiltonian three-disk
game of pinball, to the three-disk quantum scattering resonances and to the
extraction of correlation exponents, Feasibility of analysis of experimental
non–wandering set in terms of cycles is discussed in ref. [15.1].

Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies
before thy uncreating word; Thy hand, great Anarch,
lets the curtain fall, And universal darkness buries
all.”
Alexander Pope, The Dunciad

We conclude cautiously with a homework assignment posed May 22,
1990 (the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approxi-
mants”) of finite subshift approximations to generic dynamical sys-
tems. Apply to (a) the Hénon map, (b) the Lorenz flow and (c) the
Hamiltonian standard map.

2. Non-hyperbolicity Incorporate power–law (marginal stability or-
bits,“intermittency”) corrections into cycle expansions. Apply to
long-time tails in the Hamiltonian diffusion problem.

3. Phenomenology Carry through a convincing analysis of a genuine
experimentally extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the
spectrum of a transfer operator are the maximal set of invariants of
an (physically interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many
unstable degrees of freedom. Apply to (a) coupled lattices, (b) cellular
automata, (c) neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle
expansions (WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical peri-
odic orbit sums. (a) Show that the zeros (energy eigenvalues) of the
appropriate Selberg products are real. (b) Find physically realistic
systems for which the “semiclassical” periodic orbit expansions yield
the exact quantization.

8. Atomic spectra Compute the helium spectrum from periodic orbit
expansions (already accomplished by Wintgen and Tanner!).

9. Symmetries Include fermions, gauge fields into the periodic orbit
theory.
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10. Quantum field theory Develop quantum theory of systems with
infinitely many classically unstable degrees of freedom. Apply to (a)
quark confinement (b) early universe (c) the brain.

Conclusion

Good-bye. I am leaving because I am bored.
George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea
verdaderamente, Se requieren la aurora y el poniente
Siglos, armas y el mar que une y separa.
Jorge Luis Borges El Hacedor, Ariosto y los arabes

The buttler did it.
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abscissa
absolute conv., 286
conditional conv., 286

accelerator mode, 377
action, 439, 449

helium, 491
relation to period, 502

admissible
periodic points, 164
trajectories, number of, 161

Airy
equation, 428
function, 428

Airy function, 432, 434
at a bifurcation, 434

alphabet, 138
analyticity

domain, 201
anomalous diffusion, 385
antiharmonic extension, 585
arc, 156
area

preserving map, 627
Artin-Mazur zeta function, 170
attractor, 34

basin, 34
Hénon, 58
strange, 34, 37, 127

autonomous flow, 37, 251
average

space, 107
time, 107

averages
chaotic, 333

averaging, 26
space, 122
time, 120

Axiom A
systems, 233

baker’s map, 86
Balmer spectrum, 418
basin of attraction, 34, 72
Bernoulli

polynomials, 228
shift, 227, 342

bi-infinite itinerary, 153
bifurcation

Airy function approximation, 434
bizarre, 585
generic, 86
Hopf, 395
saddle-node, 56

billiard
map, 83
stadium, 82

billiards, 81, 86
stability, 84

binary
symbolic dynamics

collinear helium, 496
Birkhoff

ergodic theorem, 107
Birkhoff coordinates, 11
block

finite sequence, 154
block, pruning, 155
Bohr

– de Broglie picture, 418
-Sommerfeld quantization, 418,

467, 559
helium, 489, 503
Uetli Schwur, 558

Bohr, N., 699
Boltzmann

equation, 390
Boltzmann, L, 22
boredom, 311, 535
Borges, J.L., 535
boundary orbits, 359
bounded operators, 641
Bowen, 24
brain, rat, 3, 24
branch cut, 327

singularity, 328
Bunimovich

billiard, see stadium
Burnett coefficient, 382

C3v symmetry, 364
canonical

transformation, 80
canonical transformations, 566
Cartwright M.L., 553
Cauchy criterion, 639
caustic, 442
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ceiling function, 49, 197, 240
center, 66
center manifold, 41
chain rule, 70

matrix, 637
change

of coordinates, 91
chaos, 5, 6

caveats, 8
diagnostics, 42
skeleton of, 10, 12
successes, 8

character
orthonormalitity, 619
representation, 616

characteristic
function, 102
polynomial, 167

chicken heart palpitations, 5
circle map

critical, 398
coarse graining, 156
coarse-graining, 101
coding, see symbolic dynamics
collinear helium, 420

symbolic dynamics, 496
combinatorics

teaching, 148
complete

N -ary dynamics, 139
complexity

algorithmic, 180
confession

C.N. Yang, 106
Kepler, 550
St. Augustine, 101

conjugacy, 91, 93
invariant, 97
smooth, 92, 96, 99, 704
topological, 150

connection formulas, 428
conservation

equation, 571
phase space volume, 81, 110, 572

continuity
equation, 111

continuity equation, 109, 441, 572
contour integral, 206
contracting

flow, 34, 37, 75
map, 77, 159
stability eigenvalues, 71, 190

convergence
abscissa of, 286
mediocre, 632
radius, 201
super-exponential, 223, 260

convexity, 133
coordinate

change, 91, 93
longitudinal, 451
transformations, 99

Copenhagen School, x, 558
correlation

decay
power law, 321

function, 237
spectrum, 237
time, 298

cost function, 254
covering

symbolic dynamics, 153
critical

point, 147
value, 148, 379

critical point, 73
cumulant

expansion, 166, 170, 275
Plemelj-Smithies, 645

curvature
correction, 273
expansion, 26, 273

cycle, 10
expansion, 17, 272, 466

3-disk, 290
finite subshift, 281
stability ordered, 282

fundamental, 167, 273
limit, 127
Lyapunov exponent, 72
point, 154
prime, 154, 183, 191, 245

3-disk, 263
Hénon map, 258

pruning, 174
stability, 71, 263
stable, 73
superstable, 73
unstable, 12
weigth, 204

cycle expansion
Lyapunov exponent, 281

cycles
fundamental, 630

cyclic
invariance, 245
symmetry, 164

D’Alambert’s wave equation, 561
de Broglie wavelength, 435
decay

rate, 211
degree of freedom, 8
delta function
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Dirac, 103, 104, 425
density, 102, 571

evolution, 22
density of states

average, 463
Green’s function, 426
quantum, 425

desymmetrization
3-disk, 370

determinant
Fredholm, 648
graph, 179
Hadamard, 202
spectral, 21, 165, 202

for flows, 203
trace relation, 166
trace-class operator, 642

deterministic
dynamics, 32

deterministic dynamics, 5
deterministic flow, 108
differential equations

ordinary
almost, 45

diffraction
Green’s function, 519
Keller, 527
Sommerfeld, 527

diffusion
partial differential equations, 562
anomalous, 385
constant, 124

dimension
box counting, 313
fractal, 313
generalized, 2
Hénon attractor, 266
information, 313
intrisic, 8

Dirac delta function, 103, 104
Dirichlet series, 285
dissipative

map, 77, 159
distribution, 563
divergence rate

local, 130
divergence ultraviolet, 464
doubling map, 231
Duffing oscillator, 36
Duffing system, 42
dynamical

system, 31, 32
deterministic, 32
gradient, 45
smooth, 32

systems
equivalent, 98

transitivity, 163
zeta function, 16, 205

Euler product rep., 205
dynamical system

infinite, 47
smooth, 17, 18, 26, 178, 553, 666,

669, 671
dynamics

deterministic, 5
hyperbolic, 141
irreversible, 35
reversible, 35
stochastic, 5
symbolic, 9, 138, 153, 301
symmetry, 618
topological, 138, 153, 154

edge, 156
eigen

directions, 62
eigenfunction

energy, 423
eigenfunctions

Perron-Frobenius, 222
eigenstate, see eigenfunction
eigenvalue

exponential spacing, 203
spectral determinant, 223
zero, 432, 448

eigenvalues, 211
elastic

scattering, 475
elliptic

partial differential equations, 562
stability, 81

enemy
thy, 323

English
plain, 153

ensemble
microcanonical, 133

entropy
barrier, 288
topological, 6, 162, 176, 179

equation
of variations, 62

equilibrium
measure, see natural measure
point, 36, 68, 106

equivalence
of dynamical systems, 98

ergodic
average, 107
theorem

multiplicative, 133
theory, 107

escape
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intermittency, 331
rate, 13, 295

3-disk, 280, 290
escape rate, 105

3-disk, 293
essential

spectral radius, 228
essential spectral radius, 224
Euler

formula, 222, 709
limit, 68
product, 208
product rep.

dynamical zeta function, 205
totient function, 400

Euler-MacLaurin
formula, 238

Eulerian
coordinates, 33, 62, 67

evolution
group, 45, 703
kernel

probabilistic, 108
operator, 19, 126

quantum, 425
semigroup, 127

expanding
stability eigenvalues, 71, 190

expectation value, 122, 135
exponent

stability, 71
exponential

convergence, 201, 223
of a matrix, 65

exponential proliferation, 19, 180
extremal point, 429

false zeros, 208
Farey

map, 321, 344
mediant, 401
series, 399
tree, 401

Feynman path integral, 447
Feynman, R.P., 699
finite subshift

cycle expansion, 281
first return function, 49
first return time, 341
fixed point, 245

maps, 59
marginally stable, 321

Floquet multipliers, 190
flow, 32, 35

autonomous, 37, 251
contracting, 34, 37, 75
deterministic, 108

generator of, 109, 573
Hamiltonian, 79, 627
hyperbolic, 72, 81, 211
incompressible, 75, 109, 572
infinite-dimensional, 38, 51, 561
inverse hyperbolic, 81
linear, 63
linearized, 62
nonhyperbolic, 72
spectral determinant, 203
stability, 67
stationary, 37
stochastic, 108
stretch&fold, 147

form
normal, 95

Fourier
mode, 562

spatial, 40
truncation, 41

fractal, 312
aggregates, 2, 301
dimension, 313
geometry of nature, 2
probabilistic, 2
science, 2

Fredholm
determinant, 648
integral equations, 225
integral operator, 225

Fredholm theory, 225
frequency analysis, 42
Fresnel integral, 429, 433
function

space
piecewise constant, 193

functional, 562
Lyapunov, 34

functions
L2 square integrable, 224
analytic, 224

fundamental
cycle, 167
cycles, 630
domain, 143

collinear helium, 496
matrix, 70

fundamental matrix, see Jacobian ma-
trix

Galerkin truncation, 40
Gatto Nero

professor, 700
Gauss shift, 400
gaussian

integral, d-dimensional, 444
generating partition, 154
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generator
of flow, 109, 573

golden mean
pruning, 168

gradient
system, 45

gradient algorithm, 255
grammar

symbolic dynamics, 155
grandmother

of fractals, 315
graph, 156

irreducible, 156
Markov, 155

Green’s function
analogue of, 577
density of states, 426
diffraction, 519
energy dependent, 425
regularized, 464
scattering, 480
semiclassical, 455, 457
short distance, 452, 453
time dependent, 682
trace, 425

long orbits, 452
group, 615

dynamical, 35
evolution, 45, 703
finite, 615
integration, 619
matrix, 616
order of, 615
representation, 616
semi-, 109, 573

Gutzwiller
trace formula, 462

Hadamard determinant, 202
Hadamard product, 465
Hamilton

-Jacobi equation, 436
equations, 436
principal function, 439

Hamiltonian, 423, 437
flow, 627

spectral determinant, 209
stability, 568

flows, stability, 80, 565
repeller, periodic orbits, 269

Hankel function, 453
Hausdorff dimension

Hénon attractor, 266
Heaviside function, 426
Heisenberg, 559

picture, 639
Heisenberg, W, 573

Helfand moments, 381
helium, 489, 558

collinear, 46, 58, 79, 420, 513
cycles, 268, 513
eigenenergies, 514
fundamental domain, 496
Poincar/’e section, 513
stabilities, 514
stability, 268

Hénon
-Heiles

symbolic dynamics, 367
attractor, 58, 108

Hausdorff dimension, 266
Lyapunov exponent, 266
topological entropy, 266

map, 54, 56, 255, 269
fixed points, 58
prime cycles, 258, 269
stability, 70
symmetries, 627

Hénon, M., 56
heroes

unsung, x, xiii
Hessian matrix, 80
Hilbert

-Schmidt condition, 225
-Schmidt operators, 641
space, 424

Hopf bifurcation, 395
hydrodynamical

interpretation of QM, 453
hyperbolic

partial differential equations, 562
flow, 72, 211
flows, 81
non-, 22

hyperbolicity assumption, 15, 191

in/out nodes, 66
inadmissible symbol sequence, 155
incompressible flow, 75
indecomposability, 163

metric, 138
index

Maslov, see topological index
indifferent

stability, 62
induced map, 335
inertial manifold, 40, 42, 562
infinite-dimensional flows, 38, 51, 561
inflection point, 396
information

dimension, 313
initial

conditions
sensitivity to, 5
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point x0, 14, 33, 62
state x0, 14, 33

integrable system, 91
integrated observable, 120
integration

group, 619
Runge-Kutta, 46

intermittency, 86, 320
escape rate, 331
piecewise linear model, 323
resummation, 337
stability ordering, 284

invariance
cyclic, 245
of flows, 74
symplectic, 80, 565

invariant
measure, 105
metric, 71, 97
topological, 71

inverse
hyperbolic flows, 81

inverse iteration, 246
Hamiltonian repeller, 269

inward/outward spirals, 66
irreducible

graph, 156
segment, 350

irreversibility, 22, 156
irreversible

dynamics, 35
iteration, 32

inverse, 246
Hamiltonian repeller, 269

itinerary, 9, 12, 138
bi-infinite, 140, 153
future, 148, 153
past, 153

Jacobian, 74, 103
Jacobian matrix, 14, 62, 577

mapping, 70
Jonquière function, 325, 386, 390

KAM
tori, 320

Keller
diffraction, 527

Keplerian orbit, 418
kernel

resolving, 226
Koopman operator, 302, 572, 577
Kramers, 559
Krein-Friedel-Lloyd formula, 481
KS, see Kustaanheimo-Stiefel
Kuramoto, Y., 42

Kuramoto-Sivashinsky system, 39, 68,
561

kurtosis, 135, 381
Kustaanheimo-Stiefel transformation,

492

L2 function space, 224
Lagrangian, 438

coordinates, 33, 62, 67
manifold, 440

laminar states, 320
Laplace

transform, 21, 110, 171, 195, 199,
425, 455, 574

transform, discrete, 165, 192, 342
Laplacian, 561
Lautrup, 699
Legendre transform, 439
Leibniz, 5
libration orbit, 497, see self–retracing
lifetime, 13
limit

cycle, 127
linear

flows, 63
stability, 61

linearized
flow, 62

link, 156
Liouville

equation, 112
operator, 112
theorem, 81, 110, 572

Littlewood J.E., 553
local

divergence rate, 130
stability, 61

logistic map, see unimodal
longitudinal

coordinate, 451
loop

intersecting, 167
Lorentz gas, 320, 344
Lorenz, E.N., 56
loxodromic, 81, 568
Lozi map, 54, 56
Lyapunov exponent, 6, 75, 128

cycle, 72
cycle expansion, 281
Hénon attractor, 266
natural measure, 130
numerical, 133
numerically, 129

Lyapunov functional, 34
Lyapunov time, 6, 8, 35

M phase space volume, 125
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Mandelbrot set, 301
manifold

stable, 144
map, 32

area preserving, 627
contracting, 77, 159
dissipative, 77, 159
expanding, 139
fixed point, 59
Hénon, 54, 255, 627

prime cycles, 258
logistic, see unimodal
Lozi, 54, 56
order preserving, 150
orientation preserving, 627
orientation reversing, 627
quadratic, 55, 147
return, 11, 14, 49
sawtooth, 351
stability, 70
tent, 147
Ulam, 290
unimodal, 147

marginal
stability, 14, 71, 321

fixed point, 321
stability eigenvalues, 190

Markov
graph, 155

infinite, 170
partition, 382

finite, 139, 141
not unique, 142

Maslov index, see topological index
material invariant, 571
matrix

exponential, 65, 575
group, 616
of variations, 62

measure, 102
cylinder, 301
equipartition, 301
invariant, 105
natural, 106, 122
smooth, 121

mechanics
quantum, 423
statistical, 21

mediocre
convergence, 632

memory
finite, 152

metric
indecomposability, 138, 634
invariant, 71, 97

stability eigenvalues, 96
transitivity, 634

microcanonical ensemble, 133
Mira, C., 56
Misiurewicz, M., 56
mixing, 6, 7, 15, 108
mode

Fourier, 40
Moebius inversion, 173
monodromy matrix, 190, 566
Morse index, see topological index
mother

of fractals, 315
multifractals, 315, 663
multiplicative ergodic theorem, 133
multipoint shooting method, 247

natural measure, 106, 122, 130
nature

geometry of, 2
Navier-Stokes equation, 38
neighborhood, 75
Nero, G, 700
neutral, see marginal

stability, 62
Newton’s method, 247

convergence, 249
flows, 251
optimal surface of section, 253

node, 156
non-wandering set, 34
nonequilibrium, 373
nonhyperbolic

flow, 72, 74
norm, 639
normal form, 95

obscure
foundations, 558
jargon, 138
topology, 42, 51

observable, 107, 120
ODE, see ordinary differential equa-

tions
open systems, 12, 124
operator

evolution, 126
Hilbert-Schmidt, 641
Koopman, 302, 572, 577
Liouville, 112
norm, 639
Perron-Frobenius, 104, 133
positive, 641
regularization, 647
resolvent, 110, 574
semigroup

bounded, 110, 574
shift, 153
trace-class, 640
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orbit, 33
Keplerian, 418
periodic, 154, 460, 462
returning, 459

order preserving map, 150
ordinary differential equations

almost, 45
orientation

preserving map, 627
reversing map, 627

Oseledec multiplicative ergodic theo-
rem, 133

palpitations, chicken heart, 5
parabolic

partial differential equations, 562
paradise

this side of, 293
partial differential equations, 39, 561
partition, 138, 154

generating, 154
infinite, 176, 179
Markov, 139
phase space, 102

partition function, 133
PDE, see partial differential equations
period

doubling
repeller, 301

relation to action, 502
periodic

orbit, 154, 460, 462
orbit condition, 245
orbit extraction, 245–263

Hamiltonian repeller, 269
inverse iteration, 246
multipoint shooting, 247
Newton’s method, 247–249
relaxation algorithm, 255

point, 10, 19, 154
admissible, 164
count, 172
unstable, 12

Perron-Frobenius
matrix, 162
operator, 104, 133, 222
theorem, 236, 240, 666

phase space, 32
3-disk, 634
partition, 102
volume M, 125

piecewise constant function, 193
piecewise linear map, 343

intermittency, 323
repeller, 104

pinball, see 3-disk
plain English, 153

Plemelj-Smithies cumulants, 645
Poincaré

return map, 49
polynomial, 54

section, 11, 49, 82
3-disk, 82
Hénon trick, 55

Poincaré section, 10
point

non-wandering, 34
periodic, 10, 154
scatterer, 530
wandering, 33

Poisson
bracket, 111, 112
resummation, 21
summation, 338

Pollicott, M, 133, 341
polylogarithm, 325
polynomial

characteristic, 167
topological, 171

Pomeau, Y., 56
positive operators, 641
potential

partial differential equations, 562
power law

correlation decay, 321
pressure, 133

thermodynamic, 133
prime cycle, 154, 183, 191, 245

3-disk, 140, 183, 263
count, 172
Hénon map, 258

primitive cycle, see prime cycle
probabilistic zeta function, 341
propagator, 425

semiclassical, 443
short time, 445, 452
Van Vleck, 446

pruning, 10, 321
block, 155
golden mean, 168
individual cycles, 174
rules, 141
symbolic dynamics, 155

pseudocycle, 272

quadratic map, 55
quantization

Bohr-Sommerfeld, 418
semiclassical, 459
WKB, 427, 430

quantum
chaology, 421, 465
chaos, 421
evolution, 425
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interference, 435
mechanics, 423
potential, 453
propagator, 425
resonances, 418
theory, old, 558

radius
of convergence, 201

random matrix theory, 421
recoding, 142, 155
rectification

flows, 92
maps, 94

recurrence, 34, 138
time, see return time

regularization, 465, 492
Green’s function, 464
operator, 647

relaxation algorithm, 255
renormalization, 86
repeller, 12, 34, 124, 421

piecewise-linear, 104
single fixed point, 222

representation
character, 616
equivalent, 617
faithful, 617
matrix, 616
regular, 617

representative point, 32
residue

stability, 81
resolvent

kernel, 226
operator, 110, 574

resonance
Ruelle-Pollicott, 341

resonances
complex, 420
quantum, 418
Ruelle-Pollicott, 133

resummation
intermittency, 337

return map, 11, 14
return time, 341

distribution, 342
returning orbit, 459
reversible

dynamics, 35
Riemann zeta function, 286, 344
Rössler system, 37, 146
Ruelle, 24

-Pollicott resonances, 133, 341
zeta function, see dynamical zeta

function
Ruelle, D, 133, 341

Runge-Kutta integration, 46
running orbits

Lorentz gas, 377
Rutherford, 489
Rydberg series, 503

saddle, 66
saddle point, see stationary phase
saddle-node

bifurcation, 56
sawtooth map, 351
SBR measure, see natural measure
scattering

3-dimensional spheres, 87
elastic, 475
Green’s function, 480
matrix, 476
phase shift, 483
point, 530

Schrödinger
equation, 423

time independent, 423
picture, 639

Schrödinger, E, 573
Schwartz, 563
section

Poincaré, 11, 49, 82
Selberg

product
eigenvalue index, 223

self-retracing cycle, 497
self-similar, 20
semiclassical

spectral determinant
collinear helium, 505

approximation, 436
Green’s function, 455, 457
propagator, 443
quantization, 459
wave function, 442
semiclassical zeta function, 466

semiclassical resonances
3-disk, 696

semigroup, 109, 573
dynamical, 35
evolution, 127
operator, 110, 574

sensitivity to initial conditions, 5, 127
shadowing, 17, 177

3-disk, 280
shift, 153

Bernoulli, 227, 342
finite type, 155
full, 153
map, 396
operator, 153
sub-, 154
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Sinai, 24
Sinai-Bowen-Ruelle measure, see nat-

ural measure
single fixed point

repeller, 222
spectral determinant, 222

singular value decomposition, 66
singularity

branch cut, 328
Sivashinsky, G.I., 42
skeleton of chaos, 10, 12
Smale, 24, 213

wild idea, 203, 212
Smale S., 179, 553
Smale, S, 9
S-matrix, 476
smooth

conjugacy, 92, 96, 99, 704
dynamical system, 47
dynamics, 17, 18, 26, 32, 178,

553, 666, 669, 671
approximated, 629
Spectral determinant, 239

interaction, 673
measure, 121
potential, 86

Sommerfeld
diffraction, 527

space
analytic functions, 224
average, 107
averaging, 122
density functions, 193

spectral
determinant, 21, 165, 202

1-d maps, 209
2-d hyperbolic Hamiltonian flow,

209
entire, 203, 223
for flows, 203
infinite product rep., 203
single fixed point, 222
weighted, 210

spectral determinant
1-dimensional, 467
2-dimensional, 468

radius, 228
essential, 224

staircase, 426
spectral stability, 385
spectrum

Balmer, 418
specular reflection, 82
SRB measure, 56
St. Augustine, 101
stability

billiards, 84

cycle, 263
eigenvalues, 67, 71, 190
eigenvalues, metric invariants, 96
exponents, 71
flow, 67
Hamiltonian flow, 568
Hamiltonian flows, 80, 565
indifferent, 62
linear, 61
maps, 70
neutral, 62, see marginal
ordering

cycle expansions, 282
intermittent flows, 284

residue, 81
spectral, 385
structural, 178, 384
window, 72

stable
cycle, 73
manifold, 14, 144

flow, 145
map, 145

stadium billiard, 82
stagnation point, 36, see equilibrium

point
staircase

mean eigenvalue density, 505
spectral, 426

standard map, 320
standing orbit

Lorentz gas, 377
state, 138, 156

set, 138
state space, 32, see phase space
stationary

flow, 37
phase approximation, 429, 433,

447, 460, 519, 530, 720
point, 36, see equilibrium point
state, 105

statistical mechanics, 21
Sterling formula, 433
stochastic dynamics, 5
stochastic flow, 108
Stokes theorem, 440
stosszahlansatz, 22, 390
strange

attractor, 34, 37
strange attractor, 127
stretch & fold dynamics, 54
stretch&fold flow, 147
strobe method, 49
strongly connected graph, 156
structural stability, 178, 384
subshift, 154

finite type, 141, 155
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super-exponential
convergence, 260

super-stable fixed point, 260
superstable cycle, 73
surface of section

optimal, 253
survival probability, 13, see escape

rate
symbol

sequence
inadmissible, 155

symbolic
dynamics, 301

at a bifurcation, 87
complete N -ary, 139
covering, 153

symbolic dynamics, 9, 138, 153
3-disk, 29, 139, 159
binary

collinear helium, 496
coding, 155

Markov graph, 281
complete, 148
grammar, 155
Hénon-Heiles, 367
pruned, 155
recoding, 142, 155
unimodal, 148

symmetry
C3v, 364
3-disk, 143, 350, 364, 370
cyclic, 164
discrete, 141
dynamical system, 618
Hénon map, 627

symplectic
form, 80
group Sp(2D), 566
integrator, 576
invariance, 80, 565
transformation, 80, 112

systems
open, 124

tangent
bundle, 36, 62
space, 62

Tauberian theorem, 344
teaching

combinatorics, 148
tessalation

smooth dynamics, 629
thermodynamical

pressure, 133
3-body problem, 420, 459, 489, 549,

559
3-dimensional sphere

scattering, 87
3-disk

boundary orbits, 359
convergence, 230, 629
cycle

analytically, 89
count, 368, 597
expansion, 290

escape rate, 219, 280, 290, 293
fractal dimension, 312
geometry, 82
hyperbolicity, 191
phase space, 12, 312, 634
pinball, 4, 83, 86
point scatterer, 530
prime cycles, 16, 140, 183, 263
semiclassical resonances, 696
shadowing, 280
simulator, 88, 89
symbolic dynamics, 10, 29, 139,

159
symmetry, 143, 350, 364, 370
transition matrix, 139

time
arrow of, 22
as parametrization, 92
average, 107, 129
averaging, 120
ceiling function, see ceiling func-

tion
ordered integration, 69, 76

time delay
Wigner, 483

topological
conjugacy, 150
dynamics, 138, 153–155
entropy, 6, 162, 176

Hénon attractor, 266
equivalence, 67
future coordinate, 148
index, 443
invariant, 71
polynomial, 171
trace formula, 165
transitivity, 163
zeta function, 170, 171

topological index, 462, 559
totient function, 400
tp

cycle weigth, 204
trace

formula
classical, 21
flows, 195
Gutzwiller, 462
maps, 192
topological, 165, 171
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local, 164
trace-class operator, 640

determinant, 642
trajectory, 33, 64

discrete, 53
transfer

matrix, 105
transfer operator, 212

spectrum, 202
transformation

coordinate, 99
transient, 33, 139, 257
transition matrix, 139, 162, 164

3-disk, 139
transverse

stability, 452
Trotter product formula, 639
truncation

Galerkin, 40
truncations

Fourier, 41
turbulence

problem of, 38

Ulam map, 268, 290
ultraviolet divergence, 464
unimodal map, 147

symbolic dynamics, 148
unstable

cycle, 12, 73
manifold, 14, 144

map, 145
manifold, flow, 145
periodic point, 12

unsung
heroes, x, xiii

Van Vleck
propagator, 446

vector field, 35
vector fields

singularities, 92
vertex, 156
visitation sequence, see itinerary
Viswanath, 699
volume preservation, 85
von Neumann

ergodicity, 577

wandering point, 33
wave

partial differential equations, 562
wave function

semiclassical, 442
WKB, 443

weight
multiplicative, 26

Wentzel-Kramers-Brillouin, 427, see
WKB

Wentzel-Kramers-Brillouin, 436
Weyl rule, 463
Wigner delay time, 483
winding number, 396, 398
WKB, 436, 563

function, 428
quantization, 427, 430
wave function, 443

Yang, C.N., 106
Young, L.-S., 56

zero eigenvalue, 432, 448
zeros

false, 208
zeta function

Artin-Mazur, 170
dynamical, 16, 205
probabilistic , 341
Ruelle, see dynamical
topological, 170, 171
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Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discov-
ered is named after someone else (including
Arnol’d’s law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discov-
ered for the first time.

3. Whiteheads’s Law: Everything of impor-
tance has been said before by someone who did
not discover it.

M.V. Berry

A.1 Chaos is born

(R. Mainieri)

Classical mechanics has not stood still since Newton. The formalism
that we use today was developed by Euler and Lagrange. By the end of the
1800’s the three problems that would lead to the notion of chaotic dynamics
were already known: the three-body problem, the ergodic hypothesis, and
nonlinear oscillators.

A.1.1 Three-body problem

Trying to predict the motion of the Moon has preoccupied astronomers
since antiquity. Accurate understanding of its motion was important for
determining the longitude of ships while traversing open seas. Kepler’s
Rudolphine tables had been a great improvement over previous tables, and
Kepler was justly proud of his achievements. He wrote in the introduction
to the announcement of Kepler’s third law, Harmonice Mundi (Linz, 1619)
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in a style that would not fly with the contemporary Physical Review Letters
editors:

What I prophesied two-and-twenty years ago, as soon as I discov-
ered the five solids among the heavenly orbits – what I firmly believed
long before I had seen Ptolemy’s Harmonics – what I had promised
my friends in the title of this book, which I named before I was sure
of my discovery – what sixteen years ago, I urged as the thing to be
sought – that for which I joined Tycho Brahé, for which I settled in
Prague, for which I have devoted the best part of my life to astronom-
ical contemplations, at length I have brought to light, and recognized
its truth beyond my most sanguine expectations. It is not eighteen
months since I got the first glimpse of light, three months since the
dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred
fury; I will triumph over mankind by the honest confession that I
have stolen the golden vases of the Egyptians to build up a tabernacle
for my God far away from the confines of Egypt. If you forgive me,
I rejoice; if you are angry, I can bear it; the die is cast, the book is
written, to be read either now or in posterity, I care not which; it may
well wait a century for a reader, as God has waited six thousand years
for an observer.

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits
of Kepler and set an example of how equations of motion could be solved
by integrating. But the motion of the Moon is not well approximated by
an ellipse with the Earth at a focus; at least the effects of the Sun have
to be taken into account if one wants to reproduce the data the classical
Greeks already possessed. To do that one has to consider the motion of
three bodies: the Moon, the Earth, and the Sun. When the planets are
replaced by point particles of arbitrary masses, the problem to be solved
is known as the three-body problem. The three-body problem was also a
model to another concern in astronomy. In the Newtonian model of the
solar system it is possible for one of the planets to go from an elliptic orbit
around the Sun to an orbit that escaped its domain or that plunged right
into it. Knowing if any of the planets would do so became the problem
of the stability of the solar system. A planet would not meet this terrible
end if solar system consisted of two celestial bodies, but whether such fate
could befall in the three-body case remained unclear.

After many failed attempts to solve the three-body problem, natural
philosophers started to suspect that it was impossible to integrate. The
usual technique for integrating problems was to find the conserved quan-
tities, quantities that do not change with time and allow one to relate the
momenta and positions different times. The first sign on the impossibility
of integrating the three-body problem came from a result of Burns that
showed that there were no conserved quantities that were polynomial in
the momenta and positions. Burns’ result did not preclude the possibility
of more complicated conserved quantities. This problem was settled by
Poincaré and Sundman in two very different ways.

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler
got the permission of the King Oscar II of Sweden and Norway to establish
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a mathematical competition. Several questions were posed (although the
king would have preferred only one), and the prize of 2500 kroner would go
to the best submission. One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other
according to Newton’s laws, under the assumption that no two points
ever collide, try to find a representation of the coordinates of each
point as a series in a variable that is some known function of time and
for all of whose values the series converges uniformly.

This problem, whose solution would considerably extend our un-
derstanding of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities
that were analytic in the momenta and positions could not exist. To show
that he introduced methods that were very geometrical in spirit: the im-
portance of phase flow, the role of periodic orbits and their cross sections,
the homoclinic points.

The interesting thing about Poincaré’s work was that it did not solve the
problem posed. He did not find a function that would give the coordinates
as a function of time for all times. He did not show that it was impossible
either, but rather that it could not be done with the Bernoulli technique
of finding a conserved quantity and trying to integrate. Integration would
seem unlikely from Poincaré’s prize-winning memoir, but it was accom-
plished by the Finnish-born Swedish mathematician Sundman. Sundman
showed that to integrate the three-body problem one had to confront the
two-body collisions. He did that by making them go away through a trick
known as regularization of the collision manifold. The trick is not to expand
the coordinates as a function of time t, but rather as a function of 3

√
t. To

solve the problem for all times he used a conformal map into a strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for
all times, solving the problem that was proposed by Weirstrass in the King
Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories
of any three-body system. That is more simply accomplished by numerical
methods or through series that, although divergent, produce better numer-
ical results. The conformal map and the collision regularization mean that
the series are effectively in the variable 1 − e−

3√t. Quite rapidly this gets
exponentially close to one, the radius of convergence of the series. Many
terms, more terms than any one has ever wanted to compute, are needed to
achieve numerical convergence. Though Sundman’s work deserves better
credit than it gets, it did not live up to Weirstrass’s expectations, and the
series solution did not “considerably extend our understanding of the solar
system.” The work that followed from Poincaré did.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dy-
namics was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann
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had combined the mechanics of Newton with notions of probability in order
to create statistical mechanics, deriving thermodynamics from the equa-
tions of mechanics. To evaluate the heat capacity of even a simple system,
Boltzmann had to make a great simplifying assumption of ergodicity: that
the dynamical system would visit every part of the phase space allowed by
conservations law equally often. This hypothesis was extended to other av-
erages used in statistical mechanics and was called the ergodic hypothesis.
It was reformulated by Poincaré to say that a trajectory comes as close as
desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the
end of our own century it has only been shown true for a few systems and
wrong for quite a few others. Early on, as a mathematical necessity, the
proof of the hypothesis was broken down into two parts. First one would
show that the mechanical system was ergodic (it would go near any point)
and then one would show that it would go near each point equally often
and regularly so that the computed averages made mathematical sense.
Koopman took the first step in proving the ergodic hypothesis when he
noticed that it was possible to reformulate it using the recently developed
methods of Hilbert spaces. This was an important step that showed that it
was possible to take a finite-dimensional nonlinear problem and reformulate
it as a infinite-dimensional linear problem. This does not make the problem
easier, but it does allow one to use a different set of mathematical tools on
the problem. Shortly after Koopman started lecturing on his method, von
Neumann proved a version of the ergodic hypothesis, giving it the status of
a theorem. He proved that if the mechanical system was ergodic, then the
computed averages would make sense. Soon afterwards Birkhoff published
a much stronger version of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the the-
ory of chaotic dynamical systems was the work on the nonlinear oscillators.
The problem is to construct mechanical models that would aid our under-
standing of physical systems. Lord Rayleigh came to the problem through
his interest in understanding how musical instruments generate sound. In
the first approximation one can construct a model of a musical instrument
as a linear oscillator. But real instruments do not produce a simple tone
forever as the linear oscillator does, so Lord Rayleigh modified this simple
model by adding friction and more realistic models for the spring. By a
clever use of negative friction he created two basic models for the musical
instruments. These models have more than a pure tone and decay with
time when not stroked. In his book The Theory of Sound Lord Rayleigh
introduced a series of methods that would prove quite general, such as the
notion of a limit cycle, a periodic motion a system goes to regardless of the
initial conditions.
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A.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis
were published in 1912 and 1913. This line of enquiry developed in two
directions. One direction took an abstract approach and considered dy-
namical systems as transformations of measurable spaces into themselves.
Could we classify these transformations in a meaningful way? This lead
Kolmogorov to the introduction of the concept of entropy for dynamical
systems. With entropy as a dynamical invariant it became possible to clas-
sify a set of abstract dynamical systems known as the Bernoulli systems.
The other line that developed from the ergodic hypothesis was in trying
to find mechanical systems that are ergodic. An ergodic system could not
have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of “... billiards ...,” where he showed
that the motion of balls on surfaces of constant negative curvature is ev-
erywhere unstable. This dynamical system was to prove very useful and it
was taken up by Birkhoff. Morse in 1923 showed that it was possible to
enumerate the orbits of a ball on a surface of constant negative curvature.
He did this by introducing a symbolic code to each orbit and showed that
the number of possible codes grew exponentially with the length of the
code. With contributions by Artin, Hedlund, and Hopf it was eventually
proven that the motion of a ball on a surface of constant negative curva-
ture was ergodic. The importance of this result escaped most physicists,
one exception being Krylov, who understood that a physical billiard was a
dynamical system on a surface of negative curvature, but with the curva-
ture concentrated along the lines of collision. Sinai, who was the first to
show that a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It
prompted many experiments and some theoretical development by van der
Pol, Duffing, and Hayashi. They found other systems in which the non-
linear oscillator played a role and classified the possible motions of these
systems. This concreteness of experiments, and the possibility of analysis
was too much of temptation for Mary Lucy Cartwright and J.E. Little-
wood, who set out to prove that many of the structures conjectured by
the experimentalists and theoretical physicists did indeed follow from the
equations of motion. Birkhoff had found a “remarkable curve” in a two
dimensional map; it appeared to be non-differentiable and it would be nice
to see if a smooth flow could generate such a curve. The work of Cartwright
and Littlewood lead to the work of Levinson, which in turn provided the
basis for the horseshoe construction of Smale.

In Russia, Lyapunov paralleled the methods of Poincaré and initiated
the strong Russian dynamical systems school. Andronov carried on with the
study of nonlinear oscillators and in 1937 introduced together with Pontrya-
gin the notion of coarse systems. They were formalizing the understanding
garnered from the study of nonlinear oscillators, the understanding that
many of the details on how these oscillators work do not affect the overall
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picture of the phase space: there will still be limit cycles if one changes
the dissipation or spring force function by a little bit. And changing the
system a little bit has the great advantage of eliminating exceptional cases
in the mathematical analysis. Coarse systems were the concept that caught
Smale’s attention and enticed him to study dynamical systems.

A.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met
Arnol’d, Anosov, Sinai, and Novikov. He lectured there, and spent a lot
of time with Anosov. He suggested a series of conjectures, most of which
Anosov proved within a year. It was Anosov who showed that there are
dynamical systems for which all points (as opposed to a non–wandering set)
admit the hyperbolic structure, and it was in honor of this result that Smale
named these systems Axiom-A. In Kiev Smale found a receptive audience
that had been thinking about these problems. Smale’s result catalyzed
their thoughts and initiated a chain of developments that persisted into the
1970’s.

Smale collected his results and their development in the 1967 review
article on dynamical systems, entitled “Differentiable dynamical systems”.
There are many great ideas in this paper: the global foliation of invariant
sets of the map into disjoint stable and unstable parts; the existence of a
horseshoe and enumeration and ordering of all its orbits; the use of zeta
functions to study dynamical systems. The emphasis of the paper is on
the global properties of the dynamical system, on how to understand the
topology of the orbits. Smale’s account takes you from a local differential
equation (in the form of vector fields) to the global topological description
in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confus-
ing. The general character of entropy was understood by Weiner, who
seemed to have spoken to Shannon. In 1948 Shannon published his re-
sults on information theory, where he discusses the entropy of the shift
transformation. Kolmogorov went far beyond and suggested a definition of
the metric entropy of an area preserving transformation in order to clas-
sify Bernoulli shifts. The suggestion was taken by his student Sinai and
the results published in 1959. In 1960 Rohlin connected these results to
measure-theoretical notions of entropy. The next step was published in
1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these pa-
pers showed that one could define the notion of topological entropy and use
it as an invariant to classify continuous maps. In 1967 Anosov and Sinai
applied the notion of entropy to the study of dynamical systems. It was in
the context of studying the entropy associated to a dynamical system that
Sinai introduced Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statisti-
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cal mechanics; this has been a very fruitful relationship. It adds measure
notions to the topological framework laid down in Smale’s paper. Markov
partitions divide the phase space of the dynamical system into nice little
boxes that map into each other. Each box is labeled by a code and the
dynamics on the phase space maps the codes around, inducing a symbolic
dynamics. From the number of boxes needed to cover all the space, Sinai
was able to define the notion of entropy of a dynamical system. In 1970
Bowen came up independently with the same ideas, although there was
presumably some flow of information back and forth before these papers
got published. Bowen also introduced the important concept of shadowing
of chaotic orbits. We do not know whether at this point the relations with
statistical mechanics were clear to every one. They became explicit in the
work of Ruelle. Ruelle understood that the topology of the orbits could
be specified by a symbolic code, and that one could associate an “energy”
to each orbit. The energies could be formally combined in a “partition
function” to generate the invariant measure of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the
statistical mechanics approach to chaotic systems, research turned to study-
ing particular cases. The simplest case to consider is one-dimensional maps.
The topology of the orbits for parabola-like maps was worked out in 1973
by Metropolis, Stein, and Stein. The more general one-dimensional case
was worked out in 1976 by Milnor and Thurston in a widely circulated
preprint, whose extended version eventually got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein in-
spired Feigenbaum to study simple maps. This lead him to the discovery
of the universality in quadratic maps and the application of ideas from
field-theory to dynamical systems. Feigenbaum’s work was the culmination
in the study of one-dimensional systems; a complete analysis of a nontriv-
ial transition to chaos. Feigenbaum introduced many new ideas into the
field: the use of the renormalization group which lead him to introduce
functional equations in the study of dynamical systems, the scaling func-
tion which completed the link between dynamical systems and statistical
mechanics, and the use of presentation functions as the dynamics of scaling
functions.

The work in more than one dimension progressed very slowly and is still
far from completed. The first result in trying to understand the topology of
the orbits in two dimensions (the equivalent of Metropolis, Stein, and Stein,
or Milnor and Thurston’s work) was obtained by Thurston. Around 1975
Thurston was giving lectures “On the geometry and dynamics of diffeomor-
phisms of surfaces”. Thurston’s techniques exposed in that lecture have not
been applied in physics, but much of the classification that Thurston de-
veloped can be obtained from the notion of a “pruning front” developed
independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a
dynamical system, one needs to be able to compute its properties. Ruelle
had already generalized the zeta function introduced by Artin and Mazur
so that it could be used to compute the average value of observables. The
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difficulty with Ruelle’s zeta function is that it does not converge very well.
Starting out from Smale’s observation that a chaotic dynamical system is
dense with a set of periodic orbits, Cvitanović used these orbits as a skele-
ton on which to evaluate the averages of observables, and organized such
calculations in terms of rapidly converging cycle expansions. This conver-
gence is attained by using the shorter orbits used as a basis for shadowing
the longer orbits.

This account is far from complete, but we hope that it will help get a
sense of perspective on the field. It is not a fad and it will not die anytime
soon.

Remark A.1 Notion of global foliations. For each paper cited
in dynamical systems literature, there are many results that went into
its development. As an example, take the notion of global foliations
that we attribute to Smale. As far as we can trace the idea, it goes
back to René Thom; local foliations were already used by Hadamard.
Smale attended a seminar of Thom in 1958 or 1959. In that seminar
Thom was explaining his notion of transversality. One of Thom’s dis-
ciples introduced Smale to Brazilian mathematician Peixoto. Peixoto
(who had learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to the
Andronov-Pontryagin school. It was from Peixoto that Smale learned
about structural stability, a notion that got him enthusiastic about dy-
namical systems, as it blended well with his topological background.
It was from discussions with Peixoto that Smale got the problems
in dynamical systems that lead him to his 1960 paper on Morse in-
equalities. The next year Smale published his result on the hyperbolic
structure of the nonwandering set. Smale was not the first to consider
a hyperbolic point, Poincaré had already done that; but Smale was
the first to introduce a global hyperbolic structure. By 1960 Smale
was already lecturing on the horseshoe as a structurally stable dy-
namical system with an infinity of periodic points and promoting his
global viewpoint.

(R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok
and Ya.B. Pesin tried to use geometry to establish positive Lyapunov
exponents. A. Katok and J.-M. Strelcyn carried out the program and
developed a theory of general dynamical systems with singularities.
They studied uniformly hyperbolic systems (as strong as Anosov’s),
but with sets of singularities. Under iterations a dense set of points
hits the singularities. Even more important are the points that never
hit the singularity set. In order to establish some control over how
they approach the set, one looks at trajectories that apporach the set
by some given εn, or faster.

Ya.G. Sinai, L. Bunimovich and Chernov studied the geometry
of billiards in a very detailed way. A. Katok and Ya.B. Pesin’s idea
was much more robust. Look at the discontinuity set (geometry of
it matters not at all), take an ε neighborhood around it. Given that
the Lebesgue measure is εα and the stability grows not faster than
(distance)n, A. Katok and J.-M. Strelcyn prove that the Lyapunov
exponent is non-zero.
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In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the
problem has no invariant Lebesgue measure. Assuming uniform hy-
perbolicity, with singularities, and tying together Lebesgue measure
and discontinutities, and given that the stability grows not faster than
(distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-
zero, and that SBR measure exists. He also proved that the Lorenz,
Lozi and Byelikh attractors satisfy these conditions.

In the the systems were uniformly hyperbolic, all trouble was in
differentials. For the Hénon attractor, already the differentials are
nonhyperbolic. The points do not separate uniformly, but the ana-
logue of the singularity set can be obtained by excizing the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow + singularity set

• the Hamiltonian systems: general case A. Katok and J.-
M. Strelcyn, billiards Ya.G. Sinai and L. Bunimovich.

• the dissipative case: Ya.B. Pesin

3. Hénon

• The first proof was given by M. Benedicks and L. Car-
leson [9.35].

• A more readable proof is given in M. Benedicks and L.-
S. Young [3.19]

(based on Ya.B. Pesin’s comments)

A.3.1 Periodic orbit theory

The history of the periodic orbit theory is rich and curious, and the recent
advances are to equal degree inspired by a century of separate develop-
ment of three disparate subjects; 1. classical chaotic dynamics, initiated
by Poincaré and put on its modern footing by Smale, Ruelle, and many
others; 2. quantum theory initiated by Bohr, with the modern “chaotic”
formulation by Gutzwiller; and 3. analytic number theory initiated by Rie-
mann and formulated as a spectral problem by Selberg. Following totally
different lines of reasoning and driven by very different motivations, the
three separate roads all arrive at formally nearly identical trace formulas,
zeta functions and spectral determinants.

That these topics should be related is far from obvious. Connection be-
tween dynamics and number theory arises from Selberg’s observation that
description of geodesic motion and wave mechanics on spaces of constant
negative curvature is essentially a number-theoretic problem. A posteriori,
one can say that zeta functions arise in both classical and quantum me-
chanics because in both the dynamical evolution can be described by the
action of linear evolution (or transfer) operators on infinite-dimensional
vector spaces. The spectra of these operators are given by the zeros of
appropriate determinants. One way to evaluate determinants is to expand
them in terms of traces, log det = tr log, and in this way the spectrum of
an evolution operator becames related to its traces, that is, periodic orbits.
A perhaps deeper way of restating this is to observe that the trace formu-
las perform the same service in all of the above problems; they relate the

draft 9.4.0, June 18 2003 appendHist - 2sep2000



558 APPENDIX A. A BRIEF HISTORY OF CHAOS

spectrum of lengths (local dynamics) to the spectrum of eigenvalues (global
averages), and for nonlinear geometries they play a role analogous to that
the Fourier transform plays for the circle.

A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue
went up for a walk up the Uetliberg. On the top they
sat down and talked about physics. In particular they
talked about the new atom model of Bohr. There
and then they made the “Uetli Schwur”: If that crazy
model of Bohr turned out to be right, then they would
leave physics. It did and they didn’t.
A. Pais, Inward Bound: of Matter and Forces in the
Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the
Niels Bohr Institute beaming with the unparalleled glee of a boy who has
just committed a major mischief. The starting words of the manuscript he
has just penned are

The failure of the Copenhagen School to obtain a reasonable . . .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals
and holed out jeans, a left winger and a mountain climber, working around
the clock with his students Gregor and Klaus to complete the work that
Bohr himself would have loved to see done back in 1916: a “planetary”
calculation of the helium spectrum.

Never mind that the “Copenhagen School” refers not to the old quantum
theory, but to something else. The old quantum theory was no theory at
all; it was a set of rules bringing some order to a set of phenomena which
defied logic of classical theory. The electrons were supposed to describe
planetary orbits around the nucleus; their wave aspects were yet to be
discovered. The foundations seemed obscure, but Bohr’s answer for the
once-ionized helium to hydrogen ratio was correct to five significant figures
and hard to ignore. The old quantum theory marched on, until by 1924 it
reached an impasse: the helium spectrum and the Zeeman effect were its
death knell.

Since the late 1890’s it had been known that the helium spectrum con-
sists of the orthohelium and parahelium lines. In 1915 Bohr suggested that
the two kinds of helium lines might be associated with two distinct shapes of
orbits (a suggestion that turned out to be wrong). In 1916 he got Kramers
to work on the problem, and wrote to Rutherford: “I have used all my spare
time in the last months to make a serious attempt to solve the problem of
ordinary helium spectrum . . . I think really that at last I have a clue to
the problem.” To other colleagues he wrote that “the theory was worked
out in the fall of 1916” and of having obtained a “partial agreement with
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the measurements.” Nevertheless, the Bohr-Sommerfeld theory, while by
and large successful for hydrogen, was a disaster for neutral helium. Heroic
efforts of the young generation, including Kramers and Heisenberg, were of
no avail.

For a while Heisenberg thought that he had the ionization potential
for helium, which he had obtained by a simple perturbative scheme. He
wrote enthusiastic letters to Sommerfeld and was drawn into a collabo-
ration with Max Born to compute the spectrum of helium using Born’s
systematic perturbative scheme. In first approximation, they reproduced
the earlier calculations. The next level of corrections turned out to be larger
than the computed effect. The concluding paragraph of Max Born’s classic
“Vorlesungen über Atommechanik” from 1925 sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum
theory (. . . ) gives results in agreement with experiment only in those
cases where the motion of a single electron is considered; it fails even
in the treatment of the motion of the two electrons in the helium
atom.

This is not surprising, for the principles used are not really con-
sistent. (. . . ) A complete systematic transformation of the classical
mechanics into a discontinuous mechanics is the goal towards which
the quantum theory strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum
theory was dead. In 1926 he gave the first quantitative explanation of the
helium spectrum. He used wave mechanics, electron spin and the Pauli
exclusion principle, none of which belonged to the old quantum theory, and
planetary orbits of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not
the fault of the old quantum mechanics, but rather it reflected their lack of
understanding of the subtleties of classical mechanics. Today we know what
they missed in 1913-24: the role of conjugate points (topological indices)
along classical trajectories was not accounted for, and they had no idea of
the importance of periodic orbits in nonintegrable systems.

Since then the calculation for helium using the methods of the old quan-
tum mechanics has been fixed. Leopold and Percival added the topological
indices in 1980, and in 1991 Wintgen and collaborators orbits. Dieter had
good reasons to gloat; while the rest of us were preparing to sharpen our
pencils and supercomputers in order to approach the dreaded 3-body prob-
lem, they just went ahead and did it. What it took - and much else - is
described in this book. One is also free to ponder what quantum theory
would look like today if all this was worked out in 1917.

Remark A.3 Sources. This tale, aside from a few personal
recollections, is in large part lifted from Abraham Pais’ accounts of
the demise of the old quantum theory [A.5, A.6], as well as Jammer’s
account [26.1]. The helium spectrum is taken up in chapter 28. In
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August 1994 Dieter Wintgen died in a climbing accident in the Swiss
Alps.
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Appendix B

Infinite-dimensional flows

Flows described by partial differential equations are considered in-
finite dimensional because if one writes them down as a set of ordinary
differential equations (ODEs) then one needs an infinity of the ordinary
kind to represent the dynamics of one equation of the partial kind (PDE).
Even though the phase space is infinite dimensional, for many systems of
physical interest the global attractor is finite dimensional. We illustrate how
this works with a concrete example, the Kuramoto-Sivashinsky system.

B.0.1 Partial differential equations

First, a few words about partial differential equations in general. Many of
the partial differential equations of mathematical physics can be written in
the quasi-linear form

∂tu = Au + N(u) , (B.1)

where u is a function (possibly a vector function) of the coordinate x and
time t, A is a linear operator, usually containing the Laplacian and a few
other derivatives of u, and N(u) is the nonlinear part of the equation (terms
like u∂xu in (2.14)).

Not all equations are stated in the form (B.1), but they can easily be
so transformed, just as the ordinary differential equations can be rewritten
as first-order systems. We will illustrate the method with a variant of the
D’Alambert’s wave equation describing a plucked string:

∂tty =
(

c +
1
2

(∂xy)2
)

∂xxy . (B.2)

Were the term ∂xy small, this equation would be just the ordinary wave
equation. To rewrite the equation in the first order form (B.1), we need a
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field u = (y, w) that is two-dimensional,

∂t

[
y
w

]
=
[

0 1
c∂xx 0

] [
y
w

]
+
[

0
∂xxy(∂xy)2/2

]
. (B.3)

The [2×2] matrix is the linear operator A and the vector on the far right is
the nonlinear function N(u). Unlike ordinary functions, differentiations are
part of the function. The nonlinear part can also be expressed as a function
on the infinite set of numbers that represent the field, as exemplified by the
Kuramoto-Sivashinsky system (2.14).

The usual technique for solving the linear part is to use Fourier methods.
Just as in the ordinary differential equation case, one can integrate the
linear part of

☞ chapter 4.2

∂tu = Au (B.4)

to obtain

u(x, t) = etAu(x, 0) . (B.5)

If u is expressed as Fourier series
∑

k ak exp(ikx), as we will do for the
Kuramoto-Shivashinsky system, then we can determine the action of etA

on u(x, 0). This can be done because differentiations in A act rather simply
on the exponentials. For example,

et∂xu(x, 0) = et∂x
∑

k

ake
ikx =

∑
k

ak
(it)k

k!
eikx . (B.6)

Depending on the behavior of the linear part, one distinguishes three classes
of partial differential equations: diffusion, wave, and potential. The
classification relies on the solution by a Fourier series, as in (B.5). In
mathematical literature these equations are also called parabolic, hyperbolic
and elliptic. If the nonlinear part N(u) is as big as the linear part, the
classification is not a good indication of behavior, and one can encounter
features of one class of equations while studying the others.

In diffusion-type equations the modes of high frequency tend to become
smooth, and all initial conditions tend to an attractor, called the inertial
manifold. The Kuramoto-Sivashinsky system studied below is of this type.
The solution being attracted to the inertial manifold does not mean that
the amplitudes of all but a finite number of modes go to zero (alas were
we so lucky), but that there is a finite set of modes that could be used to
describe any solution of the inertial manifold. The only catch is that there
is no simple way to discover what these inertial manifold modes might be.

In wave-like equations the high frequency modes do not die out and
the solutions tend to be distributions. The equations can be solved by

☞ chapter 25
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variations on the WKB idea: the wave-like equations can be approximated
by the trajectories of the wave fronts.

2.10
47

Elliptic equations have no time dependence and do not represent dy-
namical systems.
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Appendix C

Stability of Hamiltonian flows

C.1 Symplectic invariance

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more
than the incompressibility, or the phase space volume conservation alluded
to in sect. 5.1. We assume you are at home with Hamiltonian formalism. If
you would like to see the Hamilton’s equations derived, Hamilton’s original
line of reasoning is retraced in sect. 25.1.1. The evolution equations for any

☞ sect. 25.1.1
p, q dependent quantity Q = Q(p, q) are given by (7.33).

In terms of the Poisson brackets, the time evolution equation for Q =
Q(p, q) is given by (7.35). We now recast the symplectic condition (5.8)
in a form convenient for using the symplectic constraints on J. Writing
x(t) = x′ = [p′, q′] and the Jacobian matrix and its inverse

J =

(
∂q′
∂q

∂q′
∂p

∂p′
∂q

∂p′
∂p

)
, J−1 =

( ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

)
, (C.1)

we can spell out the symplectic invariance condition (5.8):

∂q′k
∂qi

∂p′k
∂qj

− ∂p′k
∂qi

∂q′k
∂qj

= 0

∂q′k
∂pi

∂p′k
∂pj

− ∂p′k
∂pi

∂q′k
∂pj

= 0

∂q′k
∂qi

∂p′k
∂pj

− ∂p′k
∂qi

∂q′k
∂pj

= δij . (C.2)

From (5.9) we obtain

∂qi

∂q′j
=

∂p′j
∂pi

,
∂pi

∂p′j
=

∂q′j
∂qi

,
∂qi

∂p′j
= −

∂q′j
∂pi

,
∂pi

∂q′j
= −

∂p′j
∂qi

. (C.3)
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Taken together, (C.3) and (C.2) imply that the flow conserves the [p, q]
Poisson brackets

[qi, qj ] =
∂qi

∂p′k

∂qj

∂q′k
− ∂qj

∂p′k

∂qi

∂q′k
= 0

[pi, pj ] = 0 , [pi, qj ] = δij , (C.4)

that is, the transformations induced by a Hamiltonian flow are canonical,
preserving the form of the equations of motion. The first two relations are
symmetric under i, j interchange and yield D(D − 1)/2 constraints each;
the last relation yields D2 constraints. Hence only (2D)2− 2D(D− 1)/2−
D2 = 2D2 +D elements of J are linearly independent, as it behooves group
elements of the symplectic group Sp(2D).

We have now succeeded in making the full set of constraints explicit -
as we shall see in appendix D, this will enable us to implement dynamics in
such a way that the symplectic invariance will be automatically preserved.

Consider the symplectic product of two infinitesimal vectors

(δx, δx̂) = δxT ωδx̂ = δpiδq̂i − δqiδp̂i

=
D∑

i=1

{oriented area in the (pi, qi) plane} . (C.5)

Time t later we have

(δx′, δx̂′) = δxTJT ωJδx̂ = δxT ωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so
that the vectors δx and δx̂ describe their displacements relative to the
reference point. Under the dynamics, the three points are mapped to three
new points which are still infinitesimally close to one another. The meaning
of the above expression is that the symplectic area spanned by the three
final points is the same as that spanned by the inital points. The integral
(Stokes theorem) version of this infinitesimal area invariance states that for
Hamiltonian flows the D oriented areas Vi bounded by D loops ΩVi, one
per each (pi, qi) plane, are separately conserved:

∫
V

dp ∧ dq =
∮

ΩV
p · dq = invariant . (C.6)

C.2 Monodromy matrix for Hamiltonian flows

(G. Tanner)
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It is not the Jacobian matrix of the flow, but the monodromy matrix,
which enters the trace formula. This matrix gives the time dependence of
a displacement perpendicular to the flow on the energy manifold. Indeed,
we discover some trivial parts in the Jacobian matrix J. An initial dis-
placement in the direction of the flow x = ω∇H(x) transfers according to
δx(t) = xt(t)δt with δt time independent. The projection of any displace-
ment on δx on ∇H(x) is constant, i.e. ∇H(x(t))δx(t) = δE. We get the
equations of motion for the monodromy matrix directly choosing a suit-
able local coordinate system on the orbit x(t) in form of the (non singular)
transformation U(x(t)):

J̃(x(t)) = U−1(x(t))J(x(t))U(x(0)) (C.7)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU− U̇) (C.8)

Note that the properties a) – c) are only fulfilled for J̃ and L̃, if U itself is
symplectic.
Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the
two trivial eigenvalues 1 of the transformed matrix in (C.7) at any time t.
Setting U = (xT

t , xT
E , xT

1 , . . . , xT
2d−2) gives

J̃ =


1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... m
0 ∗

 ; L̃ =


0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

 , (C.9)

The matrix m is now the monodromy matrix and the equation of motion
are given by

ṁ = l m. (C.10)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on
the energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be
written down explicitly, i.e.

U(t) = (xt, x1, xE , x2) =


ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

 (C.11)
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with xT = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular
and symplectic at every phase space point x (except the equilibrium points
ẋ = 0). The matrix elements for l are given (C.13). One distinguishes 4
classes of eigenvalues of m.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ; λ > 0 is called
the Lyapunov exponent of the periodic orbit.

• loxodromic, if Λ = e±u±iΨ with u and Ψ real. This is the most general
case possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e. m is a (2 × 2) matrix, the eigenvalues are
determined by

λ =
Tr(m)±

√
Tr(m)2 − 4
2

, (C.12)

i.e. Tr(m) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (C.11) are

l̃11 =
1
q
[(h2

x − h2
y − h2

u + h2
v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1
q2

[(h2
x + h2

v)(hyy + huu) + (h2
y + h2

u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv)− 2(hxhy − huhv)(hxy − huv)]
l̃21 = −(h2

x + h2
y)(huu + hvv)− (h2

u + h2
v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)
l̃22 = −̃l11, (C.13)

with hi, hij is the derivative of the Hamiltonian H with respect to the phase
space coordinates and q = |∇H|2.

Remark C.1 The sign convention of the Poisson bracket. The
Poisson bracket is antisymmetric in its arguments and there is a free-
dom to define it with the opposite sign convention. When such free-
doms exist in physics, it is certain that both conventions are in use
and this is no exception. In several texts you will see the right hand
side of (7.34) defined as [B,A] so that (7.35) is dQ

dt = [Q,H]. As long
as one is consistent, there should be no problem.
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Remark C.2 The sign convention of ω. The overall sign of ω,
the symplectic invariant in (5.4), is set by the convention that the
Hamilton’s principal function (for energy conserving flows) is given
by R(q, q′, t) =

∫ q′

q
pidqi − Et. With this sign convention the action

along a classical path is minimal, and the kinetic energy of a free
particle is positive.
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Implementing evolution

The large body of accrued wisdom on the subject of flows called fluid dy-
namics is about physicaly real flows of media with (typically) continuous
densities. On the other hand, the flows in state spaces of complicated
systems are not only abstract, but may lead to fractal or other forms of
complication in the densities. The latter frequently require more abstract
tools that we develop in this text. To sharpen our intuition about those, it
might be helpful to outline the more tangible fluid dynamical vision.

D.1 Material invariants

I’m a material girl in a material world.
Madonna, Material Girl

(E.A. Spiegel and P. Cvitanović)

We consider first the simplest property of a flow called a material invariant
by fluid dynamicists, who have no choice but to ponder such matters. A
material invariant I(x) is a property attached to each point x that is pre-
served by the flow, I(x) = I(f t(x)); for example, at this point the fluid is
green. As I(x) = I(f t(x)) is invariant, its total time derivative vanishes,
İ(x) = 0. Written in terms of partial derivatives this is the conservation
equation for the material invariant

∂tI + vi∂iI = 0 . (D.1)

Let the density of representative points be ρ(x, t). To each representa-
tive point x we assign the value I(x) of some physical property of a system.
The manner in which the flow redistributes I(x) is governed by a partial
differential equation whose form is relatively simple because the represen-
tative points are neither created nor destroyed. This conservation property
is expressed in the integral statement

∂t

∫
V

dx ρI = −
∫

∂V
dσ niviρI , (D.2)
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where V is an arbitrary volume in M, ∂V is its surface and n is its outward
normal. Repeated indices are summed over throughout and ∂t is the partial
derivative with respect to time.

We may use the divergence theorem to turn the surface integral into a
volume integral and obtain

∫
V

[∂t(ρI) + ∂i(viρI)] dx = 0 ,

where ∂i is the partial derivative operator with respect to xi. Since the
integration is over an arbitrary volume, we conclude that

∂t(ρI) + ∂i(ρIvi) = 0 . (D.3)

The choice I ≡ 1 yields the continuity equation for the density:

∂tρ + ∂i(ρvi) = 0 . (D.4)

If the density itself is a material invariant, combining (D.1) and (D.4) we
conclude that ∂ivi = 0 and Jt(x0) = 1. An example of such incompressible
flow is the Hamiltonian flow of sect. 5.1.1. For incompressible flows the
continuity equation (D.4) becomes a statement of conservation of the phase-
space volume (see sect. 5.1.1), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (D.5)

D.2 Koopmania

The way in which time evolution acts on densities may be rephrased in
the language of functional analysis, by introducing the Koopman operator,
whose action on a phase space function a(x) is to replace it by its down-
stream value time t later, a(x) → a(x(t)) evaluated at the trajectory point
x(t):

Kta(x) = a(f t(x)) . (D.6)

Observable a(x) has no explicit time dependence; all time dependence is
carried in its evaluation at x(t) rather than at x = x(0).

Suppose we are starting with an initial density of representative points
ρ(x): then the average value of a(x) evolves as

〈a〉(t) =
1
|ρM|

∫
M

dx a(f t(x))ρ(x) =
1
|ρM|

∫
M

dx
[
Kta(x)

]
ρ(x) .
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An alternative point of view (analogous to the shift from the Heisenberg to
the Schrödinger picture in quantum mechanics) is to push dynamical effects
into the density. In contrast to the Koopman operator which advances the
trajectory by time t, the Perron-Frobenius operator (7.10) depends on the
trajectory point time t in the past, so the Perron-Frobenius operator is the
adjoint of the Koopman operator

∫
M

dx
[
Kta(x)

]
ρ(x) =

∫
M

dx a(x)
[
Ltρ(x)

]
. (D.7)

Checking this is an easy change of variables exercise. For finite dimensional
deterministic invertible flows the Koopman operator (D.6) is simply the

☞ sect. 2.4.2
inverse of the Perron-Frobenius operator (7.6), so in what follows we shall
not distinguish the two. However, for infinite dimensional flows contracting
forward in time and for stochastic flows such inverses do not exist, and there
you need to be more careful.

The family of Koopman’s operators
{
Kt
}

t∈R+
forms a semigroup parametrized

by time

(a) K0 = I

(b) KtKt′ = Kt+t′ t, t′ ≥ 0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time
translations defined by

A = lim
t→0+

1
t

(
Kt − I

)
.

(If the flow is finite-dimensional and invertible, A is a generator of a group).
The explicit form of A follows from expanding dynamical evolution up to
first order, as in (2.4):

Aa(x) = lim
t→0+

1
t

(
a(f t(x))− a(x)

)
= vi(x)∂ia(x) . (D.8)

Of course, that is nothing but the definition of the time derivative, so the
equation of motion for a(x) is

(
d

dt
−A

)
a(x) = 0 . (D.9)

☞ appendix D.3

The finite time Koopman operator (D.6) can be formally expressed by
exponentiating the time evolution generator A as

Kt = etA . (D.10)
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✎ 7.10
page 116The generator A looks very much like the generator of translations. Indeed,

for a constant velocity field dynamical evolution is nothing but a translation
by time× velocity: ✎ 7.11

page 116

etv ∂
∂x a(x) = a(x + tv) . (D.11)

As we will not need to implement a computational formula for general etA in
what follows, we relegate making sense of such operators to appendix D.3.
Here we limit ourselves to a brief remark about the notion of “spectrum”

☞ appendix D.3
of a linear operator.

The Koopman operator K acts multiplicatively in time, so it is rea-
sonable to suppose that there exist constants M > 0, β ≥ 0 such that
||Kt|| ≤ Metβ for all t ≥ 0. What does that mean? The operator norm is
define in the same spirit in which we defined the matrix norms in sect. K.2:
We are assuming that no value of Ktρ(x) grows faster than exponentially
for any choice of function ρ(x), so that the fastest possible growth can be
bounded by etβ, a reasonable expectation in the light of the simplest exam-
ple studied so far, the exact escape rate (7.14). If that is so, multiplying
Kt by e−tβ we construct a new operator e−tβKt = et(A−β) which decays ex-
ponentially for large t, ||et(A−β)|| ≤ M . We say that e−tβKt is an element
of a bounded semigroup with generator A−βI. Given this bound, it follows
by the Laplace transform

∫ ∞

0
dt e−stKt =

1
s−A , Re s > β , (D.12)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to
☞ sect. K.2

cause separation into constituents)

∣∣∣∣∣∣∣∣ 1
s−A

∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−stMetβ =

M

s− β
.

If one is interested in the spectrum ofK, as we will be, the resolvent operator
is a natural object to study. The main lesson of this brief aside is that for
the continuous time flows the Laplace transform is the tool that brings
down the generator in (7.29) into the resolvent form (7.31) and enables us
to study its spectrum.

D.3 Implementing evolution

(R. Artuso and P. Cvitanović)
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We now come back to the semigroup of operators Kt. We have
introduced the generator of the semigroup (7.26) as

A =
d

dt
Kt

∣∣∣∣
t=0

.

If we now take the derivative at arbitrary times we get

(
d

dt
Ktψ

)
(x) = lim

η→0

ψ(f t+η(x))− ψ(f t(x))
η

= vi(f t(x))
∂

∂x̃i
ψ(x̃)

∣∣∣∣
x̃=f t(x)

=
(
KtAψ

)
(x)

which can be formally integrated like an ordinary differential equation yield-
ing ✎ 7.10

page 116

Kt = etA . (D.13)

This guarantees that the Laplace transform manipulations in sect. 7.4 are
correct. Though the formal expression of the semigroup (D.13) is quite
simple one has to take care in implementing its action. If we express the
exponential through the power series

Kt =
∞∑

k=0

tk

k!
Ak , (D.14)

we encounter the problem that the infinitesimal generator (7.26) contains
non-commuting pieces, that is, there are i, j combinations for which the
commutator does not satisfy

[
∂

∂xi
, vj(x)

]
= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects. 4.2 and 4.3 and use the semigroup
property to write

Kt =
t/δτ∏
m=1

Kδτ

as the starting point for a discretized approximation to the continuous
time dynamics, with time step δτ . Omitting terms from the second order
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onwards in the expansion of Kδτ yields an error of order O(δτ2). This might
be acceptable if the time step δτ is sufficiently small. In practice we write
the Euler product

Kt =
t/δτ∏
m=1

(
1 + δτA(m)

)
+ O(δτ2) (D.15)

where

(
A(m)ψ

)
(x) = vi(fmδτ (x))

∂ψ

∂x̃i

∣∣∣∣
x̃=fmδτ (x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi


x1

·
xi

xd

→


x1

·
xi + δτvi(x)

xd

 . (D.16)

✎ 2.6
page 46 We see that the product form (D.15) of the operator is nothing else but a

prescription for finite time step integration of the equations of motion - in
this case the simplest Euler type integrator which advances the trajectory
by δτ×velocity at each time step.

D.3.1 A symplectic integrator

The procedure we described above is only a starting point for more
sophisticated approximations. As an example on how to get a sharper
bound on the error term consider the Hamiltonian flow A = B + C, B =
pi

∂
∂qi

, C = −∂iV (q) ∂
∂pi

. Clearly the potential and the kinetic parts do not
commute. We make sense of the formal solution (D.15) by spliting it into✎ D.2

page 579
infinitesimal steps and keeping terms up to δτ2 in

Kδτ = K̂δτ +
1
24

(δτ)3[B + 2C, [B, C]] + · · · , (D.17)

where

K̂δτ = e
1
2
δτBeδτCe

1
2
δτB . (D.18)

The approximate infinitesimal Liouville operator K̂δτ is of the form that
now generates evolution as a sequence of mappings induced by (7.30), a
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free flight by 1
2
δτB, scattering by δτ∂V (q′), followed again by 1

2
δτB free

flight:

e
1
2
δτB

{
q

p

}
→

{
q′

p′

}
=
{

q − δτ
2 p

p

}
eδτC

{
q′

p′

}
→

{
q′′

p′′

}
=
{

q′

p′ + δτ∂V (q′)

}
e

1
2
δτB

{
q′′

p′′

}
→

{
q′′′

p′′′

}
=
{

q′ − δτ
2 p′′

p′′

}
(D.19)

Collecting the terms we obtain an integration rule for this type of symplectic
flow which is better than the straight Euler integration (D.16) as it is
accurate up to order δτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (D.20)

The Jacobian matrix of one integration step is given by

J =
(

1 −δτ/2
0 1

)(
1 0

δτ∂V (q′) 1

)(
1 −δτ/2
0 1

)
. (D.21)

Note that the billiard flow (5.22) is an example of such symplectic inte-
grator. In that case the free flight is interupted by instantaneous wall
reflections, and can be integrated out.

Commentary

Remark D.1 Koopman operators. The “Heisenberg picture” in
dynamical system theory has been introduced by Koopman refs. [D.2,
D.3], see also ref. [D.1]. Inspired by the contemporary advances in
quantum mechanics, Koopman [D.2] observed in 1931 that Kt is uni-
tary on L2(µ) Hilbert spaces. The Liouville/Koopman operator is the
classical analogue of the quantum evolution operator — the kernel of
Lt(y, x) introduced in (7.16) (see also sect. 8.2) is the analogue of the
Green’s function. The relation between the spectrum of the Koop-
man operator and classical ergodicity was formalized by von Neu-
mann [D.3]. We shall not use Hilbert spaces here and the operators
that we shall study will not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopman operators
for finite dimensional deterministic invertible flows, infinite dimen-
sional contracting flows, and stochastic flows, see Lasota-Mackey [D.1]
and Gaspard [1.4].
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Remark D.2 Symplectic integration. The reviews [D.6] and
[D.7] offer a good starting point for exploring the symplectic integra-
tors literature.
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EXERCISES 579

Exercises

Exercise D.1 Symplectic volume preservation. Check that the sequence of

mappings (D.19) is volume preserving, det Û = 1.

Exercise D.2 Noncommutativity. Check that the commutators in (D.17) are
not vanishing by showing that

[B, C] = −p

(
V ′′ ∂

∂p
− V ′ ∂

∂q

)
.

Exercise D.3 Symplectic leapfrog integrator. Implement (D.20) for 2-

dimensional Hamiltonian flows; compare it with Runge-Kutta integrator by integrating

trajectories in some (chaotic) Hamiltonian flow.
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Appendix E

Symbolic dynamics techniques

The kneading theory for unimodal mappings is developed in sect. E.1. The
prime factorization for dynamical itineraries of sect. E.2 illustrates the sense
in which prime cycles are “prime” - the product structure of zeta functions
is a consequence of the unique factorization property of symbol sequences.

E.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The Markov graph methods outlined in chapter 9 are well suited
for symbolic dynamics of finite subshift type. A sequence of well defined
rules leads to the answer, the topological zeta function, which turns out
to be a polynomial. For infinite subshifts one would have to go through
an infinite sequence of graph constructions and it is of course very difficult
to make any asymptotic statements about the outcome. Luckily, for some
simple systems the goal can be reached by much simpler means. This is
the case for unimodal maps.

We will restrict our attention to the topological zeta function for uni-
modal maps with one external parameter fΛ(x) = Λg(x). As usual, sym-
bolic dynamics is introduced by mapping a time series . . . xi−1xixi+1 . . .
onto a sequence of symbols . . . si−1sisi+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (E.1)

and xc is the critical point of the map (that is maximum of g). In addition
to the usual binary alphabet we have added a symbol C for the critical
point. The kneading sequence KΛ is the itinerary of the critical point.
The crucial observation is that no periodic orbit can have a topological
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I(C) ζ−1
top(z)/(1− z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1− z2n

)
10111C
1011111C
101∞ (1− 2z2)/(1 + z)
10111111C
101111C
1011C
101101C
10C (1− z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1− z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1− 2z)/(1− z)

Table E.1: All ordered kneading sequences up to length seven, as well as some longer
kneading sequences. Harmonic extension H∞(1) is defined below.

coordinate (see sect. E.1.1) beyond that of the kneading sequence. The
kneading sequence thus inserts a border in the list of periodic orbits (or-
dered according to maximal topological coordinate), cycles up to this limit
are allowed, all beyond are pruned. All unimodal maps (obeying some fur-
ther constraints) with the same kneading sequence thus have the same set
of periodic orbitsand the same topological zeta function. The topological
coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt
the convention to terminate the kneading sequence with a C, and
refer to the kneading sequence as finite.

2. Preperiodic, that is it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose the tent map

x �→ f(x) =
{

Λx x ∈ [0, 1/2]
Λ(1− x) x ∈ (1/2, 1] , (E.2)

where the parameter Λ ∈ (1, 2]. The topological entropy is h = log Λ. This
follows from the fact any trajectory of the map is bounded, the escape rate
is strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏
p

(
1− znp

|Λp|

)
=
∏
p

(
1−

( z

Λ

)np
)

= 1/ζtop(z/Λ)

has its leading zero at z = 1.
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The set of periodic points of the tent map is countable. A consequence
of this fact is that the set of parameter values for which the kneading
sequence is periodic or preperiodic are countable and thus of measure zero
and consequently the kneading sequence is aperiodic for almost all Λ. For
general unimodal maps the corresponding statement is that the kneading
sequence is aperiodic for almost all topological entropies.

For a given periodic kneading sequence of period n, KΛ = PC =
s1s2 . . . sn−1C there is a simple expansion for the topological zeta function.
Then the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏
p

(1− zn
p ) = (1− z)

n−1∑
i=0

aiz
i , ai =

i∏
j=1

(−1)sj (E.3)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by sim-
ply replacing n by ∞.

Example. Consider as an example the kneading sequence KΛ = 10C.
From (E.3) we get the topological zeta function 1/ζtop(z) = (1− z)(1− z−
z2), see table E.1. This can also be realized by redefining the alphabet. The
only forbidden subsequence is 100. All allowed periodic orbits, except 0, can
can be built from a alphabet with letters 10 and 1. We write this alphabet
as {10, 1; 0}, yielding the topological zeta function 1/ζtop(z) = (1− z)(1−
z − z2). The leading zero is the inverse golden mean z0 = (

√
5− 1)/2.

Example. As another example we consider the preperiodic kneading
sequence KΛ = 101∞. From (E.3) we get the topological zeta function
1/ζtop(z) = (1 − z)(1 − 2z2)/(1 + z), see table E.1. This can again be
realized by redefining the alphabet. There are now an infinite number of
forbidden subsequences, namely 1012n0 where n ≥ 0. These pruning rules
are respected by the alphabet {012n+1; 1, 0}, yielding the topological zeta
function above. The pole in the zeta function ζ−1

top(z) is a consequence of
the infinite alphabet.

An important consequence of (E.3) is that the sequence {ai} has a
periodic tail if and only if the kneading sequence has one (however, their
period may differ by a factor of two). We know already that the kneading
sequence is aperiodic for almost all Λ.

The analytic structure of the function represented by the infinite series∑
aizi with unity as radius of convergence, depends on whether the tail of

{ai} is periodic or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1− zN
,
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for some polynomials p(z) and q(z). The result is a set of poles spread out
along the unit circle. This applies to the preperiodic case. An aperiodic
sequence of coefficients would formally correspond to infinite N and it is
natural to assume that the singularities will fill the unit circle. There is
indeed a theorem ensuring that this is the case [9.37], provided the ai’s
can only take on a finite number of values. The unit circle becomes a
natural boundary, already apparent in a finite polynomial approximations
to the topological zeta function, as in fig. 10.4. A function with a natural
boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps
has the unit circle as a natural boundary for almost all topological entropies
and for the tent map (E.2), for almost all Λ.

Let us now focus on the relation between the analytic structure of the
topological zeta function and the number of periodic orbits, or rather (10.6),
the number Nn of fixed points of fn(x). The trace formula is (see sect. 10.4)

Nn = tr Tn =
1

2πi

∮
γr

dz z−n d

dz
log ζ−1

top

where γr is a (circular) contour encircling the origin z = 0 in clockwise
direction. Residue calculus turns this into a sum over zeros z0 and poles zp

of ζ−1
top

Nn =
∑

z0:r<|z0|<R

z−n
0 −

∑
zp:r<|zp|<R

z−n
0 +

1
2πi

∮
γR

dz z−n d

dz
log ζ−1

top

and a contribution from a large circle γR. For meromorphic topological
zeta functions one may let R → ∞ with vanishing contribution from γR,
and Nn will be a sum of exponentials.

The leading zero is associated with the topological entropy, as discussed
in chapter 10.

We have also seen that for preperiodic kneading there will be poles on
the unit circle.

To appreciate the role of natural boundaries we will consider a (very)
special example. Cascades of period doublings is a central concept for the
description of unimodal maps. This motivates a close study of the function

Ξ(z) =
∞∏

n=0

(1− z2n
) . (E.4)

This function will appear again when we derive (E.3).

The expansion of Ξ(z) begins as Ξ(z) = 1−z−z2 +z3−z4 +z5 . . .. The
radius of convergence is obviously unity. The simple rule governing the
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expansion will effectively prohibit any periodicity among the coefficients
making the unit circle a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and
n. (Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from
inside). Consequently, zeros are dense on the unit circle. One can also show
that singular points are dense on the unit circle, for instance |Ξ(z)| → ∞
when z → exp(2πm/3n) for any integer m and n.

As an example, the topological zeta function at the accumulation point
of the first Feigenbaum cascade is ζ−1

top(z) = (1 − z)Ξ(z). Then Nn =
2l+1 if n = 2l, otherwise Nn = 0. The growth rate in the number of
cycles is anything but exponential. It is clear that Nn cannot be a sum
of exponentials, the contour γR cannot be pushed away to infinity, R is
restricted to R ≤ 1 and Nn is entirely determined by

∫
γR

which picks up
its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and
we know that the unit circle is a natural boundary for almost all Λ. But
how does it look out there in the complex plane for some typical parameter
values? To explore that we will imagine a journey from the origin z =
0 out towards the unit circle. While traveling we let the parameter Λ
change slowly. The trip will have a distinct science fiction flavor. The
first zero we encounter is the one connected to the topological entropy.
Obviously it moves smoothly and slowly. When we move outward to the
unit circle we encounter zeros in increasing densities. The closer to the
unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyed through
bizarre bifurcations. For some special values of the parameter the unit
circle suddenly gets transparent and and we get (infinitely) short glimpses
of another world beyond the horizon.

We end this section by deriving eqs (E.5) and (E.6). The impenetrable
prose is hopefully explained by the accompanying tables.

We know one thing from chapter 9, namely for that finite kneading se-
quence of length n the topological polynomial is of degree n. The graph con-
tains a node which is connected to itself only via the symbol 0. This implies
that a factor (1− z) may be factored out and ζtop(z) = (1− z)

∑n−1
i=0 aiz

i.
The problem is to find the coefficients ai.

The ordered list of (finite) kneading sequences table E.1 and the ordered
list of periodic orbits (on maximal form) are intimately related. In table E.2
we indicate how they are nested during a period doubling cascade. Every
finite kneading sequence PC is bracketed by two periodic orbits, P1 and
P0. We have P1 < PC < P0 if P contains an odd number of 1’s, and
P0 < PC < P1 otherwise. From now on we will assume that P contains
an odd number of 1’s. The other case can be worked out in complete
analogy. The first and second harmonic of PC are displayed in table E.2.
The periodic orbit P1 (and the corresponding infinite kneading sequence)
is sometimes referred to as the antiharmonic extension of PC (denoted
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periodic orbits finite kneading sequences
P1 = A∞(P )

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓
H∞(P ) H∞(P )

Table E.2: Relation between periodic orbits and finite kneading sequences in a har-
monic cascade. The string P is assumed to contain an odd number of 1’s.

A∞(P )) and the accumulation point of the cascade is called the harmonic
extension of PC [9.14] (denoted H∞(P )).

A central result is the fact that a period doubling cascade of PC is
not interfered by any other sequence. Another way to express this is that a
kneading sequence PC and its harmonic are adjacent in the list of kneading
sequences to any order.

I(C) ζ−1
top(z)/(1− z)

P1 = 100C 1− z − z2 − z3

H∞(P1) = 10001001100 . . . 1− z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .
P ′ = 10001C 1− z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1− z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1− z − z2 − z3 − z4

Table E.3: Example of a step in the iterative construction of the list of kneading
sequences PC.

Table E.3 illustrates another central result in the combinatorics of knead-
ing sequences. We suppose that P1C and P2C are neighbors in the list of
order 5 (meaning that the shortest finite kneading sequence P ′C between
P1C and P2C is longer than 5.) The important result is that P ′ (of length
n′ = 6) has to coincide with the first n′ − 1 letters of both H∞(P1) and
A∞(P2). This is exemplified in the left column of table E.3. This fact
makes it possible to generate the list of kneading sequences in an iterative
way.

The zeta function at the accumulation point H∞(P1) is

ζ−1
P1

(z)Ξ(zn1) , (E.5)

and just before A∞(P2)

ζ−1
P2

(z)/(1− zn2) . (E.6)

A short calculation shows that this is exactly what one would obtain by
applying (E.3) to the antiharmonic and harmonic extensions directly, pro-
vided that it applies to ζ−1

P1
(z) and ζ−1

P2
(z). This is the key observation.
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Recall now the product representation of the zeta function ζ−1 =
∏

p(1−
znp). We will now make use of the fact that the zeta function associated
with P ′C is a polynomial of order n′. There is no periodic orbit of length
shorter than n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the
coefficients of this polynomial coincides with those of (E.5) and (E.6), see
Table E.3. We can thus conclude that our rule can be applied directly to
P ′C.

This can be used as an induction step in proving that the rule can be
applied to every finite and infinite kneading sequences.

Remark E.1 How to prove things. The explicit relation be-
tween the kneading sequence and the coefficients of the topological
zeta function is not commonly seen in the literature. The result
can proven by combining some theorems of Milnor and Thurston
[9.16]. That approach is hardly instructive in the present context.
Our derivation was inspired by Metropolis, Stein and Stein classical
paper [9.14]. For further detail, consult [9.36].

E.1.1 Periodic orbits of unimodal maps

A periodic point (or a cycle point) xi belonging to a cycle of period n is a
real solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 (E.7)

The nth iterate of a unimodal map crosses the diagonal at most 2n times.
Similarly, the backward and the forward Smale horseshoes intersect at most
2n times, and therefore there will be 2n or fewer periodic points of length
n. A cycle of length n corresponds to an infinite repetition of a length n
symbol string, customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

If s1s2 . . . sn is the symbol string associated with x0, its cyclic permutation
sksk+1 . . . sns1 . . . sk−1 corresponds to the point xk−1 in the same cycle. A
cycle p is called prime if its itinerary S cannot be written as a repetition
of a shorter block S′.

Each cycle yields n rational values of γ. The repeating string s1, s2, . . . sn

contains an odd number “1”s, the string of well ordered symbols w1w2 . . . wn

has to be of the double length before it repeats itself. The value γ is a ge-
ometrical sum which we can write as the finite sum

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑
t=1

wt/2t

draft 9.4.0, June 18 2003 chapter/appendSymb.tex 23mar98



588 APPENDIX E. SYMBOLIC DYNAMICS TECHNIQUES

Using this we can calculate the γ̂(S) for all short cycles.

Here we give explicit formulas for the topological coordinate of a pe-
riodic point, given its itinerary. For the purpose of what follows it is
convenient to compactify the itineraries by replacing the binary alphabet
si = {0, 1} by the infinite alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (E.8)

In this notation the itinerary S = aiajakal · · · and the corresponding topo-
logical coordinate (9.13) are related by γ(S) = .1i0j1k0l · · ·. For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .
γ(S) = .101101001110000 . . . = .1101120111021304 . . .

Cycle points whose itineraries start with w1 = w2 = . . . = wi = 0, wi+1 = 1
remain on the left branch of the tent map for i iterations, and satisfy
γ(0 . . . 0S) = γ(S)/2i.

A periodic point (or a cycle point) xi belonging to a cycle of period n is
a real solution of

fn(xi) = f(f(. . . f(xi) . . .)) = xi , i = 0, 1, 2, . . . , n− 1 . (E.9)

The nth iterate of a unimodal map has at most 2n monotone segments, and
therefore there will be 2n or fewer periodic points of length n. A periodic
orbit of length n corresponds to an infinite repetition of a length n symbol
string, customarily indicated by a line over the string:

S = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string
itinerary S = s1s2s3 . . . sn stands for infinite repetition of a finite block, and
routinely omit the overline. If s1s2 . . . sn is the symbol string associated
with x0, its cyclic permutation sksk+1 . . . sns1 . . . sk−1 corresponds to the
point xk−1 in the same cycle. A periodic orbit p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S′.

Periodic points correspond to rational values of γ, but we have to dis-
tinguish even and odd cycles. The even (odd) cycles contain even (odd)
number of ai in the repeating block, with periodic points given by

γ(aiaj · · · aka�) =

{
2n

2n−1 .1i0j · · · 1k even
1

2n+1 (1 + 2n × .1i0j · · · 1�) odd
, (E.10)

where n = i + j + · · ·+ k + � is the cycle period. The maximal value cycle
point is given by the cyclic permutation of S with the largest ai as the first
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symbol, followed by the smallest available aj as the next symbol, and so
on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal
value cycle point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

Maximal values of all cycles up to length 5 are given in table!?

E.2 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but
can be used to manipulate ordered sets of noncommuting objects such as
symbol strings. Let P = {p1, p2, p3, · · ·} be an ordered set of prime strings,
and

N = {n} =
{

pk1
1 pk2

2 pk3
3 · · · p

kj

j

}
,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered con-
catenation of the “primes” pi. By construction, every string n has a unique
prime factorization. We say that a string has a divisor d if it contains d as
a substring, and define the string division n/d as n with the substring d

deleted. Now we can do things like this: defining tn := tk1
p1

tk2
p2
· · · tkj

pj we can
write the inverse dynamical zeta function (15.2) as

∏
p

(1− tp) =
∑

n

µ(n)tn ,

and, if we care (we do in the case of the Riemann zeta function), the dyn-
amical zeta function as .

∏
p

1
1− tp

=
∑

n

tn (E.11)

A striking aspect of this formula is its resemblance to the factorization
of natural numbers into primes: the relation of the cycle expansion (E.11)

draft 9.4.0, June 18 2003 chapter/appendSymb.tex 23mar98



590 APPENDIX E. SYMBOLIC DYNAMICS TECHNIQUES

factors string
p1 0
p2 1

p2
1 00

p1p2 01
p2
2 11

p3 10

p3
1 000

p2
1p2 001

p1p
2
2 011

p3
2 111

p1p3 010
p2p3 110
p4 100
p5 101

factors string
p4
1 0000

p3
1p2 0001

p2
1p

2
2 0011

p1p
3
2 0111

p4
2 1111

p2
1p3 0010

p1p2p3 0110
p2
2p3 1110

p2
3 1010

p1p4 0100
p2p4 1100
p1p5 0101
p2p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5
1 00000

p4
1p2 00001

p3
1p

2
2 00011

p2
1p

3
2 00111

p1p
4
2 01111

p5
2 11111

p3
1p3 00010

p2
1p2p3 00110

p1p
2
2p3 01110

p3
2p3 11110

p1p
2
3 01010

p2p
2
3 11010

p2
1p4 00100

p1p2p4 01100
p2
2p4 11100

p3p4 10100

factors string
p2
1p5 00101

p1p2p5 01101
p2
2p5 11101

p3p5 10101
p1p6 01000
p2p6 11000
p1p7 01001
p2p7 11001
p1p8 01011
p2p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table E.4: Factorization of all periodic points strings up to length 5 into ordered
concatenations pk1

1 pk2
2 · · · pkn

n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . .
, p14 = 10111.

to the product over prime cycles is analogous to the Riemann zeta (exer-
cise c) represented as a sum over natural numbers vs. its Euler product
representation.

We now implement this factorization explicitly by decomposing recur-
sively binary strings into ordered concatenations of prime strings. There
are 2 strings of length 1, both prime: p1 = 0, p2 = 1. There are 4 strings
of length 2: 00, 01, 11, 10. The first three are ordered concatenations of
primes: 00 = p2

1, 01 = p1p2, 11 = p2
2; by ordered concatenations we mean

that p1p2 is legal, but p2p1 is not. The remaining string is the only prime
of length 2, p3 = 10. Proceeding by discarding the strings which are con-
catenations of shorter primes pk1

1 pk2
2 · · · p

kj

j , with primes lexically ordered,
we generate the standard list of primes, in agreement with table 9.2: 0, 1,
10, 101, 100, 1000, 1001, 1011, 10000, 10001, 10010, 10011, 10110, 10111,
100000, 100001, 100010, 100011, 100110, 100111, 101100, 101110, 101111,
. . .. This factorization is illustrated in table E.4.

E.2.1 Prime factorization for spectral determinants

Following sect. E.2, the spectral determinant cycle expansions is
obtained by expanding F as a multinomial in prime cycle weights tp

F =
∏
p

∞∑
k=0

Cpktkp =
∞∑

k1k2k3···=0

τ
p

k1
1 p

k2
2 p

k3
3 ··· (E.12)
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where the sum goes over all pseudocycles. In the above we have defined

τ
p

k1
1 p

k2
2 p

k3
3 ··· =

∞∏
i=1

Cpi
ki t

ki
pi

. (E.13)

✎ c
page 218A striking aspect of the spectral determinant cycle expansion is its re-

semblance to the factorization of natural numbers into primes: as we al-
ready noted in sect. E.2, the relation of the cycle expansion (E.12) to the
product formula (12.9) is analogous to the Riemann zeta represented as a
sum over natural numbers vs. its Euler product representation.

This is somewhat unexpected, as the cycle weights factorize exactly
with respect to r repetitions of a prime cycle, tpp...p = trp, but only ap-
proximately (shadowing) with respect to subdividing a string into prime
substrings, tp1p2 ≈ tp1tp2 .

The coefficients Cpk have a simple form only in 1-d, given by the Euler
formula (13.26). In higher dimensions Cpk can be evaluated by expanding
(12.9), F (z) =

∏
p Fp, where

Fp = 1−
( ∞∑

r=1

trp
rdp,r

)
+

1
2

( ∞∑
r=1

trp
rdp,r

)2

− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the
moment, we obtain

Fp =
∞∑

r=1

Ckt
k, Ck = (−)kck/Dk,

Dk =
k∏

r=1

dr =
d∏

a=1

k∏
r=1

(1− ur
a) (E.14)

where evaluation of ck requires a certain amount of not too luminous alge-
bra:

c0 = 1
c1 = 1

c2 =
1
2

(
d2

d1
− d1

)
=

1
2

(
d∏

a=1

(1 + ua)−
d∏

a=1

(1− ua)

)

c3 =
1
3!

(
d2d3

d2
1

+ 2d1d2 − 3d3

)
=

1
6

(
d∏

a=1

(1 + 2ua + 2u2
a + u3

a)

+2
d∏

a=1

(1− ua − u2
a + u3

a)− 3
d∏

a=1

(1− u3
a)

)
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etc.. For example, for a general 2-dimensional map we have

Fp = 1− 1
D1

t+
u1 + u2

D2
t2−u1u2(1 + u1)(1 + u2) + u3

1 + u3
2

D3
t3+. . . .(E.15)

We discuss the convergence of such cycle expansions in sect. J.4.

With τ
p

k1
1 p

k2
2 ···pkn

n
defined as above, the prime factorization of symbol

strings is unique in the sense that each symbol string can be written as a
unique concatenation of prime strings, up to a convention on ordering of
primes. This factorization is a nontrivial example of the utility of general-
ized Möbius inversion, sect. E.2.

How is the factorization of sect. E.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) all prime cycles up
to length n, that is we have a list of tp’s and the corresponding Jacobian
matrix eigenvalues Λp,1, Λp,2, . . .Λp,d. A cycle expansion of the Selberg
product is obtained by generating all strings in order of increasing length
j allowed by the symbolic dynamics and constructing the multinomial

F =
∑

n

τn (E.16)

where n = s1s2 · · · sj , si range over the alphabet, in the present case {0, 1}.
Factorizing every string n = s1s2 · · · sj = pk1

1 pk2
2 · · · p

kj

j as in table E.4,
and substituting τ

p
k1
1 p

k2
2 ··· we obtain a multinomial approximation to F .

For example, τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013 , τ0012 are
known functions of the corresponding cycle eigenvalues. The zeros of F
can now be easily determined by standard numerical methods. The fact
that as far as the symbolic dynamics is concerned, the cycle expansion
of a Selberg product is simply an average over all symbolic strings makes
Selberg products rather pretty.

To be more explicit, we illustrate the above by expressing binary strings
as concatenations of prime factors. We start by computing Nn, the number
of terms in the expansion (E.12) of the total cycle length n. Setting Cpktkp =
znpk in (E.12), we obtain

∞∑
n=0

Nnzn =
∏
p

∞∑
k=0

znpk =
1∏

p(1− znp)
.

So the generating function for the number of terms in the Selberg product
is the topological zeta function. For the complete binary dynamics we have
Nn = 2n contributing terms of length n:

ζtop =
1∏

p(1− znp)
=

1
1− 2z

=
∞∑

n=0

2nzn
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Hence the number of distinct terms in the expansion (E.12) is the same
as the number of binary strings, and conversely, the set of binary strings
of length n suffices to label all terms of the total cycle length n in the
expansion (E.12).
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Appendix F

Counting itineraries

F.1 Counting curvatures

One consequence of the finitness of topological polynomials is that
the contributions to curvatures at every order are even in number, half
with positive and half with negative sign. For instance, for complete binary
labelling (15.5),

c4 = −t0001 − t0011 − t0111 − t0t01t1

+ t0t001 + t0t011 + t001t1 + t011t1 . (F.1)

We see that 23 terms contribute to c4, and exactly half of them appear
with a negative sign - hence if all binary strings are admissible, this term
vanishes in the counting expression. ✎ F.2

page 597
Such counting rules arise from the identity

∏
p

(1 + tp) =
∏
p

1− tp
2

1− tp
. (F.2)

Substituting tp = znp and using (10.15) we obtain for unrestricted symbol
dynamics with N letters

∞∏
p

(1 + znp) =
1−Nz2

1−Nz
= 1 + Nz +

∞∑
k=2

zk
(
Nk −Nk−1

)

The zn coefficient in the above expansion is the number of terms contribut-
ing to cn curvature, so we find that for a complete symbolic dynamics of N
symbols and n > 1, the number of terms contributing to cn is (N −1)Nk−1

(of which half carry a minus sign). ✎ F.4
page 598
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We find that for complete symbolic dynamics of N symbols and n > 1,
the number of terms contributing to cn is (N − 1)Nn−1. So, superficially,
not much is gained by going from periodic orbits trace sums which get Nn

contributions of n to the curvature expansions with Nn(1−1/N). However,
the point is not the number of the terms, but the cancellations between
them.
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Exercises

Exercise F.1 Lefschetz zeta function. Elucidate the relation betveen the

topological zeta function and the Lefschetz zeta function.

Exercise F.2 Counting the 3-disk pinball counterterms. Verify that the
number of terms in the 3-disk pinball curvature expansion (15.31) is given by

∏
p

(1 + tp) =
1− 3z4 − 2z6

1− 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)
1− 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(F.3)

This means that, for example, c6 has a total of 20 terms, in agreement with the explicit

3-disk cycle expansion (15.32).

Exercise F.3 Cycle expansion denominators∗∗. Prove that the denominator

of ck is indeed Dk, as asserted (E.14).

Exercise F.4 Counting subsets of cycles. The techniques developed above
can be generalized to counting subsets of cycles. Consider the simplest example of a
dynamical system with a complete binary tree, a repeller map (9.10) with two straight
branches, which we label 0 and 1. Every cycle weight for such map factorizes, with
a factor t0 for each 0, and factor t1 for each 1 in its symbol string. The transition
matrix traces (10.5) collapse to tr(T k) = (t0 + t1)k, and 1/ζ is simply

∏
p

(1− tp) = 1− t0 − t1 (F.4)

Substituting into the identity

∏
p

(1 + tp) =
∏
p

1− tp
2

1− tp

we obtain

∏
p

(1 + tp) =
1− t20 − t21
1− t0 − t1

= 1 + t0 + t1 +
2t0t1

1− t0 − t1

= 1 + t0 + t1 +
∞∑

n=2

n−1∑
k=1

2
(

n− 2
k − 1

)
tk0tn−k

1 . (F.5)

Hence for n ≥ 2 the number of terms in the expansion ?! with k 0’s and n − k
1’s in their symbol sequences is 2

(
n−2
k−1

)
. This is the degeneracy of distinct cycle

eigenvalues in fig.?!; for systems with non-uniform hyperbolicity this degeneracy is
lifted (see fig. ?!).

In order to count the number of prime cycles in each such subset we denote
with Mn,k (n = 1, 2, . . . ; k = {0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the
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number of prime n-cycles whose labels contain k zeros, use binomial string counting
and Möbius inversion and obtain

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣n

k

µ(m)
(

n/m

k/m

)
, n ≥ 2 , k = 1, . . . , n− 1

where the sum is over all m which divide both n and k.
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Appendix G

Finding cycles

(C. Chandre)

G.1 Newton-Raphson method

G.1.1 Contraction rate

Consider a d-dimensional map x′ = f(x) with an unstable fixed point x∗.
The Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x− (J(x)− 1)−1 (f(x)− x) .

The linearization of g near x∗ leads to

x∗ + ε′ = x∗ + ε− (J(x∗)− 1)−1 (f(x∗) + J(x∗)ε− x∗ − ε) + O
(
‖ε‖2

)
,

where ε = x− x∗. Therefore,

x′ − x∗ = O
(
(x− x∗)2

)
.

After n steps and if the initial guess x0 is close to x∗, the error decreases
super-exponentially

gn(x0)− x∗ = O
(
(x0 − x∗)2

n)
.

G.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional map-
pings using the multi-shooting method reduces to the following equation

 1 −Df(xn)
−Df(x1) 1

· · · 1
−Df(xn−1) 1


 δ1

δ2

· · ·
δn

 = −

 F1

F2

· · ·
Fn

 , (G.1)
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where Df(x) is the [d × d] Jacobian matrix of the map evaluated at the
point x, and δm = x′

m − xm and Fm = xm − f(xm−1) are d-dimensional
vectors. By some starightforward algebra, the vectors δm are expressed as
functions of the vectors Fm:

δm = −
m∑

k=1

βk,m−1Fk − β1,m−1 (1− β1,n)−1

(
n∑

k=1

βk,nFk

)
, (G.2)

for m = 1, . . . , n, where βk,m = Df(xm)Df(xm−1) · · ·Df(xk) for k < m
and βk,m = 1 for k ≥ m. Therefore, finding n-cycles by a Newton-Raphson
method with multiple shooting requires the inversing of a [d × d] matrix
1−Df(xn)Df(xn−1) · · ·Df(x1).

G.2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map x′ = f(x) with an unstable fixed
point x∗. The transformed map is the following one:

x′ = g(x) = x + γC(f(x)− x),

where γ > 0 and C is a d×d invertible constant matrix. We notice that x∗
is also a fixed point of g. Consider the stability matrix at the fixed point
x∗

Ag =
dg

dx

∣∣∣∣
x=x∗

= 1 + γC(Af − 1).

The matrix C is constructed such that the eigenvalues of Ag are of modulus
less than one. Assume that Af is diagonalizable: In the basis of diagonal-
ization, the matrix writes:

Ãg = 1 + γC̃(Ãf − 1),

where Ãf is diagonal with elements µi. We restrict the set of matrices C̃
to diagonal matrices with C̃ii = εi where εi = ±1. Thus Ãg is diagonal
with eigenvalues γi = 1 + γεi(µi − 1). The choice of γ and εi is such that
|γi| < 1. It is easy to see that if Re(µi) < 1 one has to choose εi = 1, and
if Re(µi) > 1, εi = −1. If λ is chosen such that

0 < γ < min
i=1,...,d

2|Re(µi)− 1|
|µi − 1|2 ,

all the eigenvalues of Ag have modulus less that one. The contraction rate
at the fixed point for the map g is then maxi |1 + γεi(µi − 1)|. We notice
that if Re(µi) = 1, it is not possible to stabilize x∗ by the set of matrices
γC.
From the construction of C, we see that 2d choices of matrices are possible.
For example, for two-dimensional systems, these matrices are

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)
,

(
−1
0

0
−1

)}
.
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For 2-dimensional dissipative maps, the eigenvalues satisfy Re(µ1)Re(µ2) ≤
det Df < 1. The case (Re(µ1) > 1, Re(µ2) > 1) which is stabilized by(
−1
0

0
−1

)
has to be discarded. The minimal set is reduced to three matrices.
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Appendix H

Applications

Man who says it cannot be done should not interrupt
man doing it.
Sayings of Vattay Gábor

In this appendix we show that the multidimensional Lyapunov expo-
nents and relaxation exponents (dynamo rates) of vector fields can be ex-
pressed in terms of leading eigenvalues of appropriate evolution operators.

H.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-d maps
in sect. 8.3.2. For higher-dimensional flows only the Jacobian matrices are
multiplicative, not individual eigenvalues, and the construction of the evolu-
tion operator for evaluation of the Lyapunov spectra requires the extension
of evolution equations to the flow in the tangent space. We now develop
the requisite theory.

Here we construct a multiplicative evolution operator (H.4) whose spec-
tral determinant (H.8) yields the leading Lyapunov exponent of a d-dimensional
flow (and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tangent space
of the flow, suggested by the standard numerical methods for evaluation of
Lyapunov exponents: start at x0 with an initial infinitesimal tangent space
vector η(0) ∈ TMx, and let the flow transport it along the trajectory
x(t) = f t(x0).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system
of equations of variations [6.1]:

ẋ = v(x) , η̇ = Dv(x)η .
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Here Dv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , η(t) = Jt(x0) · η0 , (H.1)

with the tangent space vector η transported by the stability matrix Jt(x0) =
∂x(t)/∂x0.

As explained in sect. 4.1, the growth rate of this vector is multiplicative
along the trajectory and can be represented as η(t) = |η(t)|/|η(0)|u(t)
where u(t) is a “unit” vector in some norm ||.||. For asymptotic times
and for almost every initial (x0, η(0)), this factor converges to the leading
eigenvalue of the linearized stability matrix of the flow.

We implement this multiplicative evaluation of stability eigenvalues by
adjoining the d-dimensional transverse tangent space η ∈ TMx; η(x)v(x) =
0 to the (d+1)-dimensional dynamical evolution space x ∈ M ⊂ R

d+1.
In order to determine the length of the vector η we introduce a homo-
geneous differentiable scalar function g(η) = ||η||. It has the property
g(Λη) = |Λ|g(η) for any Λ. An example is the projection of a vector to its
dth component

g

 η1

η2

· · ·
ηd

 = |ηd| .

Any vector η ∈ TUx can now be represented by the product η = Λu,
where u is a “unit” vector in the sense that its norm is ||u|| = 1, and the
factor

Λt(x0,u0) = g(η(t)) = g(Jt(x0) · u0) (H.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is
multiplicative along the trajectory:

Λt′+t(x0,u0) = Λt′(x(t),u(t)) Λt(x0,u0).

✎ H.1
page 613 The u evolution constrained to ETg,x, the space of unit transverse tangent

vectors, is given by rescaling of (H.1):

u′ = Rt(x,u) =
1

Λt(x,u)
Jt(x) · u . (H.3)

Eqs. (H.1), (H.2) and (H.3) enable us to define a multiplicative evolution
operator on the extended space U × ETg,x

Lt(x′,u′; x,u) = δ
(
x′ − f t(x)

) δ
(
u′ −Rt(x,u)

)
|Λt(x,u)|β−1

, (H.4)
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H.1. EVOLUTION OPERATOR FOR LYAPUNOV EXPONENTS 605

where β is a variable.

To evaluate the expectation value of log |Λt(x,u)| which is the Lya-
punov exponent we again have to take the proper derivative of the leading
eigenvalue of (H.4). In order to derive the trace formula for the operator
(H.4) we need to evaluate TrLt =

∫
dxduLt(u, x;u, x). The

∫
dx integral

yields a weighted sum over prime periodic orbits p and their repetitions r:

TrLt =
∑

p

Tp

∞∑
r=1

δ(t− rTp)
| det (1− Jr

p) |
∆p,r,

∆p,r =
∫

g
du

δ
(
u−RTpr(xp,u)

)
|ΛTpr(xp,u)|β−1

, (H.5)

where Jp is the prime cycle p transverse stability matrix. As we shall see
below, ∆p,r is intrinsic to cycle p, and independent of any particular cycle
point xp.

We note next that if the trajectory f t(x) is periodic with period T , the
tangent space contains d periodic solutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e1, e2, · · · , ed} of the transverse
stability matrix, with “stretching” factors (H.2) given by its eigenvalues

Jp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d. (no summation on i)

The
∫

du integral in (H.5) picks up contributions from these periodic solu-
tions. In order to compute the stability of the ith eigendirection solution,
it is convenient to expand the variation around the eigenvector ei in the
stability matrix eigenbasis δu =

∑
δu� e� . The variation of the map (H.3)

at a complete period t = T is then given by

δRT (ei) =
J · δu

g(J · ei)
− J · ei

g(J · ei)2

(
∂g(ei)

∂u
· J · δu

)
=

∑
k 
=i

Λp,k

Λp,i

(
ek − ei

∂g(ei)
∂uk

)
δuk . (H.6)

The δui component does not contribute to this sum since g(ei + duiei) =
1 + dui implies ∂g(ei)/∂ui = 1. Indeed, infinitesimal variations δu must
satisfy

g(u + δu) = g(u) = 1 =⇒
d∑

�=1

δu�
∂g(u)
∂u�

= 0 ,
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so the allowed variations are of form

δu =
∑
k 
=i

(
ek − ei

∂g(ei)
∂uk

)
ck , |ck| ! 1 ,

and in the neighborhood of the ei eigenvector the
∫

du integral can be
expressed as

∫
g
du =

∫ ∏
k 
=i

dck .

Inserting these variations into the
∫

du integral we obtain

∫
g
du δ

(
ei + δu−RT (ei)− δRT (ei) + . . .

)
=

∫ ∏
k 
=i

dck δ((1− Λk/Λi)ck + . . .)

=
∏
k 
=i

1
|1− Λk/Λi|

,

and the
∫

du trace (H.5) becomes

∆p,r =
d∑

i=1

1
| Λr

p,i |β−1

∏
k 
=i

1
| 1− Λr

p,k/Λr
p,i |

. (H.7)

The corresponding spectral determinant is obtained by observing that the
Laplace transform of the trace (11.19) is a logarithmic derivative TrL(s) =
− d

ds log F (s) of the spectral determinant:

F (β, s) = exp

(
−
∑
p,r

esTpr

r | det (1− Jr
p) |

∆p,r(β)

)
. (H.8)

This determinant is the central result of this section. Its zeros correspond
to the eigenvalues of the evolution operator (H.4), and can be evaluated by
the cycle expansion methods.

The leading zero of (H.8) is called “pressure” (or free energy)

P (β) = s0(β). (H.9)

The average Lyapunov exponent is then given by the first derivative of the
pressure at β = 1:

λ = P ′(1). (H.10)
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The simplest application of (H.8) is to 2-dimensional hyperbolic Hamil-
tonian maps. The stability eigenvalues are related by Λ1 = 1/Λ2 = Λ, and
the spectral determinant is given by

F (β, z) = exp

(
−
∑
p,r

zrnp

r | Λr
p |

1
(1− 1/Λr

p)2
∆p,r(β)

)

∆p,r(β) =
| Λr

p |1−β

1− 1/Λ2r
p

+
| Λr

p |β−3

1− 1/Λ2r
p

. (H.11)

The dynamics (H.3) can be restricted to a u unit eigenvector neighbor-
hood corresponding to the largest eigenvalue of the Jacobi matrix. On this
neighborhood the largest eigenvalue of the Jacobi matrix is the only fixed
point, and the spectral determinant obtained by keeping only the largest
term the ∆p,r sum in (H.7) is also entire.

In case of maps it is practical to introduce the logarithm of the leading
zero and to call it “pressure”

P (β) = log z0(β). (H.12)

The average of the Lyapunov exponent of the map is then given by the first
derivative of the pressure at β = 1:

λ = P ′(1). (H.13)

By factorizing the determinant (H.11) into products of zeta functions
we can conclude that the leading zero of the (H.4) can also be recovered
from the leading zeta function

1/ζ0(β, z) = exp

(
−
∑
p,r

zrnp

r|Λr
p|β

)
. (H.14)

This zeta function plays a key role in thermodynamic applications as we
will will see in Chapter 17.

H.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the
magnetic field of the Sun which is “frozen” in the fluid motion. A passively
evolving vector field V is governed by an equation of the form

∂tV + u · ∇V −V · ∇u = 0, (H.15)
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where u(x, t) represents the velocity field of the fluid. The strength of the
vector field can grow or decay during its time evolution. The amplification
of the vector field in such a process is called the ”dynamo effect”. In a
strongly chaotic fluid motion we can characterize the asymptotic behavior
of the field with an exponent

V(x, t) ∼ V(x)eνt, (H.16)

where ν is called the fast dynamo rate. The goal of this section is to show
that periodic orbit theory can be developed for such a highly non-trivial
system as well.

We can write the solution of (H.15) formally, as shown by Cauchy. Let
x(t,a) be the position of the fluid particle that was at the point a at t = 0.
Then the field evolves according to

V(x, t) = J(a, t)V(a, 0) , (H.17)

where J(a, t) = ∂(x)/∂(a) is the Jacobian matrix of the transformation
that moves the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions
of the fluid particles into their positions at time t. Its inverse, a = f−t(x),
maps particles at time t and position x back to their initial positions. Then
we can write (H.17)

Vi(x, t) =
∑

j

∫
d3a Lt

ij(x,a)Vj(a, 0) , (H.18)

with

Lt
ij(x,a) = δ(a− f−t(x))

∂xi

∂aj
. (H.19)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t

with Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator
furnishes the fast dynamo rate, ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit
contributions, with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞∑
r=1

trJr
p∣∣det

(
1− J−r

p

)∣∣δ(t− rTp). (H.20)

We can construct the corresponding spectral determinant as usual

F (s) = exp

[
−
∑

p

∞∑
r=1

1
r

trJr
p∣∣det

(
1− J−r

p

)∣∣esrTp

]
. (H.21)
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Note that in this formuli we have omitted a term arising from the Jacobian
transformation along the orbit which would give 1+tr Jr

p in the numerator
rather than just the trace of Jr

p. Since the extra term corresponds to advec-
tion along the orbit, and this does not evolve the magnetic field, we have
chosen to ignore it. It is also interesting to note that the negative powers
of the Jacobian occur in the denominator, since we have f−t in (H.19).

In order to simplify F (s), we factor the denominator cycle stability
determinants into products of expanding and contracting eigenvalues. For
a 3-dimensional fluid flow with cycles possessing one expanding eigenvalue
Λp (with |Λp| > 1), and one contracting eigenvalue λp (with |λp| < 1) the
determinant may be expanded as follows:

∣∣det
(
1− J−r

p

)∣∣−1 = |(1−Λ−r
p )(1−λ−r

p )|−1 = |λp|r
∞∑

j=0

∞∑
k=0

Λ−jr
p λkr

p .(H.22)

With this decomposition we can rewrite the exponent in (H.21) as

∑
p

∞∑
r=1

1
r

(λr
p + Λr

p)e
srTp∣∣det

(
1− J−r

p

)∣∣ =
∑

p

∞∑
j,k=0

∞∑
r=1

1
r

(
|λp|Λ−j

p λk
pe

sTp

)r
(λr

p+Λr
p) , (H.23)

which has the form of the expansion of a logarithm:

∑
p

∑
j,k

[
log

(
1− esTp |λp|Λ1−j

p λk
p

)
+ log

(
1− esTp |λp|Λ−j

p λ1+k
p

)]
.(H.24)

The spectral determinant is therefore of the form,

F (s) = Fe(s)Fc(s) , (H.25)

where

Fe(s) =
∏
p

∞∏
j,k=0

(
1− t(jk)

p Λp

)
, (H.26)

Fc(s) =
∏
p

∞∏
j,k=0

(
1− t(jk)

p λp

)
, (H.27)

with

t(jk)
p = esTp |λp|

λk
p

Λj
p

. (H.28)
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The two factors present in F (s) correspond to the expanding and contract-
ing exponents. (Had we not neglected a term in (H.21), there would be a
third factor corresponding to the translation.)

For 2-d Hamiltonian volume preserving systems, λ = 1/Λ and (H.26)
reduces to

Fe(s) =
∏
p

∞∏
k=0

(
1− tp

Λk−1
p

)k+1

, tp =
esTp

| Λp |
. (H.29)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of
the product (H.27)) is given by

1/ζdyn(s) =
∏
p

(
1− σpe

sTp
)

. (H.30)

This is a curious formula — the zeta function depends only on the return
times, not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1− Λ)(1− 1/Λ)| = σ +

2
|(1− Λ)(1− 1/Λ)| ,

when substituted into (H.25), leads to a relation between the vector and
scalar advection spectral determinants:

Fdyn(s) = F 2
0 (s)/ζdyn(s) . (H.31)

The spectral determinants in this equation are entire for hyperbolic (axiom
A) systems, since both of them correspond to multiplicative operators.

In the case of a flow governed by a map, we can adapt the formulas
(H.29) and (H.30) for the dynamo determinants by simply making the sub-
stitution

znp = esTp , (H.32)

where np is the integer order of the cycle. Then we find the spectral deter-
minant Fe(z) given by equation (H.29) but with

tp =
znp

|Λp|
(H.33)

for the weights, and

1/ζdyn(z) = Πp (1− σpz
np) (H.34)
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for the zeta-function

For maps with finite Markov partition the inverse zeta function (H.34)
reduces to a polynomial for z since curvature terms in the cycle expansion
vanish. For example, for maps with complete binary partition, and with
the fixed point stabilities of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (H.35)

For such maps the dynamo spectral determinant is simply the square of
the scalar advection spectral determinant, and therefore all its zeros are
double. In other words, for flows governed by such discrete maps, the fast
dynamo rate equals the scalar advection rate.

In contrast, for three-dimensional flows, the dynamo effect is distinct
from the scalar advection. For example, for flows with finite symbolic dy-
namical grammars, (H.31) implies that the dynamo zeta function is a ratio
of two entire determinants:

1/ζdyn(s) = Fdyn(s)/F 2
0 (s) . (H.36)

This relation implies that for flows the zeta function has double poles at
the zeros of the scalar advection spectral determinant, with zeros of the
dynamo spectral determinant no longer coinciding with the zeros of the
scalar advection spectral determinant; Usually the leading zero of the ✎ H.2

page 613
dynamo spectral determinant is larger than the scalar advection rate, and
the rate of decay of the magnetic field is no longer governed by the scalar
advection.

Commentary

Remark H.1 Dynamo zeta. The dynamo zeta (H.34) has been
introduced by Aurell and Gilbert [H.3] and reviewed in ref. [H.5]. Our
exposition follows ref. [H.4].
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EXERCISES 613

Exercises

Exercise H.1 Stretching factor. Prove the multiplicative property of the

stretching factor (H.2). Why should we extend the phase space with the tangent

space?

Exercise H.2 Dynamo rate. Suppose that the fluid dynamics is highly
dissipative and can be well approximated by the piecewise linear map

f(x) =
{

1 + ax if x < 0,
1− bx if x > 0,

(H.37)

on an appropriate surface of section (a, b > 2). Suppose also that the return time is
constant Ta for x < 0 and Tb for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1− esTa + esTb . (H.38)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1− esTa/a− esTb/b. (H.39)

Calculate the dynamo and the escape rates analytically if b = a2 and Tb = 2Ta. Do

the calculation for the case when you reverse the signs of the slopes of the map. What

is the difference?
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Appendix I

Discrete symmetries

I.1 Preliminaries and definitions

(P. Cvitanović and A. Wirzba)

In the following we will define what we mean by the concepts group, repre-
sentation, symmetry of a dynamical system, and invariance.

Group axioms. First, we define a group in abstract terms: A group G
is a set of elements g1, g2, g3, . . . for which a law of composition or group
multiplication is given such that the product g2 ◦g1 (which we will also just
abbreviate as g2g1) of any two elements satisfies the following conditions:

1. If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

2. The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The group G contains an element e called identity such that g ◦ e =
e ◦ g = g for every element g ∈ G.

4. For every element g ∈ G, there exists an unique element h ∈ G such
that h ◦ g = g ◦ h = e. The element h is called inverse of g, and is
denoted by h = g−1.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where |G|, the number of elements, will be referred to as order of the group.
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Matrix group on vector space. We will now apply these abstract
group definitions to the set of [d × d]-dimensional non-singular matrices
A,B,C, . . . acting in a d-dimensional vector space V ∈ R

d, that is the
product of matrices A and B gives the single matrix C, such that

Cv = B(Av) ∈ V, ∀v ∈ V. (I.1)

The identity of the group is the unit matrix 11 which leaves all vectors in
V unchanged. Every matrix in the group has a unique inverse.

Linear representation of a group. Let us now map the abstract group
G homeomorphically on a group of matrices D(G) in the vector space V ,
that isin such a way that the group properties, especially the group multi-
plication, are preserved:

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 ∈ G is mapped onto the matrix product
D(g2 ◦ g1) = D(g2)D(g1).

3. The associativity is preserved: D(g3◦(g2◦g1)) = D(g3)(D(g2)D(g1)) =
(D(g3)(D(g2))D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11
and the inverse element g−1 ∈ G is mapped onto the inverse matrix
D(g−1) = [D(g)]−1 ≡ D−1(g).

We call the so defined matrix group D(G) a linear or matrix representa-
tion of the group G in the representation space V . Note that the matrix
operation on a vector is by definition linear. We use the specification lin-
ear in order to discriminate the matrix representations from other operator
representations that do not have to be linear, in general. Throughout this
appendix we only consider linear representations.

If the dimensionality of V is d, we say the representation is an d-
dimensional representation or has the degree d. The matrices D(g) ∈ D(G)
are non-singular [d×d] matrices, which we will also just abbreviate as g, that
isx′ = gx corresponds to the normal matrix operation x′

i =
∑d

j=1(g)ijxj =∑d
j=1 gijxj .

Character of a representation. The character of χα(g) of an d-dimensional
representation D(g) of the group element g of a discrete group G is defined
as trace

χα(g) =
n∑

i=1

Dii(g) ≡ trD(g) .

Note especially that χ(e) = n, since Dij(e) = δij for 1 ≤ i, j ≤ n.
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Faithful representations. If the homomorphismus mapping G on D(G)
becomes an isomorphism, the representation is said to be faithful. In this
case the order of the group of matrices D(G) is equal to the order |G| of the
group. In general, however, there will be several elements of G that will be
mapped on the unit matrix D(e) = 11. This property can be used to define
a subgroup H ⊂ G of the group G consisting of all elements h ∈ G that are
mapped to the unit matrix of a given representation. Then the cosidered
representation is a faithful representation of the factor group G/H.

Equivalent representations. From this remarks it should be clear that
the representation of a group is by no means unique. If the basis in the
d-dimensional vector space V is changed, the matrices D(g) have to be
replaced by their transformations D′(g). In this case, however, the new
matrices D′(g) and the old matrices D(g) are related by an equivalence
transformation through a non-singular matrix C

D′(g) = CD(g)C−1 .

Thus, the group of matrices D′(g) form an equivalent representation D′(G)
to the representation D(G) of the group G. The equivalent representations
have the same structure, although the matrices look different. Because of
the cylic nature of the trace and because equivalent representations have
the same dimension, the character of equivalent representations is the same

χ(g) =
n∑

i=1

D′
ii(g) = tr

(
D′(g)

)
= tr

(
CD(g)C−1

)
.

Regular representation of a group. The regular representation of a
group is a special representation that is defined as follows: If we define
the elements of a finite group as g1, g2, . . . , g|G|, the multiplying from the
left by any element gν permutes the g1, g2, . . . , g|G| among themselves. We
can represent the element gν by the permutations of the |G| “coordinates”
g1, g2, . . . , g|G|. Thus for i, j = 1, . . . , |G|, we define the regular representa-
tion

Dij(gν) =
{

δjli if gνgi = gli with li = 1, . . . , |G| ,
0 otherwise .

In this regular representation the diagonal elements of all matrices are zero
except for the element gν0 with gν0gi = gi, that isfor the identity element
e. So in the regular representation the character is given by

χ(g) =
{

1 for g = e ,
0 for g 	= e .
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Passive and active coordinate transformations. We have to discrim-
inate between active and passive coordinate transformations. An active
(coordinate) transformation corresponds to an non-singular d × d matrix
that actively shifts/changes the vector x ∈M

x → Tx.

The corresponding passive coordinate transformation changes the coordi-
nate system with respect to which the vector f(x) ∈M is measured. Thus
it is given by

f(x) → T−1f(x) = f(T−1x).

Note that the combination of an passive and active coordinate transforma-
tion results to the identity

f(x) = T−1f(Tx) .

On the other hand, the evolution operator L(x, y) satisfies the following
identity

L(x, y) =
∣∣∣∣det

(
∂Tx

∂x

)∣∣∣∣L(Tx,Ty) = |detT| L(Tx,Ty).

Note the appearance of detT instead of detT−1 and therefore the con-
travariant transformation property of L(x, y) in correspondence to maps
f(x). If the coordinate transformation T belongs to the linear non-singular
representation of a discrete (that isfinite) symmetry group G, then |detT| =
1, since for any element g of a finite group G, where exists a number m
such that

gn ≡ g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
m times

= e.

Thus T corresponds to the mth root of 1 and the modulus of its determinant
is unity.

Symmetry of dynamical system. A dynamical system (M, f) is in-
variant under a discrete symmetry group G = {e, g2, . . . , g|G|}, if the map
f : M → M (or the continous flow f t) from the d-dimensional manifold
M into itself (with d finite) is invariant

f(gx) = gf(x)
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for any coordinate x ∈M and any finite non-singular linear representation
(that isa non-singular d×d matrix) g of any element g ∈ G. So a symmetry
for a dynamical system (M, f) has to satisfy the two conditions

1) gx ∈M ∀x ∈M and ∀g ∈ G ,
2) [D(g), f ] = 0 ∀f :M→M and ∀g ∈ G .

Group integration. Note the following laws

1
|G|

∑
g∈G

= 1

and therefore

1
|G|

∑
g∈G

D(gi) = D(gi0), i0 fixed .

However,

1
|G|

∑
g∈G

D(g) = 0,

where 0 is the zero matrix of same dimension as the representations D(g) ∈
D(G). In particular,

1
|G|

∑
g∈G

χα(g) =
1
|G|

∑
g∈G

dα∑
i=1

D(g)ii = 0.

Furthermore, if we consider all non-equilavent irreducible representations
of a group G, then the quantities D

(α)
ij (g) for fixed α, i and j

Orthonormalitity of characters. But what can we say about

1
|G|

∑
g∈G

χα(hg)χα(g−1k−1) with h, k ∈ G fixed ?

Note the following relation

δabδcd =
1
n

δadδcb +
(
δabδcd −

1
n

δadδcb

)
.
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Projection operators. The projection operator onto the α irreducible
subspace of dimension dα is given by

Pα =
dα

|G|
∑
g∈G

χα(g)g−1.

Note that Pα is a [d× d]-dimensional matrix as the representation g.

Irreducible subspaces of the evolution operator.

L =
∑
α

trLα

with

Lα(y, x) =
dα

|G|
∑
g∈G

χα(g)L(g−1y, x),

where the prefactor dα reflects the fact that a dα-dimensional representation
occurs dα times.

I.2 C4v factorization

If an N -disk arrangement has CN symmetry, and the disk visitation se-
quence is given by disk labels {ε1ε2ε3 . . .}, only the relative increments
ρi = εi+1 − εi mod N matter. Symmetries under reflections across axes
increase the group to CNv and add relations between symbols: {εi} and
{N−εi} differ only by a reflection. As a consequence of this reflection incre-
ments become decrements until the next reflection and vice versa. Consider
four equal disks placed on the vertices of a square (fig. I.1a). The symmetry
group consists of the identity e, the two reflections σx, σy across x, y axes,
the two diagonal reflections σ13, σ24, and the three rotations C4, C2 and
C3

4 by angles π/2, π and 3π/2. We start by exploiting the C4 subgroup
symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4} by relative
increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an increment by 3
is equivalent to an increment by 1 and a reflection; this new symbol will be
called 1. Our convention will be to first perform the increment and then to
change the orientation due to the reflection. As an example, consider the
fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation se-
quence 1+12+13+21 . . . = 123, where the subscript indicates the increments
(or decrements) between neighboring symbols; the period of the cycle 112
is thus 3 in both the fundamental domain and the full space. Similarly, the
cycle 112 will be mapped into 1+12−11−23−12+13+21 = 121323 (note that
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(a) (b)

Figure I.1: (a) The symmetries of four disks on a square. (b) The symmetries of four
disks on a rectangle. The fundamental domains are indicated by the shaded wedges.

the fundamental domain symbol 1 corresponds to a flip in orientation after
the second and fifth symbols); this time the period in the full space is twice
that of the fundamental domain. In particular, the fundamental domain
fixed points correspond to the following 4-disk cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2

Conversions for all periodic orbits of reduced symbol period less than 5 are
listed in table I.1.

This symbolic dynamics is closely related to the group-theoretic struc-
ture of the dynamics: the global 4-disk trajectory can be generated by
mapping the fundamental domain trajectories onto the full 4-disk space
by the accumulated product of the C4v group elements g1 = C, g2 = C2,
g1 = σdiagC = σaxis, where C is a rotation by π/2. In the 112 example
worked out above, this yields g112 = g2g1g1 = C2Cσaxis = σdiag, listed in
the last column of table I.1. Our convention is to multiply group elements in
the reverse order with respect to the symbol sequence. We need these group
elements for our next step, the dynamical zeta function factorizations.

The C4v group has four one-dimensional representations, either symmet-
ric (A1) or antisymmetric (A2) under both types of reflections, or symmetric
under one and antisymmetric under the other (B1, B2), and a degenerate
pair of two-dimensional representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4, C

3
4 1 1 -1 -1 0

σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0
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p̃ p hp̃

0 1 2 σx

1 1 2 3 4 C4

2 1 3 C2, σ13

01 12 14 σ24

02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C4

002 121 343 C2

011 121 434 σy

012 121 323 σ13

021 124 324 σ13

022 124 213 σx

112 123 e
122 124 231 342 413 C4

p̃ p hp̃

0001 1212 1414 σ24

0002 1212 4343 σy

0011 1212 3434 C2

0012 1212 4141 3434 2323 C3
4

0021 (a) 1213 4142 3431 2324 C3
4

0022 1213 e
0102 (a) 1214 2321 3432 4143 C4

0111 1214 3234 σ13

0112 (b) 1214 2123 σx

0121 (b) 1213 2124 σx

0122 1213 1413 σ24

0211 1243 2134 σx

0212 1243 1423 σ24

0221 1242 1424 σ24

0222 1242 4313 σy

1112 1234 2341 3412 4123 C4

1122 1231 3413 C2

1222 1242 4131 3424 2313 C3
4

Table I.1: C4v correspondence between the ternary fundamental domain prime cycles
p̃ and the full 4-disk {1,2,3,4} labelled cycles p, together with the C4v transformation
that maps the end point of the p̃ cycle into an irreducible segment of the p cycle.
For typographical convenience, the symbol 1 of sect. I.2 has been replaced by 0, so
that the ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is mp = 8np̃/np.
Orbit 2 is the sole boundary orbit, invariant both under a rotation by π and a
reflection across a diagonal. The two pairs of cycles marked by (a) and (b) are
related by time reversal, but cannot be mapped into each other by C4v transformations.

into (19.15) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1− tp̃)8 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)4

C2: (1− t2p̃)
4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃) (1 + tp̃)4

C4, C
3
4 : (1− t4p̃)

2 = (1− tp̃) (1− tp̃) (1 + tp̃) (1 + tp̃) (1 + t2p̃)
2

σaxes: (1− t2p̃)
4 = (1− tp̃) (1 + tp̃) (1− tp̃) (1 + tp̃) (1− t2p̃)

2

σdiag: (1− t2p̃)
4 = (1− tp̃) (1 + tp̃) (1 + tp̃) (1− tp̃) (1− t2p̃)

2

The possible irreducible segment group elements hp̃ are listed in the first
column; σaxes denotes a reflection across either the x-axis or the y-axis,
and σdiag denotes a reflection across a diagonal (see fig. I.1a). In addition,
degenerate pairs of boundary orbits can run along the symmetry lines in
the full space, with the fundamental domain group theory weights hp =
(C2 + σx)/2 (axes) and hp = (C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1− t2p̃)
2 = (1− tp̃)(1− 0tp̃)(1− tp̃)(1− 0tp̃)(1 + tp̃)2

diagonals: (1− t2p̃)
2 = (1− tp̃)(1− 0tp̃)(1− 0tp̃)(1− tp̃)(1 + tp̃)2(I.2)

(we have assumed that tp̃ does not change sign under reflections across sym-
metry axes). For the 4-disk arrangement considered here only the diagonal
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orbits 13, 24 occur; they correspond to the 2 fixed point in the fundamental
domain.

The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1− t0)(1− t1)(1− t2)(1− t01)(1− t02)(1− t12)
(1− t001)(1− t002)(1− t011)(1− t012)(1− t021)(1− t022)(1− t112)
(1− t122)(1− t0001)(1− t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 − t1 − t2 − (t01 − t0t1)− (t02 − t0t2)− (t12 − t1t2)
−(t001 − t0t01)− (t002 − t0t02)− (t011 − t1t01)
−(t022 − t2t02)− (t112 − t1t12)− (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.3)

(for typographical convenience, 1 is replaced by 0 in the remainder of this
section). For one-dimensional representations, the characters can be read
off the symbol strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) =
(−1)n0+n1 , where n0 and n1 are the number of times symbols 0, 1 appear
in the p̃ symbol string. For B2 all tp with an odd total number of 0’s and
1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1− t2)(1− t01)(1 + t02)(1 + t12)
(1 + t001)(1− t002)(1 + t011)(1− t012)(1− t021)(1 + t022)(1− t112)
(1 + t122)(1− t0001)(1 + t0002)(1− t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)
+(t001 − t0t01)− (t002 − t0t02) + (t011 − t1t01)
+(t022 − t2t02)− (t112 − t1t12) + (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.4)

The form of the remaining cycle expansions depends crucially on the special
role played by the boundary orbits: by (I.2) the orbit t2 does not contribute
to A2 and B1,

1/ζA2 = (1 + t0)(1− t1)(1 + t01)(1 + t02)(1− t12)
(1− t001)(1− t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1− t112)
(1− t122)(1 + t0001)(1 + t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01)− (t002 − t0t02) + (t011 − t1t01)
+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (I.5)

and

1/ζB1 = (1− t0)(1 + t1)(1 + t01)(1− t02)(1 + t12)
(1 + t001)(1− t002)(1− t011)(1 + t012)(1 + t021)(1− t022)(1− t112)
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(1 + t122)(1 + t0001)(1− t0002)(1− t0011)(1 + t0012)(1 + t0021) . . .

= 1− t0 + t1 + (t01 − t0t1)− t02 + t12

+(t001 − t0t01)− (t002 − t0t02)− (t011 − t1t01)
−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . . (I.6)

In the above we have assumed that t2 does not change sign under C4v

reflections. For the mixed-symmetry subspace E the curvature expansion
is given by

1/ζE = 1 + t2 + (−t0
2 + t1

2) + (2t002 − t2t0
2 − 2t112 + t2t1

2)
+(2t0011 − 2t0022 + 2t2t002 − t01

2 − t02
2 + 2t1122 − 2t2t112

+t12
2 − t0

2t1
2) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t0
2t1

2

+2t002(−t0
2 + t1

2)− 2t112(−t0
2 + t1

2)) (I.7)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the

topological polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1− 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (10.42).✎ 15.9
page 292

Remark I.1 Labelling conventions While there is a variety of
labelling conventions [20.15, 19.13] for the reduced C4v dynamics, we
prefer the one introduced here because of its close relation to the
group-theoretic structure of the dynamics: the global 4-disk trajectory
can be generated by mapping the fundamental domain trajectories
onto the full 4-disk space by the accumulated product of the C4v

group elements.

I.3 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has
C2v symmetry (fig. I.1b). C2v consists of {e, σx, σy, C2}, i.e., the reflections
across the symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a
4-disk dynamics into a fundamental domain symbolic dynamics. An orbit
leaving the fundamental domain through one of the axis may be folded
back by a reflection on that axis; with these symmetry operations g0 =
σx and g1 = σy we associate labels 1 and 0, respectively. Orbits going
to the diagonally opposed disk cross the boundaries of the fundamental
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p̃ p g
0 1 4 σy

1 1 2 σx

2 1 3 C2

01 14 32 C2

02 14 23 σx

12 12 43 σy

001 141 232 σx

002 141 323 C2

011 143 412 σy

012 143 e
021 142 e
022 142 413 σy

112 121 343 C2

122 124 213 σx

p̃ p g
0001 1414 3232 C2

0002 1414 2323 σx

0011 1412 e
0012 1412 4143 σy

0021 1413 4142 σy

0022 1413 e
0102 1432 4123 σy

0111 1434 3212 C2

0112 1434 2343 σx

0121 1431 2342 σx

0122 1431 3213 C2

0211 1421 2312 σx

0212 1421 3243 C2

0221 1424 3242 C2

0222 1424 2313 σx

1112 1212 4343 σy

1122 1213 e
1222 1242 4313 σy

Table I.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain
prime cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C2v trans-
formation that maps the end point of the p̃ cycle into an irreducible segment of the
p cycle. The degeneracy of the p cycle is mp = 4np̃/np. Note that the 012 and
021 cycles are related by time reversal, but cannot be mapped into each other by
C2v transformations. The full space orbit listed here is generated from the symmetry
reduced code by the rules given in sect. I.3, starting from disk 1.

domain twice; the product of these two reflections is just C2 = σxσy, to
which we assign the label 2. For example, a ternary string 0 0 1 0 2 0 1 . . .
is converted into 12143123. . ., and the associated group-theory weight is
given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in ta-
ble I.2. Note that already at length three there is a pair of cycles (012 = 143
and 021 = 142) related by time reversal, but not by any C2v symmetries.

The above is the complete description of the symbolic dynamics for 4
sufficiently separated equal disks placed at corners of a rectangle. How-
ever, if the fundamental domain requires further partitioning, the ternary
description is insufficient. For example, in the stadium billiard fundamen-
tal domain one has to distinguish between bounces off the straight and the
curved sections of the billiard wall; in that case five symbols suffice for
constructing the covering symbolic dynamics.

The group C2v has four one-dimensional representations, distinguished
by their behavior under axis reflections. The A1 representation is symmetric
with respect to both reflections; the A2 representation is antisymmetric
with respect to both. The B1 and B2 representations are symmetric under
one and antisymmetric under the other reflection. The character table is

C2v A1 A2 B1 B2

e 1 1 1 1
C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1
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Substituted into the factorized determinant (19.14), the contributions
of periodic orbits split as follows

gp̃ A1 A2 B1 B2

e: (1− tp̃)4 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
C2: (1− t2p̃)

2 = (1− tp̃) (1− tp̃) (1− tp̃) (1− tp̃)
σx: (1− t2p̃)

2 = (1− tp̃) (1 + tp̃) (1− tp̃) (1 + tp̃)
σy: (1− t2p̃)

2 = (1− tp̃) (1 + tp̃) (1 + tp̃) (1− tp̃)

Cycle expansions follow by substituting cycles and their group theory fac-
tors from table I.2. For A1 all characters are +1, and the corresponding
cycle expansion is given in (I.3). Similarly, the totally antisymmetric sub-
space factorization A2 is given by (I.4), the B2 factorization of C4v. For B1

all tp with an odd total number of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1− t1)(1 + t2)(1 + t01)(1− t02)(1 + t12)
(1− t001)(1 + t002)(1 + t011)(1− t012)(1− t021)(1 + t022)(1 + t112)
(1− t122)(1 + t0001)(1− t0002)(1− t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1)− (t02 − t0t2) + (t12 − t1t2)
−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)
+(t022 − t2t02) + (t112 − t1t12)− (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.8)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1− t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1− t12)
(1 + t001)(1 + t002)(1− t011)(1− t012)(1− t021)(1− t022)(1 + t112)
(1 + t122)(1 + t0001)(1 + t0002)(1− t0011)(1− t0012)(1− t0021) . . .

= 1− t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2)− (t12 − t1t2)
+(t001 − t0t01) + (t002 − t0t02)− (t011 − t1t01)
−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)
−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (I.9)

Note that all of the above cycle expansions group long orbits together with
their pseudoorbit shadows, so that the shadowing arguments for conver-
gence still apply.

The topological polynomial factorizes as

1
ζA1

= 1− 3z ,
1

ζA2

=
1

ζB1

=
1

ζB2

= 1 + z,

consistent with the 4-disk factorization (10.42).
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Remark I.2 C2v symmetry C2v is the symmetry of several sys-
tems studied in the literature, such as the stadium billiard [3.17], and
the 2-dimensional anisotropic Kepler potential [26.18].

I.4 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.10). For b 	= 0
the Hénon map is reversible: the backward iteration of (3.11) is given by

xn−1 = −1
b
(1− ax2

n − xn+1) . (I.10)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the
parameter plane, together with x → −x/b in the coordinate plane, and
there is no need to explore the (a, b) parameter plane outside the strip
b ∈ {−1, 1}. For b = −1 the map is orientation and area preserving (see
(17.1) below),

xn−1 = 1− ax2
n − xn+1 , (I.11)

the backward and the forward iteration are the same, and the non–wandering
set is symmetric across the xn+1 = xn diagonal. This is one of the sim-
plest models of a Poincaré return map for a Hamiltonian flow. For the
orientation reversing b = 1 case we have

xn−1 = 1− ax2
n + xn+1 , (I.12)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal.

I.5 Symmetries of the symbol square
• advanced section •

Depending on the type of dynamical system, the symbol square might have
a variety of symmetries. Under the time reversal

· · · s−2s−1s0.s1s2s3 · · · → · · · s3s2s1.s0s−1s−2 · · ·

the points in the symbol square for an orientation preserving map are
symmetric across the diagonal γ = δ, and for the orientation reversing
case they are symmetric with respect to the γ = 1 − δ diagonal. Con-
sequently the periodic orbits appear either in dual pairs p = s1s2s3 . . . sn,
p = snsn−1sn−2 . . . s1, or are self-dual under time reversal, Sp = Sp. For the
orientation preserving case a self-dual cycle of odd period has at least one
point on the symmetry diagonal. In particular, all fixed points lie on the
symmetry diagonal. Determination of such symmetry lines can be of con-
siderable practical utility, as it reduces some of the periodic orbit searches
to 1-dimensional searches.
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Remark I.3 Symmetries of the symbol square. For a more de-
tailed discussion of the symbolic dynamics symmetries, see refs. [3.4,
9.38].
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Appendix J

Convergence of spectral
determinants

J.1 Curvature expansions: geometric picture

If you has some experience with numerical estimates of fractal dimensions,
you will note that the numerical convergence of cycle expansions for systems
such as the 3-disk game of pinball, table 15.2, is very impressive; only
three input numbers (the two fixed points 0, 1 and the 2-cycle 10) already
yield the escape rate to 4 significant digits! We have omitted an infinity
of unstable cycles; so why does approximating the dynamics by a finite
number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contribu-
tions is not specially encouraging: the cycle expansion (15.2) is not abso-
lutely convergent in the sense of Dirichlet series of sect. 15.5, so what one
makes of it depends on the way the terms are arranged.

The simplest estimate of the error introduced by approximating smooth
flow by periodic orbits is to think of the approximation as a tessalation of
a smooth curve by piecewise linear tiles, fig. 1.9.

J.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computations of π was due to Euler. Euler
computed the circumference of the circee of unit radius by inscribing into
it a regular polygon with N sides; the error of such computation is propor-
tional to 1− cos(2π/N) ∝ N−2. In a periodic orbit tessalation of a smooth
flow, we cover the phase space by ehn tiles at the nth level of resolution,
where h is the topological entropy, the growth rate of the number of tiles.
Hence we expect the error in approximating a smooth flow by ehn linear
segments to be exponentially small, of order N−2 ∝ e−2hn.
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J.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 10 that if the symbolic dynamics is defined by a
finite grammar, a finite number of cycles, let us say the first k terms in the
cycle expansion are necessary to correctly count the pieces of the Cantor
set generated by the dynamical system.

They are composed of products of non–intersecting loops on the Markov
graph, see (10.13). We refer to this set of non–intersecting loops as the
fundamental cycles of the strange set. It is only after these terms have
been included that the cycle expansion is expected to converge smoothly,
that is only for n > k are the curvatures cn in (9.2??) a measure of the
variation of the quality of a linearized covering of the dynamical Cantor set
by the length n cycles, and expected to fall off rapidly with n.

The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer or-
bits in curvature expansions such as (15.5) can always be grouped into shad-
owing combinations of pseudo-cycles. For example, a cycle with itinerary
ab= s1s2 · · · sn will appear in combination of form

1/ζ = 1− · · · − (tab − tatb)− · · · ,

with ab shadowed by cycle a followed by cycle b, where a = s1s2 · · · sm,
b = sm+1 · · · sn−1sn, and sk labels the Markov partition Msk

(9.4) that the
trajectory traverses at the kth return. If the two trajectories coincide in
the first m symbols, at the mth return to a Poincaré section they can land
anywhere in the phase space M

∣∣fTa(xa)− fTa...(xa...)
∣∣ ≈ 1 ,

where we have assumed that the M is compact, and that the maximal
possible separation across M is O(1). Here xa is a point on the a cycle of
period Ta, and xa... is a nearby point whose trajectory tracks the cycle a for
the first m Poincaré section returns completed at the time Ta.... An esti-
mate of the maximal separation of the initial points of the two neighboring
trajectories is achieved by Taylor expanding around xa... = xa + δxa...

fTa(xa)− fTa...(xa...) ≈
∂fTa(xa)

∂x
· δxa... = Ja · δxa... ,

hence the hyperbolicity of the flow forces the initial points of neighboring
trajectories that track each other for at least m consecutive symbols to lie
exponentially close

|δxa...| ∝
1
|Λa|

.
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Similarly, for any observable (8.1) integrated along the two nearby tra-
jectories

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣∣∣∣
x=xa

· δxa... ,

so

∣∣ATa...(xa...)−ATa(xa)
∣∣ ∝ TaConst

|Λa|
,

As the time of return is itself an integral along the trajectory, return times
of nearby trajectories are exponentially close

|Ta... − Ta| ∝
TaConst
|Λa|

,

and so are the trajectory stabilities

∣∣ATa...(xa...)−ATa(xa)
∣∣ ∝ TaConst

|Λa|
,

Substituting tab one finds

tab − tatb
tab

= 1− e−s(Ta+Tb−Tab)

∣∣∣∣ΛaΛb

Λab

∣∣∣∣ .

Since with increasing m segments of ab come closer to a, the differences
in action and the ratio of the eigenvalues converge exponentially with the
eigenvalue of the orbit a,

Ta + Tb − Tab ≈ Const× Λ−j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

Expanding the exponentials one thus finds that this term in the cycle ex-
pansion is of the order of

tajb − tataj−1b ≈ Const× tajbΛ
−j
a . (J.1)

Even though the number of terms in a cycle expansion grows exponentially,
the shadowing cancellations improve the convergence by an exponential fac-
tor compared to trace formulas, and extend the radius of convergence of the
periodic orbit sums. Table J.1 shows some examples of such compensations
between long cycles and their pseudo-cycle shadows.

It is crucial that the curvature expansion is grouped (and truncated)
by topologically related cycles and pseudo-cycles; truncations that ignore
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n tab − tatb Tab − (Ta + Tb) log
[

ΛaΛb

Λab

]
ab− a · b

2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table J.1: Demonstration of shadowing in curvature combinations of cycle weights
of form tab − tatb, the 3-disk fundamental domain cycles at R : d = 6, table 14.3.
The ratio ΛaΛb/Λab is approaching unity exponentially fast.

topology, such as inclusion of all cycles with Tp < Tmax, will contain or-
bits unmatched by shadowed orbits, and exhibit a mediocre convergence
compared with the curvature expansions.

Note that the existence of a pole at z = 1/c implies that the cycle expan-
sions have a finite radius of convergence, and that analytic continuations
will be required for extraction of the non-leading zeros of 1/ζ. Preferably,
one should work with cycle expansions of Selberg products, as discussed in
sect. 15.1.3.

J.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no
finite topological polynomial, there are no “curvature” corrections, and the
convergence of the cycle expansions will be poor.

J.2 On importance of pruning

If the grammar is not finite and there is no finite topological polynomial,
there will be no “curvature” expansions, and the convergence will be poor.
That is the generic case, and one strategy for dealing with it is to find a
good sequence of approximate but finite grammars; for each approximate
grammar cycle expansions yield exponentially accurate eigenvalues, with
successive approximate grammars converging toward the desired infinite
grammar system.

When the dynamical system’s symbolic dynamics does not have a finite
grammar, and we are not able to arrange its cycle expansion into curvature
combinations (15.5), the series is truncated as in sect. 15.4, by including all
pseudo-cycles such that |Λp1 · · ·Λpk

| ≤ |ΛP |, where P is the most unstable
prime cycle included into truncation. The truncation error should then be of
order O(ehTP TP /|ΛP |), with h the topological entropy, and ehTP roughly the
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number of pseudo-cycles of stability ≈ |ΛP |. In this case the cycle averaging
formulas do not converge significantly better than the approximations such
as the trace formula (16.18).

Numerical results (see for example the plots of the accuracy of the cycle
expansion truncations for the Hénon map in ref. [15.3]) indicate that the
truncation error of most averages tracks closely the fluctuations due to the
irregular growth in the number of cycles. It is not known whether one can
exploit the sum rules such as the mass flow conservation (16.11) to improve
the accuracy of dynamical averaging.

J.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a
ritornar nel chiaro monde; e sanza cura aver d’alcun
riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de
le cose belle che porta ‘l ciel, per un perutgio tondo.”
Dante

The periodic orbit theory is learned in stages. At first glance, it
seems totally impenetrable. After basic exercises are gone through, it seems
totally trivial; all that seems to be at stake are elementary manipulations
with traces, determinants, derivatives. But if start thinking about you will
get a more and more uncomfortable feeling that from the mathematical
point of view, this is a perilous enterprise indeed. In chapter 13 we shall
explain which parts of this enterprise are really solid; here you give a fortaste
of what objections a mathematician might rise.

Birkhoff’s 1931 ergodic theorem states that the time average (8.4) exists
almost everywhere, and, if the flow is ergodic, it implies that 〈a(x)〉 = 〈a〉 is
a constant for almost all x. The problem is that the above cycle averaging
formulas implicitly rely on ergodic hypothesis: they are strictly correct only
if the dynamical system is locally hyperbolic and globally mixing. If one
takes a β derivative of both sides

ρβ(y)ets(β) =
∫
M

dx δ(y − f t(x))eβ·At(x)ρβ(x) ,

and integrates over y

∫
M

dy
∂

∂β
ρβ(y)

∣∣∣∣
β=0

+ t
∂s

∂β

∣∣∣∣
β=0

∫
M

dy ρ0(y) =∫
M

dx At(x)ρ0(x) +
∫
M

dx
∂

∂β
ρβ(x)

∣∣∣∣
β=0

,
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one obtains in the long time limit

∂s

∂β

∣∣∣∣
β=0

=
∫
M

dy ρ0(x) 〈a(x)〉 . (J.2)

This is the expectation value (8.12) only if the time average (8.4) equals the
space average (8.9), 〈a(x)〉 = 〈a〉, for all x except a subset x ∈ M of zero
measure; if the phase space is foliated into non-communicating subspaces
M = M1 +M2 of finite measure such that f t(M1)∩M2 = ∅ for all t, this
fails. In other words, we have tacitly assumed metric indecomposability or
transitivity. We have also glossed over the nature of the “phase space”
M. For example, if the dynamical system is open, such as the 3-disk
game of pinball, M in the expectation value integral (8.18) is a Cantor set,
the closure of the union of all periodic orbits. Alternatively, M can be
considered continuous, but then the measure ρ0 in (J.2) is highly singular.
The beauty of the periodic orbit theory is that instead of using an arbitrary
coordinatization ofM it partitions the phase space by the intrinsic topology
of the dynamical flow and builds the correct measure from cycle invariants,
the stability eigenvalues of periodic orbits.

Were we to restrict the applications of the formalism only to systems
which have been rigorously proven to be ergodic, we might as well fold
up the shop right now. For example, even for something as simple as the
Hénon mapping we do not know whether the asymptotic time attractor is
strange or periodic. Physics applications require a more pragmatic atti-✎ 8.1

page 135
tude. In the cycle expansions approach we construct the invariant set of
the given dynamical system as a closure of the union of periodic orbits, and
investigate how robust are the averages computed on this set. This turns
out to depend very much on the observable being averaged over; dynamical
averages exhibit “phase transitions”, and the above cycle averaging for-
mulas apply in the “hyperbolic phase” where the average is dominated by
exponentially many exponentially small contributions, but fail in a phase
dominated by few marginally stable orbits. Here the noise - always present,
no matter how weak - helps us by erasing an infinity of small traps that
the deterministic dynamics might fall into.

Still, in spite of all the caveats, periodic orbit theory is a beautiful the-
ory, and the cycle averaging formulas are the most elegant and powerful
tool available today for evaluation of dynamical averages for low dimen-
sional chaotic deterministic systems.

J.4 Estimate of the nth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is
that the convergence of the Selberg product expansion (E.12) as function of
the topological cycle length, F (z) =

∑
n Cnzn, is faster than exponential.

Consider a d–dimensional map for which all Jacobian matrix eigenvalues
are equal: up = Λp,1 = Λp,2 = · · · = Λp,d. The stability eigenvalues are
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generally not isotropic; however, to obtain qualitative bounds on the spec-
trum, we replace all stability eigenvalues with the least expanding one. In
this case the p cycle contribution to the product (12.9) reduces to

Fp(z) =
∞∏

k1···kd=0

(
1− tpu

k1+k2+···+kd
p

)
=

∞∏
k=0

(
1− tpu

k
p

)mk

; mk =
(

d− 1 + k

d− 1

)
=

(k + d− 1)!
k!(d− 1)!

=
∞∏

k=0

mk∑
�=0

(
mk

�

)(
−uk

ptp

)�
(J.3)

In one dimension the expansion can be given in closed form (13.26), and
the coefficients Ck in (E.12) are given by

τpk = (−1)k u
k(k−1)

2
p∏k

j=1(1− uj
p)

tkp . (J.4)

Hence the coefficients in the F (z) =
∑

n Cnzn expansion of the spectral
determinant (15.8) fall off faster than exponentially, as |Cn| ≈ un(n−1)/2.
In contrast, the cycle expansions of dynamical zeta functions fall of “only”
exponentially; in numerical applications, the difference is dramatic.

In higher dimensions the expansions are not quite as compact. The
leading power of u and its coefficient are easily evaluated by use of binomial
expansions (J.3) of the (1 + tuk)mk factors. More precisely, the leading un

terms in tk coefficients are of form

∞∏
k=0

(1 + tuk)mk = . . . + um1+2m2+...+jmj t1+m1+m2+...+mj + . . .

= . . . +
(
u

md
d+1 t

)(d+m
m )

+ . . . ≈ . . . + u
d√

d!
(d−1)!

n
d+1

d
tn + . . .

Hence the coefficients in the F (z) expansion fall off faster than exponen-
tially, as un1+1/d

. The Selberg products are entire functions in any dimen-
sion, provided that the symbolic dynamics is a finite subshift, and all cycle
eigenvalues are sufficiently bounded away from 1.

The case of particular interest in many applications are the 2-d Hamilto-
nian mappings; their symplectic structure implies that up = Λp,1 = 1/Λp,2,
and the Selberg product (12.23) In this case the expansion corresponding
to (13.26) is given by (13.27) and the coefficients fall off asymptotically as
Cn ≈ un3/2

.
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Appendix K

Infinite dimensional operators

(A. Wirzba)

This appendix taken from ref. [K.1] summarizes the definitions and prop-
erties for trace-class and Hilbert-Schmidt matrices, the determinants over
infinite dimensional matrices and possible regularization schemes for ma-
trices or operators which are not of trace-class.

K.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′

ij(x) =
d

dx
Aij(x) . (K.1)

Derivatives of products of matrices are evaluated by the chain rule

d

dx
(AB) =

dA

dx
B + A

dB
dx

. (K.2)

A matrix and its derivative matrix in general do not commute

d

dx
A2 =

dA

dx
A + A

dA

dx
. (K.3)

The derivative of the inverse of a matrix, follows from d
dx(AA−1) = 0:

d

dx
A−1 = − 1

A

dA

dx

1
A

. (K.4)
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A function of a single variable that can be expressed in terms of addi-
tions and multiplications generalizes to a matrix-valued function by replac-
ing the variable by the matrix.

In particular, the exponential of a constant matrix can be defined either
by its series expansion, or as a limit of an infinite product:

eA =
∞∑

k=0

1
k!

Ak , A0 = 1 (K.5)

= lim
N→∞

(
1 +

1
N

A

)N

(K.6)

The first equation follows from the second one by the binomial theorem, so
these indeed are equivalent definitions. That the terms of order O(N−2) or
smaller do not matter follows from the bound

(
1 +

x− ε

N

)N

<

(
1 +

x + δxN

N

)N

<

(
1 +

x + ε

N

)N

,

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not
contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)
)N

= etrA (K.7)

Due to non-commutativity of matrices, generalization of a function of
several variables to a function is not as straightforward. Expression involv-
ing several matrices depend on their commutation relations. For example,
the commutator expansion

etABe−tA = B+t[A,B]+
t2

2
[A, [A,B]]+

t3

3!
[A, [A, [A,B]]]+· · · (K.8)
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sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivaties

d

dt

(
etABe−tA

)
= etA[A,B]e−tA .

Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] + O(N−3) ,

and the Trotter product formula: if B, C and A = B + C are matrices,
then

eA = lim
N→∞

(
eB/NeC/N

)N
(K.9)

K.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators
in vector spaces - rather than numbers, and its convergence can be checked
using tools familiar from calculus. We briefly review those tools here, as
throughout the text we will have to consider many different operators and
how they converge.

The n →∞ convergence of partial products

En =
∏

0≤m<n

(
1 +

t

m
A

)

can be verified using the Cauchy criterion, which states that the sequence
{En} converges if the differences ‖Ek − Ej‖ → 0 as k, j → ∞. To make
sense of this we need to define a sensible norm ‖ · · · ‖. Norm of a matrix is
based on the Euclidean norm for a vector: the idea is to assign to a matrix
M a norm that is the largest possible change it can cause to the length of
a unit vector n̂:

‖M‖ = sup
n̂
‖Mn̂‖ , ‖n̂‖ = 1 . (K.10)

We say that ‖ · ‖ is the operator norm induced by the vector norm ‖ · ‖.
Constructing a norm for a finite-dimensional matrix is easy, but had M
been an operator in an infinite-dimensional space, we would also have to
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specify the space n̂ belongs to. In the finite-dimensional case, the sum
of the absolute values of the components of a vector is also a norm; the
induced operator norm for a matrix M with components Mij in that case
can be defined by

‖M‖ = max
i

∑
j

|Mij | . (K.11)

The operator norm (K.11) and the vector norm (K.10) are only rarely
distinguished by different notation, a bit of notational laziness that we
shall uphold.

Now that we have learned how to make sense out of norms of operators,
we can check that

‖etA‖ ≤ et‖A‖ . (K.12)

✎ 2.8
page 46 As ‖A‖ is a number, the norm of etA is finite and therefore well defined.

In particular, the exponential of a matrix is well defined for all values of t,
and the linear differential equation (4.7) has a solution for all times.

K.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [K.9]. Refs. [K.7, K.10, K.11,
K.14] should be consulted for more details and proofs. The trace class and
Hilbert-Schmidt property will be defined here for linear, in general non-
hermitian operators A ∈ L(H): H → H (where H is a separable Hilbert
space). The transcription to matrix elements (used in the prior chapters) is
simply aij = 〈φi,Aφj〉 where {φn} is an orthonormal basis of H and 〈 , 〉 is
the inner product inH (see sect. K.5 where the theory of von Koch matrices
of ref. [K.12] is discussed). So, the trace is the generalization of the usual
notion of the sum of the diagonal elements of a matrix; but because infinite
sums are involved, not all operators will have a trace:

Definition:

(a) An operator A is called trace class, A ∈ J1, if and only if, for every
orthonormal basis, {φn}:∑

n

|〈φn,Aφn〉| <∞. (K.13)

The family of all trace class operators is denoted by J1.

(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if,
for every orthonormal basis, {φn}:∑

n

‖Aφn‖2 < ∞. (K.14)

The family of all Hilbert-Schmidt operators is denoted by J2.
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Bounded operators are dual to trace class operators. They satisfy the
the following condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H.
If they have eigenvalues, these are bounded too. The family of bounded
operators is denoted by B(H) with the norm ‖B‖ = supφ
=0

‖Bφ‖
‖φ‖ for φ ∈ H.

Examples for bounded operators are unitary operators and especially the
unit matrix. In fact, every bounded operator can be written as linear
combination of four unitary operators.

A bounded operator C is compact, if it is the norm limit of finite rank
operators.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H. Notice
that A†A ≥ 0. We define |A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes
are summarized in (see refs. [K.7, K.9]):

(a) J1 and J2 are ∗ideals., i.e., they are vector spaces closed under scalar
multiplication, sums, adjoints, and multiplication with bounded op-
erators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single
basis.
For any operator A ≥ 0 we have A ∈ J1 if

∑
n |〈φn,Aφn〉| < ∞ for

a single basis.

(e) If A ∈ J1, Tr(A) =
∑
〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either
A ∈ J1 and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert
space. If ‖A‖2 = [ Tr(A†A) ]

1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the

‖ ‖2-closure of the finite rank operators.

(h) J1 endowed with the norm ‖A‖1 = Tr(
√

A†A) is a Banach space.
‖A‖1 ≥ ‖A‖2 ≥ ‖A‖ and J1 is the ‖ ‖1-norm closure of the finite
rank operators. The dual space of J1 is B(H), the family of bounded
operators with the duality 〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H),
then ‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤
‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class
is the decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-
Schmidt property can easily be verified in one single orthonormal basis (see
(d)). Property (e) ensures then that the trace is the same in any basis.
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Properties (a) and (f) show that trace class operators behave in complete
analogy to finite rank operators. The proof whether a matrix is trace-class
(or Hilbert-Schmidt) or not simplifies enormously for diagonal matrices, as
then the second part of property (d) is directly applicable: just the moduli
of the eigenvalues (or – in case of Hilbert-Schmidt – the squares of the
eigenvalues) have to be summed up in order to answer that question. A
good strategy in checking the trace-class character of a general matrix A
is therefore the decomposition of that matrix into two matrices B and C
where one, say C, should be chosen to be diagonal and either just barely of
Hilbert-Schmidt character leaving enough freedom for its partner B or of
trace-class character such that one only has to show the boundedness for
B.

K.4 Determinants of trace class operators

This section is mainly based on refs. [K.8, K.10] which should be consulted
for more details and proofs. See also refs. [K.11, K.14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert space H, ⊗nH is defined as the vector space of multi-linear
functionals on H with φ1⊗ · · · ⊗ φn ∈ ⊗nH in case φ1, . . . , φn ∈ H.

∧n(H)
is defined as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1√
n!

∑
π∈Pn

ε(π)[φπ(1) ⊗ · · · ⊗ φπ(n)] (K.15)

where Pn is the group of all permutations of n letters and ε(π) = ±1
depending on whether π is an even or odd permutation, respectively. The
inner product in

∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det {(φi, ηj)} (K.16)

where det{aij} =
∑

π∈Pn
ε(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor
(a functor satisfies

∧n(AB) =
∧n(A)

∧n(B)) on
∧n(H) with

∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧Aφn . (K.17)

When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.

Properties: If A trace class, i.e., A ∈ J1, then for any k,
∧k(A) is trace

class, and for any orthonormal basis {φn} the cumulant

Tr
(∧k

(A)
)

=
∑

i1<···<ik

((φi1 ∧ · · · ∧ φik), (Aφi1 ∧ · · · ∧Aφik)) < ∞(K.18)
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is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det(1+A) is defined as

det(1 + A) =
∞∑

k=0

Tr
(∧k

(A)
)

(K.19)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φj}∞1
an orthonormal basis.

(a)
∑∞

k=0 Tr
(∧k(A)

)
converges for each A ∈ J1.

(b) |det(1+A)| ≤
∏∞

j=1 (1 + µj(A)) where µj(A) are the singular values
of A, i.e., the eigenvalues of |A| =

√
A†A.

(c) |det(1 + A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 �→ det (1 +
∑n

i=1 ziAi) is an
entire analytic function.

(e) If A,B ∈ J1, then

det(1 + A)det(1 + B) = det (1 + A + B + AB)
= det ((1 + A)(1 + B))
= det ((1 + B)(1 + A)) . (K.20)

If A ∈ J1 and U unitary, then

det
(
U−1(1 + A)U

)
= det

(
1 + U−1AU

)
= det(1 + A) .(K.21)

(f) If A ∈ J1, then (1 + A) is invertible if and only if det(1 + A) 	= 0.

(g) If λ 	= 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1+
zA) has a zero of order n at z = −1/λ.

(h) For any ε, there is a Cε(A), depending on A ∈ J1, so that |det(1 +
zA)| ≤ Cε(A) exp(ε|z|).

(i) For any A ∈ J1,

det(1 + A) =
N(A)∏
j=1

(1 + λj(A)) (K.22)

where here and in the following {λj(A)}N(A)
j=1 are the eigenvalues of

A counted with algebraic multiplicity .
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(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =
N(A)∑
j=1

λj(A) < ∞ . (K.23)

(k) If A ∈ J1, then

Tr
(∧k

(A)
)

=
N(

∧k(A))∑
j=1

λj

(∧k
(A)

)
=

∑
1≤j1<···<jk≤N(A)

λj1(A) · · ·λjk
(A) < ∞.

(l) If A ∈ J1, then

det(1 + zA) =
∞∑

k=0

zk
∑

1≤j1<···<jk≤N(A)

λj1(A) · · ·λjk
(A) < ∞.(K.24)

(m) If A ∈ J1, then for |z| small (that is |z|max|λj(A)| < 1) the series∑∞
k=1 zkTr

(
(−A)k

)
/k converges and

det(1 + zA) = exp

(
−

∞∑
k=1

zk

k
Tr

(
(−A)k

))
= exp (Tr ln(1 + zA)) . (K.25)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1 + zA) =
∞∑

m=0

zm αm(A)
m!

. (K.26)

Then αm(A) is given by the m×m determinant:

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣∣

Tr(A) m− 1 0 · · · 0
Tr(A2) Tr(A) m− 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0

...
...

...
...

...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣∣∣∣∣∣∣∣∣∣∣∣
(K.27)

with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus
the cumulants cm(A) ≡ αm(A)/m! satisfy the following recursion
relation

cm(A) =
1
m

m∑
k=1

(−1)k+1cm−k(A) Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (K.28)
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Note that in the context of quantum mechanics formula (K.26) is the quan-
tum analog to the curvature expansion of the semiclassical zeta function
with Tr(Am) corresponding to the sum of all periodic orbits (prime and
also repeated ones) of total topological length m, that is let cm(s.c.) denote
the m th curvature term, then the curvature expansion of the semiclassical
zeta function is given by the recursion relation

cm(s.c.) =
1
m

m∑
k=1

(−1)k+m+1cm−k(s.c.)
∑

p;r>0
with [p]r=k

[p]
tp(k)r

1−
(

1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (K.29)

In fact, in the cumulant expansion (K.26) as well as in the curvature ex-
pansion there are large cancellations involved. Let us order – without lost
of generality – the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1| ≥ · · ·

(This is always possible because of
∑N(A)

i=1 |λi| < ∞.) Then, in the stan-
dard (Plemelj-Smithies) cumulant evaluation of the determinant, eq. (K.26),
we have enormous cancellations of big numbers, e.g. at the k th cumulant
order (k > 3), all the intrinsically large ‘numbers’ λk

1, λk−1
1 λ2, . . ., λk−2

1 λ2λ3,
. . . and many more have to cancel out exactly until only

∑
1≤j1<···<jk≤N(A) λj1 · · ·λjk

is finally left over. Algebraically, the fact that there are these large can-
cellations is of course of no importance. However, if the determinant is
calculated numerically, the big cancellations might spoil the result or even
the convergence. Now, the curvature expansion of the semiclassical zeta
function, as it is known today, is the semi-classical approximation to the
curvature expansion (unfortunately) in the Plemelj-Smithies form. As the
exact quantum mechanical result is approximated semi-classically, the er-
rors introduced in the approximation might lead to big effects as they are
done with respect to large quantities which eventually cancel out and not –
as it would be of course better – with respect to the small surviving cumu-
lants. Thus it would be very desirable to have a semi-classical analog to the
reduced cumulant expansion (K.24) or even to (K.22) directly. It might not
be possible to find a direct semi-classical analog for the individual eigen-
values λj . Thus the direct construction of the semi-classical equivalent to
(K.22) is rather unlikely. However, in order to have a semi-classical “cu-
mulant” summation without large cancellations – see (K.24) – it would be
just sufficient to find the semi-classical analog of each complete cumulant
(K.24) and not of the single eigenvalues. Whether this will eventually be
possible is still an open question.

K.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von
Koch matrices [K.11, K.12, K.13]: An infinite matrix 1−A = ‖δjk−ajk‖∞1 ,
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consisting of complex numbers, is called a matrix with an absolutely con-
vergent determinant, if the series

∑
|aj1k1aj2k2 · · · ajn,kn | converges, where

the sum extends over all pairs of systems of indices (j1, j2, · · · , jn) and
(k1, k2, · · · , kn) which differ from each other only by a permutation, and
j1 < j2 < · · · jn (n = 1, 2, · · ·). Then the limit

lim
n→∞det‖δjk − ajk‖n

1 = det(1−A)

exists and is called the determinant of the matrix 1−A. It can be repre-
sented in the form

det(1−A) = 1−
∞∑

j=1

ajj +
1
2!

∞∑
j,k=1

∣∣∣∣ ajj ajk

akj akk

∣∣∣∣− 1
3!

∞∑
j,k,m=1

∣∣∣∣∣∣
ajj ajk ajm

akj akk akm

amj amk amm

∣∣∣∣∣∣+ · · ·
where the series on the r.h.s. will remain convergent even if the numbers ajk

(j, k = 1, 2, · · ·) are replaced by their moduli and if all the terms obtained
by expanding the determinants are taken with the plus sign. The matrix
1−A is called von Koch matrix, if both conditions

∞∑
j=1

|ajj | < ∞ , (K.30)

∞∑
j,k=1

|ajk|2 < ∞ (K.31)

are fulfilled. Then the following holds (see ref. [K.11, K.13]): (1) Every von
Koch matrix has an absolutely convergent determinant. If the elements
of a von Koch matrix are functions of some parameter µ (ajk = ajk(µ),
j, k = 1, 2, · · ·) and both series in the defining condition converge uniformly
in the domain of the parameter µ, then as n →∞ the determinant det‖δjk−
ajk(µ)‖n

1 tends to the determinant det(1 + A(µ)) uniformly with respect
to µ, over the domain of µ. (2) If the matrices 1 −A and 1 − B are von
Koch matrices, then their product 1−C = (1−A)(1−B) is a von Koch
matrix, and

det(1−C) = det(1−A) det(1−B) . (K.32)

Note that every trace-class matrix A ∈ J1 is also a von Koch ma-
trix (and that any matrix satisfying condition (K.31) is Hilbert-Schmidt
and vice versa). The inverse implication, however, is not true: von Koch
matrices are not automatically trace-class. The caveat is that the def-
inition of von Koch matrices is basis-dependent, whereas the trace-class
property is basis-independent. As the traces involve infinite sums, the basis-
independence is not at all trivial. An example for an infinite matrix which
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is von Koch, but not trace-class is the following:

Aij =

 2/j for i− j = −1 and j even ,
2/i for i− j = +1 and i even ,
0 else ,

i.e.,

A =



0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . . . . . . . .


. (K.33)

Obviously, condition (K.30) is fulfilled by definition. Secondly, condition
(K.31) is satisfied as

∑∞
n=1 2/n2 <∞. However, the sum over the moduli of

the eigenvalues is just twice the harmonic series
∑∞

n=1 1/n which does not
converge. The matrix (K.33) violates the trace-class definition (K.13), as
in its eigenbasis the sum over the moduli of its diagonal elements is infinite.
Thus the absolute convergence is traded for a conditional convergence, since
the sum over the eigenvalues themselves can be arranged to still be zero,
if the eigenvalues with the same modulus are summed first. Absolute con-
vergence is of course essential, if sums have to be rearranged or exchanged.
Thus, the trace-class property is indispensable for any controlled unitary
transformation of an infinite determinant, as then there will be necessarily
a change of basis and in general also a re-ordering of the corresponding
traces. Therefore the claim that a Hilbert-Schmidt operator with a vanish-
ing trace is automatically trace-class is false. In general, such an operator
has to be regularized in addition (see next chapter).

K.6 Regularization

Many interesting operators are not of trace class (although they might be
in some Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any
orthonormal basis). In order to compute determinants of such operators,
an extension of the cumulant expansion is needed which in fact corresponds
to a regularization procedure [K.8, K.10]:
E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1 + zA) exp

(
n−1∑
k=1

(−z)k

k
Ak

)
− 1 (K.34)

as the regulated version of the operator zA. Then the regulated operator
Rn(zA) is trace class, i.e., Rn(zA) ∈ J1. Define now detn(1 + zA) =
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det(1 + Rn(zA)). Then the regulated determinant

detn(1 + zA) =
N(zA)∏

j=1

[
(1 + zλj(A)) exp

(
n−1∑
k=1

(−zλj(A))k

k

)]
<∞.(K.35)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [K.10]:

detn(1 + zA) =
∞∑

m=0

zm α
(n)
m (A)
m!

. (K.36)

with α
(n)
m (A) given by the m×m determinant:

α(n)
m (A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ
(n)
1 m− 1 0 · · · 0

σ
(n)
2 σ

(n)
1 m− 2 · · · 0

σ
(n)
3 σ

(n)
2 σ

(n)
1 · · · 0

...
...

...
...

...
1

σ
(n)
m σ

(n)
m−1 σ

(n)
m−2 · · · σ

(n)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(K.37)

where

σ
(n)
k =

{
Tr(Ak) k ≥ n
0 k ≤ n− 1

As Simon [K.10] says simply, the beauty of (K.37) is that we get detn(1 +
A) from the standard Plemelj-Smithies formula (K.26) by simply setting
Tr(A), Tr(A2), . . ., Tr(An−1) to zero.

See also ref. [K.15] where {λj} are the eigenvalues of an elliptic (pseudo)-
differential operator H of order m on a compact or bounded manifold of
dimension d, 0 < λ0 ≤ λ1 ≤ · · · and λk ↑ +∞. and the Fredholm
determinant

∆(λ) =
∞∏

k=0

(
1− λ

λk

)
(K.38)

is regulated in the case µ ≡ d/m > 1 as Weierstrass product

∆(λ) =
∞∏

k=0

[(
1− λ

λk

)
exp

(
λ

λk
+

λ2

2λ2
k

+ · · ·+ λ[µ]

[µ]λ[µ]
k

)]
(K.39)
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where [µ] denotes the integer part of µ. This is, see ref. [K.15], the unique
entire function of order µ having zeros at {λk} and subject to the normal-
ization conditions

ln ∆(0) =
d

dλ
ln ∆(0) = · · · = d[µ]

dλ[µ]
ln ∆(0) = 0 . (K.40)

Clearly eq. (K.39) is the same as (K.35); one just has to identify z = −λ,
A = 1/H and n− 1 = [µ]. An example is the regularization of the spectral
determinant

∆(E) = det [(E −H)] (K.41)

which – as it stands – would only make sense for a finite dimensional basis
(or finite dimensional matrices). In ref. [K.16] the regulated spectral deter-
minant for the example of the hyperbola billiard in two dimensions (thus
d = 2, m = 2 and hence µ = 1) is given as

∆(E) = det [(E −H)Ω(E,H)] (K.42)

where

Ω(E,H) = −H−1eEH−1
(K.43)

such that the spectral determinant in the eigenbasis of H (with eigenvalues
En 	= 0) reads

∆(E) =
∏
n

(
1− E

En

)
eE/En <∞ . (K.44)

Note that H−1 is for this example of Hilbert-Schmidt character.
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Appendix L

Statistical mechanics recycled

(R. Mainieri)

A spin system with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The thermo-
dynamic limit quantities of the spin system are then equivalent to long time
averages of the dynamical system. In this way the spin system averages can
be recast as the cycle expansions. If the resulting dynamical system is an-
alytic, the convergence to the thermodynamic limit is faster than with the
standard transfer matrix techniques.

L.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better
control over the thermodynamic limit and one gets detailed information on
how one is converging to it. From this information, most other quantities
of physical interst can be computed.

In statistical mechanics one computes the averages of observables. These
are functions that return a number for every state of the system; they are
an abstraction of the process of measuring the pressure or temperature of a
gas. The average of an observable is computed in the thermodynamic limit
— the limit of system with an arbitrarily large number of particles. The
thermodynamic limit is an essential step in the computation of averages,
as it is only then that one observes the bulk properties of matter.

Without the thermodynamic limit many of the thermodynamic prop-
erties of matter could not be derived within the framework of statistical
mechanics. There would be no extensive quantities, no equivalence of en-
sembles, and no phase transitions. From experiments it is known that cer-
tain quantities are extensive, that is, they are proportional to the size of the
system. This is not true for an interacting set of particles. If two systems
interacting via pairwise potentials are brought close together, work will be
required to join them, and the final total energy will not be the sum of the
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energies of each of the parts. To avoid the conflict between the experiments
and the theory of Hamiltonian systems, one needs systems with an infinite
number of particles. In the canonical ensemble the probability of a state
is given by the Boltzman factor which does not impose the conservation of
energy; in the microcanonical ensemble energy is conserved but the Boltz-
mann factor is no longer exact. The equality between the ensembles only
appears in the limit of the number of particles going to infinity at constant
density. The phase transitions are interpreted as points of non-analyticity
of the free energy in the thermodynamic limit. For a finite system the par-
tition function cannot have a zero as a function of the inverse temperature
β, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in the study of
field theories. A field theory can be first defined on a lattice and then
the lattice spacing is taken to zero as the correlation length is kept fixed.
This continuum limit corresponds to the thermodynamic limit. In lattice
spacing units the correlation length is going to infinity, and the interacting
field theory can be thought of as a statistical mechanics model at a phase
transition.

For general systems the convergence towards the thermodynamic limit is
slow. If the thermodynamic limit exists for an interaction, the convergence
of the free energy per unit volume f is as an inverse power in the linear
dimension of the system.

f(β) → 1
n

(L.1)

where n is proportional to V 1/d, with V the volume of the d-dimensional
system. Much better results can be obtained if the system can be described
by a transfer matrix. A transfer matrix is concocted so that the trace of its
nth power is exactly the partition function of the system with one of the
dimensions proportional to n. When the system is described by a transfer
matrix then the convergence is exponential,

f(β) → e−αn (L.2)

and may only be faster than that if all long-range correlations of the system
are zero — that is, when there are no interactions. The coefficient α depends
only on the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that
they seem at first limited to systems with finite range interactions. Phase
transitions can happen only when the interaction is long range. One can
try to approximate the long range interaction with a series of finite range
interactions that have an ever increasing range. The problem with this ap-
proach is that in a formally defined transfer matrix, not all the eigenvalues
of the matrix correspond to eigenvalues of the system (in the sense that the
rate of decay of correlations is not the ratio of eigenvalues).
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Knowledge of the correlations used in conjunction with finite size scal-
ing to obtain accurate estimates of the parameters of systems with phase
transitions. (Accurate critical exponents are obtained by series expansions
or transfer matrices, and seldomly by renormalization group arguments or
Monte Carlo.) In a phase transition the coefficient α of the exponential
convergence goes to zero and the convergence to the thermodynamic limit
is power-law.

The computation of the partition function is an example of a functional
integral. For most interactions these integrals are ill-defined and require
some form of normalization. In the spin models case the functional integral
is very simple, as “space” has only two points and only “time” being infinite
has to be dealt with. The same problem occurs in the computation of the
trace of transfer matrices of systems with infinite range interactions. If one
tries to compute the partition function Zn

Zn = tr Tn

when T is an infinite matrix, the result may be infinite for any n. This is
not to say that Zn is infinite, but that the relation between the trace of an
operator and the partition function breaks down. We could try regularizing
the expression, but as we shall see below, that is not necessary, as there is
a better physical solution to this problem.

What will described here solves both of these problems in a limited
context: it regularizes the transfer operator in a physically meaningful way,
and as a a consequence, it allows for the faster than exponential convergence
to the thermodynamic limit and complete determination of the spectrum.
The steps to achieve this are:

• Redefine the transfer operator so that there are no limits involved
except for the thermodynamic limit.

• Note that the divergences of this operator come from the fact that
it acts on a very large space. All that is needed is the smallest sub-
space containing the eigenvector corresponding to the largest eigen-
value (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The
eigenvector is like that, and the operator restricted to this space is
trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

L.2 Ising models

The Ising model is a simple model to study the cooperative effects of many
small interacting magnetic dipoles. The dipoles are placed on a lattice and
their interaction is greatly simplified. There can also be a field that includes
the effects of an external magnetic field and the average effect of the dipoles
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among themselves. We will define a general class of Ising models (also called
spin systems) where the dipoles can be in one of many possible states and
the interactions extend beyond the nearest neighboring sites of the lattice.
But before we extend the Ising model, we will examine the simplest model
in that class.

L.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One
imagines that one has a one-dimensional lattice with small magnets at each
site that can point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in
the same direction, then they contribute an energy −J to the total energy
of the system; and if they point in opposite directions, then they contribute
+J . The signs are chsen so that they prefer to be aligned. Let us suppose
that we have n small magnets arranged in a line: A line is drawn between
two sites to indicate that there is an interaction between the small magnets
that are located on that site

. (L.3)

(This figure can be thought of as a graph, with sites being vertices and
interacting magnets indicated by edges.) To each of the sites we associate
a variable, that we call a spin, that can be in either of two states: up (↑) or
down (↓). This represents the two states of the small magnet on that site,
and in general we will use the notation Σ0 to represent the set of possible
values of a spin at any site; all sites assume the same set of values. A
configuration consists of assigning a value to the spin at each site; a typical
configuration is

↓ ↑↑ ↑ ↓ ↑ ↑ ↓↓

. (L.4)

The set of all configurations for a lattice with n sites is called Ωn
0 and is

formed by the Cartesian product Ω0 ×Ω0 · · · ×Ω0, the product repeated n
times. Each configuration σ ∈ Ωn is a string of n spins

σ = {σ0, σ1, . . . σn} , (L.5)

In the example configuration (L.4) there are two pairs of spins that have
the same orientation and six that have the opposite orientation. Therefore

statmech - 1dec2001 draft 9.4.0, June 18 2003



L.2. ISING MODELS 655

the total energy H of the configuration is J × 6 − J × 2 = 4J . In general
we can associate an energy H to every configuration

H(σ) =
∑

i

Jδ(σi, σi+1) , (L.6)

where

δ(σ1, σ2) =
{

+1 if σ1 = σ2

−1 if σ1 	= σ2
. (L.7)

One of the problems that was avoided when computing the energy was
what to do at the boundaries of the one-dimensional chain. Notice that
as written, (L.6) requires the interaction of spin n with spin n + 1. In
the absence of phase transitions the boundaries do not matter much to
the thermodynamic limit and we will connect the first site to the last,
implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function
Z(n) as the size n of the system becomes very large. For example, the free
energy per site f at inverse temperature β is given by

− βf(β) = lim
n→∞

1
n

lnZ(n) . (L.8)

The partition function Z(n) is computed by a sum that runs over all the
possible configurations on the one-dimensional chain. Each configuration
contributes with its Gibbs factor exp(−βH(σ)) and the partition function
Z(n) is

Z(n)(β) =
∑

σ∈Ωn
0

e−βH(σ) . (L.9)

The partition function can be computed using transfer matrices. This is
a method that generalizes to other models. At first, it is a little mysterious
that matrices show up in the study of a sum. To see where they come from,
we can try and build a configuration on the lattice site by site. The frst
thing to do is to expand out the sum for the energy of the configuration

Z(n)(β) =
∑

σ∈Ωn

eβJδ(σ1,σ2)eβJδ(σ2,σ3) · · · eβJδ(σn,σ1) . (L.10)

Let us use the configuration in (L.4). The first site is σ1 =↑. As the second
site is ↑, we know that the first term in (L.10) is a term eβJ . The third spin
is ↓, so the second term in (L.10) is e−βJ . If the third spin had been ↑, then
the term would have been eβJ but it would not depend on the value of the
first spin σ1. This means that the configuration can be built site by site
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and that to compute the Gibbs factor for the configuration just requires
knowing the last spin added. We can then think of the configuration as
being a weighted random walk where each step of the walk contributes
according to the last spin added. The random walk take place on the
Markov graph

↓ ↑eβJ

e−βJ

e−βJ

eβJ

.

Choose one of the two sites as a starting point. Walk along any allowed edge
making your choices randomly and keep track of the accumulated weight as
you perform the n steps. To implement the periodic boundary conditions
make sure that you return to the starting node of the Markov graph. If the
walk is carried out in all possible 2n ways then the sum of all the weights
is the partition function. To perform the sum we consider the matrix

T (β) =
[

eβJ e−βJ

e−βJ eβJ

]
. (L.11)

As in chapter 9 the sum of all closed walks is given by the trace of powers
of the matrix. These powers can easily be re-expressed in terms of the two
eigenvalues λ1 and λ2 of the transfer matrix:

Z(n)(β) = trTn(β) = λ1(β)n + λ2(β)n . (L.12)

L.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of
the transfer matrix. Alternatively, one can introduce a modified transfer
matrix and compute the averages through derivatives. Sounds familiar?

L.2.3 General spin models

The more general version of the Ising model — the spin models — will be
defined on a regular lattice, Z

D. At each lattice site there will be a spin
variable that can assumes a finite number of states identified by the set Ω0.

The transfer operator T was introduced by Kramers and Wannier [L.12]
to study the Ising model on a strip and concocted so that the trace of its nth
power is the partition function Zn of system when one of its dimensions is
n. The method can be generalized to deal with any finite-range interaction.
If the range of the interaction is L, then T is a matrix of size 2L× 2L. The
longer the range, the larger the matrix.
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L.3 Fisher droplet model

In a series of articles [L.20], Fisher introduced the droplet model. It is
a model for a system containing two phases: gas and liquid. At high
temperatures, the typical state of the system consists of droplets of all
sizes floating in the gas phase. As the temperature is lowered, the droplets
coalesce, forming larger droplets, until at the transition temperature, all
droplets form one large one. This is a first order phase transition.

Although Fisher formulated the model in three-dimensions, the analytic
solution of the model shows that it is equivalent to a one-dimensional lattice
gas model with long range interactions. Here we will show how the model
can be solved for an arbitrary interaction, as the solution only depends on
the asymptotic behavior of the interaction.

The interest of the model for the study of cycle expansions is its relation
to intermittency. By having an interaction that behaves asymptotically
as the scaling function for intermittency, one expects that the analytic
structure (poles and cuts) will be same.

Fisher used the droplet model to study a first order phase transition [L.20].
Gallavotti [L.21] used it to show that the zeta functions cannot in general
be extended to a meromorphic functions of the entire complex plane. The
droplet model has also been used in dynamical systems to explain features
of mode locking, see Artuso [L.22]. In computing the zeta function for the
droplet model we will discover that at low temperatures the cycle expan-
sion has a limited radius of convergence, but it is possible to factorize the
expansion into the product of two functions, each of them with a better
understood radius of convergence.

L.3.1 Solution

The droplet model is a one-dimensional lattice gas where each site can have
two states: empty or occupied. We will represent the empty state by 0 and
the occupied state by 1. The configurations of the model in this notation
are then strings of zeros and ones. Each configuration can be viewed as
groups of contiguous ones separated by one or more zeros. The contiguous
ones represent the droplets in the model. The droplets do not interact with
each other, but the individual particles within each droplet do.

To determine the thermodynamics of the system we must assign an en-
ergy to every configuration. At very high temperatures we would expect
a gaseous phase where there are many small droplets, and as we decrease
the temperature the droplets would be expected to coalesce into larger ones
until at some point there is a phase transition and the configuration is dom-
inated by one large drop. To construct a solvable model and yet one with
a phase transition we need long range interaction among all the particles
of a droplet. One choice is to assign a fixed energy θn for the interactions
of the particles of a cluster of size n. In a given droplet one has to consider
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all the possible clusters formed by contiguous particles. Consider for ex-
ample the configuration 0111010. It has two droplets, one of size three and
another of size one. The droplet of size one has only one cluster of size one
and therefore contributes to the energy of the configuration with θ1. The
cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing a θn term to the
energy. The total energy of the configuration is then

H(0111010) = 4θ1 + 2θ2 + 1θ3 . (L.13)

If there where more zeros around the droplets in the above configuration
the energy would still be the same. The interaction of one site with the
others is assumed to be finite, even in the ground state consisting of a single
droplet, so there is a restriction on the sum of the cluster energies given by

a =
∑
n>0

θn < ∞ . (L.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the function θn we can computed the energy of any
configuration, and from that determine the thermodynamics. Here we will
evaluate the cycle expansion for the model by first computing the generating
function

G(z, β) =
∑
n>0

zn Zn(β)
n

(L.15)

and then considering its exponential, the cycle expansion. Each partition
function Zn must be evaluated with periodic boundary conditions. So if
we were computing Z3 we must consider all eight binary sequences of three
bits, and when computing the energy of a configuration, say 011, we should
determine the energy per three sites of the long chain

. . . 011011011011 . . .

In this case the energy would be θ2 + 2θ1. If instead of 011 we had consid-
ered one of its rotated shifts, 110 or 101, the energy of the configuration
would have been the same. To compute the partition function we only need
to consider one of the configurations and multiply by the length of the con-
figuration to obtain the contribution of all its rotated shifts. The factor 1/n
in the generating function cancels this multiplicative factor. This reduction
will not hold if the configuration has a symmetry, as for example 0101 which
has only two rotated shift configurations. To compensate this we replace
the 1/n factor by a symmetry factor 1/s(b) for each configuration b. The
evaluation of G is now reduced to summing over all configurations that are
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not rotated shift equivalent, and we call these the basic configurations and
the set of all of them B. We now need to evaluate

G(z, β) =
∑
b∈B

z|b|

s(b)
e−βH(b) . (L.16)

The notation | · | represents the cardinality of the set.

Any basic configuration can be built by considering the set of droplets
that form it. The smallest building block has size two, as we must also put
a zero next to the one so that when two different blocks get put next to
each other they do not coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(L.17)

Each droplet of size n contributes with energy

Wn =
∑

1≤k≤n

(n− k + 1)θk . (L.18)

So if we consider the sum

∑
n≥1

1
n

(
z2e−βH(01) + z3(e−βH(001) + e−βH(011)) +

+ z4(e−βH(0001) + e−βH(0011) + e−βH(0111)) + · · ·
)n

(L.19)

then the power in n will generate all the configurations that are made from
many droplets, while the z will keep track of the size of the configuration.
The factor 1/n is there to avoid the over-counting, as we only want the
basic configurations and not its rotated shifts. The 1/n factor also gives
the correct symmetry factor in the case the configuration has a symmetry.
The sum can be simplified by noticing that it is a logarithmic series

− ln
(
1− (z2e−βW1 + z3(e−βW1 + e−βW2) + · · ·

)
, (L.20)

where the H(b) factors have been evaluated in terms of the droplet energies
Wn. A proof of the equality of (L.19) and (L.20) can be given , but we there
was not enough space on the margin to write it down. The series that is
subtracted from one can be written as a product of two series and the
logarithm written as

− ln
(
1− (z1 + z2 + z3 + · · ·)(ze−βW1 + z2e−βW2 + · · ·)

)
(L.21)
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The product of the two series can be directly interpreted as the generating
function for sequences of droplets. The first series adds one or more zeros
to a configuration and the second series add a droplet.

There is a whole class of configurations that is not included in the
above sum: the configurations formed from a single droplet and the vacuum
configuration. The vacuum is the easiest, as it has zero energy it only
contributes a z. The sum of all the null configurations of all sizes is

∑
n>0

zn

n
. (L.22)

The factor 1/n is here because the original G had them and the null con-
figurations have no rotated shifts. The single droplet configurations also do
not have rotated shifts so their sum is

∑
n>0

zne−βH(

n︷ ︸︸ ︷
11 . . . 11)

n
. (L.23)

Because there are no zeros in the above configuration clusters of all size
exist and the energy of the configuration is n

∑
θk which we denote by na.

From the three sums (L.21), (L.22), and (L.23) we can evaluate the
generating function G to be

G(z, β) = − ln(1−z)−ln(1−ze−βa)−ln(1− z

1− z

∑
n≥1

zne−βWn) .(L.24)

The cycle expansion ζ−1(z, β) is given by the exponential of the gener-
ating function e−G and we obtain

ζ−1(z, β) = (1− ze−βa)(1− z(1 +
∑
n≥1

zne−βWn)) (L.25)

To pursue this model further we need to have some assumptions about
the interaction strengths θn. We will assume that the interaction strength
decreases with the inverse square of the size of the cluster, that is, θn =
−1/n2. With this we can estimate that the energy of a droplet of size n is
asymptotically

Wn ∼ −n + lnn +O(
1
n

) . (L.26)

If the power chosen for the polynomially decaying interaction had been
other than inverse square we would still have the droplet term proportional
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to n, but there would be no logarithmic term, and the O term would be of a
different power. The term proportional to n survives even if the interactions
falls off exponentially, and in this case the correction is exponentially small
in the asymptotic formula. To simplify the calculations we are going to
assume that the droplet energies are exactly

Wn = −n + lnn (L.27)

in a system of units where the dimensional constants are one. To evaluate
the cycle expansion (L.25) we need to evaluate the constant a, the sum of
all the θn. One can write a recursion for the θn

θn = Wn −
∑

1≤k<n

(n− k + 1)θk (L.28)

and with an initial choice for θ1 evaluate all the others. It can be verified
that independent of the choice of θ1 the constant a is equal to the number
that multiplies the n term in (L.27). In the units used

a = −1 . (L.29)

For the choice of droplet energy (L.27) the sum in the cycle expansion
can be expressed in terms of a special function: the Lerch transcendental
φL. It is defined by

φL(z, s, c) =
∑
n≥0

zn

(n + c)s
, (L.30)

excluding from the sum any term that has a zero denominator. The Lerch
function converges for |z| < 1. The series can be analytically continued to
the complex plane and it will have a branch point at z = 1 with a cut chosen
along the positive real axis. In terms of Lerch transcendental function we
can write the cycle expansion (L.25) using (L.27) as

ζ−1(z, β) =
(
1− zeβ

)(
1− z(1 + φL(zeβ , β, 1))

)
(L.31)

This serves as an example of a zeta function that cannot be extended to a
meromorphic function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root
of (L.31). The root can come from any of the two factors. For large value
of β (low temperatures) the smallest root is determined from the (1− zeβ)
factor, which gave the contribution of a single large drop. For small β (large
temperatures) the root is determined by the zero of the other factor, and
it corresponds to the contribution from the gas phase of the droplet model.
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The transition occurs when the smallest root of each of the factors become
numerically equal. This determines the critical temperature βc through the
equation

1− e−βc(1 + ζR(βc)) = 0 (L.32)

which can be solved numerically. One finds that βc = 1.40495. The phase
transition occurs because the roots from two different factors get swapped
in their roles as the smallest root. This in general leads to a first order
phase transition. For large β the Lerch transcendental is being evaluated
at the branch point, and therefore the cycle expansion cannot be an analytic
function at low temperatures. For large temperatures the smallest root is
within the radius of convergence of the series for the Lerch transcendental,
and the cycle expansion has a domain of analyticity containing the smallest
root.

As we approach the phase transition point as a function of β the smallest
root and the branch point get closer together until at exactly the phase
transition they collide. This is a sufficient condition for the existence of a
first order phase transitions. In the literature of zeta functions [L.23] there
have been speculations on how to characterize a phase transition within the
formalism. The solution of the Fisher droplet model suggests that for first
order phase transitions the factorized cycle expansion will have its smallest
root within the radius of convergence of one of the series except at the
phase transition when the root collides with a singularity. This does not
seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider
separate cycle expansions for each of the phases of the system. If we sep-
arate the two terms of ζ−1 in (L.31), each of them is an analytic function
and contains the smallest root within the radius of convergence of the series
for the relevant β values.

L.4 Scaling functions

“Clouds are not spheres, mountains are not cones,
coastlines are not circles and bark is not smooth, nor
does lightning travel in straight line.”
B.B. Mandelbrot

There is a relation between general spin models and dynamical system.
If one thinks of the boxes of the Markov partition of a hyperbolic system
as the states of a spin system, then computing averages in the dynamical
system is carrying out a sum over all possible states. One can even construct
the natural measure of the dynamical system from a translational invariant
“interaction function” call the scaling function.

There are many routes that lead to an explanation of what a scaling
function is and how to compute it. The shortest is by breaking away from
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Figure L.1: Construction of the steps of the
scaling function from a Cantor set. From one
level to the next in the construction of the Can-
tor set the covers are shrunk, each parent seg-
ment into two children segments. The shrink-
age of the last level of the construction is plot-
ted and by removing the gaps one has an ap-
proximation to the scaling function of the Can-
tor set.
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the historical development and considering first the presentation function
of a fractal. The presentation function is a simple chaotic dynamical system
(hyperbolic, unlike the circle map) that generates the fractal and is closely
related to the definition of fractals of Hutchinson [L.24] and the iterated
dynamical systems introduced by Barnsley and collaborators [H.20]. From
the presentation function one can derive the scaling function, but we will
not do it in the most elegant fashion, rather we will develop the formalism
in a form that is directly applicable to the experimental data.

In the upper part of fig. L.1 we have the successive steps of the con-
struction similar to the middle third Cantor set. The construction is done
in levels, each level being formed by a collection of segments. From one
level to the next, each “parent” segment produces smaller “children” seg-
ments by removing the middle section. As the construction proceeds, the
segments better approximate the Cantor set. In the figure not all the seg-
ments are the same size, some are larger and some are smaller, as is the
case with multifractals. In the middle third Cantor set, the ratio between
a segment and the one it was generated from is exactly 1/3, but in the case
shown in the figure the ratios differ from 1/3. If we went through the last
level of the construction and made a plot of the segment number and its
ratio to its parent segment we would have a scaling function, as indicated
in the figure. A function giving the ratios in the construction of a fractal
is the basic idea for a scaling function. Much of the formalism that we
will introduce is to be able to give precise names to every segments and to
arrange the “lineage” of segments so that the children segments have the
correct parent. If we do not take these precautions, the scaling function
would be a “wild function”, varying rapidly and not approximated easily
by simple functions.

To describe the formalism we will use a variation on the quadratic map
that appears in the theory of period doubling. This is because the combi-
natorial manipulations are much simpler for this map than they are for the
circle map. The scaling function will be described for a one dimensional
map F as shown in fig. L.2. Drawn is the map

F (x) = 5x(1− x) (L.33)

restricted to the unit interval. We will see that this map is also a presen-
tation function.
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Figure L.2: A Cantor set presentation func-
tion. The Cantor set is the set of all points that
under iteration do not leave the interval [0, 1].
This set can be found by backwards iterating
the gap between the two branches of the map.
The dotted lines can be used to find these back-
ward images. At each step of the construction
one is left with a set of segments that form a
cover of the Cantor set.
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It has two branches separated by a gap: one over the left portion of the
unit interval and one over the right. If we choose a point x at random in
the unit interval and iterate it under the action of the map F , (L.33), it
will hop between the branches and eventually get mapped to minus infinity.
An orbit point is guaranteed to go to minus infinity if it lands in the gap.
The hopping of the point defines the orbit of the initial point x: x �→ x1 �→
x2 �→ · · ·. For each orbit of the map F we can associate a symbolic code.
The code for this map is formed from 0s and 1s and is found from the orbit
by associating a 0 if xt < 1/2 and a 1 if xt > 1/2, with t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two
branches. We then say that the orbit point has escaped the unit inter-
val. The points that do not escape form a Cantor set C (or Cantor dust)
and remain trapped in the unit interval for all iterations. In the process
of describing all the points that do not escape, the map F can be used
as a presentation of the Cantor set C, and has been called a presentation
function by Feigenbaum [21.13].

How does the map F “present” the Cantor set? The presentation is done
in steps. First we determine the points that do not escape the unit interval
in one iteration of the map. These are the points that are not part of the
gap. These points determine two segments, which are an approximation to
the Cantor set. In the next step we determine the points that do not escape
in two iterations. These are the points that get mapped into the gap in one
iteration, as in the next iteration they will escape; these points form the two
segments ∆(1)

0 and ∆(1)
1 at level 1 in fig. L.2. The processes can be continued

for any number of iterations. If we observe carefully what is being done, we
discover that at each step the pre-images of the gap (backward iterates) are
being removed from the unit interval. As the map has two branches, every
point in the gap has two pre-images, and therefore the whole gap has two
pre-images in the form of two smaller gaps. To generate all the gaps in the
Cantor set one just has to iterate the gap backwards. Each iteration of the
gap defines a set of segments, with the nth iterate defining the segments
∆(n)

k at level n. For this map there will be 2n segments at level n, with the
first few drawn in fig. L.2. As n →∞ the segments that remain for at least
n iterates converge to the Cantor set C.

The segments at one level form a cover for the Cantor set and it is

statmech - 1dec2001 draft 9.4.0, June 18 2003



L.5. GEOMETRIZATION 665

from a cover that all the invariant information about the set is extracted
(the cover generated from the backward iterates of the gap form a Markov
partition for the map as a dynamical system). The segments {∆(n)

k } at
level n are a refinement of the cover formed by segments at level n − 1.
From successive covers we can compute the trajectory scaling function, the
spectrum of scalings f(α), and the generalized dimensions.

To define the scaling function we must give labels (names) to the seg-
ments. The labels are chosen so that the definition of the scaling function
allows for simple approximations. As each segment is generated from an
inverse image of the unit interval, we will consider the inverse of the pre-
sentation function F . Because F does not have a unique inverse, we have
to consider restrictions of F . Its restriction to the first half of the segment,
from 0 to 1/2, has a unique inverse, which we will call F−1

0 , and its re-
striction to the second half, from 1/2 to 1, also has a unique inverse, which
we will call F−1

1 . For example, the segment labeled ∆(2)(0, 1) in fig. L.2 is
formed from the inverse image of the unit interval by mapping ∆(0), the
unit interval, with F−1

1 and then F−1
0 , so that the segment

∆(2)(0, 1) = F−1
0

(
F−1

1

(
∆(0)

))
. (L.34)

The mapping of the unit interval into a smaller interval is what determines
its label. The sequence of the labels of the inverse maps is the label of the
segment:

∆(n)(ε1, ε2, . . . , εn) = F−1
ε1 ◦ F−1

ε2 ◦ · · ·F−1
εn

(
∆(0)

)
.

The scaling function is formed from a set of ratios of segments length.
We use | · | around a segment ∆(n)(ε) to denote its size (length), and define

σ(n)(ε1, ε2, . . . , εn) =
|∆(n)(ε1, ε2, . . . , εn)|
|∆(n−1)(ε2, . . . , εn)| .

We can then arrange the ratios σ(n)(ε1, ε2, . . . , εn) next to each other as
piecewise constant segments in increasing order of their binary label ε1, ε2, . . . , εn

so that the collection of steps scan the unit interval. As n → ∞ this col-
lection of steps will converge to the scaling function.

L.5 Geometrization

The L operator is a generalization of the transfer matrix. It gets more
by considering less of the matrix: instead of considering the whole matrix
it is possible to consider just one of the rows of the matrix. The L op-
erator also makes explicit the vector space in which it acts: that of the
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observable functions. Observables are functions that to each configuration
of the system associate a number: the energy, the average magnetization,
the correlation between two sites. It is in the average of observables that
one is interested in. Like the transfer matrix, the L operator considers only
semi-infinite systems, that is, only the part of the interaction between spins
to the right is taken into account. This may sound un-symmetric, but it is
a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To define the L operator
one needs the interaction energy between one spin and all the rest to its
right, which is given by the function φ. The L operators defined as

Lg(σ) =
∑

σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value in Ω0 that the spin σ0 can assume, an average of
the observable g is computed weighed by the Boltzmann factor e−βφ. The
formal relations that stem from this definition are its relation to the free
energy when applied to the observable ι that returns one for any configu-
ration:

−βf(β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞

‖Lng‖
‖Lnι‖ .

Both relations hold for almost all configurations. These relations are part
of theorem of Ruelle that enlarges the domain of the Perron-Frobenius
theorem and sharpens its results. The theorem shows that just as the
transfer matrix, the largest eigenvalue of the L operator is related to the
free-energy of the spin system. It also hows that there is a formula for the
eigenvector related to the largest eigenvalue. This eigenvector |ρ〉 (or the
corresponding one for the adjoint L∗ of L) is the Gibbs state of the system.
From it all averages of interest in statistical mechanics can be computed
from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the
interactions, but it is of little computational value as it involves the Gibbs
state for a related spin system. Even then it does have an enormous theo-
retical value. Later we will see how the formula can be used to manipulate
the space of observables into a more convenient space.

The geometrization of a spin system converts the shift dynamics (neces-
sary to define the Ruelle operator) into a smooth dynamics. This is equiv-
alent to the mathematical problem in ergodic theory of finding a smooth
embedding for a given Bernoulli map.
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The basic idea for the dynamics is to establish the a set of maps Fσk

such that

Fσk
(0) = 0

and

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interaction is to be con-
verted into a dynamical systems. In most examples Fσk

is a collection of
maps from a subset of RD to itself.

If the interaction is complicated, then the dimension of the set of maps
may be infinite. If the resulting dynamical system is infinite have we gained
anything from the transformation? The gain in this case is not in terms
of added speed of convergence to the thermodynamic limit, but in the fact
that the Ruelle operator is of trace-class and all eigenvalues are related to
the spin system and not artifacts of the computation.

The construction of the higher dimensional system is done by borrowing
the phase space reconstruction technique from dynamical systems. Phase
space reconstruction can be done in several ways: by using delay coordi-
nates, by using derivatives of the position, or by considering the value of
several independent observables of the system. All these may be used in
the construction of the equivalent dynamics. Just as in the study of dy-
namical systems, the exact method does not matter for the determination
of the thermodynamics (f(α) spectra, generalized dimension), also in the
construction of the equivalent dynamics the exact choice of observable does
not matter.

We will only consider configurations for the half line. This is bescause
for translational invariant interactions the thermodynamic limit on half
line is the same as in the whole line. One can prove this by considering the
difference in a thermodynamic average in the line and in the semiline and
compare the two as the size of the system goes to infinity.

When the interactions are long range in principle one has to specify
the boundary conditions to be able to compute the interaction energy of
a configuration in a finite box. If there are no phase transitions for the
interaction, then which boundary conditions are chosen is irrelevant in the
thermodynamic limit. When computing quantities with the transfer ma-
trix, the long rrange interaction is truncated at some finite range and the
truncated interaction is then use to evaluate the transfer matrix. With the
Ruelle operator the interaction is never truncated, and the boundary must
be specified.
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The interaction φ(σ) is any function that returns a number on a con-
figuration. In general it is formed from pairwise spin interactions

φ(σ) =
∑
n>0

δσ0,σnJ(n)

with different choices of J(n) leading to differnt models. If J(n) = 1 only
if n = 1 and ) otherwise, then one has the nearest neighbor Ising model. If
J(n) = n−2, then one has the inverse square model relevant in the study of
the Kondo problem.

Let us say that each site of the lattice can assume two values +,− and
the set of all possible configurations of the semiline is the set Ω. Then an
observable g is a function from the set of configurations Ω to the reals.
Each configuration is indexed by the integers from 0 up, and it is useful to
think of the configuration as a string of spins. One can append a spin η0

to its begining, η ∨ σ, in which case η is at site 0, ω0 at site 1, and so on.

The Ruelle operator L is defined as

Lg(η) =
∑

ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observ-
ables. There is a generalization of the Perron-Frobenius theorem by Ruelle
that establishes that the largest eigenvalue of L is isolated from the rest of
the spectrum and gives the thermodynamics of the spin system just as the
largest eigenvalue of the transfer matrix does. Ruelle alos gave a formula
for the eigenvector related to the largest eigenvalue.

The difficulty with it is that the relation between the partition function
and the trace of its nth power, trLn = Zn no longer holds. The reason is
that the trace of the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables {x1(σ), . . . , x1(σ)}. The
idea is to choose the observables in such a way that from their values on a
particular configuration σ the configuration can be reconstructed. We also
introduce the interaction observables hσ0

To geometrize spin systems, the interactions are assumed to be transla-
tionally invariant. The spins σk will only assume a finite number of values.
For simplicity, we will take the interaction φ among the spins to depend
only on pairwise interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑
n>0

δσ0,σnJ1(n) , (L.35)

and limit σk to be in {+,−}. For the one-dimensional Ising model, J0

is the external magnetic field and J1(n) = 1 if n = 1 and 0 otherwise.
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For an exponentially decaying interaction J1(n) = e−αn. Two- and three-
dimensional models can be considered in this framework. For example, a
strip of spins of L×∞ with helical boundary conditions is modeled by the
potential J1(n) = δn,1 + δn,L.

The transfer operator T was introduced by Kramers and Wannier [L.12]
to study the Ising model on a strip and concocted so that the trace of its
nth power is the partition function Zn of system when one of its dimen-
sions is n. The method can be generalized to deal with any finite-range
interaction. If the range of the interaction is L, then T is a matrix of size
2L × 2L. The longer the range, the larger the matrix. When the range
of the interaction is infinite one has to define the T operator by its ac-
tion on an observable g. Just as the observables in quantum mechanics,
g is a function that associates a number to every state (configuration of
spins). The energy density and the average magnetization are examples
of observables. From this equivalent definition one can recover the usual
transfer matrix by making all quantities finite range. For a semi-infinite
configuration σ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (L.36)

By + ∨ σ we mean the configuration obtained by prepending + to the
beginning of σ resulting in the configuration {+, σ0, σ1, . . .}. When the
range becomes infinite, tr T n is infinite and there is no longer a connection
between the trace and the partition function for a system of size n (this is
a case where matrices give the wrong intuition). Ruelle [L.13] generalized
the Perron-Frobenius theorem and showed that even in the case of infinite
range interactions the largest eigenvalue of the T operator is related to the
free-energy of the spin system and the corresponding eigenvector is related
to the Gibbs state. By applying T to the constant observable u, which
returns 1 for any configuration, the free energy per site f is computed as

− βf(β) = lim
n→∞

1
n

ln ‖T nu‖ . (L.37)

To construct a smooth dynamical system that reproduces the proper-
ties of T , one uses the phase space reconstruction technique of Packard
et al. [L.6] and Takens [L.7], and introduces a vector of state observables
x(σ) = {x1(σ), . . . , xD(σ)}. To avoid complicated notation we will limit the
discussion to the example x(σ) = {x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ)
and x−(σ) = φ(−∨σ); the more general case is similar and used in a later ex-
ample. The observables are restricted to those g for which, for all configura-
tions σ, there exist an analytic function G such that G(x1(σ), . . . , xD(σ)) =
g(σ). This at first seems a severe restriction as it may exclude the eigen-
vector corresponding to the Gibbs state. It can be checked that this is not
the case by using the formula given by Ruelle [L.14] for this eigenvector.
A simple example where this formalism can be carried out is for the in-
teraction φ(σ) with pairwise exponentially decaying potential J1(n) = an

(with |a| < 1). In this case φ(σ) =
∑

n>0 δσ0,σnan and the state observables
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are x+(σ) =
∑

n>0 δ+,σnan and x−(σ) =
∑

n>0 δ−,σnan. In this case the
observable x+ gives the energy of + spin at the origin, and x− the energy
of a − spin.

Using the observables x+ and x−, the transfer operator can be re-
expressed as

T G (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (L.38)

In this equation the only reference to the configuration σ is when comput-
ing the new observable values x+(η∨σ) and x−(η∨σ). The iteration of the
function that gives these values in terms of x+(σ) and x−(σ) is the dynam-
ical system that will reproduce the properties of the spin system. For the
simple exponentially decaying potential this is given by two maps, F+ and
F−. The map F+ takes {x+(σ), x+(σ)} into {x+(+∨ σ), x−(+∨ σ)} which
is {a(1 + x+), ax−} and the map F− takes {x+, x−} into {ax+, a(1 + x−)}.
In a more general case we have maps Fη that take x(σ) to x(η ∨ σ).

We can now define a new operator L

LG (x) def= T G(x(σ)) =
∑

η∈{+,−}
G (Fη(x)) e−βxη , (L.39)

where all dependencies on σ have disappeared — if we know the value of
the state observables x, the action of L on G can be computed.

A dynamical system is formed out of the maps Fη. They are chosen so
that one of the state variables is the interaction energy. One can consider
the two maps F+ and F− as the inverse branches of a hyperbolic map
f , that is, f−1(x) = {F+(x), F−(x)}. Studying the thermodynamics of
the interaction φ is equivalent to studying the long term behavior of the
orbits of the map f , achieving the transformation of the spin system into
a dynamical system.

Unlike the original transfer operator, the L operator — acting in the
space of observables that depend only on the state variables — is of trace-
class (its trace is finite). The finite trace gives us a chance to relate the
trace of Ln to the partition function of a system of size n. We can do
better. As most properties of interest (thermodynamics, fall-off of corre-
lations) are determined directly from its spectrum, we can study instead
the zeros of the Fredholm determinant det (1− zL) by the technique of cy-
cle expansions developed for dynamical systems [15.2]. A cycle expansion
consists of finding a power series expansion for the determinant by writ-
ing det (1 − zL) = exp(tr ln(1 − zL)). The logarithm is expanded into a
power series and one is left with terms of the form trLn to evaluate. For
evaluating the trace, the L operator is equivalent to

LG(x) =
∫
RD

dy δ(y − f(x))e−βyG(y) (L.40)
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from which the trace can be computed:

trLn =
∑

x=f (◦n)(x)

e−βH(x)

|det
(
1− ∂xf (◦n)(x)

)
|

(L.41)

with the sum running over all the fixed points of f (◦n) (all spin configu-
rations of a given length). Here f (◦n) is f composed with itself n times,
and H(x) is the energy of the configuration associated with the point x.
In practice the map f is never constructed and the energies are obtained
directly from the spin configurations.

To compute the value of trLn we must compute the value of ∂xf (◦n);
this involves a functional derivative. To any degree of accuracy a number x
in the range of possible interaction energies can be represented by a finite
string of spins ε, such as x = φ(+, ε0, ε1, . . . ,−, −, . . .). By choosing the
sequence ε to have a large sequence of spins −, the number x can be made
as small as needed, so in particular we can represent a small variation by
φ(η). As x+(ε) = φ(+ ∨ ε), from the definition of a derivative we have:

∂xf(x) = lim
m→∞

φ(ε ∨ η(m))− φ(ε)
φ(η(m))

, (L.42)

where η(m) is a sequence of spin strings that make φ(η(m)) smaller and
smaller. By substituting the definition of φ in terms of its pairwise in-
teraction J(n) = nsanγ

and taking the limit for the sequences η(m) =
{+,−,−, . . . , ηm+1, ηm+2, . . .} one computes that the limit is a if γ = 1,
1 if γ < 1, and 0 if γ > 1. It does not depend on the positive value of
s. When γ < 1 the resulting dynamical system is not hyperbolic and the
construction for the operator L fails, so one cannot apply it to potentials
such as (1/2)

√
n. One may solve this problem by investigating the behavior

of the formal dynamical system as γ → 0.

The manipulations have up to now assumed that the map f is smooth.
If the dimension D of the embedding space is too small, f may not be

smooth. Determining under which conditions the embedding is smooth is a
complicated question [L.15]. But in the case of spin systems with pairwise
interactions it is possible to give a simple rule. If the interaction is of the
form

φ(σ) =
∑
n≥1

δσ0,σn

∑
k

pk(n)anγ

k (L.43)

where pk are polynomials and |ak| < 1, then the state observables to use
are xs,k(σ) =

∑
δ+,σnnsan

k . For each k one uses x0,k, x1,k, . . . up to the
largest power in the polynomial pk. An example is the interaction with
J1(n) = n2(3/10)n. It leads to a 3-dimensional system with variables x0,0,
x1,0, and x2,0. The action of the map F+ for this interaction is illustrated
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Figure L.3: The spin adding map F+ for
the potential J(n) =

∑
n2aαn. The action

of the map takes the value of the interaction
energy between + and the semi-infinite config-
uration {σ1, σ2, σ3, . . .} and returns the inter-
action energy between + and the configuration
{+, σ1, σ2, σ3, . . .}.
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Figure L.4: Number of digits for the Fredholm
method (•) and the transfer function method
(×). The size refers to the largest cycle consid-
ered in the Fredholm expansions, and the trun-
cation length in the case of the transfer matrix.
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fig. L.3. Plotted are the pairs {φ(+∨σ), φ(+∨+∨σ)}. This can be seen as
the strange attractor of a chaotic system for which the variables x0,0, x1,0,
and x2,0 provide a good (analytic) embedding.

The added smoothness and trace-class of the L operator translates into
faster convergence towards the thermodynamic limit. As the reconstructed
dynamics is analytic, the convergence towards the thermodynamic limit
is faster than exponential [2.12, L.16]. We will illustrate this with the
polynomial-exponential interactions (L.43) with γ = 1, as the convergence
is certainly faster than exponential if γ > 1, and the case of an has been
studied in terms of another Fredholm determinant by Gutzwiller [L.17].
The convergence is illustrated in fig. L.4 for the interaction n2(3/10)n.
Plotted in the graph, to illustrate the transfer matrix convergence, are
the number of decimal digits that remain unchanged as the range of the
interaction is increased. Also in the graph are the number of decimal digits
that remain unchanged as the largest power of trLn considered. The plot is
effectively a logarithmic plot and straight lines indicate exponentially fast
convergence. The curvature indicates that the convergence is faster than
exponential. By fitting, one can verify that the free energy is converging to
its limiting value as exp(−n(4/3)). Cvitanović [2.12] has estimated that the
Fredholm determinant of a map on a D dimensional space should converge
as exp(−n(1+1/D)), which is confirmed by these numerical simulations.

Commentary

Remark L.1 Presentation functions. The best place to read
about Feigenbaum’s work is in his review article published in Los
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Alamos Science (reproduced in various reprint collections and con-
ference proceedings, such as ref. [15.5]). Feigenbaum’s Journal of
Statistical Physics article [21.13] is the easiest place to learn about
presentation functions.

Remark L.2 Interactions are smooth In most computational
schemes for thermodynamic quantities the translation invariance and
the smoothness of the basic interaction are never used. In Monte Carlo
schemes, aside from the periodic boundary conditions, the interaction
can be arbitrary. In principle for each configuration it could be pos-
sible to have a different energy. Schemes such as the Sweneson-Wang
cluster flipping algorithm use the fact that interaction is local and are
able to obtain dramatic speed-ups in the equilibration time for the dy-
namical Monte Carlo simulation. In the geometrization program for
spin systems, the interactions are assumed translation invariant and
smooth. The smoothness means that any interaction can be decom-
posed into a series of terms that depend only on the spin arrangement
and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1 , σn2)J2(n1, n2) + · · ·

where the Jk are symmetric functions of their arguments and the δ

are arbitrary discrete functions. This includes external constant fields
(J0), but it excludes site dependent fields such as a random external
magnetic field.

Résumé

The geometrization of spin systems strengthens the connection between
statistical mechanics and dynamical systems. It also further establishes
the value of the Fredholm determinant of the L operator as a practical
computational tool with applications to chaotic dynamics, spin systems,
and semiclassical mechanics. The example above emphasizes the high ac-
curacy that can be obtained: by computing the shortest 14 periodic orbits
of period 5 or less it is possible to obtain three digit accuracy for the free
energy. For the same accuracy with a transfer matrix one has to consider a
256× 256 matrix. This make the method of cycle expansions practical for
analytic calculations.
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Exercises

Exercise L.1 Not all Banach spaces are also Hilbert If we are given a
norm ‖ · ‖ of a Banach space B, it may be possible to find an inner product
〈· , · 〉 (so that B is also a Hilbert space H) such that for all vectors f ∈ B, we
have

‖f‖ = 〈f, f〉1/2 .

This is the norm induced by the scalar product. If we cannot find the inner
product how do we know that we just are not being clever enough? By checking
the parallelogram law for the norm. A Banach space can be made into a Hilbert
space if and only if the norm satisfies the parallelogram law. The parallelogram
law says that for any two vectors f and g the equality

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 ,

must hold.

Consider the space of bounded observables with the norm given by ‖a‖ =
supσ∈ΩN |a(σ)|. Show that ther is no scalar product that will induce this
norm.

Exercise L.2 Automaton for a droplet Find the Markov graph and the weights
on the edges so that the energies of configurations for the dropolet model are correctly
generated. For any string starting in zero and ending in zero your diagram should
yield a configuration the weight eH(σ), with H computed along the lines of (L.13) and
(L.18).

Hint: the Markov graph is infinite.

Exercise L.3 Spectral determinant for an interactions Compute the
spectral determinant for one-dimensional Ising model with the interaction

φ(σ) =
∑
k>0

akδ(σ0, σk) .

Take a as a number smaller than 1/2.

(a) What is the dynamical system this generates? That is, find F+ and F−
as used in (L.39).

(b) Show that

d

dx
F{+ or−} =

[
a 0
0 a

]

exerStatmech - 16aug99 draft 9.4.0, June 18 2003



EXERCISES 677

Exercise L.4 Ising model on a thin strip Compute the transfer matrix
for the Ising model defined on the graph

Assume that whenever there is a bond connecting two sites, there is a contri-
bution Jδ(σi, σj) to the energy.

Exercise L.5 Infinite symbolic dynamics Let σ be a function that returns zeo
or one for every infinite binary string: σ : {0, 1}N → {0, 1}. Its value is represented
by σ(ε1, ε2, . . .) where the εi are either 0 or 1. We will now define an operator T that
acts on observables on the space of binary strings. A function a is an observable if it
has bounded variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .) + a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

The function σ is assumed such that any of T ’s “matrix representations” in (a) have
the Markov property (the matrix, if read as an adjacency graph, corresponds to a graph
where one can go from any node to any other node).

(a) (easy) Consider a finite version Tn of the operator T :

Tna(ε1, ε2, . . . , εn) =
a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +
a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

Show that Tn is a 2n× 2n matrix. Show that its trace is bounded by a number
independent of n.

(b) (medium) With the operator norm induced by the function norm, show that T
is a bounded operator.

(c) (hard) Show that T is not trace-class. (Hint: check if T is compact).

Classes of operators are nested; trace-class ≤ compact ≤ bounded.
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Appendix M

Noise/quantum corrections

(Gábor Vattay1)

The Gutzwiller trace formula is only a good approximation to the
quantum mechanics when � is small. Can we improve the trace formula by
adding quantum corrections to the semiclassical terms? A similar question
can be posed when the classical deterministic dynamics is disturbed by some
way gaussian white noise with strength D. The deterministic dynamics
then can be considered as the weak noise limit D → 0. The effect of the
noise can be taken into account by adding noise corrections to the classical
trace formula. A formal analogy exists between the noise and the quantum
problem. This analogy allows us to treat the noise and quantum corrections
together.

M.1 Quantum formulation of the noise problem

A dynamical system perturbed by gaussian white noise can be described
by the Langevin equation

ẋ = v(x) + ξ(t), (M.1)

where and ξ(t) has a Dirac delta autocorrelation function

〈ξ(t)ξ(t′)〉 = δ(t− t′), (M.2)

and gaussian distribution

p(ξ) =
1√
2πD

e−
ξ2

D (M.3)

1In fact I’m Vattay Gábor, just these Indo-Europeans mix up the right order
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The time evolution of the probability distribution of x �(x, t) is governed
by the Fokker-Planck partial differential equation

∂t� +∇(�v(x)) = D∇2�. (M.4)

(The symbol nabla∇ denotes the divergence when it acts on vectors and the
gradient, when it acts on scalars.) If the system is bound, the probability
distribution vanishes

�(x, t)→ 0

for large values of x (|x| → ∞). In this case, the full probability is conserved

∫
dx�(x, t) = 1, (M.5)

and the distribution is relaxing to the equilibrium distribution �(x, t) →
�0(x) in the t → ∞ limit. If the system is open, the probability does not
vanish for large |x| and there is a continuous flow of probability out from
the center of the system. The equilibrium distribution of the system is
zero. A finite distribution can be achieved if we pump back probability
into the system on a constant rate κ giving rise to an extra term −κ� in
the Fokker-Planck equation. The value of κ at which any initial probability
distribution converges to a finite equilibrium distribution is the the escape
rate.

The equilibrium distribution of the noise can now be studied as the
function of the diffusion constant D. Let’s try to rewrite formally the
distribution with the help of the transformation

�(x, t) = e−Φ(x,t)/D. (M.6)

The time evolution of Φ is given by the equation

∂tΦ +∇Φv + (∇Φ)2 −D∇v + D∇2Φ = 0. (M.7)

First we can study the weak noise limit and the terms proportional with D
can be dropped. The remaining equation is reminiscent to the Hamilton-
Jacobi equation of the classical physics. The function Φ can be interpreted
as a noise action corresponding to the noise Hamiltonian

H(x, p) = pv(x) + p2. (M.8)

The noise Hamilton-Jacobi equation expressed with this Hamiltonian is
then

∂tΦ + H(x,∇Φ) = 0. (M.9)
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We can derive the Hamilton equations of motion:

ẋ = ∂pH = v + 2p, (M.10)
ṗ = −∂xH = −Dvp, (M.11)

(M.12)

and define the “noise”Lagrangian

L(x, ẋ) = (ẋ− v(x))2. (M.13)

What does this Hamiltonian, Lagrangian and action mean ? We can figure
out this by taking two points x and x′ and asking which is the most probable
noisy path that connects them in time T? The probability of a given path
x(t) is the same as the probability of the noise sequence ξ(t) which generates
the path. This probability is proportional with the product of the noise
probability functions along the path, which is

P (x, x′, t) ∼ exp
(
− 1

D

∫ T

0
dtξ2(t)

)
. (M.14)

The most probable path is the one which maximizes the integral inside
of the exponential. If we express the noise as ξ(t) = ẋ(t) − v(x(t)) the
condition leads to the minimal action principle of Fermat

min
∫ T

0
dt(ẋ(t)− v(x(t)))2 = min

∫ T

0
L(x(t), ẋ(t))dt, (M.15)

like in the classical mechanics. Following the usual mechanics textbook
derivation of the path minimizing the action integral, we can convince our-
selves, that it is given by the solution of the Hamilton’s equations. To a
given x, x′ and T we have to find the initial p which realizes this path.

The original Fokker-Planck equation now can be viewed as the ‘Schrö-
dinger’ problem of the ‘quantized’ Hamiltonian. The quantization means
the introduction of operators x̂ = x and p̂ = −D∇. D plays the role of i�.
The noisy commutators fulfill

[x̂, p̂] = D. (M.16)

The Schrodinger equation is then

D∂tψ = Ĥψ = −D∇vψ + D2∇2ψ. (M.17)

The noise Hamilton operator is not a hermitian one, therefore the eigenen-
ergies En defined as

Ĥψn = Enψn (M.18)
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are complex numbers and their conjugates. Another special feature is that
the eigenenergies of the Hamilton operator are proportional with D, due
to the absence of a D independent potential term. It is more convenient to
subtract the trivial D dependence and to introduce sn = En/D, which is
then the eigenvalue of the Fokker-Planck equation.

At this point we can have a philosophical remark: The Hamiltonian or
symplectic structure of the equations describing the most probable path was
not present in the original deterministic equation ẋ = v(x). It is a prop-
erty of the approximation we made. Instead of x and p we can introduce
other canonical coordinates via canonical transformation. But then their
‘quantization’ will not reproduce the Fokker-Planck equation. We get the
Fokker-Planck equation only if the system quantized in Cartesian coordi-
nates. We can say, that the symplectic symmetry is present only on the
first level of the approximation. Thinking about the correspondence between
classical mechanics and quantum mechanics, we can see that the Hamilton
equations of motion are the first approximation of quantum mechanics. But
there is ( we can say of course !) no way to quantize systems in general
canonical coordinates. The symplectic structure does not reflect any deep
symmetry of nature it is an artifact of our way of understanding it.

The path integral formalism of Feynman can now be extended for this
case. The time domain Green’s function or in other words the evolution
operator in Feynman formalism reads

Lt(x, x′) =
∫
Dx exp

(
− 1

D

∫ t

0
L(t′)dt′

)
, (M.19)

where Dx denotes the continuous limit of the usual discretized path sum-
mation for all possible paths connecting x with x′ in time t and the integral
in the exponent is the noise action computed for the path.

The analog of the Gutzwiller trace formula in this case is easy to write
down:

TrL(E) =
∫ ∞

0
dteEt/D

∫
dxLt(x, x′) =

1
D

∞∑
p,r=1

e−
r
D

∫ Tp
0 dt(Lp(t)−E)−irνpπ

|det (M r
p − 1)|1/2

, (M.20)

where the summation goes for the prime periodic orbits of the Hamilton’s
equations and their repetitions. The action in the exponent, the mon-
odromy matrix and the topological index are the analogs of those in the
Gutzwiller trace formula and i� = D. The periodic orbits of the original
noiseless dynamics remain the periodic orbits of the Hamilton’s equations
with zero momentum p = 0. There is a possibility to have new periodic or-
bits, if the original dynamics is not uniformly hyperbolic. The monodromy
matrix, action and topological index for the old periodic orbits have some
nice features. The monodromy matrix Mp has then two separate diagonal
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Figure M.1: Poincaré section close to a stable and an unstable periodic orbit

blocks, each of them is the Jacobi matrix Jp of the orbit in the noiseless
dynamics. Using this, we can express the semiclassical amplitude as

1
|det (M r

p − 1)|1/2
=

1
|det (Jr

p − 1)| . (M.21)

The topological index counts the number of conjugate points. They come
in pairs due to the structure of the matrix, so no phase factor goes into
the exponent. For the old periodic orbits the Lagrangian is zero and by
using s = E/D, the exponent becomes esrTp . Each old periodic orbit is
represented by a

TrL(E) ∼ 1
D

∑
r

esrTp

|det (Jr
p − 1)| , (M.22)

term in the trace formula. This is exactly2 classical trace formula as we have
already seen in Chapter ? . On the new periodic orbits, which were not
present in the noiseless case, these simplifications cannot be carried out. In
the exponent an extra − 1

D

∫ Tp

0 Lp(t)dt term shows up and the monodromy
matrix cannot be factorized as we did. The quantity Rp =

∫ Tp

0 Lp(t)dt is a
positive number, independent form D. In the weak noise limit these orbits
are strongly suppressed due to the small term e−Rp/D.

We have shown, then the analogy of the quantum and noise problems
and we can go back to the problem of the noise and quantum corrections
of the trace formulas.

M.2 Periodic orbits as integrable systems

From now on, we use the language of quantum mechanics, since it is more
convenient to visualize the results there. Where it is necessary we will
discuss the difference between noise and quantum cases.

First we would like to introduce periodic orbits from an unusual point
of view, which can convince you, that chaotic and integrable systems are
in fact not as different from each other, than we might think. If we start
orbits in the neighborhood of a periodic orbit and look at the picture on the
Poincaré section we can see a regular picture. For stable periodic orbits the
points form small ellipses around the center and for unstable orbits they
form hyperbolas (See Fig. M.1).

2 1/D is just because the argument of the trace is E instead of s. In TrL(s) the 1/D
factor is not present.
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The motion close to a periodic orbits is regular in both cases. This is
due to the fact, that we can linearize the Hamiltonian close to an orbit, and
linear systems are always integrable. The linearized Hamilton’s equations
close to the periodic orbit (qp(t) + q, pp(t) + p) look like

q̇ = +∂2
pqH(qp(t), pp(t))q + ∂2

ppH(qp(t), pp(t))p, (M.23)

ṗ = −∂2
qqH(qp(t), pp(t))q − ∂2

qpH(qp(t), pp(t))p, (M.24)

where the new coordinates q and p are relative to a periodic orbit. This
linearized equation can be regarded as a d dimensional oscillator with time
periodic frequencies. These equations are representing the equation of mo-
tion in a redundant way since more than one combination of q, p and t
determines the same point of the phase space. This can be cured by an
extra restriction on the variables, a constraint the variables should fulfill.
This constraint can be derived from the time independence or stacionarity
of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (M.25)

Using the linearized form of this constraint we can eliminate one of the
linearized equations. It is very useful, although technically difficult, to do
one more transformation and to introduce a coordinate, which is parallel
with the Hamiltonian flow (x‖) and others which are orthogonal. In the
orthogonal directions we again get linear equations. These equations with
x‖ dependent rescaling can be transformed into normal coordinates, so that
we get tiny oscillators in the new coordinates with constant frequencies.
This result has first been derived by Poincaré for equilibrium points and
later it was extended for periodic orbits by V.I. Arnol’d and co-workers. In
the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2
p2
‖ + U(x‖) +

d−1∑
n=1

1
2
(p2

n ± ω2
nx2

n), (M.26)

which is the general form of the Hamiltonian in the neighborhood of a
periodic orbit. The ± sign denotes, that for stable modes the oscillator
potential is positive while for an unstable mode it is negative. For the
unstable modes, ω is the Lyapunov exponent of the orbit

ωn = ln Λp,n/Tp, (M.27)

where Λp,n is the expanding eigenvalue of the Jacobi matrix. For the stable
directions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp . (M.28)
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The Hamiltonian close to the periodic orbit is integrable and can be quan-
tized by the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld
quantization for the oscillators gives the energy spectra

En = �ωn

(
jn +

1
2

)
for stable modes, (M.29)

En = −i�ωn

(
jn +

1
2

)
for unstable modes,

where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable
and sn = −i for unstable directions. The parallel mode can be quantized
implicitly trough the classical action function of the mode:

1
2π

∮
p‖dx‖ =

1
2π

S‖(Em) = �

(
m +

mpπ

2

)
, (M.30)

where mp is the topological index of the motion in the parallel direction.
This latter condition can be rewritten by a very useful trick into the equiv-
alent form

(1− eiS‖(Em)/�−impπ/2) = 0. (M.31)

The eigenenergies of a semiclassically quantized periodic orbit are all the
possible energies

E = Em +
d−1∑
n=1

En. (M.32)

This relation allows us to change in (M.31) Em with the full energy minus
the oscillator energies Em = E −

∑
n En. All the possible eigenenergies of

the periodic orbit then are the zeroes of the expression

∆p(E) =
∏

j1,...,jd−1

(1− eiS‖(E−∑n �snωn(jn+1/2))/�−impπ/2). (M.33)

If we Taylor expand the action around E to first order

S‖(E + ε) ≈ S‖(E) + T (E)ε, (M.34)

where T (E) is the period of the orbit, and use the relations of ω and
the eigenvalues of the Jacobi matrix, we get the expression of the Selberg
product

∆p(E) =
∏

j1,...,jd−1

(
1− eiSp(E)/�−impπ/2∏

n Λ(1/2+jn)
p,n

)
. (M.35)
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If we use the right convention for the square root we get exactly the d
dimensional expression of the Selberg product formula we derived from the
Gutzwiller trace formula in ? . Just here we derived it in a different way!
The function ∆p(E) is the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a
function which is zero, whenever the energy coincides with the BS quantized
energy of one of the periodic orbits, we have to take the product of these
determinants:

∆(E) =
∏
p

∆p(E). (M.36)

The miracle of the semiclassical zeta function is, that if we take infinitely
many periodic orbits, the infinite product will have zeroes not at these
energies, but close to the eigenenergies of the whole system !

So we learned, that both stable and unstable orbits are integrable sys-
tems and can be individually quantized semiclassically by the old Bohr-
Sommerfeld rules. So we almost completed the program of Sommerfeld to
quantize general systems with the method of Bohr. Let us have a remark
here. In addition to the Bohr-Sommerfeld rules, we used the unjustified
approximation (M.34). Sommerfeld would never do this ! At that point
we loose some important precision compared to the BS rules and we get
somewhat worse results than a semiclassical formula is able to do. We will
come back to this point later when we discuss the quantum corrections. To
complete the program of full scale Bohr-Sommerfeld quantization of chaotic
systems we have to go beyond the linear approximation around the periodic
orbit.

The Hamiltonian close to a periodic orbit in the parallel and normal co-
ordinates can be written as the ‘harmonic’ plus ‘anharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (M.37)

where the anharmonic part can be written as a sum of homogeneous poly-
nomials of xn and pn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∑
k=3

Hk(x‖, xn, pn) (M.38)

Hk(x‖, xn, pn) =
∑

∑
ln+mn=k

Hk
ln,mn

(x‖)xln
n pmn

n (M.39)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view,
since it is non integrable. However, Birkhoff in 19273 introduced the concept
of normal form, which helps us out from this problem by giving successive
integrable approximation to a non-integrable problem. Let’s learn a bit
more about it!

3It is really a pity, that in 1926 Schrödinger introduced the wave mechanics and
blocked the development of Sommerfeld’s concept.
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M.3 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium
point of a Hamiltonian. Equilibrium point is where the potential has a
minimum ∇U = 0 and small perturbations lead to oscillatory motion. We
can linearize the problem and by introducing normal coordinates xn and
conjugate momentums pn the quadratic part of the Hamiltonian will be a
set of oscillators

H0(xn, pn) =
d∑

n=1

1
2
(p2

n + ω2
nx2

n). (M.40)

The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (M.41)

where HA is the anharmonic part of the potential in the new coordinates.
The anharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =
∞∑

j=3

Hj(xn, pn), (M.42)

Hj(xn, pn) =
∑

|l|+|m|=j

hj
lmxlpm, (M.43)

where hj
lm are real constants and we used the multi-indices l := (l1, ..., ld)

with definitions

|l| =
∑

ln, xl := xl1
1 xl2

2 ...xld
d .

Birkhoff showed, that that by successive canonical transformations one can
introduce new momentums and coordinates such, that in the new coordi-
nates the anharmonic part of the Hamiltonian up to any given n polynomial
will depend only on the variable combination

τn =
1
2
(p2

n + ω2
nx2

n), (M.44)

where xn and pn are the new coordinates and momentums, but ωn is the
original frequency. This is called the Birkhoff normal form of degree N :

H(xn, pn) =
N∑

j=2

Hj(τ1, ..., τd), (M.45)
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where Hj are homogeneous degree j polynomials of τ -s. This is an in-
tegrable Hamiltonian, the non-integrability is pushed into the remainder,
which consists of polynomials of degree higher than N . We run into trouble
only when the oscillator frequencies are commensurate e.g. it is possible to
find a set of integers mn such that the linear combination

d∑
n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in 1966 and
we call the the object Birkhoff-Gustavson normal form. The procedure of
the successive canonical transformations can be computerized and can be
carried out up to high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to
degree N . For a non-integrable system the high order terms behave quete
widely and the series is not convergent. Therefore we have to use this tool
carefully. Now, we learned how to approximate a non-integrable system
with a sequence of integrable systems and we can go back and carry out
the BS quantization.

M.4 Bohr-Sommerfeld quantization of periodic or-
bits

There is some difference between equilibrium points and periodic orbits.
The Hamiltonian (M.26) is not a sum of oscillators. One can transform
the parallel part, describing circulation along the orbit, into an oscillator
Hamiltonian, but this would make the problem extremelly difficult. There-
fore, we carry out the canonical transformations dictated by the Birkhoff
procedure only in the orthogonal directions. The x‖ coordinate plays the
role of a parameter. After the tasformation up to order N the Hamiltonian
(M.39) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1)+
N∑

j=2

U j(x‖, τ1, ..., τd−1), (M.46)

where U j is a jth order homogeneous polynomial of τ -s with x‖ dependent
coefficients. The orthogonal part can be BS quantized by quantizing the
individual oscillators, replacing τ -s as we did in (M.30). This leads to a one
dimensional effective potential indexed by j1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1
2
p2
‖ + U(x‖) +

d−1∑
n=1

�snωn(jn + 1/2) + (M.47)

+
N∑

k=2

Uk(x‖, �s1ω1(j1 + 1/2), �s2ω2(j2 + 1/2), ..., �sd−1ωd−1(jd−1 + 1/2)),
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where jn can be any non-negative integer. The term with index k is pro-
portional with �

k due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given set of j-s

Sp(E, j1, ..., jd−1) =
∮

p‖dx‖ = (M.48)

=
∮

dx‖

√√√√E −
d−1∑
n=1

�snωn(jn + 1/2)− U(x‖, j1, ..., jd−1) = 2π�(m + mp/2),

where U contains all the x‖ dependent terms of the Hamiltonian. The
spectral determinant becomes

∆p(E) =
∏

j1,...,jd−1

(1− eiSp(E,j1,...,jd−1)/�−mpπ/2). (M.49)

This expression completes the Sommerfeld method and tells us how to
quantize chaotic or general Hamiltonian systems. Unfortunately, quantum
mechanics postponed this nice formula until our book.

This formula has been derived with the help of the semiclassical Bohr-
Sommerfeld quantization rule and the classical normal form theory. Indeed,
if we expand Sp in the exponent in the powers of �

Sp =
N∑

k=0

�
kSk,

we get more than just a constant and a linear term. This formula already
gives us corrections to the semiclassical zeta function in all powers of �.
There is a very attracting feature of this semiclassical expansion. � in Sp

shows up only in the combination �snωn(jn + 1/2). A term proportional
with �

k can only be a homogeneous expression of the oscillator energies
snωn(jn +1/2). For example in two dimensions there is only one possibility
of the functional form of the order k term

Sk = ck(E) · ωk
n(j + 1/2)k,

where ck(E) is the only function to be determined.

The corrections derived sofar are doubly semiclassical, since they give
semiclassical corrections to the semiclassical approximation. What can
quantum mechanics add to this ? As we have stressed in the previous
section, the exact quantum mechanics is not invariant under canonical
transformations. In other context, this phenomenon is called the opera-
tor ordering problem. Since the operators x̂ and p̂ do not commute, we
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run into problems, when we would like to write down operators for classical
quantities like x2p2. On the classical level the four possible orderings xpxp,
ppxx, pxpx and xxpp are equivalent, but they are different in the quantum
case. The expression for the energy (M.48) is not exact. We have to go
back to the level of the Schrödinger equation if we would like to get the
exact expression.

M.5 Quantum calculation of � corrections

The Gutzwiller trace formula has originally been derived from the saddle
point approximation of the Feynman path integral form of the propagator.
The exact trace is a pathsum for all closed paths of the system

TrG(x, x′, t) =
∫

dxG(x, x, t) =
∫
DxeiS(x,t)/�, (M.50)

where
∫
Dx denotes the discretization and summation for all paths of time

length t in the limit of the infinite refination and S(x, t) is the classical
action calculated along the path. The trace in the saddle point calculation
is a sum for classical periodic orbits and zero length orbits, since these are
the extrema of the action δS(x, t) = 0 for closed paths:

TrG(x, x′, t) = g0(t) +
∑

p∈PO

∫
Dξpe

iS(ξp+xp(t),t)/�, (M.51)

where g0(t) is the zero length orbit contribution. We introduced the new
coordinate ξp with respect to the periodic orbit xp(t), x = ξp + xp(t).
Now, each path sum

∫
Dξp is computed in the vicinity of periodic orbits.

Since the saddle points are taken in the configuration space, only spatially
distinct periodic orbits, the so called prime periodic orbits, appear in the
summation. Sofar nothing new has been invented. If we continue the
standard textbook calculation scheme, we have to Taylor expand the action
in ξp and keep the quadratic term in the exponent while treating the higher
order terms as corrections. Then we can compute the path integrals with
the help of gaussian integrals. The key point here is that we don’t compute
the path sum directly. We use the correspondence between path integrals
and partial differential equations. This idea comes from Maslov [M.6] and
a good summary is in ref. [M.7]. We search for that Schrödinger equation,
which leads to the path sum∫

Dξpe
iS(ξp+xp(t),t)/�, (M.52)

where the action around the periodic orbit is in a multi dimensional Taylor
expanded form:

S(x, t) =
∞∑
n

sn(t)(x− xp(t))n/n!. (M.53)

qmnoise - 19jun2003 draft 9.4.0, June 18 2003



M.5. QUANTUM CALCULATION OF � CORRECTIONS 691

The symbol n = (n1, n2, ..., nd) denotes the multi index in d dimensions,
n! =

∏d
i=1 ni! the multi factorial and (x − xp(t))n =

∏d
i=1(xi − xp,i(t))ni ,

respectively. The expansion coefficients of the action can be determined
from the Hamilton-Jacobi equation

∂tS +
1
2
(∇S)2 + U = 0, (M.54)

in which the potential is expanded in a multidimensional Taylor series
around the orbit

U(x) =
∑
n

un(t)(x− xp(t))n/n!. (M.55)

The Schrödinger equation

i�∂tψ = Ĥψ = −�
2

2
∆ψ + Uψ, (M.56)

with this potential also can be expanded around the periodic orbit. Using
the WKB ansatz

ψ = ϕeiS/�, (M.57)

we can construct a Schrödinger equation corresponding to a given order of
the Taylor expansion of the classical action. The Schrödinger equation in-
duces the Hamilton-Jacobi equation (M.54) for the phase and the transport
equation of Maslov and Fjedoriuk [M.8] for the amplitude:

∂tϕ +∇ϕ∇S +
1
2
ϕ∆S − i�

2
∆ϕ = 0. (M.58)

This is the partial differential equation, solved in the neighborhood of a
periodic orbit with the expanded action (M.53), which belongs to the local
pathsum (M.52).

If we know the Green’s function Gp(ξ, ξ′, t) corresponding to the local
equation (M.58), then the local path sum can be converted back into a
trace: ∫

Dξpe
i/�

∑
n Sn(xp(t),t)ξnp /n! = TrGp(ξ, ξ′, t). (M.59)

The saddle point expansion of the trace in terms of local traces then be-
comes

TrG(x, x′, t) = TrGW (x, x′, t) +
∑

p

TrGp(ξ, ξ′, t), (M.60)
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where GW (x, x′, t) denotes formally the Green’s function expanded around
zero length (non moving) periodic orbits, known as the Weyl term [M.9].
Each Green’s function can be Fourier-Laplace transformed independently
and by definition we get in the energy domain:

TrG(x, x′, E) = g0(E) +
∑

p

TrGp(ξ, ξ′, E). (M.61)

Notice, that we do not need here to take further saddle points in time,
since we are dealing with exact time and energy domain Green’s functions.
indexGreen’s function!energy dependent

The spectral determinant is a function which has zeroes at the eigenen-
ergies En of the Hamilton operator Ĥ. Formally it is

∆(E) = det (E − Ĥ) =
∏
n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the
energy domain Green’s function:

TrG(x, x′, E) =
∑

n

1
E − En

=
d

dE
log ∆(E). (M.62)

We can define the spectral determinant ∆p(E) also for the local operators
and we can write

TrGp(ξ, ξ′, E) =
d

dE
log ∆p(E). (M.63)

Using (M.61) we can express the full spectral determinant as a product for
the sub-determinants

∆(E) = eW (E)
∏
p

∆p(E),

where W (E) =
∫ E

g0(E′)dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done eas-
ily. We have to consider the stationary eigenvalue problem of the local
Schrödinger problem and keep in mind, that we are in a coordinate system
moving together with the periodic orbit. If the classical energy of the peri-
odic orbit coincides with an eigenenergy E of the local Schrödinger equation
around the periodic orbit, then the corresponding stationary eigenfunction
fulfills

ψp(ξ, t+Tp) =
∫

dξ′Gp(ξ, ξ′, t+Tp)ψp(ξ′, t) = e−iETp/�ψp(ξ, t), (M.64)
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where Tp is the period of the prime orbit p. If the classical energy of the
periodic orbit is not an eigenenergy of the local Schrödinger equation, the
non-stationary eigenfunctions fulfill

ψl
p(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ′, t+Tp)ψp(ξ′, t) = e−iETp/�λl

p(E)ψl
p(t), (M.65)

where l = (l1, l2, ...) is a multi-index of the possible quantum numbers of
the local Schrödinger equation. If the eigenvalues λl

p(E) are known the
local functional determinant can be written as

∆p(E) =
∏
l

(1− λl
p(E)), (M.66)

since ∆p(E) is zero at the eigenenergies of the local Schrödinger problem.
We can insert the ansatz (M.57) and reformulate (M.65) as

e
i
�

S(t+Tp)ϕl
p(t + Tp) = e−iETp/�λl

p(E)e
i
�

S(t)ϕl
p(t). (M.67)

The phase change is given by the action integral for one period S(t+Tp)−
S(t) =

∫ Tp

0 L(t)dt. Using this and the identity for the action Sp(E) of the
periodic orbit

Sp(E) =
∮

pdq =
∫ Tp

0
L(t)dt + ETp, (M.68)

we get

e
i
�

Sp(E)ϕl
p(t + Tp) = λl

p(E)ϕl
p(t). (M.69)

Introducing the eigenequation for the amplitude

ϕl
p(t + Tp) = Rl,p(E)ϕl

p(t), (M.70)

the local spectral determinant can be expressed as a product for the quan-
tum numbers of the local problem:

∆p(E) =
∏
l

(1−Rl,p(E)e
i
�

Sp(E)). (M.71)

Since � is a small parameter we can develop a perturbation series for
the amplitudes ϕl

p(t) =
∑∞

m=0

(
i�
2

)m
ϕ

l(m)
p (t) which can be inserted into the
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equation (M.58) and we get an iterative scheme starting with the semiclas-
sical solution ϕl(0):

∂tϕ
l(0) +∇ϕl(0)∇S +

1
2
ϕl(0)∆S = 0, (M.72)

∂tϕ
l(m+1) +∇ϕl(m+1)∇S +

1
2
ϕl(m+1)∆S = ∆ϕl(m).

The eigenvalue can also be expanded in powers of i�/2:

Rl,p(E) = exp

{ ∞∑
m=0

(
i�

2

)m

C
(m)
l,p

}
(M.73)

= exp(C(0)
l,p ) {1 +

i�

2
C

(1)
l,p +

(
i�

2

)2 (1
2
(C(1)

l,p )2 + C
(2)
l,p

)
+ ... .(M.74)

The eigenvalue equation (M.70) in � expanded form reads as

ϕl(0)
p (t + Tp) = exp(C(0)

l,p )ϕl(0)
p (t),

ϕl(1)
p (t + Tp) = exp(C(0)

l,p )[ϕl(1)
p (t) + C

(1)
l,p ϕl(0)

p (t)],

ϕl(2)
p (t + Tp) = exp(C(0)

l,p )[ϕl(2)
p (t) + C

(1)
l,p ϕl(1)

p (t) + (C(2)
l,p +

1
2
(C(1)

l,p )2)ϕl(0)
p (t)],(M.75)

and so on. These equations are the conditions selecting the eigenvectors
and eigenvalues and they hold for all t.

It is very convenient to expand the functions ϕ
l(m)
p (x, t) in Taylor se-

ries around the periodic orbit and to solve the equations (M.73) in this
basis [M.11], since only a couple of coefficients should be computed to
derive the first corrections. This technical part we are going to pub-
lish elsewhere [M.10]. One can derive in general the zero order term
C

(0)
l = iπνp +

∑d−1
i=1

(
li + 1

2

)
up,i, where up,i = log Λp,i are the logarithms

of the eigenvalues of the monodromy matrix Jp and νp is the topological
index of the periodic orbit. The first correction is given by the integral

C
(1)
l,p =

∫ Tp

0
dt

∆ϕ
l(0)
p (t)

ϕ
l(0)
p (t)

.

When the theory is applied for billiard systems, the wave function
should fulfill the Dirichlet boundary condition on hard walls, e.g. it should
vanish on the wall. The wave function determined from (M.58) behaves
discontinuously when the trajectory xp(t) hits the wall. For the simplicity
we consider a two dimensional billiard system here. The wave function on
the wall before the bounce (t−0 ) is given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0)eiS(x,y(x),t−0)/�, (M.76)
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where y(x) = Y2x
2/2! + Y3x

3/3! + Y4x
4/4! + ... is the parametrization of

the wall around the point of reflection (see Fig 1.). The wave function on
the wall after the bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS(x,y(x),t+0)/�. (M.77)

The sum of these wave functions should vanish on the hard wall. This
implies that the incoming and the outgoing amplitudes and the phases are
related as

S(x, y(x), t−0) = S(x, y(x), t+0), (M.78)

and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (M.79)

The minus sign can be interpreted as the topological phase coming from
the hard wall.

Now we can reexpress the spectral determinant with the local eigenval-
ues:

∆(E) = eW (E)
∏
p

∏
l

(1−Rl,p(E)e
i
�

Sp(E)). (M.80)

This expression is the quantum generalization of the semiclassical Selberg-
product formula [M.12]. A similar decomposition has been found for quan-
tum Baker maps in ref. [M.13]. The functions

ζ−1
l (E) =

∏
p

(1−Rl,p(E)e
i
�

Sp(E)) (M.81)

are the generalizations of the Ruelle type [26.37] zeta functions. The trace
formula can be recovered from (M.62):

TrG(E) = g0(E)+
1
i�

∑
p,l

(Tp(E)−i�
d log Rl,p(E)

dE
)

Rl,p(E)e
i
�

Sp(E)

1−Rl,p(E)e
i
�

Sp(E)
.(M.82)

We can rewrite the denominator as a sum of a geometric series and we get

TrG(E) = g0(E)+
1
i�

∑
p,r,l

(Tp(E)−i�
d log Rl,p(E)

dE
)(Rl,p(E))re

i
�

rSp(E).(M.83)

The new index r can be interpreted as the repetition number of the prime
orbit p. This expression is the generalization of the semiclassical trace
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formula for the exact quantum mechanics. We would like to stress here,
that the perturbation calculus introduced above is just one way to compute
the eigenvalues of the local Schrödinger problems. Non-perturbative meth-
ods can be used to calculate the local eigenvalues for stable, unstable and
marginal orbits. Therefore, our trace formula is not limited to integrable or
hyperbolic systems, it can describe the most general case of systems with
mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-
leading term −i�d log Rl,p(E)/dE and using the semiclassical eigenvalue

R
(0)
l,p (E) = eC

l(0)
p = e−iνpπe−

∑
i(li+1/2)up,i . Summation for the indexes li

yields the celebrated semiclassical amplitude

∑
l

(R(0)
l,p (E))r =

e−irνpπ

| det (1− Jr
p) |1/2

. (M.84)

To have an impression about the improvement caused by the quantum
corrections we have developed a numerical code [M.14] which calculates the
first correction C

(1)
p,l for general two dimensional billiard systems . The first

correction depends only on some basic data of the periodic orbit such as the
lengths of the free flights between bounces, the angles of incidence and the
first three Taylor expansion coefficients Y2, Y3, Y4 of the wall in the point
of incidence. To check that our new local method gives the same result
as the direct calculation of the Feynman integral, we computed the first �

correction C
(1)
p,0 for the periodic orbits of the 3-disk scattering system [M.15]

where the quantum corrections have been We have found agreement up to
the fifth decimal digit, while our method generates these numbers with any
desired precision. Unfortunately, the l 	= 0 coefficients cannot be compared
to ref. [M.16], since the l dependence was not realized there due to the
lack of general formulas (M.80) and (M.81). However, the l dependence
can be checked on the 2 disk scattering system [M.17]. On the standard
example [M.15, M.16, M.17, M.19], when the distance of the centers (R) is
6 times the disk radius (a), we got

C
(1)
l =

1√
2E

(−0.625l3 − 0.3125l2 + 1.4375l + 0.625).

For l = 0 and 1 this has been confirmed by A. Wirzba [M.18], who was
able to compute C

(1)
0 from his exact quantum calculation. Our method

makes it possible to utilize the symmetry reduction of Cvitanović and Eck-
hardt and to repeat the fundamental domain cycle expansion calculation
of ref. [M.19] with the first quantum correction. We computed the cor-
rection to the leading 226 prime periodic orbits with 10 or less bounces
in the fundamental domain. Table I. shows the numerical values of the
exact quantum calculation [M.17], the semiclassical cycle expansion [M.11]
and our corrected calculation. One can see, that the error of the corrected
calculation vs. the error of the semiclassical calculation decreases with the
wave number. Besides the improved results, a fast convergence up to six
decimal digits can be observed, which is just three decimal digits in the full
domain calculation [M.16].
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Figure M.2: A typical bounce on a billiard wall. The wall can be characterized by
the local expansion y(x) = Y2x

2/2! + Y3x
3/3! + Y4x

4/4! + ....

Table M.1: Real part of the resonances (Re k) of the 3-disk scattering system at disk
separation 6:1. Semiclassical and first corrected cycle expansion versus exact quantum
calculation and the error of the semiclassical δSC divided by the error of the first
correction δCorr. The magnitude of the error in the imaginary part of the resonances
remains unchanged.
Quantum Semiclassical First correction δSC/δCorr

0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0
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Appendix N

What reviewers say

N.1 Niels Bohr

“The most important work since that Schrödinger killed the cat.”

N.2 Richard P. Feynman

“Great doorstop!”

N.3 Divakar Viswanath

I have read the first six chapters. The introduction chapter is fabulous. The
computation of the escape rate for the pin-ball game in the first chapter is
absolutely riveting. There can’t be a better way to begin. I find the book
to be very stimulating.

N.4 Benny Lautrup

I am now reading your book as meticulously. I have lots of little comments,
and one big one, which I can tell you immediately. I think that your opening
chapter with its many literary references, jokes, and finesses, loses out in
the end, because the main message gets obscured. Don’t make section
quotes unless they are really pertinent (although I love the first one about
standing behind giants), but why cite Kierkegaard in Danish (or at all for
that matter)?
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700 APPENDIX N. WHAT REVIEWERS SAY

N.5 Professor Gatto Nero

This book, which I have received unsolicited from the Szczsyrk Oblast Agri-
cultural and Mazuth Office Press appears to be a collage of LaTeX clips
from random papers authored by the motley collection of co-authors whose
number one usually associates with an experimental high energy Phys. Rev.
Letter, rather than a book that aspires to be the Landau-Lifshitz of chaos.

Entire rain forests went down so this not inconsiderable tome can be
printed and bound. Why these ravings were not left on the Web where
they more properly belong is not explained anywhere in the text. If it is
an antiBourbaki, as one has in the antimatter world, then why not do the
real thing? A Landau-Lifshitz for nonlinear Science, written as it should
be done. The nonScience book to end all nonScience books.
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Appendix O

Solutions

Chapter 1

Solution 1.1: 3-disk symbolic dynamics. Some of the cycles are listed in

table 9.1 and drawn in fig. 19.3.

Solution 1.2: Sensitivity to initial conditions. To estimate the pinball sensitivity
we consider a narrow beam of point particles bouncing between two disks, fig. O.1(a).
Or if you find this easier to visualize, think of a narrow ray of light. We assume that
the ray of light is focused along the axis between the two points. This is where the
least unstable periodic orbit lies, so its stability should give us an upper bound on the
number of bounces we can expect to achieve. To estimate the stability we assume
that the ray of light has a width w(t) and a “dispersion angle” θ(t) (we assume both
are small), fig. O.1(b). Between bounces the dispersion angle stays constant while the
width increases as

w(t) ≈ w(t′) + (t− t′)θ

At each bounce the width stays constant while the angle increases by

θn+1 = θn + 2φ ≈ θn + w(t)/a.

(a)

R-2a aa

R (b)

ϕθ

Figure O.1: The 2-disk pinball (a) geometry, (b) defocusing of scattered rays.
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where θn denotes the angle after bounce n. Denoting the width of the ray at the nth
bounce by wn then we obtain the pair of coupled equations

wn+1 = wn +
(
R− 2a

)
θn

(O.1)

θn = θn−1 +
wn

a
(O.2)

where we ignore corrections of order w2
n and θ2

n. Solving for θn we find

θn = θ0 +
1
a

n∑
j=1

wn.

Assuming θ0 = 0 then

wn+1 = wn +
R− 2a

a

n∑
j=1

wn

Plugging in the values in the question we find the width at each bounce in Ångstrøms
grows as 1, 5, 29, 169, 985, etc. To find the asymptotic behavior for a large number of
bounces we try an solution of the form wn = axn. Substituting this into the equation
above and ignoring terms that do not grow exponentially we find solutions

wn ≈ awasym
n = a(3± 2

√
2)n

The solution with the positive sign will clearly dominate. The constant a we cannot
determine by this local analysis although it is clearly proportional to w0. However, the
asymptotic solution is a good approximation even for quite a small number of bounces.
To find an estimate of a we see that wn/wasym

n very rapidly converges to 0.146447,
thus

wn ≈ 0.146447w0(3 + 2
√

2)n ≈ 0.1× w0 × 5.83n

The outside edges of the ray of light will miss the disk when the width of the ray
exceeds 2 cm; this occurs after 11 bounces.

(Adam Prügel-Bennett)

Solution 1.2: Sensitivity to initial conditions, another try. Adam’s estimate
is not very good - do you have a better one? The first problem with it is that the
instability is very underestimated. As we shall check in exercise 5.5, the exact formula
for the 2-cycle stability is Λ = R − 1 + R

√
1− 2/R. For R = 6, a = 1 this yields

wn/w0 ≈ (5 + 2
√

6)n = 9.898979n, so if that were the whole story, the pinball would
be not likely to make it much beyond 8 bounces.

The second problem is that local instability overestimates the escape rate from an
enclosure; trajectories are reinjected by scatterers. In the 3-disk pinball the particle
leaving a disk can be reinjected by hitting either of other 2 disks, hence wn/w0 ≈
(9.9/2)n. This interplay between local instability and global reinjection will be cast into
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the exact formula involving “Lyapunov exponent” and “Kolmogorov entropy”. In order
to relate this estimate to our best continuous time escape rate estimate γ = 0.4103 . . .
(see table 15.2), we will have to also compute the mean free flight time (15.20). As
a crude estimate, we take the shortest disk-to-disk distance, 〈T〉 = R − 2 = 4. The
continuous time escape rate result implies that wn/w0 ≈ e(R−2)γn = (5.16)n, in the
same ballpark as the above expansion-reinjection estimate.

(Predrag Cvitanović)

Chapter 2

Solution 2.2: Evolution as a group. Can you see any other group replacing
time? Try Z17 as an example; to mess things up try a non-commutative group.

(Ronnie Mainieri)

Solution 2.9: Classical collinear helium dynamics. An example of a solution

are A. Prügel-Bennett’s programs, available at

www.nbi.dk/ChaosBook/extras.

Chapter 4

Solution 4.1: Trace-log of a matrix. 1) one method is to first check that this
is true for any Hermitian matrix M . Then write an arbitrary complex matrix as sum
M = A+ zB, A, B Hermitian, Taylor expand in z and prove by analytic continuation
that the identity applies to arbitrary M .

(David Mermin)

2) another method: evaluate d
dtdet

(
et ln M

)
by definition of derivative in terms

of infinitesimals.

(Kasper Juel Eriksen)

3) check appendix K.1

Solution 4.2: Stability, diagonal case. The relation (4.14) can be verified by
noting that the defining product (4.10) can be rewritten as

etA =
(
UU−1 +

tUADU−1

m

)(
UU−1 +

tUADU−1

m

)
· · ·

= U
(

I +
tAD

m

)
U−1U

(
I +

tAD

m

)
U−1 · · · = UetADU−1 . (O.3)

Solution 8.1: How unstable is the Hénon attractor?

1. Evaluate numerically the Lyapunov exponent by iterating the Hénon map; For
a = 1.4, b = 0.3 the answer should be close to λ = 0.41. If you have a good
estimate and a plot of the convergence of your estimate with t, please send us
your results for possibel inclusion into this text.

draft 9.4.0, June 18 2003 soluStability - 12jun2003
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2. Both Lyapunov exponents for a = 1.39945219, b = 0.3 are negative, roughly
λ1 = −0.2712, λ2 = −0.9328 (check that these values do respect the constant
volume contraction condition (4.33) for the Hénon map). Why? because after
a long transient exploration of the Hénon map’s non–wandering set, on average
after some 11,000 iterates, almost every inital point fall into a stable 13-cycle.
You can check its existence by starting at on of its periodic points (xp, yp =
−0.2061,−0.3181).

If you missed the stable 13-cycle (as all students in one of the courses did), you
should treat your computer experiments with great deal of scepticism.

As the product of eigenvalues is constant −b, you need to evaluate only the expanding
eigenvalue. There are many ways to implement this calculation - here are a few:

1. The most naive way - take the log of distance of two nearby trajectories, iterate
until you run out of accuracy. Tray this many times, estimate an average.

2. slighly smarter: as above, but keep rescaling the length of the vector connecting
neighboring points so it remains small, average over the sum of logs of rescaling
factors. You can run this forever.

3. keep multiplying the [2×2] Jacobian stability matrix (4.32) until you run out
of accuracy. Compute the log of the leading eigenvalue (4.16), tray this many
times, estimate an average.

4. slighly smarter: as above, but start with an arbitrary inital tangent space vec-
tor, keep rescaling the length of the vector connecting neighboring points so it
remains small. Can run this forever.

5. There is probably no need to use the QR decomposition method or any other
such numerical method for this 2-dimensional problem.

(Yueheng Lan and P. Cvitanović)

Solution 5.4: Billiard exercises. Korsch and Jodl [3.20] have a whole book of

numerical exercises with billiards, including 3-disks.

Solution 6.2: Linearization for maps. (difficulty: medium) The first few terms
of the map h that conjugates f to αz

f(z) = h−1(αh(z)) .

are determined many places, for example in ref. [7.3].

There are conditions on the derivative of f at the origin to assure that the con-

jugation is always possible. These conditions are formulated in ref. [1.11], among

others.

Chapter 5

Solution 5.1: A pinball simulator. An example of a pretty Xwindows pinball is

A. Prügel-Bennett’s xpinball.c program, available at

www.nbi.dk/ChaosBook/ChaosBook/extras/xpinball.tar.gz.

soluMeasure - 24mar98 draft 9.4.0, June 18 2003
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Chapter 7

Solution 7.1: Integrating over Dirac delta functions.

(b) It does not.

(c) Integrate by parts

0 =
∫

dx
∂

∂x
(g(x)δ(f(x)))

=
∫

dx (g′(x)δ(f(x)) + g(x)f ′(x)δ′(f(x)))

Taking g(x) = 1/f ′(x) we obtain∫
dx δ′(f(x)) =

∑
x∗∈Zero f

f ′′(x∗)
|f ′(x∗)|3

Chapter 12

Solution 12.1: Numerical estimate of the escape rate for a 1-d repeller The
logistic map is defined by xn+1 = Axn(1 − xn) . For A ≤ 4 any point in the unit
interval [0, 1] will remain in the interval forever. For A > 4 almost all points starting
in the unit interval will eventually escape towards −∞.

The rate of escape can be easily measured by numerical experiment. We define the
fraction of initial conditions that leave the interval after n iterations to be Γn. Fig. O.2
shows a plot of log(Γn) versus n, computed by starting with 10 000 000 random initial
points. Asymptotically the escape rate falls off exponentially as

Γ(n) = Ce−γn .

Fig. O.2 suggests that this formula is very accurate even for relatively small n. We
estimate γ by measuring the slope of the curve in fig. O.2. To avoid errors due to
rounding and transients only the points 5 ≤ n ≤ 10 were used. A linear regression fit
yields the escape rate for A = 6:

γ = 0.8315± 0.0001 ,

where the error is from statistical fluctuations (there may be systematic errors either
due to rounding or because we are not in the true asymptotic regime).

(Adam Prügel-Bennet)

Solution 10.8: Spectrum of the “golden mean” pruned map.

1. The idea is that with the redefinition 2 = 10, the alphabet {1,2} is unrestricted
binary, and due to the piecewise linearity of the map, the stability weights factor
in a way similar to (11.10).
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0 5 10 15
n

0.0

5.0

10.0

15.0

20.0

lo
g(

Γ(
n)

)
Figure O.2: Plot of log(Γ(n)) versus n for the logistic map xn+1 = 6xn(1 −
xn). Error bars show estimated errors in the mean assuming a binomial distribution.
10 000 000 random initial starting points were used.

2. As in (12.9), the spectral determinant for the Perron-Frobenius operator takes
form (12.21)

det (1− zL) =
∞∏

k=0

1
ζk

,
1
ζk

=
∏
p

(
1− znp

|Λp|Λk
p

)
.

The mapping is piecewise linear, so the form of the topological zeta function
worked out in (10.16) already suggests the form of the answer. The alphabet
{1,2} is unrestricted binary, so the dynamical zeta functions receive contribu-
tions only from the two fixed points, with all other cycle contributions cancelled
exactly. The 1/ζ0 is the spectral determinant for the transfer operator like the
one in (7.13) with the T00 = 0, and in general

1
ζk

=
(

1− z

|Λ1|Λk
1

)(
1− z2

|Λ2|Λk
2

)(
1− z3

|Λ12|Λk
12

)
· · ·

= 1− (−1)k

(
z

Λk+1
+

z2

Λ2k+2

)
. (O.4)

The factor (−1)k arises because both stabilities Λ1 and Λ2 include a factor −Λ from

the right branch of the map. This answer contradicts (10.37). Which answer is the

right one?

Solution 12.2: Dynamical zeta functions

1. Work through section sect. 12.3.2.

2. Generalize the transition matrix (9.14) to a transfer operator.

Solution 12.5: Dynamical zeta functions as ratios of spectral determinants.

Try inserting a factor equal to one in the zeta function and then expanding it. The

problem is solved in sect. 12.5.1.

Solution 12.6: Escape rate for the Ulam map. The answer is worked out in

Nonlinearity 3, 325; 3, 361 (1990).
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Solution 7.7: Eigenvalues of the skew Ulam tent map Perron-Frobenius
operator. The first few eigenvalues are

es0 = 1 , es1 =
2
Λ0
− 1

es2 =
1
4

+
3
4

(
2
Λ0
− 1

)2

, es3 =
1
2

(
2
Λ0
− 1

)
+

1
2

(
2
Λ0
− 1

)3

. . .

Solution 12.9: Dynamical zeta functions for Hamiltonian maps. Read

sect. 12.3.

Solution 7.5: Invariant measure. Compare the second map to the construction

of Exercise 10.6.

Solution 13.3: Euler formula. Let

P =
∞∏

k=0

(1 + tuk) =
∞∑

n=0

Pntn

then

Pn =
1
n!

∂nP

∂tn

∣∣∣∣
t=0

=
1
n!

∑
in 
=in−1 
=···
=i1

uin+in−1+···+i1

(O.5)

=
∑

in>in−1>···i1≥0

uin+in−1+···+i1

Clearly P0 = 1, and

P1 =
∑
i=0

ui

multiplying both sides by 1− u

(1− u)P1 = 1 + u + u2 + · · · − (u + u2 + · · ·) = 1

(since, for |u| < 1, limn→∞ un = 0). Thus P1 = 1/(1− u). Similarly

P2 =
∑

i>j≥0

ui+j

Graphically the allowed values of i and j are
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�

�� � � �

� � �

� �

�

i

j

Performing the same trick as for P1

(1− u)P2 =
∑

i>j≥0

ui+j −
∑

i>j≥0

ui+(j+1)

The only terms that survive are those for which j = i− 1 (that is the top diagonal in
the figure) thus

(1− u)P2 = u−1
∞∑

i=1

u2i

and

(1− u)(1− u2)P2 = u−1
(
u2 + u4 + · · · − (u4 + u6 + · · ·)

)
= u

Thus

P2 =
u

(1− u)(1− u2)

In general

(1− u)Pn =
∑

in>in−1>···i1≥0

uin+in−1+···+i1 −
∑

in>in−1>···i1≥0

uin+in−1+···+(i1+1)

(O.6)

= u−1
∑

in>in−1>···i2≥1

uin+in−1+···+2i2 (O.7)

since only the term i1 = i2 − 1 survives. Repeating this trick

(1− u)(1− u2)Pn = u−1−2
∑

in>in−1>···i3≥2

uin+in−1+···+3i3

and

n∏
i=1

(1− ui)Pn = u−(1+2+···+n)un(n−1) = un(n−1)/2
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Thus

Pn =
un(n−1)/2∏n
i=1(1− ui)

.

(Adam Prügel-Bennet)

Solution 13.3: Euler formula, 2nd method. The coefficients Qk in (13.3) are
given explicitly by the Euler formula

Qk =
1

1− Λ−1

Λ−1

1− Λ−2
· · · Λ−k+1

1− Λ−k
. (O.8)

Such a formula is easily proved by considering the finite order product

Wj(z, γ) =
j∏

l=0

(1 + zγl) =
j+1∑
l=0

Γlz
l

Since we have that

(1 + zγj+1)Wj(z, γ) = (1 + z)Wj(γz, γ) ,

we get the following identity for the coefficients

Γm + Γm−1γ
j+1 = Γmγm + Γm−1γ

m−1 m = 1, . . . .

Starting with Γ0 = 1, we recursively get

Γ1 =
1− γj+1

1− γ
Γ2 =

(1− γj+1)(γ − γj+1)
(1− γ)(1− γ2)

. . . .

the Euler formula (13.4) follows once we take the j →∞ limit for |γ| < 1.

(Robert Artuso)

Solution 13.3: Euler formula, 3rd method. First define

f(t, u) :=
∞∏

k=0

(1 + tuk) . (O.9)

Note that

f(t, u) = (1 + t)f(tu, u) , (O.10)
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by factoring out the first term in the product. Now make the ansatz

f(t, u) =
∞∑

n=0

tngn(u) , (O.11)

plug it into (O.10), compare the coefficients of tn and get

gn(u) = ungn(u) + un−1gn−1(u) . (O.12)

Of course g0(u) = 1. Therefore by solving the recursion (O.12) and by noting that∑n−1
k=1 k = n(n−1)

2 one finally arrives at

gn(u) =
u

n(n−1)
2∏n

k=1(1− uk)
. (O.13)

Euler got this formula and he and Jacobi got many nice number theoretical results
from it, most prominent the pentagonal number theorem, which says that in the series
expansion of

∏∞
k=1(1− qk) all terms cancel except those which have as an exponent

the circumference of a regular pentagon with integer base length.

(Juri Rolf)

Solution 13.4: 2-d product expansion. Now let us try to apply the same trick
as above to the two dimensional situation

h(t, u) :=
∞∏

k=0

(1 + tuk)k+1 . (O.14)

Write down the first terms and note that similar to (O.10)

h(t, u) = f(t, u)h(tu, u) , (O.15)

where f is the Euler product (O.9). Now make the ansatz

h(t, u) =
∞∑

n=0

tnan(u) (O.16)

and use the series expansion for f in (O.15) to get the recursion

an(u) =
1

1− un

n−1∑
m=0

umam(u)gn−m(u) . (O.17)

With this one can at least compute the generalized Euler product effectively, but it
would be nice if one could use it for a proof of the general behaviour of the coefficients
an.

(Juri Rolf)
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A

B C
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Figure O.3: Minimizing the path from the previous bounce to the next bounce.

Chapter 14

Solution 14.3: Stability of billiard cycles. The 2-cycle 0 stability (5.5) is the

solution to both problems (provided you evaluate correctly the hyperbola curvature on

the diagonal).

Solution 14.4: Numerical cycle routines. A number of sample Fortran

programs for finding periodic orbits is available on the homepage for this manuscript,

www.nbi.dk/ChaosBook/.

Solution 14.9: Billiard cycles by path length minimization in a given order
is to start with a guess path where each bounce is given some arbitrary position on
the correct disk and then iteratively improve on the guess. To accomplish this an
improvement cycle is constructed whereby each bouncing point in the orbit is taken in
turn and placed in a new position so that it minimizes the path. Since the positions of
all the other bounces are kept constant this involves choosing the new bounce position
which minimizes the path from the previous bounce to the next bounce. This problem
is schematically represented in fig. O.3

Finding the point B involves a one dimensional minimization. We define the
vectors �A = �OA, �B = �OB and �C = �OC. We wish to minimize the length LABC by
varying �B subject to the constraint that | �B| = a. Clearly

LABC =
∣∣∣ �A− �B

∣∣∣+ ∣∣∣�C − �B
∣∣∣

=
√

�A2 + �B2 − 2 �A · �B +
√

�C2 + �B2 − 2�C · �B

writing

�B(θ) = a(cos θ, sin θ)

then the minima is given by

dLABC

dθ
= −

(
�A√

�A2 + �B2 − 2 �A · �B
+

�C√
�C2 + �B2 − 2�C · �B

)
· �B′(θ) = 0.

The minima can then be found using a bisection algorithm or using Newton-Raphson.
A simpler way is to observe that �B′(θ) is orthogonal to �B(θ) so that the vector

�D =
�A√

�A2 + �B2 − 2 �A · �B
+

�C√
�C2 + �B2 − 2�C · �B
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will be proportional to �B. This then provides an iterative sequence for finding �B

• Starting from your current guess for �B calculate �D

• Put �B = a �D/| �D|
• Repeat the first step until you converge.

At each iteration of the improvement cycle the total length of the orbit is measured.
The minimization is complete when the path length stops improving. Although this
algorithm is not as fast as the Newton-Raphson method, it nevertheless converges very
rapidly.

(Adam Prügel-Bennet)

Chapter 15

Solution 15.2: Prime cycles for a 1-d repeller, analytic fromulas. For the
logistic map the prime cycles, ordered in terms of their symbolic dynamics, are listed
in table 9.2

P = {0, 1, 01, 001, 011, 0001, 0011, 0111, . . .}

The position of the prime cycles can be found by iterating the inverse mapping. If we
wish to find the position of a prime orbit p = b1b2 · · · bnp

, where bi ∈ {0, 1}, then
starting from some initial point, x = 1/2 say, we apply one of the inverse mappings

f−1
± (x) =

1
2
± 1

2

√
1− x/4A

where we choose f−1
− if b1 = 0 or f−1

+ if b1 = 1. We then apply the inverse mapping
again depending on the next element in the prime orbit. Repeating this procedure
many times we converge onto the prime cycle. The stability Λp of a prime cycle p is
given by the product of slopes of f around the cycle. The first eight prime cycles are
shown in fig. O.4.

The stabilities of the first five prime orbits can be calculated for arbitrary A. We
find that Λ0 = A, Λ1 = 2−A, Λ01 = 4 + 2A−A2, and

Λ 001
011

= 8 + 2A−A2 ±A(2−A)
√

A2 − 2A− 7. (O.18)

There is probably a closed form expression for the 4-cycles as well.

For crosschecking purposes: if A = 9/2, Λ0 = 9/2 Λ1 = −5/2 Λ01 = −7.25
Λ011 = 19.942461 . . ..

(Adam Prügel-Bennet)

Solution 15.2: Dynamical zeta function for a 1-d repeller The escape rate
can be estimated from the leading zero in the dynamical zeta function 1/ζ(z), defined
by

1/ζ(z) =
∏
p

(1− znp/|Λp|) .
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0
0

1

1
Λ0 = 6

0

0
0

1

1
Λ1 = -4

1

0
0

1

1
Λ01 = -20

01

0
0

1

1
Λ001 = -114.955

001

0
0

1

1
Λ011 = 82.9545

011

0
0

1

1
Λ0001 = -684.424

0001

0
0

1

1
Λ0011 = 485.094

0011

0
0

1

1
Λ0111 = -328.67

0111

Figure O.4: Periodic orbits and stabilities for the logistics equation xn+1 = 6xn(1−
xn).

To compute the position of this pole we expand 1/ζ(z) as a power series (15.5) in z

1/ζ(z) = 1−
∑
i=1

ĉiz
i

where

ĉ1 = |Λ0|−1 + |Λ1|−1 , ĉ2 = |Λ01|−1 − |Λ1Λ0|−1

ĉ3 = |Λ001|−1 − |Λ0Λ01|−1 + |Λ011|−1 − |Λ01Λ1|−1

etc.. Using the cycles up to length 6 we get

1/ζ(z) = 1− 0.416667z − 0.00833333z2

+0.000079446z3 − 9.89291× 10−7z4 + . . .

The leading zero of this Taylor series is an estimate of exp(γ). Using n = 1, 2, 3 and 4
we obtain the increasingly accurate estimates for γ: 0.875469, 0.830597, 0.831519 and
0.831492 In a hope to improve the convergence we can use the Padé approximates
PN

M (z) =
∑N

i=1 piz
i/(1 +

∑M
j=1 qjz

j). Using the Padé approximates Pn−1
1 (z) for

n = 2, 3 and 4 we obtain the estimates 0.828585, 0.831499 and 0.831493.

The above results correspond to A = 6; in the A = 9/2 case the leading zero is

1/z = 1.43549 . . . and γ = 0.36150 . . .. (Adam Prügel-Bennet)

Solution 15.2: Spectral determinant for a 1-d repeller We are told the correct
expression for the escape rate is also given by the logarithm of the leading zero of the
spectral determinant (12.21), expanded as the Taylor series (15.8). The coefficients
ci should fall off super-exponentially so that truncating the Taylor series is expected
to give a far more accurate estimate of the escape rate than using the dynamical
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zeta function. How do we compute the ci coefficients in (15.8)? One straightforward
method is to first compute the Taylor expansion of log(F (z))

log(F (z)) =
∑

p

∑
k=0

log
(

1− tp
Λk

p

)
= −

∑
p

∑
k=0

∑
r=1

trp
Λkr

p

= −
∑

p

∑
r=1

trp

1− Λ−r
p

= −
∑

p

∑
r=1

Bp(r)znpr

where Bp(r) = − 1/r|Λr
p|(1 + Λ−r

p ) . Writing log(F (z)) as a power series

log(F (z)) = −
∑
i=1

biz
i

we obtain

b1 = B0(1) + B1(1)
b2 = B01(1) + B0(2) + B1(2)
b3 = B001(1) + B011(1) + B0(3) + B1(3)
b3 = B0001(1) + B0011(1) + B0111(1) + B01(2) + B0(4) + B1(4) (O.19)

etc.. To obtain the coefficients for the spectral determinant we solve

F (z) = 1−
∑
i=1

Qiz
i = exp

(∑
i=1

biz
i

)

for the Qi’s. This gives

Q1 = b1 , Q2 = b2 + b2
1/2 , Q3 = b3 + b1b2 + b3

1/6
Q4 = b4 + b1b3 + b2

2/2 + b2b
2
1/2 + b4

1/24

Using these formulas we find

F (z) = 1− 0.4z − 0.0152381z2 − 0.0000759784z3 + 4.5311× 10−9z4 + · · ·

The logarithm of the leading zero of F (z) again gives the escape rate. Using the
n = 1, 2, 3, and 4 truncations we find the approximation to γ of 0.916291, 0.832345,
0.83149289 and 0.8314929875. As predicted, the convergence is much faster for the
spectral determinant than for the dynamical zeta function.

In fig. O.5 we show a plot of the logarithm of the coefficients for the spectral
determinant and for the dynamical zeta function.

(Adam Prügel-Bennet)

The above results correspond to A = 6; in the A = 9/2 case all cycles up to

length 10 yield γ = 0.36150966984250926 . . .. (Vadim Moroz)
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1.0 2.0 3.0 4.0
n

-20.0

-15.0

-10.0

-5.0

0.0

log|ci|
log|bi|

Figure O.5: Plot of the Taylor coefficients for the spectral determinant, ci, and for
the dynamical zeta function, bi.

Solution 15.2: Functional dependence of escape rate for a 1-d repeller
We can compute an approximate functional dependence of the escape rate on the
parameter a using the stabilities of the first five prime orbits computed above, see
(O.18). The spectral determinant (for a > 4) is

F = 1− 2z

a− 1
− 8z2

(a− 3)(a− 1)2(a + 1)

+
(

2(32− 18a + 17a2 − 16a3 + 14a4 − 6a5 + a6)
(a− 3)(a− 1)3(1 + a)(a2 − 5a + 7)(a2 + a + 1)

(O.20)

− 2a(a− 2)
√

(a2 − 2a− 7)
(a2 − 5a + 7)(a2 − 2a− 7)(a2 + a + 1)

)
z3

The leading zero is plotted in fig. O.6; it always remains real while the other two roots
which are large and negative for a > 5.13 . . . become imaginary below this critical
value. The accuracy of this truncation is clearly worst for a → 4, the value at which
the hyperbolicity is lost and the escape rate goes to zero.

(Adam Prügel-Bennet)

Solution 15.3: Escape rate for the Ulam map. The answer is given in

ref. [15.3].

Chapter 16

Solution 7.4: The escape rate is the leading zero of the zeta function

0 = 1/ζ(γ) = 1− eγ/2a− eγ/2a = 1− eγ/a.

So, γ = log(a) if a > ac = 1 and γ = 0 otherwise. For a ≈ ac the escape rate
behaves like

γ(a) ≈ (a− ac).
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4 5 6 7 8 9 10

a

0
0.2
0.4
0.6
0.8

1
1.2
1.4

γ

Figure O.6: Plot of the escape rate versus a for the logistic map xn+1 = axn(1−xn)
calculated from the first five periodic orbits.

Solution 16.1: The escape is controlled by the size of the primary hole of the
repeller. All subholes in the repeller will be proportional with the main hole. The size
of the main hole is l =

√
1− 1/a. Near ac = 1 the escape rate is

γ(a) ∼ (a− ac)1/2.

We can generalize this and the previous result and conclude that

γ(a) ∼ (a− ac)1/z,

where z is the order of the maximum of the single humped map.

Solution 16.2: By direct evaluation we can calculate the zeta functions and the
Fredholm determinant of this map. The zeta functions are

1/ζk(z) = det (1− zTk),

where

Tk =
(

T k+1
00 T k+1

01

T k+1
10 T k+1

11

)
,

and T00 = 1/a1, T01 = (b− b/a1)/(1− b), T11 = (1− b− b/a2)/(1− b), T10 = 1/a2

are inverses of the slopes of the map. The Fredholm determinant is the product of
zeta functions

F (z) =
∞∏

k=0

1/ζk(z).

The leading zeroes of the Fredholm determinant can come from the zeroes of the
leading zeta functions.

The zeroes of 1/ζ0(z) are

1/z1 = T00+T11+
√

(T00−T11)2+4T01T10

2 ,

1/z2 = T00+T11−
√

(T00−T11)2+4T01T10

2 .

The zeroes of 1/ζ1(z) are

1/z3 = T 2
00+T 2

11+
√

(T 2
00−T 2

11)
2+4T 2

01T 2
10

2 ,

1/z4 = T 2
00+T 2

11−
√

(T 2
00−T 2

11)
2+4T 2

01T 2
10

2 .
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By substituting the slopes we can show that z1 = 1 is the leading eigenvalue. The
next to leading eigenvalue, which is the correlation decay in discrete time, can be 1/z3

or 1/z2.

Chapter 17

Solution 17.1: In the higher dimensional case there is no change in the

derivation except Λp should be replaced with the product of expanding eigenvalues∏
j |Λp,j |. The logarithm of this product is

∑
j log |Λp,j |. The average of log |Λ,j | is

the j-th Lyapunov exponent.

Solution 17.4: The zeta function for the two scale map is

1/ζ(z, β) = 1− z

(
1
aβ

+
1
bβ

)
.

The pressure function is

P (β) = log z0(β) = − log
(

1
aβ

+
1
bβ

)
.

The escape rate is

γ = P (1) = − log
(

1
a

+
1
b

)
,

The topological entropy is

K0 = htop = −P (0) = log 2.

The Lyapunov exponent is

λ = P ′(1) =
log a/a + log b/b

1/a + 1/b
.

The Kolmogorov entropy is

K1 = λ− γ = P ′(1)− P (1) =
log a/a + log b/b

1/a + 1/b
+ log

(
1
a

+
1
b

)
.

The Rényi entropies are

Kβ = (P (β)− βγ)/(β − 1) = (log
(

1
aβ

+
1
bβ

)
+ β log

(
1
a

+
1
b

)
)/(1− β).

The box counting dimension is the solution of the implicit equation P (D0) = 0, which
is

1 =
1

aD
0

+
1
bD
0

.

The information dimension is
D1 = 1− γ/λ.

The rest of the dimensions can be determined from equation P (q− (q− 1)Dq) = γq.
Taking exp of both sides we get

1
aq−(q−1)Dq

+
1

bq−(q−1)Dq
=
(

1
a

+
1
b

)q

.

For a given q we can find Dq from this implicit equation.
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(a) (b) 1 2 3

4 5
1

2

3

4

5

(c) (d)

Figure O.7: (a) (b) A partition of the unit interval into three or five intervals,
labeled by the order along the unit interval A = {M1, M2 =M4 ∪ ( 1

2 )∪M5, M3}.
The partition is Markov, as the critical point is also a fixed point. (c) the Markov
graph for this Markov partition.

Solution 17.5: The zeta function is

1/ζ(z, β) = det (1−Tβ−1),

where we replaced k with β − 1 in solution O. The pressure can be calculated from
the leading zero which is (see solution O)

P (β) = log z0(β) = − log

T β
00 + T β

11 +
√

(T β
00 − T β

11)2 + 4T β
01T

β
10

2

 .

Solution 17.6: We can easily read off that b = 1/2, a1 = arcsin(1/2)/2π and

a2 = a1 and do the steps as before.

Chapter 20

Solution 20.1: Diffusion for odd integer Λ. Consider first the case Λ = 3,
illustrated in fig. O.7. If β = 0, the dynamics in the elementary cell is simple enough;
a partition can be constructed from three intervals, which we label {M1,M2,M3},
with the alphabet ordered as the intervals are laid out along the unit interval. The
Markov graph is fig. O.7(c), and the dynamical zeta function is

1/ζ|β=0 = 1− (t1 + t2 + t3) = 1− 3z/Λ ,

with eigenvalue z = 1 as required by the flow conservation.

However, description of global diffusion requires more care. As explained in the
definition of the map (20.9), we have to split the partitionM2 =M4∪( 1

2 )∪M5, and

exclude the fixed point f (1
2 ) = 1

2 , as the map f̂ (x̂) is not defined at f̂ ( 1
2 ). (Are we to

jump to the right or to the left at that point?) As we have f (M4) = M1 ∪M4, and
similarly for f (M5), the Markov graph fig. O.7(d) is infinite, and so is the dynamical
zeta function:

1/ζ = 1− t1 − t14 − t144 − t1444 · · · − t3 − t35 − t355 − t3555 · · · .
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The infinite alphabet A = {1, 14, 144, 1444 · · · 3, 35, 355, 3555 · · ·} is a consequence
of the exclusion of the fixed point(s) x4, x5. As is customary in such situations
(see exercise 15.10, and chapter 18, inter alia), we deal with this by dividing out the
undesired fixed point from the dynamical zeta function. We can factorize and resum
the weights using the piecewise linearity of (20.9)

1/ζ = 1− t1
1− t4

− t3
1− t5

.

The diffusion constant is now most conveniently evaluated by evaluating the partial
derivatives of 1/ζ as in (15.16)

〈T〉ζ = −z
∂

∂z

1
ζ

= 2
(

t1
1− t4

+
t1t4

(1− t4)2

)∣∣∣∣
z=1,β=0

=
3
4〈

x̂2
〉

ζ

∣∣∣
z=1,β=0

= 2
(

n̂1(n̂1 + n̂4)Λ2

(1− 1/Λ)2
+ 2

n̂2
4/Λ3

(1− 1/Λ)3

)
=

1
2

(O.21)

yielding D = 1/3, in agreement with in (20.21) for Λ = 3.

Chapter 25

Solution 25.1: Lorentzian representation of the Dirac delta function. To
see that (23.18) is a delta function, express explicitely the imaginary part:

− lim
ε→+0

1
π

Im
E − En − iε

(E − En)2 + ε2
= lim

ε→+0

1
π

ε

(E − En)2 + ε2
. (O.22)

This is a Lorenzian of width ε with a peak at E = En. It has a correct normalization
for the delta function as

1
π

∫ ∞

−∞
dE

ε

(E − En)2 + ε2
= 1, (O.23)

independently of the value of ε. Argue that in the ε → ∞ limit the support of the

Lorentzian is concentrated at E = En, and providing that the function integrated over

has a finite first derivative at E = En and falls of sufficiently rapidly as E → ±∞,

this is a representation of the delta function.

Solution 25.3: Free particle action.

a) a d-dimensional free particle:
Lagrangian is the difference of kinetic and potential energy. For free motion the
potential energy is U(q) = 0 and the velocity and the kinetic energy mq̇2/2 are

constant. Integrating
∫ t

t0
dτL(q(τ), q̇(τ), τ) we obtain

R(q, q′, t) = m(q − q′)2/2t
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Solution 24.7: Stationary phase approximation. The main contribution to
such integrals comes from neighborhoods of values of x of stationary phase, the points
for which the gradient of the phase vanishes

∂

∂x
Φ(x) = 0.

Intuitively, these are the important contributions as for � → 0 the phase Φ(x)/� grows
large and the function eiΦ(x)/� oscillates rapidly as a function of x, with the negative
and positive parts cancelling each other. More precisely, if the stationary points are
well separated local extrema of Φ(x), we can deform the integration contour and
approximate Φ(x)/� up to the second order in x by

I ≈
∑

n

A(xn)eiΦ(xn)/�

∫
ddxe

i
2�

(x−xn)T D2Φ(xn)(x−xn).

The second derivative matrix is a real symmetric matrix, so we can transform it to a
diagonal matrix by a similarity transformation

Diag(λ1, ..., λd) = OD2ΦO+ ,

where O is a matrix of an orthogonal transfomation. In the rotated coordinate system
u = O(x− xn) and the integral takes form

I ≈
∑

n

A(xn)eiΦ(xn)/�

∫
ddue

∑d
k=1 iλku2

k/2� ,

where we used the fact that the Jacobi determinant of an orthogonal transformation
is detO = 1. Carrying out the Gauss integrals

∫
dueiλu2/2� =

(2πi�)1/2

√
λ

(O.24)

and using detD2Φ(xn) =
∏d

k=1 λk we obtain the stationary phase estimate of (24.23).

A nice exposition of the subject is given in ref. [26.12].

Solution 25.11: A usefull determinant identity. Divide out E in the last
column of 25.53 and get the following matrix

E


x1,1 . . . x1,n y1E

−1

...
. . .

...
...

xn,1 . . . xn,n ynE−1

z1 . . . zn 1


Now we subtract the last column multiplied with zn from the second last column
(these matrix operations does not change the determinant) to get

E


x1,1 . . . x1,n−1 x1,n − zny1E

−1 y1E
−1

...
. . .

...
...

...
xn,1 . . . xn,n−1 xn,n − znynE−1 ynE−1

z1 . . . zn−1 0 1
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This continues eliminating all the zi‘s in the bottom row getting the following matrix

E


x1,1 − z1y1E

−1 . . . x1,n − zny1E
−1 y1E

−1

...
. . .

...
...

xn,1 − z1ynE−1 . . . xn,n − znynE−1 ynE−1

0 . . . 0 1



and we get (25.54) by expansion from the bottom row.

Chapter 26

Solution 26.1: Monodromy matrix from second variations of the action. If
we take two points in the configuration space q and q′ connected with a trajectory
with energy E and vary them in such a way that the variation of their initial and
final points are transverse to the velocity of the orbit in that point, we can write the
variations of the initial and final momenta as

δp⊥i =
∂2S(q, q′, E)
∂q⊥i∂q⊥k

δq⊥k +
∂2S(q, q′, E)
∂q⊥i∂q′⊥k

δq′⊥k (O.25)

and

δp′⊥i = −∂2S(q, q′, E)
∂q′⊥i∂q⊥k

δq⊥k −
∂2S(q, q′, E)
∂q′⊥i∂q′⊥k

δq′⊥k . (O.26)

Next we express the variations of the final momenta and coordinates in terms of the
initial ones. In the obvious shorthand we can write (O.26) as

δq⊥ = −S−1
q′qSq′q′δq′⊥ − S−1

q′qδp
′
⊥,

From (O.25) it then follows that

δp⊥ = (Sqq′ − SqqS
−1
q′qSq′q′)δq′⊥ − SqqS

−1
q′qδp

′
⊥. (O.27)

These relations remain valid in the q′ → q limit, with q on the periodic orbit, and
can also be expressed in terms of the monodromy matrix of the periodic orbit. The
monodromy matrix for a surface of section transverse to the orbit within the constant
energy E = H(q, p) shell is

δq⊥ = Jqqδq
′
⊥ + Jqpδp

′
⊥,

δp⊥ = Jpqδq
′
⊥ + Jppδp

′
⊥. (O.28)

In terms of the second derivatives of the action the monodromy matrix is

Jqq = −S−1
q′qSq′q′ , Jqp = −S−1

q′q ,

Jpq = (Sqq′ − SqqS
−1
q′qSq′q′) , Jpp = −SqqS

−1
q′q ,
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and vice versa

Sqq = JppJ−1
qp , Sqq′ = Jpq − JppJ−1

qp Jqq,

Sq′q = −J−1
qp , Sq′q′ = −J−1

qp Jqq.

Now do exercise 26.2.

Solution 26.2: Jacobi gymnastics. We express the Jacobi matrix elements in
det (1− J) with the derivative matrices of S

det (1− J) = det
(

I + S−1
q′qSq′q′ S−1

q′q
−Sqq′ + SqqS

−1
q′qSq′q′ I + SqqS

−1
q′q

)
.

We can multiply the second column with Sq′q′ from the and substract from the first
column, leaving the determinant unchanged

det (1− J) = det
(

I S−1
q′q

−Sqq′ − Sq′q′ I + SqqS
−1
q′q

)
.

Then, we multiply the second column with Sq′q from the right and compensate this
by dividing the determinant with det Sq′q

det (1− J) = det
(

I I
−Sqq′ − Sq′q′ Sq′q + Sqq

)
/det Sq′q.

Finally we subtract the first column from the second one

det (1− Jj)) = det
(

I 0
Sqq′ + Sq′q′ Sqq′ + Sq′q′ + Sq′q + Sqq

)
/det Sq′q.

The last determinant can now be evaluated and yields the desired result (26.2)

det (1− Jj) = det (Sqq′ + Sq′q′ + Sq′q + Sqq)/det Sq′q.

Chapter 27

Solution 27.2: The one-disk scattering wave function.

ψ(�r ) =
1
2

∞∑
m=−∞

(
H(2)

m (kr)− H
(2)
m (ka)

H
(1)
m (ka)

H(1)
m (kr)

)
eim(Φr−Φk) . (O.29)

(For r < a, ψ(�r) = 0 of course.)

(Andreas Wirzba)
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Chapter H

Solution 16.3:

(d) In the A = 9/2 case all cycles up to length 9 yield λ = 1.08569 . . .. (Vadim
Moroz)

Solution H.1: Using the multiplicative property of the Jacobi matrix we can
write

Λt′+t(x0,u0) = ||Jt′+t(x0)u0|| = ||Jt′(x(t))Jt(x0)u0||.
We can introduce the time evolved unit vector

u(t) = Jt(x0)u0/||Jt(x0)u0||.

Then
||Jt′(x(t))Jt(x0)u0|| = ||Jt′(x(t))u(t)||||Jt(x0)u0||,

which is the desired result.

We have to adjoin the tangent space, since the stretching factor depends on u
and not just on x. The stretching factor is multiplicative along the entire trajectory
(x(t),u(t)). However, it is not multiplicative along the phase space trajectory x(t)
with a fixed u.

Solution H.2: If b = a2 and Tb = 2Ta we can introduce the variable y = esTa .
The dynamo rate equation then reads

0 = 1− x + x2.

The solutions of this are x± = (1 ± i
√

3)/2. The dynamo rate is then a complex
cojugate pair ν = log x±/Ta.

The escape rate equation is

0 = 1− x/a− x2/a2.

The solutions are x± = a(−1±
√

5)/2. The escape rate is γ = log(x+)/Ta.

In the reverse case the escape rate remains unchanged, while the dynamo rate
becomes ν = log((

√
5 + 1)/2)/Ta. In this case the advected field grows with an

exponential rate. In the previous case it shows oscillations in addition to the exponential
growth due to the imaginary part of the rate.
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Appendix P

Projects

You are urged to try to work through the essential steps in a project that
combines the techniques learned in the course with some application of
interest to you for other reasons. It is OK to share computer programs and
such, but otherwise each project should be distinct, not a group project.
The essential steps are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct Markov graphs if ap-
propriate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like
the escape rate,

2. or check the flow conservation, compute something like the Lya-
punov exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if
the system is closed

3. implement desymmetrization, factorization of zeta functions, if
dynamics possesses a discrete symmetry

4. compute a quantity like the escape rate as a leading zero of a
spectral determinant or a dynamical zeta function.
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726 APPENDIX P. PROJECTS

5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conduc-
tance

7. compute some number of the classical and/or quantum eigenval-
ues, if appropriate
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P.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter 20, tracking of a globally diffusing
orbit by the associated confined orbit restricted to the fundamental cell,
we consider a class of simple 1-d dynamical systems, chains of piecewise
linear maps, where all transport coefficients can be evaluated analytically.
The translational symmetry (20.10) relates the unbounded dynamics on the
real line to the dynamics restricted to a “fundamental cell” - in the present
example the unit interval curled up into a circle. An example of such map
is the sawtooth map

f̂ (x) =

 Λx x ∈ [0, 1/4 + 1/4Λ]
−Λx + (Λ + 1)/2 x ∈ [1/4 + 1/4Λ, 3/4− 1/4Λ]
Λx + (1− Λ) x ∈ [3/4− 1/4Λ, 1]

.(P.1)

The corresponding circle map f (x) is obtained by modulo the integer part.
The elementary cell map f (x) is sketched in fig. P.1. The map has the
symmetry property

f̂ (x̂) = −f̂ (−x̂) , (P.2)

so that the dynamics has no drift, and all odd derivatives of the generating
function (20.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (P.3)

The diffusion constant formula for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(P.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · ·+ npk

|Λp1 · · ·Λpk
| , (P.5)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · ·+ n̂pk
)2

|Λp1 · · ·Λpk
| , (P.6)
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Figure P.1: (a)-(f) The sawtooth map (P.1) for the 6 values of parameter a for which
the folding point of the map aligns with the endpoint of one of the 7 intervals and
yields a finite Markov partition (from ref. [P.1]). The corresponding Markov graphs
are given in fig. P.2.
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and the sum is over all distinct non-repeating combinations of prime cycles.
Most of results expected in this projects require no more than pencil and
paper computations.

Implementing the symmetry factorization (20.35) is convenient, but not
essential for this project, so if you find sect. 19.1.2 too long a read, skip the
symmetrization.

P.1.1 The full shift

Take the map (P.1) and extend it to the real line. As in example of fig. 20.3,
denote by a the critical value of the map (the maximum height in the unit
cell)

a = f̂ (
1
4

+
1

4Λ
) =

Λ + 1
4

. (P.7)

Describe the symbolic dynamics that you obtain when a is an integer, and
derive the formula for the diffusion constant:

D =
(Λ2 − 1)(Λ− 3)

96Λ
for Λ = 4a− 1, a ∈ Z . (P.8)

If you are going strong, derive also the fromula for the half-integer a =
(2k+1)/2, Λ = 4a+1 case and email it to DasBuch@nbi.dk. You will need
to partition M2 into the left and right half, M2 = M8 ∪M9, as in the
derivation of (20.21). ✎ 20.1

page 393

P.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the
slope is not an integer number. The key step is that of having a partition
where intervals are mapped onto unions of intervals. Consider for example
the case in which Λ = 4a − 1, where 1 ≤ a ≤ 2. A first partition is con-
structed from seven intervals, which we label {M1,M4,M5,M2,M6,M7,M3},
with the alphabet ordered as the intervals are laid out along the unit
interval. In general the critical value a will not correspond to an inter-
val border, but now we choose a such that the critical point is mapped
onto the right border of M1, as in fig. P.1(a). The critical value of f ()
is f (Λ+1

4Λ ) = a − 1 = (Λ− 3)/4. Equating this with the right border of
M1, x = 1/Λ, we obtain a quadratic equation with the expanding solution
Λ = 4. We have that f (M4) = f (M5) = M1, so the transition matrix
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(a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

Figure P.2: (a) The sawtooth map (P.1) partition tree for fig. P.1(a); while intervals
M1,M2,M3 map onto the whole unit interval, f (M1) = f (M2) = f (M3) = M,
intervals M4,M5 map onto M1 only, f (M4) = f (M5) = M1, and similarly for
intervals M6,M7. An initial point starting out in the interval M1, M2 or M3 can
land anywhere on the unit interval, so the subtrees originating from the corresponding
nodes on the partition three are similar to the whole tree and can be identified (as,
for example, in fig. 9.12), yielding (b) the Markov graph for the Markov partition of
fig. P.1(a). (c) the Markov graph in the compact notation of (20.26).

(9.2) is given by

φ′ = Tφ =



1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1





φ1

φ4

φ5

φ2

φ6

φ7

φ3


(P.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (P.9) on the computer, but, as we saw in sect. 9.6,
the Markov graph fig. P.2(b) corresponding to fig. P.1(a) offers more insight
into the dynamics. The dynamical zeta function

1/ζ = 1− (t1 + t2 + t3)− 2(t14 + t37)

1/ζ = 1− 3
z

Λ
− 4 cosh β

z2

Λ2
. (P.10)

follows from the loop expansion (10.13) of sect. 10.3.

The material flow conservation sect. 16.2 and the symmetry factoriza-
tion (20.35) yield

0 =
1

ζ(0, 1)
=
(

1 +
1
Λ

)(
1− 4

Λ

)
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fig. P.1 Λ D

3 0
(a) 4 1

10
(b)

√
5 + 2 1

2
√

5

(c) 1
2(
√

17 + 5) 2√
17

(c’) 5 2
5

(d) 1
2(
√

33 + 5) 1
8 + 5

88

√
33

(e) 2
√

2 + 3 1
2
√

2

(f) 1
2(
√

33 + 7) 1
4 + 1

4
√

33

7 2
7

Table P.1: The diffusion constant as function of the slope Λ for the a = 1, 2 values
of (P.8) and the 6 Markov partitions of fig. P.1

which indeed is satisfied by the given value of Λ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dyn-
amical zeta function, and use the 1/ζ(0, 1) = 0 condition to fix Λ. For more
complicated transition matrices the factorization (20.35) is very helpful in
reducing the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (20.36) and (P.4)

〈n〉ζ = −
(

1 +
1
Λ

)(
− 4

Λ

)
,

〈
n̂2
〉
ζ

=
4
Λ2

D =
1
2

1
Λ + 1

=
1
10

Think up other non-integer values of the parameter for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the
cases illustrated in fig. P.1 and determine for what value of the parameter
a each of them is realized. Work out the Markov graph, symmetrization
factorization and the diffusion constant, and check the material flow con-
servation for each case. Derive the diffusion constants listed in table P.1.
It is not clear why the final answers tend to be so simple. Numerically, the
case of fig. P.1(c) appears to yield the maximal diffusion constant. Does it?
Is there an argument that it should be so?

The seven cases considered here (see table P.1, fig. P.1 and (P.8)) are
the 7 simplest complete Markov partitions, the criterion being that the
critical points map onto partition boundary points. This is, for example,
what happens for unimodal tent map; if the critical point is preperiodic
to an unstable cycle, the grammar is complete. The simplest example is
the case in which the tent map critical point is preperiodic to a unimodal
map 3-cycle, in which case the grammar is of golden mean type, with 00
substring prohibited (see fig. 9.12). In case at hand, the “critical” point is
the junction of branches 4 and 5 (symmetry automatically takes care of the
other critical point, at the junction of branches 6 and 7), and for the cases

draft 9.4.0, June 18 2003 Problems/projDDiff1.tex 7aug2002



732 References

considered the critical point maps into the endpoint of each of the seven
branches.

One can fill out parameter a axis arbitrarily densely with such points -
each of the 7 primary intervals can be subdivided into 7 intervals obtained
by 2-nd iterate of the map, and for the critical point mapping into any of
those in 2 steps the grammar (and the corresponding cycle expansion) is
finite, and so on.

P.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2

n

〉
. (P.11)

Study the convergence by comparing your numerical results to the exact
answers derived above. Is it better to use few initial x̂ and average for long
times, or to use many initial x̂ for shorter times? Or should one fit the
distribution of x̂2 with a gaussian and get the D this way? Try to plot
dependence of D on Λ; perhaps blow up a small region to show that the
dependance of D on the parameter Λ is fractal. Compare with fig. 20.5 and
figures in refs. [P.1, P.2, 20.7, 20.8].

P.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even
though for larger Λ more points are mapped outside the unit cell in one it-
eration, the diffusion constant does not necessarily grow. An interpretation
of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map
(P.1) for a random “generic” value of the parameter Λ, for example Λ = 6.
The idea is to bracket this value of Λ by the nearby ones, for which higher
and higher iterates of the critical value a = (Λ+1)/4 fall onto the partition
boundaries, compute the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward the value of D for
Λ = 6. Judging how difficult such problem is already for a tent map (see
sect. 10.6 and appendix E.1), this is too ambitious for a week-long exam.
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P.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter 20, tracking of a globally diffusing
orbit by the associated confined orbit restricted to the fundamental cell, we
consider in more detail the class of simple 1-d dynamical systems, chains of
piecewise linear maps (20.9). The translational symmetry (20.10) relates
the unbounded dynamics on the real line to the dynamics restricted to a
“fundamental cell” - in the present example the unit interval curled up into
a circle. The corresponding circle map f (x) is obtained by modulo the
integer part. The elementary cell map f (x) is sketched in fig. 20.3. The
map has the symmetry property

f̂ (x̂) = −f̂ (−x̂) , (P.12)

so that the dynamics has no drift, and all odd derivatives of the generating
function (20.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (P.13)

The diffusion constant formula for 1-d maps is

D =
1
2

〈
n̂2
〉
ζ

〈n〉ζ
(P.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z

1
ζ(0, z)

∣∣∣∣
z=1

= −
∑′

(−1)k np1 + · · ·+ npk

|Λp1 · · ·Λpk
| , (P.15)

the mean cycle displacement squared by

〈
n̂2
〉
ζ

=
∂2

∂β2

1
ζ(β, 1)

∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · ·+ n̂pk
)2

|Λp1 · · ·Λpk
| , (P.16)

and the sum is over all distinct non-repeating combinations of prime cycles.
Most of results expected in this projects require no more than pencil and
paper computations.

P.2.1 The full shift

Reproduce the formulas of sect. 20.2.1 for the diffusion constant D for Λ
both even and odd integer.

Problems/projDDiff2.tex 7aug2002 draft 9.4.0, June 18 2003



P.2. DETERMINISTIC DIFFUSION, SAWTOOTH MAP 735

fig. 20.4 Λ D
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√
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Table P.2: The diffusion constant as function of the slope Λ for the Λ = 4, 6 values
of (20.20) and the 5 Markov partitions like the one indicated in fig. 20.4.

P.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the
slope is not an integer number. The key step is that of having a partition
where intervals are mapped onto unions of intervals.

Start by reproducing the formula (20.28) of sect. 20.2.3 for the diffusion
constant D for the Markov partition, the case where the critical point is
mapped onto the right border of I1+ .

Think up other non-integer values of the parameter Λ for which the
symbolic dynamics is given in terms of Markov partitions: in particular
consider the remaing four cases for which the critical point is mapped onto
a border of a partion in one iteration. Work out the Markov graph sym-
metrization factorization and the diffusion constant, and check the material
flow conservation for each case. Fill in the diffusion constants missing in
table P.2. It is not clear why the final answers tend to be so simple. What
value of Λ appears to yield the maximal diffusion constant?

The 7 cases considered here (see table P.2 and fig. 20.4) are the 7 sim-
plest complete Markov partitions in the 4 ≤ Λ ≤ 6 interval, the criterion
being that the critical points map onto partition boundary points. In case
at hand, the “critical” point is the highest point of the left branch of the
map (symmetry automatically takes care of the other critical point, the
lowest point of the left branch), and for the cases considered the critical
point maps into the endpoint of each of the seven branches.

One can fill out parameter a axis arbitrarily densely with such points -
each of the 6 primary intervals can be subdivided into 6 intervals obtained
by 2-nd iterate of the map, and for the critical point mapping into any of
those in 2 steps the grammar (and the corresponding cycle expansion) is
finite, and so on.

P.2.3 Diffusion coefficient, numerically

(optional:)
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Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2

n

〉
. (P.17)

Study the convergence by comparing your numerical results to the exact
answers derived above. Is it better to use few initial x̂ and average for long
times, or to use many initial x̂ for shorter times? Or should one fit the
distribution of x̂2 with a gaussian and get the D this way? Try to plot
dependence of D on Λ; perhaps blow up a small region to show that the
dependance of D on the parameter Λ is fractal. Compare with fig. 20.5 and
figures in refs. [P.1, P.2, 20.7, 20.8].

P.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even
though for larger Λ more points are mapped outside the unit cell in one
iteration, the diffusion constant does not necessarily grow. Fig. 20.5 taken
from ref. [20.7] illustrates the fractal dependence of diffusion constant on
the map parameter. An interpretation of this lack of monotonicity would
be interesting.

You can also try applying periodic orbit theory to the sawtooth map
(20.9) for a random “generic” value of the parameter Λ, for example Λ =
4.5. The idea is to bracket this value of Λ by the nearby ones, for which
higher and higher iterates of the critical value a = Λ/2 fall onto the partition
boundaries, compute the exact diffusion constant for each such approximate
Markov partition, and study their convergence toward the value of D for
Λ = 4.5. Judging how difficult such problem is already for a tent map (see
sect. 10.6 and appendix E.1), this is too ambitious for a week-long exam.
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